1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
27 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "parser-defs.h"
39 #include "breakpoint.h"
42 #include "gdb_obstack.h"
44 #include "completer.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
60 #include "typeprint.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
77 static struct type *desc_base_type (struct type *);
79 static struct type *desc_bounds_type (struct type *);
81 static struct value *desc_bounds (struct value *);
83 static int fat_pntr_bounds_bitpos (struct type *);
85 static int fat_pntr_bounds_bitsize (struct type *);
87 static struct type *desc_data_target_type (struct type *);
89 static struct value *desc_data (struct value *);
91 static int fat_pntr_data_bitpos (struct type *);
93 static int fat_pntr_data_bitsize (struct type *);
95 static struct value *desc_one_bound (struct value *, int, int);
97 static int desc_bound_bitpos (struct type *, int, int);
99 static int desc_bound_bitsize (struct type *, int, int);
101 static struct type *desc_index_type (struct type *, int);
103 static int desc_arity (struct type *);
105 static int ada_type_match (struct type *, struct type *, int);
107 static int ada_args_match (struct symbol *, struct value **, int);
109 static int full_match (const char *, const char *);
111 static struct value *make_array_descriptor (struct type *, struct value *);
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
117 static int is_nonfunction (struct ada_symbol_info *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 static int num_defns_collected (struct obstack *);
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value *ada_coerce_ref (struct value *);
211 static LONGEST pos_atr (struct value *);
213 static struct value *value_pos_atr (struct type *, struct value *);
215 static struct value *value_val_atr (struct type *, struct value *);
217 static struct symbol *standard_lookup (const char *, const struct block *,
220 static struct value *ada_search_struct_field (char *, struct value *, int,
223 static struct value *ada_value_primitive_field (struct value *, int, int,
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static void check_size (const struct type *);
243 static struct value *ada_index_struct_field (int, struct value *, int,
246 static struct value *assign_aggregate (struct value *, struct value *,
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
275 static struct type *ada_find_any_type (const char *name);
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
313 /* Inferior-specific data. */
315 /* Per-inferior data for this module. */
317 struct ada_inferior_data
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
328 const struct exception_support_info *exception_info;
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
334 /* A cleanup routine for our inferior data. */
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 struct ada_inferior_data *data;
340 data = inferior_data (inf, ada_inferior_data);
345 /* Return our inferior data for the given inferior (INF).
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
356 struct ada_inferior_data *data;
358 data = inferior_data (inf, ada_inferior_data);
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
372 ada_inferior_exit (struct inferior *inf)
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
408 ada_typedef_target_type (struct type *type)
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
420 ada_unqualified_name (const char *decoded_name)
422 const char *result = strrchr (decoded_name, '.');
425 result++; /* Skip the dot... */
427 result = decoded_name;
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
436 add_angle_brackets (const char *str)
438 static char *result = NULL;
441 result = xstrprintf ("<%s>", str);
446 ada_get_gdb_completer_word_break_characters (void)
448 return ada_completer_word_break_characters;
451 /* Print an array element index using the Ada syntax. */
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 if (*size < min_size)
471 if (*size < min_size)
473 vect = xrealloc (vect, *size * element_size);
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
482 field_name_match (const char *field_name, const char *target)
484 int len = strlen (target);
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
504 ada_get_field_index (const struct type *type, const char *field_name,
508 struct type *struct_type = check_typedef ((struct type *) type);
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
521 /* The length of the prefix of NAME prior to any "___" suffix. */
524 ada_name_prefix_len (const char *name)
530 const char *p = strstr (name, "___");
533 return strlen (name);
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
543 is_suffix (const char *str, const char *suffix)
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
565 struct value *result;
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
595 return valaddr + offset;
599 cond_offset_target (CORE_ADDR address, long offset)
604 return address + offset;
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
617 lim_warning (const char *format, ...)
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
634 check_size (const struct type *type)
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
640 /* Maximum value of a SIZE-byte signed integer type. */
642 max_of_size (int size)
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646 return top_bit | (top_bit - 1);
649 /* Minimum value of a SIZE-byte signed integer type. */
651 min_of_size (int size)
653 return -max_of_size (size) - 1;
656 /* Maximum value of a SIZE-byte unsigned integer type. */
658 umax_of_size (int size)
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662 return top_bit | (top_bit - 1);
665 /* Maximum value of integral type T, as a signed quantity. */
667 max_of_type (struct type *t)
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 return max_of_size (TYPE_LENGTH (t));
675 /* Minimum value of integral type T, as a signed quantity. */
677 min_of_type (struct type *t)
679 if (TYPE_UNSIGNED (t))
682 return min_of_size (TYPE_LENGTH (t));
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 ada_discrete_type_high_bound (struct type *type)
689 switch (TYPE_CODE (type))
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
699 return max_of_type (type);
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 ada_discrete_type_low_bound (struct type *type)
709 switch (TYPE_CODE (type))
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
714 return TYPE_FIELD_ENUMVAL (type, 0);
719 return min_of_type (type);
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
729 get_base_type (struct type *type)
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 type = TYPE_TARGET_TYPE (type);
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
746 ada_get_decoded_value (struct value *value)
748 struct type *type = ada_check_typedef (value_type (value));
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
757 value = ada_coerce_to_simple_array (value);
760 value = ada_to_fixed_value (value);
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
771 ada_get_decoded_type (struct type *type)
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
781 /* Language Selection */
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
787 ada_update_initial_language (enum language lang)
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
815 CORE_ADDR main_program_name_addr;
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
828 return main_program_name;
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
869 ada_encode (const char *decoded)
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
883 for (p = decoded; *p != '\0'; p += 1)
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
892 const struct ada_opname_map *mapping;
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
907 encoding_buffer[k] = *p;
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
921 ada_fold_name (const char *name)
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
948 is_lower_alphanum (const char c)
950 return (isdigit (c) || (isalpha (c) && islower (c)));
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
966 ada_remove_trailing_digits (const char *encoded, int *len)
968 if (*len > 1 && isdigit (encoded[*len - 1]))
972 while (i > 0 && isdigit (encoded[i]))
974 if (i >= 0 && encoded[i] == '.')
976 else if (i >= 0 && encoded[i] == '$')
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
985 /* Remove the suffix introduced by the compiler for protected object
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 /* Remove trailing N. */
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1017 if (encoded[i] != 'X')
1023 if (isalnum (encoded[i-1]))
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1036 ada_decode (const char *encoded)
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1058 len0 = strlen (encoded);
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1096 /* Make decoded big enough for possible expansion by operator name. */
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 else if (encoded[i] == '$')
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 && !isalnum (encoded[i + op_len]))
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1139 j += strlen (ada_opname_table[k].decoded);
1143 if (ada_opname_table[k].encoded != NULL)
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1173 /* Remove _E{DIGITS}+[sb] */
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1191 while (k < len0 && isdigit (encoded[k]))
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1202 || (k < len0 && encoded[k] == '_'))
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 /* Replace '__' by '.'. */
1250 /* It's a character part of the decoded name, so just copy it
1252 decoded[j] = encoded[i];
1257 decoded[j] = '\000';
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1266 if (strcmp (decoded, encoded) == 0)
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1305 if (*resultp == NULL)
1307 const char *decoded = ada_decode (gsymbol->name);
1309 if (gsymbol->obj_section != NULL)
1311 struct objfile *objf = gsymbol->obj_section->objfile;
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
1316 /* Sometimes, we can't find a corresponding objfile, in which
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
1320 if (*resultp == NULL)
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1326 *slot = xstrdup (decoded);
1335 ada_la_decode (const char *encoded, int options)
1337 return xstrdup (ada_decode (encoded));
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1348 match_name (const char *sym_name, const char *name, int wild)
1350 if (sym_name == NULL || name == NULL)
1353 return wild_match (sym_name, name) == 0;
1356 int len_name = strlen (name);
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1397 if (index_desc_type == NULL)
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1431 /* Maximum number of array dimensions we are prepared to handle. */
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1436 /* The desc_* routines return primitive portions of array descriptors
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1442 static struct type *
1443 desc_base_type (struct type *type)
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1462 is_thin_pntr (struct type *type)
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1469 /* The descriptor type for thin pointer type TYPE. */
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1474 struct type *base_type = desc_base_type (type);
1476 if (base_type == NULL)
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484 if (alt_type == NULL)
1491 /* A pointer to the array data for thin-pointer value VAL. */
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499 data_type = lookup_pointer_type (data_type);
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1504 return value_from_longest (data_type, value_address (val));
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1510 is_thick_pntr (struct type *type)
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1525 type = desc_base_type (type);
1529 else if (is_thin_pntr (type))
1531 type = thin_descriptor_type (type);
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 return ada_check_typedef (r);
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1550 static struct value *
1551 desc_bounds (struct value *arr)
1553 struct type *type = ada_check_typedef (value_type (arr));
1555 if (is_thin_pntr (type))
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1570 addr = value_address (arr);
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1577 else if (is_thick_pntr (type))
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1594 error (_("Bad GNAT array descriptor"));
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1606 fat_pntr_bounds_bitpos (struct type *type)
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1615 fat_pntr_bounds_bitsize (struct type *type)
1617 type = desc_base_type (type);
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1633 type = desc_base_type (type);
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1653 static struct value *
1654 desc_data (struct value *arr)
1656 struct type *type = value_type (arr);
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1672 fat_pntr_data_bitpos (struct type *type)
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1681 fat_pntr_data_bitsize (struct type *type)
1683 type = desc_base_type (type);
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1707 desc_bound_bitpos (struct type *type, int i, int which)
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1717 desc_bound_bitsize (struct type *type, int i, int which)
1719 type = desc_base_type (type);
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1733 type = desc_base_type (type);
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1745 desc_arity (struct type *type)
1747 type = desc_base_type (type);
1750 return TYPE_NFIELDS (type) / 2;
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1759 ada_is_direct_array_type (struct type *type)
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1772 ada_is_array_type (struct type *type)
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1784 ada_is_simple_array_type (struct type *type)
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1798 ada_is_array_descriptor_type (struct type *type)
1800 struct type *data_type = desc_data_target_type (type);
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1816 ada_is_bogus_array_descriptor (struct type *type)
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1835 ada_type_of_array (struct value *arr, int bounds)
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1856 struct type *elt_type;
1858 struct value *descriptor;
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1904 return lookup_pointer_type (elt_type);
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1918 struct type *arrType = ada_type_of_array (arr, 1);
1920 if (arrType == NULL)
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1935 ada_coerce_to_simple_array (struct value *arr)
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1957 ada_coerce_to_simple_array_type (struct type *type)
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1971 ada_is_packed_array_type (struct type *type)
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1986 ada_is_constrained_packed_array_type (struct type *type)
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2006 decode_packed_array_bitsize (struct type *type)
2008 const char *raw_name;
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2018 raw_name = ada_type_name (ada_check_typedef (type));
2020 raw_name = ada_type_name (desc_base_type (type));
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2031 (_("could not understand bit size information on packed array"));
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2065 index_type = TYPE_INDEX_TYPE (type);
2067 new_type = alloc_type_copy (type);
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2099 struct type *shadow_type;
2103 raw_name = ada_type_name (desc_base_type (type));
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2117 if (shadow_type == NULL)
2119 lim_warning (_("could not find bounds information on packed array"));
2122 CHECK_TYPEDEF (shadow_type);
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2146 arr = ada_coerce_ref (arr);
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2157 type = decode_constrained_packed_array_type (value_type (arr));
2160 error (_("can't unpack array"));
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2174 mod = ada_modulus (value_type (arr)) - 1;
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2189 return coerce_unspec_val_to_type (arr, type);
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2244 /* Non-zero iff TYPE includes negative integer values. */
2247 has_negatives (struct type *type)
2249 switch (TYPE_CODE (type))
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292 type = ada_check_typedef (type);
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2313 long new_offset = offset;
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 set_value_offset (v, new_offset);
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2334 srcBitsLeft = bit_size;
2336 ntarg = TYPE_LENGTH (type);
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2354 switch (TYPE_CODE (type))
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2369 targ = TYPE_LENGTH (type) - 1;
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2378 unusedLS = bit_offset;
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2441 accum = (unsigned char) *source;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 accum_bits -= chunk_size;
2468 accum = (unsigned char) *source >> src_offset;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2513 if (VALUE_LVAL (toval) == lval_memory
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 char *buffer = (char *) alloca (len);
2523 CORE_ADDR to_addr = value_address (toval);
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2548 return value_assign (toval, fromval);
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2558 value_assign_to_component (struct value *container, struct value *component,
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2567 val = value_cast (value_type (component), val);
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 bits = value_bitsize (component);
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2595 struct type *elt_type;
2597 elt = ada_coerce_to_simple_array (arr);
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2604 for (k = 0; k < arity; k += 1)
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2623 for (k = 0; k < arity; k += 1)
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2636 return value_ind (arr);
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657 return value_at_lazy (slice_type, base);
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2679 ada_array_arity (struct type *type)
2686 type = desc_base_type (type);
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2707 ada_array_element_type (struct type *type, int nindices)
2709 type = desc_base_type (type);
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2714 struct type *p_array_type;
2716 p_array_type = desc_data_target_type (type);
2718 k = ada_array_arity (type);
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2725 while (k > 0 && p_array_type != NULL)
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2730 return p_array_type;
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 type = TYPE_TARGET_TYPE (type);
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2754 struct type *result_type;
2756 type = desc_base_type (type);
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2761 if (ada_is_simple_array_type (type))
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2796 gdb_assert (which == 0 || which == 1);
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2833 ada_array_bound (struct value *arr, int n, int which)
2835 struct type *arr_type = value_type (arr);
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2852 ada_array_length (struct value *arr, int n)
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2883 /* Name resolution */
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2889 ada_decoded_op_name (enum exp_opcode op)
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2898 error (_("Could not find operator name for opcode"));
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2912 resolve (struct expression **expp, int void_context_p)
2914 struct type *context_type = NULL;
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920 resolve_subexp (expp, &pc, 1, context_type);
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2959 resolve_subexp (expp, pos, 0, NULL);
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2966 resolve_subexp (expp, pos, 0, NULL);
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2974 case OP_ATR_MODULUS:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2991 case OP_DISCRETE_RANGE:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 resolve_subexp (expp, pos, 1, NULL);
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3030 case BINOP_NOTEQUAL:
3037 case BINOP_SUBSCRIPT:
3045 case UNOP_LOGICAL_NOT:
3061 case OP_INTERNALVAR:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3088 error (_("Unexpected operator during name resolution"));
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3097 /* Pass two: perform any resolution on principal operator. */
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 struct ada_symbol_info *candidates;
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3115 if (n_candidates > 1)
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3127 case LOC_REGPARM_ADDR:
3135 if (j < n_candidates)
3138 while (j < n_candidates)
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 candidates[j] = candidates[n_candidates - 1];
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 struct ada_symbol_info *candidates;
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 if (n_candidates == 1)
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3239 case BINOP_NOTEQUAL:
3247 case UNOP_LOGICAL_NOT:
3249 if (possible_user_operator_p (op, argvec))
3251 struct ada_symbol_info *candidates;
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3275 return evaluate_subexp_type (exp, pos);
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 /* The term "match" here is rather loose. The match is heuristic and
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3295 switch (TYPE_CODE (ftype))
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3331 case TYPE_CODE_UNION:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3346 struct type *func_type = SYMBOL_TYPE (func);
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3357 for (i = 0; i < n_actuals; i += 1)
3359 if (actuals[i] == NULL)
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367 if (!ada_type_match (ftype, atype, 1))
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3380 return_match (struct type *func_type, struct type *context_type)
3382 struct type *return_type;
3384 if (func_type == NULL)
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3394 context_type = get_base_type (context_type);
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3424 int m; /* Number of hits */
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 for (k = 0; k < nsyms; k += 1)
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3463 encoded_ordered_before (const char *N0, const char *N1)
3467 else if (N0 == NULL)
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 return (strcmp (N0, N1) < 0);
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3503 for (i = 1; i < nsyms; i += 1)
3505 struct ada_symbol_info sym = syms[i];
3508 for (j = i - 1; j >= 0; j -= 1)
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 syms[j + 1] = syms[j];
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3541 if (select_mode == multiple_symbols_cancel)
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3556 sort_choices (syms, nsyms);
3558 for (i = 0; i < nsyms; i += 1)
3560 if (syms[i].sym == NULL)
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 symtab_to_filename_for_display (sal.symtab),
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3597 printf_unfiltered (("[%d] "), i + first_choice);
3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3599 gdb_stdout, -1, 0, &type_print_raw_options);
3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
3608 SYMBOL_PRINT_NAME (syms[i].sym),
3609 symtab_to_filename_for_display (symtab));
3611 printf_unfiltered (is_enumeral
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3622 for (i = 0; i < n_chosen; i += 1)
3623 syms[i] = syms[chosen[i]];
3628 /* Read and validate a set of numeric choices from the user in the
3629 range 0 .. N_CHOICES-1. Place the results in increasing
3630 order in CHOICES[0 .. N-1], and return N.
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3635 + A choice of 0 means to cancel the selection, throwing an error.
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3639 The user is not allowed to choose more than MAX_RESULTS values.
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
3642 prompts (for use with the -f switch). */
3645 get_selections (int *choices, int n_choices, int max_results,
3646 int is_all_choice, char *annotation_suffix)
3651 int first_choice = is_all_choice ? 2 : 1;
3653 prompt = getenv ("PS2");
3657 args = command_line_input (prompt, 0, annotation_suffix);
3660 error_no_arg (_("one or more choice numbers"));
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
3671 args = skip_spaces (args);
3672 if (*args == '\0' && n_chosen == 0)
3673 error_no_arg (_("one or more choice numbers"));
3674 else if (*args == '\0')
3677 choice = strtol (args, &args2, 10);
3678 if (args == args2 || choice < 0
3679 || choice > n_choices + first_choice - 1)
3680 error (_("Argument must be choice number"));
3684 error (_("cancelled"));
3686 if (choice < first_choice)
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3693 choice -= first_choice;
3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3699 if (j < 0 || choice != choices[j])
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3710 if (n_chosen > max_results)
3711 error (_("Select no more than %d of the above"), max_results);
3716 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
3721 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3722 int oplen, struct symbol *sym,
3723 const struct block *block)
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3726 symbol, -oplen for operator being replaced). */
3727 struct expression *newexp = (struct expression *)
3728 xzalloc (sizeof (struct expression)
3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3730 struct expression *exp = *expp;
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3734 newexp->gdbarch = exp->gdbarch;
3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3750 /* Type-class predicates */
3752 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3756 numeric_type_p (struct type *type)
3762 switch (TYPE_CODE (type))
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3776 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3779 integer_type_p (struct type *type)
3785 switch (TYPE_CODE (type))
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3798 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3801 scalar_type_p (struct type *type)
3807 switch (TYPE_CODE (type))
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3820 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3823 discrete_type_p (struct type *type)
3829 switch (TYPE_CODE (type))
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
3834 case TYPE_CODE_BOOL:
3842 /* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
3847 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3849 struct type *type0 =
3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3851 struct type *type1 =
3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
3876 case BINOP_NOTEQUAL:
3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3891 case UNOP_LOGICAL_NOT:
3893 return (!numeric_type_p (type0));
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3912 /* If SYM encodes a renaming,
3914 <renaming> renames <renamed entity>,
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3931 enum ada_renaming_category
3932 ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3936 enum ada_renaming_category kind;
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
3945 return ADA_NOT_RENAMING;
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3955 return ADA_NOT_RENAMING;
3959 kind = ADA_OBJECT_RENAMING;
3963 kind = ADA_EXCEPTION_RENAMING;
3967 kind = ADA_PACKAGE_RENAMING;
3971 kind = ADA_SUBPROGRAM_RENAMING;
3975 return ADA_NOT_RENAMING;
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3985 *len = strlen (info) - strlen (suffix);
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3992 /* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996 static enum ada_renaming_category
3997 parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4001 enum ada_renaming_category kind;
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
4010 name = type_name_no_tag (type);
4012 return ADA_NOT_RENAMING;
4014 name = strstr (name, "___XR");
4016 return ADA_NOT_RENAMING;
4021 kind = ADA_OBJECT_RENAMING;
4024 kind = ADA_EXCEPTION_RENAMING;
4027 kind = ADA_PACKAGE_RENAMING;
4030 kind = ADA_SUBPROGRAM_RENAMING;
4033 return ADA_NOT_RENAMING;
4036 info = TYPE_FIELD_NAME (type, 0);
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4047 *len = suffix - info;
4051 /* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
4055 static struct value *
4056 ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4059 const char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4064 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 old_chain = make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4069 do_cleanups (old_chain);
4074 /* Evaluation: Function Calls */
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4080 static struct value *
4081 ensure_lval (struct value *val)
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4121 struct value *result;
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4128 if (VALUE_LVAL (actual) != lval_memory)
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4139 result = value_addr (actual);
4143 return value_cast_pointers (formal_type, result, 0);
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4157 value_pointer (struct value *value, struct type *type)
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4199 bounds = ensure_lval (bounds);
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4215 descriptor = ensure_lval (descriptor);
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4248 should_use_wild_match (const char *lookup_name)
4250 return (strstr (lookup_name, "__") == NULL);
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4292 equiv_types (struct type *type0, struct type *type1)
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4320 switch (SYMBOL_CLASS (sym0))
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4350 add_defn_to_vec (struct obstack *obstackp,
4352 struct block *block)
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4379 struct ada_symbol_info info;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4391 num_defns_collected (struct obstack *obstackp)
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4404 return obstack_finish (obstackp);
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4431 ALL_MSYMBOLS (objfile, msymbol)
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4458 is_nondebugging_type (struct type *type)
4460 const char *name = ada_type_name (type);
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4487 /* All enumerals should also have the same name (modulo any numerical
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4513 For instance, consider the following code:
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4596 for (j = 0; j < nsyms; j++)
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4614 for (j = 0; j < nsyms; j += 1)
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4661 xget_renaming_scope (struct type *renaming_type)
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4681 /* Make a copy of scope and return it. */
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4692 /* Return nonzero if NAME corresponds to a package name. */
4695 is_package_name (const char *name)
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4718 fun_name = xstrprintf ("_ada_%s", name);
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4736 make_cleanup (xfree, scope);
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4796 struct symbol *current_function;
4797 const char *current_function_name;
4799 int is_new_style_renaming;
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4807 struct symbol *sym = syms[i].sym;
4808 const struct block *block = syms[i].block;
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4819 int name_len = suffix - name;
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4827 && block == syms[j].block)
4831 if (is_new_style_renaming)
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4847 if (current_block == NULL)
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4897 int block_depth = 0;
4899 while (block != NULL)
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4910 block = BLOCK_SUPERBLOCK (block);
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4942 struct match_data *data = (struct match_data *) data0;
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4976 compare_names (const char *string1, const char *string2)
4978 while (*string1 != '\0' && *string2 != '\0')
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4990 return strcmp_iw_ordered (string1, string2);
4992 if (*string2 == '\0')
4994 if (is_name_suffix (string1))
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5004 return *string1 - *string2;
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5017 struct objfile *objfile;
5018 struct match_data data;
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5023 ALL_OBJFILES (objfile)
5025 data.objfile = objfile;
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5039 ALL_OBJFILES (objfile)
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5047 aux_add_nonlocal_symbols,
5049 full_match, compare_names);
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5055 non-zero, enclosing scope and in global scopes, returning the number of
5057 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5058 indicating the symbols found and the blocks and symbol tables (if
5059 any) in which they were found. This vector is transient---good only to
5060 the next call of ada_lookup_symbol_list.
5062 When full_search is non-zero, any non-function/non-enumeral
5063 symbol match within the nest of blocks whose innermost member is BLOCK0,
5064 is the one match returned (no other matches in that or
5065 enclosing blocks is returned). If there are any matches in or
5066 surrounding BLOCK0, then these alone are returned.
5068 Names prefixed with "standard__" are handled specially: "standard__"
5069 is first stripped off, and only static and global symbols are searched. */
5072 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5073 domain_enum namespace,
5074 struct ada_symbol_info **results,
5078 struct block *block;
5080 const int wild_match_p = should_use_wild_match (name0);
5084 obstack_free (&symbol_list_obstack, NULL);
5085 obstack_init (&symbol_list_obstack);
5089 /* Search specified block and its superiors. */
5092 block = (struct block *) block0; /* FIXME: No cast ought to be
5093 needed, but adding const will
5094 have a cascade effect. */
5096 /* Special case: If the user specifies a symbol name inside package
5097 Standard, do a non-wild matching of the symbol name without
5098 the "standard__" prefix. This was primarily introduced in order
5099 to allow the user to specifically access the standard exceptions
5100 using, for instance, Standard.Constraint_Error when Constraint_Error
5101 is ambiguous (due to the user defining its own Constraint_Error
5102 entity inside its program). */
5103 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5106 name = name0 + sizeof ("standard__") - 1;
5109 /* Check the non-global symbols. If we have ANY match, then we're done. */
5115 ada_add_local_symbols (&symbol_list_obstack, name, block,
5116 namespace, wild_match_p);
5120 /* In the !full_search case we're are being called by
5121 ada_iterate_over_symbols, and we don't want to search
5123 ada_add_block_symbols (&symbol_list_obstack, block, name,
5124 namespace, NULL, wild_match_p);
5126 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5130 /* No non-global symbols found. Check our cache to see if we have
5131 already performed this search before. If we have, then return
5135 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5138 add_defn_to_vec (&symbol_list_obstack, sym, block);
5142 /* Search symbols from all global blocks. */
5144 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5147 /* Now add symbols from all per-file blocks if we've gotten no hits
5148 (not strictly correct, but perhaps better than an error). */
5150 if (num_defns_collected (&symbol_list_obstack) == 0)
5151 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5155 ndefns = num_defns_collected (&symbol_list_obstack);
5156 *results = defns_collected (&symbol_list_obstack, 1);
5158 ndefns = remove_extra_symbols (*results, ndefns);
5160 if (ndefns == 0 && full_search)
5161 cache_symbol (name0, namespace, NULL, NULL);
5163 if (ndefns == 1 && full_search && cacheIfUnique)
5164 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5166 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5171 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5172 in global scopes, returning the number of matches, and setting *RESULTS
5173 to a vector of (SYM,BLOCK) tuples.
5174 See ada_lookup_symbol_list_worker for further details. */
5177 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5178 domain_enum domain, struct ada_symbol_info **results)
5180 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5183 /* Implementation of the la_iterate_over_symbols method. */
5186 ada_iterate_over_symbols (const struct block *block,
5187 const char *name, domain_enum domain,
5188 symbol_found_callback_ftype *callback,
5192 struct ada_symbol_info *results;
5194 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5195 for (i = 0; i < ndefs; ++i)
5197 if (! (*callback) (results[i].sym, data))
5202 /* If NAME is the name of an entity, return a string that should
5203 be used to look that entity up in Ada units. This string should
5204 be deallocated after use using xfree.
5206 NAME can have any form that the "break" or "print" commands might
5207 recognize. In other words, it does not have to be the "natural"
5208 name, or the "encoded" name. */
5211 ada_name_for_lookup (const char *name)
5214 int nlen = strlen (name);
5216 if (name[0] == '<' && name[nlen - 1] == '>')
5218 canon = xmalloc (nlen - 1);
5219 memcpy (canon, name + 1, nlen - 2);
5220 canon[nlen - 2] = '\0';
5223 canon = xstrdup (ada_encode (ada_fold_name (name)));
5227 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5228 to 1, but choosing the first symbol found if there are multiple
5231 The result is stored in *INFO, which must be non-NULL.
5232 If no match is found, INFO->SYM is set to NULL. */
5235 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5236 domain_enum namespace,
5237 struct ada_symbol_info *info)
5239 struct ada_symbol_info *candidates;
5242 gdb_assert (info != NULL);
5243 memset (info, 0, sizeof (struct ada_symbol_info));
5245 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5246 if (n_candidates == 0)
5249 *info = candidates[0];
5250 info->sym = fixup_symbol_section (info->sym, NULL);
5253 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5254 scope and in global scopes, or NULL if none. NAME is folded and
5255 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5256 choosing the first symbol if there are multiple choices.
5257 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5260 ada_lookup_symbol (const char *name, const struct block *block0,
5261 domain_enum namespace, int *is_a_field_of_this)
5263 struct ada_symbol_info info;
5265 if (is_a_field_of_this != NULL)
5266 *is_a_field_of_this = 0;
5268 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5269 block0, namespace, &info);
5273 static struct symbol *
5274 ada_lookup_symbol_nonlocal (const char *name,
5275 const struct block *block,
5276 const domain_enum domain)
5278 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5282 /* True iff STR is a possible encoded suffix of a normal Ada name
5283 that is to be ignored for matching purposes. Suffixes of parallel
5284 names (e.g., XVE) are not included here. Currently, the possible suffixes
5285 are given by any of the regular expressions:
5287 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5288 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5289 TKB [subprogram suffix for task bodies]
5290 _E[0-9]+[bs]$ [protected object entry suffixes]
5291 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5293 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5294 match is performed. This sequence is used to differentiate homonyms,
5295 is an optional part of a valid name suffix. */
5298 is_name_suffix (const char *str)
5301 const char *matching;
5302 const int len = strlen (str);
5304 /* Skip optional leading __[0-9]+. */
5306 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5309 while (isdigit (str[0]))
5315 if (str[0] == '.' || str[0] == '$')
5318 while (isdigit (matching[0]))
5320 if (matching[0] == '\0')
5326 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5329 while (isdigit (matching[0]))
5331 if (matching[0] == '\0')
5335 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5337 if (strcmp (str, "TKB") == 0)
5341 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5342 with a N at the end. Unfortunately, the compiler uses the same
5343 convention for other internal types it creates. So treating
5344 all entity names that end with an "N" as a name suffix causes
5345 some regressions. For instance, consider the case of an enumerated
5346 type. To support the 'Image attribute, it creates an array whose
5348 Having a single character like this as a suffix carrying some
5349 information is a bit risky. Perhaps we should change the encoding
5350 to be something like "_N" instead. In the meantime, do not do
5351 the following check. */
5352 /* Protected Object Subprograms */
5353 if (len == 1 && str [0] == 'N')
5358 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5361 while (isdigit (matching[0]))
5363 if ((matching[0] == 'b' || matching[0] == 's')
5364 && matching [1] == '\0')
5368 /* ??? We should not modify STR directly, as we are doing below. This
5369 is fine in this case, but may become problematic later if we find
5370 that this alternative did not work, and want to try matching
5371 another one from the begining of STR. Since we modified it, we
5372 won't be able to find the begining of the string anymore! */
5376 while (str[0] != '_' && str[0] != '\0')
5378 if (str[0] != 'n' && str[0] != 'b')
5384 if (str[0] == '\000')
5389 if (str[1] != '_' || str[2] == '\000')
5393 if (strcmp (str + 3, "JM") == 0)
5395 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5396 the LJM suffix in favor of the JM one. But we will
5397 still accept LJM as a valid suffix for a reasonable
5398 amount of time, just to allow ourselves to debug programs
5399 compiled using an older version of GNAT. */
5400 if (strcmp (str + 3, "LJM") == 0)
5404 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5405 || str[4] == 'U' || str[4] == 'P')
5407 if (str[4] == 'R' && str[5] != 'T')
5411 if (!isdigit (str[2]))
5413 for (k = 3; str[k] != '\0'; k += 1)
5414 if (!isdigit (str[k]) && str[k] != '_')
5418 if (str[0] == '$' && isdigit (str[1]))
5420 for (k = 2; str[k] != '\0'; k += 1)
5421 if (!isdigit (str[k]) && str[k] != '_')
5428 /* Return non-zero if the string starting at NAME and ending before
5429 NAME_END contains no capital letters. */
5432 is_valid_name_for_wild_match (const char *name0)
5434 const char *decoded_name = ada_decode (name0);
5437 /* If the decoded name starts with an angle bracket, it means that
5438 NAME0 does not follow the GNAT encoding format. It should then
5439 not be allowed as a possible wild match. */
5440 if (decoded_name[0] == '<')
5443 for (i=0; decoded_name[i] != '\0'; i++)
5444 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5450 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5451 that could start a simple name. Assumes that *NAMEP points into
5452 the string beginning at NAME0. */
5455 advance_wild_match (const char **namep, const char *name0, int target0)
5457 const char *name = *namep;
5467 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5470 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5475 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5476 || name[2] == target0))
5484 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5494 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5495 informational suffixes of NAME (i.e., for which is_name_suffix is
5496 true). Assumes that PATN is a lower-cased Ada simple name. */
5499 wild_match (const char *name, const char *patn)
5502 const char *name0 = name;
5506 const char *match = name;
5510 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5513 if (*p == '\0' && is_name_suffix (name))
5514 return match != name0 && !is_valid_name_for_wild_match (name0);
5516 if (name[-1] == '_')
5519 if (!advance_wild_match (&name, name0, *patn))
5524 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5525 informational suffix. */
5528 full_match (const char *sym_name, const char *search_name)
5530 return !match_name (sym_name, search_name, 0);
5534 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5535 vector *defn_symbols, updating the list of symbols in OBSTACKP
5536 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5537 OBJFILE is the section containing BLOCK. */
5540 ada_add_block_symbols (struct obstack *obstackp,
5541 struct block *block, const char *name,
5542 domain_enum domain, struct objfile *objfile,
5545 struct block_iterator iter;
5546 int name_len = strlen (name);
5547 /* A matching argument symbol, if any. */
5548 struct symbol *arg_sym;
5549 /* Set true when we find a matching non-argument symbol. */
5557 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5558 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5560 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5561 SYMBOL_DOMAIN (sym), domain)
5562 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5564 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5566 else if (SYMBOL_IS_ARGUMENT (sym))
5571 add_defn_to_vec (obstackp,
5572 fixup_symbol_section (sym, objfile),
5580 for (sym = block_iter_match_first (block, name, full_match, &iter);
5581 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5583 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5584 SYMBOL_DOMAIN (sym), domain))
5586 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5588 if (SYMBOL_IS_ARGUMENT (sym))
5593 add_defn_to_vec (obstackp,
5594 fixup_symbol_section (sym, objfile),
5602 if (!found_sym && arg_sym != NULL)
5604 add_defn_to_vec (obstackp,
5605 fixup_symbol_section (arg_sym, objfile),
5614 ALL_BLOCK_SYMBOLS (block, iter, sym)
5616 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5617 SYMBOL_DOMAIN (sym), domain))
5621 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5624 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5626 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5631 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5633 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5635 if (SYMBOL_IS_ARGUMENT (sym))
5640 add_defn_to_vec (obstackp,
5641 fixup_symbol_section (sym, objfile),
5649 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5650 They aren't parameters, right? */
5651 if (!found_sym && arg_sym != NULL)
5653 add_defn_to_vec (obstackp,
5654 fixup_symbol_section (arg_sym, objfile),
5661 /* Symbol Completion */
5663 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5664 name in a form that's appropriate for the completion. The result
5665 does not need to be deallocated, but is only good until the next call.
5667 TEXT_LEN is equal to the length of TEXT.
5668 Perform a wild match if WILD_MATCH_P is set.
5669 ENCODED_P should be set if TEXT represents the start of a symbol name
5670 in its encoded form. */
5673 symbol_completion_match (const char *sym_name,
5674 const char *text, int text_len,
5675 int wild_match_p, int encoded_p)
5677 const int verbatim_match = (text[0] == '<');
5682 /* Strip the leading angle bracket. */
5687 /* First, test against the fully qualified name of the symbol. */
5689 if (strncmp (sym_name, text, text_len) == 0)
5692 if (match && !encoded_p)
5694 /* One needed check before declaring a positive match is to verify
5695 that iff we are doing a verbatim match, the decoded version
5696 of the symbol name starts with '<'. Otherwise, this symbol name
5697 is not a suitable completion. */
5698 const char *sym_name_copy = sym_name;
5699 int has_angle_bracket;
5701 sym_name = ada_decode (sym_name);
5702 has_angle_bracket = (sym_name[0] == '<');
5703 match = (has_angle_bracket == verbatim_match);
5704 sym_name = sym_name_copy;
5707 if (match && !verbatim_match)
5709 /* When doing non-verbatim match, another check that needs to
5710 be done is to verify that the potentially matching symbol name
5711 does not include capital letters, because the ada-mode would
5712 not be able to understand these symbol names without the
5713 angle bracket notation. */
5716 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5721 /* Second: Try wild matching... */
5723 if (!match && wild_match_p)
5725 /* Since we are doing wild matching, this means that TEXT
5726 may represent an unqualified symbol name. We therefore must
5727 also compare TEXT against the unqualified name of the symbol. */
5728 sym_name = ada_unqualified_name (ada_decode (sym_name));
5730 if (strncmp (sym_name, text, text_len) == 0)
5734 /* Finally: If we found a mach, prepare the result to return. */
5740 sym_name = add_angle_brackets (sym_name);
5743 sym_name = ada_decode (sym_name);
5748 /* A companion function to ada_make_symbol_completion_list().
5749 Check if SYM_NAME represents a symbol which name would be suitable
5750 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5751 it is appended at the end of the given string vector SV.
5753 ORIG_TEXT is the string original string from the user command
5754 that needs to be completed. WORD is the entire command on which
5755 completion should be performed. These two parameters are used to
5756 determine which part of the symbol name should be added to the
5758 if WILD_MATCH_P is set, then wild matching is performed.
5759 ENCODED_P should be set if TEXT represents a symbol name in its
5760 encoded formed (in which case the completion should also be
5764 symbol_completion_add (VEC(char_ptr) **sv,
5765 const char *sym_name,
5766 const char *text, int text_len,
5767 const char *orig_text, const char *word,
5768 int wild_match_p, int encoded_p)
5770 const char *match = symbol_completion_match (sym_name, text, text_len,
5771 wild_match_p, encoded_p);
5777 /* We found a match, so add the appropriate completion to the given
5780 if (word == orig_text)
5782 completion = xmalloc (strlen (match) + 5);
5783 strcpy (completion, match);
5785 else if (word > orig_text)
5787 /* Return some portion of sym_name. */
5788 completion = xmalloc (strlen (match) + 5);
5789 strcpy (completion, match + (word - orig_text));
5793 /* Return some of ORIG_TEXT plus sym_name. */
5794 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5795 strncpy (completion, word, orig_text - word);
5796 completion[orig_text - word] = '\0';
5797 strcat (completion, match);
5800 VEC_safe_push (char_ptr, *sv, completion);
5803 /* An object of this type is passed as the user_data argument to the
5804 expand_partial_symbol_names method. */
5805 struct add_partial_datum
5807 VEC(char_ptr) **completions;
5816 /* A callback for expand_partial_symbol_names. */
5818 ada_expand_partial_symbol_name (const char *name, void *user_data)
5820 struct add_partial_datum *data = user_data;
5822 return symbol_completion_match (name, data->text, data->text_len,
5823 data->wild_match, data->encoded) != NULL;
5826 /* Return a list of possible symbol names completing TEXT0. WORD is
5827 the entire command on which completion is made. */
5829 static VEC (char_ptr) *
5830 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5836 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5839 struct minimal_symbol *msymbol;
5840 struct objfile *objfile;
5841 struct block *b, *surrounding_static_block = 0;
5843 struct block_iterator iter;
5845 gdb_assert (code == TYPE_CODE_UNDEF);
5847 if (text0[0] == '<')
5849 text = xstrdup (text0);
5850 make_cleanup (xfree, text);
5851 text_len = strlen (text);
5857 text = xstrdup (ada_encode (text0));
5858 make_cleanup (xfree, text);
5859 text_len = strlen (text);
5860 for (i = 0; i < text_len; i++)
5861 text[i] = tolower (text[i]);
5863 encoded_p = (strstr (text0, "__") != NULL);
5864 /* If the name contains a ".", then the user is entering a fully
5865 qualified entity name, and the match must not be done in wild
5866 mode. Similarly, if the user wants to complete what looks like
5867 an encoded name, the match must not be done in wild mode. */
5868 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5871 /* First, look at the partial symtab symbols. */
5873 struct add_partial_datum data;
5875 data.completions = &completions;
5877 data.text_len = text_len;
5880 data.wild_match = wild_match_p;
5881 data.encoded = encoded_p;
5882 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5885 /* At this point scan through the misc symbol vectors and add each
5886 symbol you find to the list. Eventually we want to ignore
5887 anything that isn't a text symbol (everything else will be
5888 handled by the psymtab code above). */
5890 ALL_MSYMBOLS (objfile, msymbol)
5893 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5894 text, text_len, text0, word, wild_match_p,
5898 /* Search upwards from currently selected frame (so that we can
5899 complete on local vars. */
5901 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5903 if (!BLOCK_SUPERBLOCK (b))
5904 surrounding_static_block = b; /* For elmin of dups */
5906 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5909 text, text_len, text0, word,
5910 wild_match_p, encoded_p);
5914 /* Go through the symtabs and check the externs and statics for
5915 symbols which match. */
5917 ALL_SYMTABS (objfile, s)
5920 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5921 ALL_BLOCK_SYMBOLS (b, iter, sym)
5923 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5924 text, text_len, text0, word,
5925 wild_match_p, encoded_p);
5929 ALL_SYMTABS (objfile, s)
5932 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5933 /* Don't do this block twice. */
5934 if (b == surrounding_static_block)
5936 ALL_BLOCK_SYMBOLS (b, iter, sym)
5938 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5939 text, text_len, text0, word,
5940 wild_match_p, encoded_p);
5949 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5950 for tagged types. */
5953 ada_is_dispatch_table_ptr_type (struct type *type)
5957 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5960 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5964 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5967 /* Return non-zero if TYPE is an interface tag. */
5970 ada_is_interface_tag (struct type *type)
5972 const char *name = TYPE_NAME (type);
5977 return (strcmp (name, "ada__tags__interface_tag") == 0);
5980 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5981 to be invisible to users. */
5984 ada_is_ignored_field (struct type *type, int field_num)
5986 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5989 /* Check the name of that field. */
5991 const char *name = TYPE_FIELD_NAME (type, field_num);
5993 /* Anonymous field names should not be printed.
5994 brobecker/2007-02-20: I don't think this can actually happen
5995 but we don't want to print the value of annonymous fields anyway. */
5999 /* Normally, fields whose name start with an underscore ("_")
6000 are fields that have been internally generated by the compiler,
6001 and thus should not be printed. The "_parent" field is special,
6002 however: This is a field internally generated by the compiler
6003 for tagged types, and it contains the components inherited from
6004 the parent type. This field should not be printed as is, but
6005 should not be ignored either. */
6006 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6010 /* If this is the dispatch table of a tagged type or an interface tag,
6012 if (ada_is_tagged_type (type, 1)
6013 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6014 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6017 /* Not a special field, so it should not be ignored. */
6021 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6022 pointer or reference type whose ultimate target has a tag field. */
6025 ada_is_tagged_type (struct type *type, int refok)
6027 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6030 /* True iff TYPE represents the type of X'Tag */
6033 ada_is_tag_type (struct type *type)
6035 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6039 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6041 return (name != NULL
6042 && strcmp (name, "ada__tags__dispatch_table") == 0);
6046 /* The type of the tag on VAL. */
6049 ada_tag_type (struct value *val)
6051 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6054 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6055 retired at Ada 05). */
6058 is_ada95_tag (struct value *tag)
6060 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6063 /* The value of the tag on VAL. */
6066 ada_value_tag (struct value *val)
6068 return ada_value_struct_elt (val, "_tag", 0);
6071 /* The value of the tag on the object of type TYPE whose contents are
6072 saved at VALADDR, if it is non-null, or is at memory address
6075 static struct value *
6076 value_tag_from_contents_and_address (struct type *type,
6077 const gdb_byte *valaddr,
6080 int tag_byte_offset;
6081 struct type *tag_type;
6083 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6086 const gdb_byte *valaddr1 = ((valaddr == NULL)
6088 : valaddr + tag_byte_offset);
6089 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6091 return value_from_contents_and_address (tag_type, valaddr1, address1);
6096 static struct type *
6097 type_from_tag (struct value *tag)
6099 const char *type_name = ada_tag_name (tag);
6101 if (type_name != NULL)
6102 return ada_find_any_type (ada_encode (type_name));
6106 /* Given a value OBJ of a tagged type, return a value of this
6107 type at the base address of the object. The base address, as
6108 defined in Ada.Tags, it is the address of the primary tag of
6109 the object, and therefore where the field values of its full
6110 view can be fetched. */
6113 ada_tag_value_at_base_address (struct value *obj)
6115 volatile struct gdb_exception e;
6117 LONGEST offset_to_top = 0;
6118 struct type *ptr_type, *obj_type;
6120 CORE_ADDR base_address;
6122 obj_type = value_type (obj);
6124 /* It is the responsability of the caller to deref pointers. */
6126 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6127 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6130 tag = ada_value_tag (obj);
6134 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6136 if (is_ada95_tag (tag))
6139 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6140 ptr_type = lookup_pointer_type (ptr_type);
6141 val = value_cast (ptr_type, tag);
6145 /* It is perfectly possible that an exception be raised while
6146 trying to determine the base address, just like for the tag;
6147 see ada_tag_name for more details. We do not print the error
6148 message for the same reason. */
6150 TRY_CATCH (e, RETURN_MASK_ERROR)
6152 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6158 /* If offset is null, nothing to do. */
6160 if (offset_to_top == 0)
6163 /* -1 is a special case in Ada.Tags; however, what should be done
6164 is not quite clear from the documentation. So do nothing for
6167 if (offset_to_top == -1)
6170 base_address = value_address (obj) - offset_to_top;
6171 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6173 /* Make sure that we have a proper tag at the new address.
6174 Otherwise, offset_to_top is bogus (which can happen when
6175 the object is not initialized yet). */
6180 obj_type = type_from_tag (tag);
6185 return value_from_contents_and_address (obj_type, NULL, base_address);
6188 /* Return the "ada__tags__type_specific_data" type. */
6190 static struct type *
6191 ada_get_tsd_type (struct inferior *inf)
6193 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6195 if (data->tsd_type == 0)
6196 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6197 return data->tsd_type;
6200 /* Return the TSD (type-specific data) associated to the given TAG.
6201 TAG is assumed to be the tag of a tagged-type entity.
6203 May return NULL if we are unable to get the TSD. */
6205 static struct value *
6206 ada_get_tsd_from_tag (struct value *tag)
6211 /* First option: The TSD is simply stored as a field of our TAG.
6212 Only older versions of GNAT would use this format, but we have
6213 to test it first, because there are no visible markers for
6214 the current approach except the absence of that field. */
6216 val = ada_value_struct_elt (tag, "tsd", 1);
6220 /* Try the second representation for the dispatch table (in which
6221 there is no explicit 'tsd' field in the referent of the tag pointer,
6222 and instead the tsd pointer is stored just before the dispatch
6225 type = ada_get_tsd_type (current_inferior());
6228 type = lookup_pointer_type (lookup_pointer_type (type));
6229 val = value_cast (type, tag);
6232 return value_ind (value_ptradd (val, -1));
6235 /* Given the TSD of a tag (type-specific data), return a string
6236 containing the name of the associated type.
6238 The returned value is good until the next call. May return NULL
6239 if we are unable to determine the tag name. */
6242 ada_tag_name_from_tsd (struct value *tsd)
6244 static char name[1024];
6248 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6251 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6252 for (p = name; *p != '\0'; p += 1)
6258 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6261 Return NULL if the TAG is not an Ada tag, or if we were unable to
6262 determine the name of that tag. The result is good until the next
6266 ada_tag_name (struct value *tag)
6268 volatile struct gdb_exception e;
6271 if (!ada_is_tag_type (value_type (tag)))
6274 /* It is perfectly possible that an exception be raised while trying
6275 to determine the TAG's name, even under normal circumstances:
6276 The associated variable may be uninitialized or corrupted, for
6277 instance. We do not let any exception propagate past this point.
6278 instead we return NULL.
6280 We also do not print the error message either (which often is very
6281 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6282 the caller print a more meaningful message if necessary. */
6283 TRY_CATCH (e, RETURN_MASK_ERROR)
6285 struct value *tsd = ada_get_tsd_from_tag (tag);
6288 name = ada_tag_name_from_tsd (tsd);
6294 /* The parent type of TYPE, or NULL if none. */
6297 ada_parent_type (struct type *type)
6301 type = ada_check_typedef (type);
6303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6307 if (ada_is_parent_field (type, i))
6309 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6311 /* If the _parent field is a pointer, then dereference it. */
6312 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6313 parent_type = TYPE_TARGET_TYPE (parent_type);
6314 /* If there is a parallel XVS type, get the actual base type. */
6315 parent_type = ada_get_base_type (parent_type);
6317 return ada_check_typedef (parent_type);
6323 /* True iff field number FIELD_NUM of structure type TYPE contains the
6324 parent-type (inherited) fields of a derived type. Assumes TYPE is
6325 a structure type with at least FIELD_NUM+1 fields. */
6328 ada_is_parent_field (struct type *type, int field_num)
6330 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6332 return (name != NULL
6333 && (strncmp (name, "PARENT", 6) == 0
6334 || strncmp (name, "_parent", 7) == 0));
6337 /* True iff field number FIELD_NUM of structure type TYPE is a
6338 transparent wrapper field (which should be silently traversed when doing
6339 field selection and flattened when printing). Assumes TYPE is a
6340 structure type with at least FIELD_NUM+1 fields. Such fields are always
6344 ada_is_wrapper_field (struct type *type, int field_num)
6346 const char *name = TYPE_FIELD_NAME (type, field_num);
6348 return (name != NULL
6349 && (strncmp (name, "PARENT", 6) == 0
6350 || strcmp (name, "REP") == 0
6351 || strncmp (name, "_parent", 7) == 0
6352 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6355 /* True iff field number FIELD_NUM of structure or union type TYPE
6356 is a variant wrapper. Assumes TYPE is a structure type with at least
6357 FIELD_NUM+1 fields. */
6360 ada_is_variant_part (struct type *type, int field_num)
6362 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6364 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6365 || (is_dynamic_field (type, field_num)
6366 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6367 == TYPE_CODE_UNION)));
6370 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6371 whose discriminants are contained in the record type OUTER_TYPE,
6372 returns the type of the controlling discriminant for the variant.
6373 May return NULL if the type could not be found. */
6376 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6378 char *name = ada_variant_discrim_name (var_type);
6380 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6383 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6384 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6385 represents a 'when others' clause; otherwise 0. */
6388 ada_is_others_clause (struct type *type, int field_num)
6390 const char *name = TYPE_FIELD_NAME (type, field_num);
6392 return (name != NULL && name[0] == 'O');
6395 /* Assuming that TYPE0 is the type of the variant part of a record,
6396 returns the name of the discriminant controlling the variant.
6397 The value is valid until the next call to ada_variant_discrim_name. */
6400 ada_variant_discrim_name (struct type *type0)
6402 static char *result = NULL;
6403 static size_t result_len = 0;
6406 const char *discrim_end;
6407 const char *discrim_start;
6409 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6410 type = TYPE_TARGET_TYPE (type0);
6414 name = ada_type_name (type);
6416 if (name == NULL || name[0] == '\000')
6419 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 if (strncmp (discrim_end, "___XVN", 6) == 0)
6425 if (discrim_end == name)
6428 for (discrim_start = discrim_end; discrim_start != name + 3;
6431 if (discrim_start == name + 1)
6433 if ((discrim_start > name + 3
6434 && strncmp (discrim_start - 3, "___", 3) == 0)
6435 || discrim_start[-1] == '.')
6439 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6440 strncpy (result, discrim_start, discrim_end - discrim_start);
6441 result[discrim_end - discrim_start] = '\0';
6445 /* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
6454 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6458 if (!isdigit (str[k]))
6461 /* Do it the hard way so as not to make any assumption about
6462 the relationship of unsigned long (%lu scan format code) and
6465 while (isdigit (str[k]))
6467 RU = RU * 10 + (str[k] - '0');
6474 *R = (-(LONGEST) (RU - 1)) - 1;
6480 /* NOTE on the above: Technically, C does not say what the results of
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
6484 above is always equivalent to the negative of RU. */
6491 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6496 ada_in_variant (LONGEST val, struct type *type, int field_num)
6498 const char *name = TYPE_FIELD_NAME (type, field_num);
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6525 if (val >= L && val <= U)
6537 /* FIXME: Lots of redundancy below. Try to consolidate. */
6539 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
6544 static struct value *
6545 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6546 struct type *arg_type)
6550 arg_type = ada_check_typedef (arg_type);
6551 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6553 /* Handle packed fields. */
6555 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6557 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6558 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6560 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6561 offset + bit_pos / 8,
6562 bit_pos % 8, bit_size, type);
6565 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568 /* Find field with name NAME in object of type TYPE. If found,
6569 set the following for each argument that is non-null:
6570 - *FIELD_TYPE_P to the field's type;
6571 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6572 an object of that type;
6573 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6574 - *BIT_SIZE_P to its size in bits if the field is packed, and
6576 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6577 fields up to but not including the desired field, or by the total
6578 number of fields if not found. A NULL value of NAME never
6579 matches; the function just counts visible fields in this case.
6581 Returns 1 if found, 0 otherwise. */
6584 find_struct_field (const char *name, struct type *type, int offset,
6585 struct type **field_type_p,
6586 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6591 type = ada_check_typedef (type);
6593 if (field_type_p != NULL)
6594 *field_type_p = NULL;
6595 if (byte_offset_p != NULL)
6597 if (bit_offset_p != NULL)
6599 if (bit_size_p != NULL)
6602 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6604 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6605 int fld_offset = offset + bit_pos / 8;
6606 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6608 if (t_field_name == NULL)
6611 else if (name != NULL && field_name_match (t_field_name, name))
6613 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6615 if (field_type_p != NULL)
6616 *field_type_p = TYPE_FIELD_TYPE (type, i);
6617 if (byte_offset_p != NULL)
6618 *byte_offset_p = fld_offset;
6619 if (bit_offset_p != NULL)
6620 *bit_offset_p = bit_pos % 8;
6621 if (bit_size_p != NULL)
6622 *bit_size_p = bit_size;
6625 else if (ada_is_wrapper_field (type, i))
6627 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6628 field_type_p, byte_offset_p, bit_offset_p,
6629 bit_size_p, index_p))
6632 else if (ada_is_variant_part (type, i))
6634 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6637 struct type *field_type
6638 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6640 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6642 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6644 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6645 field_type_p, byte_offset_p,
6646 bit_offset_p, bit_size_p, index_p))
6650 else if (index_p != NULL)
6656 /* Number of user-visible fields in record type TYPE. */
6659 num_visible_fields (struct type *type)
6664 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6668 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6669 and search in it assuming it has (class) type TYPE.
6670 If found, return value, else return NULL.
6672 Searches recursively through wrapper fields (e.g., '_parent'). */
6674 static struct value *
6675 ada_search_struct_field (char *name, struct value *arg, int offset,
6680 type = ada_check_typedef (type);
6681 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6683 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6685 if (t_field_name == NULL)
6688 else if (field_name_match (t_field_name, name))
6689 return ada_value_primitive_field (arg, offset, i, type);
6691 else if (ada_is_wrapper_field (type, i))
6693 struct value *v = /* Do not let indent join lines here. */
6694 ada_search_struct_field (name, arg,
6695 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6696 TYPE_FIELD_TYPE (type, i));
6702 else if (ada_is_variant_part (type, i))
6704 /* PNH: Do we ever get here? See find_struct_field. */
6706 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6708 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6710 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6712 struct value *v = ada_search_struct_field /* Force line
6715 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6716 TYPE_FIELD_TYPE (field_type, j));
6726 static struct value *ada_index_struct_field_1 (int *, struct value *,
6727 int, struct type *);
6730 /* Return field #INDEX in ARG, where the index is that returned by
6731 * find_struct_field through its INDEX_P argument. Adjust the address
6732 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6733 * If found, return value, else return NULL. */
6735 static struct value *
6736 ada_index_struct_field (int index, struct value *arg, int offset,
6739 return ada_index_struct_field_1 (&index, arg, offset, type);
6743 /* Auxiliary function for ada_index_struct_field. Like
6744 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6747 static struct value *
6748 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6752 type = ada_check_typedef (type);
6754 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6756 if (TYPE_FIELD_NAME (type, i) == NULL)
6758 else if (ada_is_wrapper_field (type, i))
6760 struct value *v = /* Do not let indent join lines here. */
6761 ada_index_struct_field_1 (index_p, arg,
6762 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6763 TYPE_FIELD_TYPE (type, i));
6769 else if (ada_is_variant_part (type, i))
6771 /* PNH: Do we ever get here? See ada_search_struct_field,
6772 find_struct_field. */
6773 error (_("Cannot assign this kind of variant record"));
6775 else if (*index_p == 0)
6776 return ada_value_primitive_field (arg, offset, i, type);
6783 /* Given ARG, a value of type (pointer or reference to a)*
6784 structure/union, extract the component named NAME from the ultimate
6785 target structure/union and return it as a value with its
6788 The routine searches for NAME among all members of the structure itself
6789 and (recursively) among all members of any wrapper members
6792 If NO_ERR, then simply return NULL in case of error, rather than
6796 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6798 struct type *t, *t1;
6802 t1 = t = ada_check_typedef (value_type (arg));
6803 if (TYPE_CODE (t) == TYPE_CODE_REF)
6805 t1 = TYPE_TARGET_TYPE (t);
6808 t1 = ada_check_typedef (t1);
6809 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6811 arg = coerce_ref (arg);
6816 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6818 t1 = TYPE_TARGET_TYPE (t);
6821 t1 = ada_check_typedef (t1);
6822 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6824 arg = value_ind (arg);
6831 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6835 v = ada_search_struct_field (name, arg, 0, t);
6838 int bit_offset, bit_size, byte_offset;
6839 struct type *field_type;
6842 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6843 address = value_address (ada_value_ind (arg));
6845 address = value_address (ada_coerce_ref (arg));
6847 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6848 if (find_struct_field (name, t1, 0,
6849 &field_type, &byte_offset, &bit_offset,
6854 if (TYPE_CODE (t) == TYPE_CODE_REF)
6855 arg = ada_coerce_ref (arg);
6857 arg = ada_value_ind (arg);
6858 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6859 bit_offset, bit_size,
6863 v = value_at_lazy (field_type, address + byte_offset);
6867 if (v != NULL || no_err)
6870 error (_("There is no member named %s."), name);
6876 error (_("Attempt to extract a component of "
6877 "a value that is not a record."));
6880 /* Given a type TYPE, look up the type of the component of type named NAME.
6881 If DISPP is non-null, add its byte displacement from the beginning of a
6882 structure (pointed to by a value) of type TYPE to *DISPP (does not
6883 work for packed fields).
6885 Matches any field whose name has NAME as a prefix, possibly
6888 TYPE can be either a struct or union. If REFOK, TYPE may also
6889 be a (pointer or reference)+ to a struct or union, and the
6890 ultimate target type will be searched.
6892 Looks recursively into variant clauses and parent types.
6894 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6895 TYPE is not a type of the right kind. */
6897 static struct type *
6898 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6899 int noerr, int *dispp)
6906 if (refok && type != NULL)
6909 type = ada_check_typedef (type);
6910 if (TYPE_CODE (type) != TYPE_CODE_PTR
6911 && TYPE_CODE (type) != TYPE_CODE_REF)
6913 type = TYPE_TARGET_TYPE (type);
6917 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6918 && TYPE_CODE (type) != TYPE_CODE_UNION))
6924 target_terminal_ours ();
6925 gdb_flush (gdb_stdout);
6927 error (_("Type (null) is not a structure or union type"));
6930 /* XXX: type_sprint */
6931 fprintf_unfiltered (gdb_stderr, _("Type "));
6932 type_print (type, "", gdb_stderr, -1);
6933 error (_(" is not a structure or union type"));
6938 type = to_static_fixed_type (type);
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6942 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6946 if (t_field_name == NULL)
6949 else if (field_name_match (t_field_name, name))
6952 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6953 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6956 else if (ada_is_wrapper_field (type, i))
6959 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6964 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6969 else if (ada_is_variant_part (type, i))
6972 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6975 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6977 /* FIXME pnh 2008/01/26: We check for a field that is
6978 NOT wrapped in a struct, since the compiler sometimes
6979 generates these for unchecked variant types. Revisit
6980 if the compiler changes this practice. */
6981 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6983 if (v_field_name != NULL
6984 && field_name_match (v_field_name, name))
6985 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6987 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6994 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7005 target_terminal_ours ();
7006 gdb_flush (gdb_stdout);
7009 /* XXX: type_sprint */
7010 fprintf_unfiltered (gdb_stderr, _("Type "));
7011 type_print (type, "", gdb_stderr, -1);
7012 error (_(" has no component named <null>"));
7016 /* XXX: type_sprint */
7017 fprintf_unfiltered (gdb_stderr, _("Type "));
7018 type_print (type, "", gdb_stderr, -1);
7019 error (_(" has no component named %s"), name);
7026 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7027 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7028 represents an unchecked union (that is, the variant part of a
7029 record that is named in an Unchecked_Union pragma). */
7032 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7034 char *discrim_name = ada_variant_discrim_name (var_type);
7036 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7041 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7042 within a value of type OUTER_TYPE that is stored in GDB at
7043 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7044 numbering from 0) is applicable. Returns -1 if none are. */
7047 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7048 const gdb_byte *outer_valaddr)
7052 char *discrim_name = ada_variant_discrim_name (var_type);
7053 struct value *outer;
7054 struct value *discrim;
7055 LONGEST discrim_val;
7057 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7058 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7059 if (discrim == NULL)
7061 discrim_val = value_as_long (discrim);
7064 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7066 if (ada_is_others_clause (var_type, i))
7068 else if (ada_in_variant (discrim_val, var_type, i))
7072 return others_clause;
7077 /* Dynamic-Sized Records */
7079 /* Strategy: The type ostensibly attached to a value with dynamic size
7080 (i.e., a size that is not statically recorded in the debugging
7081 data) does not accurately reflect the size or layout of the value.
7082 Our strategy is to convert these values to values with accurate,
7083 conventional types that are constructed on the fly. */
7085 /* There is a subtle and tricky problem here. In general, we cannot
7086 determine the size of dynamic records without its data. However,
7087 the 'struct value' data structure, which GDB uses to represent
7088 quantities in the inferior process (the target), requires the size
7089 of the type at the time of its allocation in order to reserve space
7090 for GDB's internal copy of the data. That's why the
7091 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7092 rather than struct value*s.
7094 However, GDB's internal history variables ($1, $2, etc.) are
7095 struct value*s containing internal copies of the data that are not, in
7096 general, the same as the data at their corresponding addresses in
7097 the target. Fortunately, the types we give to these values are all
7098 conventional, fixed-size types (as per the strategy described
7099 above), so that we don't usually have to perform the
7100 'to_fixed_xxx_type' conversions to look at their values.
7101 Unfortunately, there is one exception: if one of the internal
7102 history variables is an array whose elements are unconstrained
7103 records, then we will need to create distinct fixed types for each
7104 element selected. */
7106 /* The upshot of all of this is that many routines take a (type, host
7107 address, target address) triple as arguments to represent a value.
7108 The host address, if non-null, is supposed to contain an internal
7109 copy of the relevant data; otherwise, the program is to consult the
7110 target at the target address. */
7112 /* Assuming that VAL0 represents a pointer value, the result of
7113 dereferencing it. Differs from value_ind in its treatment of
7114 dynamic-sized types. */
7117 ada_value_ind (struct value *val0)
7119 struct value *val = value_ind (val0);
7121 if (ada_is_tagged_type (value_type (val), 0))
7122 val = ada_tag_value_at_base_address (val);
7124 return ada_to_fixed_value (val);
7127 /* The value resulting from dereferencing any "reference to"
7128 qualifiers on VAL0. */
7130 static struct value *
7131 ada_coerce_ref (struct value *val0)
7133 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7135 struct value *val = val0;
7137 val = coerce_ref (val);
7139 if (ada_is_tagged_type (value_type (val), 0))
7140 val = ada_tag_value_at_base_address (val);
7142 return ada_to_fixed_value (val);
7148 /* Return OFF rounded upward if necessary to a multiple of
7149 ALIGNMENT (a power of 2). */
7152 align_value (unsigned int off, unsigned int alignment)
7154 return (off + alignment - 1) & ~(alignment - 1);
7157 /* Return the bit alignment required for field #F of template type TYPE. */
7160 field_alignment (struct type *type, int f)
7162 const char *name = TYPE_FIELD_NAME (type, f);
7166 /* The field name should never be null, unless the debugging information
7167 is somehow malformed. In this case, we assume the field does not
7168 require any alignment. */
7172 len = strlen (name);
7174 if (!isdigit (name[len - 1]))
7177 if (isdigit (name[len - 2]))
7178 align_offset = len - 2;
7180 align_offset = len - 1;
7182 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7183 return TARGET_CHAR_BIT;
7185 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7188 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7190 static struct symbol *
7191 ada_find_any_type_symbol (const char *name)
7195 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7196 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7199 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7203 /* Find a type named NAME. Ignores ambiguity. This routine will look
7204 solely for types defined by debug info, it will not search the GDB
7207 static struct type *
7208 ada_find_any_type (const char *name)
7210 struct symbol *sym = ada_find_any_type_symbol (name);
7213 return SYMBOL_TYPE (sym);
7218 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7219 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7220 symbol, in which case it is returned. Otherwise, this looks for
7221 symbols whose name is that of NAME_SYM suffixed with "___XR".
7222 Return symbol if found, and NULL otherwise. */
7225 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7227 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7230 if (strstr (name, "___XR") != NULL)
7233 sym = find_old_style_renaming_symbol (name, block);
7238 /* Not right yet. FIXME pnh 7/20/2007. */
7239 sym = ada_find_any_type_symbol (name);
7240 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7246 static struct symbol *
7247 find_old_style_renaming_symbol (const char *name, const struct block *block)
7249 const struct symbol *function_sym = block_linkage_function (block);
7252 if (function_sym != NULL)
7254 /* If the symbol is defined inside a function, NAME is not fully
7255 qualified. This means we need to prepend the function name
7256 as well as adding the ``___XR'' suffix to build the name of
7257 the associated renaming symbol. */
7258 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7259 /* Function names sometimes contain suffixes used
7260 for instance to qualify nested subprograms. When building
7261 the XR type name, we need to make sure that this suffix is
7262 not included. So do not include any suffix in the function
7263 name length below. */
7264 int function_name_len = ada_name_prefix_len (function_name);
7265 const int rename_len = function_name_len + 2 /* "__" */
7266 + strlen (name) + 6 /* "___XR\0" */ ;
7268 /* Strip the suffix if necessary. */
7269 ada_remove_trailing_digits (function_name, &function_name_len);
7270 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7271 ada_remove_Xbn_suffix (function_name, &function_name_len);
7273 /* Library-level functions are a special case, as GNAT adds
7274 a ``_ada_'' prefix to the function name to avoid namespace
7275 pollution. However, the renaming symbols themselves do not
7276 have this prefix, so we need to skip this prefix if present. */
7277 if (function_name_len > 5 /* "_ada_" */
7278 && strstr (function_name, "_ada_") == function_name)
7281 function_name_len -= 5;
7284 rename = (char *) alloca (rename_len * sizeof (char));
7285 strncpy (rename, function_name, function_name_len);
7286 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7291 const int rename_len = strlen (name) + 6;
7293 rename = (char *) alloca (rename_len * sizeof (char));
7294 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7297 return ada_find_any_type_symbol (rename);
7300 /* Because of GNAT encoding conventions, several GDB symbols may match a
7301 given type name. If the type denoted by TYPE0 is to be preferred to
7302 that of TYPE1 for purposes of type printing, return non-zero;
7303 otherwise return 0. */
7306 ada_prefer_type (struct type *type0, struct type *type1)
7310 else if (type0 == NULL)
7312 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7314 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7316 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7318 else if (ada_is_constrained_packed_array_type (type0))
7320 else if (ada_is_array_descriptor_type (type0)
7321 && !ada_is_array_descriptor_type (type1))
7325 const char *type0_name = type_name_no_tag (type0);
7326 const char *type1_name = type_name_no_tag (type1);
7328 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7329 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7335 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7336 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7339 ada_type_name (struct type *type)
7343 else if (TYPE_NAME (type) != NULL)
7344 return TYPE_NAME (type);
7346 return TYPE_TAG_NAME (type);
7349 /* Search the list of "descriptive" types associated to TYPE for a type
7350 whose name is NAME. */
7352 static struct type *
7353 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7355 struct type *result;
7357 /* If there no descriptive-type info, then there is no parallel type
7359 if (!HAVE_GNAT_AUX_INFO (type))
7362 result = TYPE_DESCRIPTIVE_TYPE (type);
7363 while (result != NULL)
7365 const char *result_name = ada_type_name (result);
7367 if (result_name == NULL)
7369 warning (_("unexpected null name on descriptive type"));
7373 /* If the names match, stop. */
7374 if (strcmp (result_name, name) == 0)
7377 /* Otherwise, look at the next item on the list, if any. */
7378 if (HAVE_GNAT_AUX_INFO (result))
7379 result = TYPE_DESCRIPTIVE_TYPE (result);
7384 /* If we didn't find a match, see whether this is a packed array. With
7385 older compilers, the descriptive type information is either absent or
7386 irrelevant when it comes to packed arrays so the above lookup fails.
7387 Fall back to using a parallel lookup by name in this case. */
7388 if (result == NULL && ada_is_constrained_packed_array_type (type))
7389 return ada_find_any_type (name);
7394 /* Find a parallel type to TYPE with the specified NAME, using the
7395 descriptive type taken from the debugging information, if available,
7396 and otherwise using the (slower) name-based method. */
7398 static struct type *
7399 ada_find_parallel_type_with_name (struct type *type, const char *name)
7401 struct type *result = NULL;
7403 if (HAVE_GNAT_AUX_INFO (type))
7404 result = find_parallel_type_by_descriptive_type (type, name);
7406 result = ada_find_any_type (name);
7411 /* Same as above, but specify the name of the parallel type by appending
7412 SUFFIX to the name of TYPE. */
7415 ada_find_parallel_type (struct type *type, const char *suffix)
7418 const char *typename = ada_type_name (type);
7421 if (typename == NULL)
7424 len = strlen (typename);
7426 name = (char *) alloca (len + strlen (suffix) + 1);
7428 strcpy (name, typename);
7429 strcpy (name + len, suffix);
7431 return ada_find_parallel_type_with_name (type, name);
7434 /* If TYPE is a variable-size record type, return the corresponding template
7435 type describing its fields. Otherwise, return NULL. */
7437 static struct type *
7438 dynamic_template_type (struct type *type)
7440 type = ada_check_typedef (type);
7442 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7443 || ada_type_name (type) == NULL)
7447 int len = strlen (ada_type_name (type));
7449 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7452 return ada_find_parallel_type (type, "___XVE");
7456 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7457 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7460 is_dynamic_field (struct type *templ_type, int field_num)
7462 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7465 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7466 && strstr (name, "___XVL") != NULL;
7469 /* The index of the variant field of TYPE, or -1 if TYPE does not
7470 represent a variant record type. */
7473 variant_field_index (struct type *type)
7477 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7480 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7482 if (ada_is_variant_part (type, f))
7488 /* A record type with no fields. */
7490 static struct type *
7491 empty_record (struct type *template)
7493 struct type *type = alloc_type_copy (template);
7495 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7496 TYPE_NFIELDS (type) = 0;
7497 TYPE_FIELDS (type) = NULL;
7498 INIT_CPLUS_SPECIFIC (type);
7499 TYPE_NAME (type) = "<empty>";
7500 TYPE_TAG_NAME (type) = NULL;
7501 TYPE_LENGTH (type) = 0;
7505 /* An ordinary record type (with fixed-length fields) that describes
7506 the value of type TYPE at VALADDR or ADDRESS (see comments at
7507 the beginning of this section) VAL according to GNAT conventions.
7508 DVAL0 should describe the (portion of a) record that contains any
7509 necessary discriminants. It should be NULL if value_type (VAL) is
7510 an outer-level type (i.e., as opposed to a branch of a variant.) A
7511 variant field (unless unchecked) is replaced by a particular branch
7514 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7515 length are not statically known are discarded. As a consequence,
7516 VALADDR, ADDRESS and DVAL0 are ignored.
7518 NOTE: Limitations: For now, we assume that dynamic fields and
7519 variants occupy whole numbers of bytes. However, they need not be
7523 ada_template_to_fixed_record_type_1 (struct type *type,
7524 const gdb_byte *valaddr,
7525 CORE_ADDR address, struct value *dval0,
7526 int keep_dynamic_fields)
7528 struct value *mark = value_mark ();
7531 int nfields, bit_len;
7537 /* Compute the number of fields in this record type that are going
7538 to be processed: unless keep_dynamic_fields, this includes only
7539 fields whose position and length are static will be processed. */
7540 if (keep_dynamic_fields)
7541 nfields = TYPE_NFIELDS (type);
7545 while (nfields < TYPE_NFIELDS (type)
7546 && !ada_is_variant_part (type, nfields)
7547 && !is_dynamic_field (type, nfields))
7551 rtype = alloc_type_copy (type);
7552 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7553 INIT_CPLUS_SPECIFIC (rtype);
7554 TYPE_NFIELDS (rtype) = nfields;
7555 TYPE_FIELDS (rtype) = (struct field *)
7556 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7557 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7558 TYPE_NAME (rtype) = ada_type_name (type);
7559 TYPE_TAG_NAME (rtype) = NULL;
7560 TYPE_FIXED_INSTANCE (rtype) = 1;
7566 for (f = 0; f < nfields; f += 1)
7568 off = align_value (off, field_alignment (type, f))
7569 + TYPE_FIELD_BITPOS (type, f);
7570 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7571 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7573 if (ada_is_variant_part (type, f))
7578 else if (is_dynamic_field (type, f))
7580 const gdb_byte *field_valaddr = valaddr;
7581 CORE_ADDR field_address = address;
7582 struct type *field_type =
7583 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7587 /* rtype's length is computed based on the run-time
7588 value of discriminants. If the discriminants are not
7589 initialized, the type size may be completely bogus and
7590 GDB may fail to allocate a value for it. So check the
7591 size first before creating the value. */
7593 dval = value_from_contents_and_address (rtype, valaddr, address);
7598 /* If the type referenced by this field is an aligner type, we need
7599 to unwrap that aligner type, because its size might not be set.
7600 Keeping the aligner type would cause us to compute the wrong
7601 size for this field, impacting the offset of the all the fields
7602 that follow this one. */
7603 if (ada_is_aligner_type (field_type))
7605 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7607 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7608 field_address = cond_offset_target (field_address, field_offset);
7609 field_type = ada_aligned_type (field_type);
7612 field_valaddr = cond_offset_host (field_valaddr,
7613 off / TARGET_CHAR_BIT);
7614 field_address = cond_offset_target (field_address,
7615 off / TARGET_CHAR_BIT);
7617 /* Get the fixed type of the field. Note that, in this case,
7618 we do not want to get the real type out of the tag: if
7619 the current field is the parent part of a tagged record,
7620 we will get the tag of the object. Clearly wrong: the real
7621 type of the parent is not the real type of the child. We
7622 would end up in an infinite loop. */
7623 field_type = ada_get_base_type (field_type);
7624 field_type = ada_to_fixed_type (field_type, field_valaddr,
7625 field_address, dval, 0);
7626 /* If the field size is already larger than the maximum
7627 object size, then the record itself will necessarily
7628 be larger than the maximum object size. We need to make
7629 this check now, because the size might be so ridiculously
7630 large (due to an uninitialized variable in the inferior)
7631 that it would cause an overflow when adding it to the
7633 check_size (field_type);
7635 TYPE_FIELD_TYPE (rtype, f) = field_type;
7636 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7637 /* The multiplication can potentially overflow. But because
7638 the field length has been size-checked just above, and
7639 assuming that the maximum size is a reasonable value,
7640 an overflow should not happen in practice. So rather than
7641 adding overflow recovery code to this already complex code,
7642 we just assume that it's not going to happen. */
7644 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7648 /* Note: If this field's type is a typedef, it is important
7649 to preserve the typedef layer.
7651 Otherwise, we might be transforming a typedef to a fat
7652 pointer (encoding a pointer to an unconstrained array),
7653 into a basic fat pointer (encoding an unconstrained
7654 array). As both types are implemented using the same
7655 structure, the typedef is the only clue which allows us
7656 to distinguish between the two options. Stripping it
7657 would prevent us from printing this field appropriately. */
7658 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7659 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7660 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7662 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7665 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7667 /* We need to be careful of typedefs when computing
7668 the length of our field. If this is a typedef,
7669 get the length of the target type, not the length
7671 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7672 field_type = ada_typedef_target_type (field_type);
7675 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7678 if (off + fld_bit_len > bit_len)
7679 bit_len = off + fld_bit_len;
7681 TYPE_LENGTH (rtype) =
7682 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7685 /* We handle the variant part, if any, at the end because of certain
7686 odd cases in which it is re-ordered so as NOT to be the last field of
7687 the record. This can happen in the presence of representation
7689 if (variant_field >= 0)
7691 struct type *branch_type;
7693 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7696 dval = value_from_contents_and_address (rtype, valaddr, address);
7701 to_fixed_variant_branch_type
7702 (TYPE_FIELD_TYPE (type, variant_field),
7703 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7704 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7705 if (branch_type == NULL)
7707 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7708 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7709 TYPE_NFIELDS (rtype) -= 1;
7713 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7714 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7716 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7718 if (off + fld_bit_len > bit_len)
7719 bit_len = off + fld_bit_len;
7720 TYPE_LENGTH (rtype) =
7721 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7725 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7726 should contain the alignment of that record, which should be a strictly
7727 positive value. If null or negative, then something is wrong, most
7728 probably in the debug info. In that case, we don't round up the size
7729 of the resulting type. If this record is not part of another structure,
7730 the current RTYPE length might be good enough for our purposes. */
7731 if (TYPE_LENGTH (type) <= 0)
7733 if (TYPE_NAME (rtype))
7734 warning (_("Invalid type size for `%s' detected: %d."),
7735 TYPE_NAME (rtype), TYPE_LENGTH (type));
7737 warning (_("Invalid type size for <unnamed> detected: %d."),
7738 TYPE_LENGTH (type));
7742 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7743 TYPE_LENGTH (type));
7746 value_free_to_mark (mark);
7747 if (TYPE_LENGTH (rtype) > varsize_limit)
7748 error (_("record type with dynamic size is larger than varsize-limit"));
7752 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7755 static struct type *
7756 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7757 CORE_ADDR address, struct value *dval0)
7759 return ada_template_to_fixed_record_type_1 (type, valaddr,
7763 /* An ordinary record type in which ___XVL-convention fields and
7764 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7765 static approximations, containing all possible fields. Uses
7766 no runtime values. Useless for use in values, but that's OK,
7767 since the results are used only for type determinations. Works on both
7768 structs and unions. Representation note: to save space, we memorize
7769 the result of this function in the TYPE_TARGET_TYPE of the
7772 static struct type *
7773 template_to_static_fixed_type (struct type *type0)
7779 if (TYPE_TARGET_TYPE (type0) != NULL)
7780 return TYPE_TARGET_TYPE (type0);
7782 nfields = TYPE_NFIELDS (type0);
7785 for (f = 0; f < nfields; f += 1)
7787 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7788 struct type *new_type;
7790 if (is_dynamic_field (type0, f))
7791 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7793 new_type = static_unwrap_type (field_type);
7794 if (type == type0 && new_type != field_type)
7796 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7797 TYPE_CODE (type) = TYPE_CODE (type0);
7798 INIT_CPLUS_SPECIFIC (type);
7799 TYPE_NFIELDS (type) = nfields;
7800 TYPE_FIELDS (type) = (struct field *)
7801 TYPE_ALLOC (type, nfields * sizeof (struct field));
7802 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7803 sizeof (struct field) * nfields);
7804 TYPE_NAME (type) = ada_type_name (type0);
7805 TYPE_TAG_NAME (type) = NULL;
7806 TYPE_FIXED_INSTANCE (type) = 1;
7807 TYPE_LENGTH (type) = 0;
7809 TYPE_FIELD_TYPE (type, f) = new_type;
7810 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7815 /* Given an object of type TYPE whose contents are at VALADDR and
7816 whose address in memory is ADDRESS, returns a revision of TYPE,
7817 which should be a non-dynamic-sized record, in which the variant
7818 part, if any, is replaced with the appropriate branch. Looks
7819 for discriminant values in DVAL0, which can be NULL if the record
7820 contains the necessary discriminant values. */
7822 static struct type *
7823 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7824 CORE_ADDR address, struct value *dval0)
7826 struct value *mark = value_mark ();
7829 struct type *branch_type;
7830 int nfields = TYPE_NFIELDS (type);
7831 int variant_field = variant_field_index (type);
7833 if (variant_field == -1)
7837 dval = value_from_contents_and_address (type, valaddr, address);
7841 rtype = alloc_type_copy (type);
7842 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7843 INIT_CPLUS_SPECIFIC (rtype);
7844 TYPE_NFIELDS (rtype) = nfields;
7845 TYPE_FIELDS (rtype) =
7846 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7847 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7848 sizeof (struct field) * nfields);
7849 TYPE_NAME (rtype) = ada_type_name (type);
7850 TYPE_TAG_NAME (rtype) = NULL;
7851 TYPE_FIXED_INSTANCE (rtype) = 1;
7852 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7854 branch_type = to_fixed_variant_branch_type
7855 (TYPE_FIELD_TYPE (type, variant_field),
7856 cond_offset_host (valaddr,
7857 TYPE_FIELD_BITPOS (type, variant_field)
7859 cond_offset_target (address,
7860 TYPE_FIELD_BITPOS (type, variant_field)
7861 / TARGET_CHAR_BIT), dval);
7862 if (branch_type == NULL)
7866 for (f = variant_field + 1; f < nfields; f += 1)
7867 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7868 TYPE_NFIELDS (rtype) -= 1;
7872 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7873 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7874 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7875 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7877 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7879 value_free_to_mark (mark);
7883 /* An ordinary record type (with fixed-length fields) that describes
7884 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7885 beginning of this section]. Any necessary discriminants' values
7886 should be in DVAL, a record value; it may be NULL if the object
7887 at ADDR itself contains any necessary discriminant values.
7888 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7889 values from the record are needed. Except in the case that DVAL,
7890 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7891 unchecked) is replaced by a particular branch of the variant.
7893 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7894 is questionable and may be removed. It can arise during the
7895 processing of an unconstrained-array-of-record type where all the
7896 variant branches have exactly the same size. This is because in
7897 such cases, the compiler does not bother to use the XVS convention
7898 when encoding the record. I am currently dubious of this
7899 shortcut and suspect the compiler should be altered. FIXME. */
7901 static struct type *
7902 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7903 CORE_ADDR address, struct value *dval)
7905 struct type *templ_type;
7907 if (TYPE_FIXED_INSTANCE (type0))
7910 templ_type = dynamic_template_type (type0);
7912 if (templ_type != NULL)
7913 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7914 else if (variant_field_index (type0) >= 0)
7916 if (dval == NULL && valaddr == NULL && address == 0)
7918 return to_record_with_fixed_variant_part (type0, valaddr, address,
7923 TYPE_FIXED_INSTANCE (type0) = 1;
7929 /* An ordinary record type (with fixed-length fields) that describes
7930 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7931 union type. Any necessary discriminants' values should be in DVAL,
7932 a record value. That is, this routine selects the appropriate
7933 branch of the union at ADDR according to the discriminant value
7934 indicated in the union's type name. Returns VAR_TYPE0 itself if
7935 it represents a variant subject to a pragma Unchecked_Union. */
7937 static struct type *
7938 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7939 CORE_ADDR address, struct value *dval)
7942 struct type *templ_type;
7943 struct type *var_type;
7945 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7946 var_type = TYPE_TARGET_TYPE (var_type0);
7948 var_type = var_type0;
7950 templ_type = ada_find_parallel_type (var_type, "___XVU");
7952 if (templ_type != NULL)
7953 var_type = templ_type;
7955 if (is_unchecked_variant (var_type, value_type (dval)))
7958 ada_which_variant_applies (var_type,
7959 value_type (dval), value_contents (dval));
7962 return empty_record (var_type);
7963 else if (is_dynamic_field (var_type, which))
7964 return to_fixed_record_type
7965 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7966 valaddr, address, dval);
7967 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7969 to_fixed_record_type
7970 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7972 return TYPE_FIELD_TYPE (var_type, which);
7975 /* Assuming that TYPE0 is an array type describing the type of a value
7976 at ADDR, and that DVAL describes a record containing any
7977 discriminants used in TYPE0, returns a type for the value that
7978 contains no dynamic components (that is, no components whose sizes
7979 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7980 true, gives an error message if the resulting type's size is over
7983 static struct type *
7984 to_fixed_array_type (struct type *type0, struct value *dval,
7987 struct type *index_type_desc;
7988 struct type *result;
7989 int constrained_packed_array_p;
7991 type0 = ada_check_typedef (type0);
7992 if (TYPE_FIXED_INSTANCE (type0))
7995 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7996 if (constrained_packed_array_p)
7997 type0 = decode_constrained_packed_array_type (type0);
7999 index_type_desc = ada_find_parallel_type (type0, "___XA");
8000 ada_fixup_array_indexes_type (index_type_desc);
8001 if (index_type_desc == NULL)
8003 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8005 /* NOTE: elt_type---the fixed version of elt_type0---should never
8006 depend on the contents of the array in properly constructed
8008 /* Create a fixed version of the array element type.
8009 We're not providing the address of an element here,
8010 and thus the actual object value cannot be inspected to do
8011 the conversion. This should not be a problem, since arrays of
8012 unconstrained objects are not allowed. In particular, all
8013 the elements of an array of a tagged type should all be of
8014 the same type specified in the debugging info. No need to
8015 consult the object tag. */
8016 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8018 /* Make sure we always create a new array type when dealing with
8019 packed array types, since we're going to fix-up the array
8020 type length and element bitsize a little further down. */
8021 if (elt_type0 == elt_type && !constrained_packed_array_p)
8024 result = create_array_type (alloc_type_copy (type0),
8025 elt_type, TYPE_INDEX_TYPE (type0));
8030 struct type *elt_type0;
8033 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8034 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8036 /* NOTE: result---the fixed version of elt_type0---should never
8037 depend on the contents of the array in properly constructed
8039 /* Create a fixed version of the array element type.
8040 We're not providing the address of an element here,
8041 and thus the actual object value cannot be inspected to do
8042 the conversion. This should not be a problem, since arrays of
8043 unconstrained objects are not allowed. In particular, all
8044 the elements of an array of a tagged type should all be of
8045 the same type specified in the debugging info. No need to
8046 consult the object tag. */
8048 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8051 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8053 struct type *range_type =
8054 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8056 result = create_array_type (alloc_type_copy (elt_type0),
8057 result, range_type);
8058 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8060 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8061 error (_("array type with dynamic size is larger than varsize-limit"));
8064 /* We want to preserve the type name. This can be useful when
8065 trying to get the type name of a value that has already been
8066 printed (for instance, if the user did "print VAR; whatis $". */
8067 TYPE_NAME (result) = TYPE_NAME (type0);
8069 if (constrained_packed_array_p)
8071 /* So far, the resulting type has been created as if the original
8072 type was a regular (non-packed) array type. As a result, the
8073 bitsize of the array elements needs to be set again, and the array
8074 length needs to be recomputed based on that bitsize. */
8075 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8076 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8078 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8079 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8080 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8081 TYPE_LENGTH (result)++;
8084 TYPE_FIXED_INSTANCE (result) = 1;
8089 /* A standard type (containing no dynamically sized components)
8090 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8091 DVAL describes a record containing any discriminants used in TYPE0,
8092 and may be NULL if there are none, or if the object of type TYPE at
8093 ADDRESS or in VALADDR contains these discriminants.
8095 If CHECK_TAG is not null, in the case of tagged types, this function
8096 attempts to locate the object's tag and use it to compute the actual
8097 type. However, when ADDRESS is null, we cannot use it to determine the
8098 location of the tag, and therefore compute the tagged type's actual type.
8099 So we return the tagged type without consulting the tag. */
8101 static struct type *
8102 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8103 CORE_ADDR address, struct value *dval, int check_tag)
8105 type = ada_check_typedef (type);
8106 switch (TYPE_CODE (type))
8110 case TYPE_CODE_STRUCT:
8112 struct type *static_type = to_static_fixed_type (type);
8113 struct type *fixed_record_type =
8114 to_fixed_record_type (type, valaddr, address, NULL);
8116 /* If STATIC_TYPE is a tagged type and we know the object's address,
8117 then we can determine its tag, and compute the object's actual
8118 type from there. Note that we have to use the fixed record
8119 type (the parent part of the record may have dynamic fields
8120 and the way the location of _tag is expressed may depend on
8123 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8126 value_tag_from_contents_and_address
8130 struct type *real_type = type_from_tag (tag);
8132 value_from_contents_and_address (fixed_record_type,
8135 if (real_type != NULL)
8136 return to_fixed_record_type
8138 value_address (ada_tag_value_at_base_address (obj)), NULL);
8141 /* Check to see if there is a parallel ___XVZ variable.
8142 If there is, then it provides the actual size of our type. */
8143 else if (ada_type_name (fixed_record_type) != NULL)
8145 const char *name = ada_type_name (fixed_record_type);
8146 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8150 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8151 size = get_int_var_value (xvz_name, &xvz_found);
8152 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8154 fixed_record_type = copy_type (fixed_record_type);
8155 TYPE_LENGTH (fixed_record_type) = size;
8157 /* The FIXED_RECORD_TYPE may have be a stub. We have
8158 observed this when the debugging info is STABS, and
8159 apparently it is something that is hard to fix.
8161 In practice, we don't need the actual type definition
8162 at all, because the presence of the XVZ variable allows us
8163 to assume that there must be a XVS type as well, which we
8164 should be able to use later, when we need the actual type
8167 In the meantime, pretend that the "fixed" type we are
8168 returning is NOT a stub, because this can cause trouble
8169 when using this type to create new types targeting it.
8170 Indeed, the associated creation routines often check
8171 whether the target type is a stub and will try to replace
8172 it, thus using a type with the wrong size. This, in turn,
8173 might cause the new type to have the wrong size too.
8174 Consider the case of an array, for instance, where the size
8175 of the array is computed from the number of elements in
8176 our array multiplied by the size of its element. */
8177 TYPE_STUB (fixed_record_type) = 0;
8180 return fixed_record_type;
8182 case TYPE_CODE_ARRAY:
8183 return to_fixed_array_type (type, dval, 1);
8184 case TYPE_CODE_UNION:
8188 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8192 /* The same as ada_to_fixed_type_1, except that it preserves the type
8193 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8195 The typedef layer needs be preserved in order to differentiate between
8196 arrays and array pointers when both types are implemented using the same
8197 fat pointer. In the array pointer case, the pointer is encoded as
8198 a typedef of the pointer type. For instance, considering:
8200 type String_Access is access String;
8201 S1 : String_Access := null;
8203 To the debugger, S1 is defined as a typedef of type String. But
8204 to the user, it is a pointer. So if the user tries to print S1,
8205 we should not dereference the array, but print the array address
8208 If we didn't preserve the typedef layer, we would lose the fact that
8209 the type is to be presented as a pointer (needs de-reference before
8210 being printed). And we would also use the source-level type name. */
8213 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8214 CORE_ADDR address, struct value *dval, int check_tag)
8217 struct type *fixed_type =
8218 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8220 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8221 then preserve the typedef layer.
8223 Implementation note: We can only check the main-type portion of
8224 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8225 from TYPE now returns a type that has the same instance flags
8226 as TYPE. For instance, if TYPE is a "typedef const", and its
8227 target type is a "struct", then the typedef elimination will return
8228 a "const" version of the target type. See check_typedef for more
8229 details about how the typedef layer elimination is done.
8231 brobecker/2010-11-19: It seems to me that the only case where it is
8232 useful to preserve the typedef layer is when dealing with fat pointers.
8233 Perhaps, we could add a check for that and preserve the typedef layer
8234 only in that situation. But this seems unecessary so far, probably
8235 because we call check_typedef/ada_check_typedef pretty much everywhere.
8237 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8238 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8239 == TYPE_MAIN_TYPE (fixed_type)))
8245 /* A standard (static-sized) type corresponding as well as possible to
8246 TYPE0, but based on no runtime data. */
8248 static struct type *
8249 to_static_fixed_type (struct type *type0)
8256 if (TYPE_FIXED_INSTANCE (type0))
8259 type0 = ada_check_typedef (type0);
8261 switch (TYPE_CODE (type0))
8265 case TYPE_CODE_STRUCT:
8266 type = dynamic_template_type (type0);
8268 return template_to_static_fixed_type (type);
8270 return template_to_static_fixed_type (type0);
8271 case TYPE_CODE_UNION:
8272 type = ada_find_parallel_type (type0, "___XVU");
8274 return template_to_static_fixed_type (type);
8276 return template_to_static_fixed_type (type0);
8280 /* A static approximation of TYPE with all type wrappers removed. */
8282 static struct type *
8283 static_unwrap_type (struct type *type)
8285 if (ada_is_aligner_type (type))
8287 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8288 if (ada_type_name (type1) == NULL)
8289 TYPE_NAME (type1) = ada_type_name (type);
8291 return static_unwrap_type (type1);
8295 struct type *raw_real_type = ada_get_base_type (type);
8297 if (raw_real_type == type)
8300 return to_static_fixed_type (raw_real_type);
8304 /* In some cases, incomplete and private types require
8305 cross-references that are not resolved as records (for example,
8307 type FooP is access Foo;
8309 type Foo is array ...;
8310 ). In these cases, since there is no mechanism for producing
8311 cross-references to such types, we instead substitute for FooP a
8312 stub enumeration type that is nowhere resolved, and whose tag is
8313 the name of the actual type. Call these types "non-record stubs". */
8315 /* A type equivalent to TYPE that is not a non-record stub, if one
8316 exists, otherwise TYPE. */
8319 ada_check_typedef (struct type *type)
8324 /* If our type is a typedef type of a fat pointer, then we're done.
8325 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8326 what allows us to distinguish between fat pointers that represent
8327 array types, and fat pointers that represent array access types
8328 (in both cases, the compiler implements them as fat pointers). */
8329 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8330 && is_thick_pntr (ada_typedef_target_type (type)))
8333 CHECK_TYPEDEF (type);
8334 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8335 || !TYPE_STUB (type)
8336 || TYPE_TAG_NAME (type) == NULL)
8340 const char *name = TYPE_TAG_NAME (type);
8341 struct type *type1 = ada_find_any_type (name);
8346 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8347 stubs pointing to arrays, as we don't create symbols for array
8348 types, only for the typedef-to-array types). If that's the case,
8349 strip the typedef layer. */
8350 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8351 type1 = ada_check_typedef (type1);
8357 /* A value representing the data at VALADDR/ADDRESS as described by
8358 type TYPE0, but with a standard (static-sized) type that correctly
8359 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8360 type, then return VAL0 [this feature is simply to avoid redundant
8361 creation of struct values]. */
8363 static struct value *
8364 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8367 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8369 if (type == type0 && val0 != NULL)
8372 return value_from_contents_and_address (type, 0, address);
8375 /* A value representing VAL, but with a standard (static-sized) type
8376 that correctly describes it. Does not necessarily create a new
8380 ada_to_fixed_value (struct value *val)
8382 val = unwrap_value (val);
8383 val = ada_to_fixed_value_create (value_type (val),
8384 value_address (val),
8392 /* Table mapping attribute numbers to names.
8393 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8395 static const char *attribute_names[] = {
8413 ada_attribute_name (enum exp_opcode n)
8415 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8416 return attribute_names[n - OP_ATR_FIRST + 1];
8418 return attribute_names[0];
8421 /* Evaluate the 'POS attribute applied to ARG. */
8424 pos_atr (struct value *arg)
8426 struct value *val = coerce_ref (arg);
8427 struct type *type = value_type (val);
8429 if (!discrete_type_p (type))
8430 error (_("'POS only defined on discrete types"));
8432 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8435 LONGEST v = value_as_long (val);
8437 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8439 if (v == TYPE_FIELD_ENUMVAL (type, i))
8442 error (_("enumeration value is invalid: can't find 'POS"));
8445 return value_as_long (val);
8448 static struct value *
8449 value_pos_atr (struct type *type, struct value *arg)
8451 return value_from_longest (type, pos_atr (arg));
8454 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8456 static struct value *
8457 value_val_atr (struct type *type, struct value *arg)
8459 if (!discrete_type_p (type))
8460 error (_("'VAL only defined on discrete types"));
8461 if (!integer_type_p (value_type (arg)))
8462 error (_("'VAL requires integral argument"));
8464 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8466 long pos = value_as_long (arg);
8468 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8469 error (_("argument to 'VAL out of range"));
8470 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8473 return value_from_longest (type, value_as_long (arg));
8479 /* True if TYPE appears to be an Ada character type.
8480 [At the moment, this is true only for Character and Wide_Character;
8481 It is a heuristic test that could stand improvement]. */
8484 ada_is_character_type (struct type *type)
8488 /* If the type code says it's a character, then assume it really is,
8489 and don't check any further. */
8490 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8493 /* Otherwise, assume it's a character type iff it is a discrete type
8494 with a known character type name. */
8495 name = ada_type_name (type);
8496 return (name != NULL
8497 && (TYPE_CODE (type) == TYPE_CODE_INT
8498 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8499 && (strcmp (name, "character") == 0
8500 || strcmp (name, "wide_character") == 0
8501 || strcmp (name, "wide_wide_character") == 0
8502 || strcmp (name, "unsigned char") == 0));
8505 /* True if TYPE appears to be an Ada string type. */
8508 ada_is_string_type (struct type *type)
8510 type = ada_check_typedef (type);
8512 && TYPE_CODE (type) != TYPE_CODE_PTR
8513 && (ada_is_simple_array_type (type)
8514 || ada_is_array_descriptor_type (type))
8515 && ada_array_arity (type) == 1)
8517 struct type *elttype = ada_array_element_type (type, 1);
8519 return ada_is_character_type (elttype);
8525 /* The compiler sometimes provides a parallel XVS type for a given
8526 PAD type. Normally, it is safe to follow the PAD type directly,
8527 but older versions of the compiler have a bug that causes the offset
8528 of its "F" field to be wrong. Following that field in that case
8529 would lead to incorrect results, but this can be worked around
8530 by ignoring the PAD type and using the associated XVS type instead.
8532 Set to True if the debugger should trust the contents of PAD types.
8533 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8534 static int trust_pad_over_xvs = 1;
8536 /* True if TYPE is a struct type introduced by the compiler to force the
8537 alignment of a value. Such types have a single field with a
8538 distinctive name. */
8541 ada_is_aligner_type (struct type *type)
8543 type = ada_check_typedef (type);
8545 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8548 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8549 && TYPE_NFIELDS (type) == 1
8550 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8553 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8554 the parallel type. */
8557 ada_get_base_type (struct type *raw_type)
8559 struct type *real_type_namer;
8560 struct type *raw_real_type;
8562 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8565 if (ada_is_aligner_type (raw_type))
8566 /* The encoding specifies that we should always use the aligner type.
8567 So, even if this aligner type has an associated XVS type, we should
8570 According to the compiler gurus, an XVS type parallel to an aligner
8571 type may exist because of a stabs limitation. In stabs, aligner
8572 types are empty because the field has a variable-sized type, and
8573 thus cannot actually be used as an aligner type. As a result,
8574 we need the associated parallel XVS type to decode the type.
8575 Since the policy in the compiler is to not change the internal
8576 representation based on the debugging info format, we sometimes
8577 end up having a redundant XVS type parallel to the aligner type. */
8580 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8581 if (real_type_namer == NULL
8582 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8583 || TYPE_NFIELDS (real_type_namer) != 1)
8586 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8588 /* This is an older encoding form where the base type needs to be
8589 looked up by name. We prefer the newer enconding because it is
8591 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8592 if (raw_real_type == NULL)
8595 return raw_real_type;
8598 /* The field in our XVS type is a reference to the base type. */
8599 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8602 /* The type of value designated by TYPE, with all aligners removed. */
8605 ada_aligned_type (struct type *type)
8607 if (ada_is_aligner_type (type))
8608 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8610 return ada_get_base_type (type);
8614 /* The address of the aligned value in an object at address VALADDR
8615 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8618 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8620 if (ada_is_aligner_type (type))
8621 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8623 TYPE_FIELD_BITPOS (type,
8624 0) / TARGET_CHAR_BIT);
8631 /* The printed representation of an enumeration literal with encoded
8632 name NAME. The value is good to the next call of ada_enum_name. */
8634 ada_enum_name (const char *name)
8636 static char *result;
8637 static size_t result_len = 0;
8640 /* First, unqualify the enumeration name:
8641 1. Search for the last '.' character. If we find one, then skip
8642 all the preceding characters, the unqualified name starts
8643 right after that dot.
8644 2. Otherwise, we may be debugging on a target where the compiler
8645 translates dots into "__". Search forward for double underscores,
8646 but stop searching when we hit an overloading suffix, which is
8647 of the form "__" followed by digits. */
8649 tmp = strrchr (name, '.');
8654 while ((tmp = strstr (name, "__")) != NULL)
8656 if (isdigit (tmp[2]))
8667 if (name[1] == 'U' || name[1] == 'W')
8669 if (sscanf (name + 2, "%x", &v) != 1)
8675 GROW_VECT (result, result_len, 16);
8676 if (isascii (v) && isprint (v))
8677 xsnprintf (result, result_len, "'%c'", v);
8678 else if (name[1] == 'U')
8679 xsnprintf (result, result_len, "[\"%02x\"]", v);
8681 xsnprintf (result, result_len, "[\"%04x\"]", v);
8687 tmp = strstr (name, "__");
8689 tmp = strstr (name, "$");
8692 GROW_VECT (result, result_len, tmp - name + 1);
8693 strncpy (result, name, tmp - name);
8694 result[tmp - name] = '\0';
8702 /* Evaluate the subexpression of EXP starting at *POS as for
8703 evaluate_type, updating *POS to point just past the evaluated
8706 static struct value *
8707 evaluate_subexp_type (struct expression *exp, int *pos)
8709 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8712 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8715 static struct value *
8716 unwrap_value (struct value *val)
8718 struct type *type = ada_check_typedef (value_type (val));
8720 if (ada_is_aligner_type (type))
8722 struct value *v = ada_value_struct_elt (val, "F", 0);
8723 struct type *val_type = ada_check_typedef (value_type (v));
8725 if (ada_type_name (val_type) == NULL)
8726 TYPE_NAME (val_type) = ada_type_name (type);
8728 return unwrap_value (v);
8732 struct type *raw_real_type =
8733 ada_check_typedef (ada_get_base_type (type));
8735 /* If there is no parallel XVS or XVE type, then the value is
8736 already unwrapped. Return it without further modification. */
8737 if ((type == raw_real_type)
8738 && ada_find_parallel_type (type, "___XVE") == NULL)
8742 coerce_unspec_val_to_type
8743 (val, ada_to_fixed_type (raw_real_type, 0,
8744 value_address (val),
8749 static struct value *
8750 cast_to_fixed (struct type *type, struct value *arg)
8754 if (type == value_type (arg))
8756 else if (ada_is_fixed_point_type (value_type (arg)))
8757 val = ada_float_to_fixed (type,
8758 ada_fixed_to_float (value_type (arg),
8759 value_as_long (arg)));
8762 DOUBLEST argd = value_as_double (arg);
8764 val = ada_float_to_fixed (type, argd);
8767 return value_from_longest (type, val);
8770 static struct value *
8771 cast_from_fixed (struct type *type, struct value *arg)
8773 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8774 value_as_long (arg));
8776 return value_from_double (type, val);
8779 /* Given two array types T1 and T2, return nonzero iff both arrays
8780 contain the same number of elements. */
8783 ada_same_array_size_p (struct type *t1, struct type *t2)
8785 LONGEST lo1, hi1, lo2, hi2;
8787 /* Get the array bounds in order to verify that the size of
8788 the two arrays match. */
8789 if (!get_array_bounds (t1, &lo1, &hi1)
8790 || !get_array_bounds (t2, &lo2, &hi2))
8791 error (_("unable to determine array bounds"));
8793 /* To make things easier for size comparison, normalize a bit
8794 the case of empty arrays by making sure that the difference
8795 between upper bound and lower bound is always -1. */
8801 return (hi1 - lo1 == hi2 - lo2);
8804 /* Assuming that VAL is an array of integrals, and TYPE represents
8805 an array with the same number of elements, but with wider integral
8806 elements, return an array "casted" to TYPE. In practice, this
8807 means that the returned array is built by casting each element
8808 of the original array into TYPE's (wider) element type. */
8810 static struct value *
8811 ada_promote_array_of_integrals (struct type *type, struct value *val)
8813 struct type *elt_type = TYPE_TARGET_TYPE (type);
8818 /* Verify that both val and type are arrays of scalars, and
8819 that the size of val's elements is smaller than the size
8820 of type's element. */
8821 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8822 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8823 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8825 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8826 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8828 if (!get_array_bounds (type, &lo, &hi))
8829 error (_("unable to determine array bounds"));
8831 res = allocate_value (type);
8833 /* Promote each array element. */
8834 for (i = 0; i < hi - lo + 1; i++)
8836 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8838 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8839 value_contents_all (elt), TYPE_LENGTH (elt_type));
8845 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8846 return the converted value. */
8848 static struct value *
8849 coerce_for_assign (struct type *type, struct value *val)
8851 struct type *type2 = value_type (val);
8856 type2 = ada_check_typedef (type2);
8857 type = ada_check_typedef (type);
8859 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8860 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8862 val = ada_value_ind (val);
8863 type2 = value_type (val);
8866 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8867 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8869 if (!ada_same_array_size_p (type, type2))
8870 error (_("cannot assign arrays of different length"));
8872 if (is_integral_type (TYPE_TARGET_TYPE (type))
8873 && is_integral_type (TYPE_TARGET_TYPE (type2))
8874 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8875 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8877 /* Allow implicit promotion of the array elements to
8879 return ada_promote_array_of_integrals (type, val);
8882 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8883 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8884 error (_("Incompatible types in assignment"));
8885 deprecated_set_value_type (val, type);
8890 static struct value *
8891 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8894 struct type *type1, *type2;
8897 arg1 = coerce_ref (arg1);
8898 arg2 = coerce_ref (arg2);
8899 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8900 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8902 if (TYPE_CODE (type1) != TYPE_CODE_INT
8903 || TYPE_CODE (type2) != TYPE_CODE_INT)
8904 return value_binop (arg1, arg2, op);
8913 return value_binop (arg1, arg2, op);
8916 v2 = value_as_long (arg2);
8918 error (_("second operand of %s must not be zero."), op_string (op));
8920 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8921 return value_binop (arg1, arg2, op);
8923 v1 = value_as_long (arg1);
8928 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8929 v += v > 0 ? -1 : 1;
8937 /* Should not reach this point. */
8941 val = allocate_value (type1);
8942 store_unsigned_integer (value_contents_raw (val),
8943 TYPE_LENGTH (value_type (val)),
8944 gdbarch_byte_order (get_type_arch (type1)), v);
8949 ada_value_equal (struct value *arg1, struct value *arg2)
8951 if (ada_is_direct_array_type (value_type (arg1))
8952 || ada_is_direct_array_type (value_type (arg2)))
8954 /* Automatically dereference any array reference before
8955 we attempt to perform the comparison. */
8956 arg1 = ada_coerce_ref (arg1);
8957 arg2 = ada_coerce_ref (arg2);
8959 arg1 = ada_coerce_to_simple_array (arg1);
8960 arg2 = ada_coerce_to_simple_array (arg2);
8961 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8962 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8963 error (_("Attempt to compare array with non-array"));
8964 /* FIXME: The following works only for types whose
8965 representations use all bits (no padding or undefined bits)
8966 and do not have user-defined equality. */
8968 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8969 && memcmp (value_contents (arg1), value_contents (arg2),
8970 TYPE_LENGTH (value_type (arg1))) == 0;
8972 return value_equal (arg1, arg2);
8975 /* Total number of component associations in the aggregate starting at
8976 index PC in EXP. Assumes that index PC is the start of an
8980 num_component_specs (struct expression *exp, int pc)
8984 m = exp->elts[pc + 1].longconst;
8987 for (i = 0; i < m; i += 1)
8989 switch (exp->elts[pc].opcode)
8995 n += exp->elts[pc + 1].longconst;
8998 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9003 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9004 component of LHS (a simple array or a record), updating *POS past
9005 the expression, assuming that LHS is contained in CONTAINER. Does
9006 not modify the inferior's memory, nor does it modify LHS (unless
9007 LHS == CONTAINER). */
9010 assign_component (struct value *container, struct value *lhs, LONGEST index,
9011 struct expression *exp, int *pos)
9013 struct value *mark = value_mark ();
9016 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9018 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9019 struct value *index_val = value_from_longest (index_type, index);
9021 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9025 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9026 elt = ada_to_fixed_value (elt);
9029 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9030 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9032 value_assign_to_component (container, elt,
9033 ada_evaluate_subexp (NULL, exp, pos,
9036 value_free_to_mark (mark);
9039 /* Assuming that LHS represents an lvalue having a record or array
9040 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9041 of that aggregate's value to LHS, advancing *POS past the
9042 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9043 lvalue containing LHS (possibly LHS itself). Does not modify
9044 the inferior's memory, nor does it modify the contents of
9045 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9047 static struct value *
9048 assign_aggregate (struct value *container,
9049 struct value *lhs, struct expression *exp,
9050 int *pos, enum noside noside)
9052 struct type *lhs_type;
9053 int n = exp->elts[*pos+1].longconst;
9054 LONGEST low_index, high_index;
9057 int max_indices, num_indices;
9061 if (noside != EVAL_NORMAL)
9063 for (i = 0; i < n; i += 1)
9064 ada_evaluate_subexp (NULL, exp, pos, noside);
9068 container = ada_coerce_ref (container);
9069 if (ada_is_direct_array_type (value_type (container)))
9070 container = ada_coerce_to_simple_array (container);
9071 lhs = ada_coerce_ref (lhs);
9072 if (!deprecated_value_modifiable (lhs))
9073 error (_("Left operand of assignment is not a modifiable lvalue."));
9075 lhs_type = value_type (lhs);
9076 if (ada_is_direct_array_type (lhs_type))
9078 lhs = ada_coerce_to_simple_array (lhs);
9079 lhs_type = value_type (lhs);
9080 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9081 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9083 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9086 high_index = num_visible_fields (lhs_type) - 1;
9089 error (_("Left-hand side must be array or record."));
9091 num_specs = num_component_specs (exp, *pos - 3);
9092 max_indices = 4 * num_specs + 4;
9093 indices = alloca (max_indices * sizeof (indices[0]));
9094 indices[0] = indices[1] = low_index - 1;
9095 indices[2] = indices[3] = high_index + 1;
9098 for (i = 0; i < n; i += 1)
9100 switch (exp->elts[*pos].opcode)
9103 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9104 &num_indices, max_indices,
9105 low_index, high_index);
9108 aggregate_assign_positional (container, lhs, exp, pos, indices,
9109 &num_indices, max_indices,
9110 low_index, high_index);
9114 error (_("Misplaced 'others' clause"));
9115 aggregate_assign_others (container, lhs, exp, pos, indices,
9116 num_indices, low_index, high_index);
9119 error (_("Internal error: bad aggregate clause"));
9126 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9127 construct at *POS, updating *POS past the construct, given that
9128 the positions are relative to lower bound LOW, where HIGH is the
9129 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9130 updating *NUM_INDICES as needed. CONTAINER is as for
9131 assign_aggregate. */
9133 aggregate_assign_positional (struct value *container,
9134 struct value *lhs, struct expression *exp,
9135 int *pos, LONGEST *indices, int *num_indices,
9136 int max_indices, LONGEST low, LONGEST high)
9138 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9140 if (ind - 1 == high)
9141 warning (_("Extra components in aggregate ignored."));
9144 add_component_interval (ind, ind, indices, num_indices, max_indices);
9146 assign_component (container, lhs, ind, exp, pos);
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9152 /* Assign into the components of LHS indexed by the OP_CHOICES
9153 construct at *POS, updating *POS past the construct, given that
9154 the allowable indices are LOW..HIGH. Record the indices assigned
9155 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9156 needed. CONTAINER is as for assign_aggregate. */
9158 aggregate_assign_from_choices (struct value *container,
9159 struct value *lhs, struct expression *exp,
9160 int *pos, LONGEST *indices, int *num_indices,
9161 int max_indices, LONGEST low, LONGEST high)
9164 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9165 int choice_pos, expr_pc;
9166 int is_array = ada_is_direct_array_type (value_type (lhs));
9168 choice_pos = *pos += 3;
9170 for (j = 0; j < n_choices; j += 1)
9171 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9175 for (j = 0; j < n_choices; j += 1)
9177 LONGEST lower, upper;
9178 enum exp_opcode op = exp->elts[choice_pos].opcode;
9180 if (op == OP_DISCRETE_RANGE)
9183 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9185 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9190 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9202 name = &exp->elts[choice_pos + 2].string;
9205 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9208 error (_("Invalid record component association."));
9210 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9212 if (! find_struct_field (name, value_type (lhs), 0,
9213 NULL, NULL, NULL, NULL, &ind))
9214 error (_("Unknown component name: %s."), name);
9215 lower = upper = ind;
9218 if (lower <= upper && (lower < low || upper > high))
9219 error (_("Index in component association out of bounds."));
9221 add_component_interval (lower, upper, indices, num_indices,
9223 while (lower <= upper)
9228 assign_component (container, lhs, lower, exp, &pos1);
9234 /* Assign the value of the expression in the OP_OTHERS construct in
9235 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9236 have not been previously assigned. The index intervals already assigned
9237 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9238 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9240 aggregate_assign_others (struct value *container,
9241 struct value *lhs, struct expression *exp,
9242 int *pos, LONGEST *indices, int num_indices,
9243 LONGEST low, LONGEST high)
9246 int expr_pc = *pos + 1;
9248 for (i = 0; i < num_indices - 2; i += 2)
9252 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9257 assign_component (container, lhs, ind, exp, &localpos);
9260 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9263 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9264 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9265 modifying *SIZE as needed. It is an error if *SIZE exceeds
9266 MAX_SIZE. The resulting intervals do not overlap. */
9268 add_component_interval (LONGEST low, LONGEST high,
9269 LONGEST* indices, int *size, int max_size)
9273 for (i = 0; i < *size; i += 2) {
9274 if (high >= indices[i] && low <= indices[i + 1])
9278 for (kh = i + 2; kh < *size; kh += 2)
9279 if (high < indices[kh])
9281 if (low < indices[i])
9283 indices[i + 1] = indices[kh - 1];
9284 if (high > indices[i + 1])
9285 indices[i + 1] = high;
9286 memcpy (indices + i + 2, indices + kh, *size - kh);
9287 *size -= kh - i - 2;
9290 else if (high < indices[i])
9294 if (*size == max_size)
9295 error (_("Internal error: miscounted aggregate components."));
9297 for (j = *size-1; j >= i+2; j -= 1)
9298 indices[j] = indices[j - 2];
9300 indices[i + 1] = high;
9303 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9306 static struct value *
9307 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9309 if (type == ada_check_typedef (value_type (arg2)))
9312 if (ada_is_fixed_point_type (type))
9313 return (cast_to_fixed (type, arg2));
9315 if (ada_is_fixed_point_type (value_type (arg2)))
9316 return cast_from_fixed (type, arg2);
9318 return value_cast (type, arg2);
9321 /* Evaluating Ada expressions, and printing their result.
9322 ------------------------------------------------------
9327 We usually evaluate an Ada expression in order to print its value.
9328 We also evaluate an expression in order to print its type, which
9329 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9330 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9331 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9332 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9335 Evaluating expressions is a little more complicated for Ada entities
9336 than it is for entities in languages such as C. The main reason for
9337 this is that Ada provides types whose definition might be dynamic.
9338 One example of such types is variant records. Or another example
9339 would be an array whose bounds can only be known at run time.
9341 The following description is a general guide as to what should be
9342 done (and what should NOT be done) in order to evaluate an expression
9343 involving such types, and when. This does not cover how the semantic
9344 information is encoded by GNAT as this is covered separatly. For the
9345 document used as the reference for the GNAT encoding, see exp_dbug.ads
9346 in the GNAT sources.
9348 Ideally, we should embed each part of this description next to its
9349 associated code. Unfortunately, the amount of code is so vast right
9350 now that it's hard to see whether the code handling a particular
9351 situation might be duplicated or not. One day, when the code is
9352 cleaned up, this guide might become redundant with the comments
9353 inserted in the code, and we might want to remove it.
9355 2. ``Fixing'' an Entity, the Simple Case:
9356 -----------------------------------------
9358 When evaluating Ada expressions, the tricky issue is that they may
9359 reference entities whose type contents and size are not statically
9360 known. Consider for instance a variant record:
9362 type Rec (Empty : Boolean := True) is record
9365 when False => Value : Integer;
9368 Yes : Rec := (Empty => False, Value => 1);
9369 No : Rec := (empty => True);
9371 The size and contents of that record depends on the value of the
9372 descriminant (Rec.Empty). At this point, neither the debugging
9373 information nor the associated type structure in GDB are able to
9374 express such dynamic types. So what the debugger does is to create
9375 "fixed" versions of the type that applies to the specific object.
9376 We also informally refer to this opperation as "fixing" an object,
9377 which means creating its associated fixed type.
9379 Example: when printing the value of variable "Yes" above, its fixed
9380 type would look like this:
9387 On the other hand, if we printed the value of "No", its fixed type
9394 Things become a little more complicated when trying to fix an entity
9395 with a dynamic type that directly contains another dynamic type,
9396 such as an array of variant records, for instance. There are
9397 two possible cases: Arrays, and records.
9399 3. ``Fixing'' Arrays:
9400 ---------------------
9402 The type structure in GDB describes an array in terms of its bounds,
9403 and the type of its elements. By design, all elements in the array
9404 have the same type and we cannot represent an array of variant elements
9405 using the current type structure in GDB. When fixing an array,
9406 we cannot fix the array element, as we would potentially need one
9407 fixed type per element of the array. As a result, the best we can do
9408 when fixing an array is to produce an array whose bounds and size
9409 are correct (allowing us to read it from memory), but without having
9410 touched its element type. Fixing each element will be done later,
9411 when (if) necessary.
9413 Arrays are a little simpler to handle than records, because the same
9414 amount of memory is allocated for each element of the array, even if
9415 the amount of space actually used by each element differs from element
9416 to element. Consider for instance the following array of type Rec:
9418 type Rec_Array is array (1 .. 2) of Rec;
9420 The actual amount of memory occupied by each element might be different
9421 from element to element, depending on the value of their discriminant.
9422 But the amount of space reserved for each element in the array remains
9423 fixed regardless. So we simply need to compute that size using
9424 the debugging information available, from which we can then determine
9425 the array size (we multiply the number of elements of the array by
9426 the size of each element).
9428 The simplest case is when we have an array of a constrained element
9429 type. For instance, consider the following type declarations:
9431 type Bounded_String (Max_Size : Integer) is
9433 Buffer : String (1 .. Max_Size);
9435 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9437 In this case, the compiler describes the array as an array of
9438 variable-size elements (identified by its XVS suffix) for which
9439 the size can be read in the parallel XVZ variable.
9441 In the case of an array of an unconstrained element type, the compiler
9442 wraps the array element inside a private PAD type. This type should not
9443 be shown to the user, and must be "unwrap"'ed before printing. Note
9444 that we also use the adjective "aligner" in our code to designate
9445 these wrapper types.
9447 In some cases, the size allocated for each element is statically
9448 known. In that case, the PAD type already has the correct size,
9449 and the array element should remain unfixed.
9451 But there are cases when this size is not statically known.
9452 For instance, assuming that "Five" is an integer variable:
9454 type Dynamic is array (1 .. Five) of Integer;
9455 type Wrapper (Has_Length : Boolean := False) is record
9458 when True => Length : Integer;
9462 type Wrapper_Array is array (1 .. 2) of Wrapper;
9464 Hello : Wrapper_Array := (others => (Has_Length => True,
9465 Data => (others => 17),
9469 The debugging info would describe variable Hello as being an
9470 array of a PAD type. The size of that PAD type is not statically
9471 known, but can be determined using a parallel XVZ variable.
9472 In that case, a copy of the PAD type with the correct size should
9473 be used for the fixed array.
9475 3. ``Fixing'' record type objects:
9476 ----------------------------------
9478 Things are slightly different from arrays in the case of dynamic
9479 record types. In this case, in order to compute the associated
9480 fixed type, we need to determine the size and offset of each of
9481 its components. This, in turn, requires us to compute the fixed
9482 type of each of these components.
9484 Consider for instance the example:
9486 type Bounded_String (Max_Size : Natural) is record
9487 Str : String (1 .. Max_Size);
9490 My_String : Bounded_String (Max_Size => 10);
9492 In that case, the position of field "Length" depends on the size
9493 of field Str, which itself depends on the value of the Max_Size
9494 discriminant. In order to fix the type of variable My_String,
9495 we need to fix the type of field Str. Therefore, fixing a variant
9496 record requires us to fix each of its components.
9498 However, if a component does not have a dynamic size, the component
9499 should not be fixed. In particular, fields that use a PAD type
9500 should not fixed. Here is an example where this might happen
9501 (assuming type Rec above):
9503 type Container (Big : Boolean) is record
9507 when True => Another : Integer;
9511 My_Container : Container := (Big => False,
9512 First => (Empty => True),
9515 In that example, the compiler creates a PAD type for component First,
9516 whose size is constant, and then positions the component After just
9517 right after it. The offset of component After is therefore constant
9520 The debugger computes the position of each field based on an algorithm
9521 that uses, among other things, the actual position and size of the field
9522 preceding it. Let's now imagine that the user is trying to print
9523 the value of My_Container. If the type fixing was recursive, we would
9524 end up computing the offset of field After based on the size of the
9525 fixed version of field First. And since in our example First has
9526 only one actual field, the size of the fixed type is actually smaller
9527 than the amount of space allocated to that field, and thus we would
9528 compute the wrong offset of field After.
9530 To make things more complicated, we need to watch out for dynamic
9531 components of variant records (identified by the ___XVL suffix in
9532 the component name). Even if the target type is a PAD type, the size
9533 of that type might not be statically known. So the PAD type needs
9534 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9535 we might end up with the wrong size for our component. This can be
9536 observed with the following type declarations:
9538 type Octal is new Integer range 0 .. 7;
9539 type Octal_Array is array (Positive range <>) of Octal;
9540 pragma Pack (Octal_Array);
9542 type Octal_Buffer (Size : Positive) is record
9543 Buffer : Octal_Array (1 .. Size);
9547 In that case, Buffer is a PAD type whose size is unset and needs
9548 to be computed by fixing the unwrapped type.
9550 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9551 ----------------------------------------------------------
9553 Lastly, when should the sub-elements of an entity that remained unfixed
9554 thus far, be actually fixed?
9556 The answer is: Only when referencing that element. For instance
9557 when selecting one component of a record, this specific component
9558 should be fixed at that point in time. Or when printing the value
9559 of a record, each component should be fixed before its value gets
9560 printed. Similarly for arrays, the element of the array should be
9561 fixed when printing each element of the array, or when extracting
9562 one element out of that array. On the other hand, fixing should
9563 not be performed on the elements when taking a slice of an array!
9565 Note that one of the side-effects of miscomputing the offset and
9566 size of each field is that we end up also miscomputing the size
9567 of the containing type. This can have adverse results when computing
9568 the value of an entity. GDB fetches the value of an entity based
9569 on the size of its type, and thus a wrong size causes GDB to fetch
9570 the wrong amount of memory. In the case where the computed size is
9571 too small, GDB fetches too little data to print the value of our
9572 entiry. Results in this case as unpredicatble, as we usually read
9573 past the buffer containing the data =:-o. */
9575 /* Implement the evaluate_exp routine in the exp_descriptor structure
9576 for the Ada language. */
9578 static struct value *
9579 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9580 int *pos, enum noside noside)
9585 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9588 struct value **argvec;
9592 op = exp->elts[pc].opcode;
9598 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9600 if (noside == EVAL_NORMAL)
9601 arg1 = unwrap_value (arg1);
9603 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9604 then we need to perform the conversion manually, because
9605 evaluate_subexp_standard doesn't do it. This conversion is
9606 necessary in Ada because the different kinds of float/fixed
9607 types in Ada have different representations.
9609 Similarly, we need to perform the conversion from OP_LONG
9611 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9612 arg1 = ada_value_cast (expect_type, arg1, noside);
9618 struct value *result;
9621 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9622 /* The result type will have code OP_STRING, bashed there from
9623 OP_ARRAY. Bash it back. */
9624 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9625 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9631 type = exp->elts[pc + 1].type;
9632 arg1 = evaluate_subexp (type, exp, pos, noside);
9633 if (noside == EVAL_SKIP)
9635 arg1 = ada_value_cast (type, arg1, noside);
9640 type = exp->elts[pc + 1].type;
9641 return ada_evaluate_subexp (type, exp, pos, noside);
9644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9645 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9647 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9648 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9650 return ada_value_assign (arg1, arg1);
9652 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9653 except if the lhs of our assignment is a convenience variable.
9654 In the case of assigning to a convenience variable, the lhs
9655 should be exactly the result of the evaluation of the rhs. */
9656 type = value_type (arg1);
9657 if (VALUE_LVAL (arg1) == lval_internalvar)
9659 arg2 = evaluate_subexp (type, exp, pos, noside);
9660 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9662 if (ada_is_fixed_point_type (value_type (arg1)))
9663 arg2 = cast_to_fixed (value_type (arg1), arg2);
9664 else if (ada_is_fixed_point_type (value_type (arg2)))
9666 (_("Fixed-point values must be assigned to fixed-point variables"));
9668 arg2 = coerce_for_assign (value_type (arg1), arg2);
9669 return ada_value_assign (arg1, arg2);
9672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 if (noside == EVAL_SKIP)
9676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9677 return (value_from_longest
9679 value_as_long (arg1) + value_as_long (arg2)));
9680 if ((ada_is_fixed_point_type (value_type (arg1))
9681 || ada_is_fixed_point_type (value_type (arg2)))
9682 && value_type (arg1) != value_type (arg2))
9683 error (_("Operands of fixed-point addition must have the same type"));
9684 /* Do the addition, and cast the result to the type of the first
9685 argument. We cannot cast the result to a reference type, so if
9686 ARG1 is a reference type, find its underlying type. */
9687 type = value_type (arg1);
9688 while (TYPE_CODE (type) == TYPE_CODE_REF)
9689 type = TYPE_TARGET_TYPE (type);
9690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9691 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9694 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9695 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9696 if (noside == EVAL_SKIP)
9698 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9699 return (value_from_longest
9701 value_as_long (arg1) - value_as_long (arg2)));
9702 if ((ada_is_fixed_point_type (value_type (arg1))
9703 || ada_is_fixed_point_type (value_type (arg2)))
9704 && value_type (arg1) != value_type (arg2))
9705 error (_("Operands of fixed-point subtraction "
9706 "must have the same type"));
9707 /* Do the substraction, and cast the result to the type of the first
9708 argument. We cannot cast the result to a reference type, so if
9709 ARG1 is a reference type, find its underlying type. */
9710 type = value_type (arg1);
9711 while (TYPE_CODE (type) == TYPE_CODE_REF)
9712 type = TYPE_TARGET_TYPE (type);
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9714 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 if (noside == EVAL_SKIP)
9724 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9727 return value_zero (value_type (arg1), not_lval);
9731 type = builtin_type (exp->gdbarch)->builtin_double;
9732 if (ada_is_fixed_point_type (value_type (arg1)))
9733 arg1 = cast_from_fixed (type, arg1);
9734 if (ada_is_fixed_point_type (value_type (arg2)))
9735 arg2 = cast_from_fixed (type, arg2);
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9737 return ada_value_binop (arg1, arg2, op);
9741 case BINOP_NOTEQUAL:
9742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9743 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9744 if (noside == EVAL_SKIP)
9746 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9750 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9751 tem = ada_value_equal (arg1, arg2);
9753 if (op == BINOP_NOTEQUAL)
9755 type = language_bool_type (exp->language_defn, exp->gdbarch);
9756 return value_from_longest (type, (LONGEST) tem);
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 if (noside == EVAL_SKIP)
9762 else if (ada_is_fixed_point_type (value_type (arg1)))
9763 return value_cast (value_type (arg1), value_neg (arg1));
9766 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9767 return value_neg (arg1);
9770 case BINOP_LOGICAL_AND:
9771 case BINOP_LOGICAL_OR:
9772 case UNOP_LOGICAL_NOT:
9777 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9778 type = language_bool_type (exp->language_defn, exp->gdbarch);
9779 return value_cast (type, val);
9782 case BINOP_BITWISE_AND:
9783 case BINOP_BITWISE_IOR:
9784 case BINOP_BITWISE_XOR:
9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9792 return value_cast (value_type (arg1), val);
9798 if (noside == EVAL_SKIP)
9803 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9804 /* Only encountered when an unresolved symbol occurs in a
9805 context other than a function call, in which case, it is
9807 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9808 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9809 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9811 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9812 /* Check to see if this is a tagged type. We also need to handle
9813 the case where the type is a reference to a tagged type, but
9814 we have to be careful to exclude pointers to tagged types.
9815 The latter should be shown as usual (as a pointer), whereas
9816 a reference should mostly be transparent to the user. */
9817 if (ada_is_tagged_type (type, 0)
9818 || (TYPE_CODE(type) == TYPE_CODE_REF
9819 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9821 /* Tagged types are a little special in the fact that the real
9822 type is dynamic and can only be determined by inspecting the
9823 object's tag. This means that we need to get the object's
9824 value first (EVAL_NORMAL) and then extract the actual object
9827 Note that we cannot skip the final step where we extract
9828 the object type from its tag, because the EVAL_NORMAL phase
9829 results in dynamic components being resolved into fixed ones.
9830 This can cause problems when trying to print the type
9831 description of tagged types whose parent has a dynamic size:
9832 We use the type name of the "_parent" component in order
9833 to print the name of the ancestor type in the type description.
9834 If that component had a dynamic size, the resolution into
9835 a fixed type would result in the loss of that type name,
9836 thus preventing us from printing the name of the ancestor
9837 type in the type description. */
9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9840 if (TYPE_CODE (type) != TYPE_CODE_REF)
9842 struct type *actual_type;
9844 actual_type = type_from_tag (ada_value_tag (arg1));
9845 if (actual_type == NULL)
9846 /* If, for some reason, we were unable to determine
9847 the actual type from the tag, then use the static
9848 approximation that we just computed as a fallback.
9849 This can happen if the debugging information is
9850 incomplete, for instance. */
9852 return value_zero (actual_type, not_lval);
9856 /* In the case of a ref, ada_coerce_ref takes care
9857 of determining the actual type. But the evaluation
9858 should return a ref as it should be valid to ask
9859 for its address; so rebuild a ref after coerce. */
9860 arg1 = ada_coerce_ref (arg1);
9861 return value_ref (arg1);
9867 (to_static_fixed_type
9868 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9873 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9874 return ada_to_fixed_value (arg1);
9880 /* Allocate arg vector, including space for the function to be
9881 called in argvec[0] and a terminating NULL. */
9882 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9884 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9886 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9888 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9889 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9892 for (tem = 0; tem <= nargs; tem += 1)
9893 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9896 if (noside == EVAL_SKIP)
9900 if (ada_is_constrained_packed_array_type
9901 (desc_base_type (value_type (argvec[0]))))
9902 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9903 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9904 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9905 /* This is a packed array that has already been fixed, and
9906 therefore already coerced to a simple array. Nothing further
9909 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9910 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9911 && VALUE_LVAL (argvec[0]) == lval_memory))
9912 argvec[0] = value_addr (argvec[0]);
9914 type = ada_check_typedef (value_type (argvec[0]));
9916 /* Ada allows us to implicitly dereference arrays when subscripting
9917 them. So, if this is an array typedef (encoding use for array
9918 access types encoded as fat pointers), strip it now. */
9919 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9920 type = ada_typedef_target_type (type);
9922 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9924 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9926 case TYPE_CODE_FUNC:
9927 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9929 case TYPE_CODE_ARRAY:
9931 case TYPE_CODE_STRUCT:
9932 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9933 argvec[0] = ada_value_ind (argvec[0]);
9934 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9937 error (_("cannot subscript or call something of type `%s'"),
9938 ada_type_name (value_type (argvec[0])));
9943 switch (TYPE_CODE (type))
9945 case TYPE_CODE_FUNC:
9946 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9948 struct type *rtype = TYPE_TARGET_TYPE (type);
9950 if (TYPE_GNU_IFUNC (type))
9951 return allocate_value (TYPE_TARGET_TYPE (rtype));
9952 return allocate_value (rtype);
9954 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9955 case TYPE_CODE_INTERNAL_FUNCTION:
9956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9957 /* We don't know anything about what the internal
9958 function might return, but we have to return
9960 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9963 return call_internal_function (exp->gdbarch, exp->language_defn,
9964 argvec[0], nargs, argvec + 1);
9966 case TYPE_CODE_STRUCT:
9970 arity = ada_array_arity (type);
9971 type = ada_array_element_type (type, nargs);
9973 error (_("cannot subscript or call a record"));
9975 error (_("wrong number of subscripts; expecting %d"), arity);
9976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9977 return value_zero (ada_aligned_type (type), lval_memory);
9979 unwrap_value (ada_value_subscript
9980 (argvec[0], nargs, argvec + 1));
9982 case TYPE_CODE_ARRAY:
9983 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9985 type = ada_array_element_type (type, nargs);
9987 error (_("element type of array unknown"));
9989 return value_zero (ada_aligned_type (type), lval_memory);
9992 unwrap_value (ada_value_subscript
9993 (ada_coerce_to_simple_array (argvec[0]),
9994 nargs, argvec + 1));
9995 case TYPE_CODE_PTR: /* Pointer to array */
9996 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9999 type = ada_array_element_type (type, nargs);
10001 error (_("element type of array unknown"));
10003 return value_zero (ada_aligned_type (type), lval_memory);
10006 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10007 nargs, argvec + 1));
10010 error (_("Attempt to index or call something other than an "
10011 "array or function"));
10016 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10017 struct value *low_bound_val =
10018 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 struct value *high_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 LONGEST high_bound;
10024 low_bound_val = coerce_ref (low_bound_val);
10025 high_bound_val = coerce_ref (high_bound_val);
10026 low_bound = pos_atr (low_bound_val);
10027 high_bound = pos_atr (high_bound_val);
10029 if (noside == EVAL_SKIP)
10032 /* If this is a reference to an aligner type, then remove all
10034 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10035 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10036 TYPE_TARGET_TYPE (value_type (array)) =
10037 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10039 if (ada_is_constrained_packed_array_type (value_type (array)))
10040 error (_("cannot slice a packed array"));
10042 /* If this is a reference to an array or an array lvalue,
10043 convert to a pointer. */
10044 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10045 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10046 && VALUE_LVAL (array) == lval_memory))
10047 array = value_addr (array);
10049 if (noside == EVAL_AVOID_SIDE_EFFECTS
10050 && ada_is_array_descriptor_type (ada_check_typedef
10051 (value_type (array))))
10052 return empty_array (ada_type_of_array (array, 0), low_bound);
10054 array = ada_coerce_to_simple_array_ptr (array);
10056 /* If we have more than one level of pointer indirection,
10057 dereference the value until we get only one level. */
10058 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10059 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10061 array = value_ind (array);
10063 /* Make sure we really do have an array type before going further,
10064 to avoid a SEGV when trying to get the index type or the target
10065 type later down the road if the debug info generated by
10066 the compiler is incorrect or incomplete. */
10067 if (!ada_is_simple_array_type (value_type (array)))
10068 error (_("cannot take slice of non-array"));
10070 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10073 struct type *type0 = ada_check_typedef (value_type (array));
10075 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10076 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10079 struct type *arr_type0 =
10080 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10082 return ada_value_slice_from_ptr (array, arr_type0,
10083 longest_to_int (low_bound),
10084 longest_to_int (high_bound));
10087 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10089 else if (high_bound < low_bound)
10090 return empty_array (value_type (array), low_bound);
10092 return ada_value_slice (array, longest_to_int (low_bound),
10093 longest_to_int (high_bound));
10096 case UNOP_IN_RANGE:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 type = check_typedef (exp->elts[pc + 1].type);
10101 if (noside == EVAL_SKIP)
10104 switch (TYPE_CODE (type))
10107 lim_warning (_("Membership test incompletely implemented; "
10108 "always returns true"));
10109 type = language_bool_type (exp->language_defn, exp->gdbarch);
10110 return value_from_longest (type, (LONGEST) 1);
10112 case TYPE_CODE_RANGE:
10113 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10114 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10115 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10117 type = language_bool_type (exp->language_defn, exp->gdbarch);
10119 value_from_longest (type,
10120 (value_less (arg1, arg3)
10121 || value_equal (arg1, arg3))
10122 && (value_less (arg2, arg1)
10123 || value_equal (arg2, arg1)));
10126 case BINOP_IN_BOUNDS:
10128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 if (noside == EVAL_SKIP)
10134 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10136 type = language_bool_type (exp->language_defn, exp->gdbarch);
10137 return value_zero (type, not_lval);
10140 tem = longest_to_int (exp->elts[pc + 1].longconst);
10142 type = ada_index_type (value_type (arg2), tem, "range");
10144 type = value_type (arg1);
10146 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10147 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10151 type = language_bool_type (exp->language_defn, exp->gdbarch);
10153 value_from_longest (type,
10154 (value_less (arg1, arg3)
10155 || value_equal (arg1, arg3))
10156 && (value_less (arg2, arg1)
10157 || value_equal (arg2, arg1)));
10159 case TERNOP_IN_RANGE:
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10161 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 if (noside == EVAL_SKIP)
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10169 type = language_bool_type (exp->language_defn, exp->gdbarch);
10171 value_from_longest (type,
10172 (value_less (arg1, arg3)
10173 || value_equal (arg1, arg3))
10174 && (value_less (arg2, arg1)
10175 || value_equal (arg2, arg1)));
10179 case OP_ATR_LENGTH:
10181 struct type *type_arg;
10183 if (exp->elts[*pos].opcode == OP_TYPE)
10185 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10187 type_arg = check_typedef (exp->elts[pc + 2].type);
10191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 if (exp->elts[*pos].opcode != OP_LONG)
10196 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10197 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10200 if (noside == EVAL_SKIP)
10203 if (type_arg == NULL)
10205 arg1 = ada_coerce_ref (arg1);
10207 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10208 arg1 = ada_coerce_to_simple_array (arg1);
10210 type = ada_index_type (value_type (arg1), tem,
10211 ada_attribute_name (op));
10213 type = builtin_type (exp->gdbarch)->builtin_int;
10215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10216 return allocate_value (type);
10220 default: /* Should never happen. */
10221 error (_("unexpected attribute encountered"));
10223 return value_from_longest
10224 (type, ada_array_bound (arg1, tem, 0));
10226 return value_from_longest
10227 (type, ada_array_bound (arg1, tem, 1));
10228 case OP_ATR_LENGTH:
10229 return value_from_longest
10230 (type, ada_array_length (arg1, tem));
10233 else if (discrete_type_p (type_arg))
10235 struct type *range_type;
10236 const char *name = ada_type_name (type_arg);
10239 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10240 range_type = to_fixed_range_type (type_arg, NULL);
10241 if (range_type == NULL)
10242 range_type = type_arg;
10246 error (_("unexpected attribute encountered"));
10248 return value_from_longest
10249 (range_type, ada_discrete_type_low_bound (range_type));
10251 return value_from_longest
10252 (range_type, ada_discrete_type_high_bound (range_type));
10253 case OP_ATR_LENGTH:
10254 error (_("the 'length attribute applies only to array types"));
10257 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10258 error (_("unimplemented type attribute"));
10263 if (ada_is_constrained_packed_array_type (type_arg))
10264 type_arg = decode_constrained_packed_array_type (type_arg);
10266 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10268 type = builtin_type (exp->gdbarch)->builtin_int;
10270 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10271 return allocate_value (type);
10276 error (_("unexpected attribute encountered"));
10278 low = ada_array_bound_from_type (type_arg, tem, 0);
10279 return value_from_longest (type, low);
10281 high = ada_array_bound_from_type (type_arg, tem, 1);
10282 return value_from_longest (type, high);
10283 case OP_ATR_LENGTH:
10284 low = ada_array_bound_from_type (type_arg, tem, 0);
10285 high = ada_array_bound_from_type (type_arg, tem, 1);
10286 return value_from_longest (type, high - low + 1);
10292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10293 if (noside == EVAL_SKIP)
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10297 return value_zero (ada_tag_type (arg1), not_lval);
10299 return ada_value_tag (arg1);
10303 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10305 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10306 if (noside == EVAL_SKIP)
10308 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10309 return value_zero (value_type (arg1), not_lval);
10312 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10313 return value_binop (arg1, arg2,
10314 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10317 case OP_ATR_MODULUS:
10319 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10322 if (noside == EVAL_SKIP)
10325 if (!ada_is_modular_type (type_arg))
10326 error (_("'modulus must be applied to modular type"));
10328 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10329 ada_modulus (type_arg));
10334 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10335 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10336 if (noside == EVAL_SKIP)
10338 type = builtin_type (exp->gdbarch)->builtin_int;
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return value_zero (type, not_lval);
10342 return value_pos_atr (type, arg1);
10345 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10346 type = value_type (arg1);
10348 /* If the argument is a reference, then dereference its type, since
10349 the user is really asking for the size of the actual object,
10350 not the size of the pointer. */
10351 if (TYPE_CODE (type) == TYPE_CODE_REF)
10352 type = TYPE_TARGET_TYPE (type);
10354 if (noside == EVAL_SKIP)
10356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10357 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10359 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10360 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10363 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10364 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10365 type = exp->elts[pc + 2].type;
10366 if (noside == EVAL_SKIP)
10368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10369 return value_zero (type, not_lval);
10371 return value_val_atr (type, arg1);
10374 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 if (noside == EVAL_SKIP)
10378 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10379 return value_zero (value_type (arg1), not_lval);
10382 /* For integer exponentiation operations,
10383 only promote the first argument. */
10384 if (is_integral_type (value_type (arg2)))
10385 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10387 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10389 return value_binop (arg1, arg2, op);
10393 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (noside == EVAL_SKIP)
10400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10401 if (noside == EVAL_SKIP)
10403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10404 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10405 return value_neg (arg1);
10410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10411 if (noside == EVAL_SKIP)
10413 type = ada_check_typedef (value_type (arg1));
10414 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10416 if (ada_is_array_descriptor_type (type))
10417 /* GDB allows dereferencing GNAT array descriptors. */
10419 struct type *arrType = ada_type_of_array (arg1, 0);
10421 if (arrType == NULL)
10422 error (_("Attempt to dereference null array pointer."));
10423 return value_at_lazy (arrType, 0);
10425 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10426 || TYPE_CODE (type) == TYPE_CODE_REF
10427 /* In C you can dereference an array to get the 1st elt. */
10428 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10430 type = to_static_fixed_type
10432 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10434 return value_zero (type, lval_memory);
10436 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10438 /* GDB allows dereferencing an int. */
10439 if (expect_type == NULL)
10440 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10445 to_static_fixed_type (ada_aligned_type (expect_type));
10446 return value_zero (expect_type, lval_memory);
10450 error (_("Attempt to take contents of a non-pointer value."));
10452 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10453 type = ada_check_typedef (value_type (arg1));
10455 if (TYPE_CODE (type) == TYPE_CODE_INT)
10456 /* GDB allows dereferencing an int. If we were given
10457 the expect_type, then use that as the target type.
10458 Otherwise, assume that the target type is an int. */
10460 if (expect_type != NULL)
10461 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10464 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10465 (CORE_ADDR) value_as_address (arg1));
10468 if (ada_is_array_descriptor_type (type))
10469 /* GDB allows dereferencing GNAT array descriptors. */
10470 return ada_coerce_to_simple_array (arg1);
10472 return ada_value_ind (arg1);
10474 case STRUCTOP_STRUCT:
10475 tem = longest_to_int (exp->elts[pc + 1].longconst);
10476 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10478 if (noside == EVAL_SKIP)
10480 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10482 struct type *type1 = value_type (arg1);
10484 if (ada_is_tagged_type (type1, 1))
10486 type = ada_lookup_struct_elt_type (type1,
10487 &exp->elts[pc + 2].string,
10490 /* In this case, we assume that the field COULD exist
10491 in some extension of the type. Return an object of
10492 "type" void, which will match any formal
10493 (see ada_type_match). */
10494 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10499 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10502 return value_zero (ada_aligned_type (type), lval_memory);
10505 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10506 arg1 = unwrap_value (arg1);
10507 return ada_to_fixed_value (arg1);
10510 /* The value is not supposed to be used. This is here to make it
10511 easier to accommodate expressions that contain types. */
10513 if (noside == EVAL_SKIP)
10515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10516 return allocate_value (exp->elts[pc + 1].type);
10518 error (_("Attempt to use a type name as an expression"));
10523 case OP_DISCRETE_RANGE:
10524 case OP_POSITIONAL:
10526 if (noside == EVAL_NORMAL)
10530 error (_("Undefined name, ambiguous name, or renaming used in "
10531 "component association: %s."), &exp->elts[pc+2].string);
10533 error (_("Aggregates only allowed on the right of an assignment"));
10535 internal_error (__FILE__, __LINE__,
10536 _("aggregate apparently mangled"));
10539 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10541 for (tem = 0; tem < nargs; tem += 1)
10542 ada_evaluate_subexp (NULL, exp, pos, noside);
10547 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10553 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10554 type name that encodes the 'small and 'delta information.
10555 Otherwise, return NULL. */
10557 static const char *
10558 fixed_type_info (struct type *type)
10560 const char *name = ada_type_name (type);
10561 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10563 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10565 const char *tail = strstr (name, "___XF_");
10572 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10573 return fixed_type_info (TYPE_TARGET_TYPE (type));
10578 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10581 ada_is_fixed_point_type (struct type *type)
10583 return fixed_type_info (type) != NULL;
10586 /* Return non-zero iff TYPE represents a System.Address type. */
10589 ada_is_system_address_type (struct type *type)
10591 return (TYPE_NAME (type)
10592 && strcmp (TYPE_NAME (type), "system__address") == 0);
10595 /* Assuming that TYPE is the representation of an Ada fixed-point
10596 type, return its delta, or -1 if the type is malformed and the
10597 delta cannot be determined. */
10600 ada_delta (struct type *type)
10602 const char *encoding = fixed_type_info (type);
10605 /* Strictly speaking, num and den are encoded as integer. However,
10606 they may not fit into a long, and they will have to be converted
10607 to DOUBLEST anyway. So scan them as DOUBLEST. */
10608 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10615 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10616 factor ('SMALL value) associated with the type. */
10619 scaling_factor (struct type *type)
10621 const char *encoding = fixed_type_info (type);
10622 DOUBLEST num0, den0, num1, den1;
10625 /* Strictly speaking, num's and den's are encoded as integer. However,
10626 they may not fit into a long, and they will have to be converted
10627 to DOUBLEST anyway. So scan them as DOUBLEST. */
10628 n = sscanf (encoding,
10629 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10630 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10631 &num0, &den0, &num1, &den1);
10636 return num1 / den1;
10638 return num0 / den0;
10642 /* Assuming that X is the representation of a value of fixed-point
10643 type TYPE, return its floating-point equivalent. */
10646 ada_fixed_to_float (struct type *type, LONGEST x)
10648 return (DOUBLEST) x *scaling_factor (type);
10651 /* The representation of a fixed-point value of type TYPE
10652 corresponding to the value X. */
10655 ada_float_to_fixed (struct type *type, DOUBLEST x)
10657 return (LONGEST) (x / scaling_factor (type) + 0.5);
10664 /* Scan STR beginning at position K for a discriminant name, and
10665 return the value of that discriminant field of DVAL in *PX. If
10666 PNEW_K is not null, put the position of the character beyond the
10667 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10668 not alter *PX and *PNEW_K if unsuccessful. */
10671 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10674 static char *bound_buffer = NULL;
10675 static size_t bound_buffer_len = 0;
10678 struct value *bound_val;
10680 if (dval == NULL || str == NULL || str[k] == '\0')
10683 pend = strstr (str + k, "__");
10687 k += strlen (bound);
10691 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10692 bound = bound_buffer;
10693 strncpy (bound_buffer, str + k, pend - (str + k));
10694 bound[pend - (str + k)] = '\0';
10698 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10699 if (bound_val == NULL)
10702 *px = value_as_long (bound_val);
10703 if (pnew_k != NULL)
10708 /* Value of variable named NAME in the current environment. If
10709 no such variable found, then if ERR_MSG is null, returns 0, and
10710 otherwise causes an error with message ERR_MSG. */
10712 static struct value *
10713 get_var_value (char *name, char *err_msg)
10715 struct ada_symbol_info *syms;
10718 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10723 if (err_msg == NULL)
10726 error (("%s"), err_msg);
10729 return value_of_variable (syms[0].sym, syms[0].block);
10732 /* Value of integer variable named NAME in the current environment. If
10733 no such variable found, returns 0, and sets *FLAG to 0. If
10734 successful, sets *FLAG to 1. */
10737 get_int_var_value (char *name, int *flag)
10739 struct value *var_val = get_var_value (name, 0);
10751 return value_as_long (var_val);
10756 /* Return a range type whose base type is that of the range type named
10757 NAME in the current environment, and whose bounds are calculated
10758 from NAME according to the GNAT range encoding conventions.
10759 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10760 corresponding range type from debug information; fall back to using it
10761 if symbol lookup fails. If a new type must be created, allocate it
10762 like ORIG_TYPE was. The bounds information, in general, is encoded
10763 in NAME, the base type given in the named range type. */
10765 static struct type *
10766 to_fixed_range_type (struct type *raw_type, struct value *dval)
10769 struct type *base_type;
10770 char *subtype_info;
10772 gdb_assert (raw_type != NULL);
10773 gdb_assert (TYPE_NAME (raw_type) != NULL);
10775 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10776 base_type = TYPE_TARGET_TYPE (raw_type);
10778 base_type = raw_type;
10780 name = TYPE_NAME (raw_type);
10781 subtype_info = strstr (name, "___XD");
10782 if (subtype_info == NULL)
10784 LONGEST L = ada_discrete_type_low_bound (raw_type);
10785 LONGEST U = ada_discrete_type_high_bound (raw_type);
10787 if (L < INT_MIN || U > INT_MAX)
10790 return create_range_type (alloc_type_copy (raw_type), raw_type,
10791 ada_discrete_type_low_bound (raw_type),
10792 ada_discrete_type_high_bound (raw_type));
10796 static char *name_buf = NULL;
10797 static size_t name_len = 0;
10798 int prefix_len = subtype_info - name;
10804 GROW_VECT (name_buf, name_len, prefix_len + 5);
10805 strncpy (name_buf, name, prefix_len);
10806 name_buf[prefix_len] = '\0';
10809 bounds_str = strchr (subtype_info, '_');
10812 if (*subtype_info == 'L')
10814 if (!ada_scan_number (bounds_str, n, &L, &n)
10815 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10817 if (bounds_str[n] == '_')
10819 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10827 strcpy (name_buf + prefix_len, "___L");
10828 L = get_int_var_value (name_buf, &ok);
10831 lim_warning (_("Unknown lower bound, using 1."));
10836 if (*subtype_info == 'U')
10838 if (!ada_scan_number (bounds_str, n, &U, &n)
10839 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10846 strcpy (name_buf + prefix_len, "___U");
10847 U = get_int_var_value (name_buf, &ok);
10850 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10855 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10856 TYPE_NAME (type) = name;
10861 /* True iff NAME is the name of a range type. */
10864 ada_is_range_type_name (const char *name)
10866 return (name != NULL && strstr (name, "___XD"));
10870 /* Modular types */
10872 /* True iff TYPE is an Ada modular type. */
10875 ada_is_modular_type (struct type *type)
10877 struct type *subranged_type = get_base_type (type);
10879 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10880 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10881 && TYPE_UNSIGNED (subranged_type));
10884 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10887 ada_modulus (struct type *type)
10889 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10893 /* Ada exception catchpoint support:
10894 ---------------------------------
10896 We support 3 kinds of exception catchpoints:
10897 . catchpoints on Ada exceptions
10898 . catchpoints on unhandled Ada exceptions
10899 . catchpoints on failed assertions
10901 Exceptions raised during failed assertions, or unhandled exceptions
10902 could perfectly be caught with the general catchpoint on Ada exceptions.
10903 However, we can easily differentiate these two special cases, and having
10904 the option to distinguish these two cases from the rest can be useful
10905 to zero-in on certain situations.
10907 Exception catchpoints are a specialized form of breakpoint,
10908 since they rely on inserting breakpoints inside known routines
10909 of the GNAT runtime. The implementation therefore uses a standard
10910 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10913 Support in the runtime for exception catchpoints have been changed
10914 a few times already, and these changes affect the implementation
10915 of these catchpoints. In order to be able to support several
10916 variants of the runtime, we use a sniffer that will determine
10917 the runtime variant used by the program being debugged. */
10919 /* The different types of catchpoints that we introduced for catching
10922 enum exception_catchpoint_kind
10924 ex_catch_exception,
10925 ex_catch_exception_unhandled,
10929 /* Ada's standard exceptions. */
10931 static char *standard_exc[] = {
10932 "constraint_error",
10938 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10940 /* A structure that describes how to support exception catchpoints
10941 for a given executable. */
10943 struct exception_support_info
10945 /* The name of the symbol to break on in order to insert
10946 a catchpoint on exceptions. */
10947 const char *catch_exception_sym;
10949 /* The name of the symbol to break on in order to insert
10950 a catchpoint on unhandled exceptions. */
10951 const char *catch_exception_unhandled_sym;
10953 /* The name of the symbol to break on in order to insert
10954 a catchpoint on failed assertions. */
10955 const char *catch_assert_sym;
10957 /* Assuming that the inferior just triggered an unhandled exception
10958 catchpoint, this function is responsible for returning the address
10959 in inferior memory where the name of that exception is stored.
10960 Return zero if the address could not be computed. */
10961 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10964 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10965 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10967 /* The following exception support info structure describes how to
10968 implement exception catchpoints with the latest version of the
10969 Ada runtime (as of 2007-03-06). */
10971 static const struct exception_support_info default_exception_support_info =
10973 "__gnat_debug_raise_exception", /* catch_exception_sym */
10974 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10975 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10976 ada_unhandled_exception_name_addr
10979 /* The following exception support info structure describes how to
10980 implement exception catchpoints with a slightly older version
10981 of the Ada runtime. */
10983 static const struct exception_support_info exception_support_info_fallback =
10985 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10986 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10987 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10988 ada_unhandled_exception_name_addr_from_raise
10991 /* Return nonzero if we can detect the exception support routines
10992 described in EINFO.
10994 This function errors out if an abnormal situation is detected
10995 (for instance, if we find the exception support routines, but
10996 that support is found to be incomplete). */
10999 ada_has_this_exception_support (const struct exception_support_info *einfo)
11001 struct symbol *sym;
11003 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11004 that should be compiled with debugging information. As a result, we
11005 expect to find that symbol in the symtabs. */
11007 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11010 /* Perhaps we did not find our symbol because the Ada runtime was
11011 compiled without debugging info, or simply stripped of it.
11012 It happens on some GNU/Linux distributions for instance, where
11013 users have to install a separate debug package in order to get
11014 the runtime's debugging info. In that situation, let the user
11015 know why we cannot insert an Ada exception catchpoint.
11017 Note: Just for the purpose of inserting our Ada exception
11018 catchpoint, we could rely purely on the associated minimal symbol.
11019 But we would be operating in degraded mode anyway, since we are
11020 still lacking the debugging info needed later on to extract
11021 the name of the exception being raised (this name is printed in
11022 the catchpoint message, and is also used when trying to catch
11023 a specific exception). We do not handle this case for now. */
11024 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11025 error (_("Your Ada runtime appears to be missing some debugging "
11026 "information.\nCannot insert Ada exception catchpoint "
11027 "in this configuration."));
11032 /* Make sure that the symbol we found corresponds to a function. */
11034 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11035 error (_("Symbol \"%s\" is not a function (class = %d)"),
11036 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11041 /* Inspect the Ada runtime and determine which exception info structure
11042 should be used to provide support for exception catchpoints.
11044 This function will always set the per-inferior exception_info,
11045 or raise an error. */
11048 ada_exception_support_info_sniffer (void)
11050 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11052 /* If the exception info is already known, then no need to recompute it. */
11053 if (data->exception_info != NULL)
11056 /* Check the latest (default) exception support info. */
11057 if (ada_has_this_exception_support (&default_exception_support_info))
11059 data->exception_info = &default_exception_support_info;
11063 /* Try our fallback exception suport info. */
11064 if (ada_has_this_exception_support (&exception_support_info_fallback))
11066 data->exception_info = &exception_support_info_fallback;
11070 /* Sometimes, it is normal for us to not be able to find the routine
11071 we are looking for. This happens when the program is linked with
11072 the shared version of the GNAT runtime, and the program has not been
11073 started yet. Inform the user of these two possible causes if
11076 if (ada_update_initial_language (language_unknown) != language_ada)
11077 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11079 /* If the symbol does not exist, then check that the program is
11080 already started, to make sure that shared libraries have been
11081 loaded. If it is not started, this may mean that the symbol is
11082 in a shared library. */
11084 if (ptid_get_pid (inferior_ptid) == 0)
11085 error (_("Unable to insert catchpoint. Try to start the program first."));
11087 /* At this point, we know that we are debugging an Ada program and
11088 that the inferior has been started, but we still are not able to
11089 find the run-time symbols. That can mean that we are in
11090 configurable run time mode, or that a-except as been optimized
11091 out by the linker... In any case, at this point it is not worth
11092 supporting this feature. */
11094 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11097 /* True iff FRAME is very likely to be that of a function that is
11098 part of the runtime system. This is all very heuristic, but is
11099 intended to be used as advice as to what frames are uninteresting
11103 is_known_support_routine (struct frame_info *frame)
11105 struct symtab_and_line sal;
11106 const char *func_name;
11107 enum language func_lang;
11109 const char *fullname;
11111 /* If this code does not have any debugging information (no symtab),
11112 This cannot be any user code. */
11114 find_frame_sal (frame, &sal);
11115 if (sal.symtab == NULL)
11118 /* If there is a symtab, but the associated source file cannot be
11119 located, then assume this is not user code: Selecting a frame
11120 for which we cannot display the code would not be very helpful
11121 for the user. This should also take care of case such as VxWorks
11122 where the kernel has some debugging info provided for a few units. */
11124 fullname = symtab_to_fullname (sal.symtab);
11125 if (access (fullname, R_OK) != 0)
11128 /* Check the unit filename againt the Ada runtime file naming.
11129 We also check the name of the objfile against the name of some
11130 known system libraries that sometimes come with debugging info
11133 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11135 re_comp (known_runtime_file_name_patterns[i]);
11136 if (re_exec (lbasename (sal.symtab->filename)))
11138 if (sal.symtab->objfile != NULL
11139 && re_exec (sal.symtab->objfile->name))
11143 /* Check whether the function is a GNAT-generated entity. */
11145 find_frame_funname (frame, &func_name, &func_lang, NULL);
11146 if (func_name == NULL)
11149 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11151 re_comp (known_auxiliary_function_name_patterns[i]);
11152 if (re_exec (func_name))
11159 /* Find the first frame that contains debugging information and that is not
11160 part of the Ada run-time, starting from FI and moving upward. */
11163 ada_find_printable_frame (struct frame_info *fi)
11165 for (; fi != NULL; fi = get_prev_frame (fi))
11167 if (!is_known_support_routine (fi))
11176 /* Assuming that the inferior just triggered an unhandled exception
11177 catchpoint, return the address in inferior memory where the name
11178 of the exception is stored.
11180 Return zero if the address could not be computed. */
11183 ada_unhandled_exception_name_addr (void)
11185 return parse_and_eval_address ("e.full_name");
11188 /* Same as ada_unhandled_exception_name_addr, except that this function
11189 should be used when the inferior uses an older version of the runtime,
11190 where the exception name needs to be extracted from a specific frame
11191 several frames up in the callstack. */
11194 ada_unhandled_exception_name_addr_from_raise (void)
11197 struct frame_info *fi;
11198 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11200 /* To determine the name of this exception, we need to select
11201 the frame corresponding to RAISE_SYM_NAME. This frame is
11202 at least 3 levels up, so we simply skip the first 3 frames
11203 without checking the name of their associated function. */
11204 fi = get_current_frame ();
11205 for (frame_level = 0; frame_level < 3; frame_level += 1)
11207 fi = get_prev_frame (fi);
11211 const char *func_name;
11212 enum language func_lang;
11214 find_frame_funname (fi, &func_name, &func_lang, NULL);
11215 if (func_name != NULL
11216 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11217 break; /* We found the frame we were looking for... */
11218 fi = get_prev_frame (fi);
11225 return parse_and_eval_address ("id.full_name");
11228 /* Assuming the inferior just triggered an Ada exception catchpoint
11229 (of any type), return the address in inferior memory where the name
11230 of the exception is stored, if applicable.
11232 Return zero if the address could not be computed, or if not relevant. */
11235 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11236 struct breakpoint *b)
11238 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11242 case ex_catch_exception:
11243 return (parse_and_eval_address ("e.full_name"));
11246 case ex_catch_exception_unhandled:
11247 return data->exception_info->unhandled_exception_name_addr ();
11250 case ex_catch_assert:
11251 return 0; /* Exception name is not relevant in this case. */
11255 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11259 return 0; /* Should never be reached. */
11262 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11263 any error that ada_exception_name_addr_1 might cause to be thrown.
11264 When an error is intercepted, a warning with the error message is printed,
11265 and zero is returned. */
11268 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11269 struct breakpoint *b)
11271 volatile struct gdb_exception e;
11272 CORE_ADDR result = 0;
11274 TRY_CATCH (e, RETURN_MASK_ERROR)
11276 result = ada_exception_name_addr_1 (ex, b);
11281 warning (_("failed to get exception name: %s"), e.message);
11288 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11290 const struct breakpoint_ops **);
11291 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11293 /* Ada catchpoints.
11295 In the case of catchpoints on Ada exceptions, the catchpoint will
11296 stop the target on every exception the program throws. When a user
11297 specifies the name of a specific exception, we translate this
11298 request into a condition expression (in text form), and then parse
11299 it into an expression stored in each of the catchpoint's locations.
11300 We then use this condition to check whether the exception that was
11301 raised is the one the user is interested in. If not, then the
11302 target is resumed again. We store the name of the requested
11303 exception, in order to be able to re-set the condition expression
11304 when symbols change. */
11306 /* An instance of this type is used to represent an Ada catchpoint
11307 breakpoint location. It includes a "struct bp_location" as a kind
11308 of base class; users downcast to "struct bp_location *" when
11311 struct ada_catchpoint_location
11313 /* The base class. */
11314 struct bp_location base;
11316 /* The condition that checks whether the exception that was raised
11317 is the specific exception the user specified on catchpoint
11319 struct expression *excep_cond_expr;
11322 /* Implement the DTOR method in the bp_location_ops structure for all
11323 Ada exception catchpoint kinds. */
11326 ada_catchpoint_location_dtor (struct bp_location *bl)
11328 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11330 xfree (al->excep_cond_expr);
11333 /* The vtable to be used in Ada catchpoint locations. */
11335 static const struct bp_location_ops ada_catchpoint_location_ops =
11337 ada_catchpoint_location_dtor
11340 /* An instance of this type is used to represent an Ada catchpoint.
11341 It includes a "struct breakpoint" as a kind of base class; users
11342 downcast to "struct breakpoint *" when needed. */
11344 struct ada_catchpoint
11346 /* The base class. */
11347 struct breakpoint base;
11349 /* The name of the specific exception the user specified. */
11350 char *excep_string;
11353 /* Parse the exception condition string in the context of each of the
11354 catchpoint's locations, and store them for later evaluation. */
11357 create_excep_cond_exprs (struct ada_catchpoint *c)
11359 struct cleanup *old_chain;
11360 struct bp_location *bl;
11363 /* Nothing to do if there's no specific exception to catch. */
11364 if (c->excep_string == NULL)
11367 /* Same if there are no locations... */
11368 if (c->base.loc == NULL)
11371 /* Compute the condition expression in text form, from the specific
11372 expection we want to catch. */
11373 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11374 old_chain = make_cleanup (xfree, cond_string);
11376 /* Iterate over all the catchpoint's locations, and parse an
11377 expression for each. */
11378 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11380 struct ada_catchpoint_location *ada_loc
11381 = (struct ada_catchpoint_location *) bl;
11382 struct expression *exp = NULL;
11384 if (!bl->shlib_disabled)
11386 volatile struct gdb_exception e;
11390 TRY_CATCH (e, RETURN_MASK_ERROR)
11392 exp = parse_exp_1 (&s, bl->address,
11393 block_for_pc (bl->address), 0);
11396 warning (_("failed to reevaluate internal exception condition "
11397 "for catchpoint %d: %s"),
11398 c->base.number, e.message);
11401 ada_loc->excep_cond_expr = exp;
11404 do_cleanups (old_chain);
11407 /* Implement the DTOR method in the breakpoint_ops structure for all
11408 exception catchpoint kinds. */
11411 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11413 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11415 xfree (c->excep_string);
11417 bkpt_breakpoint_ops.dtor (b);
11420 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11421 structure for all exception catchpoint kinds. */
11423 static struct bp_location *
11424 allocate_location_exception (enum exception_catchpoint_kind ex,
11425 struct breakpoint *self)
11427 struct ada_catchpoint_location *loc;
11429 loc = XNEW (struct ada_catchpoint_location);
11430 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11431 loc->excep_cond_expr = NULL;
11435 /* Implement the RE_SET method in the breakpoint_ops structure for all
11436 exception catchpoint kinds. */
11439 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11441 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11443 /* Call the base class's method. This updates the catchpoint's
11445 bkpt_breakpoint_ops.re_set (b);
11447 /* Reparse the exception conditional expressions. One for each
11449 create_excep_cond_exprs (c);
11452 /* Returns true if we should stop for this breakpoint hit. If the
11453 user specified a specific exception, we only want to cause a stop
11454 if the program thrown that exception. */
11457 should_stop_exception (const struct bp_location *bl)
11459 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11460 const struct ada_catchpoint_location *ada_loc
11461 = (const struct ada_catchpoint_location *) bl;
11462 volatile struct gdb_exception ex;
11465 /* With no specific exception, should always stop. */
11466 if (c->excep_string == NULL)
11469 if (ada_loc->excep_cond_expr == NULL)
11471 /* We will have a NULL expression if back when we were creating
11472 the expressions, this location's had failed to parse. */
11477 TRY_CATCH (ex, RETURN_MASK_ALL)
11479 struct value *mark;
11481 mark = value_mark ();
11482 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11483 value_free_to_mark (mark);
11486 exception_fprintf (gdb_stderr, ex,
11487 _("Error in testing exception condition:\n"));
11491 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11492 for all exception catchpoint kinds. */
11495 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11497 bs->stop = should_stop_exception (bs->bp_location_at);
11500 /* Implement the PRINT_IT method in the breakpoint_ops structure
11501 for all exception catchpoint kinds. */
11503 static enum print_stop_action
11504 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11506 struct ui_out *uiout = current_uiout;
11507 struct breakpoint *b = bs->breakpoint_at;
11509 annotate_catchpoint (b->number);
11511 if (ui_out_is_mi_like_p (uiout))
11513 ui_out_field_string (uiout, "reason",
11514 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11515 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11518 ui_out_text (uiout,
11519 b->disposition == disp_del ? "\nTemporary catchpoint "
11520 : "\nCatchpoint ");
11521 ui_out_field_int (uiout, "bkptno", b->number);
11522 ui_out_text (uiout, ", ");
11526 case ex_catch_exception:
11527 case ex_catch_exception_unhandled:
11529 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11530 char exception_name[256];
11534 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11535 exception_name [sizeof (exception_name) - 1] = '\0';
11539 /* For some reason, we were unable to read the exception
11540 name. This could happen if the Runtime was compiled
11541 without debugging info, for instance. In that case,
11542 just replace the exception name by the generic string
11543 "exception" - it will read as "an exception" in the
11544 notification we are about to print. */
11545 memcpy (exception_name, "exception", sizeof ("exception"));
11547 /* In the case of unhandled exception breakpoints, we print
11548 the exception name as "unhandled EXCEPTION_NAME", to make
11549 it clearer to the user which kind of catchpoint just got
11550 hit. We used ui_out_text to make sure that this extra
11551 info does not pollute the exception name in the MI case. */
11552 if (ex == ex_catch_exception_unhandled)
11553 ui_out_text (uiout, "unhandled ");
11554 ui_out_field_string (uiout, "exception-name", exception_name);
11557 case ex_catch_assert:
11558 /* In this case, the name of the exception is not really
11559 important. Just print "failed assertion" to make it clearer
11560 that his program just hit an assertion-failure catchpoint.
11561 We used ui_out_text because this info does not belong in
11563 ui_out_text (uiout, "failed assertion");
11566 ui_out_text (uiout, " at ");
11567 ada_find_printable_frame (get_current_frame ());
11569 return PRINT_SRC_AND_LOC;
11572 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11573 for all exception catchpoint kinds. */
11576 print_one_exception (enum exception_catchpoint_kind ex,
11577 struct breakpoint *b, struct bp_location **last_loc)
11579 struct ui_out *uiout = current_uiout;
11580 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11581 struct value_print_options opts;
11583 get_user_print_options (&opts);
11584 if (opts.addressprint)
11586 annotate_field (4);
11587 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11590 annotate_field (5);
11591 *last_loc = b->loc;
11594 case ex_catch_exception:
11595 if (c->excep_string != NULL)
11597 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11599 ui_out_field_string (uiout, "what", msg);
11603 ui_out_field_string (uiout, "what", "all Ada exceptions");
11607 case ex_catch_exception_unhandled:
11608 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11611 case ex_catch_assert:
11612 ui_out_field_string (uiout, "what", "failed Ada assertions");
11616 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11621 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11622 for all exception catchpoint kinds. */
11625 print_mention_exception (enum exception_catchpoint_kind ex,
11626 struct breakpoint *b)
11628 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11629 struct ui_out *uiout = current_uiout;
11631 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11632 : _("Catchpoint "));
11633 ui_out_field_int (uiout, "bkptno", b->number);
11634 ui_out_text (uiout, ": ");
11638 case ex_catch_exception:
11639 if (c->excep_string != NULL)
11641 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11642 struct cleanup *old_chain = make_cleanup (xfree, info);
11644 ui_out_text (uiout, info);
11645 do_cleanups (old_chain);
11648 ui_out_text (uiout, _("all Ada exceptions"));
11651 case ex_catch_exception_unhandled:
11652 ui_out_text (uiout, _("unhandled Ada exceptions"));
11655 case ex_catch_assert:
11656 ui_out_text (uiout, _("failed Ada assertions"));
11660 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11665 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11666 for all exception catchpoint kinds. */
11669 print_recreate_exception (enum exception_catchpoint_kind ex,
11670 struct breakpoint *b, struct ui_file *fp)
11672 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11676 case ex_catch_exception:
11677 fprintf_filtered (fp, "catch exception");
11678 if (c->excep_string != NULL)
11679 fprintf_filtered (fp, " %s", c->excep_string);
11682 case ex_catch_exception_unhandled:
11683 fprintf_filtered (fp, "catch exception unhandled");
11686 case ex_catch_assert:
11687 fprintf_filtered (fp, "catch assert");
11691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11693 print_recreate_thread (b, fp);
11696 /* Virtual table for "catch exception" breakpoints. */
11699 dtor_catch_exception (struct breakpoint *b)
11701 dtor_exception (ex_catch_exception, b);
11704 static struct bp_location *
11705 allocate_location_catch_exception (struct breakpoint *self)
11707 return allocate_location_exception (ex_catch_exception, self);
11711 re_set_catch_exception (struct breakpoint *b)
11713 re_set_exception (ex_catch_exception, b);
11717 check_status_catch_exception (bpstat bs)
11719 check_status_exception (ex_catch_exception, bs);
11722 static enum print_stop_action
11723 print_it_catch_exception (bpstat bs)
11725 return print_it_exception (ex_catch_exception, bs);
11729 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11731 print_one_exception (ex_catch_exception, b, last_loc);
11735 print_mention_catch_exception (struct breakpoint *b)
11737 print_mention_exception (ex_catch_exception, b);
11741 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11743 print_recreate_exception (ex_catch_exception, b, fp);
11746 static struct breakpoint_ops catch_exception_breakpoint_ops;
11748 /* Virtual table for "catch exception unhandled" breakpoints. */
11751 dtor_catch_exception_unhandled (struct breakpoint *b)
11753 dtor_exception (ex_catch_exception_unhandled, b);
11756 static struct bp_location *
11757 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11759 return allocate_location_exception (ex_catch_exception_unhandled, self);
11763 re_set_catch_exception_unhandled (struct breakpoint *b)
11765 re_set_exception (ex_catch_exception_unhandled, b);
11769 check_status_catch_exception_unhandled (bpstat bs)
11771 check_status_exception (ex_catch_exception_unhandled, bs);
11774 static enum print_stop_action
11775 print_it_catch_exception_unhandled (bpstat bs)
11777 return print_it_exception (ex_catch_exception_unhandled, bs);
11781 print_one_catch_exception_unhandled (struct breakpoint *b,
11782 struct bp_location **last_loc)
11784 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11788 print_mention_catch_exception_unhandled (struct breakpoint *b)
11790 print_mention_exception (ex_catch_exception_unhandled, b);
11794 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11795 struct ui_file *fp)
11797 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11800 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11802 /* Virtual table for "catch assert" breakpoints. */
11805 dtor_catch_assert (struct breakpoint *b)
11807 dtor_exception (ex_catch_assert, b);
11810 static struct bp_location *
11811 allocate_location_catch_assert (struct breakpoint *self)
11813 return allocate_location_exception (ex_catch_assert, self);
11817 re_set_catch_assert (struct breakpoint *b)
11819 re_set_exception (ex_catch_assert, b);
11823 check_status_catch_assert (bpstat bs)
11825 check_status_exception (ex_catch_assert, bs);
11828 static enum print_stop_action
11829 print_it_catch_assert (bpstat bs)
11831 return print_it_exception (ex_catch_assert, bs);
11835 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11837 print_one_exception (ex_catch_assert, b, last_loc);
11841 print_mention_catch_assert (struct breakpoint *b)
11843 print_mention_exception (ex_catch_assert, b);
11847 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11849 print_recreate_exception (ex_catch_assert, b, fp);
11852 static struct breakpoint_ops catch_assert_breakpoint_ops;
11854 /* Return a newly allocated copy of the first space-separated token
11855 in ARGSP, and then adjust ARGSP to point immediately after that
11858 Return NULL if ARGPS does not contain any more tokens. */
11861 ada_get_next_arg (char **argsp)
11863 char *args = *argsp;
11867 args = skip_spaces (args);
11868 if (args[0] == '\0')
11869 return NULL; /* No more arguments. */
11871 /* Find the end of the current argument. */
11873 end = skip_to_space (args);
11875 /* Adjust ARGSP to point to the start of the next argument. */
11879 /* Make a copy of the current argument and return it. */
11881 result = xmalloc (end - args + 1);
11882 strncpy (result, args, end - args);
11883 result[end - args] = '\0';
11888 /* Split the arguments specified in a "catch exception" command.
11889 Set EX to the appropriate catchpoint type.
11890 Set EXCEP_STRING to the name of the specific exception if
11891 specified by the user.
11892 If a condition is found at the end of the arguments, the condition
11893 expression is stored in COND_STRING (memory must be deallocated
11894 after use). Otherwise COND_STRING is set to NULL. */
11897 catch_ada_exception_command_split (char *args,
11898 enum exception_catchpoint_kind *ex,
11899 char **excep_string,
11900 char **cond_string)
11902 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11903 char *exception_name;
11906 exception_name = ada_get_next_arg (&args);
11907 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11909 /* This is not an exception name; this is the start of a condition
11910 expression for a catchpoint on all exceptions. So, "un-get"
11911 this token, and set exception_name to NULL. */
11912 xfree (exception_name);
11913 exception_name = NULL;
11916 make_cleanup (xfree, exception_name);
11918 /* Check to see if we have a condition. */
11920 args = skip_spaces (args);
11921 if (strncmp (args, "if", 2) == 0
11922 && (isspace (args[2]) || args[2] == '\0'))
11925 args = skip_spaces (args);
11927 if (args[0] == '\0')
11928 error (_("Condition missing after `if' keyword"));
11929 cond = xstrdup (args);
11930 make_cleanup (xfree, cond);
11932 args += strlen (args);
11935 /* Check that we do not have any more arguments. Anything else
11938 if (args[0] != '\0')
11939 error (_("Junk at end of expression"));
11941 discard_cleanups (old_chain);
11943 if (exception_name == NULL)
11945 /* Catch all exceptions. */
11946 *ex = ex_catch_exception;
11947 *excep_string = NULL;
11949 else if (strcmp (exception_name, "unhandled") == 0)
11951 /* Catch unhandled exceptions. */
11952 *ex = ex_catch_exception_unhandled;
11953 *excep_string = NULL;
11957 /* Catch a specific exception. */
11958 *ex = ex_catch_exception;
11959 *excep_string = exception_name;
11961 *cond_string = cond;
11964 /* Return the name of the symbol on which we should break in order to
11965 implement a catchpoint of the EX kind. */
11967 static const char *
11968 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11970 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11972 gdb_assert (data->exception_info != NULL);
11976 case ex_catch_exception:
11977 return (data->exception_info->catch_exception_sym);
11979 case ex_catch_exception_unhandled:
11980 return (data->exception_info->catch_exception_unhandled_sym);
11982 case ex_catch_assert:
11983 return (data->exception_info->catch_assert_sym);
11986 internal_error (__FILE__, __LINE__,
11987 _("unexpected catchpoint kind (%d)"), ex);
11991 /* Return the breakpoint ops "virtual table" used for catchpoints
11994 static const struct breakpoint_ops *
11995 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11999 case ex_catch_exception:
12000 return (&catch_exception_breakpoint_ops);
12002 case ex_catch_exception_unhandled:
12003 return (&catch_exception_unhandled_breakpoint_ops);
12005 case ex_catch_assert:
12006 return (&catch_assert_breakpoint_ops);
12009 internal_error (__FILE__, __LINE__,
12010 _("unexpected catchpoint kind (%d)"), ex);
12014 /* Return the condition that will be used to match the current exception
12015 being raised with the exception that the user wants to catch. This
12016 assumes that this condition is used when the inferior just triggered
12017 an exception catchpoint.
12019 The string returned is a newly allocated string that needs to be
12020 deallocated later. */
12023 ada_exception_catchpoint_cond_string (const char *excep_string)
12027 /* The standard exceptions are a special case. They are defined in
12028 runtime units that have been compiled without debugging info; if
12029 EXCEP_STRING is the not-fully-qualified name of a standard
12030 exception (e.g. "constraint_error") then, during the evaluation
12031 of the condition expression, the symbol lookup on this name would
12032 *not* return this standard exception. The catchpoint condition
12033 may then be set only on user-defined exceptions which have the
12034 same not-fully-qualified name (e.g. my_package.constraint_error).
12036 To avoid this unexcepted behavior, these standard exceptions are
12037 systematically prefixed by "standard". This means that "catch
12038 exception constraint_error" is rewritten into "catch exception
12039 standard.constraint_error".
12041 If an exception named contraint_error is defined in another package of
12042 the inferior program, then the only way to specify this exception as a
12043 breakpoint condition is to use its fully-qualified named:
12044 e.g. my_package.constraint_error. */
12046 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12048 if (strcmp (standard_exc [i], excep_string) == 0)
12050 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12054 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12057 /* Return the symtab_and_line that should be used to insert an exception
12058 catchpoint of the TYPE kind.
12060 EXCEP_STRING should contain the name of a specific exception that
12061 the catchpoint should catch, or NULL otherwise.
12063 ADDR_STRING returns the name of the function where the real
12064 breakpoint that implements the catchpoints is set, depending on the
12065 type of catchpoint we need to create. */
12067 static struct symtab_and_line
12068 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12069 char **addr_string, const struct breakpoint_ops **ops)
12071 const char *sym_name;
12072 struct symbol *sym;
12074 /* First, find out which exception support info to use. */
12075 ada_exception_support_info_sniffer ();
12077 /* Then lookup the function on which we will break in order to catch
12078 the Ada exceptions requested by the user. */
12079 sym_name = ada_exception_sym_name (ex);
12080 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12082 /* We can assume that SYM is not NULL at this stage. If the symbol
12083 did not exist, ada_exception_support_info_sniffer would have
12084 raised an exception.
12086 Also, ada_exception_support_info_sniffer should have already
12087 verified that SYM is a function symbol. */
12088 gdb_assert (sym != NULL);
12089 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12091 /* Set ADDR_STRING. */
12092 *addr_string = xstrdup (sym_name);
12095 *ops = ada_exception_breakpoint_ops (ex);
12097 return find_function_start_sal (sym, 1);
12100 /* Parse the arguments (ARGS) of the "catch exception" command.
12102 If the user asked the catchpoint to catch only a specific
12103 exception, then save the exception name in ADDR_STRING.
12105 If the user provided a condition, then set COND_STRING to
12106 that condition expression (the memory must be deallocated
12107 after use). Otherwise, set COND_STRING to NULL.
12109 See ada_exception_sal for a description of all the remaining
12110 function arguments of this function. */
12112 static struct symtab_and_line
12113 ada_decode_exception_location (char *args, char **addr_string,
12114 char **excep_string,
12115 char **cond_string,
12116 const struct breakpoint_ops **ops)
12118 enum exception_catchpoint_kind ex;
12120 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12121 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12124 /* Create an Ada exception catchpoint. */
12127 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12128 struct symtab_and_line sal,
12130 char *excep_string,
12132 const struct breakpoint_ops *ops,
12136 struct ada_catchpoint *c;
12138 c = XNEW (struct ada_catchpoint);
12139 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12140 ops, tempflag, from_tty);
12141 c->excep_string = excep_string;
12142 create_excep_cond_exprs (c);
12143 if (cond_string != NULL)
12144 set_breakpoint_condition (&c->base, cond_string, from_tty);
12145 install_breakpoint (0, &c->base, 1);
12148 /* Implement the "catch exception" command. */
12151 catch_ada_exception_command (char *arg, int from_tty,
12152 struct cmd_list_element *command)
12154 struct gdbarch *gdbarch = get_current_arch ();
12156 struct symtab_and_line sal;
12157 char *addr_string = NULL;
12158 char *excep_string = NULL;
12159 char *cond_string = NULL;
12160 const struct breakpoint_ops *ops = NULL;
12162 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12166 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12167 &cond_string, &ops);
12168 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12169 excep_string, cond_string, ops,
12170 tempflag, from_tty);
12173 /* Assuming that ARGS contains the arguments of a "catch assert"
12174 command, parse those arguments and return a symtab_and_line object
12175 for a failed assertion catchpoint.
12177 Set ADDR_STRING to the name of the function where the real
12178 breakpoint that implements the catchpoint is set.
12180 If ARGS contains a condition, set COND_STRING to that condition
12181 (the memory needs to be deallocated after use). Otherwise, set
12182 COND_STRING to NULL. */
12184 static struct symtab_and_line
12185 ada_decode_assert_location (char *args, char **addr_string,
12186 char **cond_string,
12187 const struct breakpoint_ops **ops)
12189 args = skip_spaces (args);
12191 /* Check whether a condition was provided. */
12192 if (strncmp (args, "if", 2) == 0
12193 && (isspace (args[2]) || args[2] == '\0'))
12196 args = skip_spaces (args);
12197 if (args[0] == '\0')
12198 error (_("condition missing after `if' keyword"));
12199 *cond_string = xstrdup (args);
12202 /* Otherwise, there should be no other argument at the end of
12204 else if (args[0] != '\0')
12205 error (_("Junk at end of arguments."));
12207 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12210 /* Implement the "catch assert" command. */
12213 catch_assert_command (char *arg, int from_tty,
12214 struct cmd_list_element *command)
12216 struct gdbarch *gdbarch = get_current_arch ();
12218 struct symtab_and_line sal;
12219 char *addr_string = NULL;
12220 char *cond_string = NULL;
12221 const struct breakpoint_ops *ops = NULL;
12223 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12228 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12229 NULL, cond_string, ops, tempflag,
12233 /* Information about operators given special treatment in functions
12235 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12237 #define ADA_OPERATORS \
12238 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12239 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12240 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12241 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12242 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12243 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12246 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12247 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12248 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12249 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12250 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12252 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12253 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12254 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12255 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12256 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12259 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12262 switch (exp->elts[pc - 1].opcode)
12265 operator_length_standard (exp, pc, oplenp, argsp);
12268 #define OP_DEFN(op, len, args, binop) \
12269 case op: *oplenp = len; *argsp = args; break;
12275 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12280 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12285 /* Implementation of the exp_descriptor method operator_check. */
12288 ada_operator_check (struct expression *exp, int pos,
12289 int (*objfile_func) (struct objfile *objfile, void *data),
12292 const union exp_element *const elts = exp->elts;
12293 struct type *type = NULL;
12295 switch (elts[pos].opcode)
12297 case UNOP_IN_RANGE:
12299 type = elts[pos + 1].type;
12303 return operator_check_standard (exp, pos, objfile_func, data);
12306 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12308 if (type && TYPE_OBJFILE (type)
12309 && (*objfile_func) (TYPE_OBJFILE (type), data))
12316 ada_op_name (enum exp_opcode opcode)
12321 return op_name_standard (opcode);
12323 #define OP_DEFN(op, len, args, binop) case op: return #op;
12328 return "OP_AGGREGATE";
12330 return "OP_CHOICES";
12336 /* As for operator_length, but assumes PC is pointing at the first
12337 element of the operator, and gives meaningful results only for the
12338 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12341 ada_forward_operator_length (struct expression *exp, int pc,
12342 int *oplenp, int *argsp)
12344 switch (exp->elts[pc].opcode)
12347 *oplenp = *argsp = 0;
12350 #define OP_DEFN(op, len, args, binop) \
12351 case op: *oplenp = len; *argsp = args; break;
12357 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12362 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12368 int len = longest_to_int (exp->elts[pc + 1].longconst);
12370 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12378 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12380 enum exp_opcode op = exp->elts[elt].opcode;
12385 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12389 /* Ada attributes ('Foo). */
12392 case OP_ATR_LENGTH:
12396 case OP_ATR_MODULUS:
12403 case UNOP_IN_RANGE:
12405 /* XXX: gdb_sprint_host_address, type_sprint */
12406 fprintf_filtered (stream, _("Type @"));
12407 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12408 fprintf_filtered (stream, " (");
12409 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12410 fprintf_filtered (stream, ")");
12412 case BINOP_IN_BOUNDS:
12413 fprintf_filtered (stream, " (%d)",
12414 longest_to_int (exp->elts[pc + 2].longconst));
12416 case TERNOP_IN_RANGE:
12421 case OP_DISCRETE_RANGE:
12422 case OP_POSITIONAL:
12429 char *name = &exp->elts[elt + 2].string;
12430 int len = longest_to_int (exp->elts[elt + 1].longconst);
12432 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12437 return dump_subexp_body_standard (exp, stream, elt);
12441 for (i = 0; i < nargs; i += 1)
12442 elt = dump_subexp (exp, stream, elt);
12447 /* The Ada extension of print_subexp (q.v.). */
12450 ada_print_subexp (struct expression *exp, int *pos,
12451 struct ui_file *stream, enum precedence prec)
12453 int oplen, nargs, i;
12455 enum exp_opcode op = exp->elts[pc].opcode;
12457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12464 print_subexp_standard (exp, pos, stream, prec);
12468 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12471 case BINOP_IN_BOUNDS:
12472 /* XXX: sprint_subexp */
12473 print_subexp (exp, pos, stream, PREC_SUFFIX);
12474 fputs_filtered (" in ", stream);
12475 print_subexp (exp, pos, stream, PREC_SUFFIX);
12476 fputs_filtered ("'range", stream);
12477 if (exp->elts[pc + 1].longconst > 1)
12478 fprintf_filtered (stream, "(%ld)",
12479 (long) exp->elts[pc + 1].longconst);
12482 case TERNOP_IN_RANGE:
12483 if (prec >= PREC_EQUAL)
12484 fputs_filtered ("(", stream);
12485 /* XXX: sprint_subexp */
12486 print_subexp (exp, pos, stream, PREC_SUFFIX);
12487 fputs_filtered (" in ", stream);
12488 print_subexp (exp, pos, stream, PREC_EQUAL);
12489 fputs_filtered (" .. ", stream);
12490 print_subexp (exp, pos, stream, PREC_EQUAL);
12491 if (prec >= PREC_EQUAL)
12492 fputs_filtered (")", stream);
12497 case OP_ATR_LENGTH:
12501 case OP_ATR_MODULUS:
12506 if (exp->elts[*pos].opcode == OP_TYPE)
12508 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12509 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12510 &type_print_raw_options);
12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
12515 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12520 for (tem = 1; tem < nargs; tem += 1)
12522 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12523 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12525 fputs_filtered (")", stream);
12530 type_print (exp->elts[pc + 1].type, "", stream, 0);
12531 fputs_filtered ("'(", stream);
12532 print_subexp (exp, pos, stream, PREC_PREFIX);
12533 fputs_filtered (")", stream);
12536 case UNOP_IN_RANGE:
12537 /* XXX: sprint_subexp */
12538 print_subexp (exp, pos, stream, PREC_SUFFIX);
12539 fputs_filtered (" in ", stream);
12540 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12541 &type_print_raw_options);
12544 case OP_DISCRETE_RANGE:
12545 print_subexp (exp, pos, stream, PREC_SUFFIX);
12546 fputs_filtered ("..", stream);
12547 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 fputs_filtered ("others => ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12556 for (i = 0; i < nargs-1; i += 1)
12559 fputs_filtered ("|", stream);
12560 print_subexp (exp, pos, stream, PREC_SUFFIX);
12562 fputs_filtered (" => ", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12566 case OP_POSITIONAL:
12567 print_subexp (exp, pos, stream, PREC_SUFFIX);
12571 fputs_filtered ("(", stream);
12572 for (i = 0; i < nargs; i += 1)
12575 fputs_filtered (", ", stream);
12576 print_subexp (exp, pos, stream, PREC_SUFFIX);
12578 fputs_filtered (")", stream);
12583 /* Table mapping opcodes into strings for printing operators
12584 and precedences of the operators. */
12586 static const struct op_print ada_op_print_tab[] = {
12587 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12588 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12589 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12590 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12591 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12592 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12593 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12594 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12595 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12596 {">=", BINOP_GEQ, PREC_ORDER, 0},
12597 {">", BINOP_GTR, PREC_ORDER, 0},
12598 {"<", BINOP_LESS, PREC_ORDER, 0},
12599 {">>", BINOP_RSH, PREC_SHIFT, 0},
12600 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12601 {"+", BINOP_ADD, PREC_ADD, 0},
12602 {"-", BINOP_SUB, PREC_ADD, 0},
12603 {"&", BINOP_CONCAT, PREC_ADD, 0},
12604 {"*", BINOP_MUL, PREC_MUL, 0},
12605 {"/", BINOP_DIV, PREC_MUL, 0},
12606 {"rem", BINOP_REM, PREC_MUL, 0},
12607 {"mod", BINOP_MOD, PREC_MUL, 0},
12608 {"**", BINOP_EXP, PREC_REPEAT, 0},
12609 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12610 {"-", UNOP_NEG, PREC_PREFIX, 0},
12611 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12612 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12613 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12614 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12615 {".all", UNOP_IND, PREC_SUFFIX, 1},
12616 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12617 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12621 enum ada_primitive_types {
12622 ada_primitive_type_int,
12623 ada_primitive_type_long,
12624 ada_primitive_type_short,
12625 ada_primitive_type_char,
12626 ada_primitive_type_float,
12627 ada_primitive_type_double,
12628 ada_primitive_type_void,
12629 ada_primitive_type_long_long,
12630 ada_primitive_type_long_double,
12631 ada_primitive_type_natural,
12632 ada_primitive_type_positive,
12633 ada_primitive_type_system_address,
12634 nr_ada_primitive_types
12638 ada_language_arch_info (struct gdbarch *gdbarch,
12639 struct language_arch_info *lai)
12641 const struct builtin_type *builtin = builtin_type (gdbarch);
12643 lai->primitive_type_vector
12644 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12647 lai->primitive_type_vector [ada_primitive_type_int]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 lai->primitive_type_vector [ada_primitive_type_long]
12651 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12652 0, "long_integer");
12653 lai->primitive_type_vector [ada_primitive_type_short]
12654 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12655 0, "short_integer");
12656 lai->string_char_type
12657 = lai->primitive_type_vector [ada_primitive_type_char]
12658 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12659 lai->primitive_type_vector [ada_primitive_type_float]
12660 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12662 lai->primitive_type_vector [ada_primitive_type_double]
12663 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12664 "long_float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_long_long]
12666 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12667 0, "long_long_integer");
12668 lai->primitive_type_vector [ada_primitive_type_long_double]
12669 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12670 "long_long_float", NULL);
12671 lai->primitive_type_vector [ada_primitive_type_natural]
12672 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12674 lai->primitive_type_vector [ada_primitive_type_positive]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12677 lai->primitive_type_vector [ada_primitive_type_void]
12678 = builtin->builtin_void;
12680 lai->primitive_type_vector [ada_primitive_type_system_address]
12681 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12682 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12683 = "system__address";
12685 lai->bool_type_symbol = NULL;
12686 lai->bool_type_default = builtin->builtin_bool;
12689 /* Language vector */
12691 /* Not really used, but needed in the ada_language_defn. */
12694 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12696 ada_emit_char (c, type, stream, quoter, 1);
12702 warnings_issued = 0;
12703 return ada_parse ();
12706 static const struct exp_descriptor ada_exp_descriptor = {
12708 ada_operator_length,
12709 ada_operator_check,
12711 ada_dump_subexp_body,
12712 ada_evaluate_subexp
12715 /* Implement the "la_get_symbol_name_cmp" language_defn method
12718 static symbol_name_cmp_ftype
12719 ada_get_symbol_name_cmp (const char *lookup_name)
12721 if (should_use_wild_match (lookup_name))
12724 return compare_names;
12727 /* Implement the "la_read_var_value" language_defn method for Ada. */
12729 static struct value *
12730 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12732 struct block *frame_block = NULL;
12733 struct symbol *renaming_sym = NULL;
12735 /* The only case where default_read_var_value is not sufficient
12736 is when VAR is a renaming... */
12738 frame_block = get_frame_block (frame, NULL);
12740 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12741 if (renaming_sym != NULL)
12742 return ada_read_renaming_var_value (renaming_sym, frame_block);
12744 /* This is a typical case where we expect the default_read_var_value
12745 function to work. */
12746 return default_read_var_value (var, frame);
12749 const struct language_defn ada_language_defn = {
12750 "ada", /* Language name */
12753 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12754 that's not quite what this means. */
12756 macro_expansion_no,
12757 &ada_exp_descriptor,
12761 ada_printchar, /* Print a character constant */
12762 ada_printstr, /* Function to print string constant */
12763 emit_char, /* Function to print single char (not used) */
12764 ada_print_type, /* Print a type using appropriate syntax */
12765 ada_print_typedef, /* Print a typedef using appropriate syntax */
12766 ada_val_print, /* Print a value using appropriate syntax */
12767 ada_value_print, /* Print a top-level value */
12768 ada_read_var_value, /* la_read_var_value */
12769 NULL, /* Language specific skip_trampoline */
12770 NULL, /* name_of_this */
12771 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12772 basic_lookup_transparent_type, /* lookup_transparent_type */
12773 ada_la_decode, /* Language specific symbol demangler */
12774 NULL, /* Language specific
12775 class_name_from_physname */
12776 ada_op_print_tab, /* expression operators for printing */
12777 0, /* c-style arrays */
12778 1, /* String lower bound */
12779 ada_get_gdb_completer_word_break_characters,
12780 ada_make_symbol_completion_list,
12781 ada_language_arch_info,
12782 ada_print_array_index,
12783 default_pass_by_reference,
12785 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12786 ada_iterate_over_symbols,
12790 /* Provide a prototype to silence -Wmissing-prototypes. */
12791 extern initialize_file_ftype _initialize_ada_language;
12793 /* Command-list for the "set/show ada" prefix command. */
12794 static struct cmd_list_element *set_ada_list;
12795 static struct cmd_list_element *show_ada_list;
12797 /* Implement the "set ada" prefix command. */
12800 set_ada_command (char *arg, int from_tty)
12802 printf_unfiltered (_(\
12803 "\"set ada\" must be followed by the name of a setting.\n"));
12804 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12807 /* Implement the "show ada" prefix command. */
12810 show_ada_command (char *args, int from_tty)
12812 cmd_show_list (show_ada_list, from_tty, "");
12816 initialize_ada_catchpoint_ops (void)
12818 struct breakpoint_ops *ops;
12820 initialize_breakpoint_ops ();
12822 ops = &catch_exception_breakpoint_ops;
12823 *ops = bkpt_breakpoint_ops;
12824 ops->dtor = dtor_catch_exception;
12825 ops->allocate_location = allocate_location_catch_exception;
12826 ops->re_set = re_set_catch_exception;
12827 ops->check_status = check_status_catch_exception;
12828 ops->print_it = print_it_catch_exception;
12829 ops->print_one = print_one_catch_exception;
12830 ops->print_mention = print_mention_catch_exception;
12831 ops->print_recreate = print_recreate_catch_exception;
12833 ops = &catch_exception_unhandled_breakpoint_ops;
12834 *ops = bkpt_breakpoint_ops;
12835 ops->dtor = dtor_catch_exception_unhandled;
12836 ops->allocate_location = allocate_location_catch_exception_unhandled;
12837 ops->re_set = re_set_catch_exception_unhandled;
12838 ops->check_status = check_status_catch_exception_unhandled;
12839 ops->print_it = print_it_catch_exception_unhandled;
12840 ops->print_one = print_one_catch_exception_unhandled;
12841 ops->print_mention = print_mention_catch_exception_unhandled;
12842 ops->print_recreate = print_recreate_catch_exception_unhandled;
12844 ops = &catch_assert_breakpoint_ops;
12845 *ops = bkpt_breakpoint_ops;
12846 ops->dtor = dtor_catch_assert;
12847 ops->allocate_location = allocate_location_catch_assert;
12848 ops->re_set = re_set_catch_assert;
12849 ops->check_status = check_status_catch_assert;
12850 ops->print_it = print_it_catch_assert;
12851 ops->print_one = print_one_catch_assert;
12852 ops->print_mention = print_mention_catch_assert;
12853 ops->print_recreate = print_recreate_catch_assert;
12857 _initialize_ada_language (void)
12859 add_language (&ada_language_defn);
12861 initialize_ada_catchpoint_ops ();
12863 add_prefix_cmd ("ada", no_class, set_ada_command,
12864 _("Prefix command for changing Ada-specfic settings"),
12865 &set_ada_list, "set ada ", 0, &setlist);
12867 add_prefix_cmd ("ada", no_class, show_ada_command,
12868 _("Generic command for showing Ada-specific settings."),
12869 &show_ada_list, "show ada ", 0, &showlist);
12871 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12872 &trust_pad_over_xvs, _("\
12873 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12874 Show whether an optimization trusting PAD types over XVS types is activated"),
12876 This is related to the encoding used by the GNAT compiler. The debugger\n\
12877 should normally trust the contents of PAD types, but certain older versions\n\
12878 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12879 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12880 work around this bug. It is always safe to turn this option \"off\", but\n\
12881 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12882 this option to \"off\" unless necessary."),
12883 NULL, NULL, &set_ada_list, &show_ada_list);
12885 add_catch_command ("exception", _("\
12886 Catch Ada exceptions, when raised.\n\
12887 With an argument, catch only exceptions with the given name."),
12888 catch_ada_exception_command,
12892 add_catch_command ("assert", _("\
12893 Catch failed Ada assertions, when raised.\n\
12894 With an argument, catch only exceptions with the given name."),
12895 catch_assert_command,
12900 varsize_limit = 65536;
12902 obstack_init (&symbol_list_obstack);
12904 decoded_names_store = htab_create_alloc
12905 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12906 NULL, xcalloc, xfree);
12908 /* Setup per-inferior data. */
12909 observer_attach_inferior_exit (ada_inferior_exit);
12911 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);