1 // output.h -- manage the output file for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "reloc-types.h"
37 class General_options;
41 class Output_merge_base;
43 class Relocatable_relocs;
45 template<int size, bool big_endian>
47 template<int size, bool big_endian>
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
52 // An abtract class for data which has to go into the output file.
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
72 gold_assert(this->is_address_valid_);
73 return this->address_;
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
86 // Get the current data size.
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
91 // Return true if data size is fixed.
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
109 reset_address_and_file_offset()
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
124 // Return the required alignment.
127 { return this->do_addralign(); }
129 // Return whether this has a load address.
131 has_load_address() const
132 { return this->do_has_load_address(); }
134 // Return the load address.
137 { return this->do_load_address(); }
139 // Return whether this is an Output_section.
142 { return this->do_is_section(); }
144 // Return whether this is an Output_section of the specified type.
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
149 // Return whether this is an Output_section with the specified flag
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
155 // Return the output section that this goes in, if there is one.
158 { return this->do_output_section(); }
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
164 // Return the output section index, if there is an output section.
167 { return this->do_out_shndx(); }
169 // Set the output section index, if this is an output section.
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
178 set_address_and_file_offset(uint64_t addr, off_t off)
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
187 set_address(uint64_t addr)
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
194 // Set the file offset.
196 set_file_offset(off_t off)
198 gold_assert(!this->is_offset_valid_);
200 this->is_offset_valid_ = true;
203 // Update the data size without finalizing it.
205 pre_finalize_data_size()
207 if (!this->is_data_size_valid_)
209 // Tell the child class to update the data size.
210 this->update_data_size();
214 // Finalize the data size.
218 if (!this->is_data_size_valid_)
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
226 // Set the TLS offset. Called only for SHT_TLS sections.
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
235 { return this->do_tls_offset(); }
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
240 write(Output_file* file)
241 { this->do_write(file); }
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
247 { Output_data::allocated_sizes_are_fixed = true; }
249 // Used to check that layout has been done.
252 { return Output_data::allocated_sizes_are_fixed; }
254 // Note that a dynamic reloc has been applied to this data.
257 { this->has_dynamic_reloc_ = true; }
259 // Return whether a dynamic reloc has been applied.
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
264 // Whether the address is valid.
266 is_address_valid() const
267 { return this->is_address_valid_; }
269 // Whether the file offset is valid.
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
274 // Whether the data size is valid.
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
279 // Print information to the map file.
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
285 // Functions that child classes may or in some cases must implement.
287 // Write the data to the output file.
289 do_write(Output_file*) = 0;
291 // Return the required alignment.
293 do_addralign() const = 0;
295 // Return whether this has a load address.
297 do_has_load_address() const
300 // Return the load address.
302 do_load_address() const
303 { gold_unreachable(); }
305 // Return whether this is an Output_section.
307 do_is_section() const
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
313 do_is_section_type(elfcpp::Elf_Word) const
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
322 // Return the output section, if there is one.
323 virtual Output_section*
327 virtual const Output_section*
328 do_output_section() const
331 // Return the output section index, if there is an output section.
334 { gold_unreachable(); }
336 // Set the output section index, if this is an output section.
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
356 set_final_data_size()
357 { gold_unreachable(); }
359 // A hook for resetting the address and file offset.
361 do_reset_address_and_file_offset()
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
372 // Set the TLS offset. Called only for SHT_TLS sections.
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
380 do_tls_offset() const
381 { gold_unreachable(); }
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
389 // Functions that child classes may call.
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
398 // Set the size of the data.
400 set_data_size(off_t data_size)
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
420 current_data_size_for_child() const
421 { return this->data_size_; }
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
426 set_current_data_size_for_child(off_t data_size)
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
432 // Return default alignment for the target size.
436 // Return default alignment for a specified size--32 or 64.
438 default_alignment_for_size(int size);
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
447 static bool allocated_sizes_are_fixed;
449 // Memory address in output file.
451 // Size of data in output file.
453 // File offset of contents in output file.
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
467 // Output the section headers.
469 class Output_section_headers : public Output_data
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
477 const Output_section*);
480 // Write the data to the file.
482 do_write(Output_file*);
484 // Return the required alignment.
487 { return Output_data::default_alignment(); }
489 // Write to a map file.
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
494 // Update the data size.
497 { this->set_data_size(this->do_size()); }
499 // Set final data size.
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
508 do_sized_write(Output_file*);
510 // Compute data size.
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
522 // Output the segment headers.
524 class Output_segment_headers : public Output_data
527 Output_segment_headers(const Layout::Segment_list& segment_list);
530 // Write the data to the file.
532 do_write(Output_file*);
534 // Return the required alignment.
537 { return Output_data::default_alignment(); }
539 // Write to a map file.
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
544 // Set final data size.
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
553 do_sized_write(Output_file*);
555 // Compute the current size.
559 const Layout::Segment_list& segment_list_;
562 // Output the ELF file header.
564 class Output_file_header : public Output_data
567 Output_file_header(const Target*,
569 const Output_segment_headers*);
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
577 // Write the data to the file.
579 do_write(Output_file*);
581 // Return the required alignment.
584 { return Output_data::default_alignment(); }
586 // Write to a map file.
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
591 // Set final data size.
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
600 do_sized_write(Output_file*);
602 // Return the value to use for the entry address.
604 typename elfcpp::Elf_types<size>::Elf_Addr
607 // Compute the current data size.
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
623 class Output_section_data : public Output_data
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
639 // Return the output section.
642 { return this->output_section_; }
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
648 // Record the output section.
650 set_output_section(Output_section* os);
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
690 // The child class must implement do_write.
692 // The child class may implement specific adjustments to the output
695 do_adjust_output_section(Output_section*)
698 // May be implemented by child class. Return true if the section
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
704 // The child class may implement output_offset.
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
710 // The child class may implement is_merge_section_for.
712 do_is_merge_section_for(const Relobj*, unsigned int) const
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
722 // Print merge statistics.
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
727 // Return the required alignment.
730 { return this->addralign_; }
732 // Return the output section.
735 { return this->output_section_; }
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
741 // Return the section index of the output section.
743 do_out_shndx() const;
745 // Set the alignment.
747 set_addralign(uint64_t addralign);
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
760 class Output_section_data_build : public Output_section_data
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
771 // Set the current data size.
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
777 // Set the final data size.
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
783 // A simple case of Output_data in which we have constant data to
786 class Output_data_const : public Output_section_data
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
803 // Write the data to the output file.
805 do_write(Output_file*);
807 // Write the data to a buffer.
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
812 // Write to a map file.
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
824 class Output_data_const_buffer : public Output_section_data
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
834 // Write the data the output file.
836 do_write(Output_file*);
838 // Write the data to a buffer.
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
843 // Write to a map file.
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
856 // A place holder for a fixed amount of data written out via some
859 class Output_data_fixed_space : public Output_section_data
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
869 // Write out the data--the actual data must be written out
872 do_write(Output_file*)
875 // Write to a map file.
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
886 // A place holder for variable sized data written out via some other
889 class Output_data_space : public Output_section_data_build
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
903 // Set the alignment.
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
909 // Write out the data--the actual data must be written out
912 do_write(Output_file*)
915 // Write to a map file.
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
929 class Output_data_zero_fill : public Output_section_data
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
937 // There is no data to write out.
939 do_write(Output_file*)
942 // Write to a map file.
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
948 // A string table which goes into an output section.
950 class Output_data_strtab : public Output_section_data
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
962 { this->set_final_data_size(); }
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
967 set_final_data_size();
969 // Write out the data.
971 do_write(Output_file*);
973 // Write the data to a buffer.
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
978 // Write to a map file.
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
998 template<int sh_type, bool dynamic, int size, bool big_endian>
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1013 : local_sym_index_(INVALID_CODE)
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1021 // A reloc against a global symbol.
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless,
1025 bool use_plt_offset);
1027 Output_reloc(Symbol* gsym, unsigned int type,
1028 Sized_relobj<size, big_endian>* relobj,
1029 unsigned int shndx, Address address, bool is_relative,
1030 bool is_symbolless, bool use_plt_offset);
1032 // A reloc against a local symbol or local section symbol.
1034 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 unsigned int local_sym_index, unsigned int type,
1036 Output_data* od, Address address, bool is_relative,
1037 bool is_symbolless, bool is_section_symbol,
1038 bool use_plt_offset);
1040 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1041 unsigned int local_sym_index, unsigned int type,
1042 unsigned int shndx, Address address, bool is_relative,
1043 bool is_symbolless, bool is_section_symbol,
1044 bool use_plt_offset);
1046 // A reloc against the STT_SECTION symbol of an output section.
1048 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1049 Address address, bool is_relative);
1051 Output_reloc(Output_section* os, unsigned int type,
1052 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1053 Address address, bool is_relative);
1055 // An absolute relocation with no symbol.
1057 Output_reloc(unsigned int type, Output_data* od, Address address);
1059 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1060 unsigned int shndx, Address address);
1062 // A target specific relocation. The target will be called to get
1063 // the symbol index, passing ARG. The type and offset will be set
1064 // as for other relocation types.
1066 Output_reloc(unsigned int type, void* arg, Output_data* od,
1069 Output_reloc(unsigned int type, void* arg,
1070 Sized_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, Address address);
1073 // Return the reloc type.
1076 { return this->type_; }
1078 // Return whether this is a RELATIVE relocation.
1081 { return this->is_relative_; }
1083 // Return whether this is a relocation which should not use
1084 // a symbol, but which obtains its addend from a symbol.
1086 is_symbolless() const
1087 { return this->is_symbolless_; }
1089 // Return whether this is against a local section symbol.
1091 is_local_section_symbol() const
1093 return (this->local_sym_index_ != GSYM_CODE
1094 && this->local_sym_index_ != SECTION_CODE
1095 && this->local_sym_index_ != INVALID_CODE
1096 && this->local_sym_index_ != TARGET_CODE
1097 && this->is_section_symbol_);
1100 // Return whether this is a target specific relocation.
1102 is_target_specific() const
1103 { return this->local_sym_index_ == TARGET_CODE; }
1105 // Return the argument to pass to the target for a target specific
1110 gold_assert(this->local_sym_index_ == TARGET_CODE);
1111 return this->u1_.arg;
1114 // For a local section symbol, return the offset of the input
1115 // section within the output section. ADDEND is the addend being
1116 // applied to the input section.
1118 local_section_offset(Addend addend) const;
1120 // Get the value of the symbol referred to by a Rel relocation when
1121 // we are adding the given ADDEND.
1123 symbol_value(Addend addend) const;
1125 // If this relocation is against an input section, return the
1126 // relocatable object containing the input section.
1127 Sized_relobj<size, big_endian>*
1130 if (this->shndx_ == INVALID_CODE)
1132 return this->u2_.relobj;
1135 // Write the reloc entry to an output view.
1137 write(unsigned char* pov) const;
1139 // Write the offset and info fields to Write_rel.
1140 template<typename Write_rel>
1141 void write_rel(Write_rel*) const;
1143 // This is used when sorting dynamic relocs. Return -1 to sort this
1144 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1146 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1149 // Return whether this reloc should be sorted before the argument
1150 // when sorting dynamic relocs.
1152 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1154 { return this->compare(r2) < 0; }
1157 // Record that we need a dynamic symbol index.
1159 set_needs_dynsym_index();
1161 // Return the symbol index.
1163 get_symbol_index() const;
1165 // Return the output address.
1167 get_address() const;
1169 // Codes for local_sym_index_.
1178 // Invalid uninitialized entry.
1184 // For a local symbol or local section symbol
1185 // (this->local_sym_index_ >= 0), the object. We will never
1186 // generate a relocation against a local symbol in a dynamic
1187 // object; that doesn't make sense. And our callers will always
1188 // be templatized, so we use Sized_relobj here.
1189 Sized_relobj<size, big_endian>* relobj;
1190 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1191 // symbol. If this is NULL, it indicates a relocation against the
1192 // undefined 0 symbol.
1194 // For a relocation against an output section
1195 // (this->local_sym_index_ == SECTION_CODE), the output section.
1197 // For a target specific relocation, an argument to pass to the
1203 // If this->shndx_ is not INVALID CODE, the object which holds the
1204 // input section being used to specify the reloc address.
1205 Sized_relobj<size, big_endian>* relobj;
1206 // If this->shndx_ is INVALID_CODE, the output data being used to
1207 // specify the reloc address. This may be NULL if the reloc
1208 // address is absolute.
1211 // The address offset within the input section or the Output_data.
1213 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1214 // relocation against an output section, or TARGET_CODE for a target
1215 // specific relocation, or INVALID_CODE for an uninitialized value.
1216 // Otherwise, for a local symbol (this->is_section_symbol_ is
1217 // false), the local symbol index. For a local section symbol
1218 // (this->is_section_symbol_ is true), the section index in the
1220 unsigned int local_sym_index_;
1221 // The reloc type--a processor specific code.
1222 unsigned int type_ : 28;
1223 // True if the relocation is a RELATIVE relocation.
1224 bool is_relative_ : 1;
1225 // True if the relocation is one which should not use
1226 // a symbol, but which obtains its addend from a symbol.
1227 bool is_symbolless_ : 1;
1228 // True if the relocation is against a section symbol.
1229 bool is_section_symbol_ : 1;
1230 // True if the addend should be the PLT offset.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1249 // An uninitialized entry.
1254 // A reloc against a global symbol.
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless, bool use_plt_offset)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1264 Output_reloc(Symbol* gsym, unsigned int type,
1265 Sized_relobj<size, big_endian>* relobj,
1266 unsigned int shndx, Address address, Addend addend,
1267 bool is_relative, bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, relobj, shndx, address, is_relative,
1269 is_symbolless, use_plt_offset), addend_(addend)
1272 // A reloc against a local symbol.
1274 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1275 unsigned int local_sym_index, unsigned int type,
1276 Output_data* od, Address address,
1277 Addend addend, bool is_relative,
1278 bool is_symbolless, bool is_section_symbol,
1279 bool use_plt_offset)
1280 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1281 is_symbolless, is_section_symbol, use_plt_offset),
1285 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1286 unsigned int local_sym_index, unsigned int type,
1287 unsigned int shndx, Address address,
1288 Addend addend, bool is_relative,
1289 bool is_symbolless, bool is_section_symbol,
1290 bool use_plt_offset)
1291 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1292 is_symbolless, is_section_symbol, use_plt_offset),
1296 // A reloc against the STT_SECTION symbol of an output section.
1298 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1299 Address address, Addend addend, bool is_relative)
1300 : rel_(os, type, od, address, is_relative), addend_(addend)
1303 Output_reloc(Output_section* os, unsigned int type,
1304 Sized_relobj<size, big_endian>* relobj,
1305 unsigned int shndx, Address address, Addend addend,
1307 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1310 // An absolute relocation with no symbol.
1312 Output_reloc(unsigned int type, Output_data* od, Address address,
1314 : rel_(type, od, address), addend_(addend)
1317 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1318 unsigned int shndx, Address address, Addend addend)
1319 : rel_(type, relobj, shndx, address), addend_(addend)
1322 // A target specific relocation. The target will be called to get
1323 // the symbol index and the addend, passing ARG. The type and
1324 // offset will be set as for other relocation types.
1326 Output_reloc(unsigned int type, void* arg, Output_data* od,
1327 Address address, Addend addend)
1328 : rel_(type, arg, od, address), addend_(addend)
1331 Output_reloc(unsigned int type, void* arg,
1332 Sized_relobj<size, big_endian>* relobj,
1333 unsigned int shndx, Address address, Addend addend)
1334 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1337 // Return whether this is a RELATIVE relocation.
1340 { return this->rel_.is_relative(); }
1342 // Return whether this is a relocation which should not use
1343 // a symbol, but which obtains its addend from a symbol.
1345 is_symbolless() const
1346 { return this->rel_.is_symbolless(); }
1348 // If this relocation is against an input section, return the
1349 // relocatable object containing the input section.
1350 Sized_relobj<size, big_endian>*
1352 { return this->rel_.get_relobj(); }
1354 // Write the reloc entry to an output view.
1356 write(unsigned char* pov) const;
1358 // Return whether this reloc should be sorted before the argument
1359 // when sorting dynamic relocs.
1361 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1364 int i = this->rel_.compare(r2.rel_);
1370 return this->addend_ < r2.addend_;
1375 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1380 // Output_data_reloc_generic is a non-template base class for
1381 // Output_data_reloc_base. This gives the generic code a way to hold
1382 // a pointer to a reloc section.
1384 class Output_data_reloc_generic : public Output_section_data_build
1387 Output_data_reloc_generic(int size, bool sort_relocs)
1388 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1389 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1392 // Return the number of relative relocs in this section.
1394 relative_reloc_count() const
1395 { return this->relative_reloc_count_; }
1397 // Whether we should sort the relocs.
1400 { return this->sort_relocs_; }
1402 // Add a reloc of type TYPE against the global symbol GSYM. The
1403 // relocation applies to the data at offset ADDRESS within OD.
1405 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1406 uint64_t address, uint64_t addend) = 0;
1408 // Add a reloc of type TYPE against the global symbol GSYM. The
1409 // relocation applies to data at offset ADDRESS within section SHNDX
1410 // of object file RELOBJ. OD is the associated output section.
1412 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1413 Relobj* relobj, unsigned int shndx, uint64_t address,
1414 uint64_t addend) = 0;
1416 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1417 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1420 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1421 unsigned int type, Output_data* od, uint64_t address,
1422 uint64_t addend) = 0;
1424 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1425 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1426 // within section SHNDX of RELOBJ. OD is the associated output
1429 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1430 unsigned int type, Output_data* od, unsigned int shndx,
1431 uint64_t address, uint64_t addend) = 0;
1433 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1434 // output section OS. The relocation applies to the data at offset
1435 // ADDRESS within OD.
1437 add_output_section_generic(Output_section *os, unsigned int type,
1438 Output_data* od, uint64_t address,
1439 uint64_t addend) = 0;
1441 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1442 // output section OS. The relocation applies to the data at offset
1443 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1446 add_output_section_generic(Output_section* os, unsigned int type,
1447 Output_data* od, Relobj* relobj,
1448 unsigned int shndx, uint64_t address,
1449 uint64_t addend) = 0;
1452 // Note that we've added another relative reloc.
1454 bump_relative_reloc_count()
1455 { ++this->relative_reloc_count_; }
1458 // The number of relative relocs added to this section. This is to
1459 // support DT_RELCOUNT.
1460 size_t relative_reloc_count_;
1461 // Whether to sort the relocations when writing them out, to make
1462 // the dynamic linker more efficient.
1466 // Output_data_reloc is used to manage a section containing relocs.
1467 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1468 // indicates whether this is a dynamic relocation or a normal
1469 // relocation. Output_data_reloc_base is a base class.
1470 // Output_data_reloc is the real class, which we specialize based on
1473 template<int sh_type, bool dynamic, int size, bool big_endian>
1474 class Output_data_reloc_base : public Output_data_reloc_generic
1477 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1478 typedef typename Output_reloc_type::Address Address;
1479 static const int reloc_size =
1480 Reloc_types<sh_type, size, big_endian>::reloc_size;
1482 // Construct the section.
1483 Output_data_reloc_base(bool sort_relocs)
1484 : Output_data_reloc_generic(size, sort_relocs)
1488 // Write out the data.
1490 do_write(Output_file*);
1492 // Set the entry size and the link.
1494 do_adjust_output_section(Output_section* os);
1496 // Write to a map file.
1498 do_print_to_mapfile(Mapfile* mapfile) const
1500 mapfile->print_output_data(this,
1502 ? _("** dynamic relocs")
1506 // Add a relocation entry.
1508 add(Output_data* od, const Output_reloc_type& reloc)
1510 this->relocs_.push_back(reloc);
1511 this->set_current_data_size(this->relocs_.size() * reloc_size);
1513 od->add_dynamic_reloc();
1514 if (reloc.is_relative())
1515 this->bump_relative_reloc_count();
1516 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1518 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1522 typedef std::vector<Output_reloc_type> Relocs;
1524 // The class used to sort the relocations.
1525 struct Sort_relocs_comparison
1528 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1529 { return r1.sort_before(r2); }
1532 // The relocations in this section.
1536 // The class which callers actually create.
1538 template<int sh_type, bool dynamic, int size, bool big_endian>
1539 class Output_data_reloc;
1541 // The SHT_REL version of Output_data_reloc.
1543 template<bool dynamic, int size, bool big_endian>
1544 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1545 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1548 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1552 typedef typename Base::Output_reloc_type Output_reloc_type;
1553 typedef typename Output_reloc_type::Address Address;
1555 Output_data_reloc(bool sr)
1556 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1559 // Add a reloc against a global symbol.
1562 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1563 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false, false)); }
1566 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1567 Sized_relobj<size, big_endian>* relobj,
1568 unsigned int shndx, Address address)
1569 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1570 false, false, false)); }
1573 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1574 uint64_t address, uint64_t addend)
1576 gold_assert(addend == 0);
1577 this->add(od, Output_reloc_type(gsym, type, od,
1578 convert_types<Address, uint64_t>(address),
1579 false, false, false));
1583 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1584 Relobj* relobj, unsigned int shndx, uint64_t address,
1587 gold_assert(addend == 0);
1588 Sized_relobj<size, big_endian>* sized_relobj =
1589 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1590 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1591 convert_types<Address, uint64_t>(address),
1592 false, false, false));
1595 // Add a RELATIVE reloc against a global symbol. The final relocation
1596 // will not reference the symbol.
1599 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1601 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1605 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1606 Sized_relobj<size, big_endian>* relobj,
1607 unsigned int shndx, Address address)
1609 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1610 true, true, false));
1613 // Add a global relocation which does not use a symbol for the relocation,
1614 // but which gets its addend from a symbol.
1617 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1618 Output_data* od, Address address)
1619 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1623 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1625 Sized_relobj<size, big_endian>* relobj,
1626 unsigned int shndx, Address address)
1628 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1629 false, true, false));
1632 // Add a reloc against a local symbol.
1635 add_local(Sized_relobj<size, big_endian>* relobj,
1636 unsigned int local_sym_index, unsigned int type,
1637 Output_data* od, Address address)
1639 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1640 address, false, false, false, false));
1644 add_local(Sized_relobj<size, big_endian>* relobj,
1645 unsigned int local_sym_index, unsigned int type,
1646 Output_data* od, unsigned int shndx, Address address)
1648 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1649 address, false, false, false, false));
1653 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1654 unsigned int type, Output_data* od, uint64_t address,
1657 gold_assert(addend == 0);
1658 Sized_relobj<size, big_endian>* sized_relobj =
1659 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1660 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1661 convert_types<Address, uint64_t>(address),
1662 false, false, false, false));
1666 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1667 unsigned int type, Output_data* od, unsigned int shndx,
1668 uint64_t address, uint64_t addend)
1670 gold_assert(addend == 0);
1671 Sized_relobj<size, big_endian>* sized_relobj =
1672 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1673 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1674 convert_types<Address, uint64_t>(address),
1675 false, false, false, false));
1678 // Add a RELATIVE reloc against a local symbol.
1681 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1682 unsigned int local_sym_index, unsigned int type,
1683 Output_data* od, Address address)
1685 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1686 address, true, true, false, false));
1690 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1691 unsigned int local_sym_index, unsigned int type,
1692 Output_data* od, unsigned int shndx, Address address)
1694 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1695 address, true, true, false, false));
1698 // Add a local relocation which does not use a symbol for the relocation,
1699 // but which gets its addend from a symbol.
1702 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1703 unsigned int local_sym_index, unsigned int type,
1704 Output_data* od, Address address)
1706 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1707 address, false, true, false, false));
1711 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1712 unsigned int local_sym_index, unsigned int type,
1713 Output_data* od, unsigned int shndx,
1716 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1717 address, false, true, false, false));
1720 // Add a reloc against a local section symbol. This will be
1721 // converted into a reloc against the STT_SECTION symbol of the
1725 add_local_section(Sized_relobj<size, big_endian>* relobj,
1726 unsigned int input_shndx, unsigned int type,
1727 Output_data* od, Address address)
1729 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1730 address, false, false, true, false));
1734 add_local_section(Sized_relobj<size, big_endian>* relobj,
1735 unsigned int input_shndx, unsigned int type,
1736 Output_data* od, unsigned int shndx, Address address)
1738 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1739 address, false, false, true, false));
1742 // A reloc against the STT_SECTION symbol of an output section.
1743 // OS is the Output_section that the relocation refers to; OD is
1744 // the Output_data object being relocated.
1747 add_output_section(Output_section* os, unsigned int type,
1748 Output_data* od, Address address)
1749 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1752 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1753 Sized_relobj<size, big_endian>* relobj,
1754 unsigned int shndx, Address address)
1755 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1758 add_output_section_generic(Output_section* os, unsigned int type,
1759 Output_data* od, uint64_t address,
1762 gold_assert(addend == 0);
1763 this->add(od, Output_reloc_type(os, type, od,
1764 convert_types<Address, uint64_t>(address),
1769 add_output_section_generic(Output_section* os, unsigned int type,
1770 Output_data* od, Relobj* relobj,
1771 unsigned int shndx, uint64_t address,
1774 gold_assert(addend == 0);
1775 Sized_relobj<size, big_endian>* sized_relobj =
1776 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1777 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1778 convert_types<Address, uint64_t>(address),
1782 // As above, but the reloc TYPE is relative
1785 add_output_section_relative(Output_section* os, unsigned int type,
1786 Output_data* od, Address address)
1787 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1790 add_output_section_relative(Output_section* os, unsigned int type,
1792 Sized_relobj<size, big_endian>* relobj,
1793 unsigned int shndx, Address address)
1794 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1796 // Add an absolute relocation.
1799 add_absolute(unsigned int type, Output_data* od, Address address)
1800 { this->add(od, Output_reloc_type(type, od, address)); }
1803 add_absolute(unsigned int type, Output_data* od,
1804 Sized_relobj<size, big_endian>* relobj,
1805 unsigned int shndx, Address address)
1806 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1808 // Add a target specific relocation. A target which calls this must
1809 // define the reloc_symbol_index and reloc_addend virtual functions.
1812 add_target_specific(unsigned int type, void* arg, Output_data* od,
1814 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1817 add_target_specific(unsigned int type, void* arg, Output_data* od,
1818 Sized_relobj<size, big_endian>* relobj,
1819 unsigned int shndx, Address address)
1820 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1823 // The SHT_RELA version of Output_data_reloc.
1825 template<bool dynamic, int size, bool big_endian>
1826 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1827 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1830 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1834 typedef typename Base::Output_reloc_type Output_reloc_type;
1835 typedef typename Output_reloc_type::Address Address;
1836 typedef typename Output_reloc_type::Addend Addend;
1838 Output_data_reloc(bool sr)
1839 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1842 // Add a reloc against a global symbol.
1845 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1846 Address address, Addend addend)
1847 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1848 false, false, false)); }
1851 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1852 Sized_relobj<size, big_endian>* relobj,
1853 unsigned int shndx, Address address,
1855 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1856 addend, false, false, false)); }
1859 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1860 uint64_t address, uint64_t addend)
1862 this->add(od, Output_reloc_type(gsym, type, od,
1863 convert_types<Address, uint64_t>(address),
1864 convert_types<Addend, uint64_t>(addend),
1865 false, false, false));
1869 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1870 Relobj* relobj, unsigned int shndx, uint64_t address,
1873 Sized_relobj<size, big_endian>* sized_relobj =
1874 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1875 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1876 convert_types<Address, uint64_t>(address),
1877 convert_types<Addend, uint64_t>(addend),
1878 false, false, false));
1881 // Add a RELATIVE reloc against a global symbol. The final output
1882 // relocation will not reference the symbol, but we must keep the symbol
1883 // information long enough to set the addend of the relocation correctly
1884 // when it is written.
1887 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1888 Address address, Addend addend, bool use_plt_offset)
1889 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1890 true, use_plt_offset)); }
1893 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1894 Sized_relobj<size, big_endian>* relobj,
1895 unsigned int shndx, Address address, Addend addend,
1896 bool use_plt_offset)
1897 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1898 addend, true, true, use_plt_offset)); }
1900 // Add a global relocation which does not use a symbol for the relocation,
1901 // but which gets its addend from a symbol.
1904 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1905 Address address, Addend addend)
1906 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1907 false, true, false)); }
1910 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1912 Sized_relobj<size, big_endian>* relobj,
1913 unsigned int shndx, Address address, Addend addend)
1914 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1915 addend, false, true, false)); }
1917 // Add a reloc against a local symbol.
1920 add_local(Sized_relobj<size, big_endian>* relobj,
1921 unsigned int local_sym_index, unsigned int type,
1922 Output_data* od, Address address, Addend addend)
1924 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1925 addend, false, false, false, false));
1929 add_local(Sized_relobj<size, big_endian>* relobj,
1930 unsigned int local_sym_index, unsigned int type,
1931 Output_data* od, unsigned int shndx, Address address,
1934 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1935 address, addend, false, false, false,
1940 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1941 unsigned int type, Output_data* od, uint64_t address,
1944 Sized_relobj<size, big_endian>* sized_relobj =
1945 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1946 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1947 convert_types<Address, uint64_t>(address),
1948 convert_types<Addend, uint64_t>(addend),
1949 false, false, false, false));
1953 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1954 unsigned int type, Output_data* od, unsigned int shndx,
1955 uint64_t address, uint64_t addend)
1957 Sized_relobj<size, big_endian>* sized_relobj =
1958 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1959 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1960 convert_types<Address, uint64_t>(address),
1961 convert_types<Addend, uint64_t>(addend),
1962 false, false, false, false));
1965 // Add a RELATIVE reloc against a local symbol.
1968 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1969 unsigned int local_sym_index, unsigned int type,
1970 Output_data* od, Address address, Addend addend,
1971 bool use_plt_offset)
1973 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1974 addend, true, true, false,
1979 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1980 unsigned int local_sym_index, unsigned int type,
1981 Output_data* od, unsigned int shndx, Address address,
1982 Addend addend, bool use_plt_offset)
1984 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1985 address, addend, true, true, false,
1989 // Add a local relocation which does not use a symbol for the relocation,
1990 // but which gets it's addend from a symbol.
1993 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1994 unsigned int local_sym_index, unsigned int type,
1995 Output_data* od, Address address, Addend addend)
1997 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1998 addend, false, true, false, false));
2002 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2003 unsigned int local_sym_index, unsigned int type,
2004 Output_data* od, unsigned int shndx,
2005 Address address, Addend addend)
2007 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2008 address, addend, false, true, false,
2012 // Add a reloc against a local section symbol. This will be
2013 // converted into a reloc against the STT_SECTION symbol of the
2017 add_local_section(Sized_relobj<size, big_endian>* relobj,
2018 unsigned int input_shndx, unsigned int type,
2019 Output_data* od, Address address, Addend addend)
2021 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2022 addend, false, false, true, false));
2026 add_local_section(Sized_relobj<size, big_endian>* relobj,
2027 unsigned int input_shndx, unsigned int type,
2028 Output_data* od, unsigned int shndx, Address address,
2031 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2032 address, addend, false, false, true,
2036 // A reloc against the STT_SECTION symbol of an output section.
2039 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2040 Address address, Addend addend)
2041 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2044 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2045 Sized_relobj<size, big_endian>* relobj,
2046 unsigned int shndx, Address address, Addend addend)
2047 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2051 add_output_section_generic(Output_section* os, unsigned int type,
2052 Output_data* od, uint64_t address,
2055 this->add(od, Output_reloc_type(os, type, od,
2056 convert_types<Address, uint64_t>(address),
2057 convert_types<Addend, uint64_t>(addend),
2062 add_output_section_generic(Output_section* os, unsigned int type,
2063 Output_data* od, Relobj* relobj,
2064 unsigned int shndx, uint64_t address,
2067 Sized_relobj<size, big_endian>* sized_relobj =
2068 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2069 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2070 convert_types<Address, uint64_t>(address),
2071 convert_types<Addend, uint64_t>(addend),
2075 // As above, but the reloc TYPE is relative
2078 add_output_section_relative(Output_section* os, unsigned int type,
2079 Output_data* od, Address address, Addend addend)
2080 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2083 add_output_section_relative(Output_section* os, unsigned int type,
2085 Sized_relobj<size, big_endian>* relobj,
2086 unsigned int shndx, Address address,
2089 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2090 address, addend, true));
2093 // Add an absolute relocation.
2096 add_absolute(unsigned int type, Output_data* od, Address address,
2098 { this->add(od, Output_reloc_type(type, od, address, addend)); }
2101 add_absolute(unsigned int type, Output_data* od,
2102 Sized_relobj<size, big_endian>* relobj,
2103 unsigned int shndx, Address address, Addend addend)
2104 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2106 // Add a target specific relocation. A target which calls this must
2107 // define the reloc_symbol_index and reloc_addend virtual functions.
2110 add_target_specific(unsigned int type, void* arg, Output_data* od,
2111 Address address, Addend addend)
2112 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2115 add_target_specific(unsigned int type, void* arg, Output_data* od,
2116 Sized_relobj<size, big_endian>* relobj,
2117 unsigned int shndx, Address address, Addend addend)
2119 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2124 // Output_relocatable_relocs represents a relocation section in a
2125 // relocatable link. The actual data is written out in the target
2126 // hook relocate_relocs. This just saves space for it.
2128 template<int sh_type, int size, bool big_endian>
2129 class Output_relocatable_relocs : public Output_section_data
2132 Output_relocatable_relocs(Relocatable_relocs* rr)
2133 : Output_section_data(Output_data::default_alignment_for_size(size)),
2138 set_final_data_size();
2140 // Write out the data. There is nothing to do here.
2142 do_write(Output_file*)
2145 // Write to a map file.
2147 do_print_to_mapfile(Mapfile* mapfile) const
2148 { mapfile->print_output_data(this, _("** relocs")); }
2151 // The relocs associated with this input section.
2152 Relocatable_relocs* rr_;
2155 // Handle a GROUP section.
2157 template<int size, bool big_endian>
2158 class Output_data_group : public Output_section_data
2161 // The constructor clears *INPUT_SHNDXES.
2162 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2163 section_size_type entry_count,
2164 elfcpp::Elf_Word flags,
2165 std::vector<unsigned int>* input_shndxes);
2168 do_write(Output_file*);
2170 // Write to a map file.
2172 do_print_to_mapfile(Mapfile* mapfile) const
2173 { mapfile->print_output_data(this, _("** group")); }
2175 // Set final data size.
2177 set_final_data_size()
2178 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2181 // The input object.
2182 Sized_relobj_file<size, big_endian>* relobj_;
2183 // The group flag word.
2184 elfcpp::Elf_Word flags_;
2185 // The section indexes of the input sections in this group.
2186 std::vector<unsigned int> input_shndxes_;
2189 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2190 // for one symbol--either a global symbol or a local symbol in an
2191 // object. The target specific code adds entries to the GOT as
2192 // needed. The GOT_SIZE template parameter is the size in bits of a
2193 // GOT entry, typically 32 or 64.
2195 class Output_data_got_base : public Output_section_data_build
2198 Output_data_got_base(uint64_t align)
2199 : Output_section_data_build(align)
2202 Output_data_got_base(off_t data_size, uint64_t align)
2203 : Output_section_data_build(data_size, align)
2206 // Reserve the slot at index I in the GOT.
2208 reserve_slot(unsigned int i)
2209 { this->do_reserve_slot(i); }
2212 // Reserve the slot at index I in the GOT.
2214 do_reserve_slot(unsigned int i) = 0;
2217 template<int got_size, bool big_endian>
2218 class Output_data_got : public Output_data_got_base
2221 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2224 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2225 entries_(), free_list_()
2228 Output_data_got(off_t data_size)
2229 : Output_data_got_base(data_size,
2230 Output_data::default_alignment_for_size(got_size)),
2231 entries_(), free_list_()
2233 // For an incremental update, we have an existing GOT section.
2234 // Initialize the list of entries and the free list.
2235 this->entries_.resize(data_size / (got_size / 8));
2236 this->free_list_.init(data_size, false);
2239 // Add an entry for a global symbol to the GOT. Return true if this
2240 // is a new GOT entry, false if the symbol was already in the GOT.
2242 add_global(Symbol* gsym, unsigned int got_type);
2244 // Like add_global, but use the PLT offset of the global symbol if
2247 add_global_plt(Symbol* gsym, unsigned int got_type);
2249 // Like add_global, but for a TLS symbol where the value will be
2250 // offset using Target::tls_offset_for_global
2252 add_global_tls(Symbol* gsym, unsigned int got_type)
2253 { return add_global_plt(gsym, got_type); }
2255 // Add an entry for a global symbol to the GOT, and add a dynamic
2256 // relocation of type R_TYPE for the GOT entry.
2258 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2259 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2261 // Add a pair of entries for a global symbol to the GOT, and add
2262 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2264 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2265 Output_data_reloc_generic* rel_dyn,
2266 unsigned int r_type_1, unsigned int r_type_2);
2268 // Add an entry for a local symbol to the GOT. This returns true if
2269 // this is a new GOT entry, false if the symbol already has a GOT
2272 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2274 // Like add_local, but use the PLT offset of the local symbol if it
2277 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2279 // Like add_local, but for a TLS symbol where the value will be
2280 // offset using Target::tls_offset_for_local
2282 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2283 { return add_local_plt(object, sym_index, got_type); }
2285 // Add an entry for a local symbol to the GOT, and add a dynamic
2286 // relocation of type R_TYPE for the GOT entry.
2288 add_local_with_rel(Relobj* object, unsigned int sym_index,
2289 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2290 unsigned int r_type);
2292 // Add a pair of entries for a local symbol to the GOT, and add
2293 // a dynamic relocation of type R_TYPE using the section symbol of
2294 // the output section to which input section SHNDX maps, on the first.
2295 // The first got entry will have a value of zero, the second the
2296 // value of the local symbol.
2298 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2299 unsigned int shndx, unsigned int got_type,
2300 Output_data_reloc_generic* rel_dyn,
2301 unsigned int r_type);
2303 // Add a pair of entries for a local symbol to the GOT, and add
2304 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2305 // The first got entry will have a value of zero, the second the
2306 // value of the local symbol offset by Target::tls_offset_for_local.
2308 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2309 unsigned int got_type,
2310 Output_data_reloc_generic* rel_dyn,
2311 unsigned int r_type);
2313 // Add a constant to the GOT. This returns the offset of the new
2314 // entry from the start of the GOT.
2316 add_constant(Valtype constant)
2318 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2322 // Replace GOT entry I with a new constant.
2324 replace_constant(unsigned int i, Valtype constant)
2326 this->replace_got_entry(i, Got_entry(constant));
2329 // Reserve a slot in the GOT for a local symbol.
2331 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2332 unsigned int got_type);
2334 // Reserve a slot in the GOT for a global symbol.
2336 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2339 // Write out the GOT table.
2341 do_write(Output_file*);
2343 // Write to a map file.
2345 do_print_to_mapfile(Mapfile* mapfile) const
2346 { mapfile->print_output_data(this, _("** GOT")); }
2348 // Reserve the slot at index I in the GOT.
2350 do_reserve_slot(unsigned int i)
2351 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2353 // Return the number of words in the GOT.
2355 num_entries () const
2356 { return this->entries_.size(); }
2358 // Return the offset into the GOT of GOT entry I.
2360 got_offset(unsigned int i) const
2361 { return i * (got_size / 8); }
2364 // This POD class holds a single GOT entry.
2368 // Create a zero entry.
2370 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2371 { this->u_.constant = 0; }
2373 // Create a global symbol entry.
2374 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2375 : local_sym_index_(GSYM_CODE),
2376 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2377 { this->u_.gsym = gsym; }
2379 // Create a local symbol entry.
2380 Got_entry(Relobj* object, unsigned int local_sym_index,
2381 bool use_plt_or_tls_offset)
2382 : local_sym_index_(local_sym_index),
2383 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2385 gold_assert(local_sym_index != GSYM_CODE
2386 && local_sym_index != CONSTANT_CODE
2387 && local_sym_index != RESERVED_CODE
2388 && local_sym_index == this->local_sym_index_);
2389 this->u_.object = object;
2392 // Create a constant entry. The constant is a host value--it will
2393 // be swapped, if necessary, when it is written out.
2394 explicit Got_entry(Valtype constant)
2395 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2396 { this->u_.constant = constant; }
2398 // Write the GOT entry to an output view.
2400 write(unsigned int got_indx, unsigned char* pov) const;
2405 GSYM_CODE = 0x7fffffff,
2406 CONSTANT_CODE = 0x7ffffffe,
2407 RESERVED_CODE = 0x7ffffffd
2412 // For a local symbol, the object.
2414 // For a global symbol, the symbol.
2416 // For a constant, the constant.
2419 // For a local symbol, the local symbol index. This is GSYM_CODE
2420 // for a global symbol, or CONSTANT_CODE for a constant.
2421 unsigned int local_sym_index_ : 31;
2422 // Whether to use the PLT offset of the symbol if it has one.
2423 // For TLS symbols, whether to offset the symbol value.
2424 bool use_plt_or_tls_offset_ : 1;
2427 typedef std::vector<Got_entry> Got_entries;
2429 // Create a new GOT entry and return its offset.
2431 add_got_entry(Got_entry got_entry);
2433 // Create a pair of new GOT entries and return the offset of the first.
2435 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2437 // Replace GOT entry I with a new value.
2439 replace_got_entry(unsigned int i, Got_entry got_entry);
2441 // Return the offset into the GOT of the last entry added.
2443 last_got_offset() const
2444 { return this->got_offset(this->num_entries() - 1); }
2446 // Set the size of the section.
2449 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2451 // The list of GOT entries.
2452 Got_entries entries_;
2454 // List of available regions within the section, for incremental
2456 Free_list free_list_;
2459 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2462 class Output_data_dynamic : public Output_section_data
2465 Output_data_dynamic(Stringpool* pool)
2466 : Output_section_data(Output_data::default_alignment()),
2467 entries_(), pool_(pool)
2470 // Add a new dynamic entry with a fixed numeric value.
2472 add_constant(elfcpp::DT tag, unsigned int val)
2473 { this->add_entry(Dynamic_entry(tag, val)); }
2475 // Add a new dynamic entry with the address of output data.
2477 add_section_address(elfcpp::DT tag, const Output_data* od)
2478 { this->add_entry(Dynamic_entry(tag, od, false)); }
2480 // Add a new dynamic entry with the address of output data
2481 // plus a constant offset.
2483 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2484 unsigned int offset)
2485 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2487 // Add a new dynamic entry with the size of output data.
2489 add_section_size(elfcpp::DT tag, const Output_data* od)
2490 { this->add_entry(Dynamic_entry(tag, od, true)); }
2492 // Add a new dynamic entry with the total size of two output datas.
2494 add_section_size(elfcpp::DT tag, const Output_data* od,
2495 const Output_data* od2)
2496 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2498 // Add a new dynamic entry with the address of a symbol.
2500 add_symbol(elfcpp::DT tag, const Symbol* sym)
2501 { this->add_entry(Dynamic_entry(tag, sym)); }
2503 // Add a new dynamic entry with a string.
2505 add_string(elfcpp::DT tag, const char* str)
2506 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2509 add_string(elfcpp::DT tag, const std::string& str)
2510 { this->add_string(tag, str.c_str()); }
2513 // Adjust the output section to set the entry size.
2515 do_adjust_output_section(Output_section*);
2517 // Set the final data size.
2519 set_final_data_size();
2521 // Write out the dynamic entries.
2523 do_write(Output_file*);
2525 // Write to a map file.
2527 do_print_to_mapfile(Mapfile* mapfile) const
2528 { mapfile->print_output_data(this, _("** dynamic")); }
2531 // This POD class holds a single dynamic entry.
2535 // Create an entry with a fixed numeric value.
2536 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2537 : tag_(tag), offset_(DYNAMIC_NUMBER)
2538 { this->u_.val = val; }
2540 // Create an entry with the size or address of a section.
2541 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2543 offset_(section_size
2544 ? DYNAMIC_SECTION_SIZE
2545 : DYNAMIC_SECTION_ADDRESS)
2551 // Create an entry with the size of two sections.
2552 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2554 offset_(DYNAMIC_SECTION_SIZE)
2560 // Create an entry with the address of a section plus a constant offset.
2561 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2564 { this->u_.od = od; }
2566 // Create an entry with the address of a symbol.
2567 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2568 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2569 { this->u_.sym = sym; }
2571 // Create an entry with a string.
2572 Dynamic_entry(elfcpp::DT tag, const char* str)
2573 : tag_(tag), offset_(DYNAMIC_STRING)
2574 { this->u_.str = str; }
2576 // Return the tag of this entry.
2579 { return this->tag_; }
2581 // Write the dynamic entry to an output view.
2582 template<int size, bool big_endian>
2584 write(unsigned char* pov, const Stringpool*) const;
2587 // Classification is encoded in the OFFSET field.
2591 DYNAMIC_SECTION_ADDRESS = 0,
2593 DYNAMIC_NUMBER = -1U,
2595 DYNAMIC_SECTION_SIZE = -2U,
2597 DYNAMIC_SYMBOL = -3U,
2599 DYNAMIC_STRING = -4U
2600 // Any other value indicates a section address plus OFFSET.
2605 // For DYNAMIC_NUMBER.
2607 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2608 const Output_data* od;
2609 // For DYNAMIC_SYMBOL.
2611 // For DYNAMIC_STRING.
2614 // For DYNAMIC_SYMBOL with two sections.
2615 const Output_data* od2;
2618 // The type of entry (Classification) or offset within a section.
2619 unsigned int offset_;
2622 // Add an entry to the list.
2624 add_entry(const Dynamic_entry& entry)
2625 { this->entries_.push_back(entry); }
2627 // Sized version of write function.
2628 template<int size, bool big_endian>
2630 sized_write(Output_file* of);
2632 // The type of the list of entries.
2633 typedef std::vector<Dynamic_entry> Dynamic_entries;
2636 Dynamic_entries entries_;
2637 // The pool used for strings.
2641 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2642 // which may be required if the object file has more than
2643 // SHN_LORESERVE sections.
2645 class Output_symtab_xindex : public Output_section_data
2648 Output_symtab_xindex(size_t symcount)
2649 : Output_section_data(symcount * 4, 4, true),
2653 // Add an entry: symbol number SYMNDX has section SHNDX.
2655 add(unsigned int symndx, unsigned int shndx)
2656 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2660 do_write(Output_file*);
2662 // Write to a map file.
2664 do_print_to_mapfile(Mapfile* mapfile) const
2665 { mapfile->print_output_data(this, _("** symtab xindex")); }
2668 template<bool big_endian>
2670 endian_do_write(unsigned char*);
2672 // It is likely that most symbols will not require entries. Rather
2673 // than keep a vector for all symbols, we keep pairs of symbol index
2674 // and section index.
2675 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2677 // The entries we need.
2678 Xindex_entries entries_;
2681 // A relaxed input section.
2682 class Output_relaxed_input_section : public Output_section_data_build
2685 // We would like to call relobj->section_addralign(shndx) to get the
2686 // alignment but we do not want the constructor to fail. So callers
2687 // are repsonsible for ensuring that.
2688 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2690 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2693 // Return the Relobj of this relaxed input section.
2696 { return this->relobj_; }
2698 // Return the section index of this relaxed input section.
2701 { return this->shndx_; }
2705 unsigned int shndx_;
2708 // This class describes properties of merge data sections. It is used
2709 // as a key type for maps.
2710 class Merge_section_properties
2713 Merge_section_properties(bool is_string, uint64_t entsize,
2715 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2718 // Whether this equals to another Merge_section_properties MSP.
2720 eq(const Merge_section_properties& msp) const
2722 return ((this->is_string_ == msp.is_string_)
2723 && (this->entsize_ == msp.entsize_)
2724 && (this->addralign_ == msp.addralign_));
2727 // Compute a hash value for this using 64-bit FNV-1a hash.
2731 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2732 uint64_t prime = 1099511628211ULL;
2733 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2734 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2735 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2739 // Functors for associative containers.
2743 operator()(const Merge_section_properties& msp1,
2744 const Merge_section_properties& msp2) const
2745 { return msp1.eq(msp2); }
2751 operator()(const Merge_section_properties& msp) const
2752 { return msp.hash_value(); }
2756 // Whether this merge data section is for strings.
2758 // Entsize of this merge data section.
2760 // Address alignment.
2761 uint64_t addralign_;
2764 // This class is used to speed up look up of special input sections in an
2767 class Output_section_lookup_maps
2770 Output_section_lookup_maps()
2771 : is_valid_(true), merge_sections_by_properties_(),
2772 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2775 // Whether the maps are valid.
2778 { return this->is_valid_; }
2780 // Invalidate the maps.
2783 { this->is_valid_ = false; }
2789 this->merge_sections_by_properties_.clear();
2790 this->merge_sections_by_id_.clear();
2791 this->relaxed_input_sections_by_id_.clear();
2792 // A cleared map is valid.
2793 this->is_valid_ = true;
2796 // Find a merge section by merge section properties. Return NULL if none
2799 find_merge_section(const Merge_section_properties& msp) const
2801 gold_assert(this->is_valid_);
2802 Merge_sections_by_properties::const_iterator p =
2803 this->merge_sections_by_properties_.find(msp);
2804 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2807 // Find a merge section by section ID of a merge input section. Return NULL
2808 // if none is found.
2810 find_merge_section(const Object* object, unsigned int shndx) const
2812 gold_assert(this->is_valid_);
2813 Merge_sections_by_id::const_iterator p =
2814 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2815 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2818 // Add a merge section pointed by POMB with properties MSP.
2820 add_merge_section(const Merge_section_properties& msp,
2821 Output_merge_base* pomb)
2823 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2824 std::pair<Merge_sections_by_properties::iterator, bool> result =
2825 this->merge_sections_by_properties_.insert(value);
2826 gold_assert(result.second);
2829 // Add a mapping from a merged input section in OBJECT with index SHNDX
2830 // to a merge output section pointed by POMB.
2832 add_merge_input_section(const Object* object, unsigned int shndx,
2833 Output_merge_base* pomb)
2835 Const_section_id csid(object, shndx);
2836 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2837 std::pair<Merge_sections_by_id::iterator, bool> result =
2838 this->merge_sections_by_id_.insert(value);
2839 gold_assert(result.second);
2842 // Find a relaxed input section of OBJECT with index SHNDX.
2843 Output_relaxed_input_section*
2844 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2846 gold_assert(this->is_valid_);
2847 Relaxed_input_sections_by_id::const_iterator p =
2848 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2849 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2852 // Add a relaxed input section pointed by POMB and whose original input
2853 // section is in OBJECT with index SHNDX.
2855 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2856 Output_relaxed_input_section* poris)
2858 Const_section_id csid(relobj, shndx);
2859 std::pair<Const_section_id, Output_relaxed_input_section*>
2861 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2862 this->relaxed_input_sections_by_id_.insert(value);
2863 gold_assert(result.second);
2867 typedef Unordered_map<Const_section_id, Output_merge_base*,
2868 Const_section_id_hash>
2869 Merge_sections_by_id;
2871 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2872 Merge_section_properties::hash,
2873 Merge_section_properties::equal_to>
2874 Merge_sections_by_properties;
2876 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2877 Const_section_id_hash>
2878 Relaxed_input_sections_by_id;
2880 // Whether this is valid
2882 // Merge sections by merge section properties.
2883 Merge_sections_by_properties merge_sections_by_properties_;
2884 // Merge sections by section IDs.
2885 Merge_sections_by_id merge_sections_by_id_;
2886 // Relaxed sections by section IDs.
2887 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2890 // This abstract base class defines the interface for the
2891 // types of methods used to fill free space left in an output
2892 // section during an incremental link. These methods are used
2893 // to insert dummy compilation units into debug info so that
2894 // debug info consumers can scan the debug info serially.
2900 : is_big_endian_(parameters->target().is_big_endian())
2907 // Return the smallest size chunk of free space that can be
2908 // filled with a dummy compilation unit.
2910 minimum_hole_size() const
2911 { return this->do_minimum_hole_size(); }
2913 // Write a fill pattern of length LEN at offset OFF in the file.
2915 write(Output_file* of, off_t off, size_t len) const
2916 { this->do_write(of, off, len); }
2920 do_minimum_hole_size() const = 0;
2923 do_write(Output_file* of, off_t off, size_t len) const = 0;
2926 is_big_endian() const
2927 { return this->is_big_endian_; }
2930 bool is_big_endian_;
2933 // Fill method that introduces a dummy compilation unit in
2934 // a .debug_info or .debug_types section.
2936 class Output_fill_debug_info : public Output_fill
2939 Output_fill_debug_info(bool is_debug_types)
2940 : is_debug_types_(is_debug_types)
2945 do_minimum_hole_size() const;
2948 do_write(Output_file* of, off_t off, size_t len) const;
2951 // Version of the header.
2952 static const int version = 4;
2953 // True if this is a .debug_types section.
2954 bool is_debug_types_;
2957 // Fill method that introduces a dummy compilation unit in
2958 // a .debug_line section.
2960 class Output_fill_debug_line : public Output_fill
2963 Output_fill_debug_line()
2968 do_minimum_hole_size() const;
2971 do_write(Output_file* of, off_t off, size_t len) const;
2974 // Version of the header. We write a DWARF-3 header because it's smaller
2975 // and many tools have not yet been updated to understand the DWARF-4 header.
2976 static const int version = 3;
2977 // Length of the portion of the header that follows the header_length
2978 // field. This includes the following fields:
2979 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2980 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2981 // The standard_opcode_lengths array is 12 bytes long, and the
2982 // include_directories and filenames fields each contain only a single
2984 static const size_t header_length = 19;
2987 // An output section. We don't expect to have too many output
2988 // sections, so we don't bother to do a template on the size.
2990 class Output_section : public Output_data
2993 // Create an output section, giving the name, type, and flags.
2994 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2995 virtual ~Output_section();
2997 // Add a new input section SHNDX, named NAME, with header SHDR, from
2998 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2999 // which applies to this section, or 0 if none, or -1 if more than
3000 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3001 // in a linker script; in that case we need to keep track of input
3002 // sections associated with an output section. Return the offset
3003 // within the output section.
3004 template<int size, bool big_endian>
3006 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3007 unsigned int shndx, const char* name,
3008 const elfcpp::Shdr<size, big_endian>& shdr,
3009 unsigned int reloc_shndx, bool have_sections_script);
3011 // Add generated data POSD to this output section.
3013 add_output_section_data(Output_section_data* posd);
3015 // Add a relaxed input section PORIS called NAME to this output section
3018 add_relaxed_input_section(Layout* layout,
3019 Output_relaxed_input_section* poris,
3020 const std::string& name);
3022 // Return the section name.
3025 { return this->name_; }
3027 // Return the section type.
3030 { return this->type_; }
3032 // Return the section flags.
3035 { return this->flags_; }
3037 typedef std::map<Section_id, unsigned int> Section_layout_order;
3040 update_section_layout(const Section_layout_order* order_map);
3042 // Update the output section flags based on input section flags.
3044 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3046 // Return the entsize field.
3049 { return this->entsize_; }
3051 // Set the entsize field.
3053 set_entsize(uint64_t v);
3055 // Set the load address.
3057 set_load_address(uint64_t load_address)
3059 this->load_address_ = load_address;
3060 this->has_load_address_ = true;
3063 // Set the link field to the output section index of a section.
3065 set_link_section(const Output_data* od)
3067 gold_assert(this->link_ == 0
3068 && !this->should_link_to_symtab_
3069 && !this->should_link_to_dynsym_);
3070 this->link_section_ = od;
3073 // Set the link field to a constant.
3075 set_link(unsigned int v)
3077 gold_assert(this->link_section_ == NULL
3078 && !this->should_link_to_symtab_
3079 && !this->should_link_to_dynsym_);
3083 // Record that this section should link to the normal symbol table.
3085 set_should_link_to_symtab()
3087 gold_assert(this->link_section_ == NULL
3089 && !this->should_link_to_dynsym_);
3090 this->should_link_to_symtab_ = true;
3093 // Record that this section should link to the dynamic symbol table.
3095 set_should_link_to_dynsym()
3097 gold_assert(this->link_section_ == NULL
3099 && !this->should_link_to_symtab_);
3100 this->should_link_to_dynsym_ = true;
3103 // Return the info field.
3107 gold_assert(this->info_section_ == NULL
3108 && this->info_symndx_ == NULL);
3112 // Set the info field to the output section index of a section.
3114 set_info_section(const Output_section* os)
3116 gold_assert((this->info_section_ == NULL
3117 || (this->info_section_ == os
3118 && this->info_uses_section_index_))
3119 && this->info_symndx_ == NULL
3120 && this->info_ == 0);
3121 this->info_section_ = os;
3122 this->info_uses_section_index_= true;
3125 // Set the info field to the symbol table index of a symbol.
3127 set_info_symndx(const Symbol* sym)
3129 gold_assert(this->info_section_ == NULL
3130 && (this->info_symndx_ == NULL
3131 || this->info_symndx_ == sym)
3132 && this->info_ == 0);
3133 this->info_symndx_ = sym;
3136 // Set the info field to the symbol table index of a section symbol.
3138 set_info_section_symndx(const Output_section* os)
3140 gold_assert((this->info_section_ == NULL
3141 || (this->info_section_ == os
3142 && !this->info_uses_section_index_))
3143 && this->info_symndx_ == NULL
3144 && this->info_ == 0);
3145 this->info_section_ = os;
3146 this->info_uses_section_index_ = false;
3149 // Set the info field to a constant.
3151 set_info(unsigned int v)
3153 gold_assert(this->info_section_ == NULL
3154 && this->info_symndx_ == NULL
3155 && (this->info_ == 0
3156 || this->info_ == v));
3160 // Set the addralign field.
3162 set_addralign(uint64_t v)
3163 { this->addralign_ = v; }
3165 // Whether the output section index has been set.
3167 has_out_shndx() const
3168 { return this->out_shndx_ != -1U; }
3170 // Indicate that we need a symtab index.
3172 set_needs_symtab_index()
3173 { this->needs_symtab_index_ = true; }
3175 // Return whether we need a symtab index.
3177 needs_symtab_index() const
3178 { return this->needs_symtab_index_; }
3180 // Get the symtab index.
3182 symtab_index() const
3184 gold_assert(this->symtab_index_ != 0);
3185 return this->symtab_index_;
3188 // Set the symtab index.
3190 set_symtab_index(unsigned int index)
3192 gold_assert(index != 0);
3193 this->symtab_index_ = index;
3196 // Indicate that we need a dynsym index.
3198 set_needs_dynsym_index()
3199 { this->needs_dynsym_index_ = true; }
3201 // Return whether we need a dynsym index.
3203 needs_dynsym_index() const
3204 { return this->needs_dynsym_index_; }
3206 // Get the dynsym index.
3208 dynsym_index() const
3210 gold_assert(this->dynsym_index_ != 0);
3211 return this->dynsym_index_;
3214 // Set the dynsym index.
3216 set_dynsym_index(unsigned int index)
3218 gold_assert(index != 0);
3219 this->dynsym_index_ = index;
3222 // Return whether the input sections sections attachd to this output
3223 // section may require sorting. This is used to handle constructor
3224 // priorities compatibly with GNU ld.
3226 may_sort_attached_input_sections() const
3227 { return this->may_sort_attached_input_sections_; }
3229 // Record that the input sections attached to this output section
3230 // may require sorting.
3232 set_may_sort_attached_input_sections()
3233 { this->may_sort_attached_input_sections_ = true; }
3235 // Returns true if input sections must be sorted according to the
3236 // order in which their name appear in the --section-ordering-file.
3238 input_section_order_specified()
3239 { return this->input_section_order_specified_; }
3241 // Record that input sections must be sorted as some of their names
3242 // match the patterns specified through --section-ordering-file.
3244 set_input_section_order_specified()
3245 { this->input_section_order_specified_ = true; }
3247 // Return whether the input sections attached to this output section
3248 // require sorting. This is used to handle constructor priorities
3249 // compatibly with GNU ld.
3251 must_sort_attached_input_sections() const
3252 { return this->must_sort_attached_input_sections_; }
3254 // Record that the input sections attached to this output section
3257 set_must_sort_attached_input_sections()
3258 { this->must_sort_attached_input_sections_ = true; }
3260 // Get the order in which this section appears in the PT_LOAD output
3262 Output_section_order
3264 { return this->order_; }
3266 // Set the order for this section.
3268 set_order(Output_section_order order)
3269 { this->order_ = order; }
3271 // Return whether this section holds relro data--data which has
3272 // dynamic relocations but which may be marked read-only after the
3273 // dynamic relocations have been completed.
3276 { return this->is_relro_; }
3278 // Record that this section holds relro data.
3281 { this->is_relro_ = true; }
3283 // Record that this section does not hold relro data.
3286 { this->is_relro_ = false; }
3288 // True if this is a small section: a section which holds small
3291 is_small_section() const
3292 { return this->is_small_section_; }
3294 // Record that this is a small section.
3296 set_is_small_section()
3297 { this->is_small_section_ = true; }
3299 // True if this is a large section: a section which holds large
3302 is_large_section() const
3303 { return this->is_large_section_; }
3305 // Record that this is a large section.
3307 set_is_large_section()
3308 { this->is_large_section_ = true; }
3310 // True if this is a large data (not BSS) section.
3312 is_large_data_section()
3313 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3315 // Return whether this section should be written after all the input
3316 // sections are complete.
3318 after_input_sections() const
3319 { return this->after_input_sections_; }
3321 // Record that this section should be written after all the input
3322 // sections are complete.
3324 set_after_input_sections()
3325 { this->after_input_sections_ = true; }
3327 // Return whether this section requires postprocessing after all
3328 // relocations have been applied.
3330 requires_postprocessing() const
3331 { return this->requires_postprocessing_; }
3334 is_unique_segment() const
3335 { return this->is_unique_segment_; }
3338 set_is_unique_segment()
3339 { this->is_unique_segment_ = true; }
3341 uint64_t extra_segment_flags() const
3342 { return this->extra_segment_flags_; }
3345 set_extra_segment_flags(uint64_t flags)
3346 { this->extra_segment_flags_ = flags; }
3348 uint64_t segment_alignment() const
3349 { return this->segment_alignment_; }
3352 set_segment_alignment(uint64_t align)
3353 { this->segment_alignment_ = align; }
3355 // If a section requires postprocessing, return the buffer to use.
3357 postprocessing_buffer() const
3359 gold_assert(this->postprocessing_buffer_ != NULL);
3360 return this->postprocessing_buffer_;
3363 // If a section requires postprocessing, create the buffer to use.
3365 create_postprocessing_buffer();
3367 // If a section requires postprocessing, this is the size of the
3368 // buffer to which relocations should be applied.
3370 postprocessing_buffer_size() const
3371 { return this->current_data_size_for_child(); }
3373 // Modify the section name. This is only permitted for an
3374 // unallocated section, and only before the size has been finalized.
3375 // Otherwise the name will not get into Layout::namepool_.
3377 set_name(const char* newname)
3379 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3380 gold_assert(!this->is_data_size_valid());
3381 this->name_ = newname;
3384 // Return whether the offset OFFSET in the input section SHNDX in
3385 // object OBJECT is being included in the link.
3387 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3388 off_t offset) const;
3390 // Return the offset within the output section of OFFSET relative to
3391 // the start of input section SHNDX in object OBJECT.
3393 output_offset(const Relobj* object, unsigned int shndx,
3394 section_offset_type offset) const;
3396 // Return the output virtual address of OFFSET relative to the start
3397 // of input section SHNDX in object OBJECT.
3399 output_address(const Relobj* object, unsigned int shndx,
3400 off_t offset) const;
3402 // Look for the merged section for input section SHNDX in object
3403 // OBJECT. If found, return true, and set *ADDR to the address of
3404 // the start of the merged section. This is not necessary the
3405 // output offset corresponding to input offset 0 in the section,
3406 // since the section may be mapped arbitrarily.
3408 find_starting_output_address(const Relobj* object, unsigned int shndx,
3409 uint64_t* addr) const;
3411 // Record that this output section was found in the SECTIONS clause
3412 // of a linker script.
3414 set_found_in_sections_clause()
3415 { this->found_in_sections_clause_ = true; }
3417 // Return whether this output section was found in the SECTIONS
3418 // clause of a linker script.
3420 found_in_sections_clause() const
3421 { return this->found_in_sections_clause_; }
3423 // Write the section header into *OPHDR.
3424 template<int size, bool big_endian>
3426 write_header(const Layout*, const Stringpool*,
3427 elfcpp::Shdr_write<size, big_endian>*) const;
3429 // The next few calls are for linker script support.
3431 // In some cases we need to keep a list of the input sections
3432 // associated with this output section. We only need the list if we
3433 // might have to change the offsets of the input section within the
3434 // output section after we add the input section. The ordinary
3435 // input sections will be written out when we process the object
3436 // file, and as such we don't need to track them here. We do need
3437 // to track Output_section_data objects here. We store instances of
3438 // this structure in a std::vector, so it must be a POD. There can
3439 // be many instances of this structure, so we use a union to save
3445 : shndx_(0), p2align_(0)
3447 this->u1_.data_size = 0;
3448 this->u2_.object = NULL;
3451 // For an ordinary input section.
3452 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3455 p2align_(ffsll(static_cast<long long>(addralign))),
3456 section_order_index_(0)
3458 gold_assert(shndx != OUTPUT_SECTION_CODE
3459 && shndx != MERGE_DATA_SECTION_CODE
3460 && shndx != MERGE_STRING_SECTION_CODE
3461 && shndx != RELAXED_INPUT_SECTION_CODE);
3462 this->u1_.data_size = data_size;
3463 this->u2_.object = object;
3466 // For a non-merge output section.
3467 Input_section(Output_section_data* posd)
3468 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3469 section_order_index_(0)
3471 this->u1_.data_size = 0;
3472 this->u2_.posd = posd;
3475 // For a merge section.
3476 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3478 ? MERGE_STRING_SECTION_CODE
3479 : MERGE_DATA_SECTION_CODE),
3481 section_order_index_(0)
3483 this->u1_.entsize = entsize;
3484 this->u2_.posd = posd;
3487 // For a relaxed input section.
3488 Input_section(Output_relaxed_input_section* psection)
3489 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3490 section_order_index_(0)
3492 this->u1_.data_size = 0;
3493 this->u2_.poris = psection;
3497 section_order_index() const
3499 return this->section_order_index_;
3503 set_section_order_index(unsigned int number)
3505 this->section_order_index_ = number;
3508 // The required alignment.
3512 if (this->p2align_ != 0)
3513 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3514 else if (!this->is_input_section())
3515 return this->u2_.posd->addralign();
3520 // Set the required alignment, which must be either 0 or a power of 2.
3521 // For input sections that are sub-classes of Output_section_data, a
3522 // alignment of zero means asking the underlying object for alignment.
3524 set_addralign(uint64_t addralign)
3530 gold_assert((addralign & (addralign - 1)) == 0);
3531 this->p2align_ = ffsll(static_cast<long long>(addralign));
3535 // Return the current required size, without finalization.
3537 current_data_size() const;
3539 // Return the required size.
3543 // Whether this is an input section.
3545 is_input_section() const
3547 return (this->shndx_ != OUTPUT_SECTION_CODE
3548 && this->shndx_ != MERGE_DATA_SECTION_CODE
3549 && this->shndx_ != MERGE_STRING_SECTION_CODE
3550 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3553 // Return whether this is a merge section which matches the
3556 is_merge_section(bool is_string, uint64_t entsize,
3557 uint64_t addralign) const
3559 return (this->shndx_ == (is_string
3560 ? MERGE_STRING_SECTION_CODE
3561 : MERGE_DATA_SECTION_CODE)
3562 && this->u1_.entsize == entsize
3563 && this->addralign() == addralign);
3566 // Return whether this is a merge section for some input section.
3568 is_merge_section() const
3570 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3571 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3574 // Return whether this is a relaxed input section.
3576 is_relaxed_input_section() const
3577 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3579 // Return whether this is a generic Output_section_data.
3581 is_output_section_data() const
3583 return this->shndx_ == OUTPUT_SECTION_CODE;
3586 // Return the object for an input section.
3590 // Return the input section index for an input section.
3594 // For non-input-sections, return the associated Output_section_data
3596 Output_section_data*
3597 output_section_data() const
3599 gold_assert(!this->is_input_section());
3600 return this->u2_.posd;
3603 // For a merge section, return the Output_merge_base pointer.
3605 output_merge_base() const
3607 gold_assert(this->is_merge_section());
3608 return this->u2_.pomb;
3611 // Return the Output_relaxed_input_section object.
3612 Output_relaxed_input_section*
3613 relaxed_input_section() const
3615 gold_assert(this->is_relaxed_input_section());
3616 return this->u2_.poris;
3619 // Set the output section.
3621 set_output_section(Output_section* os)
3623 gold_assert(!this->is_input_section());
3624 Output_section_data* posd =
3625 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3626 posd->set_output_section(os);
3629 // Set the address and file offset. This is called during
3630 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3631 // the enclosing section.
3633 set_address_and_file_offset(uint64_t address, off_t file_offset,
3634 off_t section_file_offset);
3636 // Reset the address and file offset.
3638 reset_address_and_file_offset();
3640 // Finalize the data size.
3642 finalize_data_size();
3644 // Add an input section, for SHF_MERGE sections.
3646 add_input_section(Relobj* object, unsigned int shndx)
3648 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3649 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3650 return this->u2_.posd->add_input_section(object, shndx);
3653 // Given an input OBJECT, an input section index SHNDX within that
3654 // object, and an OFFSET relative to the start of that input
3655 // section, return whether or not the output offset is known. If
3656 // this function returns true, it sets *POUTPUT to the offset in
3657 // the output section, relative to the start of the input section
3658 // in the output section. *POUTPUT may be different from OFFSET
3659 // for a merged section.
3661 output_offset(const Relobj* object, unsigned int shndx,
3662 section_offset_type offset,
3663 section_offset_type* poutput) const;
3665 // Return whether this is the merge section for the input section
3668 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3670 // Write out the data. This does nothing for an input section.
3672 write(Output_file*);
3674 // Write the data to a buffer. This does nothing for an input
3677 write_to_buffer(unsigned char*);
3679 // Print to a map file.
3681 print_to_mapfile(Mapfile*) const;
3683 // Print statistics about merge sections to stderr.
3685 print_merge_stats(const char* section_name)
3687 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3688 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3689 this->u2_.posd->print_merge_stats(section_name);
3693 // Code values which appear in shndx_. If the value is not one of
3694 // these codes, it is the input section index in the object file.
3697 // An Output_section_data.
3698 OUTPUT_SECTION_CODE = -1U,
3699 // An Output_section_data for an SHF_MERGE section with
3700 // SHF_STRINGS not set.
3701 MERGE_DATA_SECTION_CODE = -2U,
3702 // An Output_section_data for an SHF_MERGE section with
3704 MERGE_STRING_SECTION_CODE = -3U,
3705 // An Output_section_data for a relaxed input section.
3706 RELAXED_INPUT_SECTION_CODE = -4U
3709 // For an ordinary input section, this is the section index in the
3710 // input file. For an Output_section_data, this is
3711 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3712 // MERGE_STRING_SECTION_CODE.
3713 unsigned int shndx_;
3714 // The required alignment, stored as a power of 2.
3715 unsigned int p2align_;
3718 // For an ordinary input section, the section size.
3720 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3721 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3727 // For an ordinary input section, the object which holds the
3730 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3731 // MERGE_STRING_SECTION_CODE, the data.
3732 Output_section_data* posd;
3733 Output_merge_base* pomb;
3734 // For RELAXED_INPUT_SECTION_CODE, the data.
3735 Output_relaxed_input_section* poris;
3737 // The line number of the pattern it matches in the --section-ordering-file
3738 // file. It is 0 if does not match any pattern.
3739 unsigned int section_order_index_;
3742 // Store the list of input sections for this Output_section into the
3743 // list passed in. This removes the input sections, leaving only
3744 // any Output_section_data elements. This returns the size of those
3745 // Output_section_data elements. ADDRESS is the address of this
3746 // output section. FILL is the fill value to use, in case there are
3747 // any spaces between the remaining Output_section_data elements.
3749 get_input_sections(uint64_t address, const std::string& fill,
3750 std::list<Input_section>*);
3752 // Add a script input section. A script input section can either be
3753 // a plain input section or a sub-class of Output_section_data.
3755 add_script_input_section(const Input_section& input_section);
3757 // Set the current size of the output section.
3759 set_current_data_size(off_t size)
3760 { this->set_current_data_size_for_child(size); }
3762 // End of linker script support.
3764 // Save states before doing section layout.
3765 // This is used for relaxation.
3769 // Restore states prior to section layout.
3777 // Convert existing input sections to relaxed input sections.
3779 convert_input_sections_to_relaxed_sections(
3780 const std::vector<Output_relaxed_input_section*>& sections);
3782 // Find a relaxed input section to an input section in OBJECT
3783 // with index SHNDX. Return NULL if none is found.
3784 const Output_relaxed_input_section*
3785 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3787 // Whether section offsets need adjustment due to relaxation.
3789 section_offsets_need_adjustment() const
3790 { return this->section_offsets_need_adjustment_; }
3792 // Set section_offsets_need_adjustment to be true.
3794 set_section_offsets_need_adjustment()
3795 { this->section_offsets_need_adjustment_ = true; }
3797 // Adjust section offsets of input sections in this. This is
3798 // requires if relaxation caused some input sections to change sizes.
3800 adjust_section_offsets();
3802 // Whether this is a NOLOAD section.
3805 { return this->is_noload_; }
3810 { this->is_noload_ = true; }
3812 // Print merge statistics to stderr.
3814 print_merge_stats();
3816 // Set a fixed layout for the section. Used for incremental update links.
3818 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3819 uint64_t sh_addralign);
3821 // Return TRUE if the section has a fixed layout.
3823 has_fixed_layout() const
3824 { return this->has_fixed_layout_; }
3826 // Set flag to allow patch space for this section. Used for full
3827 // incremental links.
3829 set_is_patch_space_allowed()
3830 { this->is_patch_space_allowed_ = true; }
3832 // Set a fill method to use for free space left in the output section
3833 // during incremental links.
3835 set_free_space_fill(Output_fill* free_space_fill)
3837 this->free_space_fill_ = free_space_fill;
3838 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3841 // Reserve space within the fixed layout for the section. Used for
3842 // incremental update links.
3844 reserve(uint64_t sh_offset, uint64_t sh_size);
3846 // Allocate space from the free list for the section. Used for
3847 // incremental update links.
3849 allocate(off_t len, uint64_t addralign);
3852 // Return the output section--i.e., the object itself.
3857 const Output_section*
3858 do_output_section() const
3861 // Return the section index in the output file.
3863 do_out_shndx() const
3865 gold_assert(this->out_shndx_ != -1U);
3866 return this->out_shndx_;
3869 // Set the output section index.
3871 do_set_out_shndx(unsigned int shndx)
3873 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3874 this->out_shndx_ = shndx;
3877 // Update the data size of the Output_section. For a typical
3878 // Output_section, there is nothing to do, but if there are any
3879 // Output_section_data objects we need to do a trial layout
3884 // Set the final data size of the Output_section. For a typical
3885 // Output_section, there is nothing to do, but if there are any
3886 // Output_section_data objects we need to set their final addresses
3889 set_final_data_size();
3891 // Reset the address and file offset.
3893 do_reset_address_and_file_offset();
3895 // Return true if address and file offset already have reset values. In
3896 // other words, calling reset_address_and_file_offset will not change them.
3898 do_address_and_file_offset_have_reset_values() const;
3900 // Write the data to the file. For a typical Output_section, this
3901 // does nothing: the data is written out by calling Object::Relocate
3902 // on each input object. But if there are any Output_section_data
3903 // objects we do need to write them out here.
3905 do_write(Output_file*);
3907 // Return the address alignment--function required by parent class.
3909 do_addralign() const
3910 { return this->addralign_; }
3912 // Return whether there is a load address.
3914 do_has_load_address() const
3915 { return this->has_load_address_; }
3917 // Return the load address.
3919 do_load_address() const
3921 gold_assert(this->has_load_address_);
3922 return this->load_address_;
3925 // Return whether this is an Output_section.
3927 do_is_section() const
3930 // Return whether this is a section of the specified type.
3932 do_is_section_type(elfcpp::Elf_Word type) const
3933 { return this->type_ == type; }
3935 // Return whether the specified section flag is set.
3937 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3938 { return (this->flags_ & flag) != 0; }
3940 // Set the TLS offset. Called only for SHT_TLS sections.
3942 do_set_tls_offset(uint64_t tls_base);
3944 // Return the TLS offset, relative to the base of the TLS segment.
3945 // Valid only for SHT_TLS sections.
3947 do_tls_offset() const
3948 { return this->tls_offset_; }
3950 // This may be implemented by a child class.
3952 do_finalize_name(Layout*)
3955 // Print to the map file.
3957 do_print_to_mapfile(Mapfile*) const;
3959 // Record that this section requires postprocessing after all
3960 // relocations have been applied. This is called by a child class.
3962 set_requires_postprocessing()
3964 this->requires_postprocessing_ = true;
3965 this->after_input_sections_ = true;
3968 // Write all the data of an Output_section into the postprocessing
3971 write_to_postprocessing_buffer();
3973 typedef std::vector<Input_section> Input_section_list;
3975 // Allow a child class to access the input sections.
3976 const Input_section_list&
3977 input_sections() const
3978 { return this->input_sections_; }
3980 // Whether this always keeps an input section list
3982 always_keeps_input_sections() const
3983 { return this->always_keeps_input_sections_; }
3985 // Always keep an input section list.
3987 set_always_keeps_input_sections()
3989 gold_assert(this->current_data_size_for_child() == 0);
3990 this->always_keeps_input_sections_ = true;
3994 // We only save enough information to undo the effects of section layout.
3995 class Checkpoint_output_section
3998 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3999 const Input_section_list& input_sections,
4000 off_t first_input_offset,
4001 bool attached_input_sections_are_sorted)
4002 : addralign_(addralign), flags_(flags),
4003 input_sections_(input_sections),
4004 input_sections_size_(input_sections_.size()),
4005 input_sections_copy_(), first_input_offset_(first_input_offset),
4006 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4010 ~Checkpoint_output_section()
4013 // Return the address alignment.
4016 { return this->addralign_; }
4018 // Return the section flags.
4021 { return this->flags_; }
4023 // Return a reference to the input section list copy.
4026 { return &this->input_sections_copy_; }
4028 // Return the size of input_sections at the time when checkpoint is
4031 input_sections_size() const
4032 { return this->input_sections_size_; }
4034 // Whether input sections are copied.
4036 input_sections_saved() const
4037 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4040 first_input_offset() const
4041 { return this->first_input_offset_; }
4044 attached_input_sections_are_sorted() const
4045 { return this->attached_input_sections_are_sorted_; }
4047 // Save input sections.
4049 save_input_sections()
4051 this->input_sections_copy_.reserve(this->input_sections_size_);
4052 this->input_sections_copy_.clear();
4053 Input_section_list::const_iterator p = this->input_sections_.begin();
4054 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4055 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4056 this->input_sections_copy_.push_back(*p);
4060 // The section alignment.
4061 uint64_t addralign_;
4062 // The section flags.
4063 elfcpp::Elf_Xword flags_;
4064 // Reference to the input sections to be checkpointed.
4065 const Input_section_list& input_sections_;
4066 // Size of the checkpointed portion of input_sections_;
4067 size_t input_sections_size_;
4068 // Copy of input sections.
4069 Input_section_list input_sections_copy_;
4070 // The offset of the first entry in input_sections_.
4071 off_t first_input_offset_;
4072 // True if the input sections attached to this output section have
4073 // already been sorted.
4074 bool attached_input_sections_are_sorted_;
4077 // This class is used to sort the input sections.
4078 class Input_section_sort_entry;
4080 // This is the sort comparison function for ctors and dtors.
4081 struct Input_section_sort_compare
4084 operator()(const Input_section_sort_entry&,
4085 const Input_section_sort_entry&) const;
4088 // This is the sort comparison function for .init_array and .fini_array.
4089 struct Input_section_sort_init_fini_compare
4092 operator()(const Input_section_sort_entry&,
4093 const Input_section_sort_entry&) const;
4096 // This is the sort comparison function when a section order is specified
4097 // from an input file.
4098 struct Input_section_sort_section_order_index_compare
4101 operator()(const Input_section_sort_entry&,
4102 const Input_section_sort_entry&) const;
4105 // Fill data. This is used to fill in data between input sections.
4106 // It is also used for data statements (BYTE, WORD, etc.) in linker
4107 // scripts. When we have to keep track of the input sections, we
4108 // can use an Output_data_const, but we don't want to have to keep
4109 // track of input sections just to implement fills.
4113 Fill(off_t section_offset, off_t length)
4114 : section_offset_(section_offset),
4115 length_(convert_to_section_size_type(length))
4118 // Return section offset.
4120 section_offset() const
4121 { return this->section_offset_; }
4123 // Return fill length.
4126 { return this->length_; }
4129 // The offset within the output section.
4130 off_t section_offset_;
4131 // The length of the space to fill.
4132 section_size_type length_;
4135 typedef std::vector<Fill> Fill_list;
4137 // Map used during relaxation of existing sections. This map
4138 // a section id an input section list index. We assume that
4139 // Input_section_list is a vector.
4140 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4142 // Add a new output section by Input_section.
4144 add_output_section_data(Input_section*);
4146 // Add an SHF_MERGE input section. Returns true if the section was
4147 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4148 // stores information about the merged input sections.
4150 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4151 uint64_t entsize, uint64_t addralign,
4152 bool keeps_input_sections);
4154 // Add an output SHF_MERGE section POSD to this output section.
4155 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4156 // ENTSIZE is the entity size. This returns the entry added to
4159 add_output_merge_section(Output_section_data* posd, bool is_string,
4162 // Sort the attached input sections.
4164 sort_attached_input_sections();
4166 // Find the merge section into which an input section with index SHNDX in
4167 // OBJECT has been added. Return NULL if none found.
4168 Output_section_data*
4169 find_merge_section(const Relobj* object, unsigned int shndx) const;
4171 // Build a relaxation map.
4173 build_relaxation_map(
4174 const Input_section_list& input_sections,
4176 Relaxation_map* map) const;
4178 // Convert input sections in an input section list into relaxed sections.
4180 convert_input_sections_in_list_to_relaxed_sections(
4181 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4182 const Relaxation_map& map,
4183 Input_section_list* input_sections);
4185 // Build the lookup maps for merge and relaxed input sections.
4187 build_lookup_maps() const;
4189 // Most of these fields are only valid after layout.
4191 // The name of the section. This will point into a Stringpool.
4193 // The section address is in the parent class.
4194 // The section alignment.
4195 uint64_t addralign_;
4196 // The section entry size.
4198 // The load address. This is only used when using a linker script
4199 // with a SECTIONS clause. The has_load_address_ field indicates
4200 // whether this field is valid.
4201 uint64_t load_address_;
4202 // The file offset is in the parent class.
4203 // Set the section link field to the index of this section.
4204 const Output_data* link_section_;
4205 // If link_section_ is NULL, this is the link field.
4207 // Set the section info field to the index of this section.
4208 const Output_section* info_section_;
4209 // If info_section_ is NULL, set the info field to the symbol table
4210 // index of this symbol.
4211 const Symbol* info_symndx_;
4212 // If info_section_ and info_symndx_ are NULL, this is the section
4215 // The section type.
4216 const elfcpp::Elf_Word type_;
4217 // The section flags.
4218 elfcpp::Elf_Xword flags_;
4219 // The order of this section in the output segment.
4220 Output_section_order order_;
4221 // The section index.
4222 unsigned int out_shndx_;
4223 // If there is a STT_SECTION for this output section in the normal
4224 // symbol table, this is the symbol index. This starts out as zero.
4225 // It is initialized in Layout::finalize() to be the index, or -1U
4226 // if there isn't one.
4227 unsigned int symtab_index_;
4228 // If there is a STT_SECTION for this output section in the dynamic
4229 // symbol table, this is the symbol index. This starts out as zero.
4230 // It is initialized in Layout::finalize() to be the index, or -1U
4231 // if there isn't one.
4232 unsigned int dynsym_index_;
4233 // The input sections. This will be empty in cases where we don't
4234 // need to keep track of them.
4235 Input_section_list input_sections_;
4236 // The offset of the first entry in input_sections_.
4237 off_t first_input_offset_;
4238 // The fill data. This is separate from input_sections_ because we
4239 // often will need fill sections without needing to keep track of
4242 // If the section requires postprocessing, this buffer holds the
4243 // section contents during relocation.
4244 unsigned char* postprocessing_buffer_;
4245 // Whether this output section needs a STT_SECTION symbol in the
4246 // normal symbol table. This will be true if there is a relocation
4248 bool needs_symtab_index_ : 1;
4249 // Whether this output section needs a STT_SECTION symbol in the
4250 // dynamic symbol table. This will be true if there is a dynamic
4251 // relocation which needs it.
4252 bool needs_dynsym_index_ : 1;
4253 // Whether the link field of this output section should point to the
4254 // normal symbol table.
4255 bool should_link_to_symtab_ : 1;
4256 // Whether the link field of this output section should point to the
4257 // dynamic symbol table.
4258 bool should_link_to_dynsym_ : 1;
4259 // Whether this section should be written after all the input
4260 // sections are complete.
4261 bool after_input_sections_ : 1;
4262 // Whether this section requires post processing after all
4263 // relocations have been applied.
4264 bool requires_postprocessing_ : 1;
4265 // Whether an input section was mapped to this output section
4266 // because of a SECTIONS clause in a linker script.
4267 bool found_in_sections_clause_ : 1;
4268 // Whether this section has an explicitly specified load address.
4269 bool has_load_address_ : 1;
4270 // True if the info_section_ field means the section index of the
4271 // section, false if it means the symbol index of the corresponding
4273 bool info_uses_section_index_ : 1;
4274 // True if input sections attached to this output section have to be
4275 // sorted according to a specified order.
4276 bool input_section_order_specified_ : 1;
4277 // True if the input sections attached to this output section may
4279 bool may_sort_attached_input_sections_ : 1;
4280 // True if the input sections attached to this output section must
4282 bool must_sort_attached_input_sections_ : 1;
4283 // True if the input sections attached to this output section have
4284 // already been sorted.
4285 bool attached_input_sections_are_sorted_ : 1;
4286 // True if this section holds relro data.
4288 // True if this is a small section.
4289 bool is_small_section_ : 1;
4290 // True if this is a large section.
4291 bool is_large_section_ : 1;
4292 // Whether code-fills are generated at write.
4293 bool generate_code_fills_at_write_ : 1;
4294 // Whether the entry size field should be zero.
4295 bool is_entsize_zero_ : 1;
4296 // Whether section offsets need adjustment due to relaxation.
4297 bool section_offsets_need_adjustment_ : 1;
4298 // Whether this is a NOLOAD section.
4299 bool is_noload_ : 1;
4300 // Whether this always keeps input section.
4301 bool always_keeps_input_sections_ : 1;
4302 // Whether this section has a fixed layout, for incremental update links.
4303 bool has_fixed_layout_ : 1;
4304 // True if we can add patch space to this section.
4305 bool is_patch_space_allowed_ : 1;
4306 // True if this output section goes into a unique segment.
4307 bool is_unique_segment_ : 1;
4308 // For SHT_TLS sections, the offset of this section relative to the base
4309 // of the TLS segment.
4310 uint64_t tls_offset_;
4311 // Additional segment flags, specified via linker plugin, when mapping some
4312 // input sections to unique segments.
4313 uint64_t extra_segment_flags_;
4314 // Segment alignment specified via linker plugin, when mapping some
4315 // input sections to unique segments.
4316 uint64_t segment_alignment_;
4317 // Saved checkpoint.
4318 Checkpoint_output_section* checkpoint_;
4319 // Fast lookup maps for merged and relaxed input sections.
4320 Output_section_lookup_maps* lookup_maps_;
4321 // List of available regions within the section, for incremental
4323 Free_list free_list_;
4324 // Method for filling chunks of free space.
4325 Output_fill* free_space_fill_;
4326 // Amount added as patch space for incremental linking.
4330 // An output segment. PT_LOAD segments are built from collections of
4331 // output sections. Other segments typically point within PT_LOAD
4332 // segments, and are built directly as needed.
4334 // NOTE: We want to use the copy constructor for this class. During
4335 // relaxation, we may try built the segments multiple times. We do
4336 // that by copying the original segment list before lay-out, doing
4337 // a trial lay-out and roll-back to the saved copied if we need to
4338 // to the lay-out again.
4340 class Output_segment
4343 // Create an output segment, specifying the type and flags.
4344 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4346 // Return the virtual address.
4349 { return this->vaddr_; }
4351 // Return the physical address.
4354 { return this->paddr_; }
4356 // Return the segment type.
4359 { return this->type_; }
4361 // Return the segment flags.
4364 { return this->flags_; }
4366 // Return the memory size.
4369 { return this->memsz_; }
4371 // Return the file size.
4374 { return this->filesz_; }
4376 // Return the file offset.
4379 { return this->offset_; }
4381 // Whether this is a segment created to hold large data sections.
4383 is_large_data_segment() const
4384 { return this->is_large_data_segment_; }
4386 // Record that this is a segment created to hold large data
4389 set_is_large_data_segment()
4390 { this->is_large_data_segment_ = true; }
4393 is_unique_segment() const
4394 { return this->is_unique_segment_; }
4396 // Mark segment as unique, happens when linker plugins request that
4397 // certain input sections be mapped to unique segments.
4399 set_is_unique_segment()
4400 { this->is_unique_segment_ = true; }
4402 // Return the maximum alignment of the Output_data.
4404 maximum_alignment();
4406 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4407 // the segment flags to use.
4409 add_output_section_to_load(Layout* layout, Output_section* os,
4410 elfcpp::Elf_Word seg_flags);
4412 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4413 // is the segment flags to use.
4415 add_output_section_to_nonload(Output_section* os,
4416 elfcpp::Elf_Word seg_flags);
4418 // Remove an Output_section from this segment. It is an error if it
4421 remove_output_section(Output_section* os);
4423 // Add an Output_data (which need not be an Output_section) to the
4424 // start of this segment.
4426 add_initial_output_data(Output_data*);
4428 // Return true if this segment has any sections which hold actual
4429 // data, rather than being a BSS section.
4431 has_any_data_sections() const;
4433 // Whether this segment has a dynamic relocs.
4435 has_dynamic_reloc() const;
4437 // Return the first section.
4439 first_section() const;
4441 // Return the address of the first section.
4443 first_section_load_address() const
4445 const Output_section* os = this->first_section();
4446 return os->has_load_address() ? os->load_address() : os->address();
4449 // Return whether the addresses have been set already.
4451 are_addresses_set() const
4452 { return this->are_addresses_set_; }
4454 // Set the addresses.
4456 set_addresses(uint64_t vaddr, uint64_t paddr)
4458 this->vaddr_ = vaddr;
4459 this->paddr_ = paddr;
4460 this->are_addresses_set_ = true;
4463 // Update the flags for the flags of an output section added to this
4466 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4468 // The ELF ABI specifies that a PT_TLS segment should always have
4469 // PF_R as the flags.
4470 if (this->type() != elfcpp::PT_TLS)
4471 this->flags_ |= flags;
4474 // Set the segment flags. This is only used if we have a PHDRS
4475 // clause which explicitly specifies the flags.
4477 set_flags(elfcpp::Elf_Word flags)
4478 { this->flags_ = flags; }
4480 // Set the address of the segment to ADDR and the offset to *POFF
4481 // and set the addresses and offsets of all contained output
4482 // sections accordingly. Set the section indexes of all contained
4483 // output sections starting with *PSHNDX. If RESET is true, first
4484 // reset the addresses of the contained sections. Return the
4485 // address of the immediately following segment. Update *POFF and
4486 // *PSHNDX. This should only be called for a PT_LOAD segment.
4488 set_section_addresses(Layout*, bool reset, uint64_t addr,
4489 unsigned int* increase_relro, bool* has_relro,
4490 off_t* poff, unsigned int* pshndx);
4492 // Set the minimum alignment of this segment. This may be adjusted
4493 // upward based on the section alignments.
4495 set_minimum_p_align(uint64_t align)
4497 if (align > this->min_p_align_)
4498 this->min_p_align_ = align;
4501 // Set the offset of this segment based on the section. This should
4502 // only be called for a non-PT_LOAD segment.
4504 set_offset(unsigned int increase);
4506 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4510 // Return the number of output sections.
4512 output_section_count() const;
4514 // Return the section attached to the list segment with the lowest
4515 // load address. This is used when handling a PHDRS clause in a
4518 section_with_lowest_load_address() const;
4520 // Write the segment header into *OPHDR.
4521 template<int size, bool big_endian>
4523 write_header(elfcpp::Phdr_write<size, big_endian>*);
4525 // Write the section headers of associated sections into V.
4526 template<int size, bool big_endian>
4528 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4529 unsigned int* pshndx) const;
4531 // Print the output sections in the map file.
4533 print_sections_to_mapfile(Mapfile*) const;
4536 typedef std::vector<Output_data*> Output_data_list;
4538 // Find the maximum alignment in an Output_data_list.
4540 maximum_alignment_list(const Output_data_list*);
4542 // Return whether the first data section is a relro section.
4544 is_first_section_relro() const;
4546 // Set the section addresses in an Output_data_list.
4548 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4549 uint64_t addr, off_t* poff, unsigned int* pshndx,
4552 // Return the number of Output_sections in an Output_data_list.
4554 output_section_count_list(const Output_data_list*) const;
4556 // Return whether an Output_data_list has a dynamic reloc.
4558 has_dynamic_reloc_list(const Output_data_list*) const;
4560 // Find the section with the lowest load address in an
4561 // Output_data_list.
4563 lowest_load_address_in_list(const Output_data_list* pdl,
4564 Output_section** found,
4565 uint64_t* found_lma) const;
4567 // Find the first and last entries by address.
4569 find_first_and_last_list(const Output_data_list* pdl,
4570 const Output_data** pfirst,
4571 const Output_data** plast) const;
4573 // Write the section headers in the list into V.
4574 template<int size, bool big_endian>
4576 write_section_headers_list(const Layout*, const Stringpool*,
4577 const Output_data_list*, unsigned char* v,
4578 unsigned int* pshdx) const;
4580 // Print a section list to the mapfile.
4582 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4584 // NOTE: We want to use the copy constructor. Currently, shallow copy
4585 // works for us so we do not need to write our own copy constructor.
4587 // The list of output data attached to this segment.
4588 Output_data_list output_lists_[ORDER_MAX];
4589 // The segment virtual address.
4591 // The segment physical address.
4593 // The size of the segment in memory.
4595 // The maximum section alignment. The is_max_align_known_ field
4596 // indicates whether this has been finalized.
4597 uint64_t max_align_;
4598 // The required minimum value for the p_align field. This is used
4599 // for PT_LOAD segments. Note that this does not mean that
4600 // addresses should be aligned to this value; it means the p_paddr
4601 // and p_vaddr fields must be congruent modulo this value. For
4602 // non-PT_LOAD segments, the dynamic linker works more efficiently
4603 // if the p_align field has the more conventional value, although it
4604 // can align as needed.
4605 uint64_t min_p_align_;
4606 // The offset of the segment data within the file.
4608 // The size of the segment data in the file.
4610 // The segment type;
4611 elfcpp::Elf_Word type_;
4612 // The segment flags.
4613 elfcpp::Elf_Word flags_;
4614 // Whether we have finalized max_align_.
4615 bool is_max_align_known_ : 1;
4616 // Whether vaddr and paddr were set by a linker script.
4617 bool are_addresses_set_ : 1;
4618 // Whether this segment holds large data sections.
4619 bool is_large_data_segment_ : 1;
4620 // Whether this was marked as a unique segment via a linker plugin.
4621 bool is_unique_segment_ : 1;
4624 // This class represents the output file.
4629 Output_file(const char* name);
4631 // Indicate that this is a temporary file which should not be
4635 { this->is_temporary_ = true; }
4637 // Try to open an existing file. Returns false if the file doesn't
4638 // exist, has a size of 0 or can't be mmaped. This method is
4639 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4640 // that file as the base for incremental linking.
4642 open_base_file(const char* base_name, bool writable);
4644 // Open the output file. FILE_SIZE is the final size of the file.
4645 // If the file already exists, it is deleted/truncated. This method
4646 // is thread-unsafe.
4648 open(off_t file_size);
4650 // Resize the output file. This method is thread-unsafe.
4652 resize(off_t file_size);
4654 // Close the output file (flushing all buffered data) and make sure
4655 // there are no errors. This method is thread-unsafe.
4659 // Return the size of this file.
4662 { return this->file_size_; }
4664 // Return the name of this file.
4667 { return this->name_; }
4669 // We currently always use mmap which makes the view handling quite
4670 // simple. In the future we may support other approaches.
4672 // Write data to the output file.
4674 write(off_t offset, const void* data, size_t len)
4675 { memcpy(this->base_ + offset, data, len); }
4677 // Get a buffer to use to write to the file, given the offset into
4678 // the file and the size.
4680 get_output_view(off_t start, size_t size)
4682 gold_assert(start >= 0
4683 && start + static_cast<off_t>(size) <= this->file_size_);
4684 return this->base_ + start;
4687 // VIEW must have been returned by get_output_view. Write the
4688 // buffer to the file, passing in the offset and the size.
4690 write_output_view(off_t, size_t, unsigned char*)
4693 // Get a read/write buffer. This is used when we want to write part
4694 // of the file, read it in, and write it again.
4696 get_input_output_view(off_t start, size_t size)
4697 { return this->get_output_view(start, size); }
4699 // Write a read/write buffer back to the file.
4701 write_input_output_view(off_t, size_t, unsigned char*)
4704 // Get a read buffer. This is used when we just want to read part
4705 // of the file back it in.
4706 const unsigned char*
4707 get_input_view(off_t start, size_t size)
4708 { return this->get_output_view(start, size); }
4710 // Release a read bfufer.
4712 free_input_view(off_t, size_t, const unsigned char*)
4716 // Map the file into memory or, if that fails, allocate anonymous
4721 // Allocate anonymous memory for the file.
4725 // Map the file into memory.
4727 map_no_anonymous(bool);
4729 // Unmap the file from memory (and flush to disk buffers).
4739 // Base of file mapped into memory.
4740 unsigned char* base_;
4741 // True iff base_ points to a memory buffer rather than an output file.
4742 bool map_is_anonymous_;
4743 // True if base_ was allocated using new rather than mmap.
4744 bool map_is_allocated_;
4745 // True if this is a temporary file which should not be output.
4749 } // End namespace gold.
4751 #endif // !defined(GOLD_OUTPUT_H)