1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
47 /*#include <sys/user.h> After a.out.h */
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60 static int hppa_alignof PARAMS ((struct type *));
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
68 static int inst_saves_gr PARAMS ((unsigned long));
70 static int inst_saves_fr PARAMS ((unsigned long));
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
79 static void read_unwind_info PARAMS ((struct objfile *));
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
89 /* Routines to extract various sized constants out of hppa
92 /* This assumes that no garbage lies outside of the lower bits of
96 sign_extend (val, bits)
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
102 /* For many immediate values the sign bit is the low bit! */
105 low_sign_extend (val, bits)
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
110 /* extract the immediate field from a ld{bhw}s instruction */
113 get_field (val, from, to)
114 unsigned val, from, to;
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
136 extract_5_load (word)
139 return low_sign_extend (word >> 16 & MASK_5, 5);
142 /* extract the immediate field from a st{bhw}s instruction */
145 extract_5_store (word)
148 return low_sign_extend (word & MASK_5, 5);
151 /* extract the immediate field from a break instruction */
154 extract_5r_store (word)
157 return (word & MASK_5);
160 /* extract the immediate field from a {sr}sm instruction */
163 extract_5R_store (word)
166 return (word >> 16 & MASK_5);
169 /* extract an 11 bit immediate field */
175 return low_sign_extend (word & MASK_11, 11);
178 /* extract a 14 bit immediate field */
184 return low_sign_extend (word & MASK_14, 14);
187 /* deposit a 14 bit constant in a word */
190 deposit_14 (opnd, word)
194 unsigned sign = (opnd < 0 ? 1 : 0);
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
199 /* extract a 21 bit constant */
209 val = GET_FIELD (word, 20, 20);
211 val |= GET_FIELD (word, 9, 19);
213 val |= GET_FIELD (word, 5, 6);
215 val |= GET_FIELD (word, 0, 4);
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
226 deposit_21 (opnd, word)
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
243 /* extract a 12 bit constant from branch instructions */
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
261 return sign_extend (GET_FIELD (word, 19, 28) |
262 GET_FIELD (word, 29, 29) << 10 |
263 GET_FIELD (word, 11, 15) << 11 |
264 (word & 0x1) << 16, 17) << 2;
268 /* Compare the start address for two unwind entries returning 1 if
269 the first address is larger than the second, -1 if the second is
270 larger than the first, and zero if they are equal. */
273 compare_unwind_entries (a, b)
274 const struct unwind_table_entry *a;
275 const struct unwind_table_entry *b;
277 if (a->region_start > b->region_start)
279 else if (a->region_start < b->region_start)
286 internalize_unwinds (objfile, table, section, entries, size, text_offset)
287 struct objfile *objfile;
288 struct unwind_table_entry *table;
290 unsigned int entries, size;
291 CORE_ADDR text_offset;
293 /* We will read the unwind entries into temporary memory, then
294 fill in the actual unwind table. */
299 char *buf = alloca (size);
301 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
303 /* Now internalize the information being careful to handle host/target
305 for (i = 0; i < entries; i++)
307 table[i].region_start = bfd_get_32 (objfile->obfd,
309 table[i].region_start += text_offset;
311 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
312 table[i].region_end += text_offset;
314 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
316 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
317 table[i].Millicode = (tmp >> 30) & 0x1;
318 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
319 table[i].Region_description = (tmp >> 27) & 0x3;
320 table[i].reserved1 = (tmp >> 26) & 0x1;
321 table[i].Entry_SR = (tmp >> 25) & 0x1;
322 table[i].Entry_FR = (tmp >> 21) & 0xf;
323 table[i].Entry_GR = (tmp >> 16) & 0x1f;
324 table[i].Args_stored = (tmp >> 15) & 0x1;
325 table[i].Variable_Frame = (tmp >> 14) & 0x1;
326 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
327 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
328 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
329 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
330 table[i].Ada_Region = (tmp >> 9) & 0x1;
331 table[i].reserved2 = (tmp >> 5) & 0xf;
332 table[i].Save_SP = (tmp >> 4) & 0x1;
333 table[i].Save_RP = (tmp >> 3) & 0x1;
334 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
335 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
336 table[i].Cleanup_defined = tmp & 0x1;
337 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
339 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
340 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
341 table[i].Large_frame = (tmp >> 29) & 0x1;
342 table[i].reserved4 = (tmp >> 27) & 0x3;
343 table[i].Total_frame_size = tmp & 0x7ffffff;
348 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
349 the object file. This info is used mainly by find_unwind_entry() to find
350 out the stack frame size and frame pointer used by procedures. We put
351 everything on the psymbol obstack in the objfile so that it automatically
352 gets freed when the objfile is destroyed. */
355 read_unwind_info (objfile)
356 struct objfile *objfile;
358 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
359 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
360 unsigned index, unwind_entries, elf_unwind_entries;
361 unsigned stub_entries, total_entries;
362 CORE_ADDR text_offset;
363 struct obj_unwind_info *ui;
365 text_offset = ANOFFSET (objfile->section_offsets, 0);
366 ui = obstack_alloc (&objfile->psymbol_obstack,
367 sizeof (struct obj_unwind_info));
373 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
374 section in ELF at the moment. */
375 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
376 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
377 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
379 /* Get sizes and unwind counts for all sections. */
382 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
383 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
393 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
394 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
399 elf_unwind_entries = 0;
404 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
405 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
409 stub_unwind_size = 0;
413 /* Compute total number of unwind entries and their total size. */
414 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
415 total_size = total_entries * sizeof (struct unwind_table_entry);
417 /* Allocate memory for the unwind table. */
418 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
419 ui->last = total_entries - 1;
421 /* Internalize the standard unwind entries. */
423 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
424 unwind_entries, unwind_size, text_offset);
425 index += unwind_entries;
426 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
427 elf_unwind_entries, elf_unwind_size, text_offset);
428 index += elf_unwind_entries;
430 /* Now internalize the stub unwind entries. */
431 if (stub_unwind_size > 0)
434 char *buf = alloca (stub_unwind_size);
436 /* Read in the stub unwind entries. */
437 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
438 0, stub_unwind_size);
440 /* Now convert them into regular unwind entries. */
441 for (i = 0; i < stub_entries; i++, index++)
443 /* Clear out the next unwind entry. */
444 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
446 /* Convert offset & size into region_start and region_end.
447 Stuff away the stub type into "reserved" fields. */
448 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
450 ui->table[index].region_start += text_offset;
452 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
455 ui->table[index].region_end
456 = ui->table[index].region_start + 4 *
457 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
463 /* Unwind table needs to be kept sorted. */
464 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
465 compare_unwind_entries);
467 /* Keep a pointer to the unwind information. */
468 objfile->obj_private = (PTR) ui;
471 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
472 of the objfiles seeking the unwind table entry for this PC. Each objfile
473 contains a sorted list of struct unwind_table_entry. Since we do a binary
474 search of the unwind tables, we depend upon them to be sorted. */
476 static struct unwind_table_entry *
477 find_unwind_entry(pc)
480 int first, middle, last;
481 struct objfile *objfile;
483 ALL_OBJFILES (objfile)
485 struct obj_unwind_info *ui;
487 ui = OBJ_UNWIND_INFO (objfile);
491 read_unwind_info (objfile);
492 ui = OBJ_UNWIND_INFO (objfile);
495 /* First, check the cache */
498 && pc >= ui->cache->region_start
499 && pc <= ui->cache->region_end)
502 /* Not in the cache, do a binary search */
507 while (first <= last)
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
513 ui->cache = &ui->table[middle];
514 return &ui->table[middle];
517 if (pc < ui->table[middle].region_start)
522 } /* ALL_OBJFILES() */
526 /* Return the adjustment necessary to make for addresses on the stack
527 as presented by hpread.c.
529 This is necessary because of the stack direction on the PA and the
530 bizarre way in which someone (?) decided they wanted to handle
531 frame pointerless code in GDB. */
533 hpread_adjust_stack_address (func_addr)
536 struct unwind_table_entry *u;
538 u = find_unwind_entry (func_addr);
542 return u->Total_frame_size << 3;
545 /* Called to determine if PC is in an interrupt handler of some
549 pc_in_interrupt_handler (pc)
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
555 u = find_unwind_entry (pc);
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
566 /* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
570 pc_in_linker_stub (pc)
573 int found_magic_instruction = 0;
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
581 /* We are looking for something like
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
596 /* If we hit something with an unwind, stop searching this direction. */
598 if (find_unwind_entry (pc + i * 4) != 0)
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
605 found_magic_instruction = 1;
608 /* Add code to handle long call/branch and argument relocation stubs
612 if (found_magic_instruction != 0)
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
618 /* If we hit something with an unwind, stop searching this direction. */
620 if (find_unwind_entry (pc - i * 4) != 0)
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
627 found_magic_instruction = 1;
630 /* Add code to handle long call/branch and argument relocation stubs
633 return found_magic_instruction;
637 find_return_regnum(pc)
640 struct unwind_table_entry *u;
642 u = find_unwind_entry (pc);
653 /* Return size of frame, or -1 if we should use a frame pointer. */
655 find_proc_framesize (pc)
658 struct unwind_table_entry *u;
659 struct minimal_symbol *msym_us;
661 u = find_unwind_entry (pc);
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
672 msym_us = lookup_minimal_symbol_by_pc (pc);
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
680 return u->Total_frame_size << 3;
683 /* Return offset from sp at which rp is saved, or 0 if not saved. */
684 static int rp_saved PARAMS ((CORE_ADDR));
690 struct unwind_table_entry *u;
692 u = find_unwind_entry (pc);
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
705 else if (u->stub_type != 0)
707 switch (u->stub_type)
712 case PARAMETER_RELOCATION:
723 frameless_function_invocation (frame)
724 struct frame_info *frame;
726 struct unwind_table_entry *u;
728 u = find_unwind_entry (frame->pc);
733 return (u->Total_frame_size == 0 && u->stub_type == 0);
737 saved_pc_after_call (frame)
738 struct frame_info *frame;
742 struct unwind_table_entry *u;
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
745 pc = read_register (ret_regnum) & ~0x3;
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
757 frame_saved_pc (frame)
758 struct frame_info *frame;
760 CORE_ADDR pc = get_frame_pc (frame);
761 struct unwind_table_entry *u;
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
778 if (frameless_function_invocation (frame))
782 ret_regnum = find_return_regnum (pc);
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
792 struct frame_saved_regs saved_regs;
794 get_frame_saved_regs (frame->next, &saved_regs);
795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
810 pc = read_register (ret_regnum) & ~0x3;
817 rp_offset = rp_saved (pc);
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
826 struct frame_saved_regs saved_regs;
828 get_frame_saved_regs (frame->next, &saved_regs);
829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
843 else if (rp_offset == 0)
844 pc = read_register (RP_REGNUM) & ~0x3;
846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
849 /* If PC is inside a linker stub, then dig out the address the stub
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
858 /* We need to correct the PC and the FP for the outermost frame when we are
862 init_extra_frame_info (fromleaf, frame)
864 struct frame_info *frame;
869 if (frame->next && !fromleaf)
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
886 frame->frame = read_register (FP_REGNUM);
888 frame->frame -= framesize;
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
896 /* The outermost frame is always derived from PC-framesize
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
905 framesize = find_proc_framesize(frame->pc);
907 frame->frame = read_register (FP_REGNUM);
909 frame->frame = read_register (SP_REGNUM) - framesize;
912 /* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
922 struct frame_info *frame;
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
926 CORE_ADDR frame_base;
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
939 frame_base = frame->frame;
941 /* Get frame sizes for the current frame and the frame of the
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
949 return frame_base - caller_framesize;
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
955 return read_memory_integer (frame_base, 4);
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
964 Walk from the current frame to the innermost frame examining
965 unwind descriptors to determine if %r3 ever gets saved into the
966 stack. If so return whatever value got saved into the stack.
967 If it was never saved in the stack, then the value in %r3 is still
970 We use information from unwind descriptors to determine if %r3
971 is saved into the stack (Entry_GR field has this information). */
975 u = find_unwind_entry (frame->pc);
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
987 /* Entry_GR specifies the number of callee-saved general registers
988 saved in the stack. It starts at %r3, so %r3 would be 1. */
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
999 /* We may have walked down the chain into a function with a frame
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
1004 return read_memory_integer (frame->frame, 4);
1005 /* %r3 was saved somewhere in the stack. Dig it out. */
1008 struct frame_saved_regs saved_regs;
1010 get_frame_saved_regs (frame, &saved_regs);
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1016 /* The value in %r3 was never saved into the stack (thus %r3 still
1017 holds the value of the previous frame pointer). */
1018 return read_register (FP_REGNUM);
1023 /* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1027 frame_chain_valid (chain, thisframe)
1029 struct frame_info *thisframe;
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
1033 struct unwind_table_entry *u, *next_u = NULL;
1034 struct frame_info *next;
1039 u = find_unwind_entry (thisframe->pc);
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1057 next = get_next_frame (thisframe);
1059 next_u = find_unwind_entry (next->pc);
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
1069 if (pc_in_linker_stub (thisframe->pc))
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1083 push_dummy_frame (inf_status)
1084 struct inferior_status *inf_status;
1086 CORE_ADDR sp, pc, pcspace;
1087 register int regnum;
1091 /* Oh, what a hack. If we're trying to perform an inferior call
1092 while the inferior is asleep, we have to make sure to clear
1093 the "in system call" bit in the flag register (the call will
1094 start after the syscall returns, so we're no longer in the system
1095 call!) This state is kept in "inf_status", change it there.
1097 We also need a number of horrid hacks to deal with lossage in the
1098 PC queue registers (apparently they're not valid when the in syscall
1100 pc = target_read_pc (inferior_pid);
1101 int_buffer = read_register (FLAGS_REGNUM);
1102 if (int_buffer & 0x2)
1106 memcpy (inf_status->registers, &int_buffer, 4);
1107 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1109 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1111 sid = (pc >> 30) & 0x3;
1113 pcspace = read_register (SR4_REGNUM);
1115 pcspace = read_register (SR4_REGNUM + 4 + sid);
1116 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1118 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1122 pcspace = read_register (PCSQ_HEAD_REGNUM);
1124 /* Space for "arguments"; the RP goes in here. */
1125 sp = read_register (SP_REGNUM) + 48;
1126 int_buffer = read_register (RP_REGNUM) | 0x3;
1127 write_memory (sp - 20, (char *)&int_buffer, 4);
1129 int_buffer = read_register (FP_REGNUM);
1130 write_memory (sp, (char *)&int_buffer, 4);
1132 write_register (FP_REGNUM, sp);
1136 for (regnum = 1; regnum < 32; regnum++)
1137 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1138 sp = push_word (sp, read_register (regnum));
1142 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1144 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1145 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1147 sp = push_word (sp, read_register (IPSW_REGNUM));
1148 sp = push_word (sp, read_register (SAR_REGNUM));
1149 sp = push_word (sp, pc);
1150 sp = push_word (sp, pcspace);
1151 sp = push_word (sp, pc + 4);
1152 sp = push_word (sp, pcspace);
1153 write_register (SP_REGNUM, sp);
1157 find_dummy_frame_regs (frame, frame_saved_regs)
1158 struct frame_info *frame;
1159 struct frame_saved_regs *frame_saved_regs;
1161 CORE_ADDR fp = frame->frame;
1164 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1165 frame_saved_regs->regs[FP_REGNUM] = fp;
1166 frame_saved_regs->regs[1] = fp + 8;
1168 for (fp += 12, i = 3; i < 32; i++)
1172 frame_saved_regs->regs[i] = fp;
1178 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1179 frame_saved_regs->regs[i] = fp;
1181 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1182 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1183 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1184 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1185 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1186 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1192 register struct frame_info *frame = get_current_frame ();
1193 register CORE_ADDR fp, npc, target_pc;
1194 register int regnum;
1195 struct frame_saved_regs fsr;
1198 fp = FRAME_FP (frame);
1199 get_frame_saved_regs (frame, &fsr);
1201 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1202 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1203 restore_pc_queue (&fsr);
1206 for (regnum = 31; regnum > 0; regnum--)
1207 if (fsr.regs[regnum])
1208 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1210 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1211 if (fsr.regs[regnum])
1213 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1214 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1217 if (fsr.regs[IPSW_REGNUM])
1218 write_register (IPSW_REGNUM,
1219 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1221 if (fsr.regs[SAR_REGNUM])
1222 write_register (SAR_REGNUM,
1223 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1225 /* If the PC was explicitly saved, then just restore it. */
1226 if (fsr.regs[PCOQ_TAIL_REGNUM])
1228 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1229 write_register (PCOQ_TAIL_REGNUM, npc);
1231 /* Else use the value in %rp to set the new PC. */
1234 npc = read_register (RP_REGNUM);
1235 target_write_pc (npc, 0);
1238 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1240 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1241 write_register (SP_REGNUM, fp - 48);
1243 write_register (SP_REGNUM, fp);
1245 /* The PC we just restored may be inside a return trampoline. If so
1246 we want to restart the inferior and run it through the trampoline.
1248 Do this by setting a momentary breakpoint at the location the
1249 trampoline returns to.
1251 Don't skip through the trampoline if we're popping a dummy frame. */
1252 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1253 if (target_pc && !fsr.regs[IPSW_REGNUM])
1255 struct symtab_and_line sal;
1256 struct breakpoint *breakpoint;
1257 struct cleanup *old_chain;
1259 /* Set up our breakpoint. Set it to be silent as the MI code
1260 for "return_command" will print the frame we returned to. */
1261 sal = find_pc_line (target_pc, 0);
1263 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1264 breakpoint->silent = 1;
1266 /* So we can clean things up. */
1267 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1269 /* Start up the inferior. */
1270 proceed_to_finish = 1;
1271 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1273 /* Perform our cleanups. */
1274 do_cleanups (old_chain);
1276 flush_cached_frames ();
1280 * After returning to a dummy on the stack, restore the instruction
1281 * queue space registers. */
1284 restore_pc_queue (fsr)
1285 struct frame_saved_regs *fsr;
1287 CORE_ADDR pc = read_pc ();
1288 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1289 struct target_waitstatus w;
1292 /* Advance past break instruction in the call dummy. */
1293 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1294 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1297 * HPUX doesn't let us set the space registers or the space
1298 * registers of the PC queue through ptrace. Boo, hiss.
1299 * Conveniently, the call dummy has this sequence of instructions
1304 * So, load up the registers and single step until we are in the
1308 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1309 write_register (22, new_pc);
1311 for (insn_count = 0; insn_count < 3; insn_count++)
1313 /* FIXME: What if the inferior gets a signal right now? Want to
1314 merge this into wait_for_inferior (as a special kind of
1315 watchpoint? By setting a breakpoint at the end? Is there
1316 any other choice? Is there *any* way to do this stuff with
1317 ptrace() or some equivalent?). */
1319 target_wait (inferior_pid, &w);
1321 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1323 stop_signal = w.value.sig;
1324 terminal_ours_for_output ();
1325 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1326 target_signal_to_name (stop_signal),
1327 target_signal_to_string (stop_signal));
1328 gdb_flush (gdb_stdout);
1332 target_terminal_ours ();
1333 target_fetch_registers (-1);
1338 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1343 CORE_ADDR struct_addr;
1345 /* array of arguments' offsets */
1346 int *offset = (int *)alloca(nargs * sizeof (int));
1350 for (i = 0; i < nargs; i++)
1352 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1354 /* value must go at proper alignment. Assume alignment is a
1356 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1357 if (cum % alignment)
1358 cum = (cum + alignment) & -alignment;
1361 sp += max ((cum + 7) & -8, 16);
1363 for (i = 0; i < nargs; i++)
1364 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1365 TYPE_LENGTH (VALUE_TYPE (args[i])));
1368 write_register (28, struct_addr);
1373 * Insert the specified number of args and function address
1374 * into a call sequence of the above form stored at DUMMYNAME.
1376 * On the hppa we need to call the stack dummy through $$dyncall.
1377 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1378 * real_pc, which is the location where gdb should start up the
1379 * inferior to do the function call.
1383 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1392 CORE_ADDR dyncall_addr, sr4export_addr;
1393 struct minimal_symbol *msymbol;
1394 int flags = read_register (FLAGS_REGNUM);
1395 struct unwind_table_entry *u;
1397 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1398 if (msymbol == NULL)
1399 error ("Can't find an address for $$dyncall trampoline");
1401 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1403 /* FUN could be a procedure label, in which case we have to get
1404 its real address and the value of its GOT/DP. */
1407 /* Get the GOT/DP value for the target function. It's
1408 at *(fun+4). Note the call dummy is *NOT* allowed to
1409 trash %r19 before calling the target function. */
1410 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1412 /* Now get the real address for the function we are calling, it's
1414 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1419 #ifndef GDB_TARGET_IS_PA_ELF
1420 /* FUN could be either an export stub, or the real address of a
1421 function in a shared library. We must call an import stub
1422 rather than the export stub or real function for lazy binding
1423 to work correctly. */
1424 if (som_solib_get_got_by_pc (fun))
1426 struct objfile *objfile;
1427 struct minimal_symbol *funsymbol, *stub_symbol;
1428 CORE_ADDR newfun = 0;
1430 funsymbol = lookup_minimal_symbol_by_pc (fun);
1432 error ("Unable to find minimal symbol for target fucntion.\n");
1434 /* Search all the object files for an import symbol with the
1436 ALL_OBJFILES (objfile)
1438 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1440 /* Found a symbol with the right name. */
1443 struct unwind_table_entry *u;
1444 /* It must be a shared library trampoline. */
1445 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1448 /* It must also be an import stub. */
1449 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1450 if (!u || u->stub_type != IMPORT)
1453 /* OK. Looks like the correct import stub. */
1454 newfun = SYMBOL_VALUE (stub_symbol);
1459 write_register (19, som_solib_get_got_by_pc (fun));
1464 /* If we are calling an import stub (eg calling into a dynamic library)
1465 then have sr4export call the magic __d_plt_call routine which is linked
1466 in from end.o. (You can't use _sr4export to call the import stub as
1467 the value in sp-24 will get fried and you end up returning to the
1468 wrong location. You can't call the import stub directly as the code
1469 to bind the PLT entry to a function can't return to a stack address.) */
1470 u = find_unwind_entry (fun);
1471 if (u && u->stub_type == IMPORT)
1474 msymbol = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1475 if (msymbol == NULL)
1476 msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1478 if (msymbol == NULL)
1479 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1481 /* This is where sr4export will jump to. */
1482 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1484 if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
1485 write_register (22, fun);
1488 /* We have to store the address of the stub in __shlib_funcptr. */
1489 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1490 (struct objfile *)NULL);
1491 if (msymbol == NULL)
1492 error ("Can't find an address for __shlib_funcptr");
1494 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1499 /* We still need sr4export's address too. */
1500 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1501 if (msymbol == NULL)
1502 error ("Can't find an address for _sr4export trampoline");
1504 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1506 store_unsigned_integer
1507 (&dummy[9*REGISTER_SIZE],
1509 deposit_21 (fun >> 11,
1510 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1512 store_unsigned_integer
1513 (&dummy[10*REGISTER_SIZE],
1515 deposit_14 (fun & MASK_11,
1516 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1518 store_unsigned_integer
1519 (&dummy[12*REGISTER_SIZE],
1521 deposit_21 (sr4export_addr >> 11,
1522 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1524 store_unsigned_integer
1525 (&dummy[13*REGISTER_SIZE],
1527 deposit_14 (sr4export_addr & MASK_11,
1528 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1531 write_register (22, pc);
1533 /* If we are in a syscall, then we should call the stack dummy
1534 directly. $$dyncall is not needed as the kernel sets up the
1535 space id registers properly based on the value in %r31. In
1536 fact calling $$dyncall will not work because the value in %r22
1537 will be clobbered on the syscall exit path.
1539 Similarly if the current PC is in a shared library. Note however,
1540 this scheme won't work if the shared library isn't mapped into
1541 the same space as the stack. */
1544 #ifndef GDB_TARGET_IS_PA_ELF
1545 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1549 return dyncall_addr;
1553 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1557 target_read_pc (pid)
1560 int flags = read_register (FLAGS_REGNUM);
1563 return read_register (31) & ~0x3;
1565 return read_register (PC_REGNUM) & ~0x3;
1568 /* Write out the PC. If currently in a syscall, then also write the new
1569 PC value into %r31. */
1572 target_write_pc (v, pid)
1576 int flags = read_register (FLAGS_REGNUM);
1578 /* If in a syscall, then set %r31. Also make sure to get the
1579 privilege bits set correctly. */
1581 write_register (31, (long) (v | 0x3));
1583 write_register (PC_REGNUM, (long) v);
1584 write_register (NPC_REGNUM, (long) v + 4);
1587 /* return the alignment of a type in bytes. Structures have the maximum
1588 alignment required by their fields. */
1594 int max_align, align, i;
1595 switch (TYPE_CODE (arg))
1600 return TYPE_LENGTH (arg);
1601 case TYPE_CODE_ARRAY:
1602 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1603 case TYPE_CODE_STRUCT:
1604 case TYPE_CODE_UNION:
1606 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1608 /* Bit fields have no real alignment. */
1609 if (!TYPE_FIELD_BITPOS (arg, i))
1611 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1612 max_align = max (max_align, align);
1621 /* Print the register regnum, or all registers if regnum is -1 */
1624 pa_do_registers_info (regnum, fpregs)
1628 char raw_regs [REGISTER_BYTES];
1631 for (i = 0; i < NUM_REGS; i++)
1632 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1634 pa_print_registers (raw_regs, regnum, fpregs);
1635 else if (regnum < FP0_REGNUM)
1636 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1637 REGISTER_BYTE (regnum)));
1639 pa_print_fp_reg (regnum);
1643 pa_print_registers (raw_regs, regnum, fpregs)
1651 for (i = 0; i < 18; i++)
1653 for (j = 0; j < 4; j++)
1656 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1657 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1659 printf_unfiltered ("\n");
1663 for (i = 72; i < NUM_REGS; i++)
1664 pa_print_fp_reg (i);
1671 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1672 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1674 /* Get 32bits of data. */
1675 read_relative_register_raw_bytes (i, raw_buffer);
1677 /* Put it in the buffer. No conversions are ever necessary. */
1678 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1680 fputs_filtered (reg_names[i], gdb_stdout);
1681 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1682 fputs_filtered ("(single precision) ", gdb_stdout);
1684 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1685 1, 0, Val_pretty_default);
1686 printf_filtered ("\n");
1688 /* If "i" is even, then this register can also be a double-precision
1689 FP register. Dump it out as such. */
1692 /* Get the data in raw format for the 2nd half. */
1693 read_relative_register_raw_bytes (i + 1, raw_buffer);
1695 /* Copy it into the appropriate part of the virtual buffer. */
1696 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1697 REGISTER_RAW_SIZE (i));
1699 /* Dump it as a double. */
1700 fputs_filtered (reg_names[i], gdb_stdout);
1701 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1702 fputs_filtered ("(double precision) ", gdb_stdout);
1704 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1705 1, 0, Val_pretty_default);
1706 printf_filtered ("\n");
1710 /* Return one if PC is in the call path of a trampoline, else return zero.
1712 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1713 just shared library trampolines (import, export). */
1716 in_solib_call_trampoline (pc, name)
1720 struct minimal_symbol *minsym;
1721 struct unwind_table_entry *u;
1722 static CORE_ADDR dyncall = 0;
1723 static CORE_ADDR sr4export = 0;
1725 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1728 /* First see if PC is in one of the two C-library trampolines. */
1731 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1733 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1740 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1742 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1747 if (pc == dyncall || pc == sr4export)
1750 /* Get the unwind descriptor corresponding to PC, return zero
1751 if no unwind was found. */
1752 u = find_unwind_entry (pc);
1756 /* If this isn't a linker stub, then return now. */
1757 if (u->stub_type == 0)
1760 /* By definition a long-branch stub is a call stub. */
1761 if (u->stub_type == LONG_BRANCH)
1764 /* The call and return path execute the same instructions within
1765 an IMPORT stub! So an IMPORT stub is both a call and return
1767 if (u->stub_type == IMPORT)
1770 /* Parameter relocation stubs always have a call path and may have a
1772 if (u->stub_type == PARAMETER_RELOCATION
1773 || u->stub_type == EXPORT)
1777 /* Search forward from the current PC until we hit a branch
1778 or the end of the stub. */
1779 for (addr = pc; addr <= u->region_end; addr += 4)
1783 insn = read_memory_integer (addr, 4);
1785 /* Does it look like a bl? If so then it's the call path, if
1786 we find a bv or be first, then we're on the return path. */
1787 if ((insn & 0xfc00e000) == 0xe8000000)
1789 else if ((insn & 0xfc00e001) == 0xe800c000
1790 || (insn & 0xfc000000) == 0xe0000000)
1794 /* Should never happen. */
1795 warning ("Unable to find branch in parameter relocation stub.\n");
1799 /* Unknown stub type. For now, just return zero. */
1803 /* Return one if PC is in the return path of a trampoline, else return zero.
1805 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1806 just shared library trampolines (import, export). */
1809 in_solib_return_trampoline (pc, name)
1813 struct unwind_table_entry *u;
1815 /* Get the unwind descriptor corresponding to PC, return zero
1816 if no unwind was found. */
1817 u = find_unwind_entry (pc);
1821 /* If this isn't a linker stub or it's just a long branch stub, then
1823 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1826 /* The call and return path execute the same instructions within
1827 an IMPORT stub! So an IMPORT stub is both a call and return
1829 if (u->stub_type == IMPORT)
1832 /* Parameter relocation stubs always have a call path and may have a
1834 if (u->stub_type == PARAMETER_RELOCATION
1835 || u->stub_type == EXPORT)
1839 /* Search forward from the current PC until we hit a branch
1840 or the end of the stub. */
1841 for (addr = pc; addr <= u->region_end; addr += 4)
1845 insn = read_memory_integer (addr, 4);
1847 /* Does it look like a bl? If so then it's the call path, if
1848 we find a bv or be first, then we're on the return path. */
1849 if ((insn & 0xfc00e000) == 0xe8000000)
1851 else if ((insn & 0xfc00e001) == 0xe800c000
1852 || (insn & 0xfc000000) == 0xe0000000)
1856 /* Should never happen. */
1857 warning ("Unable to find branch in parameter relocation stub.\n");
1861 /* Unknown stub type. For now, just return zero. */
1866 /* Figure out if PC is in a trampoline, and if so find out where
1867 the trampoline will jump to. If not in a trampoline, return zero.
1869 Simple code examination probably is not a good idea since the code
1870 sequences in trampolines can also appear in user code.
1872 We use unwinds and information from the minimal symbol table to
1873 determine when we're in a trampoline. This won't work for ELF
1874 (yet) since it doesn't create stub unwind entries. Whether or
1875 not ELF will create stub unwinds or normal unwinds for linker
1876 stubs is still being debated.
1878 This should handle simple calls through dyncall or sr4export,
1879 long calls, argument relocation stubs, and dyncall/sr4export
1880 calling an argument relocation stub. It even handles some stubs
1881 used in dynamic executables. */
1884 skip_trampoline_code (pc, name)
1889 long prev_inst, curr_inst, loc;
1890 static CORE_ADDR dyncall = 0;
1891 static CORE_ADDR sr4export = 0;
1892 struct minimal_symbol *msym;
1893 struct unwind_table_entry *u;
1895 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1900 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1902 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1909 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1911 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1916 /* Addresses passed to dyncall may *NOT* be the actual address
1917 of the function. So we may have to do something special. */
1920 pc = (CORE_ADDR) read_register (22);
1922 /* If bit 30 (counting from the left) is on, then pc is the address of
1923 the PLT entry for this function, not the address of the function
1924 itself. Bit 31 has meaning too, but only for MPE. */
1926 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1928 else if (pc == sr4export)
1929 pc = (CORE_ADDR) (read_register (22));
1931 /* Get the unwind descriptor corresponding to PC, return zero
1932 if no unwind was found. */
1933 u = find_unwind_entry (pc);
1937 /* If this isn't a linker stub, then return now. */
1938 if (u->stub_type == 0)
1939 return orig_pc == pc ? 0 : pc & ~0x3;
1941 /* It's a stub. Search for a branch and figure out where it goes.
1942 Note we have to handle multi insn branch sequences like ldil;ble.
1943 Most (all?) other branches can be determined by examining the contents
1944 of certain registers and the stack. */
1950 /* Make sure we haven't walked outside the range of this stub. */
1951 if (u != find_unwind_entry (loc))
1953 warning ("Unable to find branch in linker stub");
1954 return orig_pc == pc ? 0 : pc & ~0x3;
1957 prev_inst = curr_inst;
1958 curr_inst = read_memory_integer (loc, 4);
1960 /* Does it look like a branch external using %r1? Then it's the
1961 branch from the stub to the actual function. */
1962 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1964 /* Yup. See if the previous instruction loaded
1965 a value into %r1. If so compute and return the jump address. */
1966 if ((prev_inst & 0xffe00000) == 0x20200000)
1967 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1970 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1971 return orig_pc == pc ? 0 : pc & ~0x3;
1975 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1976 import stub to an export stub.
1978 It is impossible to determine the target of the branch via
1979 simple examination of instructions and/or data (consider
1980 that the address in the plabel may be the address of the
1981 bind-on-reference routine in the dynamic loader).
1983 So we have try an alternative approach.
1985 Get the name of the symbol at our current location; it should
1986 be a stub symbol with the same name as the symbol in the
1989 Then lookup a minimal symbol with the same name; we should
1990 get the minimal symbol for the target routine in the shared
1991 library as those take precedence of import/export stubs. */
1992 if (curr_inst == 0xe2a00000)
1994 struct minimal_symbol *stubsym, *libsym;
1996 stubsym = lookup_minimal_symbol_by_pc (loc);
1997 if (stubsym == NULL)
1999 warning ("Unable to find symbol for 0x%x", loc);
2000 return orig_pc == pc ? 0 : pc & ~0x3;
2003 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2006 warning ("Unable to find library symbol for %s\n",
2007 SYMBOL_NAME (stubsym));
2008 return orig_pc == pc ? 0 : pc & ~0x3;
2011 return SYMBOL_VALUE (libsym);
2014 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2015 branch from the stub to the actual function. */
2016 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2017 || (curr_inst & 0xffe0e000) == 0xe8000000)
2018 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2020 /* Does it look like bv (rp)? Note this depends on the
2021 current stack pointer being the same as the stack
2022 pointer in the stub itself! This is a branch on from the
2023 stub back to the original caller. */
2024 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2026 /* Yup. See if the previous instruction loaded
2028 if (prev_inst == 0x4bc23ff1)
2029 return (read_memory_integer
2030 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2033 warning ("Unable to find restore of %%rp before bv (%%rp).");
2034 return orig_pc == pc ? 0 : pc & ~0x3;
2038 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2039 the original caller from the stub. Used in dynamic executables. */
2040 else if (curr_inst == 0xe0400002)
2042 /* The value we jump to is sitting in sp - 24. But that's
2043 loaded several instructions before the be instruction.
2044 I guess we could check for the previous instruction being
2045 mtsp %r1,%sr0 if we want to do sanity checking. */
2046 return (read_memory_integer
2047 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2050 /* Haven't found the branch yet, but we're still in the stub.
2056 /* For the given instruction (INST), return any adjustment it makes
2057 to the stack pointer or zero for no adjustment.
2059 This only handles instructions commonly found in prologues. */
2062 prologue_inst_adjust_sp (inst)
2065 /* This must persist across calls. */
2066 static int save_high21;
2068 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2069 if ((inst & 0xffffc000) == 0x37de0000)
2070 return extract_14 (inst);
2073 if ((inst & 0xffe00000) == 0x6fc00000)
2074 return extract_14 (inst);
2076 /* addil high21,%r1; ldo low11,(%r1),%r30)
2077 save high bits in save_high21 for later use. */
2078 if ((inst & 0xffe00000) == 0x28200000)
2080 save_high21 = extract_21 (inst);
2084 if ((inst & 0xffff0000) == 0x343e0000)
2085 return save_high21 + extract_14 (inst);
2087 /* fstws as used by the HP compilers. */
2088 if ((inst & 0xffffffe0) == 0x2fd01220)
2089 return extract_5_load (inst);
2091 /* No adjustment. */
2095 /* Return nonzero if INST is a branch of some kind, else return zero. */
2125 /* Return the register number for a GR which is saved by INST or
2126 zero it INST does not save a GR. */
2129 inst_saves_gr (inst)
2132 /* Does it look like a stw? */
2133 if ((inst >> 26) == 0x1a)
2134 return extract_5R_store (inst);
2136 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2137 if ((inst >> 26) == 0x1b)
2138 return extract_5R_store (inst);
2140 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2142 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2143 return extract_5R_store (inst);
2148 /* Return the register number for a FR which is saved by INST or
2149 zero it INST does not save a FR.
2151 Note we only care about full 64bit register stores (that's the only
2152 kind of stores the prologue will use).
2154 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2157 inst_saves_fr (inst)
2160 if ((inst & 0xfc00dfc0) == 0x2c001200)
2161 return extract_5r_store (inst);
2165 /* Advance PC across any function entry prologue instructions
2166 to reach some "real" code.
2168 Use information in the unwind table to determine what exactly should
2169 be in the prologue. */
2176 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2177 unsigned long args_stored, status, i;
2178 struct unwind_table_entry *u;
2180 u = find_unwind_entry (pc);
2184 /* If we are not at the beginning of a function, then return now. */
2185 if ((pc & ~0x3) != u->region_start)
2188 /* This is how much of a frame adjustment we need to account for. */
2189 stack_remaining = u->Total_frame_size << 3;
2191 /* Magic register saves we want to know about. */
2192 save_rp = u->Save_RP;
2193 save_sp = u->Save_SP;
2195 /* An indication that args may be stored into the stack. Unfortunately
2196 the HPUX compilers tend to set this in cases where no args were
2198 args_stored = u->Args_stored;
2200 /* Turn the Entry_GR field into a bitmask. */
2202 for (i = 3; i < u->Entry_GR + 3; i++)
2204 /* Frame pointer gets saved into a special location. */
2205 if (u->Save_SP && i == FP_REGNUM)
2208 save_gr |= (1 << i);
2211 /* Turn the Entry_FR field into a bitmask too. */
2213 for (i = 12; i < u->Entry_FR + 12; i++)
2214 save_fr |= (1 << i);
2216 /* Loop until we find everything of interest or hit a branch.
2218 For unoptimized GCC code and for any HP CC code this will never ever
2219 examine any user instructions.
2221 For optimzied GCC code we're faced with problems. GCC will schedule
2222 its prologue and make prologue instructions available for delay slot
2223 filling. The end result is user code gets mixed in with the prologue
2224 and a prologue instruction may be in the delay slot of the first branch
2227 Some unexpected things are expected with debugging optimized code, so
2228 we allow this routine to walk past user instructions in optimized
2230 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2233 unsigned int reg_num;
2234 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2235 unsigned long old_save_rp, old_save_sp, next_inst;
2237 /* Save copies of all the triggers so we can compare them later
2239 old_save_gr = save_gr;
2240 old_save_fr = save_fr;
2241 old_save_rp = save_rp;
2242 old_save_sp = save_sp;
2243 old_stack_remaining = stack_remaining;
2245 status = target_read_memory (pc, buf, 4);
2246 inst = extract_unsigned_integer (buf, 4);
2252 /* Note the interesting effects of this instruction. */
2253 stack_remaining -= prologue_inst_adjust_sp (inst);
2255 /* There is only one instruction used for saving RP into the stack. */
2256 if (inst == 0x6bc23fd9)
2259 /* This is the only way we save SP into the stack. At this time
2260 the HP compilers never bother to save SP into the stack. */
2261 if ((inst & 0xffffc000) == 0x6fc10000)
2264 /* Account for general and floating-point register saves. */
2265 reg_num = inst_saves_gr (inst);
2266 save_gr &= ~(1 << reg_num);
2268 /* Ugh. Also account for argument stores into the stack.
2269 Unfortunately args_stored only tells us that some arguments
2270 where stored into the stack. Not how many or what kind!
2272 This is a kludge as on the HP compiler sets this bit and it
2273 never does prologue scheduling. So once we see one, skip past
2274 all of them. We have similar code for the fp arg stores below.
2276 FIXME. Can still die if we have a mix of GR and FR argument
2278 if (reg_num >= 23 && reg_num <= 26)
2280 while (reg_num >= 23 && reg_num <= 26)
2283 status = target_read_memory (pc, buf, 4);
2284 inst = extract_unsigned_integer (buf, 4);
2287 reg_num = inst_saves_gr (inst);
2293 reg_num = inst_saves_fr (inst);
2294 save_fr &= ~(1 << reg_num);
2296 status = target_read_memory (pc + 4, buf, 4);
2297 next_inst = extract_unsigned_integer (buf, 4);
2303 /* We've got to be read to handle the ldo before the fp register
2305 if ((inst & 0xfc000000) == 0x34000000
2306 && inst_saves_fr (next_inst) >= 4
2307 && inst_saves_fr (next_inst) <= 7)
2309 /* So we drop into the code below in a reasonable state. */
2310 reg_num = inst_saves_fr (next_inst);
2314 /* Ugh. Also account for argument stores into the stack.
2315 This is a kludge as on the HP compiler sets this bit and it
2316 never does prologue scheduling. So once we see one, skip past
2318 if (reg_num >= 4 && reg_num <= 7)
2320 while (reg_num >= 4 && reg_num <= 7)
2323 status = target_read_memory (pc, buf, 4);
2324 inst = extract_unsigned_integer (buf, 4);
2327 if ((inst & 0xfc000000) != 0x34000000)
2329 status = target_read_memory (pc + 4, buf, 4);
2330 next_inst = extract_unsigned_integer (buf, 4);
2333 reg_num = inst_saves_fr (next_inst);
2339 /* Quit if we hit any kind of branch. This can happen if a prologue
2340 instruction is in the delay slot of the first call/branch. */
2341 if (is_branch (inst))
2344 /* What a crock. The HP compilers set args_stored even if no
2345 arguments were stored into the stack (boo hiss). This could
2346 cause this code to then skip a bunch of user insns (up to the
2349 To combat this we try to identify when args_stored was bogusly
2350 set and clear it. We only do this when args_stored is nonzero,
2351 all other resources are accounted for, and nothing changed on
2354 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2355 && old_save_gr == save_gr && old_save_fr == save_fr
2356 && old_save_rp == save_rp && old_save_sp == save_sp
2357 && old_stack_remaining == stack_remaining)
2367 /* Put here the code to store, into a struct frame_saved_regs,
2368 the addresses of the saved registers of frame described by FRAME_INFO.
2369 This includes special registers such as pc and fp saved in special
2370 ways in the stack frame. sp is even more special:
2371 the address we return for it IS the sp for the next frame. */
2374 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2375 struct frame_info *frame_info;
2376 struct frame_saved_regs *frame_saved_regs;
2379 struct unwind_table_entry *u;
2380 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2385 /* Zero out everything. */
2386 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2388 /* Call dummy frames always look the same, so there's no need to
2389 examine the dummy code to determine locations of saved registers;
2390 instead, let find_dummy_frame_regs fill in the correct offsets
2391 for the saved registers. */
2392 if ((frame_info->pc >= frame_info->frame
2393 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2394 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2396 find_dummy_frame_regs (frame_info, frame_saved_regs);
2398 /* Interrupt handlers are special too. They lay out the register
2399 state in the exact same order as the register numbers in GDB. */
2400 if (pc_in_interrupt_handler (frame_info->pc))
2402 for (i = 0; i < NUM_REGS; i++)
2404 /* SP is a little special. */
2406 frame_saved_regs->regs[SP_REGNUM]
2407 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2409 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2414 /* Handle signal handler callers. */
2415 if (frame_info->signal_handler_caller)
2417 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2421 /* Get the starting address of the function referred to by the PC
2423 pc = get_pc_function_start (frame_info->pc);
2426 u = find_unwind_entry (pc);
2430 /* This is how much of a frame adjustment we need to account for. */
2431 stack_remaining = u->Total_frame_size << 3;
2433 /* Magic register saves we want to know about. */
2434 save_rp = u->Save_RP;
2435 save_sp = u->Save_SP;
2437 /* Turn the Entry_GR field into a bitmask. */
2439 for (i = 3; i < u->Entry_GR + 3; i++)
2441 /* Frame pointer gets saved into a special location. */
2442 if (u->Save_SP && i == FP_REGNUM)
2445 save_gr |= (1 << i);
2448 /* Turn the Entry_FR field into a bitmask too. */
2450 for (i = 12; i < u->Entry_FR + 12; i++)
2451 save_fr |= (1 << i);
2453 /* The frame always represents the value of %sp at entry to the
2454 current function (and is thus equivalent to the "saved" stack
2456 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2458 /* Loop until we find everything of interest or hit a branch.
2460 For unoptimized GCC code and for any HP CC code this will never ever
2461 examine any user instructions.
2463 For optimzied GCC code we're faced with problems. GCC will schedule
2464 its prologue and make prologue instructions available for delay slot
2465 filling. The end result is user code gets mixed in with the prologue
2466 and a prologue instruction may be in the delay slot of the first branch
2469 Some unexpected things are expected with debugging optimized code, so
2470 we allow this routine to walk past user instructions in optimized
2472 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2474 status = target_read_memory (pc, buf, 4);
2475 inst = extract_unsigned_integer (buf, 4);
2481 /* Note the interesting effects of this instruction. */
2482 stack_remaining -= prologue_inst_adjust_sp (inst);
2484 /* There is only one instruction used for saving RP into the stack. */
2485 if (inst == 0x6bc23fd9)
2488 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2491 /* Just note that we found the save of SP into the stack. The
2492 value for frame_saved_regs was computed above. */
2493 if ((inst & 0xffffc000) == 0x6fc10000)
2496 /* Account for general and floating-point register saves. */
2497 reg = inst_saves_gr (inst);
2498 if (reg >= 3 && reg <= 18
2499 && (!u->Save_SP || reg != FP_REGNUM))
2501 save_gr &= ~(1 << reg);
2503 /* stwm with a positive displacement is a *post modify*. */
2504 if ((inst >> 26) == 0x1b
2505 && extract_14 (inst) >= 0)
2506 frame_saved_regs->regs[reg] = frame_info->frame;
2509 /* Handle code with and without frame pointers. */
2511 frame_saved_regs->regs[reg]
2512 = frame_info->frame + extract_14 (inst);
2514 frame_saved_regs->regs[reg]
2515 = frame_info->frame + (u->Total_frame_size << 3)
2516 + extract_14 (inst);
2521 /* GCC handles callee saved FP regs a little differently.
2523 It emits an instruction to put the value of the start of
2524 the FP store area into %r1. It then uses fstds,ma with
2525 a basereg of %r1 for the stores.
2527 HP CC emits them at the current stack pointer modifying
2528 the stack pointer as it stores each register. */
2530 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2531 if ((inst & 0xffffc000) == 0x34610000
2532 || (inst & 0xffffc000) == 0x37c10000)
2533 fp_loc = extract_14 (inst);
2535 reg = inst_saves_fr (inst);
2536 if (reg >= 12 && reg <= 21)
2538 /* Note +4 braindamage below is necessary because the FP status
2539 registers are internally 8 registers rather than the expected
2541 save_fr &= ~(1 << reg);
2544 /* 1st HP CC FP register store. After this instruction
2545 we've set enough state that the GCC and HPCC code are
2546 both handled in the same manner. */
2547 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2552 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2553 = frame_info->frame + fp_loc;
2558 /* Quit if we hit any kind of branch. This can happen if a prologue
2559 instruction is in the delay slot of the first call/branch. */
2560 if (is_branch (inst))
2568 #ifdef MAINTENANCE_CMDS
2571 unwind_command (exp, from_tty)
2579 struct unwind_table_entry *u;
2582 /* If we have an expression, evaluate it and use it as the address. */
2584 if (exp != 0 && *exp != 0)
2585 address = parse_and_eval_address (exp);
2589 xxx.u = find_unwind_entry (address);
2593 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2597 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2600 #endif /* MAINTENANCE_CMDS */
2603 _initialize_hppa_tdep ()
2605 tm_print_insn = print_insn_hppa;
2607 #ifdef MAINTENANCE_CMDS
2608 add_cmd ("unwind", class_maintenance, unwind_command,
2609 "Print unwind table entry at given address.",
2610 &maintenanceprintlist);
2611 #endif /* MAINTENANCE_CMDS */