]> Git Repo - binutils.git/blob - gold/object.cc
Support x32 core dump.
[binutils.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <[email protected]>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54   if (this->section_headers != NULL)
55     delete this->section_headers;
56   if (this->section_names != NULL)
57     delete this->section_names;
58   if (this->symbols != NULL)
59     delete this->symbols;
60   if (this->symbol_names != NULL)
61     delete this->symbol_names;
62   if (this->versym != NULL)
63     delete this->versym;
64   if (this->verdef != NULL)
65     delete this->verdef;
66   if (this->verneed != NULL)
67     delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
73 // section and read it in.  SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80   if (!this->symtab_xindex_.empty())
81     return;
82
83   gold_assert(symtab_shndx != 0);
84
85   // Look through the sections in reverse order, on the theory that it
86   // is more likely to be near the end than the beginning.
87   unsigned int i = object->shnum();
88   while (i > 0)
89     {
90       --i;
91       if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92           && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93         {
94           this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95           return;
96         }
97     }
98
99   object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109                            const unsigned char* pshdrs)
110 {
111   section_size_type bytecount;
112   const unsigned char* contents;
113   if (pshdrs == NULL)
114     contents = object->section_contents(xindex_shndx, &bytecount, false);
115   else
116     {
117       const unsigned char* p = (pshdrs
118                                 + (xindex_shndx
119                                    * elfcpp::Elf_sizes<size>::shdr_size));
120       typename elfcpp::Shdr<size, big_endian> shdr(p);
121       bytecount = convert_to_section_size_type(shdr.get_sh_size());
122       contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123     }
124
125   gold_assert(this->symtab_xindex_.empty());
126   this->symtab_xindex_.reserve(bytecount / 4);
127   for (section_size_type i = 0; i < bytecount; i += 4)
128     {
129       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130       // We preadjust the section indexes we save.
131       this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132     }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141   if (symndx >= this->symtab_xindex_.size())
142     {
143       object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144                     symndx);
145       return elfcpp::SHN_UNDEF;
146     }
147   unsigned int shndx = this->symtab_xindex_[symndx];
148   if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149     {
150       object->error(_("extended index for symbol %u out of range: %u"),
151                     symndx, shndx);
152       return elfcpp::SHN_UNDEF;
153     }
154   return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file.  This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166   va_list args;
167   va_start(args, format);
168   char* buf = NULL;
169   if (vasprintf(&buf, format, args) < 0)
170     gold_nomem();
171   va_end(args);
172   gold_error(_("%s: %s"), this->name().c_str(), buf);
173   free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180                          bool cache)
181 {
182   Location loc(this->do_section_contents(shndx));
183   *plen = convert_to_section_size_type(loc.data_size);
184   if (*plen == 0)
185     {
186       static const unsigned char empty[1] = { '\0' };
187       return empty;
188     }
189   return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD.  This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198                           Read_symbols_data* sd)
199 {
200   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202   // Read the section headers.
203   const off_t shoff = elf_file->shoff();
204   const unsigned int shnum = this->shnum();
205   sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206                                                true, true);
207
208   // Read the section names.
209   const unsigned char* pshdrs = sd->section_headers->data();
210   const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211   typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213   if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214     this->error(_("section name section has wrong type: %u"),
215                 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217   sd->section_names_size =
218     convert_to_section_size_type(shdrnames.get_sh_size());
219   sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220                                              sd->section_names_size, false,
221                                              false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued.  SHNDX is the section index.  Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230                                    Symbol_table* symtab)
231 {
232   const char warn_prefix[] = ".gnu.warning.";
233   const int warn_prefix_len = sizeof warn_prefix - 1;
234   if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235     {
236       // Read the section contents to get the warning text.  It would
237       // be nicer if we only did this if we have to actually issue a
238       // warning.  Unfortunately, warnings are issued as we relocate
239       // sections.  That means that we can not lock the object then,
240       // as we might try to issue the same warning multiple times
241       // simultaneously.
242       section_size_type len;
243       const unsigned char* contents = this->section_contents(shndx, &len,
244                                                              false);
245       if (len == 0)
246         {
247           const char* warning = name + warn_prefix_len;
248           contents = reinterpret_cast<const unsigned char*>(warning);
249           len = strlen(warning);
250         }
251       std::string warning(reinterpret_cast<const char*>(contents), len);
252       symtab->add_warning(name + warn_prefix_len, this, warning);
253       return true;
254     }
255   return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264   if (strcmp(name, ".note.GNU-split-stack") == 0)
265     {
266       this->uses_split_stack_ = true;
267       return true;
268     }
269   if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270     {
271       this->has_no_split_stack_ = true;
272       return true;
273     }
274   return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage 
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd, 
285                           unsigned int section_header_size)
286 {
287   gc_sd->section_headers_data = 
288          new unsigned char[(section_header_size)];
289   memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290          section_header_size);
291   gc_sd->section_names_data = 
292          new unsigned char[sd->section_names_size];
293   memcpy(gc_sd->section_names_data, sd->section_names->data(),
294          sd->section_names_size);
295   gc_sd->section_names_size = sd->section_names_size;
296   if (sd->symbols != NULL)
297     {
298       gc_sd->symbols_data = 
299              new unsigned char[sd->symbols_size];
300       memcpy(gc_sd->symbols_data, sd->symbols->data(),
301             sd->symbols_size);
302     }
303   else
304     {
305       gc_sd->symbols_data = NULL;
306     }
307   gc_sd->symbols_size = sd->symbols_size;
308   gc_sd->external_symbols_offset = sd->external_symbols_offset;
309   if (sd->symbol_names != NULL)
310     {
311       gc_sd->symbol_names_data =
312              new unsigned char[sd->symbol_names_size];
313       memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314             sd->symbol_names_size);
315     }
316   else
317     {
318       gc_sd->symbol_names_data = NULL;
319     }
320   gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link.  This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330   if (is_prefix_of(".ctors", name) 
331       || is_prefix_of(".dtors", name) 
332       || is_prefix_of(".note", name) 
333       || is_prefix_of(".init", name) 
334       || is_prefix_of(".fini", name) 
335       || is_prefix_of(".gcc_except_table", name) 
336       || is_prefix_of(".jcr", name) 
337       || is_prefix_of(".preinit_array", name) 
338       || (is_prefix_of(".text", name) 
339           && strstr(name, "personality")) 
340       || (is_prefix_of(".data", name) 
341           &&  strstr(name, "personality")) 
342       || (is_prefix_of(".gnu.linkonce.d", name)
343           && strstr(name, "personality")))
344     {
345       return true; 
346     }
347   return false;
348 }
349
350 // Finalize the incremental relocation information.  Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block.  If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358   unsigned int nsyms = this->get_global_symbols()->size();
359   this->reloc_bases_ = new unsigned int[nsyms];
360
361   gold_assert(this->reloc_bases_ != NULL);
362   gold_assert(layout->incremental_inputs() != NULL);
363
364   unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365   for (unsigned int i = 0; i < nsyms; ++i)
366     {
367       this->reloc_bases_[i] = rindex;
368       rindex += this->reloc_counts_[i];
369       if (clear_counts)
370         this->reloc_counts_[i] = 0;
371     }
372   layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383     Got_offset_list::Visitor* v) const
384 {
385   unsigned int nsyms = this->local_symbol_count();
386   for (unsigned int i = 0; i < nsyms; i++)
387     {
388       Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389       if (p != this->local_got_offsets_.end())
390         {
391           const Got_offset_list* got_offsets = p->second;
392           got_offsets->for_all_got_offsets(v);
393         }
394     }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401     const std::string& name,
402     Input_file* input_file,
403     off_t offset,
404     const elfcpp::Ehdr<size, big_endian>& ehdr)
405   : Sized_relobj<size, big_endian>(name, input_file, offset),
406     elf_file_(this, ehdr),
407     symtab_shndx_(-1U),
408     local_symbol_count_(0),
409     output_local_symbol_count_(0),
410     output_local_dynsym_count_(0),
411     symbols_(),
412     defined_count_(0),
413     local_symbol_offset_(0),
414     local_dynsym_offset_(0),
415     local_values_(),
416     local_plt_offsets_(),
417     kept_comdat_sections_(),
418     has_eh_frame_(false),
419     discarded_eh_frame_shndx_(-1U),
420     deferred_layout_(),
421     deferred_layout_relocs_(),
422     compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header.  This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438   const unsigned int shnum = this->elf_file_.shnum();
439   this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers.  The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section.  Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451   const unsigned int shnum = this->shnum();
452   this->symtab_shndx_ = 0;
453   if (shnum > 0)
454     {
455       // Look through the sections in reverse order, since gas tends
456       // to put the symbol table at the end.
457       const unsigned char* p = pshdrs + shnum * This::shdr_size;
458       unsigned int i = shnum;
459       unsigned int xindex_shndx = 0;
460       unsigned int xindex_link = 0;
461       while (i > 0)
462         {
463           --i;
464           p -= This::shdr_size;
465           typename This::Shdr shdr(p);
466           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467             {
468               this->symtab_shndx_ = i;
469               if (xindex_shndx > 0 && xindex_link == i)
470                 {
471                   Xindex* xindex =
472                     new Xindex(this->elf_file_.large_shndx_offset());
473                   xindex->read_symtab_xindex<size, big_endian>(this,
474                                                                xindex_shndx,
475                                                                pshdrs);
476                   this->set_xindex(xindex);
477                 }
478               break;
479             }
480
481           // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482           // one.  This will work if it follows the SHT_SYMTAB
483           // section.
484           if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485             {
486               xindex_shndx = i;
487               xindex_link = this->adjust_shndx(shdr.get_sh_link());
488             }
489         }
490     }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500   gold_assert(this->symtab_shndx_ != -1U);
501   Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502   xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503   return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512     const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514   return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515           && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524     const unsigned char* pshdrs,
525     const char* names,
526     section_size_type names_size) const
527 {
528   const unsigned int shnum = this->shnum();
529   const unsigned char* p = pshdrs + This::shdr_size;
530   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531     {
532       typename This::Shdr shdr(p);
533       if (this->check_eh_frame_flags(&shdr))
534         {
535           if (shdr.get_sh_name() >= names_size)
536             {
537               this->error(_("bad section name offset for section %u: %lu"),
538                           i, static_cast<unsigned long>(shdr.get_sh_name()));
539               continue;
540             }
541
542           const char* name = names + shdr.get_sh_name();
543           if (strcmp(name, ".eh_frame") == 0)
544             return true;
545         }
546     }
547   return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556     const unsigned char* pshdrs,
557     unsigned int shnum,
558     const char* names,
559     section_size_type names_size,
560     Sized_relobj_file<size, big_endian>* obj)
561 {
562   Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563   const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564   const unsigned char* p = pshdrs + shdr_size;
565   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566     {
567       typename elfcpp::Shdr<size, big_endian> shdr(p);
568       if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570         {
571           if (shdr.get_sh_name() >= names_size)
572             {
573               obj->error(_("bad section name offset for section %u: %lu"),
574                          i, static_cast<unsigned long>(shdr.get_sh_name()));
575               continue;
576             }
577
578           const char* name = names + shdr.get_sh_name();
579           if (is_compressed_debug_section(name))
580             {
581               section_size_type len;
582               const unsigned char* contents =
583                   obj->section_contents(i, &len, false);
584               uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585               if (uncompressed_size != -1ULL)
586                 (*uncompressed_sizes)[i] =
587                     convert_to_section_size_type(uncompressed_size);
588             }
589         }
590     }
591   return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600   this->read_section_data(&this->elf_file_, sd);
601
602   const unsigned char* const pshdrs = sd->section_headers->data();
603
604   this->find_symtab(pshdrs);
605
606   const unsigned char* namesu = sd->section_names->data();
607   const char* names = reinterpret_cast<const char*>(namesu);
608   if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609     {
610       if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611         this->has_eh_frame_ = true;
612     }
613   if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614     this->compressed_sections_ =
615         build_compressed_section_map(pshdrs, this->shnum(), names,
616                                      sd->section_names_size, this);
617
618   sd->symbols = NULL;
619   sd->symbols_size = 0;
620   sd->external_symbols_offset = 0;
621   sd->symbol_names = NULL;
622   sd->symbol_names_size = 0;
623
624   if (this->symtab_shndx_ == 0)
625     {
626       // No symbol table.  Weird but legal.
627       return;
628     }
629
630   // Get the symbol table section header.
631   typename This::Shdr symtabshdr(pshdrs
632                                  + this->symtab_shndx_ * This::shdr_size);
633   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635   // If this object has a .eh_frame section, we need all the symbols.
636   // Otherwise we only need the external symbols.  While it would be
637   // simpler to just always read all the symbols, I've seen object
638   // files with well over 2000 local symbols, which for a 64-bit
639   // object file format is over 5 pages that we don't need to read
640   // now.
641
642   const int sym_size = This::sym_size;
643   const unsigned int loccount = symtabshdr.get_sh_info();
644   this->local_symbol_count_ = loccount;
645   this->local_values_.resize(loccount);
646   section_offset_type locsize = loccount * sym_size;
647   off_t dataoff = symtabshdr.get_sh_offset();
648   section_size_type datasize =
649     convert_to_section_size_type(symtabshdr.get_sh_size());
650   off_t extoff = dataoff + locsize;
651   section_size_type extsize = datasize - locsize;
652
653   off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654   section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656   if (readsize == 0)
657     {
658       // No external symbols.  Also weird but also legal.
659       return;
660     }
661
662   File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664   // Read the section header for the symbol names.
665   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666   if (strtab_shndx >= this->shnum())
667     {
668       this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669       return;
670     }
671   typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673     {
674       this->error(_("symbol table name section has wrong type: %u"),
675                   static_cast<unsigned int>(strtabshdr.get_sh_type()));
676       return;
677     }
678
679   // Read the symbol names.
680   File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681                                                strtabshdr.get_sh_size(),
682                                                false, true);
683
684   sd->symbols = fvsymtab;
685   sd->symbols_size = readsize;
686   sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687   sd->symbol_names = fvstrtab;
688   sd->symbol_names_size =
689     convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM.  Set *VALUE to its value in
693 // the object file.  Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702                                                               Address* value,
703                                                               bool* is_ordinary)
704 {
705   section_size_type symbols_size;
706   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707                                                         &symbols_size,
708                                                         false);
709
710   const size_t count = symbols_size / This::sym_size;
711   gold_assert(sym < count);
712
713   elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714   *value = elfsym.get_st_value();
715
716   return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link.  LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header.  If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728     Symbol_table* symtab,
729     Layout* layout,
730     unsigned int index,
731     const char* name,
732     const unsigned char* shdrs,
733     const char* section_names,
734     section_size_type section_names_size,
735     std::vector<bool>* omit)
736 {
737   // Read the section contents.
738   typename This::Shdr shdr(shdrs + index * This::shdr_size);
739   const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740                                              shdr.get_sh_size(), true, false);
741   const elfcpp::Elf_Word* pword =
742     reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744   // The first word contains flags.  We only care about COMDAT section
745   // groups.  Other section groups are always included in the link
746   // just like ordinary sections.
747   elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749   // Look up the group signature, which is the name of a symbol.  This
750   // is a lot of effort to go to to read a string.  Why didn't they
751   // just have the group signature point into the string table, rather
752   // than indirect through a symbol?
753
754   // Get the appropriate symbol table header (this will normally be
755   // the single SHT_SYMTAB section, but in principle it need not be).
756   const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757   typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759   // Read the symbol table entry.
760   unsigned int symndx = shdr.get_sh_info();
761   if (symndx >= symshdr.get_sh_size() / This::sym_size)
762     {
763       this->error(_("section group %u info %u out of range"),
764                   index, symndx);
765       return false;
766     }
767   off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768   const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769                                              false);
770   elfcpp::Sym<size, big_endian> sym(psym);
771
772   // Read the symbol table names.
773   section_size_type symnamelen;
774   const unsigned char* psymnamesu;
775   psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776                                       &symnamelen, true);
777   const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779   // Get the section group signature.
780   if (sym.get_st_name() >= symnamelen)
781     {
782       this->error(_("symbol %u name offset %u out of range"),
783                   symndx, sym.get_st_name());
784       return false;
785     }
786
787   std::string signature(psymnames + sym.get_st_name());
788
789   // It seems that some versions of gas will create a section group
790   // associated with a section symbol, and then fail to give a name to
791   // the section symbol.  In such a case, use the name of the section.
792   if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793     {
794       bool is_ordinary;
795       unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796                                                       sym.get_st_shndx(),
797                                                       &is_ordinary);
798       if (!is_ordinary || sym_shndx >= this->shnum())
799         {
800           this->error(_("symbol %u invalid section index %u"),
801                       symndx, sym_shndx);
802           return false;
803         }
804       typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805       if (member_shdr.get_sh_name() < section_names_size)
806         signature = section_names + member_shdr.get_sh_name();
807     }
808
809   // Record this section group in the layout, and see whether we've already
810   // seen one with the same signature.
811   bool include_group;
812   bool is_comdat;
813   Kept_section* kept_section = NULL;
814
815   if ((flags & elfcpp::GRP_COMDAT) == 0)
816     {
817       include_group = true;
818       is_comdat = false;
819     }
820   else
821     {
822       include_group = layout->find_or_add_kept_section(signature,
823                                                        this, index, true,
824                                                        true, &kept_section);
825       is_comdat = true;
826     }
827
828   if (is_comdat && include_group)
829     {
830       Incremental_inputs* incremental_inputs = layout->incremental_inputs();
831       if (incremental_inputs != NULL)
832         incremental_inputs->report_comdat_group(this, signature.c_str());
833     }
834
835   size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
836
837   std::vector<unsigned int> shndxes;
838   bool relocate_group = include_group && parameters->options().relocatable();
839   if (relocate_group)
840     shndxes.reserve(count - 1);
841
842   for (size_t i = 1; i < count; ++i)
843     {
844       elfcpp::Elf_Word shndx =
845         this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
846
847       if (relocate_group)
848         shndxes.push_back(shndx);
849
850       if (shndx >= this->shnum())
851         {
852           this->error(_("section %u in section group %u out of range"),
853                       shndx, index);
854           continue;
855         }
856
857       // Check for an earlier section number, since we're going to get
858       // it wrong--we may have already decided to include the section.
859       if (shndx < index)
860         this->error(_("invalid section group %u refers to earlier section %u"),
861                     index, shndx);
862
863       // Get the name of the member section.
864       typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
865       if (member_shdr.get_sh_name() >= section_names_size)
866         {
867           // This is an error, but it will be diagnosed eventually
868           // in do_layout, so we don't need to do anything here but
869           // ignore it.
870           continue;
871         }
872       std::string mname(section_names + member_shdr.get_sh_name());
873
874       if (include_group)
875         {
876           if (is_comdat)
877             kept_section->add_comdat_section(mname, shndx,
878                                              member_shdr.get_sh_size());
879         }
880       else
881         {
882           (*omit)[shndx] = true;
883
884           if (is_comdat)
885             {
886               Relobj* kept_object = kept_section->object();
887               if (kept_section->is_comdat())
888                 {
889                   // Find the corresponding kept section, and store
890                   // that info in the discarded section table.
891                   unsigned int kept_shndx;
892                   uint64_t kept_size;
893                   if (kept_section->find_comdat_section(mname, &kept_shndx,
894                                                         &kept_size))
895                     {
896                       // We don't keep a mapping for this section if
897                       // it has a different size.  The mapping is only
898                       // used for relocation processing, and we don't
899                       // want to treat the sections as similar if the
900                       // sizes are different.  Checking the section
901                       // size is the approach used by the GNU linker.
902                       if (kept_size == member_shdr.get_sh_size())
903                         this->set_kept_comdat_section(shndx, kept_object,
904                                                       kept_shndx);
905                     }
906                 }
907               else
908                 {
909                   // The existing section is a linkonce section.  Add
910                   // a mapping if there is exactly one section in the
911                   // group (which is true when COUNT == 2) and if it
912                   // is the same size.
913                   if (count == 2
914                       && (kept_section->linkonce_size()
915                           == member_shdr.get_sh_size()))
916                     this->set_kept_comdat_section(shndx, kept_object,
917                                                   kept_section->shndx());
918                 }
919             }
920         }
921     }
922
923   if (relocate_group)
924     layout->layout_group(symtab, this, index, name, signature.c_str(),
925                          shdr, flags, &shndxes);
926
927   return include_group;
928 }
929
930 // Whether to include a linkonce section in the link.  NAME is the
931 // name of the section and SHDR is the section header.
932
933 // Linkonce sections are a GNU extension implemented in the original
934 // GNU linker before section groups were defined.  The semantics are
935 // that we only include one linkonce section with a given name.  The
936 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
937 // where T is the type of section and SYMNAME is the name of a symbol.
938 // In an attempt to make linkonce sections interact well with section
939 // groups, we try to identify SYMNAME and use it like a section group
940 // signature.  We want to block section groups with that signature,
941 // but not other linkonce sections with that signature.  We also use
942 // the full name of the linkonce section as a normal section group
943 // signature.
944
945 template<int size, bool big_endian>
946 bool
947 Sized_relobj_file<size, big_endian>::include_linkonce_section(
948     Layout* layout,
949     unsigned int index,
950     const char* name,
951     const elfcpp::Shdr<size, big_endian>& shdr)
952 {
953   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
954   // In general the symbol name we want will be the string following
955   // the last '.'.  However, we have to handle the case of
956   // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
957   // some versions of gcc.  So we use a heuristic: if the name starts
958   // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
959   // we look for the last '.'.  We can't always simply skip
960   // ".gnu.linkonce.X", because we have to deal with cases like
961   // ".gnu.linkonce.d.rel.ro.local".
962   const char* const linkonce_t = ".gnu.linkonce.t.";
963   const char* symname;
964   if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
965     symname = name + strlen(linkonce_t);
966   else
967     symname = strrchr(name, '.') + 1;
968   std::string sig1(symname);
969   std::string sig2(name);
970   Kept_section* kept1;
971   Kept_section* kept2;
972   bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
973                                                    false, &kept1);
974   bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
975                                                    true, &kept2);
976
977   if (!include2)
978     {
979       // We are not including this section because we already saw the
980       // name of the section as a signature.  This normally implies
981       // that the kept section is another linkonce section.  If it is
982       // the same size, record it as the section which corresponds to
983       // this one.
984       if (kept2->object() != NULL
985           && !kept2->is_comdat()
986           && kept2->linkonce_size() == sh_size)
987         this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
988     }
989   else if (!include1)
990     {
991       // The section is being discarded on the basis of its symbol
992       // name.  This means that the corresponding kept section was
993       // part of a comdat group, and it will be difficult to identify
994       // the specific section within that group that corresponds to
995       // this linkonce section.  We'll handle the simple case where
996       // the group has only one member section.  Otherwise, it's not
997       // worth the effort.
998       unsigned int kept_shndx;
999       uint64_t kept_size;
1000       if (kept1->object() != NULL
1001           && kept1->is_comdat()
1002           && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1003           && kept_size == sh_size)
1004         this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1005     }
1006   else
1007     {
1008       kept1->set_linkonce_size(sh_size);
1009       kept2->set_linkonce_size(sh_size);
1010     }
1011
1012   return include1 && include2;
1013 }
1014
1015 // Layout an input section.
1016
1017 template<int size, bool big_endian>
1018 inline void
1019 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1020                                                     unsigned int shndx,
1021                                                     const char* name,
1022                                                     typename This::Shdr& shdr,
1023                                                     unsigned int reloc_shndx,
1024                                                     unsigned int reloc_type)
1025 {
1026   off_t offset;
1027   Output_section* os = layout->layout(this, shndx, name, shdr,
1028                                           reloc_shndx, reloc_type, &offset);
1029
1030   this->output_sections()[shndx] = os;
1031   if (offset == -1)
1032     this->section_offsets()[shndx] = invalid_address;
1033   else
1034     this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1035
1036   // If this section requires special handling, and if there are
1037   // relocs that apply to it, then we must do the special handling
1038   // before we apply the relocs.
1039   if (offset == -1 && reloc_shndx != 0)
1040     this->set_relocs_must_follow_section_writes();
1041 }
1042
1043 // Lay out the input sections.  We walk through the sections and check
1044 // whether they should be included in the link.  If they should, we
1045 // pass them to the Layout object, which will return an output section
1046 // and an offset.  
1047 // During garbage collection (--gc-sections) and identical code folding 
1048 // (--icf), this function is called twice.  When it is called the first 
1049 // time, it is for setting up some sections as roots to a work-list for
1050 // --gc-sections and to do comdat processing.  Actual layout happens the 
1051 // second time around after all the relevant sections have been determined.  
1052 // The first time, is_worklist_ready or is_icf_ready is false. It is then 
1053 // set to true after the garbage collection worklist or identical code 
1054 // folding is processed and the relevant sections to be kept are 
1055 // determined.  Then, this function is called again to layout the sections.
1056
1057 template<int size, bool big_endian>
1058 void
1059 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1060                                                Layout* layout,
1061                                                Read_symbols_data* sd)
1062 {
1063   const unsigned int shnum = this->shnum();
1064   bool is_gc_pass_one = ((parameters->options().gc_sections() 
1065                           && !symtab->gc()->is_worklist_ready())
1066                          || (parameters->options().icf_enabled()
1067                              && !symtab->icf()->is_icf_ready()));
1068  
1069   bool is_gc_pass_two = ((parameters->options().gc_sections() 
1070                           && symtab->gc()->is_worklist_ready())
1071                          || (parameters->options().icf_enabled()
1072                              && symtab->icf()->is_icf_ready()));
1073
1074   bool is_gc_or_icf = (parameters->options().gc_sections()
1075                        || parameters->options().icf_enabled()); 
1076
1077   // Both is_gc_pass_one and is_gc_pass_two should not be true.
1078   gold_assert(!(is_gc_pass_one  && is_gc_pass_two));
1079
1080   if (shnum == 0)
1081     return;
1082   Symbols_data* gc_sd = NULL;
1083   if (is_gc_pass_one)
1084     {
1085       // During garbage collection save the symbols data to use it when 
1086       // re-entering this function.   
1087       gc_sd = new Symbols_data;
1088       this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1089       this->set_symbols_data(gc_sd);
1090     }
1091   else if (is_gc_pass_two)
1092     {
1093       gc_sd = this->get_symbols_data();
1094     }
1095
1096   const unsigned char* section_headers_data = NULL;
1097   section_size_type section_names_size;
1098   const unsigned char* symbols_data = NULL;
1099   section_size_type symbols_size;
1100   section_offset_type external_symbols_offset;
1101   const unsigned char* symbol_names_data = NULL;
1102   section_size_type symbol_names_size;
1103  
1104   if (is_gc_or_icf)
1105     {
1106       section_headers_data = gc_sd->section_headers_data;
1107       section_names_size = gc_sd->section_names_size;
1108       symbols_data = gc_sd->symbols_data;
1109       symbols_size = gc_sd->symbols_size;
1110       external_symbols_offset = gc_sd->external_symbols_offset;
1111       symbol_names_data = gc_sd->symbol_names_data;
1112       symbol_names_size = gc_sd->symbol_names_size;
1113     }
1114   else
1115     {
1116       section_headers_data = sd->section_headers->data();
1117       section_names_size = sd->section_names_size;
1118       if (sd->symbols != NULL)
1119         symbols_data = sd->symbols->data();
1120       symbols_size = sd->symbols_size;
1121       external_symbols_offset = sd->external_symbols_offset;
1122       if (sd->symbol_names != NULL)
1123         symbol_names_data = sd->symbol_names->data();
1124       symbol_names_size = sd->symbol_names_size;
1125     }
1126
1127   // Get the section headers.
1128   const unsigned char* shdrs = section_headers_data;
1129   const unsigned char* pshdrs;
1130
1131   // Get the section names.
1132   const unsigned char* pnamesu = (is_gc_or_icf) 
1133                                  ? gc_sd->section_names_data
1134                                  : sd->section_names->data();
1135
1136   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1137
1138   // If any input files have been claimed by plugins, we need to defer
1139   // actual layout until the replacement files have arrived.
1140   const bool should_defer_layout =
1141       (parameters->options().has_plugins()
1142        && parameters->options().plugins()->should_defer_layout());
1143   unsigned int num_sections_to_defer = 0;
1144
1145   // For each section, record the index of the reloc section if any.
1146   // Use 0 to mean that there is no reloc section, -1U to mean that
1147   // there is more than one.
1148   std::vector<unsigned int> reloc_shndx(shnum, 0);
1149   std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1150   // Skip the first, dummy, section.
1151   pshdrs = shdrs + This::shdr_size;
1152   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1153     {
1154       typename This::Shdr shdr(pshdrs);
1155
1156       // Count the number of sections whose layout will be deferred.
1157       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1158         ++num_sections_to_defer;
1159
1160       unsigned int sh_type = shdr.get_sh_type();
1161       if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1162         {
1163           unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1164           if (target_shndx == 0 || target_shndx >= shnum)
1165             {
1166               this->error(_("relocation section %u has bad info %u"),
1167                           i, target_shndx);
1168               continue;
1169             }
1170
1171           if (reloc_shndx[target_shndx] != 0)
1172             reloc_shndx[target_shndx] = -1U;
1173           else
1174             {
1175               reloc_shndx[target_shndx] = i;
1176               reloc_type[target_shndx] = sh_type;
1177             }
1178         }
1179     }
1180
1181   Output_sections& out_sections(this->output_sections());
1182   std::vector<Address>& out_section_offsets(this->section_offsets());
1183
1184   if (!is_gc_pass_two)
1185     {
1186       out_sections.resize(shnum);
1187       out_section_offsets.resize(shnum);
1188     }
1189
1190   // If we are only linking for symbols, then there is nothing else to
1191   // do here.
1192   if (this->input_file()->just_symbols())
1193     {
1194       if (!is_gc_pass_two)
1195         {
1196           delete sd->section_headers;
1197           sd->section_headers = NULL;
1198           delete sd->section_names;
1199           sd->section_names = NULL;
1200         }
1201       return;
1202     }
1203
1204   if (num_sections_to_defer > 0)
1205     {
1206       parameters->options().plugins()->add_deferred_layout_object(this);
1207       this->deferred_layout_.reserve(num_sections_to_defer);
1208     }
1209
1210   // Whether we've seen a .note.GNU-stack section.
1211   bool seen_gnu_stack = false;
1212   // The flags of a .note.GNU-stack section.
1213   uint64_t gnu_stack_flags = 0;
1214
1215   // Keep track of which sections to omit.
1216   std::vector<bool> omit(shnum, false);
1217
1218   // Keep track of reloc sections when emitting relocations.
1219   const bool relocatable = parameters->options().relocatable();
1220   const bool emit_relocs = (relocatable
1221                             || parameters->options().emit_relocs());
1222   std::vector<unsigned int> reloc_sections;
1223
1224   // Keep track of .eh_frame sections.
1225   std::vector<unsigned int> eh_frame_sections;
1226
1227   // Skip the first, dummy, section.
1228   pshdrs = shdrs + This::shdr_size;
1229   for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1230     {
1231       typename This::Shdr shdr(pshdrs);
1232
1233       if (shdr.get_sh_name() >= section_names_size)
1234         {
1235           this->error(_("bad section name offset for section %u: %lu"),
1236                       i, static_cast<unsigned long>(shdr.get_sh_name()));
1237           return;
1238         }
1239
1240       const char* name = pnames + shdr.get_sh_name();
1241
1242       if (!is_gc_pass_two)
1243         { 
1244           if (this->handle_gnu_warning_section(name, i, symtab))
1245             { 
1246               if (!relocatable)
1247                 omit[i] = true;
1248             }
1249
1250           // The .note.GNU-stack section is special.  It gives the
1251           // protection flags that this object file requires for the stack
1252           // in memory.
1253           if (strcmp(name, ".note.GNU-stack") == 0)
1254             {
1255               seen_gnu_stack = true;
1256               gnu_stack_flags |= shdr.get_sh_flags();
1257               omit[i] = true;
1258             }
1259
1260           // The .note.GNU-split-stack section is also special.  It
1261           // indicates that the object was compiled with
1262           // -fsplit-stack.
1263           if (this->handle_split_stack_section(name))
1264             {
1265               if (!parameters->options().relocatable()
1266                   && !parameters->options().shared())
1267                 omit[i] = true;
1268             }
1269
1270           // Skip attributes section.
1271           if (parameters->target().is_attributes_section(name))
1272             {
1273               omit[i] = true;
1274             }
1275
1276           bool discard = omit[i];
1277           if (!discard)
1278             {
1279               if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1280                 {
1281                   if (!this->include_section_group(symtab, layout, i, name, 
1282                                                    shdrs, pnames, 
1283                                                    section_names_size,
1284                                                    &omit))
1285                     discard = true;
1286                 }
1287               else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1288                        && Layout::is_linkonce(name))
1289                 {
1290                   if (!this->include_linkonce_section(layout, i, name, shdr))
1291                     discard = true;
1292                 }
1293             }
1294
1295           // Add the section to the incremental inputs layout.
1296           Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1297           if (incremental_inputs != NULL
1298               && !discard
1299               && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1300                   || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1301                   || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1302             {
1303               off_t sh_size = shdr.get_sh_size();
1304               section_size_type uncompressed_size;
1305               if (this->section_is_compressed(i, &uncompressed_size))
1306                 sh_size = uncompressed_size;
1307               incremental_inputs->report_input_section(this, i, name, sh_size);
1308             }
1309
1310           if (discard)
1311             {
1312               // Do not include this section in the link.
1313               out_sections[i] = NULL;
1314               out_section_offsets[i] = invalid_address;
1315               continue;
1316             }
1317         }
1318  
1319       if (is_gc_pass_one && parameters->options().gc_sections())
1320         {
1321           if (this->is_section_name_included(name)
1322               || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY 
1323               || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1324             {
1325               symtab->gc()->worklist().push(Section_id(this, i)); 
1326             }
1327           // If the section name XXX can be represented as a C identifier
1328           // it cannot be discarded if there are references to
1329           // __start_XXX and __stop_XXX symbols.  These need to be
1330           // specially handled.
1331           if (is_cident(name))
1332             {
1333               symtab->gc()->add_cident_section(name, Section_id(this, i));
1334             }
1335         }
1336
1337       // When doing a relocatable link we are going to copy input
1338       // reloc sections into the output.  We only want to copy the
1339       // ones associated with sections which are not being discarded.
1340       // However, we don't know that yet for all sections.  So save
1341       // reloc sections and process them later. Garbage collection is
1342       // not triggered when relocatable code is desired.
1343       if (emit_relocs
1344           && (shdr.get_sh_type() == elfcpp::SHT_REL
1345               || shdr.get_sh_type() == elfcpp::SHT_RELA))
1346         {
1347           reloc_sections.push_back(i);
1348           continue;
1349         }
1350
1351       if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1352         continue;
1353
1354       // The .eh_frame section is special.  It holds exception frame
1355       // information that we need to read in order to generate the
1356       // exception frame header.  We process these after all the other
1357       // sections so that the exception frame reader can reliably
1358       // determine which sections are being discarded, and discard the
1359       // corresponding information.
1360       if (!relocatable
1361           && strcmp(name, ".eh_frame") == 0
1362           && this->check_eh_frame_flags(&shdr))
1363         {
1364           if (is_gc_pass_one)
1365             {
1366               out_sections[i] = reinterpret_cast<Output_section*>(1);
1367               out_section_offsets[i] = invalid_address;
1368             }
1369           else
1370             eh_frame_sections.push_back(i);
1371           continue;
1372         }
1373
1374       if (is_gc_pass_two && parameters->options().gc_sections())
1375         {
1376           // This is executed during the second pass of garbage 
1377           // collection. do_layout has been called before and some 
1378           // sections have been already discarded. Simply ignore 
1379           // such sections this time around.
1380           if (out_sections[i] == NULL)
1381             {
1382               gold_assert(out_section_offsets[i] == invalid_address);
1383               continue; 
1384             }
1385           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1386               && symtab->gc()->is_section_garbage(this, i))
1387               {
1388                 if (parameters->options().print_gc_sections())
1389                   gold_info(_("%s: removing unused section from '%s'" 
1390                               " in file '%s'"),
1391                             program_name, this->section_name(i).c_str(), 
1392                             this->name().c_str());
1393                 out_sections[i] = NULL;
1394                 out_section_offsets[i] = invalid_address;
1395                 continue;
1396               }
1397         }
1398
1399       if (is_gc_pass_two && parameters->options().icf_enabled())
1400         {
1401           if (out_sections[i] == NULL)
1402             {
1403               gold_assert(out_section_offsets[i] == invalid_address);
1404               continue;
1405             }
1406           if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1407               && symtab->icf()->is_section_folded(this, i))
1408               {
1409                 if (parameters->options().print_icf_sections())
1410                   {
1411                     Section_id folded =
1412                                 symtab->icf()->get_folded_section(this, i);
1413                     Relobj* folded_obj =
1414                                 reinterpret_cast<Relobj*>(folded.first);
1415                     gold_info(_("%s: ICF folding section '%s' in file '%s'"
1416                                 "into '%s' in file '%s'"),
1417                               program_name, this->section_name(i).c_str(),
1418                               this->name().c_str(),
1419                               folded_obj->section_name(folded.second).c_str(),
1420                               folded_obj->name().c_str());
1421                   }
1422                 out_sections[i] = NULL;
1423                 out_section_offsets[i] = invalid_address;
1424                 continue;
1425               }
1426         }
1427
1428       // Defer layout here if input files are claimed by plugins.  When gc
1429       // is turned on this function is called twice.  For the second call
1430       // should_defer_layout should be false.
1431       if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1432         {
1433           gold_assert(!is_gc_pass_two);
1434           this->deferred_layout_.push_back(Deferred_layout(i, name, 
1435                                                            pshdrs,
1436                                                            reloc_shndx[i],
1437                                                            reloc_type[i]));
1438           // Put dummy values here; real values will be supplied by
1439           // do_layout_deferred_sections.
1440           out_sections[i] = reinterpret_cast<Output_section*>(2);
1441           out_section_offsets[i] = invalid_address;
1442           continue;
1443         }
1444
1445       // During gc_pass_two if a section that was previously deferred is
1446       // found, do not layout the section as layout_deferred_sections will
1447       // do it later from gold.cc.
1448       if (is_gc_pass_two 
1449           && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1450         continue;
1451
1452       if (is_gc_pass_one)
1453         {
1454           // This is during garbage collection. The out_sections are 
1455           // assigned in the second call to this function. 
1456           out_sections[i] = reinterpret_cast<Output_section*>(1);
1457           out_section_offsets[i] = invalid_address;
1458         }
1459       else
1460         {
1461           // When garbage collection is switched on the actual layout
1462           // only happens in the second call.
1463           this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1464                                reloc_type[i]);
1465         }
1466     }
1467
1468   if (!is_gc_pass_two)
1469     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1470
1471   // When doing a relocatable link handle the reloc sections at the
1472   // end.  Garbage collection  and Identical Code Folding is not 
1473   // turned on for relocatable code. 
1474   if (emit_relocs)
1475     this->size_relocatable_relocs();
1476
1477   gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1478
1479   for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1480        p != reloc_sections.end();
1481        ++p)
1482     {
1483       unsigned int i = *p;
1484       const unsigned char* pshdr;
1485       pshdr = section_headers_data + i * This::shdr_size;
1486       typename This::Shdr shdr(pshdr);
1487
1488       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1489       if (data_shndx >= shnum)
1490         {
1491           // We already warned about this above.
1492           continue;
1493         }
1494
1495       Output_section* data_section = out_sections[data_shndx];
1496       if (data_section == reinterpret_cast<Output_section*>(2))
1497         {
1498           // The layout for the data section was deferred, so we need
1499           // to defer the relocation section, too.
1500           const char* name = pnames + shdr.get_sh_name();
1501           this->deferred_layout_relocs_.push_back(
1502               Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1503           out_sections[i] = reinterpret_cast<Output_section*>(2);
1504           out_section_offsets[i] = invalid_address;
1505           continue;
1506         }
1507       if (data_section == NULL)
1508         {
1509           out_sections[i] = NULL;
1510           out_section_offsets[i] = invalid_address;
1511           continue;
1512         }
1513
1514       Relocatable_relocs* rr = new Relocatable_relocs();
1515       this->set_relocatable_relocs(i, rr);
1516
1517       Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1518                                                 rr);
1519       out_sections[i] = os;
1520       out_section_offsets[i] = invalid_address;
1521     }
1522
1523   // Handle the .eh_frame sections at the end.
1524   gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1525   for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1526        p != eh_frame_sections.end();
1527        ++p)
1528     {
1529       gold_assert(this->has_eh_frame_);
1530       gold_assert(external_symbols_offset != 0);
1531
1532       unsigned int i = *p;
1533       const unsigned char* pshdr;
1534       pshdr = section_headers_data + i * This::shdr_size;
1535       typename This::Shdr shdr(pshdr);
1536
1537       off_t offset;
1538       Output_section* os = layout->layout_eh_frame(this,
1539                                                    symbols_data,
1540                                                    symbols_size,
1541                                                    symbol_names_data,
1542                                                    symbol_names_size,
1543                                                    i, shdr,
1544                                                    reloc_shndx[i],
1545                                                    reloc_type[i],
1546                                                    &offset);
1547       out_sections[i] = os;
1548       if (os == NULL || offset == -1)
1549         {
1550           // An object can contain at most one section holding exception
1551           // frame information.
1552           gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1553           this->discarded_eh_frame_shndx_ = i;
1554           out_section_offsets[i] = invalid_address;
1555         }
1556       else
1557         out_section_offsets[i] = convert_types<Address, off_t>(offset);
1558
1559       // If this section requires special handling, and if there are
1560       // relocs that apply to it, then we must do the special handling
1561       // before we apply the relocs.
1562       if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1563         this->set_relocs_must_follow_section_writes();
1564     }
1565
1566   if (is_gc_pass_two)
1567     {
1568       delete[] gc_sd->section_headers_data;
1569       delete[] gc_sd->section_names_data;
1570       delete[] gc_sd->symbols_data;
1571       delete[] gc_sd->symbol_names_data;
1572       this->set_symbols_data(NULL);
1573     }
1574   else
1575     {
1576       delete sd->section_headers;
1577       sd->section_headers = NULL;
1578       delete sd->section_names;
1579       sd->section_names = NULL;
1580     }
1581 }
1582
1583 // Layout sections whose layout was deferred while waiting for
1584 // input files from a plugin.
1585
1586 template<int size, bool big_endian>
1587 void
1588 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1589 {
1590   typename std::vector<Deferred_layout>::iterator deferred;
1591
1592   for (deferred = this->deferred_layout_.begin();
1593        deferred != this->deferred_layout_.end();
1594        ++deferred)
1595     {
1596       typename This::Shdr shdr(deferred->shdr_data_);
1597       // If the section is not included, it is because the garbage collector
1598       // decided it is not needed.  Avoid reverting that decision.
1599       if (!this->is_section_included(deferred->shndx_))
1600         continue;
1601
1602       this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1603                            shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1604     }
1605
1606   this->deferred_layout_.clear();
1607
1608   // Now handle the deferred relocation sections.
1609
1610   Output_sections& out_sections(this->output_sections());
1611   std::vector<Address>& out_section_offsets(this->section_offsets());
1612
1613   for (deferred = this->deferred_layout_relocs_.begin();
1614        deferred != this->deferred_layout_relocs_.end();
1615        ++deferred)
1616     {
1617       unsigned int shndx = deferred->shndx_;
1618       typename This::Shdr shdr(deferred->shdr_data_);
1619       unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1620
1621       Output_section* data_section = out_sections[data_shndx];
1622       if (data_section == NULL)
1623         {
1624           out_sections[shndx] = NULL;
1625           out_section_offsets[shndx] = invalid_address;
1626           continue;
1627         }
1628
1629       Relocatable_relocs* rr = new Relocatable_relocs();
1630       this->set_relocatable_relocs(shndx, rr);
1631
1632       Output_section* os = layout->layout_reloc(this, shndx, shdr,
1633                                                 data_section, rr);
1634       out_sections[shndx] = os;
1635       out_section_offsets[shndx] = invalid_address;
1636     }
1637 }
1638
1639 // Add the symbols to the symbol table.
1640
1641 template<int size, bool big_endian>
1642 void
1643 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1644                                                     Read_symbols_data* sd,
1645                                                     Layout*)
1646 {
1647   if (sd->symbols == NULL)
1648     {
1649       gold_assert(sd->symbol_names == NULL);
1650       return;
1651     }
1652
1653   const int sym_size = This::sym_size;
1654   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1655                      / sym_size);
1656   if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1657     {
1658       this->error(_("size of symbols is not multiple of symbol size"));
1659       return;
1660     }
1661
1662   this->symbols_.resize(symcount);
1663
1664   const char* sym_names =
1665     reinterpret_cast<const char*>(sd->symbol_names->data());
1666   symtab->add_from_relobj(this,
1667                           sd->symbols->data() + sd->external_symbols_offset,
1668                           symcount, this->local_symbol_count_,
1669                           sym_names, sd->symbol_names_size,
1670                           &this->symbols_,
1671                           &this->defined_count_);
1672
1673   delete sd->symbols;
1674   sd->symbols = NULL;
1675   delete sd->symbol_names;
1676   sd->symbol_names = NULL;
1677 }
1678
1679 // Find out if this object, that is a member of a lib group, should be included
1680 // in the link. We check every symbol defined by this object. If the symbol
1681 // table has a strong undefined reference to that symbol, we have to include
1682 // the object.
1683
1684 template<int size, bool big_endian>
1685 Archive::Should_include
1686 Sized_relobj_file<size, big_endian>::do_should_include_member(
1687     Symbol_table* symtab,
1688     Layout* layout,
1689     Read_symbols_data* sd,
1690     std::string* why)
1691 {
1692   char* tmpbuf = NULL;
1693   size_t tmpbuflen = 0;
1694   const char* sym_names =
1695       reinterpret_cast<const char*>(sd->symbol_names->data());
1696   const unsigned char* syms =
1697       sd->symbols->data() + sd->external_symbols_offset;
1698   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1699   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1700                          / sym_size);
1701
1702   const unsigned char* p = syms;
1703
1704   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1705     {
1706       elfcpp::Sym<size, big_endian> sym(p);
1707       unsigned int st_shndx = sym.get_st_shndx();
1708       if (st_shndx == elfcpp::SHN_UNDEF)
1709         continue;
1710
1711       unsigned int st_name = sym.get_st_name();
1712       const char* name = sym_names + st_name;
1713       Symbol* symbol;
1714       Archive::Should_include t = Archive::should_include_member(symtab,
1715                                                                  layout,
1716                                                                  name,
1717                                                                  &symbol, why,
1718                                                                  &tmpbuf,
1719                                                                  &tmpbuflen);
1720       if (t == Archive::SHOULD_INCLUDE_YES)
1721         {
1722           if (tmpbuf != NULL)
1723             free(tmpbuf);
1724           return t;
1725         }
1726     }
1727   if (tmpbuf != NULL)
1728     free(tmpbuf);
1729   return Archive::SHOULD_INCLUDE_UNKNOWN;
1730 }
1731
1732 // Iterate over global defined symbols, calling a visitor class V for each.
1733
1734 template<int size, bool big_endian>
1735 void
1736 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1737     Read_symbols_data* sd,
1738     Library_base::Symbol_visitor_base* v)
1739 {
1740   const char* sym_names =
1741       reinterpret_cast<const char*>(sd->symbol_names->data());
1742   const unsigned char* syms =
1743       sd->symbols->data() + sd->external_symbols_offset;
1744   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1745   size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1746                      / sym_size);
1747   const unsigned char* p = syms;
1748
1749   for (size_t i = 0; i < symcount; ++i, p += sym_size)
1750     {
1751       elfcpp::Sym<size, big_endian> sym(p);
1752       if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1753         v->visit(sym_names + sym.get_st_name());
1754     }
1755 }
1756
1757 // Return whether the local symbol SYMNDX has a PLT offset.
1758
1759 template<int size, bool big_endian>
1760 bool
1761 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1762     unsigned int symndx) const
1763 {
1764   typename Local_plt_offsets::const_iterator p =
1765     this->local_plt_offsets_.find(symndx);
1766   return p != this->local_plt_offsets_.end();
1767 }
1768
1769 // Get the PLT offset of a local symbol.
1770
1771 template<int size, bool big_endian>
1772 unsigned int
1773 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1774 {
1775   typename Local_plt_offsets::const_iterator p =
1776     this->local_plt_offsets_.find(symndx);
1777   gold_assert(p != this->local_plt_offsets_.end());
1778   return p->second;
1779 }
1780
1781 // Set the PLT offset of a local symbol.
1782
1783 template<int size, bool big_endian>
1784 void
1785 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1786     unsigned int symndx, unsigned int plt_offset)
1787 {
1788   std::pair<typename Local_plt_offsets::iterator, bool> ins =
1789     this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1790   gold_assert(ins.second);
1791 }
1792
1793 // First pass over the local symbols.  Here we add their names to
1794 // *POOL and *DYNPOOL, and we store the symbol value in
1795 // THIS->LOCAL_VALUES_.  This function is always called from a
1796 // singleton thread.  This is followed by a call to
1797 // finalize_local_symbols.
1798
1799 template<int size, bool big_endian>
1800 void
1801 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1802                                                             Stringpool* dynpool)
1803 {
1804   gold_assert(this->symtab_shndx_ != -1U);
1805   if (this->symtab_shndx_ == 0)
1806     {
1807       // This object has no symbols.  Weird but legal.
1808       return;
1809     }
1810
1811   // Read the symbol table section header.
1812   const unsigned int symtab_shndx = this->symtab_shndx_;
1813   typename This::Shdr symtabshdr(this,
1814                                  this->elf_file_.section_header(symtab_shndx));
1815   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1816
1817   // Read the local symbols.
1818   const int sym_size = This::sym_size;
1819   const unsigned int loccount = this->local_symbol_count_;
1820   gold_assert(loccount == symtabshdr.get_sh_info());
1821   off_t locsize = loccount * sym_size;
1822   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1823                                               locsize, true, true);
1824
1825   // Read the symbol names.
1826   const unsigned int strtab_shndx =
1827     this->adjust_shndx(symtabshdr.get_sh_link());
1828   section_size_type strtab_size;
1829   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1830                                                         &strtab_size,
1831                                                         true);
1832   const char* pnames = reinterpret_cast<const char*>(pnamesu);
1833
1834   // Loop over the local symbols.
1835
1836   const Output_sections& out_sections(this->output_sections());
1837   unsigned int shnum = this->shnum();
1838   unsigned int count = 0;
1839   unsigned int dyncount = 0;
1840   // Skip the first, dummy, symbol.
1841   psyms += sym_size;
1842   bool strip_all = parameters->options().strip_all();
1843   bool discard_all = parameters->options().discard_all();
1844   bool discard_locals = parameters->options().discard_locals();
1845   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1846     {
1847       elfcpp::Sym<size, big_endian> sym(psyms);
1848
1849       Symbol_value<size>& lv(this->local_values_[i]);
1850
1851       bool is_ordinary;
1852       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1853                                                   &is_ordinary);
1854       lv.set_input_shndx(shndx, is_ordinary);
1855
1856       if (sym.get_st_type() == elfcpp::STT_SECTION)
1857         lv.set_is_section_symbol();
1858       else if (sym.get_st_type() == elfcpp::STT_TLS)
1859         lv.set_is_tls_symbol();
1860       else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1861         lv.set_is_ifunc_symbol();
1862
1863       // Save the input symbol value for use in do_finalize_local_symbols().
1864       lv.set_input_value(sym.get_st_value());
1865
1866       // Decide whether this symbol should go into the output file.
1867
1868       if ((shndx < shnum && out_sections[shndx] == NULL)
1869           || shndx == this->discarded_eh_frame_shndx_)
1870         {
1871           lv.set_no_output_symtab_entry();
1872           gold_assert(!lv.needs_output_dynsym_entry());
1873           continue;
1874         }
1875
1876       if (sym.get_st_type() == elfcpp::STT_SECTION)
1877         {
1878           lv.set_no_output_symtab_entry();
1879           gold_assert(!lv.needs_output_dynsym_entry());
1880           continue;
1881         }
1882
1883       if (sym.get_st_name() >= strtab_size)
1884         {
1885           this->error(_("local symbol %u section name out of range: %u >= %u"),
1886                       i, sym.get_st_name(),
1887                       static_cast<unsigned int>(strtab_size));
1888           lv.set_no_output_symtab_entry();
1889           continue;
1890         }
1891
1892       const char* name = pnames + sym.get_st_name();
1893
1894       // If needed, add the symbol to the dynamic symbol table string pool.
1895       if (lv.needs_output_dynsym_entry())
1896         {
1897           dynpool->add(name, true, NULL);
1898           ++dyncount;
1899         }
1900
1901       if (strip_all
1902           || (discard_all && lv.may_be_discarded_from_output_symtab()))
1903         {
1904           lv.set_no_output_symtab_entry();
1905           continue;
1906         }
1907
1908       // If --discard-locals option is used, discard all temporary local
1909       // symbols.  These symbols start with system-specific local label
1910       // prefixes, typically .L for ELF system.  We want to be compatible
1911       // with GNU ld so here we essentially use the same check in
1912       // bfd_is_local_label().  The code is different because we already
1913       // know that:
1914       //
1915       //   - the symbol is local and thus cannot have global or weak binding.
1916       //   - the symbol is not a section symbol.
1917       //   - the symbol has a name.
1918       //
1919       // We do not discard a symbol if it needs a dynamic symbol entry.
1920       if (discard_locals
1921           && sym.get_st_type() != elfcpp::STT_FILE
1922           && !lv.needs_output_dynsym_entry()
1923           && lv.may_be_discarded_from_output_symtab()
1924           && parameters->target().is_local_label_name(name))
1925         {
1926           lv.set_no_output_symtab_entry();
1927           continue;
1928         }
1929
1930       // Discard the local symbol if -retain_symbols_file is specified
1931       // and the local symbol is not in that file.
1932       if (!parameters->options().should_retain_symbol(name))
1933         {
1934           lv.set_no_output_symtab_entry();
1935           continue;
1936         }
1937
1938       // Add the symbol to the symbol table string pool.
1939       pool->add(name, true, NULL);
1940       ++count;
1941     }
1942
1943   this->output_local_symbol_count_ = count;
1944   this->output_local_dynsym_count_ = dyncount;
1945 }
1946
1947 // Compute the final value of a local symbol.
1948
1949 template<int size, bool big_endian>
1950 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1951 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1952     unsigned int r_sym,
1953     const Symbol_value<size>* lv_in,
1954     Symbol_value<size>* lv_out,
1955     bool relocatable,
1956     const Output_sections& out_sections,
1957     const std::vector<Address>& out_offsets,
1958     const Symbol_table* symtab)
1959 {
1960   // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1961   // we may have a memory leak.
1962   gold_assert(lv_out->has_output_value());
1963
1964   bool is_ordinary;
1965   unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1966   
1967   // Set the output symbol value.
1968   
1969   if (!is_ordinary)
1970     {
1971       if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1972         lv_out->set_output_value(lv_in->input_value());
1973       else
1974         {
1975           this->error(_("unknown section index %u for local symbol %u"),
1976                       shndx, r_sym);
1977           lv_out->set_output_value(0);
1978           return This::CFLV_ERROR;
1979         }
1980     }
1981   else
1982     {
1983       if (shndx >= this->shnum())
1984         {
1985           this->error(_("local symbol %u section index %u out of range"),
1986                       r_sym, shndx);
1987           lv_out->set_output_value(0);
1988           return This::CFLV_ERROR;
1989         }
1990       
1991       Output_section* os = out_sections[shndx];
1992       Address secoffset = out_offsets[shndx];
1993       if (symtab->is_section_folded(this, shndx))
1994         {
1995           gold_assert(os == NULL && secoffset == invalid_address);
1996           // Get the os of the section it is folded onto.
1997           Section_id folded = symtab->icf()->get_folded_section(this,
1998                                                                 shndx);
1999           gold_assert(folded.first != NULL);
2000           Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2001             <Sized_relobj_file<size, big_endian>*>(folded.first);
2002           os = folded_obj->output_section(folded.second);
2003           gold_assert(os != NULL);
2004           secoffset = folded_obj->get_output_section_offset(folded.second);
2005           
2006           // This could be a relaxed input section.
2007           if (secoffset == invalid_address)
2008             {
2009               const Output_relaxed_input_section* relaxed_section =
2010                 os->find_relaxed_input_section(folded_obj, folded.second);
2011               gold_assert(relaxed_section != NULL);
2012               secoffset = relaxed_section->address() - os->address();
2013             }
2014         }
2015       
2016       if (os == NULL)
2017         {
2018           // This local symbol belongs to a section we are discarding.
2019           // In some cases when applying relocations later, we will
2020           // attempt to match it to the corresponding kept section,
2021           // so we leave the input value unchanged here.
2022           return This::CFLV_DISCARDED;
2023         }
2024       else if (secoffset == invalid_address)
2025         {
2026           uint64_t start;
2027           
2028           // This is a SHF_MERGE section or one which otherwise
2029           // requires special handling.
2030           if (shndx == this->discarded_eh_frame_shndx_)
2031             {
2032               // This local symbol belongs to a discarded .eh_frame
2033               // section.  Just treat it like the case in which
2034               // os == NULL above.
2035               gold_assert(this->has_eh_frame_);
2036               return This::CFLV_DISCARDED;
2037             }
2038           else if (!lv_in->is_section_symbol())
2039             {
2040               // This is not a section symbol.  We can determine
2041               // the final value now.
2042               lv_out->set_output_value(
2043                   os->output_address(this, shndx, lv_in->input_value()));
2044             }
2045           else if (!os->find_starting_output_address(this, shndx, &start))
2046             {
2047               // This is a section symbol, but apparently not one in a
2048               // merged section.  First check to see if this is a relaxed
2049               // input section.  If so, use its address.  Otherwise just
2050               // use the start of the output section.  This happens with
2051               // relocatable links when the input object has section
2052               // symbols for arbitrary non-merge sections.
2053               const Output_section_data* posd =
2054                 os->find_relaxed_input_section(this, shndx);
2055               if (posd != NULL)
2056                 {
2057                   Address relocatable_link_adjustment =
2058                     relocatable ? os->address() : 0;
2059                   lv_out->set_output_value(posd->address()
2060                                            - relocatable_link_adjustment);
2061                 }
2062               else
2063                 lv_out->set_output_value(os->address());
2064             }
2065           else
2066             {
2067               // We have to consider the addend to determine the
2068               // value to use in a relocation.  START is the start
2069               // of this input section.  If we are doing a relocatable
2070               // link, use offset from start output section instead of
2071               // address.
2072               Address adjusted_start =
2073                 relocatable ? start - os->address() : start;
2074               Merged_symbol_value<size>* msv =
2075                 new Merged_symbol_value<size>(lv_in->input_value(),
2076                                               adjusted_start);
2077               lv_out->set_merged_symbol_value(msv);
2078             }
2079         }
2080       else if (lv_in->is_tls_symbol())
2081         lv_out->set_output_value(os->tls_offset()
2082                                  + secoffset
2083                                  + lv_in->input_value());
2084       else
2085         lv_out->set_output_value((relocatable ? 0 : os->address())
2086                                  + secoffset
2087                                  + lv_in->input_value());
2088     }
2089   return This::CFLV_OK;
2090 }
2091
2092 // Compute final local symbol value.  R_SYM is the index of a local
2093 // symbol in symbol table.  LV points to a symbol value, which is
2094 // expected to hold the input value and to be over-written by the
2095 // final value.  SYMTAB points to a symbol table.  Some targets may want
2096 // to know would-be-finalized local symbol values in relaxation.
2097 // Hence we provide this method.  Since this method updates *LV, a
2098 // callee should make a copy of the original local symbol value and
2099 // use the copy instead of modifying an object's local symbols before
2100 // everything is finalized.  The caller should also free up any allocated
2101 // memory in the return value in *LV.
2102 template<int size, bool big_endian>
2103 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2104 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2105     unsigned int r_sym,
2106     const Symbol_value<size>* lv_in,
2107     Symbol_value<size>* lv_out,
2108     const Symbol_table* symtab)
2109 {
2110   // This is just a wrapper of compute_final_local_value_internal.
2111   const bool relocatable = parameters->options().relocatable();
2112   const Output_sections& out_sections(this->output_sections());
2113   const std::vector<Address>& out_offsets(this->section_offsets());
2114   return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2115                                                   relocatable, out_sections,
2116                                                   out_offsets, symtab);
2117 }
2118
2119 // Finalize the local symbols.  Here we set the final value in
2120 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2121 // This function is always called from a singleton thread.  The actual
2122 // output of the local symbols will occur in a separate task.
2123
2124 template<int size, bool big_endian>
2125 unsigned int
2126 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2127     unsigned int index,
2128     off_t off,
2129     Symbol_table* symtab)
2130 {
2131   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2132
2133   const unsigned int loccount = this->local_symbol_count_;
2134   this->local_symbol_offset_ = off;
2135
2136   const bool relocatable = parameters->options().relocatable();
2137   const Output_sections& out_sections(this->output_sections());
2138   const std::vector<Address>& out_offsets(this->section_offsets());
2139
2140   for (unsigned int i = 1; i < loccount; ++i)
2141     {
2142       Symbol_value<size>* lv = &this->local_values_[i];
2143
2144       Compute_final_local_value_status cflv_status =
2145         this->compute_final_local_value_internal(i, lv, lv, relocatable,
2146                                                  out_sections, out_offsets,
2147                                                  symtab);
2148       switch (cflv_status)
2149         {
2150         case CFLV_OK:
2151           if (!lv->is_output_symtab_index_set())
2152             {
2153               lv->set_output_symtab_index(index);
2154               ++index;
2155             }
2156           break;
2157         case CFLV_DISCARDED:
2158         case CFLV_ERROR:
2159           // Do nothing.
2160           break;
2161         default:
2162           gold_unreachable();
2163         }
2164     }
2165   return index;
2166 }
2167
2168 // Set the output dynamic symbol table indexes for the local variables.
2169
2170 template<int size, bool big_endian>
2171 unsigned int
2172 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2173     unsigned int index)
2174 {
2175   const unsigned int loccount = this->local_symbol_count_;
2176   for (unsigned int i = 1; i < loccount; ++i)
2177     {
2178       Symbol_value<size>& lv(this->local_values_[i]);
2179       if (lv.needs_output_dynsym_entry())
2180         {
2181           lv.set_output_dynsym_index(index);
2182           ++index;
2183         }
2184     }
2185   return index;
2186 }
2187
2188 // Set the offset where local dynamic symbol information will be stored.
2189 // Returns the count of local symbols contributed to the symbol table by
2190 // this object.
2191
2192 template<int size, bool big_endian>
2193 unsigned int
2194 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2195 {
2196   gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2197   this->local_dynsym_offset_ = off;
2198   return this->output_local_dynsym_count_;
2199 }
2200
2201 // If Symbols_data is not NULL get the section flags from here otherwise
2202 // get it from the file.
2203
2204 template<int size, bool big_endian>
2205 uint64_t
2206 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2207 {
2208   Symbols_data* sd = this->get_symbols_data();
2209   if (sd != NULL)
2210     {
2211       const unsigned char* pshdrs = sd->section_headers_data
2212                                     + This::shdr_size * shndx;
2213       typename This::Shdr shdr(pshdrs);
2214       return shdr.get_sh_flags(); 
2215     }
2216   // If sd is NULL, read the section header from the file.
2217   return this->elf_file_.section_flags(shndx); 
2218 }
2219
2220 // Get the section's ent size from Symbols_data.  Called by get_section_contents
2221 // in icf.cc
2222
2223 template<int size, bool big_endian>
2224 uint64_t
2225 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2226 {
2227   Symbols_data* sd = this->get_symbols_data();
2228   gold_assert(sd != NULL);
2229
2230   const unsigned char* pshdrs = sd->section_headers_data
2231                                 + This::shdr_size * shndx;
2232   typename This::Shdr shdr(pshdrs);
2233   return shdr.get_sh_entsize(); 
2234 }
2235
2236 // Write out the local symbols.
2237
2238 template<int size, bool big_endian>
2239 void
2240 Sized_relobj_file<size, big_endian>::write_local_symbols(
2241     Output_file* of,
2242     const Stringpool* sympool,
2243     const Stringpool* dynpool,
2244     Output_symtab_xindex* symtab_xindex,
2245     Output_symtab_xindex* dynsym_xindex,
2246     off_t symtab_off)
2247 {
2248   const bool strip_all = parameters->options().strip_all();
2249   if (strip_all)
2250     {
2251       if (this->output_local_dynsym_count_ == 0)
2252         return;
2253       this->output_local_symbol_count_ = 0;
2254     }
2255
2256   gold_assert(this->symtab_shndx_ != -1U);
2257   if (this->symtab_shndx_ == 0)
2258     {
2259       // This object has no symbols.  Weird but legal.
2260       return;
2261     }
2262
2263   // Read the symbol table section header.
2264   const unsigned int symtab_shndx = this->symtab_shndx_;
2265   typename This::Shdr symtabshdr(this,
2266                                  this->elf_file_.section_header(symtab_shndx));
2267   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2268   const unsigned int loccount = this->local_symbol_count_;
2269   gold_assert(loccount == symtabshdr.get_sh_info());
2270
2271   // Read the local symbols.
2272   const int sym_size = This::sym_size;
2273   off_t locsize = loccount * sym_size;
2274   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2275                                               locsize, true, false);
2276
2277   // Read the symbol names.
2278   const unsigned int strtab_shndx =
2279     this->adjust_shndx(symtabshdr.get_sh_link());
2280   section_size_type strtab_size;
2281   const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2282                                                         &strtab_size,
2283                                                         false);
2284   const char* pnames = reinterpret_cast<const char*>(pnamesu);
2285
2286   // Get views into the output file for the portions of the symbol table
2287   // and the dynamic symbol table that we will be writing.
2288   off_t output_size = this->output_local_symbol_count_ * sym_size;
2289   unsigned char* oview = NULL;
2290   if (output_size > 0)
2291     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2292                                 output_size);
2293
2294   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2295   unsigned char* dyn_oview = NULL;
2296   if (dyn_output_size > 0)
2297     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2298                                     dyn_output_size);
2299
2300   const Output_sections out_sections(this->output_sections());
2301
2302   gold_assert(this->local_values_.size() == loccount);
2303
2304   unsigned char* ov = oview;
2305   unsigned char* dyn_ov = dyn_oview;
2306   psyms += sym_size;
2307   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2308     {
2309       elfcpp::Sym<size, big_endian> isym(psyms);
2310
2311       Symbol_value<size>& lv(this->local_values_[i]);
2312
2313       bool is_ordinary;
2314       unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2315                                                      &is_ordinary);
2316       if (is_ordinary)
2317         {
2318           gold_assert(st_shndx < out_sections.size());
2319           if (out_sections[st_shndx] == NULL)
2320             continue;
2321           st_shndx = out_sections[st_shndx]->out_shndx();
2322           if (st_shndx >= elfcpp::SHN_LORESERVE)
2323             {
2324               if (lv.has_output_symtab_entry())
2325                 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2326               if (lv.has_output_dynsym_entry())
2327                 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2328               st_shndx = elfcpp::SHN_XINDEX;
2329             }
2330         }
2331
2332       // Write the symbol to the output symbol table.
2333       if (lv.has_output_symtab_entry())
2334         {
2335           elfcpp::Sym_write<size, big_endian> osym(ov);
2336
2337           gold_assert(isym.get_st_name() < strtab_size);
2338           const char* name = pnames + isym.get_st_name();
2339           osym.put_st_name(sympool->get_offset(name));
2340           osym.put_st_value(this->local_values_[i].value(this, 0));
2341           osym.put_st_size(isym.get_st_size());
2342           osym.put_st_info(isym.get_st_info());
2343           osym.put_st_other(isym.get_st_other());
2344           osym.put_st_shndx(st_shndx);
2345
2346           ov += sym_size;
2347         }
2348
2349       // Write the symbol to the output dynamic symbol table.
2350       if (lv.has_output_dynsym_entry())
2351         {
2352           gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2353           elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2354
2355           gold_assert(isym.get_st_name() < strtab_size);
2356           const char* name = pnames + isym.get_st_name();
2357           osym.put_st_name(dynpool->get_offset(name));
2358           osym.put_st_value(this->local_values_[i].value(this, 0));
2359           osym.put_st_size(isym.get_st_size());
2360           osym.put_st_info(isym.get_st_info());
2361           osym.put_st_other(isym.get_st_other());
2362           osym.put_st_shndx(st_shndx);
2363
2364           dyn_ov += sym_size;
2365         }
2366     }
2367
2368
2369   if (output_size > 0)
2370     {
2371       gold_assert(ov - oview == output_size);
2372       of->write_output_view(symtab_off + this->local_symbol_offset_,
2373                             output_size, oview);
2374     }
2375
2376   if (dyn_output_size > 0)
2377     {
2378       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2379       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2380                             dyn_oview);
2381     }
2382 }
2383
2384 // Set *INFO to symbolic information about the offset OFFSET in the
2385 // section SHNDX.  Return true if we found something, false if we
2386 // found nothing.
2387
2388 template<int size, bool big_endian>
2389 bool
2390 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2391     unsigned int shndx,
2392     off_t offset,
2393     Symbol_location_info* info)
2394 {
2395   if (this->symtab_shndx_ == 0)
2396     return false;
2397
2398   section_size_type symbols_size;
2399   const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2400                                                         &symbols_size,
2401                                                         false);
2402
2403   unsigned int symbol_names_shndx =
2404     this->adjust_shndx(this->section_link(this->symtab_shndx_));
2405   section_size_type names_size;
2406   const unsigned char* symbol_names_u =
2407     this->section_contents(symbol_names_shndx, &names_size, false);
2408   const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2409
2410   const int sym_size = This::sym_size;
2411   const size_t count = symbols_size / sym_size;
2412
2413   const unsigned char* p = symbols;
2414   for (size_t i = 0; i < count; ++i, p += sym_size)
2415     {
2416       elfcpp::Sym<size, big_endian> sym(p);
2417
2418       if (sym.get_st_type() == elfcpp::STT_FILE)
2419         {
2420           if (sym.get_st_name() >= names_size)
2421             info->source_file = "(invalid)";
2422           else
2423             info->source_file = symbol_names + sym.get_st_name();
2424           continue;
2425         }
2426
2427       bool is_ordinary;
2428       unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2429                                                      &is_ordinary);
2430       if (is_ordinary
2431           && st_shndx == shndx
2432           && static_cast<off_t>(sym.get_st_value()) <= offset
2433           && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2434               > offset))
2435         {
2436           if (sym.get_st_name() > names_size)
2437             info->enclosing_symbol_name = "(invalid)";
2438           else
2439             {
2440               info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2441               if (parameters->options().do_demangle())
2442                 {
2443                   char* demangled_name = cplus_demangle(
2444                       info->enclosing_symbol_name.c_str(),
2445                       DMGL_ANSI | DMGL_PARAMS);
2446                   if (demangled_name != NULL)
2447                     {
2448                       info->enclosing_symbol_name.assign(demangled_name);
2449                       free(demangled_name);
2450                     }
2451                 }
2452             }
2453           return true;
2454         }
2455     }
2456
2457   return false;
2458 }
2459
2460 // Look for a kept section corresponding to the given discarded section,
2461 // and return its output address.  This is used only for relocations in
2462 // debugging sections.  If we can't find the kept section, return 0.
2463
2464 template<int size, bool big_endian>
2465 typename Sized_relobj_file<size, big_endian>::Address
2466 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2467     unsigned int shndx,
2468     bool* found) const
2469 {
2470   Relobj* kept_object;
2471   unsigned int kept_shndx;
2472   if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2473     {
2474       Sized_relobj_file<size, big_endian>* kept_relobj =
2475         static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2476       Output_section* os = kept_relobj->output_section(kept_shndx);
2477       Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2478       if (os != NULL && offset != invalid_address)
2479         {
2480           *found = true;
2481           return os->address() + offset;
2482         }
2483     }
2484   *found = false;
2485   return 0;
2486 }
2487
2488 // Get symbol counts.
2489
2490 template<int size, bool big_endian>
2491 void
2492 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2493     const Symbol_table*,
2494     size_t* defined,
2495     size_t* used) const
2496 {
2497   *defined = this->defined_count_;
2498   size_t count = 0;
2499   for (typename Symbols::const_iterator p = this->symbols_.begin();
2500        p != this->symbols_.end();
2501        ++p)
2502     if (*p != NULL
2503         && (*p)->source() == Symbol::FROM_OBJECT
2504         && (*p)->object() == this
2505         && (*p)->is_defined())
2506       ++count;
2507   *used = count;
2508 }
2509
2510 // Input_objects methods.
2511
2512 // Add a regular relocatable object to the list.  Return false if this
2513 // object should be ignored.
2514
2515 bool
2516 Input_objects::add_object(Object* obj)
2517 {
2518   // Print the filename if the -t/--trace option is selected.
2519   if (parameters->options().trace())
2520     gold_info("%s", obj->name().c_str());
2521
2522   if (!obj->is_dynamic())
2523     this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2524   else
2525     {
2526       // See if this is a duplicate SONAME.
2527       Dynobj* dynobj = static_cast<Dynobj*>(obj);
2528       const char* soname = dynobj->soname();
2529
2530       std::pair<Unordered_set<std::string>::iterator, bool> ins =
2531         this->sonames_.insert(soname);
2532       if (!ins.second)
2533         {
2534           // We have already seen a dynamic object with this soname.
2535           return false;
2536         }
2537
2538       this->dynobj_list_.push_back(dynobj);
2539     }
2540
2541   // Add this object to the cross-referencer if requested.
2542   if (parameters->options().user_set_print_symbol_counts()
2543       || parameters->options().cref())
2544     {
2545       if (this->cref_ == NULL)
2546         this->cref_ = new Cref();
2547       this->cref_->add_object(obj);
2548     }
2549
2550   return true;
2551 }
2552
2553 // For each dynamic object, record whether we've seen all of its
2554 // explicit dependencies.
2555
2556 void
2557 Input_objects::check_dynamic_dependencies() const
2558 {
2559   bool issued_copy_dt_needed_error = false;
2560   for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2561        p != this->dynobj_list_.end();
2562        ++p)
2563     {
2564       const Dynobj::Needed& needed((*p)->needed());
2565       bool found_all = true;
2566       Dynobj::Needed::const_iterator pneeded;
2567       for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2568         {
2569           if (this->sonames_.find(*pneeded) == this->sonames_.end())
2570             {
2571               found_all = false;
2572               break;
2573             }
2574         }
2575       (*p)->set_has_unknown_needed_entries(!found_all);
2576
2577       // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2578       // that gold does not support.  However, they cause no trouble
2579       // unless there is a DT_NEEDED entry that we don't know about;
2580       // warn only in that case.
2581       if (!found_all
2582           && !issued_copy_dt_needed_error
2583           && (parameters->options().copy_dt_needed_entries()
2584               || parameters->options().add_needed()))
2585         {
2586           const char* optname;
2587           if (parameters->options().copy_dt_needed_entries())
2588             optname = "--copy-dt-needed-entries";
2589           else
2590             optname = "--add-needed";
2591           gold_error(_("%s is not supported but is required for %s in %s"),
2592                      optname, (*pneeded).c_str(), (*p)->name().c_str());
2593           issued_copy_dt_needed_error = true;
2594         }
2595     }
2596 }
2597
2598 // Start processing an archive.
2599
2600 void
2601 Input_objects::archive_start(Archive* archive)
2602 {
2603   if (parameters->options().user_set_print_symbol_counts()
2604       || parameters->options().cref())
2605     {
2606       if (this->cref_ == NULL)
2607         this->cref_ = new Cref();
2608       this->cref_->add_archive_start(archive);
2609     }
2610 }
2611
2612 // Stop processing an archive.
2613
2614 void
2615 Input_objects::archive_stop(Archive* archive)
2616 {
2617   if (parameters->options().user_set_print_symbol_counts()
2618       || parameters->options().cref())
2619     this->cref_->add_archive_stop(archive);
2620 }
2621
2622 // Print symbol counts
2623
2624 void
2625 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2626 {
2627   if (parameters->options().user_set_print_symbol_counts()
2628       && this->cref_ != NULL)
2629     this->cref_->print_symbol_counts(symtab);
2630 }
2631
2632 // Print a cross reference table.
2633
2634 void
2635 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2636 {
2637   if (parameters->options().cref() && this->cref_ != NULL)
2638     this->cref_->print_cref(symtab, f);
2639 }
2640
2641 // Relocate_info methods.
2642
2643 // Return a string describing the location of a relocation when file
2644 // and lineno information is not available.  This is only used in
2645 // error messages.
2646
2647 template<int size, bool big_endian>
2648 std::string
2649 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2650 {
2651   Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2652   std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2653   if (!ret.empty())
2654     return ret;
2655
2656   ret = this->object->name();
2657
2658   Symbol_location_info info;
2659   if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2660     {
2661       if (!info.source_file.empty())
2662         {
2663           ret += ":";
2664           ret += info.source_file;
2665         }
2666       size_t len = info.enclosing_symbol_name.length() + 100;
2667       char* buf = new char[len];
2668       snprintf(buf, len, _(":function %s"),
2669                info.enclosing_symbol_name.c_str());
2670       ret += buf;
2671       delete[] buf;
2672       return ret;
2673     }
2674
2675   ret += "(";
2676   ret += this->object->section_name(this->data_shndx);
2677   char buf[100];
2678   snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2679   ret += buf;
2680   return ret;
2681 }
2682
2683 } // End namespace gold.
2684
2685 namespace
2686 {
2687
2688 using namespace gold;
2689
2690 // Read an ELF file with the header and return the appropriate
2691 // instance of Object.
2692
2693 template<int size, bool big_endian>
2694 Object*
2695 make_elf_sized_object(const std::string& name, Input_file* input_file,
2696                       off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2697                       bool* punconfigured)
2698 {
2699   Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2700                                  ehdr.get_e_ident()[elfcpp::EI_OSABI],
2701                                  ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2702   if (target == NULL)
2703     gold_fatal(_("%s: unsupported ELF machine number %d"),
2704                name.c_str(), ehdr.get_e_machine());
2705
2706   if (!parameters->target_valid())
2707     set_parameters_target(target);
2708   else if (target != &parameters->target())
2709     {
2710       if (punconfigured != NULL)
2711         *punconfigured = true;
2712       else
2713         gold_error(_("%s: incompatible target"), name.c_str());
2714       return NULL;
2715     }
2716
2717   return target->make_elf_object<size, big_endian>(name, input_file, offset,
2718                                                    ehdr);
2719 }
2720
2721 } // End anonymous namespace.
2722
2723 namespace gold
2724 {
2725
2726 // Return whether INPUT_FILE is an ELF object.
2727
2728 bool
2729 is_elf_object(Input_file* input_file, off_t offset,
2730               const unsigned char** start, int* read_size)
2731 {
2732   off_t filesize = input_file->file().filesize();
2733   int want = elfcpp::Elf_recognizer::max_header_size;
2734   if (filesize - offset < want)
2735     want = filesize - offset;
2736
2737   const unsigned char* p = input_file->file().get_view(offset, 0, want,
2738                                                        true, false);
2739   *start = p;
2740   *read_size = want;
2741
2742   return elfcpp::Elf_recognizer::is_elf_file(p, want);
2743 }
2744
2745 // Read an ELF file and return the appropriate instance of Object.
2746
2747 Object*
2748 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2749                 const unsigned char* p, section_offset_type bytes,
2750                 bool* punconfigured)
2751 {
2752   if (punconfigured != NULL)
2753     *punconfigured = false;
2754
2755   std::string error;
2756   bool big_endian = false;
2757   int size = 0;
2758   if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2759                                                &big_endian, &error))
2760     {
2761       gold_error(_("%s: %s"), name.c_str(), error.c_str());
2762       return NULL;
2763     }
2764
2765   if (size == 32)
2766     {
2767       if (big_endian)
2768         {
2769 #ifdef HAVE_TARGET_32_BIG
2770           elfcpp::Ehdr<32, true> ehdr(p);
2771           return make_elf_sized_object<32, true>(name, input_file,
2772                                                  offset, ehdr, punconfigured);
2773 #else
2774           if (punconfigured != NULL)
2775             *punconfigured = true;
2776           else
2777             gold_error(_("%s: not configured to support "
2778                          "32-bit big-endian object"),
2779                        name.c_str());
2780           return NULL;
2781 #endif
2782         }
2783       else
2784         {
2785 #ifdef HAVE_TARGET_32_LITTLE
2786           elfcpp::Ehdr<32, false> ehdr(p);
2787           return make_elf_sized_object<32, false>(name, input_file,
2788                                                   offset, ehdr, punconfigured);
2789 #else
2790           if (punconfigured != NULL)
2791             *punconfigured = true;
2792           else
2793             gold_error(_("%s: not configured to support "
2794                          "32-bit little-endian object"),
2795                        name.c_str());
2796           return NULL;
2797 #endif
2798         }
2799     }
2800   else if (size == 64)
2801     {
2802       if (big_endian)
2803         {
2804 #ifdef HAVE_TARGET_64_BIG
2805           elfcpp::Ehdr<64, true> ehdr(p);
2806           return make_elf_sized_object<64, true>(name, input_file,
2807                                                  offset, ehdr, punconfigured);
2808 #else
2809           if (punconfigured != NULL)
2810             *punconfigured = true;
2811           else
2812             gold_error(_("%s: not configured to support "
2813                          "64-bit big-endian object"),
2814                        name.c_str());
2815           return NULL;
2816 #endif
2817         }
2818       else
2819         {
2820 #ifdef HAVE_TARGET_64_LITTLE
2821           elfcpp::Ehdr<64, false> ehdr(p);
2822           return make_elf_sized_object<64, false>(name, input_file,
2823                                                   offset, ehdr, punconfigured);
2824 #else
2825           if (punconfigured != NULL)
2826             *punconfigured = true;
2827           else
2828             gold_error(_("%s: not configured to support "
2829                          "64-bit little-endian object"),
2830                        name.c_str());
2831           return NULL;
2832 #endif
2833         }
2834     }
2835   else
2836     gold_unreachable();
2837 }
2838
2839 // Instantiate the templates we need.
2840
2841 #ifdef HAVE_TARGET_32_LITTLE
2842 template
2843 void
2844 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2845                                      Read_symbols_data*);
2846 #endif
2847
2848 #ifdef HAVE_TARGET_32_BIG
2849 template
2850 void
2851 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2852                                     Read_symbols_data*);
2853 #endif
2854
2855 #ifdef HAVE_TARGET_64_LITTLE
2856 template
2857 void
2858 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2859                                      Read_symbols_data*);
2860 #endif
2861
2862 #ifdef HAVE_TARGET_64_BIG
2863 template
2864 void
2865 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2866                                     Read_symbols_data*);
2867 #endif
2868
2869 #ifdef HAVE_TARGET_32_LITTLE
2870 template
2871 class Sized_relobj_file<32, false>;
2872 #endif
2873
2874 #ifdef HAVE_TARGET_32_BIG
2875 template
2876 class Sized_relobj_file<32, true>;
2877 #endif
2878
2879 #ifdef HAVE_TARGET_64_LITTLE
2880 template
2881 class Sized_relobj_file<64, false>;
2882 #endif
2883
2884 #ifdef HAVE_TARGET_64_BIG
2885 template
2886 class Sized_relobj_file<64, true>;
2887 #endif
2888
2889 #ifdef HAVE_TARGET_32_LITTLE
2890 template
2891 struct Relocate_info<32, false>;
2892 #endif
2893
2894 #ifdef HAVE_TARGET_32_BIG
2895 template
2896 struct Relocate_info<32, true>;
2897 #endif
2898
2899 #ifdef HAVE_TARGET_64_LITTLE
2900 template
2901 struct Relocate_info<64, false>;
2902 #endif
2903
2904 #ifdef HAVE_TARGET_64_BIG
2905 template
2906 struct Relocate_info<64, true>;
2907 #endif
2908
2909 #ifdef HAVE_TARGET_32_LITTLE
2910 template
2911 void
2912 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2913
2914 template
2915 void
2916 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2917                                       const unsigned char*);
2918 #endif
2919
2920 #ifdef HAVE_TARGET_32_BIG
2921 template
2922 void
2923 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2924
2925 template
2926 void
2927 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2928                                      const unsigned char*);
2929 #endif
2930
2931 #ifdef HAVE_TARGET_64_LITTLE
2932 template
2933 void
2934 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2935
2936 template
2937 void
2938 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2939                                       const unsigned char*);
2940 #endif
2941
2942 #ifdef HAVE_TARGET_64_BIG
2943 template
2944 void
2945 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2946
2947 template
2948 void
2949 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2950                                      const unsigned char*);
2951 #endif
2952
2953 } // End namespace gold.
This page took 0.203282 seconds and 4 git commands to generate.