1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001
3 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
28 #include "gdb_assert.h"
33 * Here is the actual register cache.
36 /* NOTE: this is a write-through cache. There is no "dirty" bit for
37 recording if the register values have been changed (eg. by the
38 user). Therefore all registers must be written back to the
39 target when appropriate. */
41 /* REGISTERS contains the cached register values (in target byte order). */
45 /* REGISTER_VALID is 0 if the register needs to be fetched,
46 1 if it has been fetched, and
47 -1 if the register value was not available.
48 "Not available" means don't try to fetch it again. */
50 signed char *register_valid;
52 /* The thread/process associated with the current set of registers. */
54 static ptid_t registers_ptid;
62 Returns 0 if the value is not in the cache (needs fetch).
63 >0 if the value is in the cache.
64 <0 if the value is permanently unavailable (don't ask again). */
67 register_cached (int regnum)
69 return register_valid[regnum];
72 /* Record that REGNUM's value is cached if STATE is >0, uncached but
73 fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */
76 set_register_cached (int regnum, int state)
78 register_valid[regnum] = state;
83 invalidate a single register REGNUM in the cache */
85 register_changed (int regnum)
87 set_register_cached (regnum, 0);
90 /* If REGNUM >= 0, return a pointer to register REGNUM's cache buffer area,
91 else return a pointer to the start of the cache buffer. */
94 register_buffer (int regnum)
99 return ®isters[REGISTER_BYTE (regnum)];
102 /* Return whether register REGNUM is a real register. */
105 real_register (int regnum)
107 return regnum >= 0 && regnum < NUM_REGS;
110 /* Return whether register REGNUM is a pseudo register. */
113 pseudo_register (int regnum)
115 return regnum >= NUM_REGS && regnum < NUM_REGS + NUM_PSEUDO_REGS;
118 /* Fetch register REGNUM into the cache. */
121 fetch_register (int regnum)
123 if (real_register (regnum))
124 target_fetch_registers (regnum);
125 else if (pseudo_register (regnum))
126 FETCH_PSEUDO_REGISTER (regnum);
129 /* Write register REGNUM cached value to the target. */
132 store_register (int regnum)
134 if (real_register (regnum))
135 target_store_registers (regnum);
136 else if (pseudo_register (regnum))
137 STORE_PSEUDO_REGISTER (regnum);
140 /* Low level examining and depositing of registers.
142 The caller is responsible for making sure that the inferior is
143 stopped before calling the fetching routines, or it will get
144 garbage. (a change from GDB version 3, in which the caller got the
145 value from the last stop). */
147 /* REGISTERS_CHANGED ()
149 Indicate that registers may have changed, so invalidate the cache. */
152 registers_changed (void)
156 registers_ptid = pid_to_ptid (-1);
158 /* Force cleanup of any alloca areas if using C alloca instead of
159 a builtin alloca. This particular call is used to clean up
160 areas allocated by low level target code which may build up
161 during lengthy interactions between gdb and the target before
162 gdb gives control to the user (ie watchpoints). */
165 for (i = 0; i < NUM_REGS; i++)
166 set_register_cached (i, 0);
168 /* Assume that if all the hardware regs have changed,
169 then so have the pseudo-registers. */
170 for (i = NUM_REGS; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
171 set_register_cached (i, 0);
173 if (registers_changed_hook)
174 registers_changed_hook ();
177 /* REGISTERS_FETCHED ()
179 Indicate that all registers have been fetched, so mark them all valid. */
183 registers_fetched (void)
187 for (i = 0; i < NUM_REGS; i++)
188 set_register_cached (i, 1);
189 /* Do not assume that the pseudo-regs have also been fetched.
190 Fetching all real regs might not account for all pseudo-regs. */
193 /* read_register_bytes and write_register_bytes are generally a *BAD*
194 idea. They are inefficient because they need to check for partial
195 updates, which can only be done by scanning through all of the
196 registers and seeing if the bytes that are being read/written fall
197 inside of an invalid register. [The main reason this is necessary
198 is that register sizes can vary, so a simple index won't suffice.]
199 It is far better to call read_register_gen and write_register_gen
200 if you want to get at the raw register contents, as it only takes a
201 regnum as an argument, and therefore can't do a partial register
204 Prior to the recent fixes to check for partial updates, both read
205 and write_register_bytes always checked to see if any registers
206 were stale, and then called target_fetch_registers (-1) to update
207 the whole set. This caused really slowed things down for remote
210 /* Copy INLEN bytes of consecutive data from registers
211 starting with the INREGBYTE'th byte of register data
212 into memory at MYADDR. */
215 read_register_bytes (int in_start, char *in_buf, int in_len)
217 int in_end = in_start + in_len;
219 char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE);
221 /* See if we are trying to read bytes from out-of-date registers. If so,
222 update just those registers. */
224 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
233 reg_start = REGISTER_BYTE (regnum);
234 reg_len = REGISTER_RAW_SIZE (regnum);
235 reg_end = reg_start + reg_len;
237 if (reg_end <= in_start || in_end <= reg_start)
238 /* The range the user wants to read doesn't overlap with regnum. */
241 if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0')
242 /* Force the cache to fetch the entire register. */
243 read_register_gen (regnum, reg_buf);
245 /* Legacy note: even though this register is ``invalid'' we
246 still need to return something. It would appear that some
247 code relies on apparent gaps in the register array also
249 /* FIXME: cagney/2001-08-18: This is just silly. It defeats
250 the entire register read/write flow of control. Must
251 resist temptation to return 0xdeadbeef. */
252 memcpy (reg_buf, registers + reg_start, reg_len);
254 /* Legacy note: This function, for some reason, allows a NULL
255 input buffer. If the buffer is NULL, the registers are still
256 fetched, just the final transfer is skipped. */
260 /* start = max (reg_start, in_start) */
261 if (reg_start > in_start)
266 /* end = min (reg_end, in_end) */
267 if (reg_end < in_end)
272 /* Transfer just the bytes common to both IN_BUF and REG_BUF */
273 for (byte = start; byte < end; byte++)
275 in_buf[byte - in_start] = reg_buf[byte - reg_start];
280 /* Read register REGNUM into memory at MYADDR, which must be large
281 enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the
282 register is known to be the size of a CORE_ADDR or smaller,
283 read_register can be used instead. */
286 legacy_read_register_gen (int regnum, char *myaddr)
288 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
289 if (! ptid_equal (registers_ptid, inferior_ptid))
291 registers_changed ();
292 registers_ptid = inferior_ptid;
295 if (!register_cached (regnum))
296 fetch_register (regnum);
298 memcpy (myaddr, register_buffer (regnum),
299 REGISTER_RAW_SIZE (regnum));
303 regcache_read (int rawnum, char *buf)
305 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
306 /* For moment, just use underlying legacy code. Ulgh!!! */
307 legacy_read_register_gen (rawnum, buf);
311 read_register_gen (int regnum, char *buf)
313 if (! gdbarch_register_read_p (current_gdbarch))
315 legacy_read_register_gen (regnum, buf);
318 gdbarch_register_read (current_gdbarch, regnum, buf);
322 /* Write register REGNUM at MYADDR to the target. MYADDR points at
323 REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */
326 legacy_write_register_gen (int regnum, char *myaddr)
329 gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS));
331 /* On the sparc, writing %g0 is a no-op, so we don't even want to
332 change the registers array if something writes to this register. */
333 if (CANNOT_STORE_REGISTER (regnum))
336 if (! ptid_equal (registers_ptid, inferior_ptid))
338 registers_changed ();
339 registers_ptid = inferior_ptid;
342 size = REGISTER_RAW_SIZE (regnum);
344 if (real_register (regnum))
346 /* If we have a valid copy of the register, and new value == old
347 value, then don't bother doing the actual store. */
348 if (register_cached (regnum)
349 && memcmp (register_buffer (regnum), myaddr, size) == 0)
352 target_prepare_to_store ();
355 memcpy (register_buffer (regnum), myaddr, size);
357 set_register_cached (regnum, 1);
358 store_register (regnum);
362 regcache_write (int rawnum, char *buf)
364 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
365 /* For moment, just use underlying legacy code. Ulgh!!! */
366 legacy_write_register_gen (rawnum, buf);
370 write_register_gen (int regnum, char *buf)
372 if (! gdbarch_register_write_p (current_gdbarch))
374 legacy_write_register_gen (regnum, buf);
377 gdbarch_register_write (current_gdbarch, regnum, buf);
380 /* Copy INLEN bytes of consecutive data from memory at MYADDR
381 into registers starting with the MYREGSTART'th byte of register data. */
384 write_register_bytes (int myregstart, char *myaddr, int inlen)
386 int myregend = myregstart + inlen;
389 target_prepare_to_store ();
391 /* Scan through the registers updating any that are covered by the
392 range myregstart<=>myregend using write_register_gen, which does
393 nice things like handling threads, and avoiding updates when the
394 new and old contents are the same. */
396 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
398 int regstart, regend;
400 regstart = REGISTER_BYTE (regnum);
401 regend = regstart + REGISTER_RAW_SIZE (regnum);
403 /* Is this register completely outside the range the user is writing? */
404 if (myregend <= regstart || regend <= myregstart)
407 /* Is this register completely within the range the user is writing? */
408 else if (myregstart <= regstart && regend <= myregend)
409 write_register_gen (regnum, myaddr + (regstart - myregstart));
411 /* The register partially overlaps the range being written. */
414 char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE);
415 /* What's the overlap between this register's bytes and
416 those the caller wants to write? */
417 int overlapstart = max (regstart, myregstart);
418 int overlapend = min (regend, myregend);
420 /* We may be doing a partial update of an invalid register.
421 Update it from the target before scribbling on it. */
422 read_register_gen (regnum, regbuf);
424 memcpy (registers + overlapstart,
425 myaddr + (overlapstart - myregstart),
426 overlapend - overlapstart);
428 store_register (regnum);
434 /* Return the contents of register REGNUM as an unsigned integer. */
437 read_register (int regnum)
439 char *buf = alloca (REGISTER_RAW_SIZE (regnum));
440 read_register_gen (regnum, buf);
441 return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum)));
445 read_register_pid (int regnum, ptid_t ptid)
451 if (ptid_equal (ptid, inferior_ptid))
452 return read_register (regnum);
454 save_ptid = inferior_ptid;
456 inferior_ptid = ptid;
458 retval = read_register (regnum);
460 inferior_ptid = save_ptid;
465 /* Return the contents of register REGNUM as a signed integer. */
468 read_signed_register (int regnum)
470 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
471 read_register_gen (regnum, buf);
472 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
476 read_signed_register_pid (int regnum, ptid_t ptid)
481 if (ptid_equal (ptid, inferior_ptid))
482 return read_signed_register (regnum);
484 save_ptid = inferior_ptid;
486 inferior_ptid = ptid;
488 retval = read_signed_register (regnum);
490 inferior_ptid = save_ptid;
495 /* Store VALUE into the raw contents of register number REGNUM. */
498 write_register (int regnum, LONGEST val)
502 size = REGISTER_RAW_SIZE (regnum);
504 store_signed_integer (buf, size, (LONGEST) val);
505 write_register_gen (regnum, buf);
509 write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid)
513 if (ptid_equal (ptid, inferior_ptid))
515 write_register (regnum, val);
519 save_ptid = inferior_ptid;
521 inferior_ptid = ptid;
523 write_register (regnum, val);
525 inferior_ptid = save_ptid;
530 Record that register REGNUM contains VAL. This is used when the
531 value is obtained from the inferior or core dump, so there is no
532 need to store the value there.
534 If VAL is a NULL pointer, then it's probably an unsupported register.
535 We just set its value to all zeros. We might want to record this
536 fact, and report it to the users of read_register and friends. */
539 supply_register (int regnum, char *val)
542 if (! ptid_equal (registers_ptid, inferior_ptid))
544 registers_changed ();
545 registers_ptid = inferior_ptid;
549 set_register_cached (regnum, 1);
551 memcpy (register_buffer (regnum), val,
552 REGISTER_RAW_SIZE (regnum));
554 memset (register_buffer (regnum), '\000',
555 REGISTER_RAW_SIZE (regnum));
557 /* On some architectures, e.g. HPPA, there are a few stray bits in
558 some registers, that the rest of the code would like to ignore. */
560 /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is
561 going to be deprecated. Instead architectures will leave the raw
562 register value as is and instead clean things up as they pass
563 through the method gdbarch_register_read() clean up the
566 #ifdef CLEAN_UP_REGISTER_VALUE
567 CLEAN_UP_REGISTER_VALUE (regnum, register_buffer (regnum));
572 regcache_collect (int regnum, void *buf)
574 memcpy (buf, register_buffer (regnum), REGISTER_RAW_SIZE (regnum));
578 /* read_pc, write_pc, read_sp, write_sp, read_fp, write_fp, etc.
579 Special handling for registers PC, SP, and FP. */
581 /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(),
582 read_pc_pid(), read_pc(), generic_target_write_pc(),
583 write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(),
584 generic_target_write_sp(), write_sp(), generic_target_read_fp(),
585 read_fp(), generic_target_write_fp(), write_fp will eventually be
586 moved out of the reg-cache into either frame.[hc] or to the
587 multi-arch framework. The are not part of the raw register cache. */
589 /* This routine is getting awfully cluttered with #if's. It's probably
590 time to turn this into READ_PC and define it in the tm.h file.
593 1999-06-08: The following were re-written so that it assumes the
594 existence of a TARGET_READ_PC et.al. macro. A default generic
595 version of that macro is made available where needed.
597 Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
598 by the multi-arch framework, it will eventually be possible to
599 eliminate the intermediate read_pc_pid(). The client would call
600 TARGET_READ_PC directly. (cagney). */
603 generic_target_read_pc (ptid_t ptid)
608 CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid));
612 internal_error (__FILE__, __LINE__,
613 "generic_target_read_pc");
618 read_pc_pid (ptid_t ptid)
620 ptid_t saved_inferior_ptid;
623 /* In case ptid != inferior_ptid. */
624 saved_inferior_ptid = inferior_ptid;
625 inferior_ptid = ptid;
627 pc_val = TARGET_READ_PC (ptid);
629 inferior_ptid = saved_inferior_ptid;
636 return read_pc_pid (inferior_ptid);
640 generic_target_write_pc (CORE_ADDR pc, ptid_t ptid)
644 write_register_pid (PC_REGNUM, pc, ptid);
646 write_register_pid (NPC_REGNUM, pc + 4, ptid);
647 if (NNPC_REGNUM >= 0)
648 write_register_pid (NNPC_REGNUM, pc + 8, ptid);
650 internal_error (__FILE__, __LINE__,
651 "generic_target_write_pc");
656 write_pc_pid (CORE_ADDR pc, ptid_t ptid)
658 ptid_t saved_inferior_ptid;
660 /* In case ptid != inferior_ptid. */
661 saved_inferior_ptid = inferior_ptid;
662 inferior_ptid = ptid;
664 TARGET_WRITE_PC (pc, ptid);
666 inferior_ptid = saved_inferior_ptid;
670 write_pc (CORE_ADDR pc)
672 write_pc_pid (pc, inferior_ptid);
675 /* Cope with strage ways of getting to the stack and frame pointers */
678 generic_target_read_sp (void)
682 return read_register (SP_REGNUM);
684 internal_error (__FILE__, __LINE__,
685 "generic_target_read_sp");
691 return TARGET_READ_SP ();
695 generic_target_write_sp (CORE_ADDR val)
700 write_register (SP_REGNUM, val);
704 internal_error (__FILE__, __LINE__,
705 "generic_target_write_sp");
709 write_sp (CORE_ADDR val)
711 TARGET_WRITE_SP (val);
715 generic_target_read_fp (void)
719 return read_register (FP_REGNUM);
721 internal_error (__FILE__, __LINE__,
722 "generic_target_read_fp");
728 return TARGET_READ_FP ();
732 generic_target_write_fp (CORE_ADDR val)
737 write_register (FP_REGNUM, val);
741 internal_error (__FILE__, __LINE__,
742 "generic_target_write_fp");
746 write_fp (CORE_ADDR val)
748 TARGET_WRITE_FP (val);
753 reg_flush_command (char *command, int from_tty)
755 /* Force-flush the register cache. */
756 registers_changed ();
758 printf_filtered ("Register cache flushed.\n");
763 build_regcache (void)
765 /* We allocate some extra slop since we do a lot of memcpy's around
766 `registers', and failing-soft is better than failing hard. */
767 int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
768 int sizeof_register_valid =
769 (NUM_REGS + NUM_PSEUDO_REGS) * sizeof (*register_valid);
770 registers = xmalloc (sizeof_registers);
771 memset (registers, 0, sizeof_registers);
772 register_valid = xmalloc (sizeof_register_valid);
773 memset (register_valid, 0, sizeof_register_valid);
777 _initialize_regcache (void)
781 register_gdbarch_swap (®isters, sizeof (registers), NULL);
782 register_gdbarch_swap (®ister_valid, sizeof (register_valid), NULL);
783 register_gdbarch_swap (NULL, 0, build_regcache);
785 add_com ("flushregs", class_maintenance, reg_flush_command,
786 "Force gdb to flush its register cache (maintainer command)");
788 /* Initialize the thread/process associated with the current set of
789 registers. For now, -1 is special, and means `no current process'. */
790 registers_ptid = pid_to_ptid (-1);