1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdbsupport/gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdbsupport/gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static struct type *desc_base_type (struct type *);
74 static struct type *desc_bounds_type (struct type *);
76 static struct value *desc_bounds (struct value *);
78 static int fat_pntr_bounds_bitpos (struct type *);
80 static int fat_pntr_bounds_bitsize (struct type *);
82 static struct type *desc_data_target_type (struct type *);
84 static struct value *desc_data (struct value *);
86 static int fat_pntr_data_bitpos (struct type *);
88 static int fat_pntr_data_bitsize (struct type *);
90 static struct value *desc_one_bound (struct value *, int, int);
92 static int desc_bound_bitpos (struct type *, int, int);
94 static int desc_bound_bitsize (struct type *, int, int);
96 static struct type *desc_index_type (struct type *, int);
98 static int desc_arity (struct type *);
100 static int ada_args_match (struct symbol *, struct value **, int);
102 static struct value *make_array_descriptor (struct type *, struct value *);
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
118 const struct block *);
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
122 static const char *ada_decoded_op_name (enum exp_opcode);
124 static int numeric_type_p (struct type *);
126 static int integer_type_p (struct type *);
128 static int scalar_type_p (struct type *);
130 static int discrete_type_p (struct type *);
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
135 static struct type *ada_find_parallel_type_with_name (struct type *,
138 static int is_dynamic_field (struct type *, int);
140 static struct type *to_fixed_variant_branch_type (struct type *,
142 CORE_ADDR, struct value *);
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
146 static struct type *to_fixed_range_type (struct type *, struct value *);
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
151 static struct value *unwrap_value (struct value *);
153 static struct type *constrained_packed_array_type (struct type *, long *);
155 static struct type *decode_constrained_packed_array_type (struct type *);
157 static long decode_packed_array_bitsize (struct type *);
159 static struct value *decode_constrained_packed_array (struct value *);
161 static int ada_is_unconstrained_packed_array_type (struct type *);
163 static struct value *value_subscript_packed (struct value *, int,
166 static struct value *coerce_unspec_val_to_type (struct value *,
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
171 static int equiv_types (struct type *, struct type *);
173 static int is_name_suffix (const char *);
175 static int advance_wild_match (const char **, const char *, char);
177 static bool wild_match (const char *name, const char *patn);
179 static struct value *ada_coerce_ref (struct value *);
181 static LONGEST pos_atr (struct value *);
183 static struct value *val_atr (struct type *, LONGEST);
185 static struct symbol *standard_lookup (const char *, const struct block *,
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
198 static int ada_is_direct_array_type (struct type *);
200 static struct value *ada_index_struct_field (int, struct value *, int,
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
206 static struct type *ada_find_any_type (const char *name);
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
220 /* Each entry in the UTF-32 case-folding table is of this form. */
223 /* The start and end, inclusive, of this range of codepoints. */
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
232 bool operator< (uint32_t val) const
238 static const utf8_entry ada_case_fold[] =
240 #include "ada-casefold.h"
245 /* The result of a symbol lookup to be stored in our symbol cache. */
249 /* The name used to perform the lookup. */
251 /* The namespace used during the lookup. */
253 /* The symbol returned by the lookup, or NULL if no matching symbol
256 /* The block where the symbol was found, or NULL if no matching
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
272 #define HASH_SIZE 1009
274 struct ada_symbol_cache
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
283 static const char ada_completer_word_break_characters[] =
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 /* Maintenance-related settings for this module. */
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
316 static bool ada_ignore_descriptive_types_p = false;
318 /* Inferior-specific data. */
320 /* Per-inferior data for this module. */
322 struct ada_inferior_data
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
333 const struct exception_support_info *exception_info = nullptr;
336 /* Our key to this module's inferior data. */
337 static const registry<inferior>::key<ada_inferior_data> ada_inferior_data;
339 /* Return our inferior data for the given inferior (INF).
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
350 struct ada_inferior_data *data;
352 data = ada_inferior_data.get (inf);
354 data = ada_inferior_data.emplace (inf);
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
363 ada_inferior_exit (struct inferior *inf)
365 ada_inferior_data.clear (inf);
369 /* program-space-specific data. */
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
378 /* Key to our per-program-space data. */
379 static const registry<program_space>::key<ada_pspace_data>
380 ada_pspace_data_handle;
382 /* Return this module's data for the given program space (PSPACE).
383 If not is found, add a zero'ed one now.
385 This function always returns a valid object. */
387 static struct ada_pspace_data *
388 get_ada_pspace_data (struct program_space *pspace)
390 struct ada_pspace_data *data;
392 data = ada_pspace_data_handle.get (pspace);
394 data = ada_pspace_data_handle.emplace (pspace);
401 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
402 all typedef layers have been peeled. Otherwise, return TYPE.
404 Normally, we really expect a typedef type to only have 1 typedef layer.
405 In other words, we really expect the target type of a typedef type to be
406 a non-typedef type. This is particularly true for Ada units, because
407 the language does not have a typedef vs not-typedef distinction.
408 In that respect, the Ada compiler has been trying to eliminate as many
409 typedef definitions in the debugging information, since they generally
410 do not bring any extra information (we still use typedef under certain
411 circumstances related mostly to the GNAT encoding).
413 Unfortunately, we have seen situations where the debugging information
414 generated by the compiler leads to such multiple typedef layers. For
415 instance, consider the following example with stabs:
417 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
418 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
420 This is an error in the debugging information which causes type
421 pck__float_array___XUP to be defined twice, and the second time,
422 it is defined as a typedef of a typedef.
424 This is on the fringe of legality as far as debugging information is
425 concerned, and certainly unexpected. But it is easy to handle these
426 situations correctly, so we can afford to be lenient in this case. */
429 ada_typedef_target_type (struct type *type)
431 while (type->code () == TYPE_CODE_TYPEDEF)
432 type = type->target_type ();
436 /* Given DECODED_NAME a string holding a symbol name in its
437 decoded form (ie using the Ada dotted notation), returns
438 its unqualified name. */
441 ada_unqualified_name (const char *decoded_name)
445 /* If the decoded name starts with '<', it means that the encoded
446 name does not follow standard naming conventions, and thus that
447 it is not your typical Ada symbol name. Trying to unqualify it
448 is therefore pointless and possibly erroneous. */
449 if (decoded_name[0] == '<')
452 result = strrchr (decoded_name, '.');
454 result++; /* Skip the dot... */
456 result = decoded_name;
461 /* Return a string starting with '<', followed by STR, and '>'. */
464 add_angle_brackets (const char *str)
466 return string_printf ("<%s>", str);
469 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
470 suffix of FIELD_NAME beginning "___". */
473 field_name_match (const char *field_name, const char *target)
475 int len = strlen (target);
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (startswith (field_name + len, "___")
481 && strcmp (field_name + strlen (field_name) - 6,
486 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
495 ada_get_field_index (const struct type *type, const char *field_name,
499 struct type *struct_type = check_typedef ((struct type *) type);
501 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
502 if (field_name_match (struct_type->field (fieldno).name (), field_name))
506 error (_("Unable to find field %s in struct %s. Aborting"),
507 field_name, struct_type->name ());
512 /* The length of the prefix of NAME prior to any "___" suffix. */
515 ada_name_prefix_len (const char *name)
521 const char *p = strstr (name, "___");
524 return strlen (name);
530 /* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
534 is_suffix (const char *str, const char *suffix)
541 len2 = strlen (suffix);
542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
545 /* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
548 static struct value *
549 coerce_unspec_val_to_type (struct value *val, struct type *type)
551 type = ada_check_typedef (type);
552 if (value_type (val) == type)
556 struct value *result;
558 if (value_optimized_out (val))
559 result = allocate_optimized_out_value (type);
560 else if (value_lazy (val)
561 /* Be careful not to make a lazy not_lval value. */
562 || (VALUE_LVAL (val) != not_lval
563 && type->length () > value_type (val)->length ()))
564 result = allocate_value_lazy (type);
567 result = allocate_value (type);
568 value_contents_copy (result, 0, val, 0, type->length ());
570 set_value_component_location (result, val);
571 set_value_bitsize (result, value_bitsize (val));
572 set_value_bitpos (result, value_bitpos (val));
573 if (VALUE_LVAL (result) == lval_memory)
574 set_value_address (result, value_address (val));
579 static const gdb_byte *
580 cond_offset_host (const gdb_byte *valaddr, long offset)
585 return valaddr + offset;
589 cond_offset_target (CORE_ADDR address, long offset)
594 return address + offset;
597 /* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
602 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
604 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
607 lim_warning (const char *format, ...)
611 va_start (args, format);
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
614 vwarning (format, args);
619 /* Maximum value of a SIZE-byte signed integer type. */
621 max_of_size (int size)
623 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
625 return top_bit | (top_bit - 1);
628 /* Minimum value of a SIZE-byte signed integer type. */
630 min_of_size (int size)
632 return -max_of_size (size) - 1;
635 /* Maximum value of a SIZE-byte unsigned integer type. */
637 umax_of_size (int size)
639 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
641 return top_bit | (top_bit - 1);
644 /* Maximum value of integral type T, as a signed quantity. */
646 max_of_type (struct type *t)
648 if (t->is_unsigned ())
649 return (LONGEST) umax_of_size (t->length ());
651 return max_of_size (t->length ());
654 /* Minimum value of integral type T, as a signed quantity. */
656 min_of_type (struct type *t)
658 if (t->is_unsigned ())
661 return min_of_size (t->length ());
664 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
666 ada_discrete_type_high_bound (struct type *type)
668 type = resolve_dynamic_type (type, {}, 0);
669 switch (type->code ())
671 case TYPE_CODE_RANGE:
673 const dynamic_prop &high = type->bounds ()->high;
675 if (high.kind () == PROP_CONST)
676 return high.const_val ();
679 gdb_assert (high.kind () == PROP_UNDEFINED);
681 /* This happens when trying to evaluate a type's dynamic bound
682 without a live target. There is nothing relevant for us to
683 return here, so return 0. */
688 return type->field (type->num_fields () - 1).loc_enumval ();
693 return max_of_type (type);
695 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
701 ada_discrete_type_low_bound (struct type *type)
703 type = resolve_dynamic_type (type, {}, 0);
704 switch (type->code ())
706 case TYPE_CODE_RANGE:
708 const dynamic_prop &low = type->bounds ()->low;
710 if (low.kind () == PROP_CONST)
711 return low.const_val ();
714 gdb_assert (low.kind () == PROP_UNDEFINED);
716 /* This happens when trying to evaluate a type's dynamic bound
717 without a live target. There is nothing relevant for us to
718 return here, so return 0. */
723 return type->field (0).loc_enumval ();
728 return min_of_type (type);
730 error (_("Unexpected type in ada_discrete_type_low_bound."));
734 /* The identity on non-range types. For range types, the underlying
735 non-range scalar type. */
738 get_base_type (struct type *type)
740 while (type != NULL && type->code () == TYPE_CODE_RANGE)
742 if (type == type->target_type () || type->target_type () == NULL)
744 type = type->target_type ();
749 /* Return a decoded version of the given VALUE. This means returning
750 a value whose type is obtained by applying all the GNAT-specific
751 encodings, making the resulting type a static but standard description
752 of the initial type. */
755 ada_get_decoded_value (struct value *value)
757 struct type *type = ada_check_typedef (value_type (value));
759 if (ada_is_array_descriptor_type (type)
760 || (ada_is_constrained_packed_array_type (type)
761 && type->code () != TYPE_CODE_PTR))
763 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
764 value = ada_coerce_to_simple_array_ptr (value);
766 value = ada_coerce_to_simple_array (value);
769 value = ada_to_fixed_value (value);
774 /* Same as ada_get_decoded_value, but with the given TYPE.
775 Because there is no associated actual value for this type,
776 the resulting type might be a best-effort approximation in
777 the case of dynamic types. */
780 ada_get_decoded_type (struct type *type)
782 type = to_static_fixed_type (type);
783 if (ada_is_constrained_packed_array_type (type))
784 type = ada_coerce_to_simple_array_type (type);
790 /* Language Selection */
792 /* If the main program is in Ada, return language_ada, otherwise return LANG
793 (the main program is in Ada iif the adainit symbol is found). */
796 ada_update_initial_language (enum language lang)
798 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
804 /* If the main procedure is written in Ada, then return its name.
805 The result is good until the next call. Return NULL if the main
806 procedure doesn't appear to be in Ada. */
811 struct bound_minimal_symbol msym;
812 static gdb::unique_xmalloc_ptr<char> main_program_name;
814 /* For Ada, the name of the main procedure is stored in a specific
815 string constant, generated by the binder. Look for that symbol,
816 extract its address, and then read that string. If we didn't find
817 that string, then most probably the main procedure is not written
819 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
821 if (msym.minsym != NULL)
823 CORE_ADDR main_program_name_addr = msym.value_address ();
824 if (main_program_name_addr == 0)
825 error (_("Invalid address for Ada main program name."));
827 main_program_name = target_read_string (main_program_name_addr, 1024);
828 return main_program_name.get ();
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
865 /* If STR is a decoded version of a compiler-provided suffix (like the
866 "[cold]" in "symbol[cold]"), return true. Otherwise, return
870 is_compiler_suffix (const char *str)
872 gdb_assert (*str == '[');
874 while (*str != '\0' && isalpha (*str))
876 /* We accept a missing "]" in order to support completion. */
877 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
880 /* Append a non-ASCII character to RESULT. */
882 append_hex_encoded (std::string &result, uint32_t one_char)
884 if (one_char <= 0xff)
887 result.append (phex (one_char, 1));
889 else if (one_char <= 0xffff)
892 result.append (phex (one_char, 2));
896 result.append ("WW");
897 result.append (phex (one_char, 4));
901 /* Return a string that is a copy of the data in STORAGE, with
902 non-ASCII characters replaced by the appropriate hex encoding. A
903 template is used because, for UTF-8, we actually want to work with
904 UTF-32 codepoints. */
907 copy_and_hex_encode (struct obstack *storage)
909 const T *chars = (T *) obstack_base (storage);
910 int num_chars = obstack_object_size (storage) / sizeof (T);
912 for (int i = 0; i < num_chars; ++i)
914 if (chars[i] <= 0x7f)
916 /* The host character set has to be a superset of ASCII, as
917 are all the other character sets we can use. */
918 result.push_back (chars[i]);
921 append_hex_encoded (result, chars[i]);
926 /* The "encoded" form of DECODED, according to GNAT conventions. If
927 THROW_ERRORS, throw an error if invalid operator name is found.
928 Otherwise, return the empty string in that case. */
931 ada_encode_1 (const char *decoded, bool throw_errors)
936 std::string encoding_buffer;
937 bool saw_non_ascii = false;
938 for (const char *p = decoded; *p != '\0'; p += 1)
940 if ((*p & 0x80) != 0)
941 saw_non_ascii = true;
944 encoding_buffer.append ("__");
945 else if (*p == '[' && is_compiler_suffix (p))
947 encoding_buffer = encoding_buffer + "." + (p + 1);
948 if (encoding_buffer.back () == ']')
949 encoding_buffer.pop_back ();
954 const struct ada_opname_map *mapping;
956 for (mapping = ada_opname_table;
957 mapping->encoded != NULL
958 && !startswith (p, mapping->decoded); mapping += 1)
960 if (mapping->encoded == NULL)
963 error (_("invalid Ada operator name: %s"), p);
967 encoding_buffer.append (mapping->encoded);
971 encoding_buffer.push_back (*p);
974 /* If a non-ASCII character is seen, we must convert it to the
975 appropriate hex form. As this is more expensive, we keep track
976 of whether it is even necessary. */
979 auto_obstack storage;
980 bool is_utf8 = ada_source_charset == ada_utf8;
983 convert_between_encodings
985 is_utf8 ? HOST_UTF32 : ada_source_charset,
986 (const gdb_byte *) encoding_buffer.c_str (),
987 encoding_buffer.length (), 1,
988 &storage, translit_none);
990 catch (const gdb_exception &)
992 static bool warned = false;
994 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
995 might like to know why. */
999 warning (_("charset conversion failure for '%s'.\n"
1000 "You may have the wrong value for 'set ada source-charset'."),
1001 encoding_buffer.c_str ());
1004 /* We don't try to recover from errors. */
1005 return encoding_buffer;
1009 return copy_and_hex_encode<uint32_t> (&storage);
1010 return copy_and_hex_encode<gdb_byte> (&storage);
1013 return encoding_buffer;
1016 /* Find the entry for C in the case-folding table. Return nullptr if
1017 the entry does not cover C. */
1018 static const utf8_entry *
1019 find_case_fold_entry (uint32_t c)
1021 auto iter = std::lower_bound (std::begin (ada_case_fold),
1022 std::end (ada_case_fold),
1024 if (iter == std::end (ada_case_fold)
1031 /* Return NAME folded to lower case, or, if surrounded by single
1032 quotes, unfolded, but with the quotes stripped away. If
1033 THROW_ON_ERROR is true, encoding failures will throw an exception
1034 rather than emitting a warning. Result good to next call. */
1037 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1039 static std::string fold_storage;
1041 if (!name.empty () && name[0] == '\'')
1042 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1045 /* Why convert to UTF-32 and implement our own case-folding,
1046 rather than convert to wchar_t and use the platform's
1047 functions? I'm glad you asked.
1049 The main problem is that GNAT implements an unusual rule for
1050 case folding. For ASCII letters, letters in single-byte
1051 encodings (such as ISO-8859-*), and Unicode letters that fit
1052 in a single byte (i.e., code point is <= 0xff), the letter is
1053 folded to lower case. Other Unicode letters are folded to
1056 This rule means that the code must be able to examine the
1057 value of the character. And, some hosts do not use Unicode
1058 for wchar_t, so examining the value of such characters is
1060 auto_obstack storage;
1063 convert_between_encodings
1064 (host_charset (), HOST_UTF32,
1065 (const gdb_byte *) name.data (),
1067 &storage, translit_none);
1069 catch (const gdb_exception &)
1074 static bool warned = false;
1076 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1077 might like to know why. */
1081 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1082 "This normally should not happen, please file a bug report."),
1083 gdb::to_string (name).c_str (), host_charset ());
1086 /* We don't try to recover from errors; just return the
1088 fold_storage = gdb::to_string (name);
1089 return fold_storage.c_str ();
1092 bool is_utf8 = ada_source_charset == ada_utf8;
1093 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1094 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1095 for (int i = 0; i < num_chars; ++i)
1097 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1098 if (entry != nullptr)
1100 uint32_t low = chars[i] + entry->lower_delta;
1101 if (!is_utf8 || low <= 0xff)
1104 chars[i] = chars[i] + entry->upper_delta;
1108 /* Now convert back to ordinary characters. */
1109 auto_obstack reconverted;
1112 convert_between_encodings (HOST_UTF32,
1114 (const gdb_byte *) chars,
1115 num_chars * sizeof (uint32_t),
1119 obstack_1grow (&reconverted, '\0');
1120 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1122 catch (const gdb_exception &)
1127 static bool warned = false;
1129 /* Converting back from UTF-32 shouldn't normally fail, but
1130 there are some host encodings without upper/lower
1135 warning (_("could not convert the lower-cased variant of '%s'\n"
1136 "from UTF-32 to the host encoding (%s)."),
1137 gdb::to_string (name).c_str (), host_charset ());
1140 /* We don't try to recover from errors; just return the
1142 fold_storage = gdb::to_string (name);
1146 return fold_storage.c_str ();
1149 /* The "encoded" form of DECODED, according to GNAT conventions. */
1152 ada_encode (const char *decoded)
1154 if (decoded[0] != '<')
1155 decoded = ada_fold_name (decoded);
1156 return ada_encode_1 (decoded, true);
1159 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1162 is_lower_alphanum (const char c)
1164 return (isdigit (c) || (isalpha (c) && islower (c)));
1167 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1168 This function saves in LEN the length of that same symbol name but
1169 without either of these suffixes:
1175 These are suffixes introduced by the compiler for entities such as
1176 nested subprogram for instance, in order to avoid name clashes.
1177 They do not serve any purpose for the debugger. */
1180 ada_remove_trailing_digits (const char *encoded, int *len)
1182 if (*len > 1 && isdigit (encoded[*len - 1]))
1186 while (i > 0 && isdigit (encoded[i]))
1188 if (i >= 0 && encoded[i] == '.')
1190 else if (i >= 0 && encoded[i] == '$')
1192 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1194 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1199 /* Remove the suffix introduced by the compiler for protected object
1203 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1205 /* Remove trailing N. */
1207 /* Protected entry subprograms are broken into two
1208 separate subprograms: The first one is unprotected, and has
1209 a 'N' suffix; the second is the protected version, and has
1210 the 'P' suffix. The second calls the first one after handling
1211 the protection. Since the P subprograms are internally generated,
1212 we leave these names undecoded, giving the user a clue that this
1213 entity is internal. */
1216 && encoded[*len - 1] == 'N'
1217 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1221 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1222 then update *LEN to remove the suffix and return the offset of the
1223 character just past the ".". Otherwise, return -1. */
1226 remove_compiler_suffix (const char *encoded, int *len)
1228 int offset = *len - 1;
1229 while (offset > 0 && isalpha (encoded[offset]))
1231 if (offset > 0 && encoded[offset] == '.')
1239 /* Convert an ASCII hex string to a number. Reads exactly N
1240 characters from STR. Returns true on success, false if one of the
1241 digits was not a hex digit. */
1243 convert_hex (const char *str, int n, uint32_t *out)
1245 uint32_t result = 0;
1247 for (int i = 0; i < n; ++i)
1249 if (!isxdigit (str[i]))
1252 result |= fromhex (str[i]);
1259 /* Convert a wide character from its ASCII hex representation in STR
1260 (consisting of exactly N characters) to the host encoding,
1261 appending the resulting bytes to OUT. If N==2 and the Ada source
1262 charset is not UTF-8, then hex refers to an encoding in the
1263 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1264 Return false and do not modify OUT on conversion failure. */
1266 convert_from_hex_encoded (std::string &out, const char *str, int n)
1270 if (!convert_hex (str, n, &value))
1275 /* In the 'U' case, the hex digits encode the character in the
1276 Ada source charset. However, if the source charset is UTF-8,
1277 this really means it is a single-byte UTF-32 character. */
1278 if (n == 2 && ada_source_charset != ada_utf8)
1280 gdb_byte one_char = (gdb_byte) value;
1282 convert_between_encodings (ada_source_charset, host_charset (),
1284 sizeof (one_char), sizeof (one_char),
1285 &bytes, translit_none);
1288 convert_between_encodings (HOST_UTF32, host_charset (),
1289 (const gdb_byte *) &value,
1290 sizeof (value), sizeof (value),
1291 &bytes, translit_none);
1292 obstack_1grow (&bytes, '\0');
1293 out.append ((const char *) obstack_base (&bytes));
1295 catch (const gdb_exception &)
1297 /* On failure, the caller will just let the encoded form
1298 through, which seems basically reasonable. */
1305 /* See ada-lang.h. */
1308 ada_decode (const char *encoded, bool wrap, bool operators)
1314 std::string decoded;
1317 /* With function descriptors on PPC64, the value of a symbol named
1318 ".FN", if it exists, is the entry point of the function "FN". */
1319 if (encoded[0] == '.')
1322 /* The name of the Ada main procedure starts with "_ada_".
1323 This prefix is not part of the decoded name, so skip this part
1324 if we see this prefix. */
1325 if (startswith (encoded, "_ada_"))
1327 /* The "___ghost_" prefix is used for ghost entities. Normally
1328 these aren't preserved but when they are, it's useful to see
1330 if (startswith (encoded, "___ghost_"))
1333 /* If the name starts with '_', then it is not a properly encoded
1334 name, so do not attempt to decode it. Similarly, if the name
1335 starts with '<', the name should not be decoded. */
1336 if (encoded[0] == '_' || encoded[0] == '<')
1339 len0 = strlen (encoded);
1341 suffix = remove_compiler_suffix (encoded, &len0);
1343 ada_remove_trailing_digits (encoded, &len0);
1344 ada_remove_po_subprogram_suffix (encoded, &len0);
1346 /* Remove the ___X.* suffix if present. Do not forget to verify that
1347 the suffix is located before the current "end" of ENCODED. We want
1348 to avoid re-matching parts of ENCODED that have previously been
1349 marked as discarded (by decrementing LEN0). */
1350 p = strstr (encoded, "___");
1351 if (p != NULL && p - encoded < len0 - 3)
1359 /* Remove any trailing TKB suffix. It tells us that this symbol
1360 is for the body of a task, but that information does not actually
1361 appear in the decoded name. */
1363 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1366 /* Remove any trailing TB suffix. The TB suffix is slightly different
1367 from the TKB suffix because it is used for non-anonymous task
1370 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1373 /* Remove trailing "B" suffixes. */
1374 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1376 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1379 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1381 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1384 while ((i >= 0 && isdigit (encoded[i]))
1385 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1387 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1389 else if (encoded[i] == '$')
1393 /* The first few characters that are not alphabetic are not part
1394 of any encoding we use, so we can copy them over verbatim. */
1396 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1397 decoded.push_back (encoded[i]);
1402 /* Is this a symbol function? */
1403 if (operators && at_start_name && encoded[i] == 'O')
1407 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1409 int op_len = strlen (ada_opname_table[k].encoded);
1410 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1412 && !isalnum (encoded[i + op_len]))
1414 decoded.append (ada_opname_table[k].decoded);
1420 if (ada_opname_table[k].encoded != NULL)
1425 /* Replace "TK__" with "__", which will eventually be translated
1426 into "." (just below). */
1428 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1431 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1432 be translated into "." (just below). These are internal names
1433 generated for anonymous blocks inside which our symbol is nested. */
1435 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1436 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1437 && isdigit (encoded [i+4]))
1441 while (k < len0 && isdigit (encoded[k]))
1442 k++; /* Skip any extra digit. */
1444 /* Double-check that the "__B_{DIGITS}+" sequence we found
1445 is indeed followed by "__". */
1446 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1450 /* Remove _E{DIGITS}+[sb] */
1452 /* Just as for protected object subprograms, there are 2 categories
1453 of subprograms created by the compiler for each entry. The first
1454 one implements the actual entry code, and has a suffix following
1455 the convention above; the second one implements the barrier and
1456 uses the same convention as above, except that the 'E' is replaced
1459 Just as above, we do not decode the name of barrier functions
1460 to give the user a clue that the code he is debugging has been
1461 internally generated. */
1463 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1464 && isdigit (encoded[i+2]))
1468 while (k < len0 && isdigit (encoded[k]))
1472 && (encoded[k] == 'b' || encoded[k] == 's'))
1475 /* Just as an extra precaution, make sure that if this
1476 suffix is followed by anything else, it is a '_'.
1477 Otherwise, we matched this sequence by accident. */
1479 || (k < len0 && encoded[k] == '_'))
1484 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1485 the GNAT front-end in protected object subprograms. */
1488 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1490 /* Backtrack a bit up until we reach either the begining of
1491 the encoded name, or "__". Make sure that we only find
1492 digits or lowercase characters. */
1493 const char *ptr = encoded + i - 1;
1495 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1498 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1502 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1504 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1510 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1512 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1518 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1519 && isxdigit (encoded[i + 2]))
1521 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1528 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1530 /* This is a X[bn]* sequence not separated from the previous
1531 part of the name with a non-alpha-numeric character (in other
1532 words, immediately following an alpha-numeric character), then
1533 verify that it is placed at the end of the encoded name. If
1534 not, then the encoding is not valid and we should abort the
1535 decoding. Otherwise, just skip it, it is used in body-nested
1539 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1543 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1545 /* Replace '__' by '.'. */
1546 decoded.push_back ('.');
1552 /* It's a character part of the decoded name, so just copy it
1554 decoded.push_back (encoded[i]);
1559 /* Decoded names should never contain any uppercase character.
1560 Double-check this, and abort the decoding if we find one. */
1564 for (i = 0; i < decoded.length(); ++i)
1565 if (isupper (decoded[i]) || decoded[i] == ' ')
1569 /* If the compiler added a suffix, append it now. */
1571 decoded = decoded + "[" + &encoded[suffix] + "]";
1579 if (encoded[0] == '<')
1582 decoded = '<' + std::string(encoded) + '>';
1586 /* Table for keeping permanent unique copies of decoded names. Once
1587 allocated, names in this table are never released. While this is a
1588 storage leak, it should not be significant unless there are massive
1589 changes in the set of decoded names in successive versions of a
1590 symbol table loaded during a single session. */
1591 static struct htab *decoded_names_store;
1593 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1594 in the language-specific part of GSYMBOL, if it has not been
1595 previously computed. Tries to save the decoded name in the same
1596 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1597 in any case, the decoded symbol has a lifetime at least that of
1599 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1600 const, but nevertheless modified to a semantically equivalent form
1601 when a decoded name is cached in it. */
1604 ada_decode_symbol (const struct general_symbol_info *arg)
1606 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1607 const char **resultp =
1608 &gsymbol->language_specific.demangled_name;
1610 if (!gsymbol->ada_mangled)
1612 std::string decoded = ada_decode (gsymbol->linkage_name ());
1613 struct obstack *obstack = gsymbol->language_specific.obstack;
1615 gsymbol->ada_mangled = 1;
1617 if (obstack != NULL)
1618 *resultp = obstack_strdup (obstack, decoded.c_str ());
1621 /* Sometimes, we can't find a corresponding objfile, in
1622 which case, we put the result on the heap. Since we only
1623 decode when needed, we hope this usually does not cause a
1624 significant memory leak (FIXME). */
1626 char **slot = (char **) htab_find_slot (decoded_names_store,
1627 decoded.c_str (), INSERT);
1630 *slot = xstrdup (decoded.c_str ());
1642 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1643 generated by the GNAT compiler to describe the index type used
1644 for each dimension of an array, check whether it follows the latest
1645 known encoding. If not, fix it up to conform to the latest encoding.
1646 Otherwise, do nothing. This function also does nothing if
1647 INDEX_DESC_TYPE is NULL.
1649 The GNAT encoding used to describe the array index type evolved a bit.
1650 Initially, the information would be provided through the name of each
1651 field of the structure type only, while the type of these fields was
1652 described as unspecified and irrelevant. The debugger was then expected
1653 to perform a global type lookup using the name of that field in order
1654 to get access to the full index type description. Because these global
1655 lookups can be very expensive, the encoding was later enhanced to make
1656 the global lookup unnecessary by defining the field type as being
1657 the full index type description.
1659 The purpose of this routine is to allow us to support older versions
1660 of the compiler by detecting the use of the older encoding, and by
1661 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1662 we essentially replace each field's meaningless type by the associated
1666 ada_fixup_array_indexes_type (struct type *index_desc_type)
1670 if (index_desc_type == NULL)
1672 gdb_assert (index_desc_type->num_fields () > 0);
1674 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1675 to check one field only, no need to check them all). If not, return
1678 If our INDEX_DESC_TYPE was generated using the older encoding,
1679 the field type should be a meaningless integer type whose name
1680 is not equal to the field name. */
1681 if (index_desc_type->field (0).type ()->name () != NULL
1682 && strcmp (index_desc_type->field (0).type ()->name (),
1683 index_desc_type->field (0).name ()) == 0)
1686 /* Fixup each field of INDEX_DESC_TYPE. */
1687 for (i = 0; i < index_desc_type->num_fields (); i++)
1689 const char *name = index_desc_type->field (i).name ();
1690 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1693 index_desc_type->field (i).set_type (raw_type);
1697 /* The desc_* routines return primitive portions of array descriptors
1700 /* The descriptor or array type, if any, indicated by TYPE; removes
1701 level of indirection, if needed. */
1703 static struct type *
1704 desc_base_type (struct type *type)
1708 type = ada_check_typedef (type);
1709 if (type->code () == TYPE_CODE_TYPEDEF)
1710 type = ada_typedef_target_type (type);
1713 && (type->code () == TYPE_CODE_PTR
1714 || type->code () == TYPE_CODE_REF))
1715 return ada_check_typedef (type->target_type ());
1720 /* True iff TYPE indicates a "thin" array pointer type. */
1723 is_thin_pntr (struct type *type)
1726 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1727 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1730 /* The descriptor type for thin pointer type TYPE. */
1732 static struct type *
1733 thin_descriptor_type (struct type *type)
1735 struct type *base_type = desc_base_type (type);
1737 if (base_type == NULL)
1739 if (is_suffix (ada_type_name (base_type), "___XVE"))
1743 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1745 if (alt_type == NULL)
1752 /* A pointer to the array data for thin-pointer value VAL. */
1754 static struct value *
1755 thin_data_pntr (struct value *val)
1757 struct type *type = ada_check_typedef (value_type (val));
1758 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1760 data_type = lookup_pointer_type (data_type);
1762 if (type->code () == TYPE_CODE_PTR)
1763 return value_cast (data_type, value_copy (val));
1765 return value_from_longest (data_type, value_address (val));
1768 /* True iff TYPE indicates a "thick" array pointer type. */
1771 is_thick_pntr (struct type *type)
1773 type = desc_base_type (type);
1774 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1775 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its bounds data; otherwise, NULL. */
1781 static struct type *
1782 desc_bounds_type (struct type *type)
1786 type = desc_base_type (type);
1790 else if (is_thin_pntr (type))
1792 type = thin_descriptor_type (type);
1795 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1797 return ada_check_typedef (r);
1799 else if (type->code () == TYPE_CODE_STRUCT)
1801 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1803 return ada_check_typedef (ada_check_typedef (r)->target_type ());
1808 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1809 one, a pointer to its bounds data. Otherwise NULL. */
1811 static struct value *
1812 desc_bounds (struct value *arr)
1814 struct type *type = ada_check_typedef (value_type (arr));
1816 if (is_thin_pntr (type))
1818 struct type *bounds_type =
1819 desc_bounds_type (thin_descriptor_type (type));
1822 if (bounds_type == NULL)
1823 error (_("Bad GNAT array descriptor"));
1825 /* NOTE: The following calculation is not really kosher, but
1826 since desc_type is an XVE-encoded type (and shouldn't be),
1827 the correct calculation is a real pain. FIXME (and fix GCC). */
1828 if (type->code () == TYPE_CODE_PTR)
1829 addr = value_as_long (arr);
1831 addr = value_address (arr);
1834 value_from_longest (lookup_pointer_type (bounds_type),
1835 addr - bounds_type->length ());
1838 else if (is_thick_pntr (type))
1840 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1841 _("Bad GNAT array descriptor"));
1842 struct type *p_bounds_type = value_type (p_bounds);
1845 && p_bounds_type->code () == TYPE_CODE_PTR)
1847 struct type *target_type = p_bounds_type->target_type ();
1849 if (target_type->is_stub ())
1850 p_bounds = value_cast (lookup_pointer_type
1851 (ada_check_typedef (target_type)),
1855 error (_("Bad GNAT array descriptor"));
1863 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1864 position of the field containing the address of the bounds data. */
1867 fat_pntr_bounds_bitpos (struct type *type)
1869 return desc_base_type (type)->field (1).loc_bitpos ();
1872 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1873 size of the field containing the address of the bounds data. */
1876 fat_pntr_bounds_bitsize (struct type *type)
1878 type = desc_base_type (type);
1880 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1881 return TYPE_FIELD_BITSIZE (type, 1);
1883 return 8 * ada_check_typedef (type->field (1).type ())->length ();
1886 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1887 pointer to one, the type of its array data (a array-with-no-bounds type);
1888 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1891 static struct type *
1892 desc_data_target_type (struct type *type)
1894 type = desc_base_type (type);
1896 /* NOTE: The following is bogus; see comment in desc_bounds. */
1897 if (is_thin_pntr (type))
1898 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1899 else if (is_thick_pntr (type))
1901 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1904 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1905 return ada_check_typedef (data_type->target_type ());
1911 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1914 static struct value *
1915 desc_data (struct value *arr)
1917 struct type *type = value_type (arr);
1919 if (is_thin_pntr (type))
1920 return thin_data_pntr (arr);
1921 else if (is_thick_pntr (type))
1922 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1923 _("Bad GNAT array descriptor"));
1929 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1930 position of the field containing the address of the data. */
1933 fat_pntr_data_bitpos (struct type *type)
1935 return desc_base_type (type)->field (0).loc_bitpos ();
1938 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1939 size of the field containing the address of the data. */
1942 fat_pntr_data_bitsize (struct type *type)
1944 type = desc_base_type (type);
1946 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1947 return TYPE_FIELD_BITSIZE (type, 0);
1949 return TARGET_CHAR_BIT * type->field (0).type ()->length ();
1952 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1953 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1954 bound, if WHICH is 1. The first bound is I=1. */
1956 static struct value *
1957 desc_one_bound (struct value *bounds, int i, int which)
1959 char bound_name[20];
1960 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1961 which ? 'U' : 'L', i - 1);
1962 return value_struct_elt (&bounds, {}, bound_name, NULL,
1963 _("Bad GNAT array descriptor bounds"));
1966 /* If BOUNDS is an array-bounds structure type, return the bit position
1967 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1968 bound, if WHICH is 1. The first bound is I=1. */
1971 desc_bound_bitpos (struct type *type, int i, int which)
1973 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1976 /* If BOUNDS is an array-bounds structure type, return the bit field size
1977 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1978 bound, if WHICH is 1. The first bound is I=1. */
1981 desc_bound_bitsize (struct type *type, int i, int which)
1983 type = desc_base_type (type);
1985 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1986 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1988 return 8 * type->field (2 * i + which - 2).type ()->length ();
1991 /* If TYPE is the type of an array-bounds structure, the type of its
1992 Ith bound (numbering from 1). Otherwise, NULL. */
1994 static struct type *
1995 desc_index_type (struct type *type, int i)
1997 type = desc_base_type (type);
1999 if (type->code () == TYPE_CODE_STRUCT)
2001 char bound_name[20];
2002 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2003 return lookup_struct_elt_type (type, bound_name, 1);
2009 /* The number of index positions in the array-bounds type TYPE.
2010 Return 0 if TYPE is NULL. */
2013 desc_arity (struct type *type)
2015 type = desc_base_type (type);
2018 return type->num_fields () / 2;
2022 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2023 an array descriptor type (representing an unconstrained array
2027 ada_is_direct_array_type (struct type *type)
2031 type = ada_check_typedef (type);
2032 return (type->code () == TYPE_CODE_ARRAY
2033 || ada_is_array_descriptor_type (type));
2036 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2040 ada_is_array_type (struct type *type)
2043 && (type->code () == TYPE_CODE_PTR
2044 || type->code () == TYPE_CODE_REF))
2045 type = type->target_type ();
2046 return ada_is_direct_array_type (type);
2049 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2052 ada_is_simple_array_type (struct type *type)
2056 type = ada_check_typedef (type);
2057 return (type->code () == TYPE_CODE_ARRAY
2058 || (type->code () == TYPE_CODE_PTR
2059 && (ada_check_typedef (type->target_type ())->code ()
2060 == TYPE_CODE_ARRAY)));
2063 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2066 ada_is_array_descriptor_type (struct type *type)
2068 struct type *data_type = desc_data_target_type (type);
2072 type = ada_check_typedef (type);
2073 return (data_type != NULL
2074 && data_type->code () == TYPE_CODE_ARRAY
2075 && desc_arity (desc_bounds_type (type)) > 0);
2078 /* Non-zero iff type is a partially mal-formed GNAT array
2079 descriptor. FIXME: This is to compensate for some problems with
2080 debugging output from GNAT. Re-examine periodically to see if it
2084 ada_is_bogus_array_descriptor (struct type *type)
2088 && type->code () == TYPE_CODE_STRUCT
2089 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2090 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2091 && !ada_is_array_descriptor_type (type);
2095 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2096 (fat pointer) returns the type of the array data described---specifically,
2097 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2098 in from the descriptor; otherwise, they are left unspecified. If
2099 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2100 returns NULL. The result is simply the type of ARR if ARR is not
2103 static struct type *
2104 ada_type_of_array (struct value *arr, int bounds)
2106 if (ada_is_constrained_packed_array_type (value_type (arr)))
2107 return decode_constrained_packed_array_type (value_type (arr));
2109 if (!ada_is_array_descriptor_type (value_type (arr)))
2110 return value_type (arr);
2114 struct type *array_type =
2115 ada_check_typedef (desc_data_target_type (value_type (arr)));
2117 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2118 TYPE_FIELD_BITSIZE (array_type, 0) =
2119 decode_packed_array_bitsize (value_type (arr));
2125 struct type *elt_type;
2127 struct value *descriptor;
2129 elt_type = ada_array_element_type (value_type (arr), -1);
2130 arity = ada_array_arity (value_type (arr));
2132 if (elt_type == NULL || arity == 0)
2133 return ada_check_typedef (value_type (arr));
2135 descriptor = desc_bounds (arr);
2136 if (value_as_long (descriptor) == 0)
2140 struct type *range_type = alloc_type_copy (value_type (arr));
2141 struct type *array_type = alloc_type_copy (value_type (arr));
2142 struct value *low = desc_one_bound (descriptor, arity, 0);
2143 struct value *high = desc_one_bound (descriptor, arity, 1);
2146 create_static_range_type (range_type, value_type (low),
2147 longest_to_int (value_as_long (low)),
2148 longest_to_int (value_as_long (high)));
2149 elt_type = create_array_type (array_type, elt_type, range_type);
2151 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2153 /* We need to store the element packed bitsize, as well as
2154 recompute the array size, because it was previously
2155 computed based on the unpacked element size. */
2156 LONGEST lo = value_as_long (low);
2157 LONGEST hi = value_as_long (high);
2159 TYPE_FIELD_BITSIZE (elt_type, 0) =
2160 decode_packed_array_bitsize (value_type (arr));
2161 /* If the array has no element, then the size is already
2162 zero, and does not need to be recomputed. */
2166 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2168 array_type->set_length ((array_bitsize + 7) / 8);
2173 return lookup_pointer_type (elt_type);
2177 /* If ARR does not represent an array, returns ARR unchanged.
2178 Otherwise, returns either a standard GDB array with bounds set
2179 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2180 GDB array. Returns NULL if ARR is a null fat pointer. */
2183 ada_coerce_to_simple_array_ptr (struct value *arr)
2185 if (ada_is_array_descriptor_type (value_type (arr)))
2187 struct type *arrType = ada_type_of_array (arr, 1);
2189 if (arrType == NULL)
2191 return value_cast (arrType, value_copy (desc_data (arr)));
2193 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2194 return decode_constrained_packed_array (arr);
2199 /* If ARR does not represent an array, returns ARR unchanged.
2200 Otherwise, returns a standard GDB array describing ARR (which may
2201 be ARR itself if it already is in the proper form). */
2204 ada_coerce_to_simple_array (struct value *arr)
2206 if (ada_is_array_descriptor_type (value_type (arr)))
2208 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2211 error (_("Bounds unavailable for null array pointer."));
2212 return value_ind (arrVal);
2214 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2215 return decode_constrained_packed_array (arr);
2220 /* If TYPE represents a GNAT array type, return it translated to an
2221 ordinary GDB array type (possibly with BITSIZE fields indicating
2222 packing). For other types, is the identity. */
2225 ada_coerce_to_simple_array_type (struct type *type)
2227 if (ada_is_constrained_packed_array_type (type))
2228 return decode_constrained_packed_array_type (type);
2230 if (ada_is_array_descriptor_type (type))
2231 return ada_check_typedef (desc_data_target_type (type));
2236 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2239 ada_is_gnat_encoded_packed_array_type (struct type *type)
2243 type = desc_base_type (type);
2244 type = ada_check_typedef (type);
2246 ada_type_name (type) != NULL
2247 && strstr (ada_type_name (type), "___XP") != NULL;
2250 /* Non-zero iff TYPE represents a standard GNAT constrained
2251 packed-array type. */
2254 ada_is_constrained_packed_array_type (struct type *type)
2256 return ada_is_gnat_encoded_packed_array_type (type)
2257 && !ada_is_array_descriptor_type (type);
2260 /* Non-zero iff TYPE represents an array descriptor for a
2261 unconstrained packed-array type. */
2264 ada_is_unconstrained_packed_array_type (struct type *type)
2266 if (!ada_is_array_descriptor_type (type))
2269 if (ada_is_gnat_encoded_packed_array_type (type))
2272 /* If we saw GNAT encodings, then the above code is sufficient.
2273 However, with minimal encodings, we will just have a thick
2275 if (is_thick_pntr (type))
2277 type = desc_base_type (type);
2278 /* The structure's first field is a pointer to an array, so this
2279 fetches the array type. */
2280 type = type->field (0).type ()->target_type ();
2281 if (type->code () == TYPE_CODE_TYPEDEF)
2282 type = ada_typedef_target_type (type);
2283 /* Now we can see if the array elements are packed. */
2284 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2290 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2291 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2294 ada_is_any_packed_array_type (struct type *type)
2296 return (ada_is_constrained_packed_array_type (type)
2297 || (type->code () == TYPE_CODE_ARRAY
2298 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2301 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2302 return the size of its elements in bits. */
2305 decode_packed_array_bitsize (struct type *type)
2307 const char *raw_name;
2311 /* Access to arrays implemented as fat pointers are encoded as a typedef
2312 of the fat pointer type. We need the name of the fat pointer type
2313 to do the decoding, so strip the typedef layer. */
2314 if (type->code () == TYPE_CODE_TYPEDEF)
2315 type = ada_typedef_target_type (type);
2317 raw_name = ada_type_name (ada_check_typedef (type));
2319 raw_name = ada_type_name (desc_base_type (type));
2324 tail = strstr (raw_name, "___XP");
2325 if (tail == nullptr)
2327 gdb_assert (is_thick_pntr (type));
2328 /* The structure's first field is a pointer to an array, so this
2329 fetches the array type. */
2330 type = type->field (0).type ()->target_type ();
2331 /* Now we can see if the array elements are packed. */
2332 return TYPE_FIELD_BITSIZE (type, 0);
2335 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2338 (_("could not understand bit size information on packed array"));
2345 /* Given that TYPE is a standard GDB array type with all bounds filled
2346 in, and that the element size of its ultimate scalar constituents
2347 (that is, either its elements, or, if it is an array of arrays, its
2348 elements' elements, etc.) is *ELT_BITS, return an identical type,
2349 but with the bit sizes of its elements (and those of any
2350 constituent arrays) recorded in the BITSIZE components of its
2351 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2354 Note that, for arrays whose index type has an XA encoding where
2355 a bound references a record discriminant, getting that discriminant,
2356 and therefore the actual value of that bound, is not possible
2357 because none of the given parameters gives us access to the record.
2358 This function assumes that it is OK in the context where it is being
2359 used to return an array whose bounds are still dynamic and where
2360 the length is arbitrary. */
2362 static struct type *
2363 constrained_packed_array_type (struct type *type, long *elt_bits)
2365 struct type *new_elt_type;
2366 struct type *new_type;
2367 struct type *index_type_desc;
2368 struct type *index_type;
2369 LONGEST low_bound, high_bound;
2371 type = ada_check_typedef (type);
2372 if (type->code () != TYPE_CODE_ARRAY)
2375 index_type_desc = ada_find_parallel_type (type, "___XA");
2376 if (index_type_desc)
2377 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2380 index_type = type->index_type ();
2382 new_type = alloc_type_copy (type);
2384 constrained_packed_array_type (ada_check_typedef (type->target_type ()),
2386 create_array_type (new_type, new_elt_type, index_type);
2387 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2388 new_type->set_name (ada_type_name (type));
2390 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2391 && is_dynamic_type (check_typedef (index_type)))
2392 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2393 low_bound = high_bound = 0;
2394 if (high_bound < low_bound)
2397 new_type->set_length (0);
2401 *elt_bits *= (high_bound - low_bound + 1);
2402 new_type->set_length ((*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
2405 new_type->set_is_fixed_instance (true);
2409 /* The array type encoded by TYPE, where
2410 ada_is_constrained_packed_array_type (TYPE). */
2412 static struct type *
2413 decode_constrained_packed_array_type (struct type *type)
2415 const char *raw_name = ada_type_name (ada_check_typedef (type));
2418 struct type *shadow_type;
2422 raw_name = ada_type_name (desc_base_type (type));
2427 name = (char *) alloca (strlen (raw_name) + 1);
2428 tail = strstr (raw_name, "___XP");
2429 type = desc_base_type (type);
2431 memcpy (name, raw_name, tail - raw_name);
2432 name[tail - raw_name] = '\000';
2434 shadow_type = ada_find_parallel_type_with_name (type, name);
2436 if (shadow_type == NULL)
2438 lim_warning (_("could not find bounds information on packed array"));
2441 shadow_type = check_typedef (shadow_type);
2443 if (shadow_type->code () != TYPE_CODE_ARRAY)
2445 lim_warning (_("could not understand bounds "
2446 "information on packed array"));
2450 bits = decode_packed_array_bitsize (type);
2451 return constrained_packed_array_type (shadow_type, &bits);
2454 /* Helper function for decode_constrained_packed_array. Set the field
2455 bitsize on a series of packed arrays. Returns the number of
2456 elements in TYPE. */
2459 recursively_update_array_bitsize (struct type *type)
2461 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2464 if (!get_discrete_bounds (type->index_type (), &low, &high)
2467 LONGEST our_len = high - low + 1;
2469 struct type *elt_type = type->target_type ();
2470 if (elt_type->code () == TYPE_CODE_ARRAY)
2472 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2473 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2474 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2476 type->set_length (((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2483 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2484 array, returns a simple array that denotes that array. Its type is a
2485 standard GDB array type except that the BITSIZEs of the array
2486 target types are set to the number of bits in each element, and the
2487 type length is set appropriately. */
2489 static struct value *
2490 decode_constrained_packed_array (struct value *arr)
2494 /* If our value is a pointer, then dereference it. Likewise if
2495 the value is a reference. Make sure that this operation does not
2496 cause the target type to be fixed, as this would indirectly cause
2497 this array to be decoded. The rest of the routine assumes that
2498 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2499 and "value_ind" routines to perform the dereferencing, as opposed
2500 to using "ada_coerce_ref" or "ada_value_ind". */
2501 arr = coerce_ref (arr);
2502 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2503 arr = value_ind (arr);
2505 type = decode_constrained_packed_array_type (value_type (arr));
2508 error (_("can't unpack array"));
2512 /* Decoding the packed array type could not correctly set the field
2513 bitsizes for any dimension except the innermost, because the
2514 bounds may be variable and were not passed to that function. So,
2515 we further resolve the array bounds here and then update the
2517 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2518 CORE_ADDR address = value_address (arr);
2519 gdb::array_view<const gdb_byte> view
2520 = gdb::make_array_view (valaddr, type->length ());
2521 type = resolve_dynamic_type (type, view, address);
2522 recursively_update_array_bitsize (type);
2524 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2525 && ada_is_modular_type (value_type (arr)))
2527 /* This is a (right-justified) modular type representing a packed
2528 array with no wrapper. In order to interpret the value through
2529 the (left-justified) packed array type we just built, we must
2530 first left-justify it. */
2531 int bit_size, bit_pos;
2534 mod = ada_modulus (value_type (arr)) - 1;
2541 bit_pos = HOST_CHAR_BIT * value_type (arr)->length () - bit_size;
2542 arr = ada_value_primitive_packed_val (arr, NULL,
2543 bit_pos / HOST_CHAR_BIT,
2544 bit_pos % HOST_CHAR_BIT,
2549 return coerce_unspec_val_to_type (arr, type);
2553 /* The value of the element of packed array ARR at the ARITY indices
2554 given in IND. ARR must be a simple array. */
2556 static struct value *
2557 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2560 int bits, elt_off, bit_off;
2561 long elt_total_bit_offset;
2562 struct type *elt_type;
2566 elt_total_bit_offset = 0;
2567 elt_type = ada_check_typedef (value_type (arr));
2568 for (i = 0; i < arity; i += 1)
2570 if (elt_type->code () != TYPE_CODE_ARRAY
2571 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2573 (_("attempt to do packed indexing of "
2574 "something other than a packed array"));
2577 struct type *range_type = elt_type->index_type ();
2578 LONGEST lowerbound, upperbound;
2581 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2583 lim_warning (_("don't know bounds of array"));
2584 lowerbound = upperbound = 0;
2587 idx = pos_atr (ind[i]);
2588 if (idx < lowerbound || idx > upperbound)
2589 lim_warning (_("packed array index %ld out of bounds"),
2591 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2592 elt_total_bit_offset += (idx - lowerbound) * bits;
2593 elt_type = ada_check_typedef (elt_type->target_type ());
2596 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2597 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2599 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2604 /* Non-zero iff TYPE includes negative integer values. */
2607 has_negatives (struct type *type)
2609 switch (type->code ())
2614 return !type->is_unsigned ();
2615 case TYPE_CODE_RANGE:
2616 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2620 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2621 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2622 the unpacked buffer.
2624 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2625 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2627 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2630 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2632 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2635 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2636 gdb_byte *unpacked, int unpacked_len,
2637 int is_big_endian, int is_signed_type,
2640 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2641 int src_idx; /* Index into the source area */
2642 int src_bytes_left; /* Number of source bytes left to process. */
2643 int srcBitsLeft; /* Number of source bits left to move */
2644 int unusedLS; /* Number of bits in next significant
2645 byte of source that are unused */
2647 int unpacked_idx; /* Index into the unpacked buffer */
2648 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2650 unsigned long accum; /* Staging area for bits being transferred */
2651 int accumSize; /* Number of meaningful bits in accum */
2654 /* Transmit bytes from least to most significant; delta is the direction
2655 the indices move. */
2656 int delta = is_big_endian ? -1 : 1;
2658 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2660 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2661 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2662 bit_size, unpacked_len);
2664 srcBitsLeft = bit_size;
2665 src_bytes_left = src_len;
2666 unpacked_bytes_left = unpacked_len;
2671 src_idx = src_len - 1;
2673 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2677 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2683 unpacked_idx = unpacked_len - 1;
2687 /* Non-scalar values must be aligned at a byte boundary... */
2689 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2690 /* ... And are placed at the beginning (most-significant) bytes
2692 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2693 unpacked_bytes_left = unpacked_idx + 1;
2698 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2700 src_idx = unpacked_idx = 0;
2701 unusedLS = bit_offset;
2704 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2709 while (src_bytes_left > 0)
2711 /* Mask for removing bits of the next source byte that are not
2712 part of the value. */
2713 unsigned int unusedMSMask =
2714 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2716 /* Sign-extend bits for this byte. */
2717 unsigned int signMask = sign & ~unusedMSMask;
2720 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2721 accumSize += HOST_CHAR_BIT - unusedLS;
2722 if (accumSize >= HOST_CHAR_BIT)
2724 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2725 accumSize -= HOST_CHAR_BIT;
2726 accum >>= HOST_CHAR_BIT;
2727 unpacked_bytes_left -= 1;
2728 unpacked_idx += delta;
2730 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2732 src_bytes_left -= 1;
2735 while (unpacked_bytes_left > 0)
2737 accum |= sign << accumSize;
2738 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2739 accumSize -= HOST_CHAR_BIT;
2742 accum >>= HOST_CHAR_BIT;
2743 unpacked_bytes_left -= 1;
2744 unpacked_idx += delta;
2748 /* Create a new value of type TYPE from the contents of OBJ starting
2749 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2750 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2751 assigning through the result will set the field fetched from.
2752 VALADDR is ignored unless OBJ is NULL, in which case,
2753 VALADDR+OFFSET must address the start of storage containing the
2754 packed value. The value returned in this case is never an lval.
2755 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2758 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2759 long offset, int bit_offset, int bit_size,
2763 const gdb_byte *src; /* First byte containing data to unpack */
2765 const int is_scalar = is_scalar_type (type);
2766 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2767 gdb::byte_vector staging;
2769 type = ada_check_typedef (type);
2772 src = valaddr + offset;
2774 src = value_contents (obj).data () + offset;
2776 if (is_dynamic_type (type))
2778 /* The length of TYPE might by dynamic, so we need to resolve
2779 TYPE in order to know its actual size, which we then use
2780 to create the contents buffer of the value we return.
2781 The difficulty is that the data containing our object is
2782 packed, and therefore maybe not at a byte boundary. So, what
2783 we do, is unpack the data into a byte-aligned buffer, and then
2784 use that buffer as our object's value for resolving the type. */
2785 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2786 staging.resize (staging_len);
2788 ada_unpack_from_contents (src, bit_offset, bit_size,
2789 staging.data (), staging.size (),
2790 is_big_endian, has_negatives (type),
2792 type = resolve_dynamic_type (type, staging, 0);
2793 if (type->length () < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2795 /* This happens when the length of the object is dynamic,
2796 and is actually smaller than the space reserved for it.
2797 For instance, in an array of variant records, the bit_size
2798 we're given is the array stride, which is constant and
2799 normally equal to the maximum size of its element.
2800 But, in reality, each element only actually spans a portion
2802 bit_size = type->length () * HOST_CHAR_BIT;
2808 v = allocate_value (type);
2809 src = valaddr + offset;
2811 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2813 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2816 v = value_at (type, value_address (obj) + offset);
2817 buf = (gdb_byte *) alloca (src_len);
2818 read_memory (value_address (v), buf, src_len);
2823 v = allocate_value (type);
2824 src = value_contents (obj).data () + offset;
2829 long new_offset = offset;
2831 set_value_component_location (v, obj);
2832 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2833 set_value_bitsize (v, bit_size);
2834 if (value_bitpos (v) >= HOST_CHAR_BIT)
2837 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2839 set_value_offset (v, new_offset);
2841 /* Also set the parent value. This is needed when trying to
2842 assign a new value (in inferior memory). */
2843 set_value_parent (v, obj);
2846 set_value_bitsize (v, bit_size);
2847 unpacked = value_contents_writeable (v).data ();
2851 memset (unpacked, 0, type->length ());
2855 if (staging.size () == type->length ())
2857 /* Small short-cut: If we've unpacked the data into a buffer
2858 of the same size as TYPE's length, then we can reuse that,
2859 instead of doing the unpacking again. */
2860 memcpy (unpacked, staging.data (), staging.size ());
2863 ada_unpack_from_contents (src, bit_offset, bit_size,
2864 unpacked, type->length (),
2865 is_big_endian, has_negatives (type), is_scalar);
2870 /* Store the contents of FROMVAL into the location of TOVAL.
2871 Return a new value with the location of TOVAL and contents of
2872 FROMVAL. Handles assignment into packed fields that have
2873 floating-point or non-scalar types. */
2875 static struct value *
2876 ada_value_assign (struct value *toval, struct value *fromval)
2878 struct type *type = value_type (toval);
2879 int bits = value_bitsize (toval);
2881 toval = ada_coerce_ref (toval);
2882 fromval = ada_coerce_ref (fromval);
2884 if (ada_is_direct_array_type (value_type (toval)))
2885 toval = ada_coerce_to_simple_array (toval);
2886 if (ada_is_direct_array_type (value_type (fromval)))
2887 fromval = ada_coerce_to_simple_array (fromval);
2889 if (!deprecated_value_modifiable (toval))
2890 error (_("Left operand of assignment is not a modifiable lvalue."));
2892 if (VALUE_LVAL (toval) == lval_memory
2894 && (type->code () == TYPE_CODE_FLT
2895 || type->code () == TYPE_CODE_STRUCT))
2897 int len = (value_bitpos (toval)
2898 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2900 gdb_byte *buffer = (gdb_byte *) alloca (len);
2902 CORE_ADDR to_addr = value_address (toval);
2904 if (type->code () == TYPE_CODE_FLT)
2905 fromval = value_cast (type, fromval);
2907 read_memory (to_addr, buffer, len);
2908 from_size = value_bitsize (fromval);
2910 from_size = value_type (fromval)->length () * TARGET_CHAR_BIT;
2912 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2913 ULONGEST from_offset = 0;
2914 if (is_big_endian && is_scalar_type (value_type (fromval)))
2915 from_offset = from_size - bits;
2916 copy_bitwise (buffer, value_bitpos (toval),
2917 value_contents (fromval).data (), from_offset,
2918 bits, is_big_endian);
2919 write_memory_with_notification (to_addr, buffer, len);
2921 val = value_copy (toval);
2922 memcpy (value_contents_raw (val).data (),
2923 value_contents (fromval).data (),
2925 deprecated_set_value_type (val, type);
2930 return value_assign (toval, fromval);
2934 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2935 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2936 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2937 COMPONENT, and not the inferior's memory. The current contents
2938 of COMPONENT are ignored.
2940 Although not part of the initial design, this function also works
2941 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2942 had a null address, and COMPONENT had an address which is equal to
2943 its offset inside CONTAINER. */
2946 value_assign_to_component (struct value *container, struct value *component,
2949 LONGEST offset_in_container =
2950 (LONGEST) (value_address (component) - value_address (container));
2951 int bit_offset_in_container =
2952 value_bitpos (component) - value_bitpos (container);
2955 val = value_cast (value_type (component), val);
2957 if (value_bitsize (component) == 0)
2958 bits = TARGET_CHAR_BIT * value_type (component)->length ();
2960 bits = value_bitsize (component);
2962 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2966 if (is_scalar_type (check_typedef (value_type (component))))
2968 = value_type (component)->length () * TARGET_CHAR_BIT - bits;
2971 copy_bitwise ((value_contents_writeable (container).data ()
2972 + offset_in_container),
2973 value_bitpos (container) + bit_offset_in_container,
2974 value_contents (val).data (), src_offset, bits, 1);
2977 copy_bitwise ((value_contents_writeable (container).data ()
2978 + offset_in_container),
2979 value_bitpos (container) + bit_offset_in_container,
2980 value_contents (val).data (), 0, bits, 0);
2983 /* Determine if TYPE is an access to an unconstrained array. */
2986 ada_is_access_to_unconstrained_array (struct type *type)
2988 return (type->code () == TYPE_CODE_TYPEDEF
2989 && is_thick_pntr (ada_typedef_target_type (type)));
2992 /* The value of the element of array ARR at the ARITY indices given in IND.
2993 ARR may be either a simple array, GNAT array descriptor, or pointer
2997 ada_value_subscript (struct value *arr, int arity, struct value **ind)
3001 struct type *elt_type;
3003 elt = ada_coerce_to_simple_array (arr);
3005 elt_type = ada_check_typedef (value_type (elt));
3006 if (elt_type->code () == TYPE_CODE_ARRAY
3007 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3008 return value_subscript_packed (elt, arity, ind);
3010 for (k = 0; k < arity; k += 1)
3012 struct type *saved_elt_type = elt_type->target_type ();
3014 if (elt_type->code () != TYPE_CODE_ARRAY)
3015 error (_("too many subscripts (%d expected)"), k);
3017 elt = value_subscript (elt, pos_atr (ind[k]));
3019 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3020 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3022 /* The element is a typedef to an unconstrained array,
3023 except that the value_subscript call stripped the
3024 typedef layer. The typedef layer is GNAT's way to
3025 specify that the element is, at the source level, an
3026 access to the unconstrained array, rather than the
3027 unconstrained array. So, we need to restore that
3028 typedef layer, which we can do by forcing the element's
3029 type back to its original type. Otherwise, the returned
3030 value is going to be printed as the array, rather
3031 than as an access. Another symptom of the same issue
3032 would be that an expression trying to dereference the
3033 element would also be improperly rejected. */
3034 deprecated_set_value_type (elt, saved_elt_type);
3037 elt_type = ada_check_typedef (value_type (elt));
3043 /* Assuming ARR is a pointer to a GDB array, the value of the element
3044 of *ARR at the ARITY indices given in IND.
3045 Does not read the entire array into memory.
3047 Note: Unlike what one would expect, this function is used instead of
3048 ada_value_subscript for basically all non-packed array types. The reason
3049 for this is that a side effect of doing our own pointer arithmetics instead
3050 of relying on value_subscript is that there is no implicit typedef peeling.
3051 This is important for arrays of array accesses, where it allows us to
3052 preserve the fact that the array's element is an array access, where the
3053 access part os encoded in a typedef layer. */
3055 static struct value *
3056 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3059 struct value *array_ind = ada_value_ind (arr);
3061 = check_typedef (value_enclosing_type (array_ind));
3063 if (type->code () == TYPE_CODE_ARRAY
3064 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3065 return value_subscript_packed (array_ind, arity, ind);
3067 for (k = 0; k < arity; k += 1)
3071 if (type->code () != TYPE_CODE_ARRAY)
3072 error (_("too many subscripts (%d expected)"), k);
3073 arr = value_cast (lookup_pointer_type (type->target_type ()),
3075 get_discrete_bounds (type->index_type (), &lwb, &upb);
3076 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3077 type = type->target_type ();
3080 return value_ind (arr);
3083 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3084 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3085 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3086 this array is LOW, as per Ada rules. */
3087 static struct value *
3088 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3091 struct type *type0 = ada_check_typedef (type);
3092 struct type *base_index_type = type0->index_type ()->target_type ();
3093 struct type *index_type
3094 = create_static_range_type (NULL, base_index_type, low, high);
3095 struct type *slice_type = create_array_type_with_stride
3096 (NULL, type0->target_type (), index_type,
3097 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3098 TYPE_FIELD_BITSIZE (type0, 0));
3099 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3100 gdb::optional<LONGEST> base_low_pos, low_pos;
3103 low_pos = discrete_position (base_index_type, low);
3104 base_low_pos = discrete_position (base_index_type, base_low);
3106 if (!low_pos.has_value () || !base_low_pos.has_value ())
3108 warning (_("unable to get positions in slice, use bounds instead"));
3110 base_low_pos = base_low;
3113 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3115 stride = type0->target_type ()->length ();
3117 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3118 return value_at_lazy (slice_type, base);
3122 static struct value *
3123 ada_value_slice (struct value *array, int low, int high)
3125 struct type *type = ada_check_typedef (value_type (array));
3126 struct type *base_index_type = type->index_type ()->target_type ();
3127 struct type *index_type
3128 = create_static_range_type (NULL, type->index_type (), low, high);
3129 struct type *slice_type = create_array_type_with_stride
3130 (NULL, type->target_type (), index_type,
3131 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3132 TYPE_FIELD_BITSIZE (type, 0));
3133 gdb::optional<LONGEST> low_pos, high_pos;
3136 low_pos = discrete_position (base_index_type, low);
3137 high_pos = discrete_position (base_index_type, high);
3139 if (!low_pos.has_value () || !high_pos.has_value ())
3141 warning (_("unable to get positions in slice, use bounds instead"));
3146 return value_cast (slice_type,
3147 value_slice (array, low, *high_pos - *low_pos + 1));
3150 /* If type is a record type in the form of a standard GNAT array
3151 descriptor, returns the number of dimensions for type. If arr is a
3152 simple array, returns the number of "array of"s that prefix its
3153 type designation. Otherwise, returns 0. */
3156 ada_array_arity (struct type *type)
3163 type = desc_base_type (type);
3166 if (type->code () == TYPE_CODE_STRUCT)
3167 return desc_arity (desc_bounds_type (type));
3169 while (type->code () == TYPE_CODE_ARRAY)
3172 type = ada_check_typedef (type->target_type ());
3178 /* If TYPE is a record type in the form of a standard GNAT array
3179 descriptor or a simple array type, returns the element type for
3180 TYPE after indexing by NINDICES indices, or by all indices if
3181 NINDICES is -1. Otherwise, returns NULL. */
3184 ada_array_element_type (struct type *type, int nindices)
3186 type = desc_base_type (type);
3188 if (type->code () == TYPE_CODE_STRUCT)
3191 struct type *p_array_type;
3193 p_array_type = desc_data_target_type (type);
3195 k = ada_array_arity (type);
3199 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3200 if (nindices >= 0 && k > nindices)
3202 while (k > 0 && p_array_type != NULL)
3204 p_array_type = ada_check_typedef (p_array_type->target_type ());
3207 return p_array_type;
3209 else if (type->code () == TYPE_CODE_ARRAY)
3211 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3213 type = type->target_type ();
3214 /* A multi-dimensional array is represented using a sequence
3215 of array types. If one of these types has a name, then
3216 it is not another dimension of the outer array, but
3217 rather the element type of the outermost array. */
3218 if (type->name () != nullptr)
3228 /* See ada-lang.h. */
3231 ada_index_type (struct type *type, int n, const char *name)
3233 struct type *result_type;
3235 type = desc_base_type (type);
3237 if (n < 0 || n > ada_array_arity (type))
3238 error (_("invalid dimension number to '%s"), name);
3240 if (ada_is_simple_array_type (type))
3244 for (i = 1; i < n; i += 1)
3246 type = ada_check_typedef (type);
3247 type = type->target_type ();
3249 result_type = ada_check_typedef (type)->index_type ()->target_type ();
3250 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3251 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3252 perhaps stabsread.c would make more sense. */
3253 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3258 result_type = desc_index_type (desc_bounds_type (type), n);
3259 if (result_type == NULL)
3260 error (_("attempt to take bound of something that is not an array"));
3266 /* Given that arr is an array type, returns the lower bound of the
3267 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3268 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3269 array-descriptor type. It works for other arrays with bounds supplied
3270 by run-time quantities other than discriminants. */
3273 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3275 struct type *type, *index_type_desc, *index_type;
3278 gdb_assert (which == 0 || which == 1);
3280 if (ada_is_constrained_packed_array_type (arr_type))
3281 arr_type = decode_constrained_packed_array_type (arr_type);
3283 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3284 return (LONGEST) - which;
3286 if (arr_type->code () == TYPE_CODE_PTR)
3287 type = arr_type->target_type ();
3291 if (type->is_fixed_instance ())
3293 /* The array has already been fixed, so we do not need to
3294 check the parallel ___XA type again. That encoding has
3295 already been applied, so ignore it now. */
3296 index_type_desc = NULL;
3300 index_type_desc = ada_find_parallel_type (type, "___XA");
3301 ada_fixup_array_indexes_type (index_type_desc);
3304 if (index_type_desc != NULL)
3305 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3309 struct type *elt_type = check_typedef (type);
3311 for (i = 1; i < n; i++)
3312 elt_type = check_typedef (elt_type->target_type ());
3314 index_type = elt_type->index_type ();
3318 (LONGEST) (which == 0
3319 ? ada_discrete_type_low_bound (index_type)
3320 : ada_discrete_type_high_bound (index_type));
3323 /* Given that arr is an array value, returns the lower bound of the
3324 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3325 WHICH is 1. This routine will also work for arrays with bounds
3326 supplied by run-time quantities other than discriminants. */
3329 ada_array_bound (struct value *arr, int n, int which)
3331 struct type *arr_type;
3333 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3334 arr = value_ind (arr);
3335 arr_type = value_enclosing_type (arr);
3337 if (ada_is_constrained_packed_array_type (arr_type))
3338 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3339 else if (ada_is_simple_array_type (arr_type))
3340 return ada_array_bound_from_type (arr_type, n, which);
3342 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3345 /* Given that arr is an array value, returns the length of the
3346 nth index. This routine will also work for arrays with bounds
3347 supplied by run-time quantities other than discriminants.
3348 Does not work for arrays indexed by enumeration types with representation
3349 clauses at the moment. */
3352 ada_array_length (struct value *arr, int n)
3354 struct type *arr_type, *index_type;
3357 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3358 arr = value_ind (arr);
3359 arr_type = value_enclosing_type (arr);
3361 if (ada_is_constrained_packed_array_type (arr_type))
3362 return ada_array_length (decode_constrained_packed_array (arr), n);
3364 if (ada_is_simple_array_type (arr_type))
3366 low = ada_array_bound_from_type (arr_type, n, 0);
3367 high = ada_array_bound_from_type (arr_type, n, 1);
3371 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3372 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3375 arr_type = check_typedef (arr_type);
3376 index_type = ada_index_type (arr_type, n, "length");
3377 if (index_type != NULL)
3379 struct type *base_type;
3380 if (index_type->code () == TYPE_CODE_RANGE)
3381 base_type = index_type->target_type ();
3383 base_type = index_type;
3385 low = pos_atr (value_from_longest (base_type, low));
3386 high = pos_atr (value_from_longest (base_type, high));
3388 return high - low + 1;
3391 /* An array whose type is that of ARR_TYPE (an array type), with
3392 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3393 less than LOW, then LOW-1 is used. */
3395 static struct value *
3396 empty_array (struct type *arr_type, int low, int high)
3398 struct type *arr_type0 = ada_check_typedef (arr_type);
3399 struct type *index_type
3400 = create_static_range_type
3401 (NULL, arr_type0->index_type ()->target_type (), low,
3402 high < low ? low - 1 : high);
3403 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3405 return allocate_value (create_array_type (NULL, elt_type, index_type));
3409 /* Name resolution */
3411 /* The "decoded" name for the user-definable Ada operator corresponding
3415 ada_decoded_op_name (enum exp_opcode op)
3419 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3421 if (ada_opname_table[i].op == op)
3422 return ada_opname_table[i].decoded;
3424 error (_("Could not find operator name for opcode"));
3427 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3428 in a listing of choices during disambiguation (see sort_choices, below).
3429 The idea is that overloadings of a subprogram name from the
3430 same package should sort in their source order. We settle for ordering
3431 such symbols by their trailing number (__N or $N). */
3434 encoded_ordered_before (const char *N0, const char *N1)
3438 else if (N0 == NULL)
3444 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3446 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3448 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3449 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3454 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3457 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3459 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3460 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3462 return (strcmp (N0, N1) < 0);
3466 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3470 sort_choices (struct block_symbol syms[], int nsyms)
3474 for (i = 1; i < nsyms; i += 1)
3476 struct block_symbol sym = syms[i];
3479 for (j = i - 1; j >= 0; j -= 1)
3481 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3482 sym.symbol->linkage_name ()))
3484 syms[j + 1] = syms[j];
3490 /* Whether GDB should display formals and return types for functions in the
3491 overloads selection menu. */
3492 static bool print_signatures = true;
3494 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3495 all but functions, the signature is just the name of the symbol. For
3496 functions, this is the name of the function, the list of types for formals
3497 and the return type (if any). */
3500 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3501 const struct type_print_options *flags)
3503 struct type *type = sym->type ();
3505 gdb_printf (stream, "%s", sym->print_name ());
3506 if (!print_signatures
3508 || type->code () != TYPE_CODE_FUNC)
3511 if (type->num_fields () > 0)
3515 gdb_printf (stream, " (");
3516 for (i = 0; i < type->num_fields (); ++i)
3519 gdb_printf (stream, "; ");
3520 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3523 gdb_printf (stream, ")");
3525 if (type->target_type () != NULL
3526 && type->target_type ()->code () != TYPE_CODE_VOID)
3528 gdb_printf (stream, " return ");
3529 ada_print_type (type->target_type (), NULL, stream, -1, 0, flags);
3533 /* Read and validate a set of numeric choices from the user in the
3534 range 0 .. N_CHOICES-1. Place the results in increasing
3535 order in CHOICES[0 .. N-1], and return N.
3537 The user types choices as a sequence of numbers on one line
3538 separated by blanks, encoding them as follows:
3540 + A choice of 0 means to cancel the selection, throwing an error.
3541 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3542 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3544 The user is not allowed to choose more than MAX_RESULTS values.
3546 ANNOTATION_SUFFIX, if present, is used to annotate the input
3547 prompts (for use with the -f switch). */
3550 get_selections (int *choices, int n_choices, int max_results,
3551 int is_all_choice, const char *annotation_suffix)
3556 int first_choice = is_all_choice ? 2 : 1;
3558 prompt = getenv ("PS2");
3562 args = command_line_input (prompt, annotation_suffix);
3565 error_no_arg (_("one or more choice numbers"));
3569 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3570 order, as given in args. Choices are validated. */
3576 args = skip_spaces (args);
3577 if (*args == '\0' && n_chosen == 0)
3578 error_no_arg (_("one or more choice numbers"));
3579 else if (*args == '\0')
3582 choice = strtol (args, &args2, 10);
3583 if (args == args2 || choice < 0
3584 || choice > n_choices + first_choice - 1)
3585 error (_("Argument must be choice number"));
3589 error (_("cancelled"));
3591 if (choice < first_choice)
3593 n_chosen = n_choices;
3594 for (j = 0; j < n_choices; j += 1)
3598 choice -= first_choice;
3600 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3604 if (j < 0 || choice != choices[j])
3608 for (k = n_chosen - 1; k > j; k -= 1)
3609 choices[k + 1] = choices[k];
3610 choices[j + 1] = choice;
3615 if (n_chosen > max_results)
3616 error (_("Select no more than %d of the above"), max_results);
3621 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3622 by asking the user (if necessary), returning the number selected,
3623 and setting the first elements of SYMS items. Error if no symbols
3626 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3627 to be re-integrated one of these days. */
3630 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3633 int *chosen = XALLOCAVEC (int , nsyms);
3635 int first_choice = (max_results == 1) ? 1 : 2;
3636 const char *select_mode = multiple_symbols_select_mode ();
3638 if (max_results < 1)
3639 error (_("Request to select 0 symbols!"));
3643 if (select_mode == multiple_symbols_cancel)
3645 canceled because the command is ambiguous\n\
3646 See set/show multiple-symbol."));
3648 /* If select_mode is "all", then return all possible symbols.
3649 Only do that if more than one symbol can be selected, of course.
3650 Otherwise, display the menu as usual. */
3651 if (select_mode == multiple_symbols_all && max_results > 1)
3654 gdb_printf (_("[0] cancel\n"));
3655 if (max_results > 1)
3656 gdb_printf (_("[1] all\n"));
3658 sort_choices (syms, nsyms);
3660 for (i = 0; i < nsyms; i += 1)
3662 if (syms[i].symbol == NULL)
3665 if (syms[i].symbol->aclass () == LOC_BLOCK)
3667 struct symtab_and_line sal =
3668 find_function_start_sal (syms[i].symbol, 1);
3670 gdb_printf ("[%d] ", i + first_choice);
3671 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3672 &type_print_raw_options);
3673 if (sal.symtab == NULL)
3674 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3675 metadata_style.style ().ptr (), nullptr, sal.line);
3679 styled_string (file_name_style.style (),
3680 symtab_to_filename_for_display (sal.symtab)),
3687 (syms[i].symbol->aclass () == LOC_CONST
3688 && syms[i].symbol->type () != NULL
3689 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3690 struct symtab *symtab = NULL;
3692 if (syms[i].symbol->is_objfile_owned ())
3693 symtab = syms[i].symbol->symtab ();
3695 if (syms[i].symbol->line () != 0 && symtab != NULL)
3697 gdb_printf ("[%d] ", i + first_choice);
3698 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3699 &type_print_raw_options);
3700 gdb_printf (_(" at %s:%d\n"),
3701 symtab_to_filename_for_display (symtab),
3702 syms[i].symbol->line ());
3704 else if (is_enumeral
3705 && syms[i].symbol->type ()->name () != NULL)
3707 gdb_printf (("[%d] "), i + first_choice);
3708 ada_print_type (syms[i].symbol->type (), NULL,
3709 gdb_stdout, -1, 0, &type_print_raw_options);
3710 gdb_printf (_("'(%s) (enumeral)\n"),
3711 syms[i].symbol->print_name ());
3715 gdb_printf ("[%d] ", i + first_choice);
3716 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3717 &type_print_raw_options);
3720 gdb_printf (is_enumeral
3721 ? _(" in %s (enumeral)\n")
3723 symtab_to_filename_for_display (symtab));
3725 gdb_printf (is_enumeral
3726 ? _(" (enumeral)\n")
3732 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3735 for (i = 0; i < n_chosen; i += 1)
3736 syms[i] = syms[chosen[i]];
3741 /* See ada-lang.h. */
3744 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3745 int nargs, value *argvec[])
3747 if (possible_user_operator_p (op, argvec))
3749 std::vector<struct block_symbol> candidates
3750 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3753 int i = ada_resolve_function (candidates, argvec,
3754 nargs, ada_decoded_op_name (op), NULL,
3757 return candidates[i];
3762 /* See ada-lang.h. */
3765 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3766 struct type *context_type,
3767 bool parse_completion,
3768 int nargs, value *argvec[],
3769 innermost_block_tracker *tracker)
3771 std::vector<struct block_symbol> candidates
3772 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3775 if (candidates.size () == 1)
3779 i = ada_resolve_function
3782 sym->linkage_name (),
3783 context_type, parse_completion);
3785 error (_("Could not find a match for %s"), sym->print_name ());
3788 tracker->update (candidates[i]);
3789 return candidates[i];
3792 /* Resolve a mention of a name where the context type is an
3793 enumeration type. */
3796 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3797 const char *name, struct type *context_type,
3798 bool parse_completion)
3800 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3801 context_type = ada_check_typedef (context_type);
3803 for (int i = 0; i < syms.size (); ++i)
3805 /* We already know the name matches, so we're just looking for
3806 an element of the correct enum type. */
3807 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3811 error (_("No name '%s' in enumeration type '%s'"), name,
3812 ada_type_name (context_type));
3815 /* See ada-lang.h. */
3818 ada_resolve_variable (struct symbol *sym, const struct block *block,
3819 struct type *context_type,
3820 bool parse_completion,
3822 innermost_block_tracker *tracker)
3824 std::vector<struct block_symbol> candidates
3825 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3827 if (std::any_of (candidates.begin (),
3829 [] (block_symbol &bsym)
3831 switch (bsym.symbol->aclass ())
3836 case LOC_REGPARM_ADDR:
3845 /* Types tend to get re-introduced locally, so if there
3846 are any local symbols that are not types, first filter
3850 (candidates.begin (),
3852 [] (block_symbol &bsym)
3854 return bsym.symbol->aclass () == LOC_TYPEDEF;
3859 /* Filter out artificial symbols. */
3862 (candidates.begin (),
3864 [] (block_symbol &bsym)
3866 return bsym.symbol->is_artificial ();
3871 if (candidates.empty ())
3872 error (_("No definition found for %s"), sym->print_name ());
3873 else if (candidates.size () == 1)
3875 else if (context_type != nullptr
3876 && context_type->code () == TYPE_CODE_ENUM)
3877 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3879 else if (deprocedure_p && !is_nonfunction (candidates))
3881 i = ada_resolve_function
3882 (candidates, NULL, 0,
3883 sym->linkage_name (),
3884 context_type, parse_completion);
3886 error (_("Could not find a match for %s"), sym->print_name ());
3890 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
3891 user_select_syms (candidates.data (), candidates.size (), 1);
3895 tracker->update (candidates[i]);
3896 return candidates[i];
3899 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3900 /* The term "match" here is rather loose. The match is heuristic and
3904 ada_type_match (struct type *ftype, struct type *atype)
3906 ftype = ada_check_typedef (ftype);
3907 atype = ada_check_typedef (atype);
3909 if (ftype->code () == TYPE_CODE_REF)
3910 ftype = ftype->target_type ();
3911 if (atype->code () == TYPE_CODE_REF)
3912 atype = atype->target_type ();
3914 switch (ftype->code ())
3917 return ftype->code () == atype->code ();
3919 if (atype->code () != TYPE_CODE_PTR)
3921 atype = atype->target_type ();
3922 /* This can only happen if the actual argument is 'null'. */
3923 if (atype->code () == TYPE_CODE_INT && atype->length () == 0)
3925 return ada_type_match (ftype->target_type (), atype);
3927 case TYPE_CODE_ENUM:
3928 case TYPE_CODE_RANGE:
3929 switch (atype->code ())
3932 case TYPE_CODE_ENUM:
3933 case TYPE_CODE_RANGE:
3939 case TYPE_CODE_ARRAY:
3940 return (atype->code () == TYPE_CODE_ARRAY
3941 || ada_is_array_descriptor_type (atype));
3943 case TYPE_CODE_STRUCT:
3944 if (ada_is_array_descriptor_type (ftype))
3945 return (atype->code () == TYPE_CODE_ARRAY
3946 || ada_is_array_descriptor_type (atype));
3948 return (atype->code () == TYPE_CODE_STRUCT
3949 && !ada_is_array_descriptor_type (atype));
3951 case TYPE_CODE_UNION:
3953 return (atype->code () == ftype->code ());
3957 /* Return non-zero if the formals of FUNC "sufficiently match" the
3958 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3959 may also be an enumeral, in which case it is treated as a 0-
3960 argument function. */
3963 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3966 struct type *func_type = func->type ();
3968 if (func->aclass () == LOC_CONST
3969 && func_type->code () == TYPE_CODE_ENUM)
3970 return (n_actuals == 0);
3971 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3974 if (func_type->num_fields () != n_actuals)
3977 for (i = 0; i < n_actuals; i += 1)
3979 if (actuals[i] == NULL)
3983 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3984 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3986 if (!ada_type_match (ftype, atype))
3993 /* False iff function type FUNC_TYPE definitely does not produce a value
3994 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3995 FUNC_TYPE is not a valid function type with a non-null return type
3996 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3999 return_match (struct type *func_type, struct type *context_type)
4001 struct type *return_type;
4003 if (func_type == NULL)
4006 if (func_type->code () == TYPE_CODE_FUNC)
4007 return_type = get_base_type (func_type->target_type ());
4009 return_type = get_base_type (func_type);
4010 if (return_type == NULL)
4013 context_type = get_base_type (context_type);
4015 if (return_type->code () == TYPE_CODE_ENUM)
4016 return context_type == NULL || return_type == context_type;
4017 else if (context_type == NULL)
4018 return return_type->code () != TYPE_CODE_VOID;
4020 return return_type->code () == context_type->code ();
4024 /* Returns the index in SYMS that contains the symbol for the
4025 function (if any) that matches the types of the NARGS arguments in
4026 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4027 that returns that type, then eliminate matches that don't. If
4028 CONTEXT_TYPE is void and there is at least one match that does not
4029 return void, eliminate all matches that do.
4031 Asks the user if there is more than one match remaining. Returns -1
4032 if there is no such symbol or none is selected. NAME is used
4033 solely for messages. May re-arrange and modify SYMS in
4034 the process; the index returned is for the modified vector. */
4037 ada_resolve_function (std::vector<struct block_symbol> &syms,
4038 struct value **args, int nargs,
4039 const char *name, struct type *context_type,
4040 bool parse_completion)
4044 int m; /* Number of hits */
4047 /* In the first pass of the loop, we only accept functions matching
4048 context_type. If none are found, we add a second pass of the loop
4049 where every function is accepted. */
4050 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4052 for (k = 0; k < syms.size (); k += 1)
4054 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4056 if (ada_args_match (syms[k].symbol, args, nargs)
4057 && (fallback || return_match (type, context_type)))
4065 /* If we got multiple matches, ask the user which one to use. Don't do this
4066 interactive thing during completion, though, as the purpose of the
4067 completion is providing a list of all possible matches. Prompting the
4068 user to filter it down would be completely unexpected in this case. */
4071 else if (m > 1 && !parse_completion)
4073 gdb_printf (_("Multiple matches for %s\n"), name);
4074 user_select_syms (syms.data (), m, 1);
4080 /* Type-class predicates */
4082 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4086 numeric_type_p (struct type *type)
4092 switch (type->code ())
4096 case TYPE_CODE_FIXED_POINT:
4098 case TYPE_CODE_RANGE:
4099 return (type == type->target_type ()
4100 || numeric_type_p (type->target_type ()));
4107 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4110 integer_type_p (struct type *type)
4116 switch (type->code ())
4120 case TYPE_CODE_RANGE:
4121 return (type == type->target_type ()
4122 || integer_type_p (type->target_type ()));
4129 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4132 scalar_type_p (struct type *type)
4138 switch (type->code ())
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
4144 case TYPE_CODE_FIXED_POINT:
4152 /* True iff TYPE is discrete, as defined in the Ada Reference Manual.
4153 This essentially means one of (INT, RANGE, ENUM) -- but note that
4154 "enum" includes character and boolean as well. */
4157 discrete_type_p (struct type *type)
4163 switch (type->code ())
4166 case TYPE_CODE_RANGE:
4167 case TYPE_CODE_ENUM:
4168 case TYPE_CODE_BOOL:
4169 case TYPE_CODE_CHAR:
4177 /* Returns non-zero if OP with operands in the vector ARGS could be
4178 a user-defined function. Errs on the side of pre-defined operators
4179 (i.e., result 0). */
4182 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4184 struct type *type0 =
4185 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4186 struct type *type1 =
4187 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4201 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4205 case BINOP_BITWISE_AND:
4206 case BINOP_BITWISE_IOR:
4207 case BINOP_BITWISE_XOR:
4208 return (!(integer_type_p (type0) && integer_type_p (type1)));
4211 case BINOP_NOTEQUAL:
4216 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4219 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4222 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4226 case UNOP_LOGICAL_NOT:
4228 return (!numeric_type_p (type0));
4237 1. In the following, we assume that a renaming type's name may
4238 have an ___XD suffix. It would be nice if this went away at some
4240 2. We handle both the (old) purely type-based representation of
4241 renamings and the (new) variable-based encoding. At some point,
4242 it is devoutly to be hoped that the former goes away
4243 (FIXME: hilfinger-2007-07-09).
4244 3. Subprogram renamings are not implemented, although the XRS
4245 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4247 /* If SYM encodes a renaming,
4249 <renaming> renames <renamed entity>,
4251 sets *LEN to the length of the renamed entity's name,
4252 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4253 the string describing the subcomponent selected from the renamed
4254 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4255 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4256 are undefined). Otherwise, returns a value indicating the category
4257 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4258 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4259 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4260 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4261 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4262 may be NULL, in which case they are not assigned.
4264 [Currently, however, GCC does not generate subprogram renamings.] */
4266 enum ada_renaming_category
4267 ada_parse_renaming (struct symbol *sym,
4268 const char **renamed_entity, int *len,
4269 const char **renaming_expr)
4271 enum ada_renaming_category kind;
4276 return ADA_NOT_RENAMING;
4277 switch (sym->aclass ())
4280 return ADA_NOT_RENAMING;
4284 case LOC_OPTIMIZED_OUT:
4285 info = strstr (sym->linkage_name (), "___XR");
4287 return ADA_NOT_RENAMING;
4291 kind = ADA_OBJECT_RENAMING;
4295 kind = ADA_EXCEPTION_RENAMING;
4299 kind = ADA_PACKAGE_RENAMING;
4303 kind = ADA_SUBPROGRAM_RENAMING;
4307 return ADA_NOT_RENAMING;
4311 if (renamed_entity != NULL)
4312 *renamed_entity = info;
4313 suffix = strstr (info, "___XE");
4314 if (suffix == NULL || suffix == info)
4315 return ADA_NOT_RENAMING;
4317 *len = strlen (info) - strlen (suffix);
4319 if (renaming_expr != NULL)
4320 *renaming_expr = suffix;
4324 /* Compute the value of the given RENAMING_SYM, which is expected to
4325 be a symbol encoding a renaming expression. BLOCK is the block
4326 used to evaluate the renaming. */
4328 static struct value *
4329 ada_read_renaming_var_value (struct symbol *renaming_sym,
4330 const struct block *block)
4332 const char *sym_name;
4334 sym_name = renaming_sym->linkage_name ();
4335 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4336 return evaluate_expression (expr.get ());
4340 /* Evaluation: Function Calls */
4342 /* Return an lvalue containing the value VAL. This is the identity on
4343 lvalues, and otherwise has the side-effect of allocating memory
4344 in the inferior where a copy of the value contents is copied. */
4346 static struct value *
4347 ensure_lval (struct value *val)
4349 if (VALUE_LVAL (val) == not_lval
4350 || VALUE_LVAL (val) == lval_internalvar)
4352 int len = ada_check_typedef (value_type (val))->length ();
4353 const CORE_ADDR addr =
4354 value_as_long (value_allocate_space_in_inferior (len));
4356 VALUE_LVAL (val) = lval_memory;
4357 set_value_address (val, addr);
4358 write_memory (addr, value_contents (val).data (), len);
4364 /* Given ARG, a value of type (pointer or reference to a)*
4365 structure/union, extract the component named NAME from the ultimate
4366 target structure/union and return it as a value with its
4369 The routine searches for NAME among all members of the structure itself
4370 and (recursively) among all members of any wrapper members
4373 If NO_ERR, then simply return NULL in case of error, rather than
4376 static struct value *
4377 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4379 struct type *t, *t1;
4384 t1 = t = ada_check_typedef (value_type (arg));
4385 if (t->code () == TYPE_CODE_REF)
4387 t1 = t->target_type ();
4390 t1 = ada_check_typedef (t1);
4391 if (t1->code () == TYPE_CODE_PTR)
4393 arg = coerce_ref (arg);
4398 while (t->code () == TYPE_CODE_PTR)
4400 t1 = t->target_type ();
4403 t1 = ada_check_typedef (t1);
4404 if (t1->code () == TYPE_CODE_PTR)
4406 arg = value_ind (arg);
4413 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4417 v = ada_search_struct_field (name, arg, 0, t);
4420 int bit_offset, bit_size, byte_offset;
4421 struct type *field_type;
4424 if (t->code () == TYPE_CODE_PTR)
4425 address = value_address (ada_value_ind (arg));
4427 address = value_address (ada_coerce_ref (arg));
4429 /* Check to see if this is a tagged type. We also need to handle
4430 the case where the type is a reference to a tagged type, but
4431 we have to be careful to exclude pointers to tagged types.
4432 The latter should be shown as usual (as a pointer), whereas
4433 a reference should mostly be transparent to the user. */
4435 if (ada_is_tagged_type (t1, 0)
4436 || (t1->code () == TYPE_CODE_REF
4437 && ada_is_tagged_type (t1->target_type (), 0)))
4439 /* We first try to find the searched field in the current type.
4440 If not found then let's look in the fixed type. */
4442 if (!find_struct_field (name, t1, 0,
4443 nullptr, nullptr, nullptr,
4452 /* Convert to fixed type in all cases, so that we have proper
4453 offsets to each field in unconstrained record types. */
4454 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4455 address, NULL, check_tag);
4457 /* Resolve the dynamic type as well. */
4458 arg = value_from_contents_and_address (t1, nullptr, address);
4459 t1 = value_type (arg);
4461 if (find_struct_field (name, t1, 0,
4462 &field_type, &byte_offset, &bit_offset,
4467 if (t->code () == TYPE_CODE_REF)
4468 arg = ada_coerce_ref (arg);
4470 arg = ada_value_ind (arg);
4471 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4472 bit_offset, bit_size,
4476 v = value_at_lazy (field_type, address + byte_offset);
4480 if (v != NULL || no_err)
4483 error (_("There is no member named %s."), name);
4489 error (_("Attempt to extract a component of "
4490 "a value that is not a record."));
4493 /* Return the value ACTUAL, converted to be an appropriate value for a
4494 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4495 allocating any necessary descriptors (fat pointers), or copies of
4496 values not residing in memory, updating it as needed. */
4499 ada_convert_actual (struct value *actual, struct type *formal_type0)
4501 struct type *actual_type = ada_check_typedef (value_type (actual));
4502 struct type *formal_type = ada_check_typedef (formal_type0);
4503 struct type *formal_target =
4504 formal_type->code () == TYPE_CODE_PTR
4505 ? ada_check_typedef (formal_type->target_type ()) : formal_type;
4506 struct type *actual_target =
4507 actual_type->code () == TYPE_CODE_PTR
4508 ? ada_check_typedef (actual_type->target_type ()) : actual_type;
4510 if (ada_is_array_descriptor_type (formal_target)
4511 && actual_target->code () == TYPE_CODE_ARRAY)
4512 return make_array_descriptor (formal_type, actual);
4513 else if (formal_type->code () == TYPE_CODE_PTR
4514 || formal_type->code () == TYPE_CODE_REF)
4516 struct value *result;
4518 if (formal_target->code () == TYPE_CODE_ARRAY
4519 && ada_is_array_descriptor_type (actual_target))
4520 result = desc_data (actual);
4521 else if (formal_type->code () != TYPE_CODE_PTR)
4523 if (VALUE_LVAL (actual) != lval_memory)
4527 actual_type = ada_check_typedef (value_type (actual));
4528 val = allocate_value (actual_type);
4529 copy (value_contents (actual), value_contents_raw (val));
4530 actual = ensure_lval (val);
4532 result = value_addr (actual);
4536 return value_cast_pointers (formal_type, result, 0);
4538 else if (actual_type->code () == TYPE_CODE_PTR)
4539 return ada_value_ind (actual);
4540 else if (ada_is_aligner_type (formal_type))
4542 /* We need to turn this parameter into an aligner type
4544 struct value *aligner = allocate_value (formal_type);
4545 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4547 value_assign_to_component (aligner, component, actual);
4554 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4555 type TYPE. This is usually an inefficient no-op except on some targets
4556 (such as AVR) where the representation of a pointer and an address
4560 value_pointer (struct value *value, struct type *type)
4562 unsigned len = type->length ();
4563 gdb_byte *buf = (gdb_byte *) alloca (len);
4566 addr = value_address (value);
4567 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4568 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4573 /* Push a descriptor of type TYPE for array value ARR on the stack at
4574 *SP, updating *SP to reflect the new descriptor. Return either
4575 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4576 to-descriptor type rather than a descriptor type), a struct value *
4577 representing a pointer to this descriptor. */
4579 static struct value *
4580 make_array_descriptor (struct type *type, struct value *arr)
4582 struct type *bounds_type = desc_bounds_type (type);
4583 struct type *desc_type = desc_base_type (type);
4584 struct value *descriptor = allocate_value (desc_type);
4585 struct value *bounds = allocate_value (bounds_type);
4588 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4591 modify_field (value_type (bounds),
4592 value_contents_writeable (bounds).data (),
4593 ada_array_bound (arr, i, 0),
4594 desc_bound_bitpos (bounds_type, i, 0),
4595 desc_bound_bitsize (bounds_type, i, 0));
4596 modify_field (value_type (bounds),
4597 value_contents_writeable (bounds).data (),
4598 ada_array_bound (arr, i, 1),
4599 desc_bound_bitpos (bounds_type, i, 1),
4600 desc_bound_bitsize (bounds_type, i, 1));
4603 bounds = ensure_lval (bounds);
4605 modify_field (value_type (descriptor),
4606 value_contents_writeable (descriptor).data (),
4607 value_pointer (ensure_lval (arr),
4608 desc_type->field (0).type ()),
4609 fat_pntr_data_bitpos (desc_type),
4610 fat_pntr_data_bitsize (desc_type));
4612 modify_field (value_type (descriptor),
4613 value_contents_writeable (descriptor).data (),
4614 value_pointer (bounds,
4615 desc_type->field (1).type ()),
4616 fat_pntr_bounds_bitpos (desc_type),
4617 fat_pntr_bounds_bitsize (desc_type));
4619 descriptor = ensure_lval (descriptor);
4621 if (type->code () == TYPE_CODE_PTR)
4622 return value_addr (descriptor);
4627 /* Symbol Cache Module */
4629 /* Performance measurements made as of 2010-01-15 indicate that
4630 this cache does bring some noticeable improvements. Depending
4631 on the type of entity being printed, the cache can make it as much
4632 as an order of magnitude faster than without it.
4634 The descriptive type DWARF extension has significantly reduced
4635 the need for this cache, at least when DWARF is being used. However,
4636 even in this case, some expensive name-based symbol searches are still
4637 sometimes necessary - to find an XVZ variable, mostly. */
4639 /* Return the symbol cache associated to the given program space PSPACE.
4640 If not allocated for this PSPACE yet, allocate and initialize one. */
4642 static struct ada_symbol_cache *
4643 ada_get_symbol_cache (struct program_space *pspace)
4645 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4647 if (pspace_data->sym_cache == nullptr)
4648 pspace_data->sym_cache.reset (new ada_symbol_cache);
4650 return pspace_data->sym_cache.get ();
4653 /* Clear all entries from the symbol cache. */
4656 ada_clear_symbol_cache ()
4658 struct ada_pspace_data *pspace_data
4659 = get_ada_pspace_data (current_program_space);
4661 if (pspace_data->sym_cache != nullptr)
4662 pspace_data->sym_cache.reset ();
4665 /* Search our cache for an entry matching NAME and DOMAIN.
4666 Return it if found, or NULL otherwise. */
4668 static struct cache_entry **
4669 find_entry (const char *name, domain_enum domain)
4671 struct ada_symbol_cache *sym_cache
4672 = ada_get_symbol_cache (current_program_space);
4673 int h = msymbol_hash (name) % HASH_SIZE;
4674 struct cache_entry **e;
4676 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4678 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4684 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4685 Return 1 if found, 0 otherwise.
4687 If an entry was found and SYM is not NULL, set *SYM to the entry's
4688 SYM. Same principle for BLOCK if not NULL. */
4691 lookup_cached_symbol (const char *name, domain_enum domain,
4692 struct symbol **sym, const struct block **block)
4694 struct cache_entry **e = find_entry (name, domain);
4701 *block = (*e)->block;
4705 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4706 in domain DOMAIN, save this result in our symbol cache. */
4709 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4710 const struct block *block)
4712 struct ada_symbol_cache *sym_cache
4713 = ada_get_symbol_cache (current_program_space);
4715 struct cache_entry *e;
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !sym->is_objfile_owned ())
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4728 const blockvector &bv = *sym->symtab ()->compunit ()->blockvector ();
4730 if (bv.global_block () != block && bv.static_block () != block)
4734 h = msymbol_hash (name) % HASH_SIZE;
4735 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4736 e->next = sym_cache->root[h];
4737 sym_cache->root[h] = e;
4738 e->name = obstack_strdup (&sym_cache->cache_space, name);
4746 /* Return the symbol name match type that should be used used when
4747 searching for all symbols matching LOOKUP_NAME.
4749 LOOKUP_NAME is expected to be a symbol name after transformation
4752 static symbol_name_match_type
4753 name_match_type_from_name (const char *lookup_name)
4755 return (strstr (lookup_name, "__") == NULL
4756 ? symbol_name_match_type::WILD
4757 : symbol_name_match_type::FULL);
4760 /* Return the result of a standard (literal, C-like) lookup of NAME in
4761 given DOMAIN, visible from lexical block BLOCK. */
4763 static struct symbol *
4764 standard_lookup (const char *name, const struct block *block,
4767 /* Initialize it just to avoid a GCC false warning. */
4768 struct block_symbol sym = {};
4770 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 ada_lookup_encoded_symbol (name, block, domain, &sym);
4773 cache_symbol (name, domain, sym.symbol, sym.block);
4778 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4779 in the symbol fields of SYMS. We treat enumerals as functions,
4780 since they contend in overloading in the same way. */
4782 is_nonfunction (const std::vector<struct block_symbol> &syms)
4784 for (const block_symbol &sym : syms)
4785 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4786 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4787 || sym.symbol->aclass () != LOC_CONST))
4793 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4794 struct types. Otherwise, they may not. */
4797 equiv_types (struct type *type0, struct type *type1)
4801 if (type0 == NULL || type1 == NULL
4802 || type0->code () != type1->code ())
4804 if ((type0->code () == TYPE_CODE_STRUCT
4805 || type0->code () == TYPE_CODE_ENUM)
4806 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4807 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4813 /* True iff SYM0 represents the same entity as SYM1, or one that is
4814 no more defined than that of SYM1. */
4817 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4821 if (sym0->domain () != sym1->domain ()
4822 || sym0->aclass () != sym1->aclass ())
4825 switch (sym0->aclass ())
4831 struct type *type0 = sym0->type ();
4832 struct type *type1 = sym1->type ();
4833 const char *name0 = sym0->linkage_name ();
4834 const char *name1 = sym1->linkage_name ();
4835 int len0 = strlen (name0);
4838 type0->code () == type1->code ()
4839 && (equiv_types (type0, type1)
4840 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4841 && startswith (name1 + len0, "___XV")));
4844 return sym0->value_longest () == sym1->value_longest ()
4845 && equiv_types (sym0->type (), sym1->type ());
4849 const char *name0 = sym0->linkage_name ();
4850 const char *name1 = sym1->linkage_name ();
4851 return (strcmp (name0, name1) == 0
4852 && sym0->value_address () == sym1->value_address ());
4860 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4861 records in RESULT. Do nothing if SYM is a duplicate. */
4864 add_defn_to_vec (std::vector<struct block_symbol> &result,
4866 const struct block *block)
4868 /* Do not try to complete stub types, as the debugger is probably
4869 already scanning all symbols matching a certain name at the
4870 time when this function is called. Trying to replace the stub
4871 type by its associated full type will cause us to restart a scan
4872 which may lead to an infinite recursion. Instead, the client
4873 collecting the matching symbols will end up collecting several
4874 matches, with at least one of them complete. It can then filter
4875 out the stub ones if needed. */
4877 for (int i = result.size () - 1; i >= 0; i -= 1)
4879 if (lesseq_defined_than (sym, result[i].symbol))
4881 else if (lesseq_defined_than (result[i].symbol, sym))
4883 result[i].symbol = sym;
4884 result[i].block = block;
4889 struct block_symbol info;
4892 result.push_back (info);
4895 /* Return a bound minimal symbol matching NAME according to Ada
4896 decoding rules. Returns an invalid symbol if there is no such
4897 minimal symbol. Names prefixed with "standard__" are handled
4898 specially: "standard__" is first stripped off, and only static and
4899 global symbols are searched. */
4901 struct bound_minimal_symbol
4902 ada_lookup_simple_minsym (const char *name)
4904 struct bound_minimal_symbol result;
4906 symbol_name_match_type match_type = name_match_type_from_name (name);
4907 lookup_name_info lookup_name (name, match_type);
4909 symbol_name_matcher_ftype *match_name
4910 = ada_get_symbol_name_matcher (lookup_name);
4912 for (objfile *objfile : current_program_space->objfiles ())
4914 for (minimal_symbol *msymbol : objfile->msymbols ())
4916 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4917 && msymbol->type () != mst_solib_trampoline)
4919 result.minsym = msymbol;
4920 result.objfile = objfile;
4929 /* True if TYPE is definitely an artificial type supplied to a symbol
4930 for which no debugging information was given in the symbol file. */
4933 is_nondebugging_type (struct type *type)
4935 const char *name = ada_type_name (type);
4937 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4940 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4941 that are deemed "identical" for practical purposes.
4943 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4944 types and that their number of enumerals is identical (in other
4945 words, type1->num_fields () == type2->num_fields ()). */
4948 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4952 /* The heuristic we use here is fairly conservative. We consider
4953 that 2 enumerate types are identical if they have the same
4954 number of enumerals and that all enumerals have the same
4955 underlying value and name. */
4957 /* All enums in the type should have an identical underlying value. */
4958 for (i = 0; i < type1->num_fields (); i++)
4959 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4962 /* All enumerals should also have the same name (modulo any numerical
4964 for (i = 0; i < type1->num_fields (); i++)
4966 const char *name_1 = type1->field (i).name ();
4967 const char *name_2 = type2->field (i).name ();
4968 int len_1 = strlen (name_1);
4969 int len_2 = strlen (name_2);
4971 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4972 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4974 || strncmp (type1->field (i).name (),
4975 type2->field (i).name (),
4983 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4984 that are deemed "identical" for practical purposes. Sometimes,
4985 enumerals are not strictly identical, but their types are so similar
4986 that they can be considered identical.
4988 For instance, consider the following code:
4990 type Color is (Black, Red, Green, Blue, White);
4991 type RGB_Color is new Color range Red .. Blue;
4993 Type RGB_Color is a subrange of an implicit type which is a copy
4994 of type Color. If we call that implicit type RGB_ColorB ("B" is
4995 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4996 As a result, when an expression references any of the enumeral
4997 by name (Eg. "print green"), the expression is technically
4998 ambiguous and the user should be asked to disambiguate. But
4999 doing so would only hinder the user, since it wouldn't matter
5000 what choice he makes, the outcome would always be the same.
5001 So, for practical purposes, we consider them as the same. */
5004 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5008 /* Before performing a thorough comparison check of each type,
5009 we perform a series of inexpensive checks. We expect that these
5010 checks will quickly fail in the vast majority of cases, and thus
5011 help prevent the unnecessary use of a more expensive comparison.
5012 Said comparison also expects us to make some of these checks
5013 (see ada_identical_enum_types_p). */
5015 /* Quick check: All symbols should have an enum type. */
5016 for (i = 0; i < syms.size (); i++)
5017 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
5020 /* Quick check: They should all have the same value. */
5021 for (i = 1; i < syms.size (); i++)
5022 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
5025 /* Quick check: They should all have the same number of enumerals. */
5026 for (i = 1; i < syms.size (); i++)
5027 if (syms[i].symbol->type ()->num_fields ()
5028 != syms[0].symbol->type ()->num_fields ())
5031 /* All the sanity checks passed, so we might have a set of
5032 identical enumeration types. Perform a more complete
5033 comparison of the type of each symbol. */
5034 for (i = 1; i < syms.size (); i++)
5035 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5036 syms[0].symbol->type ()))
5042 /* Remove any non-debugging symbols in SYMS that definitely
5043 duplicate other symbols in the list (The only case I know of where
5044 this happens is when object files containing stabs-in-ecoff are
5045 linked with files containing ordinary ecoff debugging symbols (or no
5046 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5049 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5053 /* We should never be called with less than 2 symbols, as there
5054 cannot be any extra symbol in that case. But it's easy to
5055 handle, since we have nothing to do in that case. */
5056 if (syms->size () < 2)
5060 while (i < syms->size ())
5064 /* If two symbols have the same name and one of them is a stub type,
5065 the get rid of the stub. */
5067 if ((*syms)[i].symbol->type ()->is_stub ()
5068 && (*syms)[i].symbol->linkage_name () != NULL)
5070 for (j = 0; j < syms->size (); j++)
5073 && !(*syms)[j].symbol->type ()->is_stub ()
5074 && (*syms)[j].symbol->linkage_name () != NULL
5075 && strcmp ((*syms)[i].symbol->linkage_name (),
5076 (*syms)[j].symbol->linkage_name ()) == 0)
5081 /* Two symbols with the same name, same class and same address
5082 should be identical. */
5084 else if ((*syms)[i].symbol->linkage_name () != NULL
5085 && (*syms)[i].symbol->aclass () == LOC_STATIC
5086 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5088 for (j = 0; j < syms->size (); j += 1)
5091 && (*syms)[j].symbol->linkage_name () != NULL
5092 && strcmp ((*syms)[i].symbol->linkage_name (),
5093 (*syms)[j].symbol->linkage_name ()) == 0
5094 && ((*syms)[i].symbol->aclass ()
5095 == (*syms)[j].symbol->aclass ())
5096 && (*syms)[i].symbol->value_address ()
5097 == (*syms)[j].symbol->value_address ())
5103 syms->erase (syms->begin () + i);
5108 /* If all the remaining symbols are identical enumerals, then
5109 just keep the first one and discard the rest.
5111 Unlike what we did previously, we do not discard any entry
5112 unless they are ALL identical. This is because the symbol
5113 comparison is not a strict comparison, but rather a practical
5114 comparison. If all symbols are considered identical, then
5115 we can just go ahead and use the first one and discard the rest.
5116 But if we cannot reduce the list to a single element, we have
5117 to ask the user to disambiguate anyways. And if we have to
5118 present a multiple-choice menu, it's less confusing if the list
5119 isn't missing some choices that were identical and yet distinct. */
5120 if (symbols_are_identical_enums (*syms))
5124 /* Given a type that corresponds to a renaming entity, use the type name
5125 to extract the scope (package name or function name, fully qualified,
5126 and following the GNAT encoding convention) where this renaming has been
5130 xget_renaming_scope (struct type *renaming_type)
5132 /* The renaming types adhere to the following convention:
5133 <scope>__<rename>___<XR extension>.
5134 So, to extract the scope, we search for the "___XR" extension,
5135 and then backtrack until we find the first "__". */
5137 const char *name = renaming_type->name ();
5138 const char *suffix = strstr (name, "___XR");
5141 /* Now, backtrack a bit until we find the first "__". Start looking
5142 at suffix - 3, as the <rename> part is at least one character long. */
5144 for (last = suffix - 3; last > name; last--)
5145 if (last[0] == '_' && last[1] == '_')
5148 /* Make a copy of scope and return it. */
5149 return std::string (name, last);
5152 /* Return nonzero if NAME corresponds to a package name. */
5155 is_package_name (const char *name)
5157 /* Here, We take advantage of the fact that no symbols are generated
5158 for packages, while symbols are generated for each function.
5159 So the condition for NAME represent a package becomes equivalent
5160 to NAME not existing in our list of symbols. There is only one
5161 small complication with library-level functions (see below). */
5163 /* If it is a function that has not been defined at library level,
5164 then we should be able to look it up in the symbols. */
5165 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5168 /* Library-level function names start with "_ada_". See if function
5169 "_ada_" followed by NAME can be found. */
5171 /* Do a quick check that NAME does not contain "__", since library-level
5172 functions names cannot contain "__" in them. */
5173 if (strstr (name, "__") != NULL)
5176 std::string fun_name = string_printf ("_ada_%s", name);
5178 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5181 /* Return nonzero if SYM corresponds to a renaming entity that is
5182 not visible from FUNCTION_NAME. */
5185 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5187 if (sym->aclass () != LOC_TYPEDEF)
5190 std::string scope = xget_renaming_scope (sym->type ());
5192 /* If the rename has been defined in a package, then it is visible. */
5193 if (is_package_name (scope.c_str ()))
5196 /* Check that the rename is in the current function scope by checking
5197 that its name starts with SCOPE. */
5199 /* If the function name starts with "_ada_", it means that it is
5200 a library-level function. Strip this prefix before doing the
5201 comparison, as the encoding for the renaming does not contain
5203 if (startswith (function_name, "_ada_"))
5206 return !startswith (function_name, scope.c_str ());
5209 /* Remove entries from SYMS that corresponds to a renaming entity that
5210 is not visible from the function associated with CURRENT_BLOCK or
5211 that is superfluous due to the presence of more specific renaming
5212 information. Places surviving symbols in the initial entries of
5216 First, in cases where an object renaming is implemented as a
5217 reference variable, GNAT may produce both the actual reference
5218 variable and the renaming encoding. In this case, we discard the
5221 Second, GNAT emits a type following a specified encoding for each renaming
5222 entity. Unfortunately, STABS currently does not support the definition
5223 of types that are local to a given lexical block, so all renamings types
5224 are emitted at library level. As a consequence, if an application
5225 contains two renaming entities using the same name, and a user tries to
5226 print the value of one of these entities, the result of the ada symbol
5227 lookup will also contain the wrong renaming type.
5229 This function partially covers for this limitation by attempting to
5230 remove from the SYMS list renaming symbols that should be visible
5231 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5232 method with the current information available. The implementation
5233 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5235 - When the user tries to print a rename in a function while there
5236 is another rename entity defined in a package: Normally, the
5237 rename in the function has precedence over the rename in the
5238 package, so the latter should be removed from the list. This is
5239 currently not the case.
5241 - This function will incorrectly remove valid renames if
5242 the CURRENT_BLOCK corresponds to a function which symbol name
5243 has been changed by an "Export" pragma. As a consequence,
5244 the user will be unable to print such rename entities. */
5247 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5248 const struct block *current_block)
5250 struct symbol *current_function;
5251 const char *current_function_name;
5253 int is_new_style_renaming;
5255 /* If there is both a renaming foo___XR... encoded as a variable and
5256 a simple variable foo in the same block, discard the latter.
5257 First, zero out such symbols, then compress. */
5258 is_new_style_renaming = 0;
5259 for (i = 0; i < syms->size (); i += 1)
5261 struct symbol *sym = (*syms)[i].symbol;
5262 const struct block *block = (*syms)[i].block;
5266 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5268 name = sym->linkage_name ();
5269 suffix = strstr (name, "___XR");
5273 int name_len = suffix - name;
5276 is_new_style_renaming = 1;
5277 for (j = 0; j < syms->size (); j += 1)
5278 if (i != j && (*syms)[j].symbol != NULL
5279 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5281 && block == (*syms)[j].block)
5282 (*syms)[j].symbol = NULL;
5285 if (is_new_style_renaming)
5289 for (j = k = 0; j < syms->size (); j += 1)
5290 if ((*syms)[j].symbol != NULL)
5292 (*syms)[k] = (*syms)[j];
5299 /* Extract the function name associated to CURRENT_BLOCK.
5300 Abort if unable to do so. */
5302 if (current_block == NULL)
5305 current_function = block_linkage_function (current_block);
5306 if (current_function == NULL)
5309 current_function_name = current_function->linkage_name ();
5310 if (current_function_name == NULL)
5313 /* Check each of the symbols, and remove it from the list if it is
5314 a type corresponding to a renaming that is out of the scope of
5315 the current block. */
5318 while (i < syms->size ())
5320 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5321 == ADA_OBJECT_RENAMING
5322 && old_renaming_is_invisible ((*syms)[i].symbol,
5323 current_function_name))
5324 syms->erase (syms->begin () + i);
5330 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5331 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5333 Note: This function assumes that RESULT is empty. */
5336 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5337 const lookup_name_info &lookup_name,
5338 const struct block *block, domain_enum domain)
5340 while (block != NULL)
5342 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5344 /* If we found a non-function match, assume that's the one. We
5345 only check this when finding a function boundary, so that we
5346 can accumulate all results from intervening blocks first. */
5347 if (block->function () != nullptr && is_nonfunction (result))
5350 block = block->superblock ();
5354 /* An object of this type is used as the callback argument when
5355 calling the map_matching_symbols method. */
5359 explicit match_data (std::vector<struct block_symbol> *rp)
5363 DISABLE_COPY_AND_ASSIGN (match_data);
5365 bool operator() (struct block_symbol *bsym);
5367 struct objfile *objfile = nullptr;
5368 std::vector<struct block_symbol> *resultp;
5369 struct symbol *arg_sym = nullptr;
5370 bool found_sym = false;
5373 /* A callback for add_nonlocal_symbols that adds symbol, found in
5374 BSYM, to a list of symbols. */
5377 match_data::operator() (struct block_symbol *bsym)
5379 const struct block *block = bsym->block;
5380 struct symbol *sym = bsym->symbol;
5384 if (!found_sym && arg_sym != NULL)
5385 add_defn_to_vec (*resultp,
5386 fixup_symbol_section (arg_sym, objfile),
5393 if (sym->aclass () == LOC_UNRESOLVED)
5395 else if (sym->is_argument ())
5400 add_defn_to_vec (*resultp,
5401 fixup_symbol_section (sym, objfile),
5408 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5409 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5410 symbols to RESULT. Return whether we found such symbols. */
5413 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5414 const struct block *block,
5415 const lookup_name_info &lookup_name,
5418 struct using_direct *renaming;
5419 int defns_mark = result.size ();
5421 symbol_name_matcher_ftype *name_match
5422 = ada_get_symbol_name_matcher (lookup_name);
5424 for (renaming = block_using (block);
5426 renaming = renaming->next)
5430 /* Avoid infinite recursions: skip this renaming if we are actually
5431 already traversing it.
5433 Currently, symbol lookup in Ada don't use the namespace machinery from
5434 C++/Fortran support: skip namespace imports that use them. */
5435 if (renaming->searched
5436 || (renaming->import_src != NULL
5437 && renaming->import_src[0] != '\0')
5438 || (renaming->import_dest != NULL
5439 && renaming->import_dest[0] != '\0'))
5441 renaming->searched = 1;
5443 /* TODO: here, we perform another name-based symbol lookup, which can
5444 pull its own multiple overloads. In theory, we should be able to do
5445 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5446 not a simple name. But in order to do this, we would need to enhance
5447 the DWARF reader to associate a symbol to this renaming, instead of a
5448 name. So, for now, we do something simpler: re-use the C++/Fortran
5449 namespace machinery. */
5450 r_name = (renaming->alias != NULL
5452 : renaming->declaration);
5453 if (name_match (r_name, lookup_name, NULL))
5455 lookup_name_info decl_lookup_name (renaming->declaration,
5456 lookup_name.match_type ());
5457 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5460 renaming->searched = 0;
5462 return result.size () != defns_mark;
5465 /* Implements compare_names, but only applying the comparision using
5466 the given CASING. */
5469 compare_names_with_case (const char *string1, const char *string2,
5470 enum case_sensitivity casing)
5472 while (*string1 != '\0' && *string2 != '\0')
5476 if (isspace (*string1) || isspace (*string2))
5477 return strcmp_iw_ordered (string1, string2);
5479 if (casing == case_sensitive_off)
5481 c1 = tolower (*string1);
5482 c2 = tolower (*string2);
5499 return strcmp_iw_ordered (string1, string2);
5501 if (*string2 == '\0')
5503 if (is_name_suffix (string1))
5510 if (*string2 == '(')
5511 return strcmp_iw_ordered (string1, string2);
5514 if (casing == case_sensitive_off)
5515 return tolower (*string1) - tolower (*string2);
5517 return *string1 - *string2;
5522 /* Compare STRING1 to STRING2, with results as for strcmp.
5523 Compatible with strcmp_iw_ordered in that...
5525 strcmp_iw_ordered (STRING1, STRING2) <= 0
5529 compare_names (STRING1, STRING2) <= 0
5531 (they may differ as to what symbols compare equal). */
5534 compare_names (const char *string1, const char *string2)
5538 /* Similar to what strcmp_iw_ordered does, we need to perform
5539 a case-insensitive comparison first, and only resort to
5540 a second, case-sensitive, comparison if the first one was
5541 not sufficient to differentiate the two strings. */
5543 result = compare_names_with_case (string1, string2, case_sensitive_off);
5545 result = compare_names_with_case (string1, string2, case_sensitive_on);
5550 /* Convenience function to get at the Ada encoded lookup name for
5551 LOOKUP_NAME, as a C string. */
5554 ada_lookup_name (const lookup_name_info &lookup_name)
5556 return lookup_name.ada ().lookup_name ().c_str ();
5559 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5560 for OBJFILE, then walk the objfile's symtabs and update the
5564 map_matching_symbols (struct objfile *objfile,
5565 const lookup_name_info &lookup_name,
5571 data.objfile = objfile;
5572 objfile->expand_matching_symbols (lookup_name, domain, global,
5573 is_wild_match ? nullptr : compare_names);
5575 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5576 for (compunit_symtab *symtab : objfile->compunits ())
5578 const struct block *block
5579 = symtab->blockvector ()->block (block_kind);
5580 if (!iterate_over_symbols_terminated (block, lookup_name,
5586 /* Add to RESULT all non-local symbols whose name and domain match
5587 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5588 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5589 symbols otherwise. */
5592 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5593 const lookup_name_info &lookup_name,
5594 domain_enum domain, int global)
5596 struct match_data data (&result);
5598 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5600 for (objfile *objfile : current_program_space->objfiles ())
5602 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5605 for (compunit_symtab *cu : objfile->compunits ())
5607 const struct block *global_block
5608 = cu->blockvector ()->global_block ();
5610 if (ada_add_block_renamings (result, global_block, lookup_name,
5612 data.found_sym = true;
5616 if (result.empty () && global && !is_wild_match)
5618 const char *name = ada_lookup_name (lookup_name);
5619 std::string bracket_name = std::string ("<_ada_") + name + '>';
5620 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5622 for (objfile *objfile : current_program_space->objfiles ())
5623 map_matching_symbols (objfile, name1, false, domain, global, data);
5627 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5628 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5629 returning the number of matches. Add these to RESULT.
5631 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5632 symbol match within the nest of blocks whose innermost member is BLOCK,
5633 is the one match returned (no other matches in that or
5634 enclosing blocks is returned). If there are any matches in or
5635 surrounding BLOCK, then these alone are returned.
5637 Names prefixed with "standard__" are handled specially:
5638 "standard__" is first stripped off (by the lookup_name
5639 constructor), and only static and global symbols are searched.
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5645 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5646 const struct block *block,
5647 const lookup_name_info &lookup_name,
5650 int *made_global_lookup_p)
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 0;
5657 /* Special case: If the user specifies a symbol name inside package
5658 Standard, do a non-wild matching of the symbol name without
5659 the "standard__" prefix. This was primarily introduced in order
5660 to allow the user to specifically access the standard exceptions
5661 using, for instance, Standard.Constraint_Error when Constraint_Error
5662 is ambiguous (due to the user defining its own Constraint_Error
5663 entity inside its program). */
5664 if (lookup_name.ada ().standard_p ())
5667 /* Check the non-global symbols. If we have ANY match, then we're done. */
5672 ada_add_local_symbols (result, lookup_name, block, domain);
5675 /* In the !full_search case we're are being called by
5676 iterate_over_symbols, and we don't want to search
5678 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5680 if (!result.empty () || !full_search)
5684 /* No non-global symbols found. Check our cache to see if we have
5685 already performed this search before. If we have, then return
5688 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5689 domain, &sym, &block))
5692 add_defn_to_vec (result, sym, block);
5696 if (made_global_lookup_p)
5697 *made_global_lookup_p = 1;
5699 /* Search symbols from all global blocks. */
5701 add_nonlocal_symbols (result, lookup_name, domain, 1);
5703 /* Now add symbols from all per-file blocks if we've gotten no hits
5704 (not strictly correct, but perhaps better than an error). */
5706 if (result.empty ())
5707 add_nonlocal_symbols (result, lookup_name, domain, 0);
5710 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5711 is non-zero, enclosing scope and in global scopes.
5713 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5714 blocks and symbol tables (if any) in which they were found.
5716 When full_search is non-zero, any non-function/non-enumeral
5717 symbol match within the nest of blocks whose innermost member is BLOCK,
5718 is the one match returned (no other matches in that or
5719 enclosing blocks is returned). If there are any matches in or
5720 surrounding BLOCK, then these alone are returned.
5722 Names prefixed with "standard__" are handled specially: "standard__"
5723 is first stripped off, and only static and global symbols are searched. */
5725 static std::vector<struct block_symbol>
5726 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5727 const struct block *block,
5731 int syms_from_global_search;
5732 std::vector<struct block_symbol> results;
5734 ada_add_all_symbols (results, block, lookup_name,
5735 domain, full_search, &syms_from_global_search);
5737 remove_extra_symbols (&results);
5739 if (results.empty () && full_search && syms_from_global_search)
5740 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5742 if (results.size () == 1 && full_search && syms_from_global_search)
5743 cache_symbol (ada_lookup_name (lookup_name), domain,
5744 results[0].symbol, results[0].block);
5746 remove_irrelevant_renamings (&results, block);
5750 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5751 in global scopes, returning (SYM,BLOCK) tuples.
5753 See ada_lookup_symbol_list_worker for further details. */
5755 std::vector<struct block_symbol>
5756 ada_lookup_symbol_list (const char *name, const struct block *block,
5759 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5760 lookup_name_info lookup_name (name, name_match_type);
5762 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5765 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5766 to 1, but choosing the first symbol found if there are multiple
5769 The result is stored in *INFO, which must be non-NULL.
5770 If no match is found, INFO->SYM is set to NULL. */
5773 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5775 struct block_symbol *info)
5777 /* Since we already have an encoded name, wrap it in '<>' to force a
5778 verbatim match. Otherwise, if the name happens to not look like
5779 an encoded name (because it doesn't include a "__"),
5780 ada_lookup_name_info would re-encode/fold it again, and that
5781 would e.g., incorrectly lowercase object renaming names like
5782 "R28b" -> "r28b". */
5783 std::string verbatim = add_angle_brackets (name);
5785 gdb_assert (info != NULL);
5786 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5789 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5790 scope and in global scopes, or NULL if none. NAME is folded and
5791 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5792 choosing the first symbol if there are multiple choices. */
5795 ada_lookup_symbol (const char *name, const struct block *block0,
5798 std::vector<struct block_symbol> candidates
5799 = ada_lookup_symbol_list (name, block0, domain);
5801 if (candidates.empty ())
5804 block_symbol info = candidates[0];
5805 info.symbol = fixup_symbol_section (info.symbol, NULL);
5810 /* True iff STR is a possible encoded suffix of a normal Ada name
5811 that is to be ignored for matching purposes. Suffixes of parallel
5812 names (e.g., XVE) are not included here. Currently, the possible suffixes
5813 are given by any of the regular expressions:
5815 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5816 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5817 TKB [subprogram suffix for task bodies]
5818 _E[0-9]+[bs]$ [protected object entry suffixes]
5819 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5821 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5822 match is performed. This sequence is used to differentiate homonyms,
5823 is an optional part of a valid name suffix. */
5826 is_name_suffix (const char *str)
5829 const char *matching;
5830 const int len = strlen (str);
5832 /* Skip optional leading __[0-9]+. */
5834 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5837 while (isdigit (str[0]))
5843 if (str[0] == '.' || str[0] == '$')
5846 while (isdigit (matching[0]))
5848 if (matching[0] == '\0')
5854 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5857 while (isdigit (matching[0]))
5859 if (matching[0] == '\0')
5863 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5865 if (strcmp (str, "TKB") == 0)
5869 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5870 with a N at the end. Unfortunately, the compiler uses the same
5871 convention for other internal types it creates. So treating
5872 all entity names that end with an "N" as a name suffix causes
5873 some regressions. For instance, consider the case of an enumerated
5874 type. To support the 'Image attribute, it creates an array whose
5876 Having a single character like this as a suffix carrying some
5877 information is a bit risky. Perhaps we should change the encoding
5878 to be something like "_N" instead. In the meantime, do not do
5879 the following check. */
5880 /* Protected Object Subprograms */
5881 if (len == 1 && str [0] == 'N')
5886 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5889 while (isdigit (matching[0]))
5891 if ((matching[0] == 'b' || matching[0] == 's')
5892 && matching [1] == '\0')
5896 /* ??? We should not modify STR directly, as we are doing below. This
5897 is fine in this case, but may become problematic later if we find
5898 that this alternative did not work, and want to try matching
5899 another one from the begining of STR. Since we modified it, we
5900 won't be able to find the begining of the string anymore! */
5904 while (str[0] != '_' && str[0] != '\0')
5906 if (str[0] != 'n' && str[0] != 'b')
5912 if (str[0] == '\000')
5917 if (str[1] != '_' || str[2] == '\000')
5921 if (strcmp (str + 3, "JM") == 0)
5923 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5924 the LJM suffix in favor of the JM one. But we will
5925 still accept LJM as a valid suffix for a reasonable
5926 amount of time, just to allow ourselves to debug programs
5927 compiled using an older version of GNAT. */
5928 if (strcmp (str + 3, "LJM") == 0)
5932 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5933 || str[4] == 'U' || str[4] == 'P')
5935 if (str[4] == 'R' && str[5] != 'T')
5939 if (!isdigit (str[2]))
5941 for (k = 3; str[k] != '\0'; k += 1)
5942 if (!isdigit (str[k]) && str[k] != '_')
5946 if (str[0] == '$' && isdigit (str[1]))
5948 for (k = 2; str[k] != '\0'; k += 1)
5949 if (!isdigit (str[k]) && str[k] != '_')
5956 /* Return non-zero if the string starting at NAME and ending before
5957 NAME_END contains no capital letters. */
5960 is_valid_name_for_wild_match (const char *name0)
5962 std::string decoded_name = ada_decode (name0);
5965 /* If the decoded name starts with an angle bracket, it means that
5966 NAME0 does not follow the GNAT encoding format. It should then
5967 not be allowed as a possible wild match. */
5968 if (decoded_name[0] == '<')
5971 for (i=0; decoded_name[i] != '\0'; i++)
5972 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5978 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5979 character which could start a simple name. Assumes that *NAMEP points
5980 somewhere inside the string beginning at NAME0. */
5983 advance_wild_match (const char **namep, const char *name0, char target0)
5985 const char *name = *namep;
5995 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5998 if (name == name0 + 5 && startswith (name0, "_ada"))
6003 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6004 || name[2] == target0))
6009 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
6011 /* Names like "pkg__B_N__name", where N is a number, are
6012 block-local. We can handle these by simply skipping
6019 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6029 /* Return true iff NAME encodes a name of the form prefix.PATN.
6030 Ignores any informational suffixes of NAME (i.e., for which
6031 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6035 wild_match (const char *name, const char *patn)
6038 const char *name0 = name;
6040 if (startswith (name, "___ghost_"))
6045 const char *match = name;
6049 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6052 if (*p == '\0' && is_name_suffix (name))
6053 return match == name0 || is_valid_name_for_wild_match (name0);
6055 if (name[-1] == '_')
6058 if (!advance_wild_match (&name, name0, *patn))
6063 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6064 necessary). OBJFILE is the section containing BLOCK. */
6067 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6068 const struct block *block,
6069 const lookup_name_info &lookup_name,
6070 domain_enum domain, struct objfile *objfile)
6072 struct block_iterator iter;
6073 /* A matching argument symbol, if any. */
6074 struct symbol *arg_sym;
6075 /* Set true when we find a matching non-argument symbol. */
6081 for (sym = block_iter_match_first (block, lookup_name, &iter);
6083 sym = block_iter_match_next (lookup_name, &iter))
6085 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6087 if (sym->aclass () != LOC_UNRESOLVED)
6089 if (sym->is_argument ())
6094 add_defn_to_vec (result,
6095 fixup_symbol_section (sym, objfile),
6102 /* Handle renamings. */
6104 if (ada_add_block_renamings (result, block, lookup_name, domain))
6107 if (!found_sym && arg_sym != NULL)
6109 add_defn_to_vec (result,
6110 fixup_symbol_section (arg_sym, objfile),
6114 if (!lookup_name.ada ().wild_match_p ())
6118 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6119 const char *name = ada_lookup_name.c_str ();
6120 size_t name_len = ada_lookup_name.size ();
6122 ALL_BLOCK_SYMBOLS (block, iter, sym)
6124 if (symbol_matches_domain (sym->language (),
6125 sym->domain (), domain))
6129 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6132 cmp = !startswith (sym->linkage_name (), "_ada_");
6134 cmp = strncmp (name, sym->linkage_name () + 5,
6139 && is_name_suffix (sym->linkage_name () + name_len + 5))
6141 if (sym->aclass () != LOC_UNRESOLVED)
6143 if (sym->is_argument ())
6148 add_defn_to_vec (result,
6149 fixup_symbol_section (sym, objfile),
6157 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6158 They aren't parameters, right? */
6159 if (!found_sym && arg_sym != NULL)
6161 add_defn_to_vec (result,
6162 fixup_symbol_section (arg_sym, objfile),
6169 /* Symbol Completion */
6174 ada_lookup_name_info::matches
6175 (const char *sym_name,
6176 symbol_name_match_type match_type,
6177 completion_match_result *comp_match_res) const
6180 const char *text = m_encoded_name.c_str ();
6181 size_t text_len = m_encoded_name.size ();
6183 /* First, test against the fully qualified name of the symbol. */
6185 if (strncmp (sym_name, text, text_len) == 0)
6188 std::string decoded_name = ada_decode (sym_name);
6189 if (match && !m_encoded_p)
6191 /* One needed check before declaring a positive match is to verify
6192 that iff we are doing a verbatim match, the decoded version
6193 of the symbol name starts with '<'. Otherwise, this symbol name
6194 is not a suitable completion. */
6196 bool has_angle_bracket = (decoded_name[0] == '<');
6197 match = (has_angle_bracket == m_verbatim_p);
6200 if (match && !m_verbatim_p)
6202 /* When doing non-verbatim match, another check that needs to
6203 be done is to verify that the potentially matching symbol name
6204 does not include capital letters, because the ada-mode would
6205 not be able to understand these symbol names without the
6206 angle bracket notation. */
6209 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6214 /* Second: Try wild matching... */
6216 if (!match && m_wild_match_p)
6218 /* Since we are doing wild matching, this means that TEXT
6219 may represent an unqualified symbol name. We therefore must
6220 also compare TEXT against the unqualified name of the symbol. */
6221 sym_name = ada_unqualified_name (decoded_name.c_str ());
6223 if (strncmp (sym_name, text, text_len) == 0)
6227 /* Finally: If we found a match, prepare the result to return. */
6232 if (comp_match_res != NULL)
6234 std::string &match_str = comp_match_res->match.storage ();
6237 match_str = ada_decode (sym_name);
6241 match_str = add_angle_brackets (sym_name);
6243 match_str = sym_name;
6247 comp_match_res->set_match (match_str.c_str ());
6255 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6256 for tagged types. */
6259 ada_is_dispatch_table_ptr_type (struct type *type)
6263 if (type->code () != TYPE_CODE_PTR)
6266 name = type->target_type ()->name ();
6270 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6273 /* Return non-zero if TYPE is an interface tag. */
6276 ada_is_interface_tag (struct type *type)
6278 const char *name = type->name ();
6283 return (strcmp (name, "ada__tags__interface_tag") == 0);
6286 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6287 to be invisible to users. */
6290 ada_is_ignored_field (struct type *type, int field_num)
6292 if (field_num < 0 || field_num > type->num_fields ())
6295 /* Check the name of that field. */
6297 const char *name = type->field (field_num).name ();
6299 /* Anonymous field names should not be printed.
6300 brobecker/2007-02-20: I don't think this can actually happen
6301 but we don't want to print the value of anonymous fields anyway. */
6305 /* Normally, fields whose name start with an underscore ("_")
6306 are fields that have been internally generated by the compiler,
6307 and thus should not be printed. The "_parent" field is special,
6308 however: This is a field internally generated by the compiler
6309 for tagged types, and it contains the components inherited from
6310 the parent type. This field should not be printed as is, but
6311 should not be ignored either. */
6312 if (name[0] == '_' && !startswith (name, "_parent"))
6315 /* The compiler doesn't document this, but sometimes it emits
6316 a field whose name starts with a capital letter, like 'V148s'.
6317 These aren't marked as artificial in any way, but we know they
6318 should be ignored. However, wrapper fields should not be
6320 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6322 /* Wrapper field. */
6324 else if (isupper (name[0]))
6328 /* If this is the dispatch table of a tagged type or an interface tag,
6330 if (ada_is_tagged_type (type, 1)
6331 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6332 || ada_is_interface_tag (type->field (field_num).type ())))
6335 /* Not a special field, so it should not be ignored. */
6339 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6340 pointer or reference type whose ultimate target has a tag field. */
6343 ada_is_tagged_type (struct type *type, int refok)
6345 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6348 /* True iff TYPE represents the type of X'Tag */
6351 ada_is_tag_type (struct type *type)
6353 type = ada_check_typedef (type);
6355 if (type == NULL || type->code () != TYPE_CODE_PTR)
6359 const char *name = ada_type_name (type->target_type ());
6361 return (name != NULL
6362 && strcmp (name, "ada__tags__dispatch_table") == 0);
6366 /* The type of the tag on VAL. */
6368 static struct type *
6369 ada_tag_type (struct value *val)
6371 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6374 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6375 retired at Ada 05). */
6378 is_ada95_tag (struct value *tag)
6380 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6383 /* The value of the tag on VAL. */
6385 static struct value *
6386 ada_value_tag (struct value *val)
6388 return ada_value_struct_elt (val, "_tag", 0);
6391 /* The value of the tag on the object of type TYPE whose contents are
6392 saved at VALADDR, if it is non-null, or is at memory address
6395 static struct value *
6396 value_tag_from_contents_and_address (struct type *type,
6397 const gdb_byte *valaddr,
6400 int tag_byte_offset;
6401 struct type *tag_type;
6403 gdb::array_view<const gdb_byte> contents;
6404 if (valaddr != nullptr)
6405 contents = gdb::make_array_view (valaddr, type->length ());
6406 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6407 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6410 const gdb_byte *valaddr1 = ((valaddr == NULL)
6412 : valaddr + tag_byte_offset);
6413 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6415 return value_from_contents_and_address (tag_type, valaddr1, address1);
6420 static struct type *
6421 type_from_tag (struct value *tag)
6423 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6425 if (type_name != NULL)
6426 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6430 /* Given a value OBJ of a tagged type, return a value of this
6431 type at the base address of the object. The base address, as
6432 defined in Ada.Tags, it is the address of the primary tag of
6433 the object, and therefore where the field values of its full
6434 view can be fetched. */
6437 ada_tag_value_at_base_address (struct value *obj)
6440 LONGEST offset_to_top = 0;
6441 struct type *ptr_type, *obj_type;
6443 CORE_ADDR base_address;
6445 obj_type = value_type (obj);
6447 /* It is the responsability of the caller to deref pointers. */
6449 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6452 tag = ada_value_tag (obj);
6456 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6458 if (is_ada95_tag (tag))
6461 struct type *offset_type
6462 = language_lookup_primitive_type (language_def (language_ada),
6463 target_gdbarch(), "storage_offset");
6464 ptr_type = lookup_pointer_type (offset_type);
6465 val = value_cast (ptr_type, tag);
6469 /* It is perfectly possible that an exception be raised while
6470 trying to determine the base address, just like for the tag;
6471 see ada_tag_name for more details. We do not print the error
6472 message for the same reason. */
6476 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6479 catch (const gdb_exception_error &e)
6484 /* If offset is null, nothing to do. */
6486 if (offset_to_top == 0)
6489 /* -1 is a special case in Ada.Tags; however, what should be done
6490 is not quite clear from the documentation. So do nothing for
6493 if (offset_to_top == -1)
6496 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6497 top is used. In this situation the offset is stored just after
6498 the tag, in the object itself. */
6499 ULONGEST last = (((ULONGEST) 1) << (8 * offset_type->length () - 1)) - 1;
6500 if (offset_to_top == last)
6502 struct value *tem = value_addr (tag);
6503 tem = value_ptradd (tem, 1);
6504 tem = value_cast (ptr_type, tem);
6505 offset_to_top = value_as_long (value_ind (tem));
6508 if (offset_to_top > 0)
6510 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6511 from the base address. This was however incompatible with
6512 C++ dispatch table: C++ uses a *negative* value to *add*
6513 to the base address. Ada's convention has therefore been
6514 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6515 use the same convention. Here, we support both cases by
6516 checking the sign of OFFSET_TO_TOP. */
6517 offset_to_top = -offset_to_top;
6520 base_address = value_address (obj) + offset_to_top;
6521 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6523 /* Make sure that we have a proper tag at the new address.
6524 Otherwise, offset_to_top is bogus (which can happen when
6525 the object is not initialized yet). */
6530 obj_type = type_from_tag (tag);
6535 return value_from_contents_and_address (obj_type, NULL, base_address);
6538 /* Return the "ada__tags__type_specific_data" type. */
6540 static struct type *
6541 ada_get_tsd_type (struct inferior *inf)
6543 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6545 if (data->tsd_type == 0)
6546 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6547 return data->tsd_type;
6550 /* Return the TSD (type-specific data) associated to the given TAG.
6551 TAG is assumed to be the tag of a tagged-type entity.
6553 May return NULL if we are unable to get the TSD. */
6555 static struct value *
6556 ada_get_tsd_from_tag (struct value *tag)
6561 /* First option: The TSD is simply stored as a field of our TAG.
6562 Only older versions of GNAT would use this format, but we have
6563 to test it first, because there are no visible markers for
6564 the current approach except the absence of that field. */
6566 val = ada_value_struct_elt (tag, "tsd", 1);
6570 /* Try the second representation for the dispatch table (in which
6571 there is no explicit 'tsd' field in the referent of the tag pointer,
6572 and instead the tsd pointer is stored just before the dispatch
6575 type = ada_get_tsd_type (current_inferior());
6578 type = lookup_pointer_type (lookup_pointer_type (type));
6579 val = value_cast (type, tag);
6582 return value_ind (value_ptradd (val, -1));
6585 /* Given the TSD of a tag (type-specific data), return a string
6586 containing the name of the associated type.
6588 May return NULL if we are unable to determine the tag name. */
6590 static gdb::unique_xmalloc_ptr<char>
6591 ada_tag_name_from_tsd (struct value *tsd)
6595 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6598 gdb::unique_xmalloc_ptr<char> buffer
6599 = target_read_string (value_as_address (val), INT_MAX);
6600 if (buffer == nullptr)
6605 /* Let this throw an exception on error. If the data is
6606 uninitialized, we'd rather not have the user see a
6608 const char *folded = ada_fold_name (buffer.get (), true);
6609 return make_unique_xstrdup (folded);
6611 catch (const gdb_exception &)
6617 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6620 Return NULL if the TAG is not an Ada tag, or if we were unable to
6621 determine the name of that tag. */
6623 gdb::unique_xmalloc_ptr<char>
6624 ada_tag_name (struct value *tag)
6626 gdb::unique_xmalloc_ptr<char> name;
6628 if (!ada_is_tag_type (value_type (tag)))
6631 /* It is perfectly possible that an exception be raised while trying
6632 to determine the TAG's name, even under normal circumstances:
6633 The associated variable may be uninitialized or corrupted, for
6634 instance. We do not let any exception propagate past this point.
6635 instead we return NULL.
6637 We also do not print the error message either (which often is very
6638 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6639 the caller print a more meaningful message if necessary. */
6642 struct value *tsd = ada_get_tsd_from_tag (tag);
6645 name = ada_tag_name_from_tsd (tsd);
6647 catch (const gdb_exception_error &e)
6654 /* The parent type of TYPE, or NULL if none. */
6657 ada_parent_type (struct type *type)
6661 type = ada_check_typedef (type);
6663 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6666 for (i = 0; i < type->num_fields (); i += 1)
6667 if (ada_is_parent_field (type, i))
6669 struct type *parent_type = type->field (i).type ();
6671 /* If the _parent field is a pointer, then dereference it. */
6672 if (parent_type->code () == TYPE_CODE_PTR)
6673 parent_type = parent_type->target_type ();
6674 /* If there is a parallel XVS type, get the actual base type. */
6675 parent_type = ada_get_base_type (parent_type);
6677 return ada_check_typedef (parent_type);
6683 /* True iff field number FIELD_NUM of structure type TYPE contains the
6684 parent-type (inherited) fields of a derived type. Assumes TYPE is
6685 a structure type with at least FIELD_NUM+1 fields. */
6688 ada_is_parent_field (struct type *type, int field_num)
6690 const char *name = ada_check_typedef (type)->field (field_num).name ();
6692 return (name != NULL
6693 && (startswith (name, "PARENT")
6694 || startswith (name, "_parent")));
6697 /* True iff field number FIELD_NUM of structure type TYPE is a
6698 transparent wrapper field (which should be silently traversed when doing
6699 field selection and flattened when printing). Assumes TYPE is a
6700 structure type with at least FIELD_NUM+1 fields. Such fields are always
6704 ada_is_wrapper_field (struct type *type, int field_num)
6706 const char *name = type->field (field_num).name ();
6708 if (name != NULL && strcmp (name, "RETVAL") == 0)
6710 /* This happens in functions with "out" or "in out" parameters
6711 which are passed by copy. For such functions, GNAT describes
6712 the function's return type as being a struct where the return
6713 value is in a field called RETVAL, and where the other "out"
6714 or "in out" parameters are fields of that struct. This is not
6719 return (name != NULL
6720 && (startswith (name, "PARENT")
6721 || strcmp (name, "REP") == 0
6722 || startswith (name, "_parent")
6723 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6726 /* True iff field number FIELD_NUM of structure or union type TYPE
6727 is a variant wrapper. Assumes TYPE is a structure type with at least
6728 FIELD_NUM+1 fields. */
6731 ada_is_variant_part (struct type *type, int field_num)
6733 /* Only Ada types are eligible. */
6734 if (!ADA_TYPE_P (type))
6737 struct type *field_type = type->field (field_num).type ();
6739 return (field_type->code () == TYPE_CODE_UNION
6740 || (is_dynamic_field (type, field_num)
6741 && (field_type->target_type ()->code ()
6742 == TYPE_CODE_UNION)));
6745 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6746 whose discriminants are contained in the record type OUTER_TYPE,
6747 returns the type of the controlling discriminant for the variant.
6748 May return NULL if the type could not be found. */
6751 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6753 const char *name = ada_variant_discrim_name (var_type);
6755 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6758 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6759 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6760 represents a 'when others' clause; otherwise 0. */
6763 ada_is_others_clause (struct type *type, int field_num)
6765 const char *name = type->field (field_num).name ();
6767 return (name != NULL && name[0] == 'O');
6770 /* Assuming that TYPE0 is the type of the variant part of a record,
6771 returns the name of the discriminant controlling the variant.
6772 The value is valid until the next call to ada_variant_discrim_name. */
6775 ada_variant_discrim_name (struct type *type0)
6777 static std::string result;
6780 const char *discrim_end;
6781 const char *discrim_start;
6783 if (type0->code () == TYPE_CODE_PTR)
6784 type = type0->target_type ();
6788 name = ada_type_name (type);
6790 if (name == NULL || name[0] == '\000')
6793 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6796 if (startswith (discrim_end, "___XVN"))
6799 if (discrim_end == name)
6802 for (discrim_start = discrim_end; discrim_start != name + 3;
6805 if (discrim_start == name + 1)
6807 if ((discrim_start > name + 3
6808 && startswith (discrim_start - 3, "___"))
6809 || discrim_start[-1] == '.')
6813 result = std::string (discrim_start, discrim_end - discrim_start);
6814 return result.c_str ();
6817 /* Scan STR for a subtype-encoded number, beginning at position K.
6818 Put the position of the character just past the number scanned in
6819 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6820 Return 1 if there was a valid number at the given position, and 0
6821 otherwise. A "subtype-encoded" number consists of the absolute value
6822 in decimal, followed by the letter 'm' to indicate a negative number.
6823 Assumes 0m does not occur. */
6826 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6830 if (!isdigit (str[k]))
6833 /* Do it the hard way so as not to make any assumption about
6834 the relationship of unsigned long (%lu scan format code) and
6837 while (isdigit (str[k]))
6839 RU = RU * 10 + (str[k] - '0');
6846 *R = (-(LONGEST) (RU - 1)) - 1;
6852 /* NOTE on the above: Technically, C does not say what the results of
6853 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6854 number representable as a LONGEST (although either would probably work
6855 in most implementations). When RU>0, the locution in the then branch
6856 above is always equivalent to the negative of RU. */
6863 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6864 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6865 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6868 ada_in_variant (LONGEST val, struct type *type, int field_num)
6870 const char *name = type->field (field_num).name ();
6884 if (!ada_scan_number (name, p + 1, &W, &p))
6894 if (!ada_scan_number (name, p + 1, &L, &p)
6895 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6897 if (val >= L && val <= U)
6909 /* FIXME: Lots of redundancy below. Try to consolidate. */
6911 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6912 ARG_TYPE, extract and return the value of one of its (non-static)
6913 fields. FIELDNO says which field. Differs from value_primitive_field
6914 only in that it can handle packed values of arbitrary type. */
6917 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6918 struct type *arg_type)
6922 arg_type = ada_check_typedef (arg_type);
6923 type = arg_type->field (fieldno).type ();
6925 /* Handle packed fields. It might be that the field is not packed
6926 relative to its containing structure, but the structure itself is
6927 packed; in this case we must take the bit-field path. */
6928 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6930 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6931 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6933 return ada_value_primitive_packed_val (arg1,
6934 value_contents (arg1).data (),
6935 offset + bit_pos / 8,
6936 bit_pos % 8, bit_size, type);
6939 return value_primitive_field (arg1, offset, fieldno, arg_type);
6942 /* Find field with name NAME in object of type TYPE. If found,
6943 set the following for each argument that is non-null:
6944 - *FIELD_TYPE_P to the field's type;
6945 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6946 an object of that type;
6947 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6948 - *BIT_SIZE_P to its size in bits if the field is packed, and
6950 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6951 fields up to but not including the desired field, or by the total
6952 number of fields if not found. A NULL value of NAME never
6953 matches; the function just counts visible fields in this case.
6955 Notice that we need to handle when a tagged record hierarchy
6956 has some components with the same name, like in this scenario:
6958 type Top_T is tagged record
6964 type Middle_T is new Top.Top_T with record
6965 N : Character := 'a';
6969 type Bottom_T is new Middle.Middle_T with record
6971 C : Character := '5';
6973 A : Character := 'J';
6976 Let's say we now have a variable declared and initialized as follow:
6978 TC : Top_A := new Bottom_T;
6980 And then we use this variable to call this function
6982 procedure Assign (Obj: in out Top_T; TV : Integer);
6986 Assign (Top_T (B), 12);
6988 Now, we're in the debugger, and we're inside that procedure
6989 then and we want to print the value of obj.c:
6991 Usually, the tagged record or one of the parent type owns the
6992 component to print and there's no issue but in this particular
6993 case, what does it mean to ask for Obj.C? Since the actual
6994 type for object is type Bottom_T, it could mean two things: type
6995 component C from the Middle_T view, but also component C from
6996 Bottom_T. So in that "undefined" case, when the component is
6997 not found in the non-resolved type (which includes all the
6998 components of the parent type), then resolve it and see if we
6999 get better luck once expanded.
7001 In the case of homonyms in the derived tagged type, we don't
7002 guaranty anything, and pick the one that's easiest for us
7005 Returns 1 if found, 0 otherwise. */
7008 find_struct_field (const char *name, struct type *type, int offset,
7009 struct type **field_type_p,
7010 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7014 int parent_offset = -1;
7016 type = ada_check_typedef (type);
7018 if (field_type_p != NULL)
7019 *field_type_p = NULL;
7020 if (byte_offset_p != NULL)
7022 if (bit_offset_p != NULL)
7024 if (bit_size_p != NULL)
7027 for (i = 0; i < type->num_fields (); i += 1)
7029 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7030 type. However, we only need the values to be correct when
7031 the caller asks for them. */
7032 int bit_pos = 0, fld_offset = 0;
7033 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7035 bit_pos = type->field (i).loc_bitpos ();
7036 fld_offset = offset + bit_pos / 8;
7039 const char *t_field_name = type->field (i).name ();
7041 if (t_field_name == NULL)
7044 else if (ada_is_parent_field (type, i))
7046 /* This is a field pointing us to the parent type of a tagged
7047 type. As hinted in this function's documentation, we give
7048 preference to fields in the current record first, so what
7049 we do here is just record the index of this field before
7050 we skip it. If it turns out we couldn't find our field
7051 in the current record, then we'll get back to it and search
7052 inside it whether the field might exist in the parent. */
7058 else if (name != NULL && field_name_match (t_field_name, name))
7060 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7062 if (field_type_p != NULL)
7063 *field_type_p = type->field (i).type ();
7064 if (byte_offset_p != NULL)
7065 *byte_offset_p = fld_offset;
7066 if (bit_offset_p != NULL)
7067 *bit_offset_p = bit_pos % 8;
7068 if (bit_size_p != NULL)
7069 *bit_size_p = bit_size;
7072 else if (ada_is_wrapper_field (type, i))
7074 if (find_struct_field (name, type->field (i).type (), fld_offset,
7075 field_type_p, byte_offset_p, bit_offset_p,
7076 bit_size_p, index_p))
7079 else if (ada_is_variant_part (type, i))
7081 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7084 struct type *field_type
7085 = ada_check_typedef (type->field (i).type ());
7087 for (j = 0; j < field_type->num_fields (); j += 1)
7089 if (find_struct_field (name, field_type->field (j).type (),
7091 + field_type->field (j).loc_bitpos () / 8,
7092 field_type_p, byte_offset_p,
7093 bit_offset_p, bit_size_p, index_p))
7097 else if (index_p != NULL)
7101 /* Field not found so far. If this is a tagged type which
7102 has a parent, try finding that field in the parent now. */
7104 if (parent_offset != -1)
7106 /* As above, only compute the offset when truly needed. */
7107 int fld_offset = offset;
7108 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7110 int bit_pos = type->field (parent_offset).loc_bitpos ();
7111 fld_offset += bit_pos / 8;
7114 if (find_struct_field (name, type->field (parent_offset).type (),
7115 fld_offset, field_type_p, byte_offset_p,
7116 bit_offset_p, bit_size_p, index_p))
7123 /* Number of user-visible fields in record type TYPE. */
7126 num_visible_fields (struct type *type)
7131 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7135 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7136 and search in it assuming it has (class) type TYPE.
7137 If found, return value, else return NULL.
7139 Searches recursively through wrapper fields (e.g., '_parent').
7141 In the case of homonyms in the tagged types, please refer to the
7142 long explanation in find_struct_field's function documentation. */
7144 static struct value *
7145 ada_search_struct_field (const char *name, struct value *arg, int offset,
7149 int parent_offset = -1;
7151 type = ada_check_typedef (type);
7152 for (i = 0; i < type->num_fields (); i += 1)
7154 const char *t_field_name = type->field (i).name ();
7156 if (t_field_name == NULL)
7159 else if (ada_is_parent_field (type, i))
7161 /* This is a field pointing us to the parent type of a tagged
7162 type. As hinted in this function's documentation, we give
7163 preference to fields in the current record first, so what
7164 we do here is just record the index of this field before
7165 we skip it. If it turns out we couldn't find our field
7166 in the current record, then we'll get back to it and search
7167 inside it whether the field might exist in the parent. */
7173 else if (field_name_match (t_field_name, name))
7174 return ada_value_primitive_field (arg, offset, i, type);
7176 else if (ada_is_wrapper_field (type, i))
7178 struct value *v = /* Do not let indent join lines here. */
7179 ada_search_struct_field (name, arg,
7180 offset + type->field (i).loc_bitpos () / 8,
7181 type->field (i).type ());
7187 else if (ada_is_variant_part (type, i))
7189 /* PNH: Do we ever get here? See find_struct_field. */
7191 struct type *field_type = ada_check_typedef (type->field (i).type ());
7192 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7194 for (j = 0; j < field_type->num_fields (); j += 1)
7196 struct value *v = ada_search_struct_field /* Force line
7199 var_offset + field_type->field (j).loc_bitpos () / 8,
7200 field_type->field (j).type ());
7208 /* Field not found so far. If this is a tagged type which
7209 has a parent, try finding that field in the parent now. */
7211 if (parent_offset != -1)
7213 struct value *v = ada_search_struct_field (
7214 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7215 type->field (parent_offset).type ());
7224 static struct value *ada_index_struct_field_1 (int *, struct value *,
7225 int, struct type *);
7228 /* Return field #INDEX in ARG, where the index is that returned by
7229 * find_struct_field through its INDEX_P argument. Adjust the address
7230 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7231 * If found, return value, else return NULL. */
7233 static struct value *
7234 ada_index_struct_field (int index, struct value *arg, int offset,
7237 return ada_index_struct_field_1 (&index, arg, offset, type);
7241 /* Auxiliary function for ada_index_struct_field. Like
7242 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7245 static struct value *
7246 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7250 type = ada_check_typedef (type);
7252 for (i = 0; i < type->num_fields (); i += 1)
7254 if (type->field (i).name () == NULL)
7256 else if (ada_is_wrapper_field (type, i))
7258 struct value *v = /* Do not let indent join lines here. */
7259 ada_index_struct_field_1 (index_p, arg,
7260 offset + type->field (i).loc_bitpos () / 8,
7261 type->field (i).type ());
7267 else if (ada_is_variant_part (type, i))
7269 /* PNH: Do we ever get here? See ada_search_struct_field,
7270 find_struct_field. */
7271 error (_("Cannot assign this kind of variant record"));
7273 else if (*index_p == 0)
7274 return ada_value_primitive_field (arg, offset, i, type);
7281 /* Return a string representation of type TYPE. */
7284 type_as_string (struct type *type)
7286 string_file tmp_stream;
7288 type_print (type, "", &tmp_stream, -1);
7290 return tmp_stream.release ();
7293 /* Given a type TYPE, look up the type of the component of type named NAME.
7294 If DISPP is non-null, add its byte displacement from the beginning of a
7295 structure (pointed to by a value) of type TYPE to *DISPP (does not
7296 work for packed fields).
7298 Matches any field whose name has NAME as a prefix, possibly
7301 TYPE can be either a struct or union. If REFOK, TYPE may also
7302 be a (pointer or reference)+ to a struct or union, and the
7303 ultimate target type will be searched.
7305 Looks recursively into variant clauses and parent types.
7307 In the case of homonyms in the tagged types, please refer to the
7308 long explanation in find_struct_field's function documentation.
7310 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7311 TYPE is not a type of the right kind. */
7313 static struct type *
7314 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7318 int parent_offset = -1;
7323 if (refok && type != NULL)
7326 type = ada_check_typedef (type);
7327 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7329 type = type->target_type ();
7333 || (type->code () != TYPE_CODE_STRUCT
7334 && type->code () != TYPE_CODE_UNION))
7339 error (_("Type %s is not a structure or union type"),
7340 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7343 type = to_static_fixed_type (type);
7345 for (i = 0; i < type->num_fields (); i += 1)
7347 const char *t_field_name = type->field (i).name ();
7350 if (t_field_name == NULL)
7353 else if (ada_is_parent_field (type, i))
7355 /* This is a field pointing us to the parent type of a tagged
7356 type. As hinted in this function's documentation, we give
7357 preference to fields in the current record first, so what
7358 we do here is just record the index of this field before
7359 we skip it. If it turns out we couldn't find our field
7360 in the current record, then we'll get back to it and search
7361 inside it whether the field might exist in the parent. */
7367 else if (field_name_match (t_field_name, name))
7368 return type->field (i).type ();
7370 else if (ada_is_wrapper_field (type, i))
7372 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7378 else if (ada_is_variant_part (type, i))
7381 struct type *field_type = ada_check_typedef (type->field (i).type ());
7383 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7385 /* FIXME pnh 2008/01/26: We check for a field that is
7386 NOT wrapped in a struct, since the compiler sometimes
7387 generates these for unchecked variant types. Revisit
7388 if the compiler changes this practice. */
7389 const char *v_field_name = field_type->field (j).name ();
7391 if (v_field_name != NULL
7392 && field_name_match (v_field_name, name))
7393 t = field_type->field (j).type ();
7395 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7405 /* Field not found so far. If this is a tagged type which
7406 has a parent, try finding that field in the parent now. */
7408 if (parent_offset != -1)
7412 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7421 const char *name_str = name != NULL ? name : _("<null>");
7423 error (_("Type %s has no component named %s"),
7424 type_as_string (type).c_str (), name_str);
7430 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7431 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7432 represents an unchecked union (that is, the variant part of a
7433 record that is named in an Unchecked_Union pragma). */
7436 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7438 const char *discrim_name = ada_variant_discrim_name (var_type);
7440 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7444 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7445 within OUTER, determine which variant clause (field number in VAR_TYPE,
7446 numbering from 0) is applicable. Returns -1 if none are. */
7449 ada_which_variant_applies (struct type *var_type, struct value *outer)
7453 const char *discrim_name = ada_variant_discrim_name (var_type);
7454 struct value *discrim;
7455 LONGEST discrim_val;
7457 /* Using plain value_from_contents_and_address here causes problems
7458 because we will end up trying to resolve a type that is currently
7459 being constructed. */
7460 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7461 if (discrim == NULL)
7463 discrim_val = value_as_long (discrim);
7466 for (i = 0; i < var_type->num_fields (); i += 1)
7468 if (ada_is_others_clause (var_type, i))
7470 else if (ada_in_variant (discrim_val, var_type, i))
7474 return others_clause;
7479 /* Dynamic-Sized Records */
7481 /* Strategy: The type ostensibly attached to a value with dynamic size
7482 (i.e., a size that is not statically recorded in the debugging
7483 data) does not accurately reflect the size or layout of the value.
7484 Our strategy is to convert these values to values with accurate,
7485 conventional types that are constructed on the fly. */
7487 /* There is a subtle and tricky problem here. In general, we cannot
7488 determine the size of dynamic records without its data. However,
7489 the 'struct value' data structure, which GDB uses to represent
7490 quantities in the inferior process (the target), requires the size
7491 of the type at the time of its allocation in order to reserve space
7492 for GDB's internal copy of the data. That's why the
7493 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7494 rather than struct value*s.
7496 However, GDB's internal history variables ($1, $2, etc.) are
7497 struct value*s containing internal copies of the data that are not, in
7498 general, the same as the data at their corresponding addresses in
7499 the target. Fortunately, the types we give to these values are all
7500 conventional, fixed-size types (as per the strategy described
7501 above), so that we don't usually have to perform the
7502 'to_fixed_xxx_type' conversions to look at their values.
7503 Unfortunately, there is one exception: if one of the internal
7504 history variables is an array whose elements are unconstrained
7505 records, then we will need to create distinct fixed types for each
7506 element selected. */
7508 /* The upshot of all of this is that many routines take a (type, host
7509 address, target address) triple as arguments to represent a value.
7510 The host address, if non-null, is supposed to contain an internal
7511 copy of the relevant data; otherwise, the program is to consult the
7512 target at the target address. */
7514 /* Assuming that VAL0 represents a pointer value, the result of
7515 dereferencing it. Differs from value_ind in its treatment of
7516 dynamic-sized types. */
7519 ada_value_ind (struct value *val0)
7521 struct value *val = value_ind (val0);
7523 if (ada_is_tagged_type (value_type (val), 0))
7524 val = ada_tag_value_at_base_address (val);
7526 return ada_to_fixed_value (val);
7529 /* The value resulting from dereferencing any "reference to"
7530 qualifiers on VAL0. */
7532 static struct value *
7533 ada_coerce_ref (struct value *val0)
7535 if (value_type (val0)->code () == TYPE_CODE_REF)
7537 struct value *val = val0;
7539 val = coerce_ref (val);
7541 if (ada_is_tagged_type (value_type (val), 0))
7542 val = ada_tag_value_at_base_address (val);
7544 return ada_to_fixed_value (val);
7550 /* Return the bit alignment required for field #F of template type TYPE. */
7553 field_alignment (struct type *type, int f)
7555 const char *name = type->field (f).name ();
7559 /* The field name should never be null, unless the debugging information
7560 is somehow malformed. In this case, we assume the field does not
7561 require any alignment. */
7565 len = strlen (name);
7567 if (!isdigit (name[len - 1]))
7570 if (isdigit (name[len - 2]))
7571 align_offset = len - 2;
7573 align_offset = len - 1;
7575 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7576 return TARGET_CHAR_BIT;
7578 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7581 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7583 static struct symbol *
7584 ada_find_any_type_symbol (const char *name)
7588 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7589 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7592 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7596 /* Find a type named NAME. Ignores ambiguity. This routine will look
7597 solely for types defined by debug info, it will not search the GDB
7600 static struct type *
7601 ada_find_any_type (const char *name)
7603 struct symbol *sym = ada_find_any_type_symbol (name);
7606 return sym->type ();
7611 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7612 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7613 symbol, in which case it is returned. Otherwise, this looks for
7614 symbols whose name is that of NAME_SYM suffixed with "___XR".
7615 Return symbol if found, and NULL otherwise. */
7618 ada_is_renaming_symbol (struct symbol *name_sym)
7620 const char *name = name_sym->linkage_name ();
7621 return strstr (name, "___XR") != NULL;
7624 /* Because of GNAT encoding conventions, several GDB symbols may match a
7625 given type name. If the type denoted by TYPE0 is to be preferred to
7626 that of TYPE1 for purposes of type printing, return non-zero;
7627 otherwise return 0. */
7630 ada_prefer_type (struct type *type0, struct type *type1)
7634 else if (type0 == NULL)
7636 else if (type1->code () == TYPE_CODE_VOID)
7638 else if (type0->code () == TYPE_CODE_VOID)
7640 else if (type1->name () == NULL && type0->name () != NULL)
7642 else if (ada_is_constrained_packed_array_type (type0))
7644 else if (ada_is_array_descriptor_type (type0)
7645 && !ada_is_array_descriptor_type (type1))
7649 const char *type0_name = type0->name ();
7650 const char *type1_name = type1->name ();
7652 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7653 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7659 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7663 ada_type_name (struct type *type)
7667 return type->name ();
7670 /* Search the list of "descriptive" types associated to TYPE for a type
7671 whose name is NAME. */
7673 static struct type *
7674 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7676 struct type *result, *tmp;
7678 if (ada_ignore_descriptive_types_p)
7681 /* If there no descriptive-type info, then there is no parallel type
7683 if (!HAVE_GNAT_AUX_INFO (type))
7686 result = TYPE_DESCRIPTIVE_TYPE (type);
7687 while (result != NULL)
7689 const char *result_name = ada_type_name (result);
7691 if (result_name == NULL)
7693 warning (_("unexpected null name on descriptive type"));
7697 /* If the names match, stop. */
7698 if (strcmp (result_name, name) == 0)
7701 /* Otherwise, look at the next item on the list, if any. */
7702 if (HAVE_GNAT_AUX_INFO (result))
7703 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7707 /* If not found either, try after having resolved the typedef. */
7712 result = check_typedef (result);
7713 if (HAVE_GNAT_AUX_INFO (result))
7714 result = TYPE_DESCRIPTIVE_TYPE (result);
7720 /* If we didn't find a match, see whether this is a packed array. With
7721 older compilers, the descriptive type information is either absent or
7722 irrelevant when it comes to packed arrays so the above lookup fails.
7723 Fall back to using a parallel lookup by name in this case. */
7724 if (result == NULL && ada_is_constrained_packed_array_type (type))
7725 return ada_find_any_type (name);
7730 /* Find a parallel type to TYPE with the specified NAME, using the
7731 descriptive type taken from the debugging information, if available,
7732 and otherwise using the (slower) name-based method. */
7734 static struct type *
7735 ada_find_parallel_type_with_name (struct type *type, const char *name)
7737 struct type *result = NULL;
7739 if (HAVE_GNAT_AUX_INFO (type))
7740 result = find_parallel_type_by_descriptive_type (type, name);
7742 result = ada_find_any_type (name);
7747 /* Same as above, but specify the name of the parallel type by appending
7748 SUFFIX to the name of TYPE. */
7751 ada_find_parallel_type (struct type *type, const char *suffix)
7754 const char *type_name = ada_type_name (type);
7757 if (type_name == NULL)
7760 len = strlen (type_name);
7762 name = (char *) alloca (len + strlen (suffix) + 1);
7764 strcpy (name, type_name);
7765 strcpy (name + len, suffix);
7767 return ada_find_parallel_type_with_name (type, name);
7770 /* If TYPE is a variable-size record type, return the corresponding template
7771 type describing its fields. Otherwise, return NULL. */
7773 static struct type *
7774 dynamic_template_type (struct type *type)
7776 type = ada_check_typedef (type);
7778 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7779 || ada_type_name (type) == NULL)
7783 int len = strlen (ada_type_name (type));
7785 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7788 return ada_find_parallel_type (type, "___XVE");
7792 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7793 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7796 is_dynamic_field (struct type *templ_type, int field_num)
7798 const char *name = templ_type->field (field_num).name ();
7801 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7802 && strstr (name, "___XVL") != NULL;
7805 /* The index of the variant field of TYPE, or -1 if TYPE does not
7806 represent a variant record type. */
7809 variant_field_index (struct type *type)
7813 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7816 for (f = 0; f < type->num_fields (); f += 1)
7818 if (ada_is_variant_part (type, f))
7824 /* A record type with no fields. */
7826 static struct type *
7827 empty_record (struct type *templ)
7829 struct type *type = alloc_type_copy (templ);
7831 type->set_code (TYPE_CODE_STRUCT);
7832 INIT_NONE_SPECIFIC (type);
7833 type->set_name ("<empty>");
7834 type->set_length (0);
7838 /* An ordinary record type (with fixed-length fields) that describes
7839 the value of type TYPE at VALADDR or ADDRESS (see comments at
7840 the beginning of this section) VAL according to GNAT conventions.
7841 DVAL0 should describe the (portion of a) record that contains any
7842 necessary discriminants. It should be NULL if value_type (VAL) is
7843 an outer-level type (i.e., as opposed to a branch of a variant.) A
7844 variant field (unless unchecked) is replaced by a particular branch
7847 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7848 length are not statically known are discarded. As a consequence,
7849 VALADDR, ADDRESS and DVAL0 are ignored.
7851 NOTE: Limitations: For now, we assume that dynamic fields and
7852 variants occupy whole numbers of bytes. However, they need not be
7856 ada_template_to_fixed_record_type_1 (struct type *type,
7857 const gdb_byte *valaddr,
7858 CORE_ADDR address, struct value *dval0,
7859 int keep_dynamic_fields)
7861 struct value *mark = value_mark ();
7864 int nfields, bit_len;
7870 /* Compute the number of fields in this record type that are going
7871 to be processed: unless keep_dynamic_fields, this includes only
7872 fields whose position and length are static will be processed. */
7873 if (keep_dynamic_fields)
7874 nfields = type->num_fields ();
7878 while (nfields < type->num_fields ()
7879 && !ada_is_variant_part (type, nfields)
7880 && !is_dynamic_field (type, nfields))
7884 rtype = alloc_type_copy (type);
7885 rtype->set_code (TYPE_CODE_STRUCT);
7886 INIT_NONE_SPECIFIC (rtype);
7887 rtype->set_num_fields (nfields);
7889 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7890 rtype->set_name (ada_type_name (type));
7891 rtype->set_is_fixed_instance (true);
7897 for (f = 0; f < nfields; f += 1)
7899 off = align_up (off, field_alignment (type, f))
7900 + type->field (f).loc_bitpos ();
7901 rtype->field (f).set_loc_bitpos (off);
7902 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7904 if (ada_is_variant_part (type, f))
7909 else if (is_dynamic_field (type, f))
7911 const gdb_byte *field_valaddr = valaddr;
7912 CORE_ADDR field_address = address;
7913 struct type *field_type = type->field (f).type ()->target_type ();
7917 /* Using plain value_from_contents_and_address here
7918 causes problems because we will end up trying to
7919 resolve a type that is currently being
7921 dval = value_from_contents_and_address_unresolved (rtype,
7924 rtype = value_type (dval);
7929 /* If the type referenced by this field is an aligner type, we need
7930 to unwrap that aligner type, because its size might not be set.
7931 Keeping the aligner type would cause us to compute the wrong
7932 size for this field, impacting the offset of the all the fields
7933 that follow this one. */
7934 if (ada_is_aligner_type (field_type))
7936 long field_offset = type->field (f).loc_bitpos ();
7938 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7939 field_address = cond_offset_target (field_address, field_offset);
7940 field_type = ada_aligned_type (field_type);
7943 field_valaddr = cond_offset_host (field_valaddr,
7944 off / TARGET_CHAR_BIT);
7945 field_address = cond_offset_target (field_address,
7946 off / TARGET_CHAR_BIT);
7948 /* Get the fixed type of the field. Note that, in this case,
7949 we do not want to get the real type out of the tag: if
7950 the current field is the parent part of a tagged record,
7951 we will get the tag of the object. Clearly wrong: the real
7952 type of the parent is not the real type of the child. We
7953 would end up in an infinite loop. */
7954 field_type = ada_get_base_type (field_type);
7955 field_type = ada_to_fixed_type (field_type, field_valaddr,
7956 field_address, dval, 0);
7958 rtype->field (f).set_type (field_type);
7959 rtype->field (f).set_name (type->field (f).name ());
7960 /* The multiplication can potentially overflow. But because
7961 the field length has been size-checked just above, and
7962 assuming that the maximum size is a reasonable value,
7963 an overflow should not happen in practice. So rather than
7964 adding overflow recovery code to this already complex code,
7965 we just assume that it's not going to happen. */
7966 fld_bit_len = rtype->field (f).type ()->length () * TARGET_CHAR_BIT;
7970 /* Note: If this field's type is a typedef, it is important
7971 to preserve the typedef layer.
7973 Otherwise, we might be transforming a typedef to a fat
7974 pointer (encoding a pointer to an unconstrained array),
7975 into a basic fat pointer (encoding an unconstrained
7976 array). As both types are implemented using the same
7977 structure, the typedef is the only clue which allows us
7978 to distinguish between the two options. Stripping it
7979 would prevent us from printing this field appropriately. */
7980 rtype->field (f).set_type (type->field (f).type ());
7981 rtype->field (f).set_name (type->field (f).name ());
7982 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7984 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7987 struct type *field_type = type->field (f).type ();
7989 /* We need to be careful of typedefs when computing
7990 the length of our field. If this is a typedef,
7991 get the length of the target type, not the length
7993 if (field_type->code () == TYPE_CODE_TYPEDEF)
7994 field_type = ada_typedef_target_type (field_type);
7997 ada_check_typedef (field_type)->length () * TARGET_CHAR_BIT;
8000 if (off + fld_bit_len > bit_len)
8001 bit_len = off + fld_bit_len;
8003 rtype->set_length (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
8006 /* We handle the variant part, if any, at the end because of certain
8007 odd cases in which it is re-ordered so as NOT to be the last field of
8008 the record. This can happen in the presence of representation
8010 if (variant_field >= 0)
8012 struct type *branch_type;
8014 off = rtype->field (variant_field).loc_bitpos ();
8018 /* Using plain value_from_contents_and_address here causes
8019 problems because we will end up trying to resolve a type
8020 that is currently being constructed. */
8021 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8023 rtype = value_type (dval);
8029 to_fixed_variant_branch_type
8030 (type->field (variant_field).type (),
8031 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8032 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8033 if (branch_type == NULL)
8035 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8036 rtype->field (f - 1) = rtype->field (f);
8037 rtype->set_num_fields (rtype->num_fields () - 1);
8041 rtype->field (variant_field).set_type (branch_type);
8042 rtype->field (variant_field).set_name ("S");
8044 rtype->field (variant_field).type ()->length () * TARGET_CHAR_BIT;
8045 if (off + fld_bit_len > bit_len)
8046 bit_len = off + fld_bit_len;
8049 (align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT);
8053 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8054 should contain the alignment of that record, which should be a strictly
8055 positive value. If null or negative, then something is wrong, most
8056 probably in the debug info. In that case, we don't round up the size
8057 of the resulting type. If this record is not part of another structure,
8058 the current RTYPE length might be good enough for our purposes. */
8059 if (type->length () <= 0)
8062 warning (_("Invalid type size for `%s' detected: %s."),
8063 rtype->name (), pulongest (type->length ()));
8065 warning (_("Invalid type size for <unnamed> detected: %s."),
8066 pulongest (type->length ()));
8069 rtype->set_length (align_up (rtype->length (), type->length ()));
8071 value_free_to_mark (mark);
8075 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8078 static struct type *
8079 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8080 CORE_ADDR address, struct value *dval0)
8082 return ada_template_to_fixed_record_type_1 (type, valaddr,
8086 /* An ordinary record type in which ___XVL-convention fields and
8087 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8088 static approximations, containing all possible fields. Uses
8089 no runtime values. Useless for use in values, but that's OK,
8090 since the results are used only for type determinations. Works on both
8091 structs and unions. Representation note: to save space, we memorize
8092 the result of this function in the type::target_type of the
8095 static struct type *
8096 template_to_static_fixed_type (struct type *type0)
8102 /* No need no do anything if the input type is already fixed. */
8103 if (type0->is_fixed_instance ())
8106 /* Likewise if we already have computed the static approximation. */
8107 if (type0->target_type () != NULL)
8108 return type0->target_type ();
8110 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8112 nfields = type0->num_fields ();
8114 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8115 recompute all over next time. */
8116 type0->set_target_type (type);
8118 for (f = 0; f < nfields; f += 1)
8120 struct type *field_type = type0->field (f).type ();
8121 struct type *new_type;
8123 if (is_dynamic_field (type0, f))
8125 field_type = ada_check_typedef (field_type);
8126 new_type = to_static_fixed_type (field_type->target_type ());
8129 new_type = static_unwrap_type (field_type);
8131 if (new_type != field_type)
8133 /* Clone TYPE0 only the first time we get a new field type. */
8136 type = alloc_type_copy (type0);
8137 type0->set_target_type (type);
8138 type->set_code (type0->code ());
8139 INIT_NONE_SPECIFIC (type);
8140 type->set_num_fields (nfields);
8144 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8145 memcpy (fields, type0->fields (),
8146 sizeof (struct field) * nfields);
8147 type->set_fields (fields);
8149 type->set_name (ada_type_name (type0));
8150 type->set_is_fixed_instance (true);
8151 type->set_length (0);
8153 type->field (f).set_type (new_type);
8154 type->field (f).set_name (type0->field (f).name ());
8161 /* Given an object of type TYPE whose contents are at VALADDR and
8162 whose address in memory is ADDRESS, returns a revision of TYPE,
8163 which should be a non-dynamic-sized record, in which the variant
8164 part, if any, is replaced with the appropriate branch. Looks
8165 for discriminant values in DVAL0, which can be NULL if the record
8166 contains the necessary discriminant values. */
8168 static struct type *
8169 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8170 CORE_ADDR address, struct value *dval0)
8172 struct value *mark = value_mark ();
8175 struct type *branch_type;
8176 int nfields = type->num_fields ();
8177 int variant_field = variant_field_index (type);
8179 if (variant_field == -1)
8184 dval = value_from_contents_and_address (type, valaddr, address);
8185 type = value_type (dval);
8190 rtype = alloc_type_copy (type);
8191 rtype->set_code (TYPE_CODE_STRUCT);
8192 INIT_NONE_SPECIFIC (rtype);
8193 rtype->set_num_fields (nfields);
8196 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8197 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8198 rtype->set_fields (fields);
8200 rtype->set_name (ada_type_name (type));
8201 rtype->set_is_fixed_instance (true);
8202 rtype->set_length (type->length ());
8204 branch_type = to_fixed_variant_branch_type
8205 (type->field (variant_field).type (),
8206 cond_offset_host (valaddr,
8207 type->field (variant_field).loc_bitpos ()
8209 cond_offset_target (address,
8210 type->field (variant_field).loc_bitpos ()
8211 / TARGET_CHAR_BIT), dval);
8212 if (branch_type == NULL)
8216 for (f = variant_field + 1; f < nfields; f += 1)
8217 rtype->field (f - 1) = rtype->field (f);
8218 rtype->set_num_fields (rtype->num_fields () - 1);
8222 rtype->field (variant_field).set_type (branch_type);
8223 rtype->field (variant_field).set_name ("S");
8224 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8225 rtype->set_length (rtype->length () + branch_type->length ());
8228 rtype->set_length (rtype->length ()
8229 - type->field (variant_field).type ()->length ());
8231 value_free_to_mark (mark);
8235 /* An ordinary record type (with fixed-length fields) that describes
8236 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8237 beginning of this section]. Any necessary discriminants' values
8238 should be in DVAL, a record value; it may be NULL if the object
8239 at ADDR itself contains any necessary discriminant values.
8240 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8241 values from the record are needed. Except in the case that DVAL,
8242 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8243 unchecked) is replaced by a particular branch of the variant.
8245 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8246 is questionable and may be removed. It can arise during the
8247 processing of an unconstrained-array-of-record type where all the
8248 variant branches have exactly the same size. This is because in
8249 such cases, the compiler does not bother to use the XVS convention
8250 when encoding the record. I am currently dubious of this
8251 shortcut and suspect the compiler should be altered. FIXME. */
8253 static struct type *
8254 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8255 CORE_ADDR address, struct value *dval)
8257 struct type *templ_type;
8259 if (type0->is_fixed_instance ())
8262 templ_type = dynamic_template_type (type0);
8264 if (templ_type != NULL)
8265 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8266 else if (variant_field_index (type0) >= 0)
8268 if (dval == NULL && valaddr == NULL && address == 0)
8270 return to_record_with_fixed_variant_part (type0, valaddr, address,
8275 type0->set_is_fixed_instance (true);
8281 /* An ordinary record type (with fixed-length fields) that describes
8282 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8283 union type. Any necessary discriminants' values should be in DVAL,
8284 a record value. That is, this routine selects the appropriate
8285 branch of the union at ADDR according to the discriminant value
8286 indicated in the union's type name. Returns VAR_TYPE0 itself if
8287 it represents a variant subject to a pragma Unchecked_Union. */
8289 static struct type *
8290 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8291 CORE_ADDR address, struct value *dval)
8294 struct type *templ_type;
8295 struct type *var_type;
8297 if (var_type0->code () == TYPE_CODE_PTR)
8298 var_type = var_type0->target_type ();
8300 var_type = var_type0;
8302 templ_type = ada_find_parallel_type (var_type, "___XVU");
8304 if (templ_type != NULL)
8305 var_type = templ_type;
8307 if (is_unchecked_variant (var_type, value_type (dval)))
8309 which = ada_which_variant_applies (var_type, dval);
8312 return empty_record (var_type);
8313 else if (is_dynamic_field (var_type, which))
8314 return to_fixed_record_type
8315 (var_type->field (which).type ()->target_type(), valaddr, address, dval);
8316 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8318 to_fixed_record_type
8319 (var_type->field (which).type (), valaddr, address, dval);
8321 return var_type->field (which).type ();
8324 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8325 ENCODING_TYPE, a type following the GNAT conventions for discrete
8326 type encodings, only carries redundant information. */
8329 ada_is_redundant_range_encoding (struct type *range_type,
8330 struct type *encoding_type)
8332 const char *bounds_str;
8336 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8338 if (get_base_type (range_type)->code ()
8339 != get_base_type (encoding_type)->code ())
8341 /* The compiler probably used a simple base type to describe
8342 the range type instead of the range's actual base type,
8343 expecting us to get the real base type from the encoding
8344 anyway. In this situation, the encoding cannot be ignored
8349 if (is_dynamic_type (range_type))
8352 if (encoding_type->name () == NULL)
8355 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8356 if (bounds_str == NULL)
8359 n = 8; /* Skip "___XDLU_". */
8360 if (!ada_scan_number (bounds_str, n, &lo, &n))
8362 if (range_type->bounds ()->low.const_val () != lo)
8365 n += 2; /* Skip the "__" separator between the two bounds. */
8366 if (!ada_scan_number (bounds_str, n, &hi, &n))
8368 if (range_type->bounds ()->high.const_val () != hi)
8374 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8375 a type following the GNAT encoding for describing array type
8376 indices, only carries redundant information. */
8379 ada_is_redundant_index_type_desc (struct type *array_type,
8380 struct type *desc_type)
8382 struct type *this_layer = check_typedef (array_type);
8385 for (i = 0; i < desc_type->num_fields (); i++)
8387 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8388 desc_type->field (i).type ()))
8390 this_layer = check_typedef (this_layer->target_type ());
8396 /* Assuming that TYPE0 is an array type describing the type of a value
8397 at ADDR, and that DVAL describes a record containing any
8398 discriminants used in TYPE0, returns a type for the value that
8399 contains no dynamic components (that is, no components whose sizes
8400 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8401 true, gives an error message if the resulting type's size is over
8404 static struct type *
8405 to_fixed_array_type (struct type *type0, struct value *dval,
8408 struct type *index_type_desc;
8409 struct type *result;
8410 int constrained_packed_array_p;
8411 static const char *xa_suffix = "___XA";
8413 type0 = ada_check_typedef (type0);
8414 if (type0->is_fixed_instance ())
8417 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8418 if (constrained_packed_array_p)
8420 type0 = decode_constrained_packed_array_type (type0);
8421 if (type0 == nullptr)
8422 error (_("could not decode constrained packed array type"));
8425 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8427 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8428 encoding suffixed with 'P' may still be generated. If so,
8429 it should be used to find the XA type. */
8431 if (index_type_desc == NULL)
8433 const char *type_name = ada_type_name (type0);
8435 if (type_name != NULL)
8437 const int len = strlen (type_name);
8438 char *name = (char *) alloca (len + strlen (xa_suffix));
8440 if (type_name[len - 1] == 'P')
8442 strcpy (name, type_name);
8443 strcpy (name + len - 1, xa_suffix);
8444 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8449 ada_fixup_array_indexes_type (index_type_desc);
8450 if (index_type_desc != NULL
8451 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8453 /* Ignore this ___XA parallel type, as it does not bring any
8454 useful information. This allows us to avoid creating fixed
8455 versions of the array's index types, which would be identical
8456 to the original ones. This, in turn, can also help avoid
8457 the creation of fixed versions of the array itself. */
8458 index_type_desc = NULL;
8461 if (index_type_desc == NULL)
8463 struct type *elt_type0 = ada_check_typedef (type0->target_type ());
8465 /* NOTE: elt_type---the fixed version of elt_type0---should never
8466 depend on the contents of the array in properly constructed
8468 /* Create a fixed version of the array element type.
8469 We're not providing the address of an element here,
8470 and thus the actual object value cannot be inspected to do
8471 the conversion. This should not be a problem, since arrays of
8472 unconstrained objects are not allowed. In particular, all
8473 the elements of an array of a tagged type should all be of
8474 the same type specified in the debugging info. No need to
8475 consult the object tag. */
8476 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8478 /* Make sure we always create a new array type when dealing with
8479 packed array types, since we're going to fix-up the array
8480 type length and element bitsize a little further down. */
8481 if (elt_type0 == elt_type && !constrained_packed_array_p)
8484 result = create_array_type (alloc_type_copy (type0),
8485 elt_type, type0->index_type ());
8490 struct type *elt_type0;
8493 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8494 elt_type0 = elt_type0->target_type ();
8496 /* NOTE: result---the fixed version of elt_type0---should never
8497 depend on the contents of the array in properly constructed
8499 /* Create a fixed version of the array element type.
8500 We're not providing the address of an element here,
8501 and thus the actual object value cannot be inspected to do
8502 the conversion. This should not be a problem, since arrays of
8503 unconstrained objects are not allowed. In particular, all
8504 the elements of an array of a tagged type should all be of
8505 the same type specified in the debugging info. No need to
8506 consult the object tag. */
8508 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8511 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8513 struct type *range_type =
8514 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8516 result = create_array_type (alloc_type_copy (elt_type0),
8517 result, range_type);
8518 elt_type0 = elt_type0->target_type ();
8522 /* We want to preserve the type name. This can be useful when
8523 trying to get the type name of a value that has already been
8524 printed (for instance, if the user did "print VAR; whatis $". */
8525 result->set_name (type0->name ());
8527 if (constrained_packed_array_p)
8529 /* So far, the resulting type has been created as if the original
8530 type was a regular (non-packed) array type. As a result, the
8531 bitsize of the array elements needs to be set again, and the array
8532 length needs to be recomputed based on that bitsize. */
8533 int len = result->length () / result->target_type ()->length ();
8534 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8536 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8537 result->set_length (len * elt_bitsize / HOST_CHAR_BIT);
8538 if (result->length () * HOST_CHAR_BIT < len * elt_bitsize)
8539 result->set_length (result->length () + 1);
8542 result->set_is_fixed_instance (true);
8547 /* A standard type (containing no dynamically sized components)
8548 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8549 DVAL describes a record containing any discriminants used in TYPE0,
8550 and may be NULL if there are none, or if the object of type TYPE at
8551 ADDRESS or in VALADDR contains these discriminants.
8553 If CHECK_TAG is not null, in the case of tagged types, this function
8554 attempts to locate the object's tag and use it to compute the actual
8555 type. However, when ADDRESS is null, we cannot use it to determine the
8556 location of the tag, and therefore compute the tagged type's actual type.
8557 So we return the tagged type without consulting the tag. */
8559 static struct type *
8560 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8561 CORE_ADDR address, struct value *dval, int check_tag)
8563 type = ada_check_typedef (type);
8565 /* Only un-fixed types need to be handled here. */
8566 if (!HAVE_GNAT_AUX_INFO (type))
8569 switch (type->code ())
8573 case TYPE_CODE_STRUCT:
8575 struct type *static_type = to_static_fixed_type (type);
8576 struct type *fixed_record_type =
8577 to_fixed_record_type (type, valaddr, address, NULL);
8579 /* If STATIC_TYPE is a tagged type and we know the object's address,
8580 then we can determine its tag, and compute the object's actual
8581 type from there. Note that we have to use the fixed record
8582 type (the parent part of the record may have dynamic fields
8583 and the way the location of _tag is expressed may depend on
8586 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8589 value_tag_from_contents_and_address
8593 struct type *real_type = type_from_tag (tag);
8595 value_from_contents_and_address (fixed_record_type,
8598 fixed_record_type = value_type (obj);
8599 if (real_type != NULL)
8600 return to_fixed_record_type
8602 value_address (ada_tag_value_at_base_address (obj)), NULL);
8605 /* Check to see if there is a parallel ___XVZ variable.
8606 If there is, then it provides the actual size of our type. */
8607 else if (ada_type_name (fixed_record_type) != NULL)
8609 const char *name = ada_type_name (fixed_record_type);
8611 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8612 bool xvz_found = false;
8615 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8618 xvz_found = get_int_var_value (xvz_name, size);
8620 catch (const gdb_exception_error &except)
8622 /* We found the variable, but somehow failed to read
8623 its value. Rethrow the same error, but with a little
8624 bit more information, to help the user understand
8625 what went wrong (Eg: the variable might have been
8627 throw_error (except.error,
8628 _("unable to read value of %s (%s)"),
8629 xvz_name, except.what ());
8632 if (xvz_found && fixed_record_type->length () != size)
8634 fixed_record_type = copy_type (fixed_record_type);
8635 fixed_record_type->set_length (size);
8637 /* The FIXED_RECORD_TYPE may have be a stub. We have
8638 observed this when the debugging info is STABS, and
8639 apparently it is something that is hard to fix.
8641 In practice, we don't need the actual type definition
8642 at all, because the presence of the XVZ variable allows us
8643 to assume that there must be a XVS type as well, which we
8644 should be able to use later, when we need the actual type
8647 In the meantime, pretend that the "fixed" type we are
8648 returning is NOT a stub, because this can cause trouble
8649 when using this type to create new types targeting it.
8650 Indeed, the associated creation routines often check
8651 whether the target type is a stub and will try to replace
8652 it, thus using a type with the wrong size. This, in turn,
8653 might cause the new type to have the wrong size too.
8654 Consider the case of an array, for instance, where the size
8655 of the array is computed from the number of elements in
8656 our array multiplied by the size of its element. */
8657 fixed_record_type->set_is_stub (false);
8660 return fixed_record_type;
8662 case TYPE_CODE_ARRAY:
8663 return to_fixed_array_type (type, dval, 1);
8664 case TYPE_CODE_UNION:
8668 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8672 /* The same as ada_to_fixed_type_1, except that it preserves the type
8673 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8675 The typedef layer needs be preserved in order to differentiate between
8676 arrays and array pointers when both types are implemented using the same
8677 fat pointer. In the array pointer case, the pointer is encoded as
8678 a typedef of the pointer type. For instance, considering:
8680 type String_Access is access String;
8681 S1 : String_Access := null;
8683 To the debugger, S1 is defined as a typedef of type String. But
8684 to the user, it is a pointer. So if the user tries to print S1,
8685 we should not dereference the array, but print the array address
8688 If we didn't preserve the typedef layer, we would lose the fact that
8689 the type is to be presented as a pointer (needs de-reference before
8690 being printed). And we would also use the source-level type name. */
8693 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8694 CORE_ADDR address, struct value *dval, int check_tag)
8697 struct type *fixed_type =
8698 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8700 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8701 then preserve the typedef layer.
8703 Implementation note: We can only check the main-type portion of
8704 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8705 from TYPE now returns a type that has the same instance flags
8706 as TYPE. For instance, if TYPE is a "typedef const", and its
8707 target type is a "struct", then the typedef elimination will return
8708 a "const" version of the target type. See check_typedef for more
8709 details about how the typedef layer elimination is done.
8711 brobecker/2010-11-19: It seems to me that the only case where it is
8712 useful to preserve the typedef layer is when dealing with fat pointers.
8713 Perhaps, we could add a check for that and preserve the typedef layer
8714 only in that situation. But this seems unnecessary so far, probably
8715 because we call check_typedef/ada_check_typedef pretty much everywhere.
8717 if (type->code () == TYPE_CODE_TYPEDEF
8718 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8719 == TYPE_MAIN_TYPE (fixed_type)))
8725 /* A standard (static-sized) type corresponding as well as possible to
8726 TYPE0, but based on no runtime data. */
8728 static struct type *
8729 to_static_fixed_type (struct type *type0)
8736 if (type0->is_fixed_instance ())
8739 type0 = ada_check_typedef (type0);
8741 switch (type0->code ())
8745 case TYPE_CODE_STRUCT:
8746 type = dynamic_template_type (type0);
8748 return template_to_static_fixed_type (type);
8750 return template_to_static_fixed_type (type0);
8751 case TYPE_CODE_UNION:
8752 type = ada_find_parallel_type (type0, "___XVU");
8754 return template_to_static_fixed_type (type);
8756 return template_to_static_fixed_type (type0);
8760 /* A static approximation of TYPE with all type wrappers removed. */
8762 static struct type *
8763 static_unwrap_type (struct type *type)
8765 if (ada_is_aligner_type (type))
8767 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8768 if (ada_type_name (type1) == NULL)
8769 type1->set_name (ada_type_name (type));
8771 return static_unwrap_type (type1);
8775 struct type *raw_real_type = ada_get_base_type (type);
8777 if (raw_real_type == type)
8780 return to_static_fixed_type (raw_real_type);
8784 /* In some cases, incomplete and private types require
8785 cross-references that are not resolved as records (for example,
8787 type FooP is access Foo;
8789 type Foo is array ...;
8790 ). In these cases, since there is no mechanism for producing
8791 cross-references to such types, we instead substitute for FooP a
8792 stub enumeration type that is nowhere resolved, and whose tag is
8793 the name of the actual type. Call these types "non-record stubs". */
8795 /* A type equivalent to TYPE that is not a non-record stub, if one
8796 exists, otherwise TYPE. */
8799 ada_check_typedef (struct type *type)
8804 /* If our type is an access to an unconstrained array, which is encoded
8805 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8806 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8807 what allows us to distinguish between fat pointers that represent
8808 array types, and fat pointers that represent array access types
8809 (in both cases, the compiler implements them as fat pointers). */
8810 if (ada_is_access_to_unconstrained_array (type))
8813 type = check_typedef (type);
8814 if (type == NULL || type->code () != TYPE_CODE_ENUM
8815 || !type->is_stub ()
8816 || type->name () == NULL)
8820 const char *name = type->name ();
8821 struct type *type1 = ada_find_any_type (name);
8826 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8827 stubs pointing to arrays, as we don't create symbols for array
8828 types, only for the typedef-to-array types). If that's the case,
8829 strip the typedef layer. */
8830 if (type1->code () == TYPE_CODE_TYPEDEF)
8831 type1 = ada_check_typedef (type1);
8837 /* A value representing the data at VALADDR/ADDRESS as described by
8838 type TYPE0, but with a standard (static-sized) type that correctly
8839 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8840 type, then return VAL0 [this feature is simply to avoid redundant
8841 creation of struct values]. */
8843 static struct value *
8844 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8847 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8849 if (type == type0 && val0 != NULL)
8852 if (VALUE_LVAL (val0) != lval_memory)
8854 /* Our value does not live in memory; it could be a convenience
8855 variable, for instance. Create a not_lval value using val0's
8857 return value_from_contents (type, value_contents (val0).data ());
8860 return value_from_contents_and_address (type, 0, address);
8863 /* A value representing VAL, but with a standard (static-sized) type
8864 that correctly describes it. Does not necessarily create a new
8868 ada_to_fixed_value (struct value *val)
8870 val = unwrap_value (val);
8871 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8878 /* Table mapping attribute numbers to names.
8879 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8881 static const char * const attribute_names[] = {
8899 ada_attribute_name (enum exp_opcode n)
8901 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8902 return attribute_names[n - OP_ATR_FIRST + 1];
8904 return attribute_names[0];
8907 /* Evaluate the 'POS attribute applied to ARG. */
8910 pos_atr (struct value *arg)
8912 struct value *val = coerce_ref (arg);
8913 struct type *type = value_type (val);
8915 if (!discrete_type_p (type))
8916 error (_("'POS only defined on discrete types"));
8918 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8919 if (!result.has_value ())
8920 error (_("enumeration value is invalid: can't find 'POS"));
8926 ada_pos_atr (struct type *expect_type,
8927 struct expression *exp,
8928 enum noside noside, enum exp_opcode op,
8931 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8933 return value_zero (type, not_lval);
8934 return value_from_longest (type, pos_atr (arg));
8937 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8939 static struct value *
8940 val_atr (struct type *type, LONGEST val)
8942 gdb_assert (discrete_type_p (type));
8943 if (type->code () == TYPE_CODE_RANGE)
8944 type = type->target_type ();
8945 if (type->code () == TYPE_CODE_ENUM)
8947 if (val < 0 || val >= type->num_fields ())
8948 error (_("argument to 'VAL out of range"));
8949 val = type->field (val).loc_enumval ();
8951 return value_from_longest (type, val);
8955 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8958 return value_zero (type, not_lval);
8960 if (!discrete_type_p (type))
8961 error (_("'VAL only defined on discrete types"));
8962 if (!integer_type_p (value_type (arg)))
8963 error (_("'VAL requires integral argument"));
8965 return val_atr (type, value_as_long (arg));
8971 /* True if TYPE appears to be an Ada character type.
8972 [At the moment, this is true only for Character and Wide_Character;
8973 It is a heuristic test that could stand improvement]. */
8976 ada_is_character_type (struct type *type)
8980 /* If the type code says it's a character, then assume it really is,
8981 and don't check any further. */
8982 if (type->code () == TYPE_CODE_CHAR)
8985 /* Otherwise, assume it's a character type iff it is a discrete type
8986 with a known character type name. */
8987 name = ada_type_name (type);
8988 return (name != NULL
8989 && (type->code () == TYPE_CODE_INT
8990 || type->code () == TYPE_CODE_RANGE)
8991 && (strcmp (name, "character") == 0
8992 || strcmp (name, "wide_character") == 0
8993 || strcmp (name, "wide_wide_character") == 0
8994 || strcmp (name, "unsigned char") == 0));
8997 /* True if TYPE appears to be an Ada string type. */
9000 ada_is_string_type (struct type *type)
9002 type = ada_check_typedef (type);
9004 && type->code () != TYPE_CODE_PTR
9005 && (ada_is_simple_array_type (type)
9006 || ada_is_array_descriptor_type (type))
9007 && ada_array_arity (type) == 1)
9009 struct type *elttype = ada_array_element_type (type, 1);
9011 return ada_is_character_type (elttype);
9017 /* The compiler sometimes provides a parallel XVS type for a given
9018 PAD type. Normally, it is safe to follow the PAD type directly,
9019 but older versions of the compiler have a bug that causes the offset
9020 of its "F" field to be wrong. Following that field in that case
9021 would lead to incorrect results, but this can be worked around
9022 by ignoring the PAD type and using the associated XVS type instead.
9024 Set to True if the debugger should trust the contents of PAD types.
9025 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9026 static bool trust_pad_over_xvs = true;
9028 /* True if TYPE is a struct type introduced by the compiler to force the
9029 alignment of a value. Such types have a single field with a
9030 distinctive name. */
9033 ada_is_aligner_type (struct type *type)
9035 type = ada_check_typedef (type);
9037 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9040 return (type->code () == TYPE_CODE_STRUCT
9041 && type->num_fields () == 1
9042 && strcmp (type->field (0).name (), "F") == 0);
9045 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9046 the parallel type. */
9049 ada_get_base_type (struct type *raw_type)
9051 struct type *real_type_namer;
9052 struct type *raw_real_type;
9054 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9057 if (ada_is_aligner_type (raw_type))
9058 /* The encoding specifies that we should always use the aligner type.
9059 So, even if this aligner type has an associated XVS type, we should
9062 According to the compiler gurus, an XVS type parallel to an aligner
9063 type may exist because of a stabs limitation. In stabs, aligner
9064 types are empty because the field has a variable-sized type, and
9065 thus cannot actually be used as an aligner type. As a result,
9066 we need the associated parallel XVS type to decode the type.
9067 Since the policy in the compiler is to not change the internal
9068 representation based on the debugging info format, we sometimes
9069 end up having a redundant XVS type parallel to the aligner type. */
9072 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9073 if (real_type_namer == NULL
9074 || real_type_namer->code () != TYPE_CODE_STRUCT
9075 || real_type_namer->num_fields () != 1)
9078 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9080 /* This is an older encoding form where the base type needs to be
9081 looked up by name. We prefer the newer encoding because it is
9083 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9084 if (raw_real_type == NULL)
9087 return raw_real_type;
9090 /* The field in our XVS type is a reference to the base type. */
9091 return real_type_namer->field (0).type ()->target_type ();
9094 /* The type of value designated by TYPE, with all aligners removed. */
9097 ada_aligned_type (struct type *type)
9099 if (ada_is_aligner_type (type))
9100 return ada_aligned_type (type->field (0).type ());
9102 return ada_get_base_type (type);
9106 /* The address of the aligned value in an object at address VALADDR
9107 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9110 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9112 if (ada_is_aligner_type (type))
9113 return ada_aligned_value_addr
9114 (type->field (0).type (),
9115 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9122 /* The printed representation of an enumeration literal with encoded
9123 name NAME. The value is good to the next call of ada_enum_name. */
9125 ada_enum_name (const char *name)
9127 static std::string storage;
9130 /* First, unqualify the enumeration name:
9131 1. Search for the last '.' character. If we find one, then skip
9132 all the preceding characters, the unqualified name starts
9133 right after that dot.
9134 2. Otherwise, we may be debugging on a target where the compiler
9135 translates dots into "__". Search forward for double underscores,
9136 but stop searching when we hit an overloading suffix, which is
9137 of the form "__" followed by digits. */
9139 tmp = strrchr (name, '.');
9144 while ((tmp = strstr (name, "__")) != NULL)
9146 if (isdigit (tmp[2]))
9157 if (name[1] == 'U' || name[1] == 'W')
9160 if (name[1] == 'W' && name[2] == 'W')
9162 /* Also handle the QWW case. */
9165 if (sscanf (name + offset, "%x", &v) != 1)
9168 else if (((name[1] >= '0' && name[1] <= '9')
9169 || (name[1] >= 'a' && name[1] <= 'z'))
9172 storage = string_printf ("'%c'", name[1]);
9173 return storage.c_str ();
9178 if (isascii (v) && isprint (v))
9179 storage = string_printf ("'%c'", v);
9180 else if (name[1] == 'U')
9181 storage = string_printf ("'[\"%02x\"]'", v);
9182 else if (name[2] != 'W')
9183 storage = string_printf ("'[\"%04x\"]'", v);
9185 storage = string_printf ("'[\"%06x\"]'", v);
9187 return storage.c_str ();
9191 tmp = strstr (name, "__");
9193 tmp = strstr (name, "$");
9196 storage = std::string (name, tmp - name);
9197 return storage.c_str ();
9204 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9207 static struct value *
9208 unwrap_value (struct value *val)
9210 struct type *type = ada_check_typedef (value_type (val));
9212 if (ada_is_aligner_type (type))
9214 struct value *v = ada_value_struct_elt (val, "F", 0);
9215 struct type *val_type = ada_check_typedef (value_type (v));
9217 if (ada_type_name (val_type) == NULL)
9218 val_type->set_name (ada_type_name (type));
9220 return unwrap_value (v);
9224 struct type *raw_real_type =
9225 ada_check_typedef (ada_get_base_type (type));
9227 /* If there is no parallel XVS or XVE type, then the value is
9228 already unwrapped. Return it without further modification. */
9229 if ((type == raw_real_type)
9230 && ada_find_parallel_type (type, "___XVE") == NULL)
9234 coerce_unspec_val_to_type
9235 (val, ada_to_fixed_type (raw_real_type, 0,
9236 value_address (val),
9241 /* Given two array types T1 and T2, return nonzero iff both arrays
9242 contain the same number of elements. */
9245 ada_same_array_size_p (struct type *t1, struct type *t2)
9247 LONGEST lo1, hi1, lo2, hi2;
9249 /* Get the array bounds in order to verify that the size of
9250 the two arrays match. */
9251 if (!get_array_bounds (t1, &lo1, &hi1)
9252 || !get_array_bounds (t2, &lo2, &hi2))
9253 error (_("unable to determine array bounds"));
9255 /* To make things easier for size comparison, normalize a bit
9256 the case of empty arrays by making sure that the difference
9257 between upper bound and lower bound is always -1. */
9263 return (hi1 - lo1 == hi2 - lo2);
9266 /* Assuming that VAL is an array of integrals, and TYPE represents
9267 an array with the same number of elements, but with wider integral
9268 elements, return an array "casted" to TYPE. In practice, this
9269 means that the returned array is built by casting each element
9270 of the original array into TYPE's (wider) element type. */
9272 static struct value *
9273 ada_promote_array_of_integrals (struct type *type, struct value *val)
9275 struct type *elt_type = type->target_type ();
9279 /* Verify that both val and type are arrays of scalars, and
9280 that the size of val's elements is smaller than the size
9281 of type's element. */
9282 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9283 gdb_assert (is_integral_type (type->target_type ()));
9284 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9285 gdb_assert (is_integral_type (value_type (val)->target_type ()));
9286 gdb_assert (type->target_type ()->length ()
9287 > value_type (val)->target_type ()->length ());
9289 if (!get_array_bounds (type, &lo, &hi))
9290 error (_("unable to determine array bounds"));
9292 value *res = allocate_value (type);
9293 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9295 /* Promote each array element. */
9296 for (i = 0; i < hi - lo + 1; i++)
9298 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9299 int elt_len = elt_type->length ();
9301 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9307 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9308 return the converted value. */
9310 static struct value *
9311 coerce_for_assign (struct type *type, struct value *val)
9313 struct type *type2 = value_type (val);
9318 type2 = ada_check_typedef (type2);
9319 type = ada_check_typedef (type);
9321 if (type2->code () == TYPE_CODE_PTR
9322 && type->code () == TYPE_CODE_ARRAY)
9324 val = ada_value_ind (val);
9325 type2 = value_type (val);
9328 if (type2->code () == TYPE_CODE_ARRAY
9329 && type->code () == TYPE_CODE_ARRAY)
9331 if (!ada_same_array_size_p (type, type2))
9332 error (_("cannot assign arrays of different length"));
9334 if (is_integral_type (type->target_type ())
9335 && is_integral_type (type2->target_type ())
9336 && type2->target_type ()->length () < type->target_type ()->length ())
9338 /* Allow implicit promotion of the array elements to
9340 return ada_promote_array_of_integrals (type, val);
9343 if (type2->target_type ()->length () != type->target_type ()->length ())
9344 error (_("Incompatible types in assignment"));
9345 deprecated_set_value_type (val, type);
9350 static struct value *
9351 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9354 struct type *type1, *type2;
9357 arg1 = coerce_ref (arg1);
9358 arg2 = coerce_ref (arg2);
9359 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9360 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9362 if (type1->code () != TYPE_CODE_INT
9363 || type2->code () != TYPE_CODE_INT)
9364 return value_binop (arg1, arg2, op);
9373 return value_binop (arg1, arg2, op);
9376 v2 = value_as_long (arg2);
9380 if (op == BINOP_MOD)
9382 else if (op == BINOP_DIV)
9386 gdb_assert (op == BINOP_REM);
9390 error (_("second operand of %s must not be zero."), name);
9393 if (type1->is_unsigned () || op == BINOP_MOD)
9394 return value_binop (arg1, arg2, op);
9396 v1 = value_as_long (arg1);
9401 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9402 v += v > 0 ? -1 : 1;
9410 /* Should not reach this point. */
9414 val = allocate_value (type1);
9415 store_unsigned_integer (value_contents_raw (val).data (),
9416 value_type (val)->length (),
9417 type_byte_order (type1), v);
9422 ada_value_equal (struct value *arg1, struct value *arg2)
9424 if (ada_is_direct_array_type (value_type (arg1))
9425 || ada_is_direct_array_type (value_type (arg2)))
9427 struct type *arg1_type, *arg2_type;
9429 /* Automatically dereference any array reference before
9430 we attempt to perform the comparison. */
9431 arg1 = ada_coerce_ref (arg1);
9432 arg2 = ada_coerce_ref (arg2);
9434 arg1 = ada_coerce_to_simple_array (arg1);
9435 arg2 = ada_coerce_to_simple_array (arg2);
9437 arg1_type = ada_check_typedef (value_type (arg1));
9438 arg2_type = ada_check_typedef (value_type (arg2));
9440 if (arg1_type->code () != TYPE_CODE_ARRAY
9441 || arg2_type->code () != TYPE_CODE_ARRAY)
9442 error (_("Attempt to compare array with non-array"));
9443 /* FIXME: The following works only for types whose
9444 representations use all bits (no padding or undefined bits)
9445 and do not have user-defined equality. */
9446 return (arg1_type->length () == arg2_type->length ()
9447 && memcmp (value_contents (arg1).data (),
9448 value_contents (arg2).data (),
9449 arg1_type->length ()) == 0);
9451 return value_equal (arg1, arg2);
9458 check_objfile (const std::unique_ptr<ada_component> &comp,
9459 struct objfile *objfile)
9461 return comp->uses_objfile (objfile);
9464 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9465 component of LHS (a simple array or a record). Does not modify the
9466 inferior's memory, nor does it modify LHS (unless LHS ==
9470 assign_component (struct value *container, struct value *lhs, LONGEST index,
9471 struct expression *exp, operation_up &arg)
9473 scoped_value_mark mark;
9476 struct type *lhs_type = check_typedef (value_type (lhs));
9478 if (lhs_type->code () == TYPE_CODE_ARRAY)
9480 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9481 struct value *index_val = value_from_longest (index_type, index);
9483 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9487 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9488 elt = ada_to_fixed_value (elt);
9491 ada_aggregate_operation *ag_op
9492 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9493 if (ag_op != nullptr)
9494 ag_op->assign_aggregate (container, elt, exp);
9496 value_assign_to_component (container, elt,
9497 arg->evaluate (nullptr, exp,
9502 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9504 for (const auto &item : m_components)
9505 if (item->uses_objfile (objfile))
9511 ada_aggregate_component::dump (ui_file *stream, int depth)
9513 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
9514 for (const auto &item : m_components)
9515 item->dump (stream, depth + 1);
9519 ada_aggregate_component::assign (struct value *container,
9520 struct value *lhs, struct expression *exp,
9521 std::vector<LONGEST> &indices,
9522 LONGEST low, LONGEST high)
9524 for (auto &item : m_components)
9525 item->assign (container, lhs, exp, indices, low, high);
9528 /* See ada-exp.h. */
9531 ada_aggregate_operation::assign_aggregate (struct value *container,
9533 struct expression *exp)
9535 struct type *lhs_type;
9536 LONGEST low_index, high_index;
9538 container = ada_coerce_ref (container);
9539 if (ada_is_direct_array_type (value_type (container)))
9540 container = ada_coerce_to_simple_array (container);
9541 lhs = ada_coerce_ref (lhs);
9542 if (!deprecated_value_modifiable (lhs))
9543 error (_("Left operand of assignment is not a modifiable lvalue."));
9545 lhs_type = check_typedef (value_type (lhs));
9546 if (ada_is_direct_array_type (lhs_type))
9548 lhs = ada_coerce_to_simple_array (lhs);
9549 lhs_type = check_typedef (value_type (lhs));
9550 low_index = lhs_type->bounds ()->low.const_val ();
9551 high_index = lhs_type->bounds ()->high.const_val ();
9553 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9556 high_index = num_visible_fields (lhs_type) - 1;
9559 error (_("Left-hand side must be array or record."));
9561 std::vector<LONGEST> indices (4);
9562 indices[0] = indices[1] = low_index - 1;
9563 indices[2] = indices[3] = high_index + 1;
9565 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9566 low_index, high_index);
9572 ada_positional_component::uses_objfile (struct objfile *objfile)
9574 return m_op->uses_objfile (objfile);
9578 ada_positional_component::dump (ui_file *stream, int depth)
9580 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9581 depth, "", m_index);
9582 m_op->dump (stream, depth + 1);
9585 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9586 construct, given that the positions are relative to lower bound
9587 LOW, where HIGH is the upper bound. Record the position in
9588 INDICES. CONTAINER is as for assign_aggregate. */
9590 ada_positional_component::assign (struct value *container,
9591 struct value *lhs, struct expression *exp,
9592 std::vector<LONGEST> &indices,
9593 LONGEST low, LONGEST high)
9595 LONGEST ind = m_index + low;
9597 if (ind - 1 == high)
9598 warning (_("Extra components in aggregate ignored."));
9601 add_component_interval (ind, ind, indices);
9602 assign_component (container, lhs, ind, exp, m_op);
9607 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9609 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9613 ada_discrete_range_association::dump (ui_file *stream, int depth)
9615 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
9616 m_low->dump (stream, depth + 1);
9617 m_high->dump (stream, depth + 1);
9621 ada_discrete_range_association::assign (struct value *container,
9623 struct expression *exp,
9624 std::vector<LONGEST> &indices,
9625 LONGEST low, LONGEST high,
9628 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9629 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9631 if (lower <= upper && (lower < low || upper > high))
9632 error (_("Index in component association out of bounds."));
9634 add_component_interval (lower, upper, indices);
9635 while (lower <= upper)
9637 assign_component (container, lhs, lower, exp, op);
9643 ada_name_association::uses_objfile (struct objfile *objfile)
9645 return m_val->uses_objfile (objfile);
9649 ada_name_association::dump (ui_file *stream, int depth)
9651 gdb_printf (stream, _("%*sName:\n"), depth, "");
9652 m_val->dump (stream, depth + 1);
9656 ada_name_association::assign (struct value *container,
9658 struct expression *exp,
9659 std::vector<LONGEST> &indices,
9660 LONGEST low, LONGEST high,
9665 if (ada_is_direct_array_type (value_type (lhs)))
9666 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9670 ada_string_operation *strop
9671 = dynamic_cast<ada_string_operation *> (m_val.get ());
9674 if (strop != nullptr)
9675 name = strop->get_name ();
9678 ada_var_value_operation *vvo
9679 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9681 error (_("Invalid record component association."));
9682 name = vvo->get_symbol ()->natural_name ();
9686 if (! find_struct_field (name, value_type (lhs), 0,
9687 NULL, NULL, NULL, NULL, &index))
9688 error (_("Unknown component name: %s."), name);
9691 add_component_interval (index, index, indices);
9692 assign_component (container, lhs, index, exp, op);
9696 ada_choices_component::uses_objfile (struct objfile *objfile)
9698 if (m_op->uses_objfile (objfile))
9700 for (const auto &item : m_assocs)
9701 if (item->uses_objfile (objfile))
9707 ada_choices_component::dump (ui_file *stream, int depth)
9709 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
9710 m_op->dump (stream, depth + 1);
9711 for (const auto &item : m_assocs)
9712 item->dump (stream, depth + 1);
9715 /* Assign into the components of LHS indexed by the OP_CHOICES
9716 construct at *POS, updating *POS past the construct, given that
9717 the allowable indices are LOW..HIGH. Record the indices assigned
9718 to in INDICES. CONTAINER is as for assign_aggregate. */
9720 ada_choices_component::assign (struct value *container,
9721 struct value *lhs, struct expression *exp,
9722 std::vector<LONGEST> &indices,
9723 LONGEST low, LONGEST high)
9725 for (auto &item : m_assocs)
9726 item->assign (container, lhs, exp, indices, low, high, m_op);
9730 ada_others_component::uses_objfile (struct objfile *objfile)
9732 return m_op->uses_objfile (objfile);
9736 ada_others_component::dump (ui_file *stream, int depth)
9738 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
9739 m_op->dump (stream, depth + 1);
9742 /* Assign the value of the expression in the OP_OTHERS construct in
9743 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9744 have not been previously assigned. The index intervals already assigned
9745 are in INDICES. CONTAINER is as for assign_aggregate. */
9747 ada_others_component::assign (struct value *container,
9748 struct value *lhs, struct expression *exp,
9749 std::vector<LONGEST> &indices,
9750 LONGEST low, LONGEST high)
9752 int num_indices = indices.size ();
9753 for (int i = 0; i < num_indices - 2; i += 2)
9755 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9756 assign_component (container, lhs, ind, exp, m_op);
9761 ada_assign_operation::evaluate (struct type *expect_type,
9762 struct expression *exp,
9765 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9767 ada_aggregate_operation *ag_op
9768 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9769 if (ag_op != nullptr)
9771 if (noside != EVAL_NORMAL)
9774 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9775 return ada_value_assign (arg1, arg1);
9777 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9778 except if the lhs of our assignment is a convenience variable.
9779 In the case of assigning to a convenience variable, the lhs
9780 should be exactly the result of the evaluation of the rhs. */
9781 struct type *type = value_type (arg1);
9782 if (VALUE_LVAL (arg1) == lval_internalvar)
9784 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9785 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9787 if (VALUE_LVAL (arg1) == lval_internalvar)
9792 arg2 = coerce_for_assign (value_type (arg1), arg2);
9793 return ada_value_assign (arg1, arg2);
9796 } /* namespace expr */
9798 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9799 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9802 add_component_interval (LONGEST low, LONGEST high,
9803 std::vector<LONGEST> &indices)
9807 int size = indices.size ();
9808 for (i = 0; i < size; i += 2) {
9809 if (high >= indices[i] && low <= indices[i + 1])
9813 for (kh = i + 2; kh < size; kh += 2)
9814 if (high < indices[kh])
9816 if (low < indices[i])
9818 indices[i + 1] = indices[kh - 1];
9819 if (high > indices[i + 1])
9820 indices[i + 1] = high;
9821 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9822 indices.resize (kh - i - 2);
9825 else if (high < indices[i])
9829 indices.resize (indices.size () + 2);
9830 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9831 indices[j] = indices[j - 2];
9833 indices[i + 1] = high;
9836 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9839 static struct value *
9840 ada_value_cast (struct type *type, struct value *arg2)
9842 if (type == ada_check_typedef (value_type (arg2)))
9845 return value_cast (type, arg2);
9848 /* Evaluating Ada expressions, and printing their result.
9849 ------------------------------------------------------
9854 We usually evaluate an Ada expression in order to print its value.
9855 We also evaluate an expression in order to print its type, which
9856 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9857 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9858 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9859 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9862 Evaluating expressions is a little more complicated for Ada entities
9863 than it is for entities in languages such as C. The main reason for
9864 this is that Ada provides types whose definition might be dynamic.
9865 One example of such types is variant records. Or another example
9866 would be an array whose bounds can only be known at run time.
9868 The following description is a general guide as to what should be
9869 done (and what should NOT be done) in order to evaluate an expression
9870 involving such types, and when. This does not cover how the semantic
9871 information is encoded by GNAT as this is covered separatly. For the
9872 document used as the reference for the GNAT encoding, see exp_dbug.ads
9873 in the GNAT sources.
9875 Ideally, we should embed each part of this description next to its
9876 associated code. Unfortunately, the amount of code is so vast right
9877 now that it's hard to see whether the code handling a particular
9878 situation might be duplicated or not. One day, when the code is
9879 cleaned up, this guide might become redundant with the comments
9880 inserted in the code, and we might want to remove it.
9882 2. ``Fixing'' an Entity, the Simple Case:
9883 -----------------------------------------
9885 When evaluating Ada expressions, the tricky issue is that they may
9886 reference entities whose type contents and size are not statically
9887 known. Consider for instance a variant record:
9889 type Rec (Empty : Boolean := True) is record
9892 when False => Value : Integer;
9895 Yes : Rec := (Empty => False, Value => 1);
9896 No : Rec := (empty => True);
9898 The size and contents of that record depends on the value of the
9899 descriminant (Rec.Empty). At this point, neither the debugging
9900 information nor the associated type structure in GDB are able to
9901 express such dynamic types. So what the debugger does is to create
9902 "fixed" versions of the type that applies to the specific object.
9903 We also informally refer to this operation as "fixing" an object,
9904 which means creating its associated fixed type.
9906 Example: when printing the value of variable "Yes" above, its fixed
9907 type would look like this:
9914 On the other hand, if we printed the value of "No", its fixed type
9921 Things become a little more complicated when trying to fix an entity
9922 with a dynamic type that directly contains another dynamic type,
9923 such as an array of variant records, for instance. There are
9924 two possible cases: Arrays, and records.
9926 3. ``Fixing'' Arrays:
9927 ---------------------
9929 The type structure in GDB describes an array in terms of its bounds,
9930 and the type of its elements. By design, all elements in the array
9931 have the same type and we cannot represent an array of variant elements
9932 using the current type structure in GDB. When fixing an array,
9933 we cannot fix the array element, as we would potentially need one
9934 fixed type per element of the array. As a result, the best we can do
9935 when fixing an array is to produce an array whose bounds and size
9936 are correct (allowing us to read it from memory), but without having
9937 touched its element type. Fixing each element will be done later,
9938 when (if) necessary.
9940 Arrays are a little simpler to handle than records, because the same
9941 amount of memory is allocated for each element of the array, even if
9942 the amount of space actually used by each element differs from element
9943 to element. Consider for instance the following array of type Rec:
9945 type Rec_Array is array (1 .. 2) of Rec;
9947 The actual amount of memory occupied by each element might be different
9948 from element to element, depending on the value of their discriminant.
9949 But the amount of space reserved for each element in the array remains
9950 fixed regardless. So we simply need to compute that size using
9951 the debugging information available, from which we can then determine
9952 the array size (we multiply the number of elements of the array by
9953 the size of each element).
9955 The simplest case is when we have an array of a constrained element
9956 type. For instance, consider the following type declarations:
9958 type Bounded_String (Max_Size : Integer) is
9960 Buffer : String (1 .. Max_Size);
9962 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9964 In this case, the compiler describes the array as an array of
9965 variable-size elements (identified by its XVS suffix) for which
9966 the size can be read in the parallel XVZ variable.
9968 In the case of an array of an unconstrained element type, the compiler
9969 wraps the array element inside a private PAD type. This type should not
9970 be shown to the user, and must be "unwrap"'ed before printing. Note
9971 that we also use the adjective "aligner" in our code to designate
9972 these wrapper types.
9974 In some cases, the size allocated for each element is statically
9975 known. In that case, the PAD type already has the correct size,
9976 and the array element should remain unfixed.
9978 But there are cases when this size is not statically known.
9979 For instance, assuming that "Five" is an integer variable:
9981 type Dynamic is array (1 .. Five) of Integer;
9982 type Wrapper (Has_Length : Boolean := False) is record
9985 when True => Length : Integer;
9989 type Wrapper_Array is array (1 .. 2) of Wrapper;
9991 Hello : Wrapper_Array := (others => (Has_Length => True,
9992 Data => (others => 17),
9996 The debugging info would describe variable Hello as being an
9997 array of a PAD type. The size of that PAD type is not statically
9998 known, but can be determined using a parallel XVZ variable.
9999 In that case, a copy of the PAD type with the correct size should
10000 be used for the fixed array.
10002 3. ``Fixing'' record type objects:
10003 ----------------------------------
10005 Things are slightly different from arrays in the case of dynamic
10006 record types. In this case, in order to compute the associated
10007 fixed type, we need to determine the size and offset of each of
10008 its components. This, in turn, requires us to compute the fixed
10009 type of each of these components.
10011 Consider for instance the example:
10013 type Bounded_String (Max_Size : Natural) is record
10014 Str : String (1 .. Max_Size);
10017 My_String : Bounded_String (Max_Size => 10);
10019 In that case, the position of field "Length" depends on the size
10020 of field Str, which itself depends on the value of the Max_Size
10021 discriminant. In order to fix the type of variable My_String,
10022 we need to fix the type of field Str. Therefore, fixing a variant
10023 record requires us to fix each of its components.
10025 However, if a component does not have a dynamic size, the component
10026 should not be fixed. In particular, fields that use a PAD type
10027 should not fixed. Here is an example where this might happen
10028 (assuming type Rec above):
10030 type Container (Big : Boolean) is record
10034 when True => Another : Integer;
10035 when False => null;
10038 My_Container : Container := (Big => False,
10039 First => (Empty => True),
10042 In that example, the compiler creates a PAD type for component First,
10043 whose size is constant, and then positions the component After just
10044 right after it. The offset of component After is therefore constant
10047 The debugger computes the position of each field based on an algorithm
10048 that uses, among other things, the actual position and size of the field
10049 preceding it. Let's now imagine that the user is trying to print
10050 the value of My_Container. If the type fixing was recursive, we would
10051 end up computing the offset of field After based on the size of the
10052 fixed version of field First. And since in our example First has
10053 only one actual field, the size of the fixed type is actually smaller
10054 than the amount of space allocated to that field, and thus we would
10055 compute the wrong offset of field After.
10057 To make things more complicated, we need to watch out for dynamic
10058 components of variant records (identified by the ___XVL suffix in
10059 the component name). Even if the target type is a PAD type, the size
10060 of that type might not be statically known. So the PAD type needs
10061 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10062 we might end up with the wrong size for our component. This can be
10063 observed with the following type declarations:
10065 type Octal is new Integer range 0 .. 7;
10066 type Octal_Array is array (Positive range <>) of Octal;
10067 pragma Pack (Octal_Array);
10069 type Octal_Buffer (Size : Positive) is record
10070 Buffer : Octal_Array (1 .. Size);
10074 In that case, Buffer is a PAD type whose size is unset and needs
10075 to be computed by fixing the unwrapped type.
10077 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10078 ----------------------------------------------------------
10080 Lastly, when should the sub-elements of an entity that remained unfixed
10081 thus far, be actually fixed?
10083 The answer is: Only when referencing that element. For instance
10084 when selecting one component of a record, this specific component
10085 should be fixed at that point in time. Or when printing the value
10086 of a record, each component should be fixed before its value gets
10087 printed. Similarly for arrays, the element of the array should be
10088 fixed when printing each element of the array, or when extracting
10089 one element out of that array. On the other hand, fixing should
10090 not be performed on the elements when taking a slice of an array!
10092 Note that one of the side effects of miscomputing the offset and
10093 size of each field is that we end up also miscomputing the size
10094 of the containing type. This can have adverse results when computing
10095 the value of an entity. GDB fetches the value of an entity based
10096 on the size of its type, and thus a wrong size causes GDB to fetch
10097 the wrong amount of memory. In the case where the computed size is
10098 too small, GDB fetches too little data to print the value of our
10099 entity. Results in this case are unpredictable, as we usually read
10100 past the buffer containing the data =:-o. */
10102 /* A helper function for TERNOP_IN_RANGE. */
10105 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10106 enum noside noside,
10107 value *arg1, value *arg2, value *arg3)
10109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10110 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10111 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10113 value_from_longest (type,
10114 (value_less (arg1, arg3)
10115 || value_equal (arg1, arg3))
10116 && (value_less (arg2, arg1)
10117 || value_equal (arg2, arg1)));
10120 /* A helper function for UNOP_NEG. */
10123 ada_unop_neg (struct type *expect_type,
10124 struct expression *exp,
10125 enum noside noside, enum exp_opcode op,
10126 struct value *arg1)
10128 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10129 return value_neg (arg1);
10132 /* A helper function for UNOP_IN_RANGE. */
10135 ada_unop_in_range (struct type *expect_type,
10136 struct expression *exp,
10137 enum noside noside, enum exp_opcode op,
10138 struct value *arg1, struct type *type)
10140 struct value *arg2, *arg3;
10141 switch (type->code ())
10144 lim_warning (_("Membership test incompletely implemented; "
10145 "always returns true"));
10146 type = language_bool_type (exp->language_defn, exp->gdbarch);
10147 return value_from_longest (type, (LONGEST) 1);
10149 case TYPE_CODE_RANGE:
10150 arg2 = value_from_longest (type,
10151 type->bounds ()->low.const_val ());
10152 arg3 = value_from_longest (type,
10153 type->bounds ()->high.const_val ());
10154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10155 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10156 type = language_bool_type (exp->language_defn, exp->gdbarch);
10158 value_from_longest (type,
10159 (value_less (arg1, arg3)
10160 || value_equal (arg1, arg3))
10161 && (value_less (arg2, arg1)
10162 || value_equal (arg2, arg1)));
10166 /* A helper function for OP_ATR_TAG. */
10169 ada_atr_tag (struct type *expect_type,
10170 struct expression *exp,
10171 enum noside noside, enum exp_opcode op,
10172 struct value *arg1)
10174 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return value_zero (ada_tag_type (arg1), not_lval);
10177 return ada_value_tag (arg1);
10180 /* A helper function for OP_ATR_SIZE. */
10183 ada_atr_size (struct type *expect_type,
10184 struct expression *exp,
10185 enum noside noside, enum exp_opcode op,
10186 struct value *arg1)
10188 struct type *type = value_type (arg1);
10190 /* If the argument is a reference, then dereference its type, since
10191 the user is really asking for the size of the actual object,
10192 not the size of the pointer. */
10193 if (type->code () == TYPE_CODE_REF)
10194 type = type->target_type ();
10196 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10197 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10199 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10200 TARGET_CHAR_BIT * type->length ());
10203 /* A helper function for UNOP_ABS. */
10206 ada_abs (struct type *expect_type,
10207 struct expression *exp,
10208 enum noside noside, enum exp_opcode op,
10209 struct value *arg1)
10211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10212 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10213 return value_neg (arg1);
10218 /* A helper function for BINOP_MUL. */
10221 ada_mult_binop (struct type *expect_type,
10222 struct expression *exp,
10223 enum noside noside, enum exp_opcode op,
10224 struct value *arg1, struct value *arg2)
10226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10229 return value_zero (value_type (arg1), not_lval);
10233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10234 return ada_value_binop (arg1, arg2, op);
10238 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10241 ada_equal_binop (struct type *expect_type,
10242 struct expression *exp,
10243 enum noside noside, enum exp_opcode op,
10244 struct value *arg1, struct value *arg2)
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10251 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10252 tem = ada_value_equal (arg1, arg2);
10254 if (op == BINOP_NOTEQUAL)
10256 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10257 return value_from_longest (type, (LONGEST) tem);
10260 /* A helper function for TERNOP_SLICE. */
10263 ada_ternop_slice (struct expression *exp,
10264 enum noside noside,
10265 struct value *array, struct value *low_bound_val,
10266 struct value *high_bound_val)
10269 LONGEST high_bound;
10271 low_bound_val = coerce_ref (low_bound_val);
10272 high_bound_val = coerce_ref (high_bound_val);
10273 low_bound = value_as_long (low_bound_val);
10274 high_bound = value_as_long (high_bound_val);
10276 /* If this is a reference to an aligner type, then remove all
10278 if (value_type (array)->code () == TYPE_CODE_REF
10279 && ada_is_aligner_type (value_type (array)->target_type ()))
10280 value_type (array)->set_target_type
10281 (ada_aligned_type (value_type (array)->target_type ()));
10283 if (ada_is_any_packed_array_type (value_type (array)))
10284 error (_("cannot slice a packed array"));
10286 /* If this is a reference to an array or an array lvalue,
10287 convert to a pointer. */
10288 if (value_type (array)->code () == TYPE_CODE_REF
10289 || (value_type (array)->code () == TYPE_CODE_ARRAY
10290 && VALUE_LVAL (array) == lval_memory))
10291 array = value_addr (array);
10293 if (noside == EVAL_AVOID_SIDE_EFFECTS
10294 && ada_is_array_descriptor_type (ada_check_typedef
10295 (value_type (array))))
10296 return empty_array (ada_type_of_array (array, 0), low_bound,
10299 array = ada_coerce_to_simple_array_ptr (array);
10301 /* If we have more than one level of pointer indirection,
10302 dereference the value until we get only one level. */
10303 while (value_type (array)->code () == TYPE_CODE_PTR
10304 && (value_type (array)->target_type ()->code ()
10306 array = value_ind (array);
10308 /* Make sure we really do have an array type before going further,
10309 to avoid a SEGV when trying to get the index type or the target
10310 type later down the road if the debug info generated by
10311 the compiler is incorrect or incomplete. */
10312 if (!ada_is_simple_array_type (value_type (array)))
10313 error (_("cannot take slice of non-array"));
10315 if (ada_check_typedef (value_type (array))->code ()
10318 struct type *type0 = ada_check_typedef (value_type (array));
10320 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10321 return empty_array (type0->target_type (), low_bound, high_bound);
10324 struct type *arr_type0 =
10325 to_fixed_array_type (type0->target_type (), NULL, 1);
10327 return ada_value_slice_from_ptr (array, arr_type0,
10328 longest_to_int (low_bound),
10329 longest_to_int (high_bound));
10332 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 else if (high_bound < low_bound)
10335 return empty_array (value_type (array), low_bound, high_bound);
10337 return ada_value_slice (array, longest_to_int (low_bound),
10338 longest_to_int (high_bound));
10341 /* A helper function for BINOP_IN_BOUNDS. */
10344 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10345 struct value *arg1, struct value *arg2, int n)
10347 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10349 struct type *type = language_bool_type (exp->language_defn,
10351 return value_zero (type, not_lval);
10354 struct type *type = ada_index_type (value_type (arg2), n, "range");
10356 type = value_type (arg1);
10358 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10359 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10361 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10362 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10363 type = language_bool_type (exp->language_defn, exp->gdbarch);
10364 return value_from_longest (type,
10365 (value_less (arg1, arg3)
10366 || value_equal (arg1, arg3))
10367 && (value_less (arg2, arg1)
10368 || value_equal (arg2, arg1)));
10371 /* A helper function for some attribute operations. */
10374 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10375 struct value *arg1, struct type *type_arg, int tem)
10377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 if (type_arg == NULL)
10380 type_arg = value_type (arg1);
10382 if (ada_is_constrained_packed_array_type (type_arg))
10383 type_arg = decode_constrained_packed_array_type (type_arg);
10385 if (!discrete_type_p (type_arg))
10389 default: /* Should never happen. */
10390 error (_("unexpected attribute encountered"));
10393 type_arg = ada_index_type (type_arg, tem,
10394 ada_attribute_name (op));
10396 case OP_ATR_LENGTH:
10397 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10402 return value_zero (type_arg, not_lval);
10404 else if (type_arg == NULL)
10406 arg1 = ada_coerce_ref (arg1);
10408 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10409 arg1 = ada_coerce_to_simple_array (arg1);
10412 if (op == OP_ATR_LENGTH)
10413 type = builtin_type (exp->gdbarch)->builtin_int;
10416 type = ada_index_type (value_type (arg1), tem,
10417 ada_attribute_name (op));
10419 type = builtin_type (exp->gdbarch)->builtin_int;
10424 default: /* Should never happen. */
10425 error (_("unexpected attribute encountered"));
10427 return value_from_longest
10428 (type, ada_array_bound (arg1, tem, 0));
10430 return value_from_longest
10431 (type, ada_array_bound (arg1, tem, 1));
10432 case OP_ATR_LENGTH:
10433 return value_from_longest
10434 (type, ada_array_length (arg1, tem));
10437 else if (discrete_type_p (type_arg))
10439 struct type *range_type;
10440 const char *name = ada_type_name (type_arg);
10443 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10444 range_type = to_fixed_range_type (type_arg, NULL);
10445 if (range_type == NULL)
10446 range_type = type_arg;
10450 error (_("unexpected attribute encountered"));
10452 return value_from_longest
10453 (range_type, ada_discrete_type_low_bound (range_type));
10455 return value_from_longest
10456 (range_type, ada_discrete_type_high_bound (range_type));
10457 case OP_ATR_LENGTH:
10458 error (_("the 'length attribute applies only to array types"));
10461 else if (type_arg->code () == TYPE_CODE_FLT)
10462 error (_("unimplemented type attribute"));
10467 if (ada_is_constrained_packed_array_type (type_arg))
10468 type_arg = decode_constrained_packed_array_type (type_arg);
10471 if (op == OP_ATR_LENGTH)
10472 type = builtin_type (exp->gdbarch)->builtin_int;
10475 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10477 type = builtin_type (exp->gdbarch)->builtin_int;
10483 error (_("unexpected attribute encountered"));
10485 low = ada_array_bound_from_type (type_arg, tem, 0);
10486 return value_from_longest (type, low);
10488 high = ada_array_bound_from_type (type_arg, tem, 1);
10489 return value_from_longest (type, high);
10490 case OP_ATR_LENGTH:
10491 low = ada_array_bound_from_type (type_arg, tem, 0);
10492 high = ada_array_bound_from_type (type_arg, tem, 1);
10493 return value_from_longest (type, high - low + 1);
10498 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10501 ada_binop_minmax (struct type *expect_type,
10502 struct expression *exp,
10503 enum noside noside, enum exp_opcode op,
10504 struct value *arg1, struct value *arg2)
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (value_type (arg1), not_lval);
10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10511 return value_binop (arg1, arg2, op);
10515 /* A helper function for BINOP_EXP. */
10518 ada_binop_exp (struct type *expect_type,
10519 struct expression *exp,
10520 enum noside noside, enum exp_opcode op,
10521 struct value *arg1, struct value *arg2)
10523 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10524 return value_zero (value_type (arg1), not_lval);
10527 /* For integer exponentiation operations,
10528 only promote the first argument. */
10529 if (is_integral_type (value_type (arg2)))
10530 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10534 return value_binop (arg1, arg2, op);
10541 /* See ada-exp.h. */
10544 ada_resolvable::replace (operation_up &&owner,
10545 struct expression *exp,
10546 bool deprocedure_p,
10547 bool parse_completion,
10548 innermost_block_tracker *tracker,
10549 struct type *context_type)
10551 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10552 return (make_operation<ada_funcall_operation>
10553 (std::move (owner),
10554 std::vector<operation_up> ()));
10555 return std::move (owner);
10558 /* Convert the character literal whose value would be VAL to the
10559 appropriate value of type TYPE, if there is a translation.
10560 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10561 the literal 'A' (VAL == 65), returns 0. */
10564 convert_char_literal (struct type *type, LONGEST val)
10571 type = check_typedef (type);
10572 if (type->code () != TYPE_CODE_ENUM)
10575 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10576 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10577 else if (val >= 0 && val < 256)
10578 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10579 else if (val >= 0 && val < 0x10000)
10580 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10582 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10583 size_t len = strlen (name);
10584 for (f = 0; f < type->num_fields (); f += 1)
10586 /* Check the suffix because an enum constant in a package will
10587 have a name like "pkg__QUxx". This is safe enough because we
10588 already have the correct type, and because mangling means
10589 there can't be clashes. */
10590 const char *ename = type->field (f).name ();
10591 size_t elen = strlen (ename);
10593 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10594 return type->field (f).loc_enumval ();
10600 ada_char_operation::evaluate (struct type *expect_type,
10601 struct expression *exp,
10602 enum noside noside)
10604 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10605 if (expect_type != nullptr)
10606 result = ada_value_cast (expect_type, result);
10610 /* See ada-exp.h. */
10613 ada_char_operation::replace (operation_up &&owner,
10614 struct expression *exp,
10615 bool deprocedure_p,
10616 bool parse_completion,
10617 innermost_block_tracker *tracker,
10618 struct type *context_type)
10620 operation_up result = std::move (owner);
10622 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10624 gdb_assert (result.get () == this);
10625 std::get<0> (m_storage) = context_type;
10626 std::get<1> (m_storage)
10627 = convert_char_literal (context_type, std::get<1> (m_storage));
10634 ada_wrapped_operation::evaluate (struct type *expect_type,
10635 struct expression *exp,
10636 enum noside noside)
10638 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10639 if (noside == EVAL_NORMAL)
10640 result = unwrap_value (result);
10642 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10643 then we need to perform the conversion manually, because
10644 evaluate_subexp_standard doesn't do it. This conversion is
10645 necessary in Ada because the different kinds of float/fixed
10646 types in Ada have different representations.
10648 Similarly, we need to perform the conversion from OP_LONG
10650 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10651 result = ada_value_cast (expect_type, result);
10657 ada_string_operation::evaluate (struct type *expect_type,
10658 struct expression *exp,
10659 enum noside noside)
10661 struct type *char_type;
10662 if (expect_type != nullptr && ada_is_string_type (expect_type))
10663 char_type = ada_array_element_type (expect_type, 1);
10665 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10667 const std::string &str = std::get<0> (m_storage);
10668 const char *encoding;
10669 switch (char_type->length ())
10673 /* Simply copy over the data -- this isn't perhaps strictly
10674 correct according to the encodings, but it is gdb's
10675 historical behavior. */
10676 struct type *stringtype
10677 = lookup_array_range_type (char_type, 1, str.length ());
10678 struct value *val = allocate_value (stringtype);
10679 memcpy (value_contents_raw (val).data (), str.c_str (),
10685 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10686 encoding = "UTF-16BE";
10688 encoding = "UTF-16LE";
10692 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10693 encoding = "UTF-32BE";
10695 encoding = "UTF-32LE";
10699 error (_("unexpected character type size %s"),
10700 pulongest (char_type->length ()));
10703 auto_obstack converted;
10704 convert_between_encodings (host_charset (), encoding,
10705 (const gdb_byte *) str.c_str (),
10707 &converted, translit_none);
10709 struct type *stringtype
10710 = lookup_array_range_type (char_type, 1,
10711 obstack_object_size (&converted)
10712 / char_type->length ());
10713 struct value *val = allocate_value (stringtype);
10714 memcpy (value_contents_raw (val).data (),
10715 obstack_base (&converted),
10716 obstack_object_size (&converted));
10721 ada_concat_operation::evaluate (struct type *expect_type,
10722 struct expression *exp,
10723 enum noside noside)
10725 /* If one side is a literal, evaluate the other side first so that
10726 the expected type can be set properly. */
10727 const operation_up &lhs_expr = std::get<0> (m_storage);
10728 const operation_up &rhs_expr = std::get<1> (m_storage);
10731 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10733 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10734 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10736 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10738 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10739 struct type *rhs_type = check_typedef (value_type (rhs));
10740 struct type *elt_type = nullptr;
10741 if (rhs_type->code () == TYPE_CODE_ARRAY)
10742 elt_type = rhs_type->target_type ();
10743 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10745 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10747 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10748 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10750 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10752 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10753 struct type *lhs_type = check_typedef (value_type (lhs));
10754 struct type *elt_type = nullptr;
10755 if (lhs_type->code () == TYPE_CODE_ARRAY)
10756 elt_type = lhs_type->target_type ();
10757 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10760 return concat_operation::evaluate (expect_type, exp, noside);
10762 return value_concat (lhs, rhs);
10766 ada_qual_operation::evaluate (struct type *expect_type,
10767 struct expression *exp,
10768 enum noside noside)
10770 struct type *type = std::get<1> (m_storage);
10771 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10775 ada_ternop_range_operation::evaluate (struct type *expect_type,
10776 struct expression *exp,
10777 enum noside noside)
10779 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10780 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10781 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10782 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10786 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10787 struct expression *exp,
10788 enum noside noside)
10790 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10791 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10793 auto do_op = [=] (LONGEST x, LONGEST y)
10795 if (std::get<0> (m_storage) == BINOP_ADD)
10800 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10801 return (value_from_longest
10802 (value_type (arg1),
10803 do_op (value_as_long (arg1), value_as_long (arg2))));
10804 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10805 return (value_from_longest
10806 (value_type (arg2),
10807 do_op (value_as_long (arg1), value_as_long (arg2))));
10808 /* Preserve the original type for use by the range case below.
10809 We cannot cast the result to a reference type, so if ARG1 is
10810 a reference type, find its underlying type. */
10811 struct type *type = value_type (arg1);
10812 while (type->code () == TYPE_CODE_REF)
10813 type = type->target_type ();
10814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10815 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10816 /* We need to special-case the result with a range.
10817 This is done for the benefit of "ptype". gdb's Ada support
10818 historically used the LHS to set the result type here, so
10819 preserve this behavior. */
10820 if (type->code () == TYPE_CODE_RANGE)
10821 arg1 = value_cast (type, arg1);
10826 ada_unop_atr_operation::evaluate (struct type *expect_type,
10827 struct expression *exp,
10828 enum noside noside)
10830 struct type *type_arg = nullptr;
10831 value *val = nullptr;
10833 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10835 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10836 EVAL_AVOID_SIDE_EFFECTS);
10837 type_arg = value_type (tem);
10840 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10842 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10843 val, type_arg, std::get<2> (m_storage));
10847 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10848 struct expression *exp,
10849 enum noside noside)
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 return value_zero (expect_type, not_lval);
10854 const bound_minimal_symbol &b = std::get<0> (m_storage);
10855 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10857 val = ada_value_cast (expect_type, val);
10859 /* Follow the Ada language semantics that do not allow taking
10860 an address of the result of a cast (view conversion in Ada). */
10861 if (VALUE_LVAL (val) == lval_memory)
10863 if (value_lazy (val))
10864 value_fetch_lazy (val);
10865 VALUE_LVAL (val) = not_lval;
10871 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10872 struct expression *exp,
10873 enum noside noside)
10875 value *val = evaluate_var_value (noside,
10876 std::get<0> (m_storage).block,
10877 std::get<0> (m_storage).symbol);
10879 val = ada_value_cast (expect_type, val);
10881 /* Follow the Ada language semantics that do not allow taking
10882 an address of the result of a cast (view conversion in Ada). */
10883 if (VALUE_LVAL (val) == lval_memory)
10885 if (value_lazy (val))
10886 value_fetch_lazy (val);
10887 VALUE_LVAL (val) = not_lval;
10893 ada_var_value_operation::evaluate (struct type *expect_type,
10894 struct expression *exp,
10895 enum noside noside)
10897 symbol *sym = std::get<0> (m_storage).symbol;
10899 if (sym->domain () == UNDEF_DOMAIN)
10900 /* Only encountered when an unresolved symbol occurs in a
10901 context other than a function call, in which case, it is
10903 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10904 sym->print_name ());
10906 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10908 struct type *type = static_unwrap_type (sym->type ());
10909 /* Check to see if this is a tagged type. We also need to handle
10910 the case where the type is a reference to a tagged type, but
10911 we have to be careful to exclude pointers to tagged types.
10912 The latter should be shown as usual (as a pointer), whereas
10913 a reference should mostly be transparent to the user. */
10914 if (ada_is_tagged_type (type, 0)
10915 || (type->code () == TYPE_CODE_REF
10916 && ada_is_tagged_type (type->target_type (), 0)))
10918 /* Tagged types are a little special in the fact that the real
10919 type is dynamic and can only be determined by inspecting the
10920 object's tag. This means that we need to get the object's
10921 value first (EVAL_NORMAL) and then extract the actual object
10924 Note that we cannot skip the final step where we extract
10925 the object type from its tag, because the EVAL_NORMAL phase
10926 results in dynamic components being resolved into fixed ones.
10927 This can cause problems when trying to print the type
10928 description of tagged types whose parent has a dynamic size:
10929 We use the type name of the "_parent" component in order
10930 to print the name of the ancestor type in the type description.
10931 If that component had a dynamic size, the resolution into
10932 a fixed type would result in the loss of that type name,
10933 thus preventing us from printing the name of the ancestor
10934 type in the type description. */
10935 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10937 if (type->code () != TYPE_CODE_REF)
10939 struct type *actual_type;
10941 actual_type = type_from_tag (ada_value_tag (arg1));
10942 if (actual_type == NULL)
10943 /* If, for some reason, we were unable to determine
10944 the actual type from the tag, then use the static
10945 approximation that we just computed as a fallback.
10946 This can happen if the debugging information is
10947 incomplete, for instance. */
10948 actual_type = type;
10949 return value_zero (actual_type, not_lval);
10953 /* In the case of a ref, ada_coerce_ref takes care
10954 of determining the actual type. But the evaluation
10955 should return a ref as it should be valid to ask
10956 for its address; so rebuild a ref after coerce. */
10957 arg1 = ada_coerce_ref (arg1);
10958 return value_ref (arg1, TYPE_CODE_REF);
10962 /* Records and unions for which GNAT encodings have been
10963 generated need to be statically fixed as well.
10964 Otherwise, non-static fixing produces a type where
10965 all dynamic properties are removed, which prevents "ptype"
10966 from being able to completely describe the type.
10967 For instance, a case statement in a variant record would be
10968 replaced by the relevant components based on the actual
10969 value of the discriminants. */
10970 if ((type->code () == TYPE_CODE_STRUCT
10971 && dynamic_template_type (type) != NULL)
10972 || (type->code () == TYPE_CODE_UNION
10973 && ada_find_parallel_type (type, "___XVU") != NULL))
10974 return value_zero (to_static_fixed_type (type), not_lval);
10977 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10978 return ada_to_fixed_value (arg1);
10982 ada_var_value_operation::resolve (struct expression *exp,
10983 bool deprocedure_p,
10984 bool parse_completion,
10985 innermost_block_tracker *tracker,
10986 struct type *context_type)
10988 symbol *sym = std::get<0> (m_storage).symbol;
10989 if (sym->domain () == UNDEF_DOMAIN)
10991 block_symbol resolved
10992 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10993 context_type, parse_completion,
10994 deprocedure_p, tracker);
10995 std::get<0> (m_storage) = resolved;
10999 && (std::get<0> (m_storage).symbol->type ()->code ()
11000 == TYPE_CODE_FUNC))
11007 ada_atr_val_operation::evaluate (struct type *expect_type,
11008 struct expression *exp,
11009 enum noside noside)
11011 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11012 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11016 ada_unop_ind_operation::evaluate (struct type *expect_type,
11017 struct expression *exp,
11018 enum noside noside)
11020 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11022 struct type *type = ada_check_typedef (value_type (arg1));
11023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11025 if (ada_is_array_descriptor_type (type))
11026 /* GDB allows dereferencing GNAT array descriptors. */
11028 struct type *arrType = ada_type_of_array (arg1, 0);
11030 if (arrType == NULL)
11031 error (_("Attempt to dereference null array pointer."));
11032 return value_at_lazy (arrType, 0);
11034 else if (type->code () == TYPE_CODE_PTR
11035 || type->code () == TYPE_CODE_REF
11036 /* In C you can dereference an array to get the 1st elt. */
11037 || type->code () == TYPE_CODE_ARRAY)
11039 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11040 only be determined by inspecting the object's tag.
11041 This means that we need to evaluate completely the
11042 expression in order to get its type. */
11044 if ((type->code () == TYPE_CODE_REF
11045 || type->code () == TYPE_CODE_PTR)
11046 && ada_is_tagged_type (type->target_type (), 0))
11048 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11050 type = value_type (ada_value_ind (arg1));
11054 type = to_static_fixed_type
11056 (ada_check_typedef (type->target_type ())));
11058 return value_zero (type, lval_memory);
11060 else if (type->code () == TYPE_CODE_INT)
11062 /* GDB allows dereferencing an int. */
11063 if (expect_type == NULL)
11064 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11069 to_static_fixed_type (ada_aligned_type (expect_type));
11070 return value_zero (expect_type, lval_memory);
11074 error (_("Attempt to take contents of a non-pointer value."));
11076 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11077 type = ada_check_typedef (value_type (arg1));
11079 if (type->code () == TYPE_CODE_INT)
11080 /* GDB allows dereferencing an int. If we were given
11081 the expect_type, then use that as the target type.
11082 Otherwise, assume that the target type is an int. */
11084 if (expect_type != NULL)
11085 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11088 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11089 (CORE_ADDR) value_as_address (arg1));
11092 if (ada_is_array_descriptor_type (type))
11093 /* GDB allows dereferencing GNAT array descriptors. */
11094 return ada_coerce_to_simple_array (arg1);
11096 return ada_value_ind (arg1);
11100 ada_structop_operation::evaluate (struct type *expect_type,
11101 struct expression *exp,
11102 enum noside noside)
11104 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11105 const char *str = std::get<1> (m_storage).c_str ();
11106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11109 struct type *type1 = value_type (arg1);
11111 if (ada_is_tagged_type (type1, 1))
11113 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11115 /* If the field is not found, check if it exists in the
11116 extension of this object's type. This means that we
11117 need to evaluate completely the expression. */
11121 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11123 arg1 = ada_value_struct_elt (arg1, str, 0);
11124 arg1 = unwrap_value (arg1);
11125 type = value_type (ada_to_fixed_value (arg1));
11129 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11131 return value_zero (ada_aligned_type (type), lval_memory);
11135 arg1 = ada_value_struct_elt (arg1, str, 0);
11136 arg1 = unwrap_value (arg1);
11137 return ada_to_fixed_value (arg1);
11142 ada_funcall_operation::evaluate (struct type *expect_type,
11143 struct expression *exp,
11144 enum noside noside)
11146 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11147 int nargs = args_up.size ();
11148 std::vector<value *> argvec (nargs);
11149 operation_up &callee_op = std::get<0> (m_storage);
11151 ada_var_value_operation *avv
11152 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11154 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11155 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11156 avv->get_symbol ()->print_name ());
11158 value *callee = callee_op->evaluate (nullptr, exp, noside);
11159 for (int i = 0; i < args_up.size (); ++i)
11160 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11162 if (ada_is_constrained_packed_array_type
11163 (desc_base_type (value_type (callee))))
11164 callee = ada_coerce_to_simple_array (callee);
11165 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11166 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11167 /* This is a packed array that has already been fixed, and
11168 therefore already coerced to a simple array. Nothing further
11171 else if (value_type (callee)->code () == TYPE_CODE_REF)
11173 /* Make sure we dereference references so that all the code below
11174 feels like it's really handling the referenced value. Wrapping
11175 types (for alignment) may be there, so make sure we strip them as
11177 callee = ada_to_fixed_value (coerce_ref (callee));
11179 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11180 && VALUE_LVAL (callee) == lval_memory)
11181 callee = value_addr (callee);
11183 struct type *type = ada_check_typedef (value_type (callee));
11185 /* Ada allows us to implicitly dereference arrays when subscripting
11186 them. So, if this is an array typedef (encoding use for array
11187 access types encoded as fat pointers), strip it now. */
11188 if (type->code () == TYPE_CODE_TYPEDEF)
11189 type = ada_typedef_target_type (type);
11191 if (type->code () == TYPE_CODE_PTR)
11193 switch (ada_check_typedef (type->target_type ())->code ())
11195 case TYPE_CODE_FUNC:
11196 type = ada_check_typedef (type->target_type ());
11198 case TYPE_CODE_ARRAY:
11200 case TYPE_CODE_STRUCT:
11201 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11202 callee = ada_value_ind (callee);
11203 type = ada_check_typedef (type->target_type ());
11206 error (_("cannot subscript or call something of type `%s'"),
11207 ada_type_name (value_type (callee)));
11212 switch (type->code ())
11214 case TYPE_CODE_FUNC:
11215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11217 if (type->target_type () == NULL)
11218 error_call_unknown_return_type (NULL);
11219 return allocate_value (type->target_type ());
11221 return call_function_by_hand (callee, NULL, argvec);
11222 case TYPE_CODE_INTERNAL_FUNCTION:
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 /* We don't know anything about what the internal
11225 function might return, but we have to return
11227 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11230 return call_internal_function (exp->gdbarch, exp->language_defn,
11234 case TYPE_CODE_STRUCT:
11238 arity = ada_array_arity (type);
11239 type = ada_array_element_type (type, nargs);
11241 error (_("cannot subscript or call a record"));
11242 if (arity != nargs)
11243 error (_("wrong number of subscripts; expecting %d"), arity);
11244 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11245 return value_zero (ada_aligned_type (type), lval_memory);
11247 unwrap_value (ada_value_subscript
11248 (callee, nargs, argvec.data ()));
11250 case TYPE_CODE_ARRAY:
11251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253 type = ada_array_element_type (type, nargs);
11255 error (_("element type of array unknown"));
11257 return value_zero (ada_aligned_type (type), lval_memory);
11260 unwrap_value (ada_value_subscript
11261 (ada_coerce_to_simple_array (callee),
11262 nargs, argvec.data ()));
11263 case TYPE_CODE_PTR: /* Pointer to array */
11264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11266 type = to_fixed_array_type (type->target_type (), NULL, 1);
11267 type = ada_array_element_type (type, nargs);
11269 error (_("element type of array unknown"));
11271 return value_zero (ada_aligned_type (type), lval_memory);
11274 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11278 error (_("Attempt to index or call something other than an "
11279 "array or function"));
11284 ada_funcall_operation::resolve (struct expression *exp,
11285 bool deprocedure_p,
11286 bool parse_completion,
11287 innermost_block_tracker *tracker,
11288 struct type *context_type)
11290 operation_up &callee_op = std::get<0> (m_storage);
11292 ada_var_value_operation *avv
11293 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11294 if (avv == nullptr)
11297 symbol *sym = avv->get_symbol ();
11298 if (sym->domain () != UNDEF_DOMAIN)
11301 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11302 int nargs = args_up.size ();
11303 std::vector<value *> argvec (nargs);
11305 for (int i = 0; i < args_up.size (); ++i)
11306 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11308 const block *block = avv->get_block ();
11309 block_symbol resolved
11310 = ada_resolve_funcall (sym, block,
11311 context_type, parse_completion,
11312 nargs, argvec.data (),
11315 std::get<0> (m_storage)
11316 = make_operation<ada_var_value_operation> (resolved);
11321 ada_ternop_slice_operation::resolve (struct expression *exp,
11322 bool deprocedure_p,
11323 bool parse_completion,
11324 innermost_block_tracker *tracker,
11325 struct type *context_type)
11327 /* Historically this check was done during resolution, so we
11328 continue that here. */
11329 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11330 EVAL_AVOID_SIDE_EFFECTS);
11331 if (ada_is_any_packed_array_type (value_type (v)))
11332 error (_("cannot slice a packed array"));
11340 /* Return non-zero iff TYPE represents a System.Address type. */
11343 ada_is_system_address_type (struct type *type)
11345 return (type->name () && strcmp (type->name (), "system__address") == 0);
11352 /* Scan STR beginning at position K for a discriminant name, and
11353 return the value of that discriminant field of DVAL in *PX. If
11354 PNEW_K is not null, put the position of the character beyond the
11355 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11356 not alter *PX and *PNEW_K if unsuccessful. */
11359 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11362 static std::string storage;
11363 const char *pstart, *pend, *bound;
11364 struct value *bound_val;
11366 if (dval == NULL || str == NULL || str[k] == '\0')
11370 pend = strstr (pstart, "__");
11374 k += strlen (bound);
11378 int len = pend - pstart;
11380 /* Strip __ and beyond. */
11381 storage = std::string (pstart, len);
11382 bound = storage.c_str ();
11386 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11387 if (bound_val == NULL)
11390 *px = value_as_long (bound_val);
11391 if (pnew_k != NULL)
11396 /* Value of variable named NAME. Only exact matches are considered.
11397 If no such variable found, then if ERR_MSG is null, returns 0, and
11398 otherwise causes an error with message ERR_MSG. */
11400 static struct value *
11401 get_var_value (const char *name, const char *err_msg)
11403 std::string quoted_name = add_angle_brackets (name);
11405 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11407 std::vector<struct block_symbol> syms
11408 = ada_lookup_symbol_list_worker (lookup_name,
11409 get_selected_block (0),
11412 if (syms.size () != 1)
11414 if (err_msg == NULL)
11417 error (("%s"), err_msg);
11420 return value_of_variable (syms[0].symbol, syms[0].block);
11423 /* Value of integer variable named NAME in the current environment.
11424 If no such variable is found, returns false. Otherwise, sets VALUE
11425 to the variable's value and returns true. */
11428 get_int_var_value (const char *name, LONGEST &value)
11430 struct value *var_val = get_var_value (name, 0);
11435 value = value_as_long (var_val);
11440 /* Return a range type whose base type is that of the range type named
11441 NAME in the current environment, and whose bounds are calculated
11442 from NAME according to the GNAT range encoding conventions.
11443 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11444 corresponding range type from debug information; fall back to using it
11445 if symbol lookup fails. If a new type must be created, allocate it
11446 like ORIG_TYPE was. The bounds information, in general, is encoded
11447 in NAME, the base type given in the named range type. */
11449 static struct type *
11450 to_fixed_range_type (struct type *raw_type, struct value *dval)
11453 struct type *base_type;
11454 const char *subtype_info;
11456 gdb_assert (raw_type != NULL);
11457 gdb_assert (raw_type->name () != NULL);
11459 if (raw_type->code () == TYPE_CODE_RANGE)
11460 base_type = raw_type->target_type ();
11462 base_type = raw_type;
11464 name = raw_type->name ();
11465 subtype_info = strstr (name, "___XD");
11466 if (subtype_info == NULL)
11468 LONGEST L = ada_discrete_type_low_bound (raw_type);
11469 LONGEST U = ada_discrete_type_high_bound (raw_type);
11471 if (L < INT_MIN || U > INT_MAX)
11474 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11479 int prefix_len = subtype_info - name;
11482 const char *bounds_str;
11486 bounds_str = strchr (subtype_info, '_');
11489 if (*subtype_info == 'L')
11491 if (!ada_scan_number (bounds_str, n, &L, &n)
11492 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11494 if (bounds_str[n] == '_')
11496 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11502 std::string name_buf = std::string (name, prefix_len) + "___L";
11503 if (!get_int_var_value (name_buf.c_str (), L))
11505 lim_warning (_("Unknown lower bound, using 1."));
11510 if (*subtype_info == 'U')
11512 if (!ada_scan_number (bounds_str, n, &U, &n)
11513 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11518 std::string name_buf = std::string (name, prefix_len) + "___U";
11519 if (!get_int_var_value (name_buf.c_str (), U))
11521 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11526 type = create_static_range_type (alloc_type_copy (raw_type),
11528 /* create_static_range_type alters the resulting type's length
11529 to match the size of the base_type, which is not what we want.
11530 Set it back to the original range type's length. */
11531 type->set_length (raw_type->length ());
11532 type->set_name (name);
11537 /* True iff NAME is the name of a range type. */
11540 ada_is_range_type_name (const char *name)
11542 return (name != NULL && strstr (name, "___XD"));
11546 /* Modular types */
11548 /* True iff TYPE is an Ada modular type. */
11551 ada_is_modular_type (struct type *type)
11553 struct type *subranged_type = get_base_type (type);
11555 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11556 && subranged_type->code () == TYPE_CODE_INT
11557 && subranged_type->is_unsigned ());
11560 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11563 ada_modulus (struct type *type)
11565 const dynamic_prop &high = type->bounds ()->high;
11567 if (high.kind () == PROP_CONST)
11568 return (ULONGEST) high.const_val () + 1;
11570 /* If TYPE is unresolved, the high bound might be a location list. Return
11571 0, for lack of a better value to return. */
11576 /* Ada exception catchpoint support:
11577 ---------------------------------
11579 We support 3 kinds of exception catchpoints:
11580 . catchpoints on Ada exceptions
11581 . catchpoints on unhandled Ada exceptions
11582 . catchpoints on failed assertions
11584 Exceptions raised during failed assertions, or unhandled exceptions
11585 could perfectly be caught with the general catchpoint on Ada exceptions.
11586 However, we can easily differentiate these two special cases, and having
11587 the option to distinguish these two cases from the rest can be useful
11588 to zero-in on certain situations.
11590 Exception catchpoints are a specialized form of breakpoint,
11591 since they rely on inserting breakpoints inside known routines
11592 of the GNAT runtime. The implementation therefore uses a standard
11593 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11596 Support in the runtime for exception catchpoints have been changed
11597 a few times already, and these changes affect the implementation
11598 of these catchpoints. In order to be able to support several
11599 variants of the runtime, we use a sniffer that will determine
11600 the runtime variant used by the program being debugged. */
11602 /* Ada's standard exceptions.
11604 The Ada 83 standard also defined Numeric_Error. But there so many
11605 situations where it was unclear from the Ada 83 Reference Manual
11606 (RM) whether Constraint_Error or Numeric_Error should be raised,
11607 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11608 Interpretation saying that anytime the RM says that Numeric_Error
11609 should be raised, the implementation may raise Constraint_Error.
11610 Ada 95 went one step further and pretty much removed Numeric_Error
11611 from the list of standard exceptions (it made it a renaming of
11612 Constraint_Error, to help preserve compatibility when compiling
11613 an Ada83 compiler). As such, we do not include Numeric_Error from
11614 this list of standard exceptions. */
11616 static const char * const standard_exc[] = {
11617 "constraint_error",
11623 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11625 /* A structure that describes how to support exception catchpoints
11626 for a given executable. */
11628 struct exception_support_info
11630 /* The name of the symbol to break on in order to insert
11631 a catchpoint on exceptions. */
11632 const char *catch_exception_sym;
11634 /* The name of the symbol to break on in order to insert
11635 a catchpoint on unhandled exceptions. */
11636 const char *catch_exception_unhandled_sym;
11638 /* The name of the symbol to break on in order to insert
11639 a catchpoint on failed assertions. */
11640 const char *catch_assert_sym;
11642 /* The name of the symbol to break on in order to insert
11643 a catchpoint on exception handling. */
11644 const char *catch_handlers_sym;
11646 /* Assuming that the inferior just triggered an unhandled exception
11647 catchpoint, this function is responsible for returning the address
11648 in inferior memory where the name of that exception is stored.
11649 Return zero if the address could not be computed. */
11650 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11653 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11654 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11656 /* The following exception support info structure describes how to
11657 implement exception catchpoints with the latest version of the
11658 Ada runtime (as of 2019-08-??). */
11660 static const struct exception_support_info default_exception_support_info =
11662 "__gnat_debug_raise_exception", /* catch_exception_sym */
11663 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11664 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11665 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11666 ada_unhandled_exception_name_addr
11669 /* The following exception support info structure describes how to
11670 implement exception catchpoints with an earlier version of the
11671 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11673 static const struct exception_support_info exception_support_info_v0 =
11675 "__gnat_debug_raise_exception", /* catch_exception_sym */
11676 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11677 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11678 "__gnat_begin_handler", /* catch_handlers_sym */
11679 ada_unhandled_exception_name_addr
11682 /* The following exception support info structure describes how to
11683 implement exception catchpoints with a slightly older version
11684 of the Ada runtime. */
11686 static const struct exception_support_info exception_support_info_fallback =
11688 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11689 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11690 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11691 "__gnat_begin_handler", /* catch_handlers_sym */
11692 ada_unhandled_exception_name_addr_from_raise
11695 /* Return nonzero if we can detect the exception support routines
11696 described in EINFO.
11698 This function errors out if an abnormal situation is detected
11699 (for instance, if we find the exception support routines, but
11700 that support is found to be incomplete). */
11703 ada_has_this_exception_support (const struct exception_support_info *einfo)
11705 struct symbol *sym;
11707 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11708 that should be compiled with debugging information. As a result, we
11709 expect to find that symbol in the symtabs. */
11711 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11714 /* Perhaps we did not find our symbol because the Ada runtime was
11715 compiled without debugging info, or simply stripped of it.
11716 It happens on some GNU/Linux distributions for instance, where
11717 users have to install a separate debug package in order to get
11718 the runtime's debugging info. In that situation, let the user
11719 know why we cannot insert an Ada exception catchpoint.
11721 Note: Just for the purpose of inserting our Ada exception
11722 catchpoint, we could rely purely on the associated minimal symbol.
11723 But we would be operating in degraded mode anyway, since we are
11724 still lacking the debugging info needed later on to extract
11725 the name of the exception being raised (this name is printed in
11726 the catchpoint message, and is also used when trying to catch
11727 a specific exception). We do not handle this case for now. */
11728 struct bound_minimal_symbol msym
11729 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11731 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11732 error (_("Your Ada runtime appears to be missing some debugging "
11733 "information.\nCannot insert Ada exception catchpoint "
11734 "in this configuration."));
11739 /* Make sure that the symbol we found corresponds to a function. */
11741 if (sym->aclass () != LOC_BLOCK)
11743 error (_("Symbol \"%s\" is not a function (class = %d)"),
11744 sym->linkage_name (), sym->aclass ());
11748 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11751 struct bound_minimal_symbol msym
11752 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11754 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11755 error (_("Your Ada runtime appears to be missing some debugging "
11756 "information.\nCannot insert Ada exception catchpoint "
11757 "in this configuration."));
11762 /* Make sure that the symbol we found corresponds to a function. */
11764 if (sym->aclass () != LOC_BLOCK)
11766 error (_("Symbol \"%s\" is not a function (class = %d)"),
11767 sym->linkage_name (), sym->aclass ());
11774 /* Inspect the Ada runtime and determine which exception info structure
11775 should be used to provide support for exception catchpoints.
11777 This function will always set the per-inferior exception_info,
11778 or raise an error. */
11781 ada_exception_support_info_sniffer (void)
11783 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11785 /* If the exception info is already known, then no need to recompute it. */
11786 if (data->exception_info != NULL)
11789 /* Check the latest (default) exception support info. */
11790 if (ada_has_this_exception_support (&default_exception_support_info))
11792 data->exception_info = &default_exception_support_info;
11796 /* Try the v0 exception suport info. */
11797 if (ada_has_this_exception_support (&exception_support_info_v0))
11799 data->exception_info = &exception_support_info_v0;
11803 /* Try our fallback exception suport info. */
11804 if (ada_has_this_exception_support (&exception_support_info_fallback))
11806 data->exception_info = &exception_support_info_fallback;
11810 /* Sometimes, it is normal for us to not be able to find the routine
11811 we are looking for. This happens when the program is linked with
11812 the shared version of the GNAT runtime, and the program has not been
11813 started yet. Inform the user of these two possible causes if
11816 if (ada_update_initial_language (language_unknown) != language_ada)
11817 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11819 /* If the symbol does not exist, then check that the program is
11820 already started, to make sure that shared libraries have been
11821 loaded. If it is not started, this may mean that the symbol is
11822 in a shared library. */
11824 if (inferior_ptid.pid () == 0)
11825 error (_("Unable to insert catchpoint. Try to start the program first."));
11827 /* At this point, we know that we are debugging an Ada program and
11828 that the inferior has been started, but we still are not able to
11829 find the run-time symbols. That can mean that we are in
11830 configurable run time mode, or that a-except as been optimized
11831 out by the linker... In any case, at this point it is not worth
11832 supporting this feature. */
11834 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11837 /* True iff FRAME is very likely to be that of a function that is
11838 part of the runtime system. This is all very heuristic, but is
11839 intended to be used as advice as to what frames are uninteresting
11843 is_known_support_routine (frame_info_ptr frame)
11845 enum language func_lang;
11847 const char *fullname;
11849 /* If this code does not have any debugging information (no symtab),
11850 This cannot be any user code. */
11852 symtab_and_line sal = find_frame_sal (frame);
11853 if (sal.symtab == NULL)
11856 /* If there is a symtab, but the associated source file cannot be
11857 located, then assume this is not user code: Selecting a frame
11858 for which we cannot display the code would not be very helpful
11859 for the user. This should also take care of case such as VxWorks
11860 where the kernel has some debugging info provided for a few units. */
11862 fullname = symtab_to_fullname (sal.symtab);
11863 if (access (fullname, R_OK) != 0)
11866 /* Check the unit filename against the Ada runtime file naming.
11867 We also check the name of the objfile against the name of some
11868 known system libraries that sometimes come with debugging info
11871 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11873 re_comp (known_runtime_file_name_patterns[i]);
11874 if (re_exec (lbasename (sal.symtab->filename)))
11876 if (sal.symtab->compunit ()->objfile () != NULL
11877 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
11881 /* Check whether the function is a GNAT-generated entity. */
11883 gdb::unique_xmalloc_ptr<char> func_name
11884 = find_frame_funname (frame, &func_lang, NULL);
11885 if (func_name == NULL)
11888 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11890 re_comp (known_auxiliary_function_name_patterns[i]);
11891 if (re_exec (func_name.get ()))
11898 /* Find the first frame that contains debugging information and that is not
11899 part of the Ada run-time, starting from FI and moving upward. */
11902 ada_find_printable_frame (frame_info_ptr fi)
11904 for (; fi != NULL; fi = get_prev_frame (fi))
11906 if (!is_known_support_routine (fi))
11915 /* Assuming that the inferior just triggered an unhandled exception
11916 catchpoint, return the address in inferior memory where the name
11917 of the exception is stored.
11919 Return zero if the address could not be computed. */
11922 ada_unhandled_exception_name_addr (void)
11924 return parse_and_eval_address ("e.full_name");
11927 /* Same as ada_unhandled_exception_name_addr, except that this function
11928 should be used when the inferior uses an older version of the runtime,
11929 where the exception name needs to be extracted from a specific frame
11930 several frames up in the callstack. */
11933 ada_unhandled_exception_name_addr_from_raise (void)
11937 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11939 /* To determine the name of this exception, we need to select
11940 the frame corresponding to RAISE_SYM_NAME. This frame is
11941 at least 3 levels up, so we simply skip the first 3 frames
11942 without checking the name of their associated function. */
11943 fi = get_current_frame ();
11944 for (frame_level = 0; frame_level < 3; frame_level += 1)
11946 fi = get_prev_frame (fi);
11950 enum language func_lang;
11952 gdb::unique_xmalloc_ptr<char> func_name
11953 = find_frame_funname (fi, &func_lang, NULL);
11954 if (func_name != NULL)
11956 if (strcmp (func_name.get (),
11957 data->exception_info->catch_exception_sym) == 0)
11958 break; /* We found the frame we were looking for... */
11960 fi = get_prev_frame (fi);
11967 return parse_and_eval_address ("id.full_name");
11970 /* Assuming the inferior just triggered an Ada exception catchpoint
11971 (of any type), return the address in inferior memory where the name
11972 of the exception is stored, if applicable.
11974 Assumes the selected frame is the current frame.
11976 Return zero if the address could not be computed, or if not relevant. */
11979 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex)
11981 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11985 case ada_catch_exception:
11986 return (parse_and_eval_address ("e.full_name"));
11989 case ada_catch_exception_unhandled:
11990 return data->exception_info->unhandled_exception_name_addr ();
11993 case ada_catch_handlers:
11994 return 0; /* The runtimes does not provide access to the exception
11998 case ada_catch_assert:
11999 return 0; /* Exception name is not relevant in this case. */
12003 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 return 0; /* Should never be reached. */
12010 /* Assuming the inferior is stopped at an exception catchpoint,
12011 return the message which was associated to the exception, if
12012 available. Return NULL if the message could not be retrieved.
12014 Note: The exception message can be associated to an exception
12015 either through the use of the Raise_Exception function, or
12016 more simply (Ada 2005 and later), via:
12018 raise Exception_Name with "exception message";
12022 static gdb::unique_xmalloc_ptr<char>
12023 ada_exception_message_1 (void)
12025 struct value *e_msg_val;
12028 /* For runtimes that support this feature, the exception message
12029 is passed as an unbounded string argument called "message". */
12030 e_msg_val = parse_and_eval ("message");
12031 if (e_msg_val == NULL)
12032 return NULL; /* Exception message not supported. */
12034 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12035 gdb_assert (e_msg_val != NULL);
12036 e_msg_len = value_type (e_msg_val)->length ();
12038 /* If the message string is empty, then treat it as if there was
12039 no exception message. */
12040 if (e_msg_len <= 0)
12043 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12044 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12046 e_msg.get ()[e_msg_len] = '\0';
12051 /* Same as ada_exception_message_1, except that all exceptions are
12052 contained here (returning NULL instead). */
12054 static gdb::unique_xmalloc_ptr<char>
12055 ada_exception_message (void)
12057 gdb::unique_xmalloc_ptr<char> e_msg;
12061 e_msg = ada_exception_message_1 ();
12063 catch (const gdb_exception_error &e)
12065 e_msg.reset (nullptr);
12071 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12072 any error that ada_exception_name_addr_1 might cause to be thrown.
12073 When an error is intercepted, a warning with the error message is printed,
12074 and zero is returned. */
12077 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex)
12079 CORE_ADDR result = 0;
12083 result = ada_exception_name_addr_1 (ex);
12086 catch (const gdb_exception_error &e)
12088 warning (_("failed to get exception name: %s"), e.what ());
12095 static std::string ada_exception_catchpoint_cond_string
12096 (const char *excep_string,
12097 enum ada_exception_catchpoint_kind ex);
12099 /* Ada catchpoints.
12101 In the case of catchpoints on Ada exceptions, the catchpoint will
12102 stop the target on every exception the program throws. When a user
12103 specifies the name of a specific exception, we translate this
12104 request into a condition expression (in text form), and then parse
12105 it into an expression stored in each of the catchpoint's locations.
12106 We then use this condition to check whether the exception that was
12107 raised is the one the user is interested in. If not, then the
12108 target is resumed again. We store the name of the requested
12109 exception, in order to be able to re-set the condition expression
12110 when symbols change. */
12112 /* An instance of this type is used to represent an Ada catchpoint. */
12114 struct ada_catchpoint : public code_breakpoint
12116 ada_catchpoint (struct gdbarch *gdbarch_,
12117 enum ada_exception_catchpoint_kind kind,
12118 struct symtab_and_line sal,
12119 const char *addr_string_,
12123 : code_breakpoint (gdbarch_, bp_catchpoint),
12126 add_location (sal);
12128 /* Unlike most code_breakpoint types, Ada catchpoints are
12129 pspace-specific. */
12130 gdb_assert (sal.pspace != nullptr);
12131 this->pspace = sal.pspace;
12135 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12137 loc_gdbarch = gdbarch;
12139 describe_other_breakpoints (loc_gdbarch,
12140 sal.pspace, sal.pc, sal.section, -1);
12141 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12142 version for exception catchpoints, because two catchpoints
12143 used for different exception names will use the same address.
12144 In this case, a "breakpoint ... also set at..." warning is
12145 unproductive. Besides, the warning phrasing is also a bit
12146 inappropriate, we should use the word catchpoint, and tell
12147 the user what type of catchpoint it is. The above is good
12148 enough for now, though. */
12151 enable_state = enabled ? bp_enabled : bp_disabled;
12152 disposition = tempflag ? disp_del : disp_donttouch;
12153 locspec = string_to_location_spec (&addr_string_,
12154 language_def (language_ada));
12155 language = language_ada;
12158 struct bp_location *allocate_location () override;
12159 void re_set () override;
12160 void check_status (struct bpstat *bs) override;
12161 enum print_stop_action print_it (const bpstat *bs) const override;
12162 bool print_one (bp_location **) const override;
12163 void print_mention () const override;
12164 void print_recreate (struct ui_file *fp) const override;
12166 /* The name of the specific exception the user specified. */
12167 std::string excep_string;
12169 /* What kind of catchpoint this is. */
12170 enum ada_exception_catchpoint_kind m_kind;
12173 /* An instance of this type is used to represent an Ada catchpoint
12174 breakpoint location. */
12176 class ada_catchpoint_location : public bp_location
12179 explicit ada_catchpoint_location (ada_catchpoint *owner)
12180 : bp_location (owner, bp_loc_software_breakpoint)
12183 /* The condition that checks whether the exception that was raised
12184 is the specific exception the user specified on catchpoint
12186 expression_up excep_cond_expr;
12189 /* Parse the exception condition string in the context of each of the
12190 catchpoint's locations, and store them for later evaluation. */
12193 create_excep_cond_exprs (struct ada_catchpoint *c,
12194 enum ada_exception_catchpoint_kind ex)
12196 /* Nothing to do if there's no specific exception to catch. */
12197 if (c->excep_string.empty ())
12200 /* Same if there are no locations... */
12201 if (c->loc == NULL)
12204 /* Compute the condition expression in text form, from the specific
12205 expection we want to catch. */
12206 std::string cond_string
12207 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12209 /* Iterate over all the catchpoint's locations, and parse an
12210 expression for each. */
12211 for (bp_location *bl : c->locations ())
12213 struct ada_catchpoint_location *ada_loc
12214 = (struct ada_catchpoint_location *) bl;
12217 if (!bl->shlib_disabled)
12221 s = cond_string.c_str ();
12224 exp = parse_exp_1 (&s, bl->address,
12225 block_for_pc (bl->address),
12228 catch (const gdb_exception_error &e)
12230 warning (_("failed to reevaluate internal exception condition "
12231 "for catchpoint %d: %s"),
12232 c->number, e.what ());
12236 ada_loc->excep_cond_expr = std::move (exp);
12240 /* Implement the ALLOCATE_LOCATION method in the structure for all
12241 exception catchpoint kinds. */
12243 struct bp_location *
12244 ada_catchpoint::allocate_location ()
12246 return new ada_catchpoint_location (this);
12249 /* Implement the RE_SET method in the structure for all exception
12250 catchpoint kinds. */
12253 ada_catchpoint::re_set ()
12255 /* Call the base class's method. This updates the catchpoint's
12257 this->code_breakpoint::re_set ();
12259 /* Reparse the exception conditional expressions. One for each
12261 create_excep_cond_exprs (this, m_kind);
12264 /* Returns true if we should stop for this breakpoint hit. If the
12265 user specified a specific exception, we only want to cause a stop
12266 if the program thrown that exception. */
12269 should_stop_exception (const struct bp_location *bl)
12271 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12272 const struct ada_catchpoint_location *ada_loc
12273 = (const struct ada_catchpoint_location *) bl;
12276 struct internalvar *var = lookup_internalvar ("_ada_exception");
12277 if (c->m_kind == ada_catch_assert)
12278 clear_internalvar (var);
12285 if (c->m_kind == ada_catch_handlers)
12286 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12287 ".all.occurrence.id");
12291 struct value *exc = parse_and_eval (expr);
12292 set_internalvar (var, exc);
12294 catch (const gdb_exception_error &ex)
12296 clear_internalvar (var);
12300 /* With no specific exception, should always stop. */
12301 if (c->excep_string.empty ())
12304 if (ada_loc->excep_cond_expr == NULL)
12306 /* We will have a NULL expression if back when we were creating
12307 the expressions, this location's had failed to parse. */
12314 struct value *mark;
12316 mark = value_mark ();
12317 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12318 value_free_to_mark (mark);
12320 catch (const gdb_exception &ex)
12322 exception_fprintf (gdb_stderr, ex,
12323 _("Error in testing exception condition:\n"));
12329 /* Implement the CHECK_STATUS method in the structure for all
12330 exception catchpoint kinds. */
12333 ada_catchpoint::check_status (bpstat *bs)
12335 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12338 /* Implement the PRINT_IT method in the structure for all exception
12339 catchpoint kinds. */
12341 enum print_stop_action
12342 ada_catchpoint::print_it (const bpstat *bs) const
12344 struct ui_out *uiout = current_uiout;
12346 annotate_catchpoint (number);
12348 if (uiout->is_mi_like_p ())
12350 uiout->field_string ("reason",
12351 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12352 uiout->field_string ("disp", bpdisp_text (disposition));
12355 uiout->text (disposition == disp_del
12356 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12357 uiout->field_signed ("bkptno", number);
12358 uiout->text (", ");
12360 /* ada_exception_name_addr relies on the selected frame being the
12361 current frame. Need to do this here because this function may be
12362 called more than once when printing a stop, and below, we'll
12363 select the first frame past the Ada run-time (see
12364 ada_find_printable_frame). */
12365 select_frame (get_current_frame ());
12369 case ada_catch_exception:
12370 case ada_catch_exception_unhandled:
12371 case ada_catch_handlers:
12373 const CORE_ADDR addr = ada_exception_name_addr (m_kind);
12374 char exception_name[256];
12378 read_memory (addr, (gdb_byte *) exception_name,
12379 sizeof (exception_name) - 1);
12380 exception_name [sizeof (exception_name) - 1] = '\0';
12384 /* For some reason, we were unable to read the exception
12385 name. This could happen if the Runtime was compiled
12386 without debugging info, for instance. In that case,
12387 just replace the exception name by the generic string
12388 "exception" - it will read as "an exception" in the
12389 notification we are about to print. */
12390 memcpy (exception_name, "exception", sizeof ("exception"));
12392 /* In the case of unhandled exception breakpoints, we print
12393 the exception name as "unhandled EXCEPTION_NAME", to make
12394 it clearer to the user which kind of catchpoint just got
12395 hit. We used ui_out_text to make sure that this extra
12396 info does not pollute the exception name in the MI case. */
12397 if (m_kind == ada_catch_exception_unhandled)
12398 uiout->text ("unhandled ");
12399 uiout->field_string ("exception-name", exception_name);
12402 case ada_catch_assert:
12403 /* In this case, the name of the exception is not really
12404 important. Just print "failed assertion" to make it clearer
12405 that his program just hit an assertion-failure catchpoint.
12406 We used ui_out_text because this info does not belong in
12408 uiout->text ("failed assertion");
12412 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12413 if (exception_message != NULL)
12415 uiout->text (" (");
12416 uiout->field_string ("exception-message", exception_message.get ());
12420 uiout->text (" at ");
12421 ada_find_printable_frame (get_current_frame ());
12423 return PRINT_SRC_AND_LOC;
12426 /* Implement the PRINT_ONE method in the structure for all exception
12427 catchpoint kinds. */
12430 ada_catchpoint::print_one (bp_location **last_loc) const
12432 struct ui_out *uiout = current_uiout;
12433 struct value_print_options opts;
12435 get_user_print_options (&opts);
12437 if (opts.addressprint)
12438 uiout->field_skip ("addr");
12440 annotate_field (5);
12443 case ada_catch_exception:
12444 if (!excep_string.empty ())
12446 std::string msg = string_printf (_("`%s' Ada exception"),
12447 excep_string.c_str ());
12449 uiout->field_string ("what", msg);
12452 uiout->field_string ("what", "all Ada exceptions");
12456 case ada_catch_exception_unhandled:
12457 uiout->field_string ("what", "unhandled Ada exceptions");
12460 case ada_catch_handlers:
12461 if (!excep_string.empty ())
12463 uiout->field_fmt ("what",
12464 _("`%s' Ada exception handlers"),
12465 excep_string.c_str ());
12468 uiout->field_string ("what", "all Ada exceptions handlers");
12471 case ada_catch_assert:
12472 uiout->field_string ("what", "failed Ada assertions");
12476 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12483 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12484 for all exception catchpoint kinds. */
12487 ada_catchpoint::print_mention () const
12489 struct ui_out *uiout = current_uiout;
12491 uiout->text (disposition == disp_del ? _("Temporary catchpoint ")
12492 : _("Catchpoint "));
12493 uiout->field_signed ("bkptno", number);
12494 uiout->text (": ");
12498 case ada_catch_exception:
12499 if (!excep_string.empty ())
12501 std::string info = string_printf (_("`%s' Ada exception"),
12502 excep_string.c_str ());
12503 uiout->text (info);
12506 uiout->text (_("all Ada exceptions"));
12509 case ada_catch_exception_unhandled:
12510 uiout->text (_("unhandled Ada exceptions"));
12513 case ada_catch_handlers:
12514 if (!excep_string.empty ())
12517 = string_printf (_("`%s' Ada exception handlers"),
12518 excep_string.c_str ());
12519 uiout->text (info);
12522 uiout->text (_("all Ada exceptions handlers"));
12525 case ada_catch_assert:
12526 uiout->text (_("failed Ada assertions"));
12530 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12535 /* Implement the PRINT_RECREATE method in the structure for all
12536 exception catchpoint kinds. */
12539 ada_catchpoint::print_recreate (struct ui_file *fp) const
12543 case ada_catch_exception:
12544 gdb_printf (fp, "catch exception");
12545 if (!excep_string.empty ())
12546 gdb_printf (fp, " %s", excep_string.c_str ());
12549 case ada_catch_exception_unhandled:
12550 gdb_printf (fp, "catch exception unhandled");
12553 case ada_catch_handlers:
12554 gdb_printf (fp, "catch handlers");
12557 case ada_catch_assert:
12558 gdb_printf (fp, "catch assert");
12562 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12564 print_recreate_thread (fp);
12567 /* See ada-lang.h. */
12570 is_ada_exception_catchpoint (breakpoint *bp)
12572 return dynamic_cast<ada_catchpoint *> (bp) != nullptr;
12575 /* Split the arguments specified in a "catch exception" command.
12576 Set EX to the appropriate catchpoint type.
12577 Set EXCEP_STRING to the name of the specific exception if
12578 specified by the user.
12579 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12580 "catch handlers" command. False otherwise.
12581 If a condition is found at the end of the arguments, the condition
12582 expression is stored in COND_STRING (memory must be deallocated
12583 after use). Otherwise COND_STRING is set to NULL. */
12586 catch_ada_exception_command_split (const char *args,
12587 bool is_catch_handlers_cmd,
12588 enum ada_exception_catchpoint_kind *ex,
12589 std::string *excep_string,
12590 std::string *cond_string)
12592 std::string exception_name;
12594 exception_name = extract_arg (&args);
12595 if (exception_name == "if")
12597 /* This is not an exception name; this is the start of a condition
12598 expression for a catchpoint on all exceptions. So, "un-get"
12599 this token, and set exception_name to NULL. */
12600 exception_name.clear ();
12604 /* Check to see if we have a condition. */
12606 args = skip_spaces (args);
12607 if (startswith (args, "if")
12608 && (isspace (args[2]) || args[2] == '\0'))
12611 args = skip_spaces (args);
12613 if (args[0] == '\0')
12614 error (_("Condition missing after `if' keyword"));
12615 *cond_string = args;
12617 args += strlen (args);
12620 /* Check that we do not have any more arguments. Anything else
12623 if (args[0] != '\0')
12624 error (_("Junk at end of expression"));
12626 if (is_catch_handlers_cmd)
12628 /* Catch handling of exceptions. */
12629 *ex = ada_catch_handlers;
12630 *excep_string = exception_name;
12632 else if (exception_name.empty ())
12634 /* Catch all exceptions. */
12635 *ex = ada_catch_exception;
12636 excep_string->clear ();
12638 else if (exception_name == "unhandled")
12640 /* Catch unhandled exceptions. */
12641 *ex = ada_catch_exception_unhandled;
12642 excep_string->clear ();
12646 /* Catch a specific exception. */
12647 *ex = ada_catch_exception;
12648 *excep_string = exception_name;
12652 /* Return the name of the symbol on which we should break in order to
12653 implement a catchpoint of the EX kind. */
12655 static const char *
12656 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12658 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12660 gdb_assert (data->exception_info != NULL);
12664 case ada_catch_exception:
12665 return (data->exception_info->catch_exception_sym);
12667 case ada_catch_exception_unhandled:
12668 return (data->exception_info->catch_exception_unhandled_sym);
12670 case ada_catch_assert:
12671 return (data->exception_info->catch_assert_sym);
12673 case ada_catch_handlers:
12674 return (data->exception_info->catch_handlers_sym);
12677 internal_error (__FILE__, __LINE__,
12678 _("unexpected catchpoint kind (%d)"), ex);
12682 /* Return the condition that will be used to match the current exception
12683 being raised with the exception that the user wants to catch. This
12684 assumes that this condition is used when the inferior just triggered
12685 an exception catchpoint.
12686 EX: the type of catchpoints used for catching Ada exceptions. */
12689 ada_exception_catchpoint_cond_string (const char *excep_string,
12690 enum ada_exception_catchpoint_kind ex)
12692 bool is_standard_exc = false;
12693 std::string result;
12695 if (ex == ada_catch_handlers)
12697 /* For exception handlers catchpoints, the condition string does
12698 not use the same parameter as for the other exceptions. */
12699 result = ("long_integer (GNAT_GCC_exception_Access"
12700 "(gcc_exception).all.occurrence.id)");
12703 result = "long_integer (e)";
12705 /* The standard exceptions are a special case. They are defined in
12706 runtime units that have been compiled without debugging info; if
12707 EXCEP_STRING is the not-fully-qualified name of a standard
12708 exception (e.g. "constraint_error") then, during the evaluation
12709 of the condition expression, the symbol lookup on this name would
12710 *not* return this standard exception. The catchpoint condition
12711 may then be set only on user-defined exceptions which have the
12712 same not-fully-qualified name (e.g. my_package.constraint_error).
12714 To avoid this unexcepted behavior, these standard exceptions are
12715 systematically prefixed by "standard". This means that "catch
12716 exception constraint_error" is rewritten into "catch exception
12717 standard.constraint_error".
12719 If an exception named constraint_error is defined in another package of
12720 the inferior program, then the only way to specify this exception as a
12721 breakpoint condition is to use its fully-qualified named:
12722 e.g. my_package.constraint_error. */
12724 for (const char *name : standard_exc)
12726 if (strcmp (name, excep_string) == 0)
12728 is_standard_exc = true;
12735 if (is_standard_exc)
12736 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12738 string_appendf (result, "long_integer (&%s)", excep_string);
12743 /* Return the symtab_and_line that should be used to insert an exception
12744 catchpoint of the TYPE kind.
12746 ADDR_STRING returns the name of the function where the real
12747 breakpoint that implements the catchpoints is set, depending on the
12748 type of catchpoint we need to create. */
12750 static struct symtab_and_line
12751 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12752 std::string *addr_string)
12754 const char *sym_name;
12755 struct symbol *sym;
12757 /* First, find out which exception support info to use. */
12758 ada_exception_support_info_sniffer ();
12760 /* Then lookup the function on which we will break in order to catch
12761 the Ada exceptions requested by the user. */
12762 sym_name = ada_exception_sym_name (ex);
12763 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12766 error (_("Catchpoint symbol not found: %s"), sym_name);
12768 if (sym->aclass () != LOC_BLOCK)
12769 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12771 /* Set ADDR_STRING. */
12772 *addr_string = sym_name;
12774 return find_function_start_sal (sym, 1);
12777 /* Create an Ada exception catchpoint.
12779 EX_KIND is the kind of exception catchpoint to be created.
12781 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12782 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12783 of the exception to which this catchpoint applies.
12785 COND_STRING, if not empty, is the catchpoint condition.
12787 TEMPFLAG, if nonzero, means that the underlying breakpoint
12788 should be temporary.
12790 FROM_TTY is the usual argument passed to all commands implementations. */
12793 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12794 enum ada_exception_catchpoint_kind ex_kind,
12795 const std::string &excep_string,
12796 const std::string &cond_string,
12801 std::string addr_string;
12802 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string);
12804 std::unique_ptr<ada_catchpoint> c
12805 (new ada_catchpoint (gdbarch, ex_kind, sal, addr_string.c_str (),
12806 tempflag, disabled, from_tty));
12807 c->excep_string = excep_string;
12808 create_excep_cond_exprs (c.get (), ex_kind);
12809 if (!cond_string.empty ())
12810 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12811 install_breakpoint (0, std::move (c), 1);
12814 /* Implement the "catch exception" command. */
12817 catch_ada_exception_command (const char *arg_entry, int from_tty,
12818 struct cmd_list_element *command)
12820 const char *arg = arg_entry;
12821 struct gdbarch *gdbarch = get_current_arch ();
12823 enum ada_exception_catchpoint_kind ex_kind;
12824 std::string excep_string;
12825 std::string cond_string;
12827 tempflag = command->context () == CATCH_TEMPORARY;
12831 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12833 create_ada_exception_catchpoint (gdbarch, ex_kind,
12834 excep_string, cond_string,
12835 tempflag, 1 /* enabled */,
12839 /* Implement the "catch handlers" command. */
12842 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12843 struct cmd_list_element *command)
12845 const char *arg = arg_entry;
12846 struct gdbarch *gdbarch = get_current_arch ();
12848 enum ada_exception_catchpoint_kind ex_kind;
12849 std::string excep_string;
12850 std::string cond_string;
12852 tempflag = command->context () == CATCH_TEMPORARY;
12856 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12858 create_ada_exception_catchpoint (gdbarch, ex_kind,
12859 excep_string, cond_string,
12860 tempflag, 1 /* enabled */,
12864 /* Completion function for the Ada "catch" commands. */
12867 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12868 const char *text, const char *word)
12870 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12872 for (const ada_exc_info &info : exceptions)
12874 if (startswith (info.name, word))
12875 tracker.add_completion (make_unique_xstrdup (info.name));
12879 /* Split the arguments specified in a "catch assert" command.
12881 ARGS contains the command's arguments (or the empty string if
12882 no arguments were passed).
12884 If ARGS contains a condition, set COND_STRING to that condition
12885 (the memory needs to be deallocated after use). */
12888 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12890 args = skip_spaces (args);
12892 /* Check whether a condition was provided. */
12893 if (startswith (args, "if")
12894 && (isspace (args[2]) || args[2] == '\0'))
12897 args = skip_spaces (args);
12898 if (args[0] == '\0')
12899 error (_("condition missing after `if' keyword"));
12900 cond_string.assign (args);
12903 /* Otherwise, there should be no other argument at the end of
12905 else if (args[0] != '\0')
12906 error (_("Junk at end of arguments."));
12909 /* Implement the "catch assert" command. */
12912 catch_assert_command (const char *arg_entry, int from_tty,
12913 struct cmd_list_element *command)
12915 const char *arg = arg_entry;
12916 struct gdbarch *gdbarch = get_current_arch ();
12918 std::string cond_string;
12920 tempflag = command->context () == CATCH_TEMPORARY;
12924 catch_ada_assert_command_split (arg, cond_string);
12925 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12927 tempflag, 1 /* enabled */,
12931 /* Return non-zero if the symbol SYM is an Ada exception object. */
12934 ada_is_exception_sym (struct symbol *sym)
12936 const char *type_name = sym->type ()->name ();
12938 return (sym->aclass () != LOC_TYPEDEF
12939 && sym->aclass () != LOC_BLOCK
12940 && sym->aclass () != LOC_CONST
12941 && sym->aclass () != LOC_UNRESOLVED
12942 && type_name != NULL && strcmp (type_name, "exception") == 0);
12945 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12946 Ada exception object. This matches all exceptions except the ones
12947 defined by the Ada language. */
12950 ada_is_non_standard_exception_sym (struct symbol *sym)
12952 if (!ada_is_exception_sym (sym))
12955 for (const char *name : standard_exc)
12956 if (strcmp (sym->linkage_name (), name) == 0)
12957 return 0; /* A standard exception. */
12959 /* Numeric_Error is also a standard exception, so exclude it.
12960 See the STANDARD_EXC description for more details as to why
12961 this exception is not listed in that array. */
12962 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12968 /* A helper function for std::sort, comparing two struct ada_exc_info
12971 The comparison is determined first by exception name, and then
12972 by exception address. */
12975 ada_exc_info::operator< (const ada_exc_info &other) const
12979 result = strcmp (name, other.name);
12982 if (result == 0 && addr < other.addr)
12988 ada_exc_info::operator== (const ada_exc_info &other) const
12990 return addr == other.addr && strcmp (name, other.name) == 0;
12993 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12994 routine, but keeping the first SKIP elements untouched.
12996 All duplicates are also removed. */
12999 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13002 std::sort (exceptions->begin () + skip, exceptions->end ());
13003 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13004 exceptions->end ());
13007 /* Add all exceptions defined by the Ada standard whose name match
13008 a regular expression.
13010 If PREG is not NULL, then this regexp_t object is used to
13011 perform the symbol name matching. Otherwise, no name-based
13012 filtering is performed.
13014 EXCEPTIONS is a vector of exceptions to which matching exceptions
13018 ada_add_standard_exceptions (compiled_regex *preg,
13019 std::vector<ada_exc_info> *exceptions)
13021 for (const char *name : standard_exc)
13023 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
13025 struct bound_minimal_symbol msymbol
13026 = ada_lookup_simple_minsym (name);
13028 if (msymbol.minsym != NULL)
13030 struct ada_exc_info info
13031 = {name, msymbol.value_address ()};
13033 exceptions->push_back (info);
13039 /* Add all Ada exceptions defined locally and accessible from the given
13042 If PREG is not NULL, then this regexp_t object is used to
13043 perform the symbol name matching. Otherwise, no name-based
13044 filtering is performed.
13046 EXCEPTIONS is a vector of exceptions to which matching exceptions
13050 ada_add_exceptions_from_frame (compiled_regex *preg,
13051 frame_info_ptr frame,
13052 std::vector<ada_exc_info> *exceptions)
13054 const struct block *block = get_frame_block (frame, 0);
13058 struct block_iterator iter;
13059 struct symbol *sym;
13061 ALL_BLOCK_SYMBOLS (block, iter, sym)
13063 switch (sym->aclass ())
13070 if (ada_is_exception_sym (sym))
13072 struct ada_exc_info info = {sym->print_name (),
13073 sym->value_address ()};
13075 exceptions->push_back (info);
13079 if (block->function () != NULL)
13081 block = block->superblock ();
13085 /* Return true if NAME matches PREG or if PREG is NULL. */
13088 name_matches_regex (const char *name, compiled_regex *preg)
13090 return (preg == NULL
13091 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13094 /* Add all exceptions defined globally whose name name match
13095 a regular expression, excluding standard exceptions.
13097 The reason we exclude standard exceptions is that they need
13098 to be handled separately: Standard exceptions are defined inside
13099 a runtime unit which is normally not compiled with debugging info,
13100 and thus usually do not show up in our symbol search. However,
13101 if the unit was in fact built with debugging info, we need to
13102 exclude them because they would duplicate the entry we found
13103 during the special loop that specifically searches for those
13104 standard exceptions.
13106 If PREG is not NULL, then this regexp_t object is used to
13107 perform the symbol name matching. Otherwise, no name-based
13108 filtering is performed.
13110 EXCEPTIONS is a vector of exceptions to which matching exceptions
13114 ada_add_global_exceptions (compiled_regex *preg,
13115 std::vector<ada_exc_info> *exceptions)
13117 /* In Ada, the symbol "search name" is a linkage name, whereas the
13118 regular expression used to do the matching refers to the natural
13119 name. So match against the decoded name. */
13120 expand_symtabs_matching (NULL,
13121 lookup_name_info::match_any (),
13122 [&] (const char *search_name)
13124 std::string decoded = ada_decode (search_name);
13125 return name_matches_regex (decoded.c_str (), preg);
13128 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13131 for (objfile *objfile : current_program_space->objfiles ())
13133 for (compunit_symtab *s : objfile->compunits ())
13135 const struct blockvector *bv = s->blockvector ();
13138 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13140 const struct block *b = bv->block (i);
13141 struct block_iterator iter;
13142 struct symbol *sym;
13144 ALL_BLOCK_SYMBOLS (b, iter, sym)
13145 if (ada_is_non_standard_exception_sym (sym)
13146 && name_matches_regex (sym->natural_name (), preg))
13148 struct ada_exc_info info
13149 = {sym->print_name (), sym->value_address ()};
13151 exceptions->push_back (info);
13158 /* Implements ada_exceptions_list with the regular expression passed
13159 as a regex_t, rather than a string.
13161 If not NULL, PREG is used to filter out exceptions whose names
13162 do not match. Otherwise, all exceptions are listed. */
13164 static std::vector<ada_exc_info>
13165 ada_exceptions_list_1 (compiled_regex *preg)
13167 std::vector<ada_exc_info> result;
13170 /* First, list the known standard exceptions. These exceptions
13171 need to be handled separately, as they are usually defined in
13172 runtime units that have been compiled without debugging info. */
13174 ada_add_standard_exceptions (preg, &result);
13176 /* Next, find all exceptions whose scope is local and accessible
13177 from the currently selected frame. */
13179 if (has_stack_frames ())
13181 prev_len = result.size ();
13182 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13184 if (result.size () > prev_len)
13185 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13188 /* Add all exceptions whose scope is global. */
13190 prev_len = result.size ();
13191 ada_add_global_exceptions (preg, &result);
13192 if (result.size () > prev_len)
13193 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13198 /* Return a vector of ada_exc_info.
13200 If REGEXP is NULL, all exceptions are included in the result.
13201 Otherwise, it should contain a valid regular expression,
13202 and only the exceptions whose names match that regular expression
13203 are included in the result.
13205 The exceptions are sorted in the following order:
13206 - Standard exceptions (defined by the Ada language), in
13207 alphabetical order;
13208 - Exceptions only visible from the current frame, in
13209 alphabetical order;
13210 - Exceptions whose scope is global, in alphabetical order. */
13212 std::vector<ada_exc_info>
13213 ada_exceptions_list (const char *regexp)
13215 if (regexp == NULL)
13216 return ada_exceptions_list_1 (NULL);
13218 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13219 return ada_exceptions_list_1 (®);
13222 /* Implement the "info exceptions" command. */
13225 info_exceptions_command (const char *regexp, int from_tty)
13227 struct gdbarch *gdbarch = get_current_arch ();
13229 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13231 if (regexp != NULL)
13233 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13235 gdb_printf (_("All defined Ada exceptions:\n"));
13237 for (const ada_exc_info &info : exceptions)
13238 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13242 /* Language vector */
13244 /* symbol_name_matcher_ftype adapter for wild_match. */
13247 do_wild_match (const char *symbol_search_name,
13248 const lookup_name_info &lookup_name,
13249 completion_match_result *comp_match_res)
13251 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13254 /* symbol_name_matcher_ftype adapter for full_match. */
13257 do_full_match (const char *symbol_search_name,
13258 const lookup_name_info &lookup_name,
13259 completion_match_result *comp_match_res)
13261 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13263 /* If both symbols start with "_ada_", just let the loop below
13264 handle the comparison. However, if only the symbol name starts
13265 with "_ada_", skip the prefix and let the match proceed as
13267 if (startswith (symbol_search_name, "_ada_")
13268 && !startswith (lname, "_ada"))
13269 symbol_search_name += 5;
13270 /* Likewise for ghost entities. */
13271 if (startswith (symbol_search_name, "___ghost_")
13272 && !startswith (lname, "___ghost_"))
13273 symbol_search_name += 9;
13275 int uscore_count = 0;
13276 while (*lname != '\0')
13278 if (*symbol_search_name != *lname)
13280 if (*symbol_search_name == 'B' && uscore_count == 2
13281 && symbol_search_name[1] == '_')
13283 symbol_search_name += 2;
13284 while (isdigit (*symbol_search_name))
13285 ++symbol_search_name;
13286 if (symbol_search_name[0] == '_'
13287 && symbol_search_name[1] == '_')
13289 symbol_search_name += 2;
13296 if (*symbol_search_name == '_')
13301 ++symbol_search_name;
13305 return is_name_suffix (symbol_search_name);
13308 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13311 do_exact_match (const char *symbol_search_name,
13312 const lookup_name_info &lookup_name,
13313 completion_match_result *comp_match_res)
13315 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13318 /* Build the Ada lookup name for LOOKUP_NAME. */
13320 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13322 gdb::string_view user_name = lookup_name.name ();
13324 if (!user_name.empty () && user_name[0] == '<')
13326 if (user_name.back () == '>')
13328 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13331 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13332 m_encoded_p = true;
13333 m_verbatim_p = true;
13334 m_wild_match_p = false;
13335 m_standard_p = false;
13339 m_verbatim_p = false;
13341 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13345 const char *folded = ada_fold_name (user_name);
13346 m_encoded_name = ada_encode_1 (folded, false);
13347 if (m_encoded_name.empty ())
13348 m_encoded_name = gdb::to_string (user_name);
13351 m_encoded_name = gdb::to_string (user_name);
13353 /* Handle the 'package Standard' special case. See description
13354 of m_standard_p. */
13355 if (startswith (m_encoded_name.c_str (), "standard__"))
13357 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13358 m_standard_p = true;
13361 m_standard_p = false;
13363 /* If the name contains a ".", then the user is entering a fully
13364 qualified entity name, and the match must not be done in wild
13365 mode. Similarly, if the user wants to complete what looks
13366 like an encoded name, the match must not be done in wild
13367 mode. Also, in the standard__ special case always do
13368 non-wild matching. */
13370 = (lookup_name.match_type () != symbol_name_match_type::FULL
13373 && user_name.find ('.') == std::string::npos);
13377 /* symbol_name_matcher_ftype method for Ada. This only handles
13378 completion mode. */
13381 ada_symbol_name_matches (const char *symbol_search_name,
13382 const lookup_name_info &lookup_name,
13383 completion_match_result *comp_match_res)
13385 return lookup_name.ada ().matches (symbol_search_name,
13386 lookup_name.match_type (),
13390 /* A name matcher that matches the symbol name exactly, with
13394 literal_symbol_name_matcher (const char *symbol_search_name,
13395 const lookup_name_info &lookup_name,
13396 completion_match_result *comp_match_res)
13398 gdb::string_view name_view = lookup_name.name ();
13400 if (lookup_name.completion_mode ()
13401 ? (strncmp (symbol_search_name, name_view.data (),
13402 name_view.size ()) == 0)
13403 : symbol_search_name == name_view)
13405 if (comp_match_res != NULL)
13406 comp_match_res->set_match (symbol_search_name);
13413 /* Implement the "get_symbol_name_matcher" language_defn method for
13416 static symbol_name_matcher_ftype *
13417 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13419 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13420 return literal_symbol_name_matcher;
13422 if (lookup_name.completion_mode ())
13423 return ada_symbol_name_matches;
13426 if (lookup_name.ada ().wild_match_p ())
13427 return do_wild_match;
13428 else if (lookup_name.ada ().verbatim_p ())
13429 return do_exact_match;
13431 return do_full_match;
13435 /* Class representing the Ada language. */
13437 class ada_language : public language_defn
13441 : language_defn (language_ada)
13444 /* See language.h. */
13446 const char *name () const override
13449 /* See language.h. */
13451 const char *natural_name () const override
13454 /* See language.h. */
13456 const std::vector<const char *> &filename_extensions () const override
13458 static const std::vector<const char *> extensions
13459 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13463 /* Print an array element index using the Ada syntax. */
13465 void print_array_index (struct type *index_type,
13467 struct ui_file *stream,
13468 const value_print_options *options) const override
13470 struct value *index_value = val_atr (index_type, index);
13472 value_print (index_value, stream, options);
13473 gdb_printf (stream, " => ");
13476 /* Implement the "read_var_value" language_defn method for Ada. */
13478 struct value *read_var_value (struct symbol *var,
13479 const struct block *var_block,
13480 frame_info_ptr frame) const override
13482 /* The only case where default_read_var_value is not sufficient
13483 is when VAR is a renaming... */
13484 if (frame != nullptr)
13486 const struct block *frame_block = get_frame_block (frame, NULL);
13487 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13488 return ada_read_renaming_var_value (var, frame_block);
13491 /* This is a typical case where we expect the default_read_var_value
13492 function to work. */
13493 return language_defn::read_var_value (var, var_block, frame);
13496 /* See language.h. */
13497 bool symbol_printing_suppressed (struct symbol *symbol) const override
13499 return symbol->is_artificial ();
13502 /* See language.h. */
13503 void language_arch_info (struct gdbarch *gdbarch,
13504 struct language_arch_info *lai) const override
13506 const struct builtin_type *builtin = builtin_type (gdbarch);
13508 /* Helper function to allow shorter lines below. */
13509 auto add = [&] (struct type *t)
13511 lai->add_primitive_type (t);
13514 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13516 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13517 0, "long_integer"));
13518 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13519 0, "short_integer"));
13520 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13522 lai->set_string_char_type (char_type);
13524 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13525 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13526 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13527 "float", gdbarch_float_format (gdbarch)));
13528 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13529 "long_float", gdbarch_double_format (gdbarch)));
13530 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13531 0, "long_long_integer"));
13532 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13534 gdbarch_long_double_format (gdbarch)));
13535 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13537 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13539 add (builtin->builtin_void);
13541 struct type *system_addr_ptr
13542 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13544 system_addr_ptr->set_name ("system__address");
13545 add (system_addr_ptr);
13547 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13548 type. This is a signed integral type whose size is the same as
13549 the size of addresses. */
13550 unsigned int addr_length = system_addr_ptr->length ();
13551 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13552 "storage_offset"));
13554 lai->set_bool_type (builtin->builtin_bool);
13557 /* See language.h. */
13559 bool iterate_over_symbols
13560 (const struct block *block, const lookup_name_info &name,
13561 domain_enum domain,
13562 gdb::function_view<symbol_found_callback_ftype> callback) const override
13564 std::vector<struct block_symbol> results
13565 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13566 for (block_symbol &sym : results)
13568 if (!callback (&sym))
13575 /* See language.h. */
13576 bool sniff_from_mangled_name
13577 (const char *mangled,
13578 gdb::unique_xmalloc_ptr<char> *out) const override
13580 std::string demangled = ada_decode (mangled);
13584 if (demangled != mangled && demangled[0] != '<')
13586 /* Set the gsymbol language to Ada, but still return 0.
13587 Two reasons for that:
13589 1. For Ada, we prefer computing the symbol's decoded name
13590 on the fly rather than pre-compute it, in order to save
13591 memory (Ada projects are typically very large).
13593 2. There are some areas in the definition of the GNAT
13594 encoding where, with a bit of bad luck, we might be able
13595 to decode a non-Ada symbol, generating an incorrect
13596 demangled name (Eg: names ending with "TB" for instance
13597 are identified as task bodies and so stripped from
13598 the decoded name returned).
13600 Returning true, here, but not setting *DEMANGLED, helps us get
13601 a little bit of the best of both worlds. Because we're last,
13602 we should not affect any of the other languages that were
13603 able to demangle the symbol before us; we get to correctly
13604 tag Ada symbols as such; and even if we incorrectly tagged a
13605 non-Ada symbol, which should be rare, any routing through the
13606 Ada language should be transparent (Ada tries to behave much
13607 like C/C++ with non-Ada symbols). */
13614 /* See language.h. */
13616 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13617 int options) const override
13619 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13622 /* See language.h. */
13624 void print_type (struct type *type, const char *varstring,
13625 struct ui_file *stream, int show, int level,
13626 const struct type_print_options *flags) const override
13628 ada_print_type (type, varstring, stream, show, level, flags);
13631 /* See language.h. */
13633 const char *word_break_characters (void) const override
13635 return ada_completer_word_break_characters;
13638 /* See language.h. */
13640 void collect_symbol_completion_matches (completion_tracker &tracker,
13641 complete_symbol_mode mode,
13642 symbol_name_match_type name_match_type,
13643 const char *text, const char *word,
13644 enum type_code code) const override
13646 struct symbol *sym;
13647 const struct block *b, *surrounding_static_block = 0;
13648 struct block_iterator iter;
13650 gdb_assert (code == TYPE_CODE_UNDEF);
13652 lookup_name_info lookup_name (text, name_match_type, true);
13654 /* First, look at the partial symtab symbols. */
13655 expand_symtabs_matching (NULL,
13659 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13662 /* At this point scan through the misc symbol vectors and add each
13663 symbol you find to the list. Eventually we want to ignore
13664 anything that isn't a text symbol (everything else will be
13665 handled by the psymtab code above). */
13667 for (objfile *objfile : current_program_space->objfiles ())
13669 for (minimal_symbol *msymbol : objfile->msymbols ())
13673 if (completion_skip_symbol (mode, msymbol))
13676 language symbol_language = msymbol->language ();
13678 /* Ada minimal symbols won't have their language set to Ada. If
13679 we let completion_list_add_name compare using the
13680 default/C-like matcher, then when completing e.g., symbols in a
13681 package named "pck", we'd match internal Ada symbols like
13682 "pckS", which are invalid in an Ada expression, unless you wrap
13683 them in '<' '>' to request a verbatim match.
13685 Unfortunately, some Ada encoded names successfully demangle as
13686 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13687 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13688 with the wrong language set. Paper over that issue here. */
13689 if (symbol_language == language_auto
13690 || symbol_language == language_cplus)
13691 symbol_language = language_ada;
13693 completion_list_add_name (tracker,
13695 msymbol->linkage_name (),
13696 lookup_name, text, word);
13700 /* Search upwards from currently selected frame (so that we can
13701 complete on local vars. */
13703 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
13705 if (!b->superblock ())
13706 surrounding_static_block = b; /* For elmin of dups */
13708 ALL_BLOCK_SYMBOLS (b, iter, sym)
13710 if (completion_skip_symbol (mode, sym))
13713 completion_list_add_name (tracker,
13715 sym->linkage_name (),
13716 lookup_name, text, word);
13720 /* Go through the symtabs and check the externs and statics for
13721 symbols which match. */
13723 for (objfile *objfile : current_program_space->objfiles ())
13725 for (compunit_symtab *s : objfile->compunits ())
13728 b = s->blockvector ()->global_block ();
13729 ALL_BLOCK_SYMBOLS (b, iter, sym)
13731 if (completion_skip_symbol (mode, sym))
13734 completion_list_add_name (tracker,
13736 sym->linkage_name (),
13737 lookup_name, text, word);
13742 for (objfile *objfile : current_program_space->objfiles ())
13744 for (compunit_symtab *s : objfile->compunits ())
13747 b = s->blockvector ()->static_block ();
13748 /* Don't do this block twice. */
13749 if (b == surrounding_static_block)
13751 ALL_BLOCK_SYMBOLS (b, iter, sym)
13753 if (completion_skip_symbol (mode, sym))
13756 completion_list_add_name (tracker,
13758 sym->linkage_name (),
13759 lookup_name, text, word);
13765 /* See language.h. */
13767 gdb::unique_xmalloc_ptr<char> watch_location_expression
13768 (struct type *type, CORE_ADDR addr) const override
13770 type = check_typedef (check_typedef (type)->target_type ());
13771 std::string name = type_to_string (type);
13772 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13775 /* See language.h. */
13777 void value_print (struct value *val, struct ui_file *stream,
13778 const struct value_print_options *options) const override
13780 return ada_value_print (val, stream, options);
13783 /* See language.h. */
13785 void value_print_inner
13786 (struct value *val, struct ui_file *stream, int recurse,
13787 const struct value_print_options *options) const override
13789 return ada_value_print_inner (val, stream, recurse, options);
13792 /* See language.h. */
13794 struct block_symbol lookup_symbol_nonlocal
13795 (const char *name, const struct block *block,
13796 const domain_enum domain) const override
13798 struct block_symbol sym;
13800 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13801 if (sym.symbol != NULL)
13804 /* If we haven't found a match at this point, try the primitive
13805 types. In other languages, this search is performed before
13806 searching for global symbols in order to short-circuit that
13807 global-symbol search if it happens that the name corresponds
13808 to a primitive type. But we cannot do the same in Ada, because
13809 it is perfectly legitimate for a program to declare a type which
13810 has the same name as a standard type. If looking up a type in
13811 that situation, we have traditionally ignored the primitive type
13812 in favor of user-defined types. This is why, unlike most other
13813 languages, we search the primitive types this late and only after
13814 having searched the global symbols without success. */
13816 if (domain == VAR_DOMAIN)
13818 struct gdbarch *gdbarch;
13821 gdbarch = target_gdbarch ();
13823 gdbarch = block_gdbarch (block);
13825 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13826 if (sym.symbol != NULL)
13833 /* See language.h. */
13835 int parser (struct parser_state *ps) const override
13837 warnings_issued = 0;
13838 return ada_parse (ps);
13841 /* See language.h. */
13843 void emitchar (int ch, struct type *chtype,
13844 struct ui_file *stream, int quoter) const override
13846 ada_emit_char (ch, chtype, stream, quoter, 1);
13849 /* See language.h. */
13851 void printchar (int ch, struct type *chtype,
13852 struct ui_file *stream) const override
13854 ada_printchar (ch, chtype, stream);
13857 /* See language.h. */
13859 void printstr (struct ui_file *stream, struct type *elttype,
13860 const gdb_byte *string, unsigned int length,
13861 const char *encoding, int force_ellipses,
13862 const struct value_print_options *options) const override
13864 ada_printstr (stream, elttype, string, length, encoding,
13865 force_ellipses, options);
13868 /* See language.h. */
13870 void print_typedef (struct type *type, struct symbol *new_symbol,
13871 struct ui_file *stream) const override
13873 ada_print_typedef (type, new_symbol, stream);
13876 /* See language.h. */
13878 bool is_string_type_p (struct type *type) const override
13880 return ada_is_string_type (type);
13883 /* See language.h. */
13885 const char *struct_too_deep_ellipsis () const override
13886 { return "(...)"; }
13888 /* See language.h. */
13890 bool c_style_arrays_p () const override
13893 /* See language.h. */
13895 bool store_sym_names_in_linkage_form_p () const override
13898 /* See language.h. */
13900 const struct lang_varobj_ops *varobj_ops () const override
13901 { return &ada_varobj_ops; }
13904 /* See language.h. */
13906 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13907 (const lookup_name_info &lookup_name) const override
13909 return ada_get_symbol_name_matcher (lookup_name);
13913 /* Single instance of the Ada language class. */
13915 static ada_language ada_language_defn;
13917 /* Command-list for the "set/show ada" prefix command. */
13918 static struct cmd_list_element *set_ada_list;
13919 static struct cmd_list_element *show_ada_list;
13921 /* This module's 'new_objfile' observer. */
13924 ada_new_objfile_observer (struct objfile *objfile)
13926 ada_clear_symbol_cache ();
13929 /* This module's 'free_objfile' observer. */
13932 ada_free_objfile_observer (struct objfile *objfile)
13934 ada_clear_symbol_cache ();
13937 /* Charsets known to GNAT. */
13938 static const char * const gnat_source_charsets[] =
13940 /* Note that code below assumes that the default comes first.
13941 Latin-1 is the default here, because that is also GNAT's
13951 /* Note that this value is special-cased in the encoder and
13957 void _initialize_ada_language ();
13959 _initialize_ada_language ()
13961 add_setshow_prefix_cmd
13963 _("Prefix command for changing Ada-specific settings."),
13964 _("Generic command for showing Ada-specific settings."),
13965 &set_ada_list, &show_ada_list,
13966 &setlist, &showlist);
13968 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13969 &trust_pad_over_xvs, _("\
13970 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13971 Show whether an optimization trusting PAD types over XVS types is activated."),
13973 This is related to the encoding used by the GNAT compiler. The debugger\n\
13974 should normally trust the contents of PAD types, but certain older versions\n\
13975 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13976 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13977 work around this bug. It is always safe to turn this option \"off\", but\n\
13978 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13979 this option to \"off\" unless necessary."),
13980 NULL, NULL, &set_ada_list, &show_ada_list);
13982 add_setshow_boolean_cmd ("print-signatures", class_vars,
13983 &print_signatures, _("\
13984 Enable or disable the output of formal and return types for functions in the \
13985 overloads selection menu."), _("\
13986 Show whether the output of formal and return types for functions in the \
13987 overloads selection menu is activated."),
13988 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13990 ada_source_charset = gnat_source_charsets[0];
13991 add_setshow_enum_cmd ("source-charset", class_files,
13992 gnat_source_charsets,
13993 &ada_source_charset, _("\
13994 Set the Ada source character set."), _("\
13995 Show the Ada source character set."), _("\
13996 The character set used for Ada source files.\n\
13997 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13999 &set_ada_list, &show_ada_list);
14001 add_catch_command ("exception", _("\
14002 Catch Ada exceptions, when raised.\n\
14003 Usage: catch exception [ARG] [if CONDITION]\n\
14004 Without any argument, stop when any Ada exception is raised.\n\
14005 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14006 being raised does not have a handler (and will therefore lead to the task's\n\
14008 Otherwise, the catchpoint only stops when the name of the exception being\n\
14009 raised is the same as ARG.\n\
14010 CONDITION is a boolean expression that is evaluated to see whether the\n\
14011 exception should cause a stop."),
14012 catch_ada_exception_command,
14013 catch_ada_completer,
14017 add_catch_command ("handlers", _("\
14018 Catch Ada exceptions, when handled.\n\
14019 Usage: catch handlers [ARG] [if CONDITION]\n\
14020 Without any argument, stop when any Ada exception is handled.\n\
14021 With an argument, catch only exceptions with the given name.\n\
14022 CONDITION is a boolean expression that is evaluated to see whether the\n\
14023 exception should cause a stop."),
14024 catch_ada_handlers_command,
14025 catch_ada_completer,
14028 add_catch_command ("assert", _("\
14029 Catch failed Ada assertions, when raised.\n\
14030 Usage: catch assert [if CONDITION]\n\
14031 CONDITION is a boolean expression that is evaluated to see whether the\n\
14032 exception should cause a stop."),
14033 catch_assert_command,
14038 add_info ("exceptions", info_exceptions_command,
14040 List all Ada exception names.\n\
14041 Usage: info exceptions [REGEXP]\n\
14042 If a regular expression is passed as an argument, only those matching\n\
14043 the regular expression are listed."));
14045 add_setshow_prefix_cmd ("ada", class_maintenance,
14046 _("Set Ada maintenance-related variables."),
14047 _("Show Ada maintenance-related variables."),
14048 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14049 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
14051 add_setshow_boolean_cmd
14052 ("ignore-descriptive-types", class_maintenance,
14053 &ada_ignore_descriptive_types_p,
14054 _("Set whether descriptive types generated by GNAT should be ignored."),
14055 _("Show whether descriptive types generated by GNAT should be ignored."),
14057 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14058 DWARF attribute."),
14059 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14061 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14063 NULL, xcalloc, xfree);
14065 /* The ada-lang observers. */
14066 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14067 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14068 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");