1 /* DWARF 2 debugging format support for GDB.
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 This file is part of GDB.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/index-cache.h"
36 #include "dwarf2/index-common.h"
37 #include "dwarf2/leb.h"
46 #include "gdb-demangle.h"
47 #include "filenames.h" /* for DOSish file names */
50 #include "complaints.h"
51 #include "dwarf2/expr.h"
52 #include "dwarf2/loc.h"
53 #include "cp-support.h"
59 #include "typeprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
70 #include "namespace.h"
71 #include "gdbsupport/function-view.h"
72 #include "gdbsupport/gdb_optional.h"
73 #include "gdbsupport/underlying.h"
74 #include "gdbsupport/hash_enum.h"
75 #include "filename-seen-cache.h"
79 #include <unordered_map>
80 #include "gdbsupport/selftest.h"
81 #include "rust-lang.h"
82 #include "gdbsupport/pathstuff.h"
84 /* When == 1, print basic high level tracing messages.
85 When > 1, be more verbose.
86 This is in contrast to the low level DIE reading of dwarf_die_debug. */
87 static unsigned int dwarf_read_debug = 0;
89 /* When non-zero, dump DIEs after they are read in. */
90 static unsigned int dwarf_die_debug = 0;
92 /* When non-zero, dump line number entries as they are read in. */
93 static unsigned int dwarf_line_debug = 0;
95 /* When true, cross-check physname against demangler. */
96 static bool check_physname = false;
98 /* When true, do not reject deprecated .gdb_index sections. */
99 static bool use_deprecated_index_sections = false;
101 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
103 /* The "aclass" indices for various kinds of computed DWARF symbols. */
105 static int dwarf2_locexpr_index;
106 static int dwarf2_loclist_index;
107 static int dwarf2_locexpr_block_index;
108 static int dwarf2_loclist_block_index;
110 /* An index into a (C++) symbol name component in a symbol name as
111 recorded in the mapped_index's symbol table. For each C++ symbol
112 in the symbol table, we record one entry for the start of each
113 component in the symbol in a table of name components, and then
114 sort the table, in order to be able to binary search symbol names,
115 ignoring leading namespaces, both completion and regular look up.
116 For example, for symbol "A::B::C", we'll have an entry that points
117 to "A::B::C", another that points to "B::C", and another for "C".
118 Note that function symbols in GDB index have no parameter
119 information, just the function/method names. You can convert a
120 name_component to a "const char *" using the
121 'mapped_index::symbol_name_at(offset_type)' method. */
123 struct name_component
125 /* Offset in the symbol name where the component starts. Stored as
126 a (32-bit) offset instead of a pointer to save memory and improve
127 locality on 64-bit architectures. */
128 offset_type name_offset;
130 /* The symbol's index in the symbol and constant pool tables of a
135 /* Base class containing bits shared by both .gdb_index and
136 .debug_name indexes. */
138 struct mapped_index_base
140 mapped_index_base () = default;
141 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
143 /* The name_component table (a sorted vector). See name_component's
144 description above. */
145 std::vector<name_component> name_components;
147 /* How NAME_COMPONENTS is sorted. */
148 enum case_sensitivity name_components_casing;
150 /* Return the number of names in the symbol table. */
151 virtual size_t symbol_name_count () const = 0;
153 /* Get the name of the symbol at IDX in the symbol table. */
154 virtual const char *symbol_name_at (offset_type idx) const = 0;
156 /* Return whether the name at IDX in the symbol table should be
158 virtual bool symbol_name_slot_invalid (offset_type idx) const
163 /* Build the symbol name component sorted vector, if we haven't
165 void build_name_components ();
167 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
168 possible matches for LN_NO_PARAMS in the name component
170 std::pair<std::vector<name_component>::const_iterator,
171 std::vector<name_component>::const_iterator>
172 find_name_components_bounds (const lookup_name_info &ln_no_params,
173 enum language lang) const;
175 /* Prevent deleting/destroying via a base class pointer. */
177 ~mapped_index_base() = default;
180 /* A description of the mapped index. The file format is described in
181 a comment by the code that writes the index. */
182 struct mapped_index final : public mapped_index_base
184 /* A slot/bucket in the symbol table hash. */
185 struct symbol_table_slot
187 const offset_type name;
188 const offset_type vec;
191 /* Index data format version. */
194 /* The address table data. */
195 gdb::array_view<const gdb_byte> address_table;
197 /* The symbol table, implemented as a hash table. */
198 gdb::array_view<symbol_table_slot> symbol_table;
200 /* A pointer to the constant pool. */
201 const char *constant_pool = nullptr;
203 bool symbol_name_slot_invalid (offset_type idx) const override
205 const auto &bucket = this->symbol_table[idx];
206 return bucket.name == 0 && bucket.vec == 0;
209 /* Convenience method to get at the name of the symbol at IDX in the
211 const char *symbol_name_at (offset_type idx) const override
212 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
214 size_t symbol_name_count () const override
215 { return this->symbol_table.size (); }
218 /* A description of the mapped .debug_names.
219 Uninitialized map has CU_COUNT 0. */
220 struct mapped_debug_names final : public mapped_index_base
222 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
223 : dwarf2_per_objfile (dwarf2_per_objfile_)
226 struct dwarf2_per_objfile *dwarf2_per_objfile;
227 bfd_endian dwarf5_byte_order;
228 bool dwarf5_is_dwarf64;
229 bool augmentation_is_gdb;
231 uint32_t cu_count = 0;
232 uint32_t tu_count, bucket_count, name_count;
233 const gdb_byte *cu_table_reordered, *tu_table_reordered;
234 const uint32_t *bucket_table_reordered, *hash_table_reordered;
235 const gdb_byte *name_table_string_offs_reordered;
236 const gdb_byte *name_table_entry_offs_reordered;
237 const gdb_byte *entry_pool;
244 /* Attribute name DW_IDX_*. */
247 /* Attribute form DW_FORM_*. */
250 /* Value if FORM is DW_FORM_implicit_const. */
251 LONGEST implicit_const;
253 std::vector<attr> attr_vec;
256 std::unordered_map<ULONGEST, index_val> abbrev_map;
258 const char *namei_to_name (uint32_t namei) const;
260 /* Implementation of the mapped_index_base virtual interface, for
261 the name_components cache. */
263 const char *symbol_name_at (offset_type idx) const override
264 { return namei_to_name (idx); }
266 size_t symbol_name_count () const override
267 { return this->name_count; }
270 /* See dwarf2read.h. */
273 get_dwarf2_per_objfile (struct objfile *objfile)
275 return dwarf2_objfile_data_key.get (objfile);
278 /* Default names of the debugging sections. */
280 /* Note that if the debugging section has been compressed, it might
281 have a name like .zdebug_info. */
283 static const struct dwarf2_debug_sections dwarf2_elf_names =
285 { ".debug_info", ".zdebug_info" },
286 { ".debug_abbrev", ".zdebug_abbrev" },
287 { ".debug_line", ".zdebug_line" },
288 { ".debug_loc", ".zdebug_loc" },
289 { ".debug_loclists", ".zdebug_loclists" },
290 { ".debug_macinfo", ".zdebug_macinfo" },
291 { ".debug_macro", ".zdebug_macro" },
292 { ".debug_str", ".zdebug_str" },
293 { ".debug_str_offsets", ".zdebug_str_offsets" },
294 { ".debug_line_str", ".zdebug_line_str" },
295 { ".debug_ranges", ".zdebug_ranges" },
296 { ".debug_rnglists", ".zdebug_rnglists" },
297 { ".debug_types", ".zdebug_types" },
298 { ".debug_addr", ".zdebug_addr" },
299 { ".debug_frame", ".zdebug_frame" },
300 { ".eh_frame", NULL },
301 { ".gdb_index", ".zgdb_index" },
302 { ".debug_names", ".zdebug_names" },
303 { ".debug_aranges", ".zdebug_aranges" },
307 /* List of DWO/DWP sections. */
309 static const struct dwop_section_names
311 struct dwarf2_section_names abbrev_dwo;
312 struct dwarf2_section_names info_dwo;
313 struct dwarf2_section_names line_dwo;
314 struct dwarf2_section_names loc_dwo;
315 struct dwarf2_section_names loclists_dwo;
316 struct dwarf2_section_names macinfo_dwo;
317 struct dwarf2_section_names macro_dwo;
318 struct dwarf2_section_names str_dwo;
319 struct dwarf2_section_names str_offsets_dwo;
320 struct dwarf2_section_names types_dwo;
321 struct dwarf2_section_names cu_index;
322 struct dwarf2_section_names tu_index;
326 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
327 { ".debug_info.dwo", ".zdebug_info.dwo" },
328 { ".debug_line.dwo", ".zdebug_line.dwo" },
329 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
330 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
331 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
332 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
333 { ".debug_str.dwo", ".zdebug_str.dwo" },
334 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
335 { ".debug_types.dwo", ".zdebug_types.dwo" },
336 { ".debug_cu_index", ".zdebug_cu_index" },
337 { ".debug_tu_index", ".zdebug_tu_index" },
340 /* local data types */
342 /* The data in a compilation unit header, after target2host
343 translation, looks like this. */
344 struct comp_unit_head
348 unsigned char addr_size;
349 unsigned char signed_addr_p;
350 sect_offset abbrev_sect_off;
352 /* Size of file offsets; either 4 or 8. */
353 unsigned int offset_size;
355 /* Size of the length field; either 4 or 12. */
356 unsigned int initial_length_size;
358 enum dwarf_unit_type unit_type;
360 /* Offset to the first byte of this compilation unit header in the
361 .debug_info section, for resolving relative reference dies. */
362 sect_offset sect_off;
364 /* Offset to first die in this cu from the start of the cu.
365 This will be the first byte following the compilation unit header. */
366 cu_offset first_die_cu_offset;
369 /* 64-bit signature of this unit. For type units, it denotes the signature of
370 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
371 Also used in DWARF 5, to denote the dwo id when the unit type is
372 DW_UT_skeleton or DW_UT_split_compile. */
375 /* For types, offset in the type's DIE of the type defined by this TU. */
376 cu_offset type_cu_offset_in_tu;
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
383 /* The type to which the method is attached, i.e., its parent class. */
386 /* The index of the method in the type's function fieldlists. */
389 /* The index of the method in the fieldlist. */
392 /* The name of the DIE. */
395 /* The DIE associated with this method. */
396 struct die_info *die;
399 /* Internal state when decoding a particular compilation unit. */
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
426 /* Base address of this compilation unit. */
427 CORE_ADDR base_address = 0;
429 /* Non-zero if base_address has been set. */
432 /* The language we are debugging. */
433 enum language language = language_unknown;
434 const struct language_defn *language_defn = nullptr;
436 const char *producer = nullptr;
439 /* The symtab builder for this CU. This is only non-NULL when full
440 symbols are being read. */
441 std::unique_ptr<buildsym_compunit> m_builder;
444 /* The generic symbol table building routines have separate lists for
445 file scope symbols and all all other scopes (local scopes). So
446 we need to select the right one to pass to add_symbol_to_list().
447 We do it by keeping a pointer to the correct list in list_in_scope.
449 FIXME: The original dwarf code just treated the file scope as the
450 first local scope, and all other local scopes as nested local
451 scopes, and worked fine. Check to see if we really need to
452 distinguish these in buildsym.c. */
453 struct pending **list_in_scope = nullptr;
455 /* Hash table holding all the loaded partial DIEs
456 with partial_die->offset.SECT_OFF as hash. */
457 htab_t partial_dies = nullptr;
459 /* Storage for things with the same lifetime as this read-in compilation
460 unit, including partial DIEs. */
461 auto_obstack comp_unit_obstack;
463 /* When multiple dwarf2_cu structures are living in memory, this field
464 chains them all together, so that they can be released efficiently.
465 We will probably also want a generation counter so that most-recently-used
466 compilation units are cached... */
467 struct dwarf2_per_cu_data *read_in_chain = nullptr;
469 /* Backlink to our per_cu entry. */
470 struct dwarf2_per_cu_data *per_cu;
472 /* How many compilation units ago was this CU last referenced? */
475 /* A hash table of DIE cu_offset for following references with
476 die_info->offset.sect_off as hash. */
477 htab_t die_hash = nullptr;
479 /* Full DIEs if read in. */
480 struct die_info *dies = nullptr;
482 /* A set of pointers to dwarf2_per_cu_data objects for compilation
483 units referenced by this one. Only set during full symbol processing;
484 partial symbol tables do not have dependencies. */
485 htab_t dependencies = nullptr;
487 /* Header data from the line table, during full symbol processing. */
488 struct line_header *line_header = nullptr;
489 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
490 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
491 this is the DW_TAG_compile_unit die for this CU. We'll hold on
492 to the line header as long as this DIE is being processed. See
493 process_die_scope. */
494 die_info *line_header_die_owner = nullptr;
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 std::vector<delayed_method_info> method_list;
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab = nullptr;
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
512 struct dwo_unit *dwo_unit = nullptr;
514 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
515 Note this value comes from the Fission stub CU/TU's DIE. */
516 gdb::optional<ULONGEST> addr_base;
518 /* The DW_AT_rnglists_base attribute if present.
519 Note this value comes from the Fission stub CU/TU's DIE.
520 Also note that the value is zero in the non-DWO case so this value can
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
527 ULONGEST ranges_base = 0;
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
543 /* Mark used when releasing cached dies. */
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
567 bool processing_has_namespace_info : 1;
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
593 struct stmt_list_hash
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
605 struct type_unit_group
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab.
611 This PER_CU is recognized by having no section. */
612 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
613 struct dwarf2_per_cu_data per_cu;
615 /* The TUs that share this DW_AT_stmt_list entry.
616 This is added to while parsing type units to build partial symtabs,
617 and is deleted afterwards and not used again. */
618 std::vector<signatured_type *> *tus;
620 /* The compunit symtab.
621 Type units in a group needn't all be defined in the same source file,
622 so we create an essentially anonymous symtab as the compunit symtab. */
623 struct compunit_symtab *compunit_symtab;
625 /* The data used to construct the hash key. */
626 struct stmt_list_hash hash;
628 /* The number of symtabs from the line header.
629 The value here must match line_header.num_file_names. */
630 unsigned int num_symtabs;
632 /* The symbol tables for this TU (obtained from the files listed in
634 WARNING: The order of entries here must match the order of entries
635 in the line header. After the first TU using this type_unit_group, the
636 line header for the subsequent TUs is recreated from this. This is done
637 because we need to use the same symtabs for each TU using the same
638 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
639 there's no guarantee the line header doesn't have duplicate entries. */
640 struct symtab **symtabs;
643 /* These sections are what may appear in a (real or virtual) DWO file. */
647 struct dwarf2_section_info abbrev;
648 struct dwarf2_section_info line;
649 struct dwarf2_section_info loc;
650 struct dwarf2_section_info loclists;
651 struct dwarf2_section_info macinfo;
652 struct dwarf2_section_info macro;
653 struct dwarf2_section_info str;
654 struct dwarf2_section_info str_offsets;
655 /* In the case of a virtual DWO file, these two are unused. */
656 struct dwarf2_section_info info;
657 std::vector<dwarf2_section_info> types;
660 /* CUs/TUs in DWP/DWO files. */
664 /* Backlink to the containing struct dwo_file. */
665 struct dwo_file *dwo_file;
667 /* The "id" that distinguishes this CU/TU.
668 .debug_info calls this "dwo_id", .debug_types calls this "signature".
669 Since signatures came first, we stick with it for consistency. */
672 /* The section this CU/TU lives in, in the DWO file. */
673 struct dwarf2_section_info *section;
675 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
676 sect_offset sect_off;
679 /* For types, offset in the type's DIE of the type defined by this TU. */
680 cu_offset type_offset_in_tu;
683 /* include/dwarf2.h defines the DWP section codes.
684 It defines a max value but it doesn't define a min value, which we
685 use for error checking, so provide one. */
687 enum dwp_v2_section_ids
692 /* Data for one DWO file.
694 This includes virtual DWO files (a virtual DWO file is a DWO file as it
695 appears in a DWP file). DWP files don't really have DWO files per se -
696 comdat folding of types "loses" the DWO file they came from, and from
697 a high level view DWP files appear to contain a mass of random types.
698 However, to maintain consistency with the non-DWP case we pretend DWP
699 files contain virtual DWO files, and we assign each TU with one virtual
700 DWO file (generally based on the line and abbrev section offsets -
701 a heuristic that seems to work in practice). */
705 dwo_file () = default;
706 DISABLE_COPY_AND_ASSIGN (dwo_file);
708 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
709 For virtual DWO files the name is constructed from the section offsets
710 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
711 from related CU+TUs. */
712 const char *dwo_name = nullptr;
714 /* The DW_AT_comp_dir attribute. */
715 const char *comp_dir = nullptr;
717 /* The bfd, when the file is open. Otherwise this is NULL.
718 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
719 gdb_bfd_ref_ptr dbfd;
721 /* The sections that make up this DWO file.
722 Remember that for virtual DWO files in DWP V2, these are virtual
723 sections (for lack of a better name). */
724 struct dwo_sections sections {};
726 /* The CUs in the file.
727 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
728 an extension to handle LLVM's Link Time Optimization output (where
729 multiple source files may be compiled into a single object/dwo pair). */
732 /* Table of TUs in the file.
733 Each element is a struct dwo_unit. */
737 /* These sections are what may appear in a DWP file. */
741 /* These are used by both DWP version 1 and 2. */
742 struct dwarf2_section_info str;
743 struct dwarf2_section_info cu_index;
744 struct dwarf2_section_info tu_index;
746 /* These are only used by DWP version 2 files.
747 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
748 sections are referenced by section number, and are not recorded here.
749 In DWP version 2 there is at most one copy of all these sections, each
750 section being (effectively) comprised of the concatenation of all of the
751 individual sections that exist in the version 1 format.
752 To keep the code simple we treat each of these concatenated pieces as a
753 section itself (a virtual section?). */
754 struct dwarf2_section_info abbrev;
755 struct dwarf2_section_info info;
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
760 struct dwarf2_section_info str_offsets;
761 struct dwarf2_section_info types;
764 /* These sections are what may appear in a virtual DWO file in DWP version 1.
765 A virtual DWO file is a DWO file as it appears in a DWP file. */
767 struct virtual_v1_dwo_sections
769 struct dwarf2_section_info abbrev;
770 struct dwarf2_section_info line;
771 struct dwarf2_section_info loc;
772 struct dwarf2_section_info macinfo;
773 struct dwarf2_section_info macro;
774 struct dwarf2_section_info str_offsets;
775 /* Each DWP hash table entry records one CU or one TU.
776 That is recorded here, and copied to dwo_unit.section. */
777 struct dwarf2_section_info info_or_types;
780 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
781 In version 2, the sections of the DWO files are concatenated together
782 and stored in one section of that name. Thus each ELF section contains
783 several "virtual" sections. */
785 struct virtual_v2_dwo_sections
787 bfd_size_type abbrev_offset;
788 bfd_size_type abbrev_size;
790 bfd_size_type line_offset;
791 bfd_size_type line_size;
793 bfd_size_type loc_offset;
794 bfd_size_type loc_size;
796 bfd_size_type macinfo_offset;
797 bfd_size_type macinfo_size;
799 bfd_size_type macro_offset;
800 bfd_size_type macro_size;
802 bfd_size_type str_offsets_offset;
803 bfd_size_type str_offsets_size;
805 /* Each DWP hash table entry records one CU or one TU.
806 That is recorded here, and copied to dwo_unit.section. */
807 bfd_size_type info_or_types_offset;
808 bfd_size_type info_or_types_size;
811 /* Contents of DWP hash tables. */
813 struct dwp_hash_table
815 uint32_t version, nr_columns;
816 uint32_t nr_units, nr_slots;
817 const gdb_byte *hash_table, *unit_table;
822 const gdb_byte *indices;
826 /* This is indexed by column number and gives the id of the section
828 #define MAX_NR_V2_DWO_SECTIONS \
829 (1 /* .debug_info or .debug_types */ \
830 + 1 /* .debug_abbrev */ \
831 + 1 /* .debug_line */ \
832 + 1 /* .debug_loc */ \
833 + 1 /* .debug_str_offsets */ \
834 + 1 /* .debug_macro or .debug_macinfo */)
835 int section_ids[MAX_NR_V2_DWO_SECTIONS];
836 const gdb_byte *offsets;
837 const gdb_byte *sizes;
842 /* Data for one DWP file. */
846 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
848 dbfd (std::move (abfd))
852 /* Name of the file. */
855 /* File format version. */
859 gdb_bfd_ref_ptr dbfd;
861 /* Section info for this file. */
862 struct dwp_sections sections {};
864 /* Table of CUs in the file. */
865 const struct dwp_hash_table *cus = nullptr;
867 /* Table of TUs in the file. */
868 const struct dwp_hash_table *tus = nullptr;
870 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
874 /* Table to map ELF section numbers to their sections.
875 This is only needed for the DWP V1 file format. */
876 unsigned int num_sections = 0;
877 asection **elf_sections = nullptr;
880 /* Struct used to pass misc. parameters to read_die_and_children, et
881 al. which are used for both .debug_info and .debug_types dies.
882 All parameters here are unchanging for the life of the call. This
883 struct exists to abstract away the constant parameters of die reading. */
885 struct die_reader_specs
887 /* The bfd of die_section. */
890 /* The CU of the DIE we are parsing. */
891 struct dwarf2_cu *cu;
893 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
894 struct dwo_file *dwo_file;
896 /* The section the die comes from.
897 This is either .debug_info or .debug_types, or the .dwo variants. */
898 struct dwarf2_section_info *die_section;
900 /* die_section->buffer. */
901 const gdb_byte *buffer;
903 /* The end of the buffer. */
904 const gdb_byte *buffer_end;
906 /* The abbreviation table to use when reading the DIEs. */
907 struct abbrev_table *abbrev_table;
910 /* A subclass of die_reader_specs that holds storage and has complex
911 constructor and destructor behavior. */
913 class cutu_reader : public die_reader_specs
917 cutu_reader (struct dwarf2_per_cu_data *this_cu,
918 struct abbrev_table *abbrev_table,
919 int use_existing_cu, int keep,
922 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
923 struct dwarf2_cu *parent_cu = nullptr,
924 struct dwo_file *dwo_file = nullptr);
928 DISABLE_COPY_AND_ASSIGN (cutu_reader);
930 const gdb_byte *info_ptr = nullptr;
931 struct die_info *comp_unit_die = nullptr;
932 bool dummy_p = false;
935 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
936 int use_existing_cu, int keep);
938 struct dwarf2_per_cu_data *m_this_cu;
940 std::unique_ptr<dwarf2_cu> m_new_cu;
942 /* The ordinary abbreviation table. */
943 abbrev_table_up m_abbrev_table_holder;
945 /* The DWO abbreviation table. */
946 abbrev_table_up m_dwo_abbrev_table;
949 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
951 typedef int dir_index;
953 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
955 typedef int file_name_index;
959 file_entry () = default;
961 file_entry (const char *name_, dir_index d_index_,
962 unsigned int mod_time_, unsigned int length_)
965 mod_time (mod_time_),
969 /* Return the include directory at D_INDEX stored in LH. Returns
970 NULL if D_INDEX is out of bounds. */
971 const char *include_dir (const line_header *lh) const;
973 /* The file name. Note this is an observing pointer. The memory is
974 owned by debug_line_buffer. */
977 /* The directory index (1-based). */
978 dir_index d_index {};
980 unsigned int mod_time {};
982 unsigned int length {};
984 /* True if referenced by the Line Number Program. */
987 /* The associated symbol table, if any. */
988 struct symtab *symtab {};
991 /* The line number information for a compilation unit (found in the
992 .debug_line section) begins with a "statement program header",
993 which contains the following information. */
1000 /* Add an entry to the include directory table. */
1001 void add_include_dir (const char *include_dir);
1003 /* Add an entry to the file name table. */
1004 void add_file_name (const char *name, dir_index d_index,
1005 unsigned int mod_time, unsigned int length);
1007 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
1008 Returns NULL if INDEX is out of bounds. */
1009 const char *include_dir_at (dir_index index) const
1015 vec_index = index - 1;
1016 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
1018 return m_include_dirs[vec_index];
1021 bool is_valid_file_index (int file_index)
1024 return 0 <= file_index && file_index < file_names_size ();
1025 return 1 <= file_index && file_index <= file_names_size ();
1028 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
1029 Returns NULL if INDEX is out of bounds. */
1030 file_entry *file_name_at (file_name_index index)
1036 vec_index = index - 1;
1037 if (vec_index < 0 || vec_index >= m_file_names.size ())
1039 return &m_file_names[vec_index];
1042 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1043 this method should only be used to iterate through all file entries in an
1044 index-agnostic manner. */
1045 std::vector<file_entry> &file_names ()
1046 { return m_file_names; }
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1070 int file_names_size ()
1071 { return m_file_names.size(); }
1073 /* The start and end of the statement program following this
1074 header. These point into dwarf2_per_objfile->line_buffer. */
1075 const gdb_byte *statement_program_start {}, *statement_program_end {};
1077 /* Return the full name of file number I in this object's file name
1078 table. Use COMP_DIR as the name of the current directory of the
1079 compilation. The result is allocated using xmalloc; the caller
1080 is responsible for freeing it. */
1081 char *file_full_name (int file, const char *comp_dir);
1083 /* Return file name relative to the compilation directory of file
1084 number I in this object's file name table. The result is
1085 allocated using xmalloc; the caller is responsible for freeing
1087 char *file_file_name (int file);
1090 /* The include_directories table. Note these are observing
1091 pointers. The memory is owned by debug_line_buffer. */
1092 std::vector<const char *> m_include_dirs;
1094 /* The file_names table. This is private because the meaning of indexes
1095 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1096 before, and is 0 in DWARF 5 and later). So the client should use
1097 file_name_at method for access. */
1098 std::vector<file_entry> m_file_names;
1101 typedef std::unique_ptr<line_header> line_header_up;
1104 file_entry::include_dir (const line_header *lh) const
1106 return lh->include_dir_at (d_index);
1109 /* When we construct a partial symbol table entry we only
1110 need this much information. */
1111 struct partial_die_info : public allocate_on_obstack
1113 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1115 /* Disable assign but still keep copy ctor, which is needed
1116 load_partial_dies. */
1117 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1119 /* Adjust the partial die before generating a symbol for it. This
1120 function may set the is_external flag or change the DIE's
1122 void fixup (struct dwarf2_cu *cu);
1124 /* Read a minimal amount of information into the minimal die
1126 const gdb_byte *read (const struct die_reader_specs *reader,
1127 const struct abbrev_info &abbrev,
1128 const gdb_byte *info_ptr);
1130 /* Offset of this DIE. */
1131 const sect_offset sect_off;
1133 /* DWARF-2 tag for this DIE. */
1134 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1136 /* Assorted flags describing the data found in this DIE. */
1137 const unsigned int has_children : 1;
1139 unsigned int is_external : 1;
1140 unsigned int is_declaration : 1;
1141 unsigned int has_type : 1;
1142 unsigned int has_specification : 1;
1143 unsigned int has_pc_info : 1;
1144 unsigned int may_be_inlined : 1;
1146 /* This DIE has been marked DW_AT_main_subprogram. */
1147 unsigned int main_subprogram : 1;
1149 /* Flag set if the SCOPE field of this structure has been
1151 unsigned int scope_set : 1;
1153 /* Flag set if the DIE has a byte_size attribute. */
1154 unsigned int has_byte_size : 1;
1156 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1157 unsigned int has_const_value : 1;
1159 /* Flag set if any of the DIE's children are template arguments. */
1160 unsigned int has_template_arguments : 1;
1162 /* Flag set if fixup has been called on this die. */
1163 unsigned int fixup_called : 1;
1165 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1166 unsigned int is_dwz : 1;
1168 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1169 unsigned int spec_is_dwz : 1;
1171 /* The name of this DIE. Normally the value of DW_AT_name, but
1172 sometimes a default name for unnamed DIEs. */
1173 const char *name = nullptr;
1175 /* The linkage name, if present. */
1176 const char *linkage_name = nullptr;
1178 /* The scope to prepend to our children. This is generally
1179 allocated on the comp_unit_obstack, so will disappear
1180 when this compilation unit leaves the cache. */
1181 const char *scope = nullptr;
1183 /* Some data associated with the partial DIE. The tag determines
1184 which field is live. */
1187 /* The location description associated with this DIE, if any. */
1188 struct dwarf_block *locdesc;
1189 /* The offset of an import, for DW_TAG_imported_unit. */
1190 sect_offset sect_off;
1193 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1194 CORE_ADDR lowpc = 0;
1195 CORE_ADDR highpc = 0;
1197 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1198 DW_AT_sibling, if any. */
1199 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1200 could return DW_AT_sibling values to its caller load_partial_dies. */
1201 const gdb_byte *sibling = nullptr;
1203 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1204 DW_AT_specification (or DW_AT_abstract_origin or
1205 DW_AT_extension). */
1206 sect_offset spec_offset {};
1208 /* Pointers to this DIE's parent, first child, and next sibling,
1210 struct partial_die_info *die_parent = nullptr;
1211 struct partial_die_info *die_child = nullptr;
1212 struct partial_die_info *die_sibling = nullptr;
1214 friend struct partial_die_info *
1215 dwarf2_cu::find_partial_die (sect_offset sect_off);
1218 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1219 partial_die_info (sect_offset sect_off)
1220 : partial_die_info (sect_off, DW_TAG_padding, 0)
1224 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1226 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1231 has_specification = 0;
1234 main_subprogram = 0;
1237 has_const_value = 0;
1238 has_template_arguments = 0;
1245 /* This data structure holds a complete die structure. */
1248 /* DWARF-2 tag for this DIE. */
1249 ENUM_BITFIELD(dwarf_tag) tag : 16;
1251 /* Number of attributes */
1252 unsigned char num_attrs;
1254 /* True if we're presently building the full type name for the
1255 type derived from this DIE. */
1256 unsigned char building_fullname : 1;
1258 /* True if this die is in process. PR 16581. */
1259 unsigned char in_process : 1;
1261 /* True if this DIE has children. */
1262 unsigned char has_children : 1;
1265 unsigned int abbrev;
1267 /* Offset in .debug_info or .debug_types section. */
1268 sect_offset sect_off;
1270 /* The dies in a compilation unit form an n-ary tree. PARENT
1271 points to this die's parent; CHILD points to the first child of
1272 this node; and all the children of a given node are chained
1273 together via their SIBLING fields. */
1274 struct die_info *child; /* Its first child, if any. */
1275 struct die_info *sibling; /* Its next sibling, if any. */
1276 struct die_info *parent; /* Its parent, if any. */
1278 /* An array of attributes, with NUM_ATTRS elements. There may be
1279 zero, but it's not common and zero-sized arrays are not
1280 sufficiently portable C. */
1281 struct attribute attrs[1];
1284 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1285 but this would require a corresponding change in unpack_field_as_long
1287 static int bits_per_byte = 8;
1289 /* When reading a variant or variant part, we track a bit more
1290 information about the field, and store it in an object of this
1293 struct variant_field
1295 /* If we see a DW_TAG_variant, then this will be the discriminant
1297 ULONGEST discriminant_value;
1298 /* If we see a DW_TAG_variant, then this will be set if this is the
1300 bool default_branch;
1301 /* While reading a DW_TAG_variant_part, this will be set if this
1302 field is the discriminant. */
1303 bool is_discriminant;
1308 int accessibility = 0;
1310 /* Extra information to describe a variant or variant part. */
1311 struct variant_field variant {};
1312 struct field field {};
1317 const char *name = nullptr;
1318 std::vector<struct fn_field> fnfields;
1321 /* The routines that read and process dies for a C struct or C++ class
1322 pass lists of data member fields and lists of member function fields
1323 in an instance of a field_info structure, as defined below. */
1326 /* List of data member and baseclasses fields. */
1327 std::vector<struct nextfield> fields;
1328 std::vector<struct nextfield> baseclasses;
1330 /* Number of fields (including baseclasses). */
1333 /* Set if the accessibility of one of the fields is not public. */
1334 int non_public_fields = 0;
1336 /* Member function fieldlist array, contains name of possibly overloaded
1337 member function, number of overloaded member functions and a pointer
1338 to the head of the member function field chain. */
1339 std::vector<struct fnfieldlist> fnfieldlists;
1341 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1342 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1343 std::vector<struct decl_field> typedef_field_list;
1345 /* Nested types defined by this class and the number of elements in this
1347 std::vector<struct decl_field> nested_types_list;
1350 /* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355 static int dwarf_max_cache_age = 5;
1357 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "DWARF compilation units is %s.\n"),
1365 /* local function prototypes */
1367 static void dwarf2_find_base_address (struct die_info *die,
1368 struct dwarf2_cu *cu);
1370 static dwarf2_psymtab *create_partial_symtab
1371 (struct dwarf2_per_cu_data *per_cu, const char *name);
1373 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1374 const gdb_byte *info_ptr,
1375 struct die_info *type_unit_die);
1377 static void dwarf2_build_psymtabs_hard
1378 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1380 static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
1382 int, struct dwarf2_cu *);
1384 static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
1387 static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1389 int set_addrmap, struct dwarf2_cu *cu);
1391 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1392 CORE_ADDR *highpc, int set_addrmap,
1393 struct dwarf2_cu *cu);
1395 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
1398 static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1400 int need_pc, struct dwarf2_cu *cu);
1402 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1404 static struct partial_die_info *load_partial_dies
1405 (const struct die_reader_specs *, const gdb_byte *, int);
1407 /* A pair of partial_die_info and compilation unit. */
1408 struct cu_partial_die_info
1410 /* The compilation unit of the partial_die_info. */
1411 struct dwarf2_cu *cu;
1412 /* A partial_die_info. */
1413 struct partial_die_info *pdi;
1415 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1421 cu_partial_die_info () = delete;
1424 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1425 struct dwarf2_cu *);
1427 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1428 struct attribute *, struct attr_abbrev *,
1429 const gdb_byte *, bool *need_reprocess);
1431 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1432 struct attribute *attr);
1434 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1436 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1439 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1441 static LONGEST read_checked_initial_length_and_offset
1442 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1443 unsigned int *, unsigned int *);
1445 static LONGEST read_offset (bfd *, const gdb_byte *,
1446 const struct comp_unit_head *,
1449 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1451 static sect_offset read_abbrev_offset
1452 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1453 struct dwarf2_section_info *, sect_offset);
1455 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1457 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1459 static const char *read_indirect_string
1460 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1461 const struct comp_unit_head *, unsigned int *);
1463 static const char *read_indirect_line_string
1464 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1465 const struct comp_unit_head *, unsigned int *);
1467 static const char *read_indirect_string_at_offset
1468 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1469 LONGEST str_offset);
1471 static const char *read_indirect_string_from_dwz
1472 (struct objfile *objfile, struct dwz_file *, LONGEST);
1474 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1478 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1479 ULONGEST str_index);
1481 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1482 ULONGEST str_index);
1484 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1486 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1487 struct dwarf2_cu *);
1489 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1492 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1493 struct dwarf2_cu *cu);
1495 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1497 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1498 struct dwarf2_cu *cu);
1500 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1502 static struct die_info *die_specification (struct die_info *die,
1503 struct dwarf2_cu **);
1505 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1506 struct dwarf2_cu *cu);
1508 static void dwarf_decode_lines (struct line_header *, const char *,
1509 struct dwarf2_cu *, dwarf2_psymtab *,
1510 CORE_ADDR, int decode_mapping);
1512 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1515 static struct symbol *new_symbol (struct die_info *, struct type *,
1516 struct dwarf2_cu *, struct symbol * = NULL);
1518 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1519 struct dwarf2_cu *);
1521 static void dwarf2_const_value_attr (const struct attribute *attr,
1524 struct obstack *obstack,
1525 struct dwarf2_cu *cu, LONGEST *value,
1526 const gdb_byte **bytes,
1527 struct dwarf2_locexpr_baton **baton);
1529 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1531 static int need_gnat_info (struct dwarf2_cu *);
1533 static struct type *die_descriptive_type (struct die_info *,
1534 struct dwarf2_cu *);
1536 static void set_descriptive_type (struct type *, struct die_info *,
1537 struct dwarf2_cu *);
1539 static struct type *die_containing_type (struct die_info *,
1540 struct dwarf2_cu *);
1542 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1543 struct dwarf2_cu *);
1545 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1547 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1549 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1551 static char *typename_concat (struct obstack *obs, const char *prefix,
1552 const char *suffix, int physname,
1553 struct dwarf2_cu *cu);
1555 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1557 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1559 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1561 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1563 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1565 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1567 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1568 struct dwarf2_cu *, dwarf2_psymtab *);
1570 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1571 values. Keep the items ordered with increasing constraints compliance. */
1574 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1575 PC_BOUNDS_NOT_PRESENT,
1577 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1578 were present but they do not form a valid range of PC addresses. */
1581 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1584 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1588 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1589 CORE_ADDR *, CORE_ADDR *,
1593 static void get_scope_pc_bounds (struct die_info *,
1594 CORE_ADDR *, CORE_ADDR *,
1595 struct dwarf2_cu *);
1597 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1598 CORE_ADDR, struct dwarf2_cu *);
1600 static void dwarf2_add_field (struct field_info *, struct die_info *,
1601 struct dwarf2_cu *);
1603 static void dwarf2_attach_fields_to_type (struct field_info *,
1604 struct type *, struct dwarf2_cu *);
1606 static void dwarf2_add_member_fn (struct field_info *,
1607 struct die_info *, struct type *,
1608 struct dwarf2_cu *);
1610 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1612 struct dwarf2_cu *);
1614 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1616 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1618 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1620 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1622 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1624 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1626 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1628 static struct type *read_module_type (struct die_info *die,
1629 struct dwarf2_cu *cu);
1631 static const char *namespace_name (struct die_info *die,
1632 int *is_anonymous, struct dwarf2_cu *);
1634 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1636 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1638 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1639 struct dwarf2_cu *);
1641 static struct die_info *read_die_and_siblings_1
1642 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1645 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1646 const gdb_byte *info_ptr,
1647 const gdb_byte **new_info_ptr,
1648 struct die_info *parent);
1650 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1651 struct die_info **, const gdb_byte *,
1654 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1655 struct die_info **, const gdb_byte *);
1657 static void process_die (struct die_info *, struct dwarf2_cu *);
1659 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1662 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1664 static const char *dwarf2_full_name (const char *name,
1665 struct die_info *die,
1666 struct dwarf2_cu *cu);
1668 static const char *dwarf2_physname (const char *name, struct die_info *die,
1669 struct dwarf2_cu *cu);
1671 static struct die_info *dwarf2_extension (struct die_info *die,
1672 struct dwarf2_cu **);
1674 static const char *dwarf_tag_name (unsigned int);
1676 static const char *dwarf_attr_name (unsigned int);
1678 static const char *dwarf_unit_type_name (int unit_type);
1680 static const char *dwarf_form_name (unsigned int);
1682 static const char *dwarf_bool_name (unsigned int);
1684 static const char *dwarf_type_encoding_name (unsigned int);
1686 static struct die_info *sibling_die (struct die_info *);
1688 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1690 static void dump_die_for_error (struct die_info *);
1692 static void dump_die_1 (struct ui_file *, int level, int max_level,
1695 /*static*/ void dump_die (struct die_info *, int max_level);
1697 static void store_in_ref_table (struct die_info *,
1698 struct dwarf2_cu *);
1700 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1702 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1704 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1705 const struct attribute *,
1706 struct dwarf2_cu **);
1708 static struct die_info *follow_die_ref (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1712 static struct die_info *follow_die_sig (struct die_info *,
1713 const struct attribute *,
1714 struct dwarf2_cu **);
1716 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1717 struct dwarf2_cu *);
1719 static struct type *get_DW_AT_signature_type (struct die_info *,
1720 const struct attribute *,
1721 struct dwarf2_cu *);
1723 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1725 static void read_signatured_type (struct signatured_type *);
1727 static int attr_to_dynamic_prop (const struct attribute *attr,
1728 struct die_info *die, struct dwarf2_cu *cu,
1729 struct dynamic_prop *prop, struct type *type);
1731 /* memory allocation interface */
1733 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1735 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1737 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1739 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1740 struct dwarf2_loclist_baton *baton,
1741 const struct attribute *attr);
1743 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct dwarf2_cu *cu,
1748 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1749 const gdb_byte *info_ptr,
1750 struct abbrev_info *abbrev);
1752 static hashval_t partial_die_hash (const void *item);
1754 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1756 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1757 (sect_offset sect_off, unsigned int offset_in_dwz,
1758 struct dwarf2_per_objfile *dwarf2_per_objfile);
1760 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1761 struct die_info *comp_unit_die,
1762 enum language pretend_language);
1764 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1766 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1768 static struct type *set_die_type (struct die_info *, struct type *,
1769 struct dwarf2_cu *);
1771 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1773 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1775 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1778 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 static void dwarf2_add_dependence (struct dwarf2_cu *,
1785 struct dwarf2_per_cu_data *);
1787 static void dwarf2_mark (struct dwarf2_cu *);
1789 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1791 static struct type *get_die_type_at_offset (sect_offset,
1792 struct dwarf2_per_cu_data *);
1794 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1796 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1797 enum language pretend_language);
1799 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1801 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1802 static struct type *dwarf2_per_cu_addr_sized_int_type
1803 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1804 static struct type *dwarf2_per_cu_int_type
1805 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1808 /* Class, the destructor of which frees all allocated queue entries. This
1809 will only have work to do if an error was thrown while processing the
1810 dwarf. If no error was thrown then the queue entries should have all
1811 been processed, and freed, as we went along. */
1813 class dwarf2_queue_guard
1816 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1817 : m_per_objfile (per_objfile)
1821 /* Free any entries remaining on the queue. There should only be
1822 entries left if we hit an error while processing the dwarf. */
1823 ~dwarf2_queue_guard ()
1825 /* Ensure that no memory is allocated by the queue. */
1826 std::queue<dwarf2_queue_item> empty;
1827 std::swap (m_per_objfile->queue, empty);
1830 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1833 dwarf2_per_objfile *m_per_objfile;
1836 dwarf2_queue_item::~dwarf2_queue_item ()
1838 /* Anything still marked queued is likely to be in an
1839 inconsistent state, so discard it. */
1842 if (per_cu->cu != NULL)
1843 free_one_cached_comp_unit (per_cu);
1848 /* The return type of find_file_and_directory. Note, the enclosed
1849 string pointers are only valid while this object is valid. */
1851 struct file_and_directory
1853 /* The filename. This is never NULL. */
1856 /* The compilation directory. NULL if not known. If we needed to
1857 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1858 points directly to the DW_AT_comp_dir string attribute owned by
1859 the obstack that owns the DIE. */
1860 const char *comp_dir;
1862 /* If we needed to build a new string for comp_dir, this is what
1863 owns the storage. */
1864 std::string comp_dir_storage;
1867 static file_and_directory find_file_and_directory (struct die_info *die,
1868 struct dwarf2_cu *cu);
1870 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1871 enum class rcuh_kind { COMPILE, TYPE };
1873 static const gdb_byte *read_and_check_comp_unit_head
1874 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1875 struct comp_unit_head *header,
1876 struct dwarf2_section_info *section,
1877 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1878 rcuh_kind section_kind);
1880 static htab_up allocate_signatured_type_table (struct objfile *objfile);
1882 static htab_up allocate_dwo_unit_table (struct objfile *objfile);
1884 static struct dwo_unit *lookup_dwo_unit_in_dwp
1885 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1886 struct dwp_file *dwp_file, const char *comp_dir,
1887 ULONGEST signature, int is_debug_types);
1889 static struct dwp_file *get_dwp_file
1890 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1892 static struct dwo_unit *lookup_dwo_comp_unit
1893 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1895 static struct dwo_unit *lookup_dwo_type_unit
1896 (struct signatured_type *, const char *, const char *);
1898 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1900 /* A unique pointer to a dwo_file. */
1902 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1904 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1906 static void check_producer (struct dwarf2_cu *cu);
1908 static void free_line_header_voidp (void *arg);
1910 /* Various complaints about symbol reading that don't abort the process. */
1913 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1915 complaint (_("statement list doesn't fit in .debug_line section"));
1919 dwarf2_debug_line_missing_file_complaint (void)
1921 complaint (_(".debug_line section has line data without a file"));
1925 dwarf2_debug_line_missing_end_sequence_complaint (void)
1927 complaint (_(".debug_line section has line "
1928 "program sequence without an end"));
1932 dwarf2_complex_location_expr_complaint (void)
1934 complaint (_("location expression too complex"));
1938 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1941 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1946 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1948 complaint (_("debug info runs off end of %s section"
1950 section->get_name (),
1951 section->get_file_name ());
1955 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1957 complaint (_("macro debug info contains a "
1958 "malformed macro definition:\n`%s'"),
1963 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1969 /* Hash function for line_header_hash. */
1972 line_header_hash (const struct line_header *ofs)
1974 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1977 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1980 line_header_hash_voidp (const void *item)
1982 const struct line_header *ofs = (const struct line_header *) item;
1984 return line_header_hash (ofs);
1987 /* Equality function for line_header_hash. */
1990 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1992 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1993 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1995 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1996 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2001 /* See declaration. */
2003 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2004 const dwarf2_debug_sections *names,
2006 : objfile (objfile_),
2007 can_copy (can_copy_)
2010 names = &dwarf2_elf_names;
2012 bfd *obfd = objfile->obfd;
2014 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2015 locate_sections (obfd, sec, *names);
2018 dwarf2_per_objfile::~dwarf2_per_objfile ()
2020 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2021 free_cached_comp_units ();
2023 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2024 per_cu->imported_symtabs_free ();
2026 for (signatured_type *sig_type : all_type_units)
2027 sig_type->per_cu.imported_symtabs_free ();
2029 /* Everything else should be on the objfile obstack. */
2032 /* See declaration. */
2035 dwarf2_per_objfile::free_cached_comp_units ()
2037 dwarf2_per_cu_data *per_cu = read_in_chain;
2038 dwarf2_per_cu_data **last_chain = &read_in_chain;
2039 while (per_cu != NULL)
2041 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2044 *last_chain = next_cu;
2049 /* A helper class that calls free_cached_comp_units on
2052 class free_cached_comp_units
2056 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2057 : m_per_objfile (per_objfile)
2061 ~free_cached_comp_units ()
2063 m_per_objfile->free_cached_comp_units ();
2066 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2070 dwarf2_per_objfile *m_per_objfile;
2073 /* Try to locate the sections we need for DWARF 2 debugging
2074 information and return true if we have enough to do something.
2075 NAMES points to the dwarf2 section names, or is NULL if the standard
2076 ELF names are used. CAN_COPY is true for formats where symbol
2077 interposition is possible and so symbol values must follow copy
2078 relocation rules. */
2081 dwarf2_has_info (struct objfile *objfile,
2082 const struct dwarf2_debug_sections *names,
2085 if (objfile->flags & OBJF_READNEVER)
2088 struct dwarf2_per_objfile *dwarf2_per_objfile
2089 = get_dwarf2_per_objfile (objfile);
2091 if (dwarf2_per_objfile == NULL)
2092 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2096 return (!dwarf2_per_objfile->info.is_virtual
2097 && dwarf2_per_objfile->info.s.section != NULL
2098 && !dwarf2_per_objfile->abbrev.is_virtual
2099 && dwarf2_per_objfile->abbrev.s.section != NULL);
2102 /* When loading sections, we look either for uncompressed section or for
2103 compressed section names. */
2106 section_is_p (const char *section_name,
2107 const struct dwarf2_section_names *names)
2109 if (names->normal != NULL
2110 && strcmp (section_name, names->normal) == 0)
2112 if (names->compressed != NULL
2113 && strcmp (section_name, names->compressed) == 0)
2118 /* See declaration. */
2121 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2122 const dwarf2_debug_sections &names)
2124 flagword aflag = bfd_section_flags (sectp);
2126 if ((aflag & SEC_HAS_CONTENTS) == 0)
2129 else if (elf_section_data (sectp)->this_hdr.sh_size
2130 > bfd_get_file_size (abfd))
2132 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2133 warning (_("Discarding section %s which has a section size (%s"
2134 ") larger than the file size [in module %s]"),
2135 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2136 bfd_get_filename (abfd));
2138 else if (section_is_p (sectp->name, &names.info))
2140 this->info.s.section = sectp;
2141 this->info.size = bfd_section_size (sectp);
2143 else if (section_is_p (sectp->name, &names.abbrev))
2145 this->abbrev.s.section = sectp;
2146 this->abbrev.size = bfd_section_size (sectp);
2148 else if (section_is_p (sectp->name, &names.line))
2150 this->line.s.section = sectp;
2151 this->line.size = bfd_section_size (sectp);
2153 else if (section_is_p (sectp->name, &names.loc))
2155 this->loc.s.section = sectp;
2156 this->loc.size = bfd_section_size (sectp);
2158 else if (section_is_p (sectp->name, &names.loclists))
2160 this->loclists.s.section = sectp;
2161 this->loclists.size = bfd_section_size (sectp);
2163 else if (section_is_p (sectp->name, &names.macinfo))
2165 this->macinfo.s.section = sectp;
2166 this->macinfo.size = bfd_section_size (sectp);
2168 else if (section_is_p (sectp->name, &names.macro))
2170 this->macro.s.section = sectp;
2171 this->macro.size = bfd_section_size (sectp);
2173 else if (section_is_p (sectp->name, &names.str))
2175 this->str.s.section = sectp;
2176 this->str.size = bfd_section_size (sectp);
2178 else if (section_is_p (sectp->name, &names.str_offsets))
2180 this->str_offsets.s.section = sectp;
2181 this->str_offsets.size = bfd_section_size (sectp);
2183 else if (section_is_p (sectp->name, &names.line_str))
2185 this->line_str.s.section = sectp;
2186 this->line_str.size = bfd_section_size (sectp);
2188 else if (section_is_p (sectp->name, &names.addr))
2190 this->addr.s.section = sectp;
2191 this->addr.size = bfd_section_size (sectp);
2193 else if (section_is_p (sectp->name, &names.frame))
2195 this->frame.s.section = sectp;
2196 this->frame.size = bfd_section_size (sectp);
2198 else if (section_is_p (sectp->name, &names.eh_frame))
2200 this->eh_frame.s.section = sectp;
2201 this->eh_frame.size = bfd_section_size (sectp);
2203 else if (section_is_p (sectp->name, &names.ranges))
2205 this->ranges.s.section = sectp;
2206 this->ranges.size = bfd_section_size (sectp);
2208 else if (section_is_p (sectp->name, &names.rnglists))
2210 this->rnglists.s.section = sectp;
2211 this->rnglists.size = bfd_section_size (sectp);
2213 else if (section_is_p (sectp->name, &names.types))
2215 struct dwarf2_section_info type_section;
2217 memset (&type_section, 0, sizeof (type_section));
2218 type_section.s.section = sectp;
2219 type_section.size = bfd_section_size (sectp);
2221 this->types.push_back (type_section);
2223 else if (section_is_p (sectp->name, &names.gdb_index))
2225 this->gdb_index.s.section = sectp;
2226 this->gdb_index.size = bfd_section_size (sectp);
2228 else if (section_is_p (sectp->name, &names.debug_names))
2230 this->debug_names.s.section = sectp;
2231 this->debug_names.size = bfd_section_size (sectp);
2233 else if (section_is_p (sectp->name, &names.debug_aranges))
2235 this->debug_aranges.s.section = sectp;
2236 this->debug_aranges.size = bfd_section_size (sectp);
2239 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2240 && bfd_section_vma (sectp) == 0)
2241 this->has_section_at_zero = true;
2244 /* A helper function that returns the size of a section in a safe way.
2245 If you are positive that the section has been read before using the
2246 size, then it is safe to refer to the dwarf2_section_info object's
2247 "size" field directly. In other cases, you must call this
2248 function, because for compressed sections the size field is not set
2249 correctly until the section has been read. */
2251 static bfd_size_type
2252 dwarf2_section_size (struct objfile *objfile,
2253 struct dwarf2_section_info *info)
2256 info->read (objfile);
2260 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2264 dwarf2_get_section_info (struct objfile *objfile,
2265 enum dwarf2_section_enum sect,
2266 asection **sectp, const gdb_byte **bufp,
2267 bfd_size_type *sizep)
2269 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2270 struct dwarf2_section_info *info;
2272 /* We may see an objfile without any DWARF, in which case we just
2283 case DWARF2_DEBUG_FRAME:
2284 info = &data->frame;
2286 case DWARF2_EH_FRAME:
2287 info = &data->eh_frame;
2290 gdb_assert_not_reached ("unexpected section");
2293 info->read (objfile);
2295 *sectp = info->get_bfd_section ();
2296 *bufp = info->buffer;
2297 *sizep = info->size;
2300 /* A helper function to find the sections for a .dwz file. */
2303 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2305 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2307 /* Note that we only support the standard ELF names, because .dwz
2308 is ELF-only (at the time of writing). */
2309 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2311 dwz_file->abbrev.s.section = sectp;
2312 dwz_file->abbrev.size = bfd_section_size (sectp);
2314 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2316 dwz_file->info.s.section = sectp;
2317 dwz_file->info.size = bfd_section_size (sectp);
2319 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2321 dwz_file->str.s.section = sectp;
2322 dwz_file->str.size = bfd_section_size (sectp);
2324 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2326 dwz_file->line.s.section = sectp;
2327 dwz_file->line.size = bfd_section_size (sectp);
2329 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2331 dwz_file->macro.s.section = sectp;
2332 dwz_file->macro.size = bfd_section_size (sectp);
2334 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2336 dwz_file->gdb_index.s.section = sectp;
2337 dwz_file->gdb_index.size = bfd_section_size (sectp);
2339 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2341 dwz_file->debug_names.s.section = sectp;
2342 dwz_file->debug_names.size = bfd_section_size (sectp);
2346 /* See dwarf2read.h. */
2349 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2351 const char *filename;
2352 bfd_size_type buildid_len_arg;
2356 if (dwarf2_per_objfile->dwz_file != NULL)
2357 return dwarf2_per_objfile->dwz_file.get ();
2359 bfd_set_error (bfd_error_no_error);
2360 gdb::unique_xmalloc_ptr<char> data
2361 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2362 &buildid_len_arg, &buildid));
2365 if (bfd_get_error () == bfd_error_no_error)
2367 error (_("could not read '.gnu_debugaltlink' section: %s"),
2368 bfd_errmsg (bfd_get_error ()));
2371 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2373 buildid_len = (size_t) buildid_len_arg;
2375 filename = data.get ();
2377 std::string abs_storage;
2378 if (!IS_ABSOLUTE_PATH (filename))
2380 gdb::unique_xmalloc_ptr<char> abs
2381 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2383 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2384 filename = abs_storage.c_str ();
2387 /* First try the file name given in the section. If that doesn't
2388 work, try to use the build-id instead. */
2389 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2390 if (dwz_bfd != NULL)
2392 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2393 dwz_bfd.reset (nullptr);
2396 if (dwz_bfd == NULL)
2397 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2399 if (dwz_bfd == NULL)
2400 error (_("could not find '.gnu_debugaltlink' file for %s"),
2401 objfile_name (dwarf2_per_objfile->objfile));
2403 std::unique_ptr<struct dwz_file> result
2404 (new struct dwz_file (std::move (dwz_bfd)));
2406 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2409 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2410 result->dwz_bfd.get ());
2411 dwarf2_per_objfile->dwz_file = std::move (result);
2412 return dwarf2_per_objfile->dwz_file.get ();
2415 /* DWARF quick_symbols_functions support. */
2417 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2418 unique line tables, so we maintain a separate table of all .debug_line
2419 derived entries to support the sharing.
2420 All the quick functions need is the list of file names. We discard the
2421 line_header when we're done and don't need to record it here. */
2422 struct quick_file_names
2424 /* The data used to construct the hash key. */
2425 struct stmt_list_hash hash;
2427 /* The number of entries in file_names, real_names. */
2428 unsigned int num_file_names;
2430 /* The file names from the line table, after being run through
2432 const char **file_names;
2434 /* The file names from the line table after being run through
2435 gdb_realpath. These are computed lazily. */
2436 const char **real_names;
2439 /* When using the index (and thus not using psymtabs), each CU has an
2440 object of this type. This is used to hold information needed by
2441 the various "quick" methods. */
2442 struct dwarf2_per_cu_quick_data
2444 /* The file table. This can be NULL if there was no file table
2445 or it's currently not read in.
2446 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2447 struct quick_file_names *file_names;
2449 /* The corresponding symbol table. This is NULL if symbols for this
2450 CU have not yet been read. */
2451 struct compunit_symtab *compunit_symtab;
2453 /* A temporary mark bit used when iterating over all CUs in
2454 expand_symtabs_matching. */
2455 unsigned int mark : 1;
2457 /* True if we've tried to read the file table and found there isn't one.
2458 There will be no point in trying to read it again next time. */
2459 unsigned int no_file_data : 1;
2462 /* Utility hash function for a stmt_list_hash. */
2465 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2469 if (stmt_list_hash->dwo_unit != NULL)
2470 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2471 v += to_underlying (stmt_list_hash->line_sect_off);
2475 /* Utility equality function for a stmt_list_hash. */
2478 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2479 const struct stmt_list_hash *rhs)
2481 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2483 if (lhs->dwo_unit != NULL
2484 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2487 return lhs->line_sect_off == rhs->line_sect_off;
2490 /* Hash function for a quick_file_names. */
2493 hash_file_name_entry (const void *e)
2495 const struct quick_file_names *file_data
2496 = (const struct quick_file_names *) e;
2498 return hash_stmt_list_entry (&file_data->hash);
2501 /* Equality function for a quick_file_names. */
2504 eq_file_name_entry (const void *a, const void *b)
2506 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2507 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2509 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2512 /* Delete function for a quick_file_names. */
2515 delete_file_name_entry (void *e)
2517 struct quick_file_names *file_data = (struct quick_file_names *) e;
2520 for (i = 0; i < file_data->num_file_names; ++i)
2522 xfree ((void*) file_data->file_names[i]);
2523 if (file_data->real_names)
2524 xfree ((void*) file_data->real_names[i]);
2527 /* The space for the struct itself lives on objfile_obstack,
2528 so we don't free it here. */
2531 /* Create a quick_file_names hash table. */
2534 create_quick_file_names_table (unsigned int nr_initial_entries)
2536 return htab_up (htab_create_alloc (nr_initial_entries,
2537 hash_file_name_entry, eq_file_name_entry,
2538 delete_file_name_entry, xcalloc, xfree));
2541 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2542 have to be created afterwards. You should call age_cached_comp_units after
2543 processing PER_CU->CU. dw2_setup must have been already called. */
2546 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2548 if (per_cu->is_debug_types)
2549 load_full_type_unit (per_cu);
2551 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2553 if (per_cu->cu == NULL)
2554 return; /* Dummy CU. */
2556 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2559 /* Read in the symbols for PER_CU. */
2562 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2564 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2566 /* Skip type_unit_groups, reading the type units they contain
2567 is handled elsewhere. */
2568 if (IS_TYPE_UNIT_GROUP (per_cu))
2571 /* The destructor of dwarf2_queue_guard frees any entries left on
2572 the queue. After this point we're guaranteed to leave this function
2573 with the dwarf queue empty. */
2574 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2576 if (dwarf2_per_objfile->using_index
2577 ? per_cu->v.quick->compunit_symtab == NULL
2578 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2580 queue_comp_unit (per_cu, language_minimal);
2581 load_cu (per_cu, skip_partial);
2583 /* If we just loaded a CU from a DWO, and we're working with an index
2584 that may badly handle TUs, load all the TUs in that DWO as well.
2585 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2586 if (!per_cu->is_debug_types
2587 && per_cu->cu != NULL
2588 && per_cu->cu->dwo_unit != NULL
2589 && dwarf2_per_objfile->index_table != NULL
2590 && dwarf2_per_objfile->index_table->version <= 7
2591 /* DWP files aren't supported yet. */
2592 && get_dwp_file (dwarf2_per_objfile) == NULL)
2593 queue_and_load_all_dwo_tus (per_cu);
2596 process_queue (dwarf2_per_objfile);
2598 /* Age the cache, releasing compilation units that have not
2599 been used recently. */
2600 age_cached_comp_units (dwarf2_per_objfile);
2603 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2604 the objfile from which this CU came. Returns the resulting symbol
2607 static struct compunit_symtab *
2608 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2610 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2612 gdb_assert (dwarf2_per_objfile->using_index);
2613 if (!per_cu->v.quick->compunit_symtab)
2615 free_cached_comp_units freer (dwarf2_per_objfile);
2616 scoped_restore decrementer = increment_reading_symtab ();
2617 dw2_do_instantiate_symtab (per_cu, skip_partial);
2618 process_cu_includes (dwarf2_per_objfile);
2621 return per_cu->v.quick->compunit_symtab;
2624 /* See declaration. */
2626 dwarf2_per_cu_data *
2627 dwarf2_per_objfile::get_cutu (int index)
2629 if (index >= this->all_comp_units.size ())
2631 index -= this->all_comp_units.size ();
2632 gdb_assert (index < this->all_type_units.size ());
2633 return &this->all_type_units[index]->per_cu;
2636 return this->all_comp_units[index];
2639 /* See declaration. */
2641 dwarf2_per_cu_data *
2642 dwarf2_per_objfile::get_cu (int index)
2644 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2646 return this->all_comp_units[index];
2649 /* See declaration. */
2652 dwarf2_per_objfile::get_tu (int index)
2654 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2656 return this->all_type_units[index];
2659 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2660 objfile_obstack, and constructed with the specified field
2663 static dwarf2_per_cu_data *
2664 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2665 struct dwarf2_section_info *section,
2667 sect_offset sect_off, ULONGEST length)
2669 struct objfile *objfile = dwarf2_per_objfile->objfile;
2670 dwarf2_per_cu_data *the_cu
2671 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2672 struct dwarf2_per_cu_data);
2673 the_cu->sect_off = sect_off;
2674 the_cu->length = length;
2675 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2676 the_cu->section = section;
2677 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2678 struct dwarf2_per_cu_quick_data);
2679 the_cu->is_dwz = is_dwz;
2683 /* A helper for create_cus_from_index that handles a given list of
2687 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2688 const gdb_byte *cu_list, offset_type n_elements,
2689 struct dwarf2_section_info *section,
2692 for (offset_type i = 0; i < n_elements; i += 2)
2694 gdb_static_assert (sizeof (ULONGEST) >= 8);
2696 sect_offset sect_off
2697 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2698 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2701 dwarf2_per_cu_data *per_cu
2702 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2704 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2708 /* Read the CU list from the mapped index, and use it to create all
2709 the CU objects for this objfile. */
2712 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2713 const gdb_byte *cu_list, offset_type cu_list_elements,
2714 const gdb_byte *dwz_list, offset_type dwz_elements)
2716 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2717 dwarf2_per_objfile->all_comp_units.reserve
2718 ((cu_list_elements + dwz_elements) / 2);
2720 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2721 &dwarf2_per_objfile->info, 0);
2723 if (dwz_elements == 0)
2726 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2727 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2731 /* Create the signatured type hash table from the index. */
2734 create_signatured_type_table_from_index
2735 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2736 struct dwarf2_section_info *section,
2737 const gdb_byte *bytes,
2738 offset_type elements)
2740 struct objfile *objfile = dwarf2_per_objfile->objfile;
2742 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2743 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2745 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2747 for (offset_type i = 0; i < elements; i += 3)
2749 struct signatured_type *sig_type;
2752 cu_offset type_offset_in_tu;
2754 gdb_static_assert (sizeof (ULONGEST) >= 8);
2755 sect_offset sect_off
2756 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2758 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2760 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2763 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2764 struct signatured_type);
2765 sig_type->signature = signature;
2766 sig_type->type_offset_in_tu = type_offset_in_tu;
2767 sig_type->per_cu.is_debug_types = 1;
2768 sig_type->per_cu.section = section;
2769 sig_type->per_cu.sect_off = sect_off;
2770 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2771 sig_type->per_cu.v.quick
2772 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2773 struct dwarf2_per_cu_quick_data);
2775 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2778 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2781 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2784 /* Create the signatured type hash table from .debug_names. */
2787 create_signatured_type_table_from_debug_names
2788 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2789 const mapped_debug_names &map,
2790 struct dwarf2_section_info *section,
2791 struct dwarf2_section_info *abbrev_section)
2793 struct objfile *objfile = dwarf2_per_objfile->objfile;
2795 section->read (objfile);
2796 abbrev_section->read (objfile);
2798 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2799 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2801 htab_up sig_types_hash = allocate_signatured_type_table (objfile);
2803 for (uint32_t i = 0; i < map.tu_count; ++i)
2805 struct signatured_type *sig_type;
2808 sect_offset sect_off
2809 = (sect_offset) (extract_unsigned_integer
2810 (map.tu_table_reordered + i * map.offset_size,
2812 map.dwarf5_byte_order));
2814 comp_unit_head cu_header;
2815 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2817 section->buffer + to_underlying (sect_off),
2820 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct signatured_type);
2822 sig_type->signature = cu_header.signature;
2823 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2824 sig_type->per_cu.is_debug_types = 1;
2825 sig_type->per_cu.section = section;
2826 sig_type->per_cu.sect_off = sect_off;
2827 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2828 sig_type->per_cu.v.quick
2829 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2830 struct dwarf2_per_cu_quick_data);
2832 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2835 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2838 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2841 /* Read the address map data from the mapped index, and use it to
2842 populate the objfile's psymtabs_addrmap. */
2845 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2846 struct mapped_index *index)
2848 struct objfile *objfile = dwarf2_per_objfile->objfile;
2849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2850 const gdb_byte *iter, *end;
2851 struct addrmap *mutable_map;
2854 auto_obstack temp_obstack;
2856 mutable_map = addrmap_create_mutable (&temp_obstack);
2858 iter = index->address_table.data ();
2859 end = iter + index->address_table.size ();
2861 baseaddr = objfile->text_section_offset ();
2865 ULONGEST hi, lo, cu_index;
2866 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2868 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2870 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2875 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2876 hex_string (lo), hex_string (hi));
2880 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2882 complaint (_(".gdb_index address table has invalid CU number %u"),
2883 (unsigned) cu_index);
2887 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2888 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2889 addrmap_set_empty (mutable_map, lo, hi - 1,
2890 dwarf2_per_objfile->get_cu (cu_index));
2893 objfile->partial_symtabs->psymtabs_addrmap
2894 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2897 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2898 populate the objfile's psymtabs_addrmap. */
2901 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2902 struct dwarf2_section_info *section)
2904 struct objfile *objfile = dwarf2_per_objfile->objfile;
2905 bfd *abfd = objfile->obfd;
2906 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2907 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2909 auto_obstack temp_obstack;
2910 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2912 std::unordered_map<sect_offset,
2913 dwarf2_per_cu_data *,
2914 gdb::hash_enum<sect_offset>>
2915 debug_info_offset_to_per_cu;
2916 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2918 const auto insertpair
2919 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2920 if (!insertpair.second)
2922 warning (_("Section .debug_aranges in %s has duplicate "
2923 "debug_info_offset %s, ignoring .debug_aranges."),
2924 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2929 section->read (objfile);
2931 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2933 const gdb_byte *addr = section->buffer;
2935 while (addr < section->buffer + section->size)
2937 const gdb_byte *const entry_addr = addr;
2938 unsigned int bytes_read;
2940 const LONGEST entry_length = read_initial_length (abfd, addr,
2944 const gdb_byte *const entry_end = addr + entry_length;
2945 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2946 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2947 if (addr + entry_length > section->buffer + section->size)
2949 warning (_("Section .debug_aranges in %s entry at offset %s "
2950 "length %s exceeds section length %s, "
2951 "ignoring .debug_aranges."),
2952 objfile_name (objfile),
2953 plongest (entry_addr - section->buffer),
2954 plongest (bytes_read + entry_length),
2955 pulongest (section->size));
2959 /* The version number. */
2960 const uint16_t version = read_2_bytes (abfd, addr);
2964 warning (_("Section .debug_aranges in %s entry at offset %s "
2965 "has unsupported version %d, ignoring .debug_aranges."),
2966 objfile_name (objfile),
2967 plongest (entry_addr - section->buffer), version);
2971 const uint64_t debug_info_offset
2972 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2973 addr += offset_size;
2974 const auto per_cu_it
2975 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2976 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2978 warning (_("Section .debug_aranges in %s entry at offset %s "
2979 "debug_info_offset %s does not exists, "
2980 "ignoring .debug_aranges."),
2981 objfile_name (objfile),
2982 plongest (entry_addr - section->buffer),
2983 pulongest (debug_info_offset));
2986 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2988 const uint8_t address_size = *addr++;
2989 if (address_size < 1 || address_size > 8)
2991 warning (_("Section .debug_aranges in %s entry at offset %s "
2992 "address_size %u is invalid, ignoring .debug_aranges."),
2993 objfile_name (objfile),
2994 plongest (entry_addr - section->buffer), address_size);
2998 const uint8_t segment_selector_size = *addr++;
2999 if (segment_selector_size != 0)
3001 warning (_("Section .debug_aranges in %s entry at offset %s "
3002 "segment_selector_size %u is not supported, "
3003 "ignoring .debug_aranges."),
3004 objfile_name (objfile),
3005 plongest (entry_addr - section->buffer),
3006 segment_selector_size);
3010 /* Must pad to an alignment boundary that is twice the address
3011 size. It is undocumented by the DWARF standard but GCC does
3013 for (size_t padding = ((-(addr - section->buffer))
3014 & (2 * address_size - 1));
3015 padding > 0; padding--)
3018 warning (_("Section .debug_aranges in %s entry at offset %s "
3019 "padding is not zero, ignoring .debug_aranges."),
3020 objfile_name (objfile),
3021 plongest (entry_addr - section->buffer));
3027 if (addr + 2 * address_size > entry_end)
3029 warning (_("Section .debug_aranges in %s entry at offset %s "
3030 "address list is not properly terminated, "
3031 "ignoring .debug_aranges."),
3032 objfile_name (objfile),
3033 plongest (entry_addr - section->buffer));
3036 ULONGEST start = extract_unsigned_integer (addr, address_size,
3038 addr += address_size;
3039 ULONGEST length = extract_unsigned_integer (addr, address_size,
3041 addr += address_size;
3042 if (start == 0 && length == 0)
3044 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3046 /* Symbol was eliminated due to a COMDAT group. */
3049 ULONGEST end = start + length;
3050 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3052 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3054 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3058 objfile->partial_symtabs->psymtabs_addrmap
3059 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3062 /* Find a slot in the mapped index INDEX for the object named NAME.
3063 If NAME is found, set *VEC_OUT to point to the CU vector in the
3064 constant pool and return true. If NAME cannot be found, return
3068 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3069 offset_type **vec_out)
3072 offset_type slot, step;
3073 int (*cmp) (const char *, const char *);
3075 gdb::unique_xmalloc_ptr<char> without_params;
3076 if (current_language->la_language == language_cplus
3077 || current_language->la_language == language_fortran
3078 || current_language->la_language == language_d)
3080 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3083 if (strchr (name, '(') != NULL)
3085 without_params = cp_remove_params (name);
3087 if (without_params != NULL)
3088 name = without_params.get ();
3092 /* Index version 4 did not support case insensitive searches. But the
3093 indices for case insensitive languages are built in lowercase, therefore
3094 simulate our NAME being searched is also lowercased. */
3095 hash = mapped_index_string_hash ((index->version == 4
3096 && case_sensitivity == case_sensitive_off
3097 ? 5 : index->version),
3100 slot = hash & (index->symbol_table.size () - 1);
3101 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3102 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3108 const auto &bucket = index->symbol_table[slot];
3109 if (bucket.name == 0 && bucket.vec == 0)
3112 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3113 if (!cmp (name, str))
3115 *vec_out = (offset_type *) (index->constant_pool
3116 + MAYBE_SWAP (bucket.vec));
3120 slot = (slot + step) & (index->symbol_table.size () - 1);
3124 /* A helper function that reads the .gdb_index from BUFFER and fills
3125 in MAP. FILENAME is the name of the file containing the data;
3126 it is used for error reporting. DEPRECATED_OK is true if it is
3127 ok to use deprecated sections.
3129 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3130 out parameters that are filled in with information about the CU and
3131 TU lists in the section.
3133 Returns true if all went well, false otherwise. */
3136 read_gdb_index_from_buffer (struct objfile *objfile,
3137 const char *filename,
3139 gdb::array_view<const gdb_byte> buffer,
3140 struct mapped_index *map,
3141 const gdb_byte **cu_list,
3142 offset_type *cu_list_elements,
3143 const gdb_byte **types_list,
3144 offset_type *types_list_elements)
3146 const gdb_byte *addr = &buffer[0];
3148 /* Version check. */
3149 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3150 /* Versions earlier than 3 emitted every copy of a psymbol. This
3151 causes the index to behave very poorly for certain requests. Version 3
3152 contained incomplete addrmap. So, it seems better to just ignore such
3156 static int warning_printed = 0;
3157 if (!warning_printed)
3159 warning (_("Skipping obsolete .gdb_index section in %s."),
3161 warning_printed = 1;
3165 /* Index version 4 uses a different hash function than index version
3168 Versions earlier than 6 did not emit psymbols for inlined
3169 functions. Using these files will cause GDB not to be able to
3170 set breakpoints on inlined functions by name, so we ignore these
3171 indices unless the user has done
3172 "set use-deprecated-index-sections on". */
3173 if (version < 6 && !deprecated_ok)
3175 static int warning_printed = 0;
3176 if (!warning_printed)
3179 Skipping deprecated .gdb_index section in %s.\n\
3180 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3181 to use the section anyway."),
3183 warning_printed = 1;
3187 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3188 of the TU (for symbols coming from TUs),
3189 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3190 Plus gold-generated indices can have duplicate entries for global symbols,
3191 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3192 These are just performance bugs, and we can't distinguish gdb-generated
3193 indices from gold-generated ones, so issue no warning here. */
3195 /* Indexes with higher version than the one supported by GDB may be no
3196 longer backward compatible. */
3200 map->version = version;
3202 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3205 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3206 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3210 *types_list = addr + MAYBE_SWAP (metadata[i]);
3211 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3212 - MAYBE_SWAP (metadata[i]))
3216 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3217 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3219 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3222 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3223 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3225 = gdb::array_view<mapped_index::symbol_table_slot>
3226 ((mapped_index::symbol_table_slot *) symbol_table,
3227 (mapped_index::symbol_table_slot *) symbol_table_end);
3230 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3235 /* Callback types for dwarf2_read_gdb_index. */
3237 typedef gdb::function_view
3238 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3239 get_gdb_index_contents_ftype;
3240 typedef gdb::function_view
3241 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3242 get_gdb_index_contents_dwz_ftype;
3244 /* Read .gdb_index. If everything went ok, initialize the "quick"
3245 elements of all the CUs and return 1. Otherwise, return 0. */
3248 dwarf2_read_gdb_index
3249 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3250 get_gdb_index_contents_ftype get_gdb_index_contents,
3251 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3253 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3254 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3255 struct dwz_file *dwz;
3256 struct objfile *objfile = dwarf2_per_objfile->objfile;
3258 gdb::array_view<const gdb_byte> main_index_contents
3259 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3261 if (main_index_contents.empty ())
3264 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3265 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3266 use_deprecated_index_sections,
3267 main_index_contents, map.get (), &cu_list,
3268 &cu_list_elements, &types_list,
3269 &types_list_elements))
3272 /* Don't use the index if it's empty. */
3273 if (map->symbol_table.empty ())
3276 /* If there is a .dwz file, read it so we can get its CU list as
3278 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3281 struct mapped_index dwz_map;
3282 const gdb_byte *dwz_types_ignore;
3283 offset_type dwz_types_elements_ignore;
3285 gdb::array_view<const gdb_byte> dwz_index_content
3286 = get_gdb_index_contents_dwz (objfile, dwz);
3288 if (dwz_index_content.empty ())
3291 if (!read_gdb_index_from_buffer (objfile,
3292 bfd_get_filename (dwz->dwz_bfd.get ()),
3293 1, dwz_index_content, &dwz_map,
3294 &dwz_list, &dwz_list_elements,
3296 &dwz_types_elements_ignore))
3298 warning (_("could not read '.gdb_index' section from %s; skipping"),
3299 bfd_get_filename (dwz->dwz_bfd.get ()));
3304 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3305 dwz_list, dwz_list_elements);
3307 if (types_list_elements)
3309 /* We can only handle a single .debug_types when we have an
3311 if (dwarf2_per_objfile->types.size () != 1)
3314 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3316 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3317 types_list, types_list_elements);
3320 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3322 dwarf2_per_objfile->index_table = std::move (map);
3323 dwarf2_per_objfile->using_index = 1;
3324 dwarf2_per_objfile->quick_file_names_table =
3325 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3330 /* die_reader_func for dw2_get_file_names. */
3333 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3334 const gdb_byte *info_ptr,
3335 struct die_info *comp_unit_die)
3337 struct dwarf2_cu *cu = reader->cu;
3338 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3339 struct dwarf2_per_objfile *dwarf2_per_objfile
3340 = cu->per_cu->dwarf2_per_objfile;
3341 struct objfile *objfile = dwarf2_per_objfile->objfile;
3342 struct dwarf2_per_cu_data *lh_cu;
3343 struct attribute *attr;
3345 struct quick_file_names *qfn;
3347 gdb_assert (! this_cu->is_debug_types);
3349 /* Our callers never want to match partial units -- instead they
3350 will match the enclosing full CU. */
3351 if (comp_unit_die->tag == DW_TAG_partial_unit)
3353 this_cu->v.quick->no_file_data = 1;
3361 sect_offset line_offset {};
3363 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3364 if (attr != nullptr)
3366 struct quick_file_names find_entry;
3368 line_offset = (sect_offset) DW_UNSND (attr);
3370 /* We may have already read in this line header (TU line header sharing).
3371 If we have we're done. */
3372 find_entry.hash.dwo_unit = cu->dwo_unit;
3373 find_entry.hash.line_sect_off = line_offset;
3374 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3375 &find_entry, INSERT);
3378 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3382 lh = dwarf_decode_line_header (line_offset, cu);
3386 lh_cu->v.quick->no_file_data = 1;
3390 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3391 qfn->hash.dwo_unit = cu->dwo_unit;
3392 qfn->hash.line_sect_off = line_offset;
3393 gdb_assert (slot != NULL);
3396 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3399 if (strcmp (fnd.name, "<unknown>") != 0)
3402 qfn->num_file_names = offset + lh->file_names_size ();
3404 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3406 qfn->file_names[0] = xstrdup (fnd.name);
3407 for (int i = 0; i < lh->file_names_size (); ++i)
3408 qfn->file_names[i + offset] = lh->file_full_name (i + 1, fnd.comp_dir);
3409 qfn->real_names = NULL;
3411 lh_cu->v.quick->file_names = qfn;
3414 /* A helper for the "quick" functions which attempts to read the line
3415 table for THIS_CU. */
3417 static struct quick_file_names *
3418 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3420 /* This should never be called for TUs. */
3421 gdb_assert (! this_cu->is_debug_types);
3422 /* Nor type unit groups. */
3423 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3425 if (this_cu->v.quick->file_names != NULL)
3426 return this_cu->v.quick->file_names;
3427 /* If we know there is no line data, no point in looking again. */
3428 if (this_cu->v.quick->no_file_data)
3431 cutu_reader reader (this_cu);
3432 if (!reader.dummy_p)
3433 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3435 if (this_cu->v.quick->no_file_data)
3437 return this_cu->v.quick->file_names;
3440 /* A helper for the "quick" functions which computes and caches the
3441 real path for a given file name from the line table. */
3444 dw2_get_real_path (struct objfile *objfile,
3445 struct quick_file_names *qfn, int index)
3447 if (qfn->real_names == NULL)
3448 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3449 qfn->num_file_names, const char *);
3451 if (qfn->real_names[index] == NULL)
3452 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3454 return qfn->real_names[index];
3457 static struct symtab *
3458 dw2_find_last_source_symtab (struct objfile *objfile)
3460 struct dwarf2_per_objfile *dwarf2_per_objfile
3461 = get_dwarf2_per_objfile (objfile);
3462 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3463 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3468 return compunit_primary_filetab (cust);
3471 /* Traversal function for dw2_forget_cached_source_info. */
3474 dw2_free_cached_file_names (void **slot, void *info)
3476 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3478 if (file_data->real_names)
3482 for (i = 0; i < file_data->num_file_names; ++i)
3484 xfree ((void*) file_data->real_names[i]);
3485 file_data->real_names[i] = NULL;
3493 dw2_forget_cached_source_info (struct objfile *objfile)
3495 struct dwarf2_per_objfile *dwarf2_per_objfile
3496 = get_dwarf2_per_objfile (objfile);
3498 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3499 dw2_free_cached_file_names, NULL);
3502 /* Helper function for dw2_map_symtabs_matching_filename that expands
3503 the symtabs and calls the iterator. */
3506 dw2_map_expand_apply (struct objfile *objfile,
3507 struct dwarf2_per_cu_data *per_cu,
3508 const char *name, const char *real_path,
3509 gdb::function_view<bool (symtab *)> callback)
3511 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3513 /* Don't visit already-expanded CUs. */
3514 if (per_cu->v.quick->compunit_symtab)
3517 /* This may expand more than one symtab, and we want to iterate over
3519 dw2_instantiate_symtab (per_cu, false);
3521 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3522 last_made, callback);
3525 /* Implementation of the map_symtabs_matching_filename method. */
3528 dw2_map_symtabs_matching_filename
3529 (struct objfile *objfile, const char *name, const char *real_path,
3530 gdb::function_view<bool (symtab *)> callback)
3532 const char *name_basename = lbasename (name);
3533 struct dwarf2_per_objfile *dwarf2_per_objfile
3534 = get_dwarf2_per_objfile (objfile);
3536 /* The rule is CUs specify all the files, including those used by
3537 any TU, so there's no need to scan TUs here. */
3539 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3541 /* We only need to look at symtabs not already expanded. */
3542 if (per_cu->v.quick->compunit_symtab)
3545 quick_file_names *file_data = dw2_get_file_names (per_cu);
3546 if (file_data == NULL)
3549 for (int j = 0; j < file_data->num_file_names; ++j)
3551 const char *this_name = file_data->file_names[j];
3552 const char *this_real_name;
3554 if (compare_filenames_for_search (this_name, name))
3556 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3562 /* Before we invoke realpath, which can get expensive when many
3563 files are involved, do a quick comparison of the basenames. */
3564 if (! basenames_may_differ
3565 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3568 this_real_name = dw2_get_real_path (objfile, file_data, j);
3569 if (compare_filenames_for_search (this_real_name, name))
3571 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3577 if (real_path != NULL)
3579 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3580 gdb_assert (IS_ABSOLUTE_PATH (name));
3581 if (this_real_name != NULL
3582 && FILENAME_CMP (real_path, this_real_name) == 0)
3584 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3596 /* Struct used to manage iterating over all CUs looking for a symbol. */
3598 struct dw2_symtab_iterator
3600 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3601 struct dwarf2_per_objfile *dwarf2_per_objfile;
3602 /* If set, only look for symbols that match that block. Valid values are
3603 GLOBAL_BLOCK and STATIC_BLOCK. */
3604 gdb::optional<block_enum> block_index;
3605 /* The kind of symbol we're looking for. */
3607 /* The list of CUs from the index entry of the symbol,
3608 or NULL if not found. */
3610 /* The next element in VEC to look at. */
3612 /* The number of elements in VEC, or zero if there is no match. */
3614 /* Have we seen a global version of the symbol?
3615 If so we can ignore all further global instances.
3616 This is to work around gold/15646, inefficient gold-generated
3621 /* Initialize the index symtab iterator ITER. */
3624 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3625 struct dwarf2_per_objfile *dwarf2_per_objfile,
3626 gdb::optional<block_enum> block_index,
3630 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3631 iter->block_index = block_index;
3632 iter->domain = domain;
3634 iter->global_seen = 0;
3636 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3638 /* index is NULL if OBJF_READNOW. */
3639 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3640 iter->length = MAYBE_SWAP (*iter->vec);
3648 /* Return the next matching CU or NULL if there are no more. */
3650 static struct dwarf2_per_cu_data *
3651 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3653 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3655 for ( ; iter->next < iter->length; ++iter->next)
3657 offset_type cu_index_and_attrs =
3658 MAYBE_SWAP (iter->vec[iter->next + 1]);
3659 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3660 gdb_index_symbol_kind symbol_kind =
3661 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3662 /* Only check the symbol attributes if they're present.
3663 Indices prior to version 7 don't record them,
3664 and indices >= 7 may elide them for certain symbols
3665 (gold does this). */
3667 (dwarf2_per_objfile->index_table->version >= 7
3668 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3670 /* Don't crash on bad data. */
3671 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3672 + dwarf2_per_objfile->all_type_units.size ()))
3674 complaint (_(".gdb_index entry has bad CU index"
3676 objfile_name (dwarf2_per_objfile->objfile));
3680 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3682 /* Skip if already read in. */
3683 if (per_cu->v.quick->compunit_symtab)
3686 /* Check static vs global. */
3689 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3691 if (iter->block_index.has_value ())
3693 bool want_static = *iter->block_index == STATIC_BLOCK;
3695 if (is_static != want_static)
3699 /* Work around gold/15646. */
3700 if (!is_static && iter->global_seen)
3703 iter->global_seen = 1;
3706 /* Only check the symbol's kind if it has one. */
3709 switch (iter->domain)
3712 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3713 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3714 /* Some types are also in VAR_DOMAIN. */
3715 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3719 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3723 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3727 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3742 static struct compunit_symtab *
3743 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3744 const char *name, domain_enum domain)
3746 struct compunit_symtab *stab_best = NULL;
3747 struct dwarf2_per_objfile *dwarf2_per_objfile
3748 = get_dwarf2_per_objfile (objfile);
3750 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3752 struct dw2_symtab_iterator iter;
3753 struct dwarf2_per_cu_data *per_cu;
3755 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3757 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3759 struct symbol *sym, *with_opaque = NULL;
3760 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3761 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3762 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3764 sym = block_find_symbol (block, name, domain,
3765 block_find_non_opaque_type_preferred,
3768 /* Some caution must be observed with overloaded functions
3769 and methods, since the index will not contain any overload
3770 information (but NAME might contain it). */
3773 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3775 if (with_opaque != NULL
3776 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3779 /* Keep looking through other CUs. */
3786 dw2_print_stats (struct objfile *objfile)
3788 struct dwarf2_per_objfile *dwarf2_per_objfile
3789 = get_dwarf2_per_objfile (objfile);
3790 int total = (dwarf2_per_objfile->all_comp_units.size ()
3791 + dwarf2_per_objfile->all_type_units.size ());
3794 for (int i = 0; i < total; ++i)
3796 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3798 if (!per_cu->v.quick->compunit_symtab)
3801 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3802 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3805 /* This dumps minimal information about the index.
3806 It is called via "mt print objfiles".
3807 One use is to verify .gdb_index has been loaded by the
3808 gdb.dwarf2/gdb-index.exp testcase. */
3811 dw2_dump (struct objfile *objfile)
3813 struct dwarf2_per_objfile *dwarf2_per_objfile
3814 = get_dwarf2_per_objfile (objfile);
3816 gdb_assert (dwarf2_per_objfile->using_index);
3817 printf_filtered (".gdb_index:");
3818 if (dwarf2_per_objfile->index_table != NULL)
3820 printf_filtered (" version %d\n",
3821 dwarf2_per_objfile->index_table->version);
3824 printf_filtered (" faked for \"readnow\"\n");
3825 printf_filtered ("\n");
3829 dw2_expand_symtabs_for_function (struct objfile *objfile,
3830 const char *func_name)
3832 struct dwarf2_per_objfile *dwarf2_per_objfile
3833 = get_dwarf2_per_objfile (objfile);
3835 struct dw2_symtab_iterator iter;
3836 struct dwarf2_per_cu_data *per_cu;
3838 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3840 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3841 dw2_instantiate_symtab (per_cu, false);
3846 dw2_expand_all_symtabs (struct objfile *objfile)
3848 struct dwarf2_per_objfile *dwarf2_per_objfile
3849 = get_dwarf2_per_objfile (objfile);
3850 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3851 + dwarf2_per_objfile->all_type_units.size ());
3853 for (int i = 0; i < total_units; ++i)
3855 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3857 /* We don't want to directly expand a partial CU, because if we
3858 read it with the wrong language, then assertion failures can
3859 be triggered later on. See PR symtab/23010. So, tell
3860 dw2_instantiate_symtab to skip partial CUs -- any important
3861 partial CU will be read via DW_TAG_imported_unit anyway. */
3862 dw2_instantiate_symtab (per_cu, true);
3867 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3868 const char *fullname)
3870 struct dwarf2_per_objfile *dwarf2_per_objfile
3871 = get_dwarf2_per_objfile (objfile);
3873 /* We don't need to consider type units here.
3874 This is only called for examining code, e.g. expand_line_sal.
3875 There can be an order of magnitude (or more) more type units
3876 than comp units, and we avoid them if we can. */
3878 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3880 /* We only need to look at symtabs not already expanded. */
3881 if (per_cu->v.quick->compunit_symtab)
3884 quick_file_names *file_data = dw2_get_file_names (per_cu);
3885 if (file_data == NULL)
3888 for (int j = 0; j < file_data->num_file_names; ++j)
3890 const char *this_fullname = file_data->file_names[j];
3892 if (filename_cmp (this_fullname, fullname) == 0)
3894 dw2_instantiate_symtab (per_cu, false);
3902 dw2_map_matching_symbols
3903 (struct objfile *objfile,
3904 const lookup_name_info &name, domain_enum domain,
3906 gdb::function_view<symbol_found_callback_ftype> callback,
3907 symbol_compare_ftype *ordered_compare)
3909 /* Currently unimplemented; used for Ada. The function can be called if the
3910 current language is Ada for a non-Ada objfile using GNU index. As Ada
3911 does not look for non-Ada symbols this function should just return. */
3914 /* Starting from a search name, return the string that finds the upper
3915 bound of all strings that start with SEARCH_NAME in a sorted name
3916 list. Returns the empty string to indicate that the upper bound is
3917 the end of the list. */
3920 make_sort_after_prefix_name (const char *search_name)
3922 /* When looking to complete "func", we find the upper bound of all
3923 symbols that start with "func" by looking for where we'd insert
3924 the closest string that would follow "func" in lexicographical
3925 order. Usually, that's "func"-with-last-character-incremented,
3926 i.e. "fund". Mind non-ASCII characters, though. Usually those
3927 will be UTF-8 multi-byte sequences, but we can't be certain.
3928 Especially mind the 0xff character, which is a valid character in
3929 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3930 rule out compilers allowing it in identifiers. Note that
3931 conveniently, strcmp/strcasecmp are specified to compare
3932 characters interpreted as unsigned char. So what we do is treat
3933 the whole string as a base 256 number composed of a sequence of
3934 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3935 to 0, and carries 1 to the following more-significant position.
3936 If the very first character in SEARCH_NAME ends up incremented
3937 and carries/overflows, then the upper bound is the end of the
3938 list. The string after the empty string is also the empty
3941 Some examples of this operation:
3943 SEARCH_NAME => "+1" RESULT
3947 "\xff" "a" "\xff" => "\xff" "b"
3952 Then, with these symbols for example:
3958 completing "func" looks for symbols between "func" and
3959 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3960 which finds "func" and "func1", but not "fund".
3964 funcÿ (Latin1 'ÿ' [0xff])
3968 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3969 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3973 ÿÿ (Latin1 'ÿ' [0xff])
3976 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3977 the end of the list.
3979 std::string after = search_name;
3980 while (!after.empty () && (unsigned char) after.back () == 0xff)
3982 if (!after.empty ())
3983 after.back () = (unsigned char) after.back () + 1;
3987 /* See declaration. */
3989 std::pair<std::vector<name_component>::const_iterator,
3990 std::vector<name_component>::const_iterator>
3991 mapped_index_base::find_name_components_bounds
3992 (const lookup_name_info &lookup_name_without_params, language lang) const
3995 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3997 const char *lang_name
3998 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4000 /* Comparison function object for lower_bound that matches against a
4001 given symbol name. */
4002 auto lookup_compare_lower = [&] (const name_component &elem,
4005 const char *elem_qualified = this->symbol_name_at (elem.idx);
4006 const char *elem_name = elem_qualified + elem.name_offset;
4007 return name_cmp (elem_name, name) < 0;
4010 /* Comparison function object for upper_bound that matches against a
4011 given symbol name. */
4012 auto lookup_compare_upper = [&] (const char *name,
4013 const name_component &elem)
4015 const char *elem_qualified = this->symbol_name_at (elem.idx);
4016 const char *elem_name = elem_qualified + elem.name_offset;
4017 return name_cmp (name, elem_name) < 0;
4020 auto begin = this->name_components.begin ();
4021 auto end = this->name_components.end ();
4023 /* Find the lower bound. */
4026 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4029 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4032 /* Find the upper bound. */
4035 if (lookup_name_without_params.completion_mode ())
4037 /* In completion mode, we want UPPER to point past all
4038 symbols names that have the same prefix. I.e., with
4039 these symbols, and completing "func":
4041 function << lower bound
4043 other_function << upper bound
4045 We find the upper bound by looking for the insertion
4046 point of "func"-with-last-character-incremented,
4048 std::string after = make_sort_after_prefix_name (lang_name);
4051 return std::lower_bound (lower, end, after.c_str (),
4052 lookup_compare_lower);
4055 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4058 return {lower, upper};
4061 /* See declaration. */
4064 mapped_index_base::build_name_components ()
4066 if (!this->name_components.empty ())
4069 this->name_components_casing = case_sensitivity;
4071 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4073 /* The code below only knows how to break apart components of C++
4074 symbol names (and other languages that use '::' as
4075 namespace/module separator) and Ada symbol names. */
4076 auto count = this->symbol_name_count ();
4077 for (offset_type idx = 0; idx < count; idx++)
4079 if (this->symbol_name_slot_invalid (idx))
4082 const char *name = this->symbol_name_at (idx);
4084 /* Add each name component to the name component table. */
4085 unsigned int previous_len = 0;
4087 if (strstr (name, "::") != nullptr)
4089 for (unsigned int current_len = cp_find_first_component (name);
4090 name[current_len] != '\0';
4091 current_len += cp_find_first_component (name + current_len))
4093 gdb_assert (name[current_len] == ':');
4094 this->name_components.push_back ({previous_len, idx});
4095 /* Skip the '::'. */
4097 previous_len = current_len;
4102 /* Handle the Ada encoded (aka mangled) form here. */
4103 for (const char *iter = strstr (name, "__");
4105 iter = strstr (iter, "__"))
4107 this->name_components.push_back ({previous_len, idx});
4109 previous_len = iter - name;
4113 this->name_components.push_back ({previous_len, idx});
4116 /* Sort name_components elements by name. */
4117 auto name_comp_compare = [&] (const name_component &left,
4118 const name_component &right)
4120 const char *left_qualified = this->symbol_name_at (left.idx);
4121 const char *right_qualified = this->symbol_name_at (right.idx);
4123 const char *left_name = left_qualified + left.name_offset;
4124 const char *right_name = right_qualified + right.name_offset;
4126 return name_cmp (left_name, right_name) < 0;
4129 std::sort (this->name_components.begin (),
4130 this->name_components.end (),
4134 /* Helper for dw2_expand_symtabs_matching that works with a
4135 mapped_index_base instead of the containing objfile. This is split
4136 to a separate function in order to be able to unit test the
4137 name_components matching using a mock mapped_index_base. For each
4138 symbol name that matches, calls MATCH_CALLBACK, passing it the
4139 symbol's index in the mapped_index_base symbol table. */
4142 dw2_expand_symtabs_matching_symbol
4143 (mapped_index_base &index,
4144 const lookup_name_info &lookup_name_in,
4145 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4146 enum search_domain kind,
4147 gdb::function_view<bool (offset_type)> match_callback)
4149 lookup_name_info lookup_name_without_params
4150 = lookup_name_in.make_ignore_params ();
4152 /* Build the symbol name component sorted vector, if we haven't
4154 index.build_name_components ();
4156 /* The same symbol may appear more than once in the range though.
4157 E.g., if we're looking for symbols that complete "w", and we have
4158 a symbol named "w1::w2", we'll find the two name components for
4159 that same symbol in the range. To be sure we only call the
4160 callback once per symbol, we first collect the symbol name
4161 indexes that matched in a temporary vector and ignore
4163 std::vector<offset_type> matches;
4165 struct name_and_matcher
4167 symbol_name_matcher_ftype *matcher;
4168 const std::string &name;
4170 bool operator== (const name_and_matcher &other) const
4172 return matcher == other.matcher && name == other.name;
4176 /* A vector holding all the different symbol name matchers, for all
4178 std::vector<name_and_matcher> matchers;
4180 for (int i = 0; i < nr_languages; i++)
4182 enum language lang_e = (enum language) i;
4184 const language_defn *lang = language_def (lang_e);
4185 symbol_name_matcher_ftype *name_matcher
4186 = get_symbol_name_matcher (lang, lookup_name_without_params);
4188 name_and_matcher key {
4190 lookup_name_without_params.language_lookup_name (lang_e)
4193 /* Don't insert the same comparison routine more than once.
4194 Note that we do this linear walk. This is not a problem in
4195 practice because the number of supported languages is
4197 if (std::find (matchers.begin (), matchers.end (), key)
4200 matchers.push_back (std::move (key));
4203 = index.find_name_components_bounds (lookup_name_without_params,
4206 /* Now for each symbol name in range, check to see if we have a name
4207 match, and if so, call the MATCH_CALLBACK callback. */
4209 for (; bounds.first != bounds.second; ++bounds.first)
4211 const char *qualified = index.symbol_name_at (bounds.first->idx);
4213 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4214 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4217 matches.push_back (bounds.first->idx);
4221 std::sort (matches.begin (), matches.end ());
4223 /* Finally call the callback, once per match. */
4225 for (offset_type idx : matches)
4229 if (!match_callback (idx))
4235 /* Above we use a type wider than idx's for 'prev', since 0 and
4236 (offset_type)-1 are both possible values. */
4237 static_assert (sizeof (prev) > sizeof (offset_type), "");
4242 namespace selftests { namespace dw2_expand_symtabs_matching {
4244 /* A mock .gdb_index/.debug_names-like name index table, enough to
4245 exercise dw2_expand_symtabs_matching_symbol, which works with the
4246 mapped_index_base interface. Builds an index from the symbol list
4247 passed as parameter to the constructor. */
4248 class mock_mapped_index : public mapped_index_base
4251 mock_mapped_index (gdb::array_view<const char *> symbols)
4252 : m_symbol_table (symbols)
4255 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4257 /* Return the number of names in the symbol table. */
4258 size_t symbol_name_count () const override
4260 return m_symbol_table.size ();
4263 /* Get the name of the symbol at IDX in the symbol table. */
4264 const char *symbol_name_at (offset_type idx) const override
4266 return m_symbol_table[idx];
4270 gdb::array_view<const char *> m_symbol_table;
4273 /* Convenience function that converts a NULL pointer to a "<null>"
4274 string, to pass to print routines. */
4277 string_or_null (const char *str)
4279 return str != NULL ? str : "<null>";
4282 /* Check if a lookup_name_info built from
4283 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4284 index. EXPECTED_LIST is the list of expected matches, in expected
4285 matching order. If no match expected, then an empty list is
4286 specified. Returns true on success. On failure prints a warning
4287 indicating the file:line that failed, and returns false. */
4290 check_match (const char *file, int line,
4291 mock_mapped_index &mock_index,
4292 const char *name, symbol_name_match_type match_type,
4293 bool completion_mode,
4294 std::initializer_list<const char *> expected_list)
4296 lookup_name_info lookup_name (name, match_type, completion_mode);
4298 bool matched = true;
4300 auto mismatch = [&] (const char *expected_str,
4303 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4304 "expected=\"%s\", got=\"%s\"\n"),
4306 (match_type == symbol_name_match_type::FULL
4308 name, string_or_null (expected_str), string_or_null (got));
4312 auto expected_it = expected_list.begin ();
4313 auto expected_end = expected_list.end ();
4315 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4317 [&] (offset_type idx)
4319 const char *matched_name = mock_index.symbol_name_at (idx);
4320 const char *expected_str
4321 = expected_it == expected_end ? NULL : *expected_it++;
4323 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4324 mismatch (expected_str, matched_name);
4328 const char *expected_str
4329 = expected_it == expected_end ? NULL : *expected_it++;
4330 if (expected_str != NULL)
4331 mismatch (expected_str, NULL);
4336 /* The symbols added to the mock mapped_index for testing (in
4338 static const char *test_symbols[] = {
4347 "ns2::tmpl<int>::foo2",
4348 "(anonymous namespace)::A::B::C",
4350 /* These are used to check that the increment-last-char in the
4351 matching algorithm for completion doesn't match "t1_fund" when
4352 completing "t1_func". */
4358 /* A UTF-8 name with multi-byte sequences to make sure that
4359 cp-name-parser understands this as a single identifier ("função"
4360 is "function" in PT). */
4363 /* \377 (0xff) is Latin1 'ÿ'. */
4366 /* \377 (0xff) is Latin1 'ÿ'. */
4370 /* A name with all sorts of complications. Starts with "z" to make
4371 it easier for the completion tests below. */
4372 #define Z_SYM_NAME \
4373 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4374 "::tuple<(anonymous namespace)::ui*, " \
4375 "std::default_delete<(anonymous namespace)::ui>, void>"
4380 /* Returns true if the mapped_index_base::find_name_component_bounds
4381 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4382 in completion mode. */
4385 check_find_bounds_finds (mapped_index_base &index,
4386 const char *search_name,
4387 gdb::array_view<const char *> expected_syms)
4389 lookup_name_info lookup_name (search_name,
4390 symbol_name_match_type::FULL, true);
4392 auto bounds = index.find_name_components_bounds (lookup_name,
4395 size_t distance = std::distance (bounds.first, bounds.second);
4396 if (distance != expected_syms.size ())
4399 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4401 auto nc_elem = bounds.first + exp_elem;
4402 const char *qualified = index.symbol_name_at (nc_elem->idx);
4403 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4410 /* Test the lower-level mapped_index::find_name_component_bounds
4414 test_mapped_index_find_name_component_bounds ()
4416 mock_mapped_index mock_index (test_symbols);
4418 mock_index.build_name_components ();
4420 /* Test the lower-level mapped_index::find_name_component_bounds
4421 method in completion mode. */
4423 static const char *expected_syms[] = {
4428 SELF_CHECK (check_find_bounds_finds (mock_index,
4429 "t1_func", expected_syms));
4432 /* Check that the increment-last-char in the name matching algorithm
4433 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4435 static const char *expected_syms1[] = {
4439 SELF_CHECK (check_find_bounds_finds (mock_index,
4440 "\377", expected_syms1));
4442 static const char *expected_syms2[] = {
4445 SELF_CHECK (check_find_bounds_finds (mock_index,
4446 "\377\377", expected_syms2));
4450 /* Test dw2_expand_symtabs_matching_symbol. */
4453 test_dw2_expand_symtabs_matching_symbol ()
4455 mock_mapped_index mock_index (test_symbols);
4457 /* We let all tests run until the end even if some fails, for debug
4459 bool any_mismatch = false;
4461 /* Create the expected symbols list (an initializer_list). Needed
4462 because lists have commas, and we need to pass them to CHECK,
4463 which is a macro. */
4464 #define EXPECT(...) { __VA_ARGS__ }
4466 /* Wrapper for check_match that passes down the current
4467 __FILE__/__LINE__. */
4468 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4469 any_mismatch |= !check_match (__FILE__, __LINE__, \
4471 NAME, MATCH_TYPE, COMPLETION_MODE, \
4474 /* Identity checks. */
4475 for (const char *sym : test_symbols)
4477 /* Should be able to match all existing symbols. */
4478 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4481 /* Should be able to match all existing symbols with
4483 std::string with_params = std::string (sym) + "(int)";
4484 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4487 /* Should be able to match all existing symbols with
4488 parameters and qualifiers. */
4489 with_params = std::string (sym) + " ( int ) const";
4490 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4493 /* This should really find sym, but cp-name-parser.y doesn't
4494 know about lvalue/rvalue qualifiers yet. */
4495 with_params = std::string (sym) + " ( int ) &&";
4496 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4500 /* Check that the name matching algorithm for completion doesn't get
4501 confused with Latin1 'ÿ' / 0xff. */
4503 static const char str[] = "\377";
4504 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4505 EXPECT ("\377", "\377\377123"));
4508 /* Check that the increment-last-char in the matching algorithm for
4509 completion doesn't match "t1_fund" when completing "t1_func". */
4511 static const char str[] = "t1_func";
4512 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4513 EXPECT ("t1_func", "t1_func1"));
4516 /* Check that completion mode works at each prefix of the expected
4519 static const char str[] = "function(int)";
4520 size_t len = strlen (str);
4523 for (size_t i = 1; i < len; i++)
4525 lookup.assign (str, i);
4526 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4527 EXPECT ("function"));
4531 /* While "w" is a prefix of both components, the match function
4532 should still only be called once. */
4534 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4536 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4540 /* Same, with a "complicated" symbol. */
4542 static const char str[] = Z_SYM_NAME;
4543 size_t len = strlen (str);
4546 for (size_t i = 1; i < len; i++)
4548 lookup.assign (str, i);
4549 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4550 EXPECT (Z_SYM_NAME));
4554 /* In FULL mode, an incomplete symbol doesn't match. */
4556 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4560 /* A complete symbol with parameters matches any overload, since the
4561 index has no overload info. */
4563 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4564 EXPECT ("std::zfunction", "std::zfunction2"));
4565 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4566 EXPECT ("std::zfunction", "std::zfunction2"));
4567 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4568 EXPECT ("std::zfunction", "std::zfunction2"));
4571 /* Check that whitespace is ignored appropriately. A symbol with a
4572 template argument list. */
4574 static const char expected[] = "ns::foo<int>";
4575 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4577 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4581 /* Check that whitespace is ignored appropriately. A symbol with a
4582 template argument list that includes a pointer. */
4584 static const char expected[] = "ns::foo<char*>";
4585 /* Try both completion and non-completion modes. */
4586 static const bool completion_mode[2] = {false, true};
4587 for (size_t i = 0; i < 2; i++)
4589 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4590 completion_mode[i], EXPECT (expected));
4591 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4592 completion_mode[i], EXPECT (expected));
4594 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4595 completion_mode[i], EXPECT (expected));
4596 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4597 completion_mode[i], EXPECT (expected));
4602 /* Check method qualifiers are ignored. */
4603 static const char expected[] = "ns::foo<char*>";
4604 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4605 symbol_name_match_type::FULL, true, EXPECT (expected));
4606 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4607 symbol_name_match_type::FULL, true, EXPECT (expected));
4608 CHECK_MATCH ("foo < char * > ( int ) const",
4609 symbol_name_match_type::WILD, true, EXPECT (expected));
4610 CHECK_MATCH ("foo < char * > ( int ) &&",
4611 symbol_name_match_type::WILD, true, EXPECT (expected));
4614 /* Test lookup names that don't match anything. */
4616 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4619 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4623 /* Some wild matching tests, exercising "(anonymous namespace)",
4624 which should not be confused with a parameter list. */
4626 static const char *syms[] = {
4630 "A :: B :: C ( int )",
4635 for (const char *s : syms)
4637 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4638 EXPECT ("(anonymous namespace)::A::B::C"));
4643 static const char expected[] = "ns2::tmpl<int>::foo2";
4644 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4646 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4650 SELF_CHECK (!any_mismatch);
4659 test_mapped_index_find_name_component_bounds ();
4660 test_dw2_expand_symtabs_matching_symbol ();
4663 }} // namespace selftests::dw2_expand_symtabs_matching
4665 #endif /* GDB_SELF_TEST */
4667 /* If FILE_MATCHER is NULL or if PER_CU has
4668 dwarf2_per_cu_quick_data::MARK set (see
4669 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4670 EXPANSION_NOTIFY on it. */
4673 dw2_expand_symtabs_matching_one
4674 (struct dwarf2_per_cu_data *per_cu,
4675 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4676 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4678 if (file_matcher == NULL || per_cu->v.quick->mark)
4680 bool symtab_was_null
4681 = (per_cu->v.quick->compunit_symtab == NULL);
4683 dw2_instantiate_symtab (per_cu, false);
4685 if (expansion_notify != NULL
4687 && per_cu->v.quick->compunit_symtab != NULL)
4688 expansion_notify (per_cu->v.quick->compunit_symtab);
4692 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4693 matched, to expand corresponding CUs that were marked. IDX is the
4694 index of the symbol name that matched. */
4697 dw2_expand_marked_cus
4698 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4699 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4700 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4703 offset_type *vec, vec_len, vec_idx;
4704 bool global_seen = false;
4705 mapped_index &index = *dwarf2_per_objfile->index_table;
4707 vec = (offset_type *) (index.constant_pool
4708 + MAYBE_SWAP (index.symbol_table[idx].vec));
4709 vec_len = MAYBE_SWAP (vec[0]);
4710 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4712 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4713 /* This value is only valid for index versions >= 7. */
4714 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4715 gdb_index_symbol_kind symbol_kind =
4716 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4717 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4718 /* Only check the symbol attributes if they're present.
4719 Indices prior to version 7 don't record them,
4720 and indices >= 7 may elide them for certain symbols
4721 (gold does this). */
4724 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4726 /* Work around gold/15646. */
4729 if (!is_static && global_seen)
4735 /* Only check the symbol's kind if it has one. */
4740 case VARIABLES_DOMAIN:
4741 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4744 case FUNCTIONS_DOMAIN:
4745 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4749 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4752 case MODULES_DOMAIN:
4753 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4761 /* Don't crash on bad data. */
4762 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4763 + dwarf2_per_objfile->all_type_units.size ()))
4765 complaint (_(".gdb_index entry has bad CU index"
4767 objfile_name (dwarf2_per_objfile->objfile));
4771 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4772 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4777 /* If FILE_MATCHER is non-NULL, set all the
4778 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4779 that match FILE_MATCHER. */
4782 dw_expand_symtabs_matching_file_matcher
4783 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4784 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4786 if (file_matcher == NULL)
4789 objfile *const objfile = dwarf2_per_objfile->objfile;
4791 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4793 NULL, xcalloc, xfree));
4794 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4796 NULL, xcalloc, xfree));
4798 /* The rule is CUs specify all the files, including those used by
4799 any TU, so there's no need to scan TUs here. */
4801 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4805 per_cu->v.quick->mark = 0;
4807 /* We only need to look at symtabs not already expanded. */
4808 if (per_cu->v.quick->compunit_symtab)
4811 quick_file_names *file_data = dw2_get_file_names (per_cu);
4812 if (file_data == NULL)
4815 if (htab_find (visited_not_found.get (), file_data) != NULL)
4817 else if (htab_find (visited_found.get (), file_data) != NULL)
4819 per_cu->v.quick->mark = 1;
4823 for (int j = 0; j < file_data->num_file_names; ++j)
4825 const char *this_real_name;
4827 if (file_matcher (file_data->file_names[j], false))
4829 per_cu->v.quick->mark = 1;
4833 /* Before we invoke realpath, which can get expensive when many
4834 files are involved, do a quick comparison of the basenames. */
4835 if (!basenames_may_differ
4836 && !file_matcher (lbasename (file_data->file_names[j]),
4840 this_real_name = dw2_get_real_path (objfile, file_data, j);
4841 if (file_matcher (this_real_name, false))
4843 per_cu->v.quick->mark = 1;
4848 void **slot = htab_find_slot (per_cu->v.quick->mark
4849 ? visited_found.get ()
4850 : visited_not_found.get (),
4857 dw2_expand_symtabs_matching
4858 (struct objfile *objfile,
4859 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4860 const lookup_name_info &lookup_name,
4861 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4862 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4863 enum search_domain kind)
4865 struct dwarf2_per_objfile *dwarf2_per_objfile
4866 = get_dwarf2_per_objfile (objfile);
4868 /* index_table is NULL if OBJF_READNOW. */
4869 if (!dwarf2_per_objfile->index_table)
4872 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4874 mapped_index &index = *dwarf2_per_objfile->index_table;
4876 dw2_expand_symtabs_matching_symbol (index, lookup_name,
4878 kind, [&] (offset_type idx)
4880 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4881 expansion_notify, kind);
4886 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4889 static struct compunit_symtab *
4890 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4895 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4896 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4899 if (cust->includes == NULL)
4902 for (i = 0; cust->includes[i]; ++i)
4904 struct compunit_symtab *s = cust->includes[i];
4906 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4914 static struct compunit_symtab *
4915 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4916 struct bound_minimal_symbol msymbol,
4918 struct obj_section *section,
4921 struct dwarf2_per_cu_data *data;
4922 struct compunit_symtab *result;
4924 if (!objfile->partial_symtabs->psymtabs_addrmap)
4927 CORE_ADDR baseaddr = objfile->text_section_offset ();
4928 data = (struct dwarf2_per_cu_data *) addrmap_find
4929 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4933 if (warn_if_readin && data->v.quick->compunit_symtab)
4934 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4935 paddress (get_objfile_arch (objfile), pc));
4938 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4941 gdb_assert (result != NULL);
4946 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4947 void *data, int need_fullname)
4949 struct dwarf2_per_objfile *dwarf2_per_objfile
4950 = get_dwarf2_per_objfile (objfile);
4952 if (!dwarf2_per_objfile->filenames_cache)
4954 dwarf2_per_objfile->filenames_cache.emplace ();
4956 htab_up visited (htab_create_alloc (10,
4957 htab_hash_pointer, htab_eq_pointer,
4958 NULL, xcalloc, xfree));
4960 /* The rule is CUs specify all the files, including those used
4961 by any TU, so there's no need to scan TUs here. We can
4962 ignore file names coming from already-expanded CUs. */
4964 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4966 if (per_cu->v.quick->compunit_symtab)
4968 void **slot = htab_find_slot (visited.get (),
4969 per_cu->v.quick->file_names,
4972 *slot = per_cu->v.quick->file_names;
4976 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4978 /* We only need to look at symtabs not already expanded. */
4979 if (per_cu->v.quick->compunit_symtab)
4982 quick_file_names *file_data = dw2_get_file_names (per_cu);
4983 if (file_data == NULL)
4986 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4989 /* Already visited. */
4994 for (int j = 0; j < file_data->num_file_names; ++j)
4996 const char *filename = file_data->file_names[j];
4997 dwarf2_per_objfile->filenames_cache->seen (filename);
5002 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5004 gdb::unique_xmalloc_ptr<char> this_real_name;
5007 this_real_name = gdb_realpath (filename);
5008 (*fun) (filename, this_real_name.get (), data);
5013 dw2_has_symbols (struct objfile *objfile)
5018 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5021 dw2_find_last_source_symtab,
5022 dw2_forget_cached_source_info,
5023 dw2_map_symtabs_matching_filename,
5027 dw2_expand_symtabs_for_function,
5028 dw2_expand_all_symtabs,
5029 dw2_expand_symtabs_with_fullname,
5030 dw2_map_matching_symbols,
5031 dw2_expand_symtabs_matching,
5032 dw2_find_pc_sect_compunit_symtab,
5034 dw2_map_symbol_filenames
5037 /* DWARF-5 debug_names reader. */
5039 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5040 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5042 /* A helper function that reads the .debug_names section in SECTION
5043 and fills in MAP. FILENAME is the name of the file containing the
5044 section; it is used for error reporting.
5046 Returns true if all went well, false otherwise. */
5049 read_debug_names_from_section (struct objfile *objfile,
5050 const char *filename,
5051 struct dwarf2_section_info *section,
5052 mapped_debug_names &map)
5054 if (section->empty ())
5057 /* Older elfutils strip versions could keep the section in the main
5058 executable while splitting it for the separate debug info file. */
5059 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5062 section->read (objfile);
5064 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5066 const gdb_byte *addr = section->buffer;
5068 bfd *const abfd = section->get_bfd_owner ();
5070 unsigned int bytes_read;
5071 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5074 map.dwarf5_is_dwarf64 = bytes_read != 4;
5075 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5076 if (bytes_read + length != section->size)
5078 /* There may be multiple per-CU indices. */
5079 warning (_("Section .debug_names in %s length %s does not match "
5080 "section length %s, ignoring .debug_names."),
5081 filename, plongest (bytes_read + length),
5082 pulongest (section->size));
5086 /* The version number. */
5087 uint16_t version = read_2_bytes (abfd, addr);
5091 warning (_("Section .debug_names in %s has unsupported version %d, "
5092 "ignoring .debug_names."),
5098 uint16_t padding = read_2_bytes (abfd, addr);
5102 warning (_("Section .debug_names in %s has unsupported padding %d, "
5103 "ignoring .debug_names."),
5108 /* comp_unit_count - The number of CUs in the CU list. */
5109 map.cu_count = read_4_bytes (abfd, addr);
5112 /* local_type_unit_count - The number of TUs in the local TU
5114 map.tu_count = read_4_bytes (abfd, addr);
5117 /* foreign_type_unit_count - The number of TUs in the foreign TU
5119 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5121 if (foreign_tu_count != 0)
5123 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5124 "ignoring .debug_names."),
5125 filename, static_cast<unsigned long> (foreign_tu_count));
5129 /* bucket_count - The number of hash buckets in the hash lookup
5131 map.bucket_count = read_4_bytes (abfd, addr);
5134 /* name_count - The number of unique names in the index. */
5135 map.name_count = read_4_bytes (abfd, addr);
5138 /* abbrev_table_size - The size in bytes of the abbreviations
5140 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5143 /* augmentation_string_size - The size in bytes of the augmentation
5144 string. This value is rounded up to a multiple of 4. */
5145 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5147 map.augmentation_is_gdb = ((augmentation_string_size
5148 == sizeof (dwarf5_augmentation))
5149 && memcmp (addr, dwarf5_augmentation,
5150 sizeof (dwarf5_augmentation)) == 0);
5151 augmentation_string_size += (-augmentation_string_size) & 3;
5152 addr += augmentation_string_size;
5155 map.cu_table_reordered = addr;
5156 addr += map.cu_count * map.offset_size;
5158 /* List of Local TUs */
5159 map.tu_table_reordered = addr;
5160 addr += map.tu_count * map.offset_size;
5162 /* Hash Lookup Table */
5163 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5164 addr += map.bucket_count * 4;
5165 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5166 addr += map.name_count * 4;
5169 map.name_table_string_offs_reordered = addr;
5170 addr += map.name_count * map.offset_size;
5171 map.name_table_entry_offs_reordered = addr;
5172 addr += map.name_count * map.offset_size;
5174 const gdb_byte *abbrev_table_start = addr;
5177 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5182 const auto insertpair
5183 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5184 if (!insertpair.second)
5186 warning (_("Section .debug_names in %s has duplicate index %s, "
5187 "ignoring .debug_names."),
5188 filename, pulongest (index_num));
5191 mapped_debug_names::index_val &indexval = insertpair.first->second;
5192 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5197 mapped_debug_names::index_val::attr attr;
5198 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5200 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5202 if (attr.form == DW_FORM_implicit_const)
5204 attr.implicit_const = read_signed_leb128 (abfd, addr,
5208 if (attr.dw_idx == 0 && attr.form == 0)
5210 indexval.attr_vec.push_back (std::move (attr));
5213 if (addr != abbrev_table_start + abbrev_table_size)
5215 warning (_("Section .debug_names in %s has abbreviation_table "
5216 "of size %s vs. written as %u, ignoring .debug_names."),
5217 filename, plongest (addr - abbrev_table_start),
5221 map.entry_pool = addr;
5226 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5230 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5231 const mapped_debug_names &map,
5232 dwarf2_section_info §ion,
5235 sect_offset sect_off_prev;
5236 for (uint32_t i = 0; i <= map.cu_count; ++i)
5238 sect_offset sect_off_next;
5239 if (i < map.cu_count)
5242 = (sect_offset) (extract_unsigned_integer
5243 (map.cu_table_reordered + i * map.offset_size,
5245 map.dwarf5_byte_order));
5248 sect_off_next = (sect_offset) section.size;
5251 const ULONGEST length = sect_off_next - sect_off_prev;
5252 dwarf2_per_cu_data *per_cu
5253 = create_cu_from_index_list (dwarf2_per_objfile, §ion, is_dwz,
5254 sect_off_prev, length);
5255 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5257 sect_off_prev = sect_off_next;
5261 /* Read the CU list from the mapped index, and use it to create all
5262 the CU objects for this dwarf2_per_objfile. */
5265 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5266 const mapped_debug_names &map,
5267 const mapped_debug_names &dwz_map)
5269 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5270 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5272 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5273 dwarf2_per_objfile->info,
5274 false /* is_dwz */);
5276 if (dwz_map.cu_count == 0)
5279 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5280 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5284 /* Read .debug_names. If everything went ok, initialize the "quick"
5285 elements of all the CUs and return true. Otherwise, return false. */
5288 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5290 std::unique_ptr<mapped_debug_names> map
5291 (new mapped_debug_names (dwarf2_per_objfile));
5292 mapped_debug_names dwz_map (dwarf2_per_objfile);
5293 struct objfile *objfile = dwarf2_per_objfile->objfile;
5295 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5296 &dwarf2_per_objfile->debug_names,
5300 /* Don't use the index if it's empty. */
5301 if (map->name_count == 0)
5304 /* If there is a .dwz file, read it so we can get its CU list as
5306 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5309 if (!read_debug_names_from_section (objfile,
5310 bfd_get_filename (dwz->dwz_bfd.get ()),
5311 &dwz->debug_names, dwz_map))
5313 warning (_("could not read '.debug_names' section from %s; skipping"),
5314 bfd_get_filename (dwz->dwz_bfd.get ()));
5319 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5321 if (map->tu_count != 0)
5323 /* We can only handle a single .debug_types when we have an
5325 if (dwarf2_per_objfile->types.size () != 1)
5328 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5330 create_signatured_type_table_from_debug_names
5331 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5334 create_addrmap_from_aranges (dwarf2_per_objfile,
5335 &dwarf2_per_objfile->debug_aranges);
5337 dwarf2_per_objfile->debug_names_table = std::move (map);
5338 dwarf2_per_objfile->using_index = 1;
5339 dwarf2_per_objfile->quick_file_names_table =
5340 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5345 /* Type used to manage iterating over all CUs looking for a symbol for
5348 class dw2_debug_names_iterator
5351 dw2_debug_names_iterator (const mapped_debug_names &map,
5352 gdb::optional<block_enum> block_index,
5355 : m_map (map), m_block_index (block_index), m_domain (domain),
5356 m_addr (find_vec_in_debug_names (map, name))
5359 dw2_debug_names_iterator (const mapped_debug_names &map,
5360 search_domain search, uint32_t namei)
5363 m_addr (find_vec_in_debug_names (map, namei))
5366 dw2_debug_names_iterator (const mapped_debug_names &map,
5367 block_enum block_index, domain_enum domain,
5369 : m_map (map), m_block_index (block_index), m_domain (domain),
5370 m_addr (find_vec_in_debug_names (map, namei))
5373 /* Return the next matching CU or NULL if there are no more. */
5374 dwarf2_per_cu_data *next ();
5377 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5379 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5382 /* The internalized form of .debug_names. */
5383 const mapped_debug_names &m_map;
5385 /* If set, only look for symbols that match that block. Valid values are
5386 GLOBAL_BLOCK and STATIC_BLOCK. */
5387 const gdb::optional<block_enum> m_block_index;
5389 /* The kind of symbol we're looking for. */
5390 const domain_enum m_domain = UNDEF_DOMAIN;
5391 const search_domain m_search = ALL_DOMAIN;
5393 /* The list of CUs from the index entry of the symbol, or NULL if
5395 const gdb_byte *m_addr;
5399 mapped_debug_names::namei_to_name (uint32_t namei) const
5401 const ULONGEST namei_string_offs
5402 = extract_unsigned_integer ((name_table_string_offs_reordered
5403 + namei * offset_size),
5406 return read_indirect_string_at_offset
5407 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5410 /* Find a slot in .debug_names for the object named NAME. If NAME is
5411 found, return pointer to its pool data. If NAME cannot be found,
5415 dw2_debug_names_iterator::find_vec_in_debug_names
5416 (const mapped_debug_names &map, const char *name)
5418 int (*cmp) (const char *, const char *);
5420 gdb::unique_xmalloc_ptr<char> without_params;
5421 if (current_language->la_language == language_cplus
5422 || current_language->la_language == language_fortran
5423 || current_language->la_language == language_d)
5425 /* NAME is already canonical. Drop any qualifiers as
5426 .debug_names does not contain any. */
5428 if (strchr (name, '(') != NULL)
5430 without_params = cp_remove_params (name);
5431 if (without_params != NULL)
5432 name = without_params.get ();
5436 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5438 const uint32_t full_hash = dwarf5_djb_hash (name);
5440 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5441 (map.bucket_table_reordered
5442 + (full_hash % map.bucket_count)), 4,
5443 map.dwarf5_byte_order);
5447 if (namei >= map.name_count)
5449 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5451 namei, map.name_count,
5452 objfile_name (map.dwarf2_per_objfile->objfile));
5458 const uint32_t namei_full_hash
5459 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5460 (map.hash_table_reordered + namei), 4,
5461 map.dwarf5_byte_order);
5462 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5465 if (full_hash == namei_full_hash)
5467 const char *const namei_string = map.namei_to_name (namei);
5469 #if 0 /* An expensive sanity check. */
5470 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5472 complaint (_("Wrong .debug_names hash for string at index %u "
5474 namei, objfile_name (dwarf2_per_objfile->objfile));
5479 if (cmp (namei_string, name) == 0)
5481 const ULONGEST namei_entry_offs
5482 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5483 + namei * map.offset_size),
5484 map.offset_size, map.dwarf5_byte_order);
5485 return map.entry_pool + namei_entry_offs;
5490 if (namei >= map.name_count)
5496 dw2_debug_names_iterator::find_vec_in_debug_names
5497 (const mapped_debug_names &map, uint32_t namei)
5499 if (namei >= map.name_count)
5501 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5503 namei, map.name_count,
5504 objfile_name (map.dwarf2_per_objfile->objfile));
5508 const ULONGEST namei_entry_offs
5509 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5510 + namei * map.offset_size),
5511 map.offset_size, map.dwarf5_byte_order);
5512 return map.entry_pool + namei_entry_offs;
5515 /* See dw2_debug_names_iterator. */
5517 dwarf2_per_cu_data *
5518 dw2_debug_names_iterator::next ()
5523 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5524 struct objfile *objfile = dwarf2_per_objfile->objfile;
5525 bfd *const abfd = objfile->obfd;
5529 unsigned int bytes_read;
5530 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5531 m_addr += bytes_read;
5535 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5536 if (indexval_it == m_map.abbrev_map.cend ())
5538 complaint (_("Wrong .debug_names undefined abbrev code %s "
5540 pulongest (abbrev), objfile_name (objfile));
5543 const mapped_debug_names::index_val &indexval = indexval_it->second;
5544 enum class symbol_linkage {
5548 } symbol_linkage_ = symbol_linkage::unknown;
5549 dwarf2_per_cu_data *per_cu = NULL;
5550 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5555 case DW_FORM_implicit_const:
5556 ull = attr.implicit_const;
5558 case DW_FORM_flag_present:
5562 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5563 m_addr += bytes_read;
5566 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5567 dwarf_form_name (attr.form),
5568 objfile_name (objfile));
5571 switch (attr.dw_idx)
5573 case DW_IDX_compile_unit:
5574 /* Don't crash on bad data. */
5575 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5577 complaint (_(".debug_names entry has bad CU index %s"
5580 objfile_name (dwarf2_per_objfile->objfile));
5583 per_cu = dwarf2_per_objfile->get_cutu (ull);
5585 case DW_IDX_type_unit:
5586 /* Don't crash on bad data. */
5587 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5589 complaint (_(".debug_names entry has bad TU index %s"
5592 objfile_name (dwarf2_per_objfile->objfile));
5595 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5597 case DW_IDX_GNU_internal:
5598 if (!m_map.augmentation_is_gdb)
5600 symbol_linkage_ = symbol_linkage::static_;
5602 case DW_IDX_GNU_external:
5603 if (!m_map.augmentation_is_gdb)
5605 symbol_linkage_ = symbol_linkage::extern_;
5610 /* Skip if already read in. */
5611 if (per_cu->v.quick->compunit_symtab)
5614 /* Check static vs global. */
5615 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5617 const bool want_static = *m_block_index == STATIC_BLOCK;
5618 const bool symbol_is_static =
5619 symbol_linkage_ == symbol_linkage::static_;
5620 if (want_static != symbol_is_static)
5624 /* Match dw2_symtab_iter_next, symbol_kind
5625 and debug_names::psymbol_tag. */
5629 switch (indexval.dwarf_tag)
5631 case DW_TAG_variable:
5632 case DW_TAG_subprogram:
5633 /* Some types are also in VAR_DOMAIN. */
5634 case DW_TAG_typedef:
5635 case DW_TAG_structure_type:
5642 switch (indexval.dwarf_tag)
5644 case DW_TAG_typedef:
5645 case DW_TAG_structure_type:
5652 switch (indexval.dwarf_tag)
5655 case DW_TAG_variable:
5662 switch (indexval.dwarf_tag)
5674 /* Match dw2_expand_symtabs_matching, symbol_kind and
5675 debug_names::psymbol_tag. */
5678 case VARIABLES_DOMAIN:
5679 switch (indexval.dwarf_tag)
5681 case DW_TAG_variable:
5687 case FUNCTIONS_DOMAIN:
5688 switch (indexval.dwarf_tag)
5690 case DW_TAG_subprogram:
5697 switch (indexval.dwarf_tag)
5699 case DW_TAG_typedef:
5700 case DW_TAG_structure_type:
5706 case MODULES_DOMAIN:
5707 switch (indexval.dwarf_tag)
5721 static struct compunit_symtab *
5722 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5723 const char *name, domain_enum domain)
5725 struct dwarf2_per_objfile *dwarf2_per_objfile
5726 = get_dwarf2_per_objfile (objfile);
5728 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5731 /* index is NULL if OBJF_READNOW. */
5734 const auto &map = *mapp;
5736 dw2_debug_names_iterator iter (map, block_index, domain, name);
5738 struct compunit_symtab *stab_best = NULL;
5739 struct dwarf2_per_cu_data *per_cu;
5740 while ((per_cu = iter.next ()) != NULL)
5742 struct symbol *sym, *with_opaque = NULL;
5743 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5744 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5745 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5747 sym = block_find_symbol (block, name, domain,
5748 block_find_non_opaque_type_preferred,
5751 /* Some caution must be observed with overloaded functions and
5752 methods, since the index will not contain any overload
5753 information (but NAME might contain it). */
5756 && strcmp_iw (sym->search_name (), name) == 0)
5758 if (with_opaque != NULL
5759 && strcmp_iw (with_opaque->search_name (), name) == 0)
5762 /* Keep looking through other CUs. */
5768 /* This dumps minimal information about .debug_names. It is called
5769 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5770 uses this to verify that .debug_names has been loaded. */
5773 dw2_debug_names_dump (struct objfile *objfile)
5775 struct dwarf2_per_objfile *dwarf2_per_objfile
5776 = get_dwarf2_per_objfile (objfile);
5778 gdb_assert (dwarf2_per_objfile->using_index);
5779 printf_filtered (".debug_names:");
5780 if (dwarf2_per_objfile->debug_names_table)
5781 printf_filtered (" exists\n");
5783 printf_filtered (" faked for \"readnow\"\n");
5784 printf_filtered ("\n");
5788 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5789 const char *func_name)
5791 struct dwarf2_per_objfile *dwarf2_per_objfile
5792 = get_dwarf2_per_objfile (objfile);
5794 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5795 if (dwarf2_per_objfile->debug_names_table)
5797 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5799 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5801 struct dwarf2_per_cu_data *per_cu;
5802 while ((per_cu = iter.next ()) != NULL)
5803 dw2_instantiate_symtab (per_cu, false);
5808 dw2_debug_names_map_matching_symbols
5809 (struct objfile *objfile,
5810 const lookup_name_info &name, domain_enum domain,
5812 gdb::function_view<symbol_found_callback_ftype> callback,
5813 symbol_compare_ftype *ordered_compare)
5815 struct dwarf2_per_objfile *dwarf2_per_objfile
5816 = get_dwarf2_per_objfile (objfile);
5818 /* debug_names_table is NULL if OBJF_READNOW. */
5819 if (!dwarf2_per_objfile->debug_names_table)
5822 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5823 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5825 const char *match_name = name.ada ().lookup_name ().c_str ();
5826 auto matcher = [&] (const char *symname)
5828 if (ordered_compare == nullptr)
5830 return ordered_compare (symname, match_name) == 0;
5833 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5834 [&] (offset_type namei)
5836 /* The name was matched, now expand corresponding CUs that were
5838 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5840 struct dwarf2_per_cu_data *per_cu;
5841 while ((per_cu = iter.next ()) != NULL)
5842 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5846 /* It's a shame we couldn't do this inside the
5847 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5848 that have already been expanded. Instead, this loop matches what
5849 the psymtab code does. */
5850 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5852 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5853 if (cust != nullptr)
5855 const struct block *block
5856 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5857 if (!iterate_over_symbols_terminated (block, name,
5865 dw2_debug_names_expand_symtabs_matching
5866 (struct objfile *objfile,
5867 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5868 const lookup_name_info &lookup_name,
5869 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5870 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5871 enum search_domain kind)
5873 struct dwarf2_per_objfile *dwarf2_per_objfile
5874 = get_dwarf2_per_objfile (objfile);
5876 /* debug_names_table is NULL if OBJF_READNOW. */
5877 if (!dwarf2_per_objfile->debug_names_table)
5880 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5882 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5884 dw2_expand_symtabs_matching_symbol (map, lookup_name,
5886 kind, [&] (offset_type namei)
5888 /* The name was matched, now expand corresponding CUs that were
5890 dw2_debug_names_iterator iter (map, kind, namei);
5892 struct dwarf2_per_cu_data *per_cu;
5893 while ((per_cu = iter.next ()) != NULL)
5894 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5900 const struct quick_symbol_functions dwarf2_debug_names_functions =
5903 dw2_find_last_source_symtab,
5904 dw2_forget_cached_source_info,
5905 dw2_map_symtabs_matching_filename,
5906 dw2_debug_names_lookup_symbol,
5908 dw2_debug_names_dump,
5909 dw2_debug_names_expand_symtabs_for_function,
5910 dw2_expand_all_symtabs,
5911 dw2_expand_symtabs_with_fullname,
5912 dw2_debug_names_map_matching_symbols,
5913 dw2_debug_names_expand_symtabs_matching,
5914 dw2_find_pc_sect_compunit_symtab,
5916 dw2_map_symbol_filenames
5919 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5920 to either a dwarf2_per_objfile or dwz_file object. */
5922 template <typename T>
5923 static gdb::array_view<const gdb_byte>
5924 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5926 dwarf2_section_info *section = §ion_owner->gdb_index;
5928 if (section->empty ())
5931 /* Older elfutils strip versions could keep the section in the main
5932 executable while splitting it for the separate debug info file. */
5933 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5936 section->read (obj);
5938 /* dwarf2_section_info::size is a bfd_size_type, while
5939 gdb::array_view works with size_t. On 32-bit hosts, with
5940 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5941 is 32-bit. So we need an explicit narrowing conversion here.
5942 This is fine, because it's impossible to allocate or mmap an
5943 array/buffer larger than what size_t can represent. */
5944 return gdb::make_array_view (section->buffer, section->size);
5947 /* Lookup the index cache for the contents of the index associated to
5950 static gdb::array_view<const gdb_byte>
5951 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5953 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5954 if (build_id == nullptr)
5957 return global_index_cache.lookup_gdb_index (build_id,
5958 &dwarf2_obj->index_cache_res);
5961 /* Same as the above, but for DWZ. */
5963 static gdb::array_view<const gdb_byte>
5964 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5966 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5967 if (build_id == nullptr)
5970 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5973 /* See symfile.h. */
5976 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5978 struct dwarf2_per_objfile *dwarf2_per_objfile
5979 = get_dwarf2_per_objfile (objfile);
5981 /* If we're about to read full symbols, don't bother with the
5982 indices. In this case we also don't care if some other debug
5983 format is making psymtabs, because they are all about to be
5985 if ((objfile->flags & OBJF_READNOW))
5987 dwarf2_per_objfile->using_index = 1;
5988 create_all_comp_units (dwarf2_per_objfile);
5989 create_all_type_units (dwarf2_per_objfile);
5990 dwarf2_per_objfile->quick_file_names_table
5991 = create_quick_file_names_table
5992 (dwarf2_per_objfile->all_comp_units.size ());
5994 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5995 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5997 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5999 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6000 struct dwarf2_per_cu_quick_data);
6003 /* Return 1 so that gdb sees the "quick" functions. However,
6004 these functions will be no-ops because we will have expanded
6006 *index_kind = dw_index_kind::GDB_INDEX;
6010 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6012 *index_kind = dw_index_kind::DEBUG_NAMES;
6016 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6017 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6018 get_gdb_index_contents_from_section<dwz_file>))
6020 *index_kind = dw_index_kind::GDB_INDEX;
6024 /* ... otherwise, try to find the index in the index cache. */
6025 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6026 get_gdb_index_contents_from_cache,
6027 get_gdb_index_contents_from_cache_dwz))
6029 global_index_cache.hit ();
6030 *index_kind = dw_index_kind::GDB_INDEX;
6034 global_index_cache.miss ();
6040 /* Build a partial symbol table. */
6043 dwarf2_build_psymtabs (struct objfile *objfile)
6045 struct dwarf2_per_objfile *dwarf2_per_objfile
6046 = get_dwarf2_per_objfile (objfile);
6048 init_psymbol_list (objfile, 1024);
6052 /* This isn't really ideal: all the data we allocate on the
6053 objfile's obstack is still uselessly kept around. However,
6054 freeing it seems unsafe. */
6055 psymtab_discarder psymtabs (objfile);
6056 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6059 /* (maybe) store an index in the cache. */
6060 global_index_cache.store (dwarf2_per_objfile);
6062 catch (const gdb_exception_error &except)
6064 exception_print (gdb_stderr, except);
6068 /* Return the total length of the CU described by HEADER. */
6071 get_cu_length (const struct comp_unit_head *header)
6073 return header->initial_length_size + header->length;
6076 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6079 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6081 sect_offset bottom = cu_header->sect_off;
6082 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6084 return sect_off >= bottom && sect_off < top;
6087 /* Find the base address of the compilation unit for range lists and
6088 location lists. It will normally be specified by DW_AT_low_pc.
6089 In DWARF-3 draft 4, the base address could be overridden by
6090 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6091 compilation units with discontinuous ranges. */
6094 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6096 struct attribute *attr;
6099 cu->base_address = 0;
6101 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6102 if (attr != nullptr)
6104 cu->base_address = attr->value_as_address ();
6109 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6110 if (attr != nullptr)
6112 cu->base_address = attr->value_as_address ();
6118 /* Read in the comp unit header information from the debug_info at info_ptr.
6119 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6120 NOTE: This leaves members offset, first_die_offset to be filled in
6123 static const gdb_byte *
6124 read_comp_unit_head (struct comp_unit_head *cu_header,
6125 const gdb_byte *info_ptr,
6126 struct dwarf2_section_info *section,
6127 rcuh_kind section_kind)
6130 unsigned int bytes_read;
6131 const char *filename = section->get_file_name ();
6132 bfd *abfd = section->get_bfd_owner ();
6134 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6135 cu_header->initial_length_size = bytes_read;
6136 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6137 info_ptr += bytes_read;
6138 cu_header->version = read_2_bytes (abfd, info_ptr);
6139 if (cu_header->version < 2 || cu_header->version > 5)
6140 error (_("Dwarf Error: wrong version in compilation unit header "
6141 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6142 cu_header->version, filename);
6144 if (cu_header->version < 5)
6145 switch (section_kind)
6147 case rcuh_kind::COMPILE:
6148 cu_header->unit_type = DW_UT_compile;
6150 case rcuh_kind::TYPE:
6151 cu_header->unit_type = DW_UT_type;
6154 internal_error (__FILE__, __LINE__,
6155 _("read_comp_unit_head: invalid section_kind"));
6159 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6160 (read_1_byte (abfd, info_ptr));
6162 switch (cu_header->unit_type)
6166 case DW_UT_skeleton:
6167 case DW_UT_split_compile:
6168 if (section_kind != rcuh_kind::COMPILE)
6169 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6170 "(is %s, should be %s) [in module %s]"),
6171 dwarf_unit_type_name (cu_header->unit_type),
6172 dwarf_unit_type_name (DW_UT_type), filename);
6175 case DW_UT_split_type:
6176 section_kind = rcuh_kind::TYPE;
6179 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6180 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6181 "[in module %s]"), cu_header->unit_type,
6182 dwarf_unit_type_name (DW_UT_compile),
6183 dwarf_unit_type_name (DW_UT_skeleton),
6184 dwarf_unit_type_name (DW_UT_split_compile),
6185 dwarf_unit_type_name (DW_UT_type),
6186 dwarf_unit_type_name (DW_UT_split_type), filename);
6189 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6192 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6195 info_ptr += bytes_read;
6196 if (cu_header->version < 5)
6198 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6201 signed_addr = bfd_get_sign_extend_vma (abfd);
6202 if (signed_addr < 0)
6203 internal_error (__FILE__, __LINE__,
6204 _("read_comp_unit_head: dwarf from non elf file"));
6205 cu_header->signed_addr_p = signed_addr;
6207 bool header_has_signature = section_kind == rcuh_kind::TYPE
6208 || cu_header->unit_type == DW_UT_skeleton
6209 || cu_header->unit_type == DW_UT_split_compile;
6211 if (header_has_signature)
6213 cu_header->signature = read_8_bytes (abfd, info_ptr);
6217 if (section_kind == rcuh_kind::TYPE)
6219 LONGEST type_offset;
6220 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6221 info_ptr += bytes_read;
6222 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6223 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6224 error (_("Dwarf Error: Too big type_offset in compilation unit "
6225 "header (is %s) [in module %s]"), plongest (type_offset),
6232 /* Helper function that returns the proper abbrev section for
6235 static struct dwarf2_section_info *
6236 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6238 struct dwarf2_section_info *abbrev;
6239 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6241 if (this_cu->is_dwz)
6242 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6244 abbrev = &dwarf2_per_objfile->abbrev;
6249 /* Subroutine of read_and_check_comp_unit_head and
6250 read_and_check_type_unit_head to simplify them.
6251 Perform various error checking on the header. */
6254 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6255 struct comp_unit_head *header,
6256 struct dwarf2_section_info *section,
6257 struct dwarf2_section_info *abbrev_section)
6259 const char *filename = section->get_file_name ();
6261 if (to_underlying (header->abbrev_sect_off)
6262 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6263 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6264 "(offset %s + 6) [in module %s]"),
6265 sect_offset_str (header->abbrev_sect_off),
6266 sect_offset_str (header->sect_off),
6269 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6270 avoid potential 32-bit overflow. */
6271 if (((ULONGEST) header->sect_off + get_cu_length (header))
6273 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6274 "(offset %s + 0) [in module %s]"),
6275 header->length, sect_offset_str (header->sect_off),
6279 /* Read in a CU/TU header and perform some basic error checking.
6280 The contents of the header are stored in HEADER.
6281 The result is a pointer to the start of the first DIE. */
6283 static const gdb_byte *
6284 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6285 struct comp_unit_head *header,
6286 struct dwarf2_section_info *section,
6287 struct dwarf2_section_info *abbrev_section,
6288 const gdb_byte *info_ptr,
6289 rcuh_kind section_kind)
6291 const gdb_byte *beg_of_comp_unit = info_ptr;
6293 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6295 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6297 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6299 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6305 /* Fetch the abbreviation table offset from a comp or type unit header. */
6308 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6309 struct dwarf2_section_info *section,
6310 sect_offset sect_off)
6312 bfd *abfd = section->get_bfd_owner ();
6313 const gdb_byte *info_ptr;
6314 unsigned int initial_length_size, offset_size;
6317 section->read (dwarf2_per_objfile->objfile);
6318 info_ptr = section->buffer + to_underlying (sect_off);
6319 read_initial_length (abfd, info_ptr, &initial_length_size);
6320 offset_size = initial_length_size == 4 ? 4 : 8;
6321 info_ptr += initial_length_size;
6323 version = read_2_bytes (abfd, info_ptr);
6327 /* Skip unit type and address size. */
6331 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6334 /* Allocate a new partial symtab for file named NAME and mark this new
6335 partial symtab as being an include of PST. */
6338 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6339 struct objfile *objfile)
6341 dwarf2_psymtab *subpst = new dwarf2_psymtab (name, objfile);
6343 if (!IS_ABSOLUTE_PATH (subpst->filename))
6345 /* It shares objfile->objfile_obstack. */
6346 subpst->dirname = pst->dirname;
6349 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6350 subpst->dependencies[0] = pst;
6351 subpst->number_of_dependencies = 1;
6353 /* No private part is necessary for include psymtabs. This property
6354 can be used to differentiate between such include psymtabs and
6355 the regular ones. */
6356 subpst->per_cu_data = nullptr;
6359 /* Read the Line Number Program data and extract the list of files
6360 included by the source file represented by PST. Build an include
6361 partial symtab for each of these included files. */
6364 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6365 struct die_info *die,
6366 dwarf2_psymtab *pst)
6369 struct attribute *attr;
6371 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6372 if (attr != nullptr)
6373 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6375 return; /* No linetable, so no includes. */
6377 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6378 that we pass in the raw text_low here; that is ok because we're
6379 only decoding the line table to make include partial symtabs, and
6380 so the addresses aren't really used. */
6381 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6382 pst->raw_text_low (), 1);
6386 hash_signatured_type (const void *item)
6388 const struct signatured_type *sig_type
6389 = (const struct signatured_type *) item;
6391 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6392 return sig_type->signature;
6396 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6398 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6399 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6401 return lhs->signature == rhs->signature;
6404 /* Allocate a hash table for signatured types. */
6407 allocate_signatured_type_table (struct objfile *objfile)
6409 return htab_up (htab_create_alloc (41,
6410 hash_signatured_type,
6412 NULL, xcalloc, xfree));
6415 /* A helper function to add a signatured type CU to a table. */
6418 add_signatured_type_cu_to_table (void **slot, void *datum)
6420 struct signatured_type *sigt = (struct signatured_type *) *slot;
6421 std::vector<signatured_type *> *all_type_units
6422 = (std::vector<signatured_type *> *) datum;
6424 all_type_units->push_back (sigt);
6429 /* A helper for create_debug_types_hash_table. Read types from SECTION
6430 and fill them into TYPES_HTAB. It will process only type units,
6431 therefore DW_UT_type. */
6434 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6435 struct dwo_file *dwo_file,
6436 dwarf2_section_info *section, htab_up &types_htab,
6437 rcuh_kind section_kind)
6439 struct objfile *objfile = dwarf2_per_objfile->objfile;
6440 struct dwarf2_section_info *abbrev_section;
6442 const gdb_byte *info_ptr, *end_ptr;
6444 abbrev_section = (dwo_file != NULL
6445 ? &dwo_file->sections.abbrev
6446 : &dwarf2_per_objfile->abbrev);
6448 if (dwarf_read_debug)
6449 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6450 section->get_name (),
6451 abbrev_section->get_file_name ());
6453 section->read (objfile);
6454 info_ptr = section->buffer;
6456 if (info_ptr == NULL)
6459 /* We can't set abfd until now because the section may be empty or
6460 not present, in which case the bfd is unknown. */
6461 abfd = section->get_bfd_owner ();
6463 /* We don't use cutu_reader here because we don't need to read
6464 any dies: the signature is in the header. */
6466 end_ptr = info_ptr + section->size;
6467 while (info_ptr < end_ptr)
6469 struct signatured_type *sig_type;
6470 struct dwo_unit *dwo_tu;
6472 const gdb_byte *ptr = info_ptr;
6473 struct comp_unit_head header;
6474 unsigned int length;
6476 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6478 /* Initialize it due to a false compiler warning. */
6479 header.signature = -1;
6480 header.type_cu_offset_in_tu = (cu_offset) -1;
6482 /* We need to read the type's signature in order to build the hash
6483 table, but we don't need anything else just yet. */
6485 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6486 abbrev_section, ptr, section_kind);
6488 length = get_cu_length (&header);
6490 /* Skip dummy type units. */
6491 if (ptr >= info_ptr + length
6492 || peek_abbrev_code (abfd, ptr) == 0
6493 || header.unit_type != DW_UT_type)
6499 if (types_htab == NULL)
6502 types_htab = allocate_dwo_unit_table (objfile);
6504 types_htab = allocate_signatured_type_table (objfile);
6510 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6512 dwo_tu->dwo_file = dwo_file;
6513 dwo_tu->signature = header.signature;
6514 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6515 dwo_tu->section = section;
6516 dwo_tu->sect_off = sect_off;
6517 dwo_tu->length = length;
6521 /* N.B.: type_offset is not usable if this type uses a DWO file.
6522 The real type_offset is in the DWO file. */
6524 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6525 struct signatured_type);
6526 sig_type->signature = header.signature;
6527 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6528 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6529 sig_type->per_cu.is_debug_types = 1;
6530 sig_type->per_cu.section = section;
6531 sig_type->per_cu.sect_off = sect_off;
6532 sig_type->per_cu.length = length;
6535 slot = htab_find_slot (types_htab.get (),
6536 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6538 gdb_assert (slot != NULL);
6541 sect_offset dup_sect_off;
6545 const struct dwo_unit *dup_tu
6546 = (const struct dwo_unit *) *slot;
6548 dup_sect_off = dup_tu->sect_off;
6552 const struct signatured_type *dup_tu
6553 = (const struct signatured_type *) *slot;
6555 dup_sect_off = dup_tu->per_cu.sect_off;
6558 complaint (_("debug type entry at offset %s is duplicate to"
6559 " the entry at offset %s, signature %s"),
6560 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6561 hex_string (header.signature));
6563 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6565 if (dwarf_read_debug > 1)
6566 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6567 sect_offset_str (sect_off),
6568 hex_string (header.signature));
6574 /* Create the hash table of all entries in the .debug_types
6575 (or .debug_types.dwo) section(s).
6576 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6577 otherwise it is NULL.
6579 The result is a pointer to the hash table or NULL if there are no types.
6581 Note: This function processes DWO files only, not DWP files. */
6584 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6585 struct dwo_file *dwo_file,
6586 gdb::array_view<dwarf2_section_info> type_sections,
6587 htab_up &types_htab)
6589 for (dwarf2_section_info §ion : type_sections)
6590 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, §ion,
6591 types_htab, rcuh_kind::TYPE);
6594 /* Create the hash table of all entries in the .debug_types section,
6595 and initialize all_type_units.
6596 The result is zero if there is an error (e.g. missing .debug_types section),
6597 otherwise non-zero. */
6600 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6604 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6605 &dwarf2_per_objfile->info, types_htab,
6606 rcuh_kind::COMPILE);
6607 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6608 dwarf2_per_objfile->types, types_htab);
6609 if (types_htab == NULL)
6611 dwarf2_per_objfile->signatured_types = NULL;
6615 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6617 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6618 dwarf2_per_objfile->all_type_units.reserve
6619 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6621 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6622 add_signatured_type_cu_to_table,
6623 &dwarf2_per_objfile->all_type_units);
6628 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6629 If SLOT is non-NULL, it is the entry to use in the hash table.
6630 Otherwise we find one. */
6632 static struct signatured_type *
6633 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6636 struct objfile *objfile = dwarf2_per_objfile->objfile;
6638 if (dwarf2_per_objfile->all_type_units.size ()
6639 == dwarf2_per_objfile->all_type_units.capacity ())
6640 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6642 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6643 struct signatured_type);
6645 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6646 sig_type->signature = sig;
6647 sig_type->per_cu.is_debug_types = 1;
6648 if (dwarf2_per_objfile->using_index)
6650 sig_type->per_cu.v.quick =
6651 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6652 struct dwarf2_per_cu_quick_data);
6657 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6660 gdb_assert (*slot == NULL);
6662 /* The rest of sig_type must be filled in by the caller. */
6666 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6667 Fill in SIG_ENTRY with DWO_ENTRY. */
6670 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6671 struct signatured_type *sig_entry,
6672 struct dwo_unit *dwo_entry)
6674 /* Make sure we're not clobbering something we don't expect to. */
6675 gdb_assert (! sig_entry->per_cu.queued);
6676 gdb_assert (sig_entry->per_cu.cu == NULL);
6677 if (dwarf2_per_objfile->using_index)
6679 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6680 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6683 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6684 gdb_assert (sig_entry->signature == dwo_entry->signature);
6685 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6686 gdb_assert (sig_entry->type_unit_group == NULL);
6687 gdb_assert (sig_entry->dwo_unit == NULL);
6689 sig_entry->per_cu.section = dwo_entry->section;
6690 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6691 sig_entry->per_cu.length = dwo_entry->length;
6692 sig_entry->per_cu.reading_dwo_directly = 1;
6693 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6694 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6695 sig_entry->dwo_unit = dwo_entry;
6698 /* Subroutine of lookup_signatured_type.
6699 If we haven't read the TU yet, create the signatured_type data structure
6700 for a TU to be read in directly from a DWO file, bypassing the stub.
6701 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6702 using .gdb_index, then when reading a CU we want to stay in the DWO file
6703 containing that CU. Otherwise we could end up reading several other DWO
6704 files (due to comdat folding) to process the transitive closure of all the
6705 mentioned TUs, and that can be slow. The current DWO file will have every
6706 type signature that it needs.
6707 We only do this for .gdb_index because in the psymtab case we already have
6708 to read all the DWOs to build the type unit groups. */
6710 static struct signatured_type *
6711 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6713 struct dwarf2_per_objfile *dwarf2_per_objfile
6714 = cu->per_cu->dwarf2_per_objfile;
6715 struct objfile *objfile = dwarf2_per_objfile->objfile;
6716 struct dwo_file *dwo_file;
6717 struct dwo_unit find_dwo_entry, *dwo_entry;
6718 struct signatured_type find_sig_entry, *sig_entry;
6721 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6723 /* If TU skeletons have been removed then we may not have read in any
6725 if (dwarf2_per_objfile->signatured_types == NULL)
6727 dwarf2_per_objfile->signatured_types
6728 = allocate_signatured_type_table (objfile);
6731 /* We only ever need to read in one copy of a signatured type.
6732 Use the global signatured_types array to do our own comdat-folding
6733 of types. If this is the first time we're reading this TU, and
6734 the TU has an entry in .gdb_index, replace the recorded data from
6735 .gdb_index with this TU. */
6737 find_sig_entry.signature = sig;
6738 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6739 &find_sig_entry, INSERT);
6740 sig_entry = (struct signatured_type *) *slot;
6742 /* We can get here with the TU already read, *or* in the process of being
6743 read. Don't reassign the global entry to point to this DWO if that's
6744 the case. Also note that if the TU is already being read, it may not
6745 have come from a DWO, the program may be a mix of Fission-compiled
6746 code and non-Fission-compiled code. */
6748 /* Have we already tried to read this TU?
6749 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6750 needn't exist in the global table yet). */
6751 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6754 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6755 dwo_unit of the TU itself. */
6756 dwo_file = cu->dwo_unit->dwo_file;
6758 /* Ok, this is the first time we're reading this TU. */
6759 if (dwo_file->tus == NULL)
6761 find_dwo_entry.signature = sig;
6762 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6764 if (dwo_entry == NULL)
6767 /* If the global table doesn't have an entry for this TU, add one. */
6768 if (sig_entry == NULL)
6769 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6771 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6772 sig_entry->per_cu.tu_read = 1;
6776 /* Subroutine of lookup_signatured_type.
6777 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6778 then try the DWP file. If the TU stub (skeleton) has been removed then
6779 it won't be in .gdb_index. */
6781 static struct signatured_type *
6782 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6784 struct dwarf2_per_objfile *dwarf2_per_objfile
6785 = cu->per_cu->dwarf2_per_objfile;
6786 struct objfile *objfile = dwarf2_per_objfile->objfile;
6787 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6788 struct dwo_unit *dwo_entry;
6789 struct signatured_type find_sig_entry, *sig_entry;
6792 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6793 gdb_assert (dwp_file != NULL);
6795 /* If TU skeletons have been removed then we may not have read in any
6797 if (dwarf2_per_objfile->signatured_types == NULL)
6799 dwarf2_per_objfile->signatured_types
6800 = allocate_signatured_type_table (objfile);
6803 find_sig_entry.signature = sig;
6804 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6805 &find_sig_entry, INSERT);
6806 sig_entry = (struct signatured_type *) *slot;
6808 /* Have we already tried to read this TU?
6809 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6810 needn't exist in the global table yet). */
6811 if (sig_entry != NULL)
6814 if (dwp_file->tus == NULL)
6816 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6817 sig, 1 /* is_debug_types */);
6818 if (dwo_entry == NULL)
6821 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6822 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6827 /* Lookup a signature based type for DW_FORM_ref_sig8.
6828 Returns NULL if signature SIG is not present in the table.
6829 It is up to the caller to complain about this. */
6831 static struct signatured_type *
6832 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6834 struct dwarf2_per_objfile *dwarf2_per_objfile
6835 = cu->per_cu->dwarf2_per_objfile;
6838 && dwarf2_per_objfile->using_index)
6840 /* We're in a DWO/DWP file, and we're using .gdb_index.
6841 These cases require special processing. */
6842 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6843 return lookup_dwo_signatured_type (cu, sig);
6845 return lookup_dwp_signatured_type (cu, sig);
6849 struct signatured_type find_entry, *entry;
6851 if (dwarf2_per_objfile->signatured_types == NULL)
6853 find_entry.signature = sig;
6854 entry = ((struct signatured_type *)
6855 htab_find (dwarf2_per_objfile->signatured_types.get (),
6861 /* Return the address base of the compile unit, which, if exists, is stored
6862 either at the attribute DW_AT_GNU_addr_base, or DW_AT_addr_base. */
6863 static gdb::optional<ULONGEST>
6864 lookup_addr_base (struct die_info *comp_unit_die)
6866 struct attribute *attr;
6867 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_addr_base);
6868 if (attr == nullptr)
6869 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_addr_base);
6870 if (attr == nullptr)
6871 return gdb::optional<ULONGEST> ();
6872 return DW_UNSND (attr);
6875 /* Return range lists base of the compile unit, which, if exists, is stored
6876 either at the attribute DW_AT_rnglists_base or DW_AT_GNU_ranges_base. */
6878 lookup_ranges_base (struct die_info *comp_unit_die)
6880 struct attribute *attr;
6881 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_rnglists_base);
6882 if (attr == nullptr)
6883 attr = dwarf2_attr_no_follow (comp_unit_die, DW_AT_GNU_ranges_base);
6884 if (attr == nullptr)
6886 return DW_UNSND (attr);
6889 /* Low level DIE reading support. */
6891 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6894 init_cu_die_reader (struct die_reader_specs *reader,
6895 struct dwarf2_cu *cu,
6896 struct dwarf2_section_info *section,
6897 struct dwo_file *dwo_file,
6898 struct abbrev_table *abbrev_table)
6900 gdb_assert (section->readin && section->buffer != NULL);
6901 reader->abfd = section->get_bfd_owner ();
6903 reader->dwo_file = dwo_file;
6904 reader->die_section = section;
6905 reader->buffer = section->buffer;
6906 reader->buffer_end = section->buffer + section->size;
6907 reader->abbrev_table = abbrev_table;
6910 /* Subroutine of cutu_reader to simplify it.
6911 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6912 There's just a lot of work to do, and cutu_reader is big enough
6915 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6916 from it to the DIE in the DWO. If NULL we are skipping the stub.
6917 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6918 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6919 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6920 STUB_COMP_DIR may be non-NULL.
6921 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6922 are filled in with the info of the DIE from the DWO file.
6923 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6924 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6925 kept around for at least as long as *RESULT_READER.
6927 The result is non-zero if a valid (non-dummy) DIE was found. */
6930 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6931 struct dwo_unit *dwo_unit,
6932 struct die_info *stub_comp_unit_die,
6933 const char *stub_comp_dir,
6934 struct die_reader_specs *result_reader,
6935 const gdb_byte **result_info_ptr,
6936 struct die_info **result_comp_unit_die,
6937 abbrev_table_up *result_dwo_abbrev_table)
6939 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6940 struct objfile *objfile = dwarf2_per_objfile->objfile;
6941 struct dwarf2_cu *cu = this_cu->cu;
6943 const gdb_byte *begin_info_ptr, *info_ptr;
6944 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6945 int i,num_extra_attrs;
6946 struct dwarf2_section_info *dwo_abbrev_section;
6947 struct die_info *comp_unit_die;
6949 /* At most one of these may be provided. */
6950 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6952 /* These attributes aren't processed until later:
6953 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6954 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6955 referenced later. However, these attributes are found in the stub
6956 which we won't have later. In order to not impose this complication
6957 on the rest of the code, we read them here and copy them to the
6966 if (stub_comp_unit_die != NULL)
6968 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6970 if (! this_cu->is_debug_types)
6971 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6972 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6973 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6974 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6975 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6977 cu->addr_base = lookup_addr_base (stub_comp_unit_die);
6979 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6980 here (if needed). We need the value before we can process
6982 cu->ranges_base = lookup_ranges_base (stub_comp_unit_die);
6984 else if (stub_comp_dir != NULL)
6986 /* Reconstruct the comp_dir attribute to simplify the code below. */
6987 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6988 comp_dir->name = DW_AT_comp_dir;
6989 comp_dir->form = DW_FORM_string;
6990 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6991 DW_STRING (comp_dir) = stub_comp_dir;
6994 /* Set up for reading the DWO CU/TU. */
6995 cu->dwo_unit = dwo_unit;
6996 dwarf2_section_info *section = dwo_unit->section;
6997 section->read (objfile);
6998 abfd = section->get_bfd_owner ();
6999 begin_info_ptr = info_ptr = (section->buffer
7000 + to_underlying (dwo_unit->sect_off));
7001 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7003 if (this_cu->is_debug_types)
7005 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7007 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7008 &cu->header, section,
7010 info_ptr, rcuh_kind::TYPE);
7011 /* This is not an assert because it can be caused by bad debug info. */
7012 if (sig_type->signature != cu->header.signature)
7014 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7015 " TU at offset %s [in module %s]"),
7016 hex_string (sig_type->signature),
7017 hex_string (cu->header.signature),
7018 sect_offset_str (dwo_unit->sect_off),
7019 bfd_get_filename (abfd));
7021 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7022 /* For DWOs coming from DWP files, we don't know the CU length
7023 nor the type's offset in the TU until now. */
7024 dwo_unit->length = get_cu_length (&cu->header);
7025 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7027 /* Establish the type offset that can be used to lookup the type.
7028 For DWO files, we don't know it until now. */
7029 sig_type->type_offset_in_section
7030 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7034 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7035 &cu->header, section,
7037 info_ptr, rcuh_kind::COMPILE);
7038 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7039 /* For DWOs coming from DWP files, we don't know the CU length
7041 dwo_unit->length = get_cu_length (&cu->header);
7044 *result_dwo_abbrev_table
7045 = abbrev_table::read (objfile, dwo_abbrev_section,
7046 cu->header.abbrev_sect_off);
7047 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7048 result_dwo_abbrev_table->get ());
7050 /* Read in the die, but leave space to copy over the attributes
7051 from the stub. This has the benefit of simplifying the rest of
7052 the code - all the work to maintain the illusion of a single
7053 DW_TAG_{compile,type}_unit DIE is done here. */
7054 num_extra_attrs = ((stmt_list != NULL)
7058 + (comp_dir != NULL));
7059 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7062 /* Copy over the attributes from the stub to the DIE we just read in. */
7063 comp_unit_die = *result_comp_unit_die;
7064 i = comp_unit_die->num_attrs;
7065 if (stmt_list != NULL)
7066 comp_unit_die->attrs[i++] = *stmt_list;
7068 comp_unit_die->attrs[i++] = *low_pc;
7069 if (high_pc != NULL)
7070 comp_unit_die->attrs[i++] = *high_pc;
7072 comp_unit_die->attrs[i++] = *ranges;
7073 if (comp_dir != NULL)
7074 comp_unit_die->attrs[i++] = *comp_dir;
7075 comp_unit_die->num_attrs += num_extra_attrs;
7077 if (dwarf_die_debug)
7079 fprintf_unfiltered (gdb_stdlog,
7080 "Read die from %s@0x%x of %s:\n",
7081 section->get_name (),
7082 (unsigned) (begin_info_ptr - section->buffer),
7083 bfd_get_filename (abfd));
7084 dump_die (comp_unit_die, dwarf_die_debug);
7087 /* Skip dummy compilation units. */
7088 if (info_ptr >= begin_info_ptr + dwo_unit->length
7089 || peek_abbrev_code (abfd, info_ptr) == 0)
7092 *result_info_ptr = info_ptr;
7096 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7097 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7098 signature is part of the header. */
7099 static gdb::optional<ULONGEST>
7100 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7102 if (cu->header.version >= 5)
7103 return cu->header.signature;
7104 struct attribute *attr;
7105 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7106 if (attr == nullptr)
7107 return gdb::optional<ULONGEST> ();
7108 return DW_UNSND (attr);
7111 /* Subroutine of cutu_reader to simplify it.
7112 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7113 Returns NULL if the specified DWO unit cannot be found. */
7115 static struct dwo_unit *
7116 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7117 struct die_info *comp_unit_die,
7118 const char *dwo_name)
7120 struct dwarf2_cu *cu = this_cu->cu;
7121 struct dwo_unit *dwo_unit;
7122 const char *comp_dir;
7124 gdb_assert (cu != NULL);
7126 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7127 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7128 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7130 if (this_cu->is_debug_types)
7132 struct signatured_type *sig_type;
7134 /* Since this_cu is the first member of struct signatured_type,
7135 we can go from a pointer to one to a pointer to the other. */
7136 sig_type = (struct signatured_type *) this_cu;
7137 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7141 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7142 if (!signature.has_value ())
7143 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7145 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7146 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7153 /* Subroutine of cutu_reader to simplify it.
7154 See it for a description of the parameters.
7155 Read a TU directly from a DWO file, bypassing the stub. */
7158 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7159 int use_existing_cu, int keep)
7161 struct signatured_type *sig_type;
7162 struct die_reader_specs reader;
7164 /* Verify we can do the following downcast, and that we have the
7166 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7167 sig_type = (struct signatured_type *) this_cu;
7168 gdb_assert (sig_type->dwo_unit != NULL);
7170 if (use_existing_cu && this_cu->cu != NULL)
7172 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7173 /* There's no need to do the rereading_dwo_cu handling that
7174 cutu_reader does since we don't read the stub. */
7178 /* If !use_existing_cu, this_cu->cu must be NULL. */
7179 gdb_assert (this_cu->cu == NULL);
7180 m_new_cu.reset (new dwarf2_cu (this_cu));
7183 /* A future optimization, if needed, would be to use an existing
7184 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7185 could share abbrev tables. */
7187 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7188 NULL /* stub_comp_unit_die */,
7189 sig_type->dwo_unit->dwo_file->comp_dir,
7192 &m_dwo_abbrev_table) == 0)
7199 /* Initialize a CU (or TU) and read its DIEs.
7200 If the CU defers to a DWO file, read the DWO file as well.
7202 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7203 Otherwise the table specified in the comp unit header is read in and used.
7204 This is an optimization for when we already have the abbrev table.
7206 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7207 Otherwise, a new CU is allocated with xmalloc.
7209 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7210 read_in_chain. Otherwise the dwarf2_cu data is freed at the
7213 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7214 struct abbrev_table *abbrev_table,
7215 int use_existing_cu, int keep,
7217 : die_reader_specs {},
7218 m_this_cu (this_cu),
7221 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7222 struct objfile *objfile = dwarf2_per_objfile->objfile;
7223 struct dwarf2_section_info *section = this_cu->section;
7224 bfd *abfd = section->get_bfd_owner ();
7225 struct dwarf2_cu *cu;
7226 const gdb_byte *begin_info_ptr;
7227 struct signatured_type *sig_type = NULL;
7228 struct dwarf2_section_info *abbrev_section;
7229 /* Non-zero if CU currently points to a DWO file and we need to
7230 reread it. When this happens we need to reread the skeleton die
7231 before we can reread the DWO file (this only applies to CUs, not TUs). */
7232 int rereading_dwo_cu = 0;
7234 if (dwarf_die_debug)
7235 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7236 this_cu->is_debug_types ? "type" : "comp",
7237 sect_offset_str (this_cu->sect_off));
7239 if (use_existing_cu)
7242 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7243 file (instead of going through the stub), short-circuit all of this. */
7244 if (this_cu->reading_dwo_directly)
7246 /* Narrow down the scope of possibilities to have to understand. */
7247 gdb_assert (this_cu->is_debug_types);
7248 gdb_assert (abbrev_table == NULL);
7249 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep);
7253 /* This is cheap if the section is already read in. */
7254 section->read (objfile);
7256 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7258 abbrev_section = get_abbrev_section_for_cu (this_cu);
7260 if (use_existing_cu && this_cu->cu != NULL)
7263 /* If this CU is from a DWO file we need to start over, we need to
7264 refetch the attributes from the skeleton CU.
7265 This could be optimized by retrieving those attributes from when we
7266 were here the first time: the previous comp_unit_die was stored in
7267 comp_unit_obstack. But there's no data yet that we need this
7269 if (cu->dwo_unit != NULL)
7270 rereading_dwo_cu = 1;
7274 /* If !use_existing_cu, this_cu->cu must be NULL. */
7275 gdb_assert (this_cu->cu == NULL);
7276 m_new_cu.reset (new dwarf2_cu (this_cu));
7277 cu = m_new_cu.get ();
7280 /* Get the header. */
7281 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7283 /* We already have the header, there's no need to read it in again. */
7284 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7288 if (this_cu->is_debug_types)
7290 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7291 &cu->header, section,
7292 abbrev_section, info_ptr,
7295 /* Since per_cu is the first member of struct signatured_type,
7296 we can go from a pointer to one to a pointer to the other. */
7297 sig_type = (struct signatured_type *) this_cu;
7298 gdb_assert (sig_type->signature == cu->header.signature);
7299 gdb_assert (sig_type->type_offset_in_tu
7300 == cu->header.type_cu_offset_in_tu);
7301 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7303 /* LENGTH has not been set yet for type units if we're
7304 using .gdb_index. */
7305 this_cu->length = get_cu_length (&cu->header);
7307 /* Establish the type offset that can be used to lookup the type. */
7308 sig_type->type_offset_in_section =
7309 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7311 this_cu->dwarf_version = cu->header.version;
7315 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7316 &cu->header, section,
7319 rcuh_kind::COMPILE);
7321 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7322 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7323 this_cu->dwarf_version = cu->header.version;
7327 /* Skip dummy compilation units. */
7328 if (info_ptr >= begin_info_ptr + this_cu->length
7329 || peek_abbrev_code (abfd, info_ptr) == 0)
7335 /* If we don't have them yet, read the abbrevs for this compilation unit.
7336 And if we need to read them now, make sure they're freed when we're
7338 if (abbrev_table != NULL)
7339 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7342 m_abbrev_table_holder
7343 = abbrev_table::read (objfile, abbrev_section,
7344 cu->header.abbrev_sect_off);
7345 abbrev_table = m_abbrev_table_holder.get ();
7348 /* Read the top level CU/TU die. */
7349 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7350 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7352 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7358 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7359 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7360 table from the DWO file and pass the ownership over to us. It will be
7361 referenced from READER, so we must make sure to free it after we're done
7364 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7365 DWO CU, that this test will fail (the attribute will not be present). */
7366 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7367 if (dwo_name != nullptr)
7369 struct dwo_unit *dwo_unit;
7370 struct die_info *dwo_comp_unit_die;
7372 if (comp_unit_die->has_children)
7374 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7375 " has children (offset %s) [in module %s]"),
7376 sect_offset_str (this_cu->sect_off),
7377 bfd_get_filename (abfd));
7379 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7380 if (dwo_unit != NULL)
7382 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7383 comp_unit_die, NULL,
7386 &m_dwo_abbrev_table) == 0)
7392 comp_unit_die = dwo_comp_unit_die;
7396 /* Yikes, we couldn't find the rest of the DIE, we only have
7397 the stub. A complaint has already been logged. There's
7398 not much more we can do except pass on the stub DIE to
7399 die_reader_func. We don't want to throw an error on bad
7405 cutu_reader::~cutu_reader ()
7407 /* Done, clean up. */
7408 if (m_new_cu != NULL && m_keep && !dummy_p)
7410 struct dwarf2_per_objfile *dwarf2_per_objfile
7411 = m_this_cu->dwarf2_per_objfile;
7412 /* Link this CU into read_in_chain. */
7413 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7414 dwarf2_per_objfile->read_in_chain = m_this_cu;
7415 /* The chain owns it now. */
7416 m_new_cu.release ();
7420 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7421 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7422 assumed to have already done the lookup to find the DWO file).
7424 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7425 THIS_CU->is_debug_types, but nothing else.
7427 We fill in THIS_CU->length.
7429 THIS_CU->cu is always freed when done.
7430 This is done in order to not leave THIS_CU->cu in a state where we have
7431 to care whether it refers to the "main" CU or the DWO CU.
7433 When parent_cu is passed, it is used to provide a default value for
7434 str_offsets_base and addr_base from the parent. */
7436 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7437 struct dwarf2_cu *parent_cu,
7438 struct dwo_file *dwo_file)
7439 : die_reader_specs {},
7442 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7443 struct objfile *objfile = dwarf2_per_objfile->objfile;
7444 struct dwarf2_section_info *section = this_cu->section;
7445 bfd *abfd = section->get_bfd_owner ();
7446 struct dwarf2_section_info *abbrev_section;
7447 const gdb_byte *begin_info_ptr, *info_ptr;
7449 if (dwarf_die_debug)
7450 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7451 this_cu->is_debug_types ? "type" : "comp",
7452 sect_offset_str (this_cu->sect_off));
7454 gdb_assert (this_cu->cu == NULL);
7456 abbrev_section = (dwo_file != NULL
7457 ? &dwo_file->sections.abbrev
7458 : get_abbrev_section_for_cu (this_cu));
7460 /* This is cheap if the section is already read in. */
7461 section->read (objfile);
7463 m_new_cu.reset (new dwarf2_cu (this_cu));
7465 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7466 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7467 &m_new_cu->header, section,
7468 abbrev_section, info_ptr,
7469 (this_cu->is_debug_types
7471 : rcuh_kind::COMPILE));
7473 if (parent_cu != nullptr)
7475 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7476 m_new_cu->addr_base = parent_cu->addr_base;
7478 this_cu->length = get_cu_length (&m_new_cu->header);
7480 /* Skip dummy compilation units. */
7481 if (info_ptr >= begin_info_ptr + this_cu->length
7482 || peek_abbrev_code (abfd, info_ptr) == 0)
7488 m_abbrev_table_holder
7489 = abbrev_table::read (objfile, abbrev_section,
7490 m_new_cu->header.abbrev_sect_off);
7492 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7493 m_abbrev_table_holder.get ());
7494 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7498 /* Type Unit Groups.
7500 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7501 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7502 so that all types coming from the same compilation (.o file) are grouped
7503 together. A future step could be to put the types in the same symtab as
7504 the CU the types ultimately came from. */
7507 hash_type_unit_group (const void *item)
7509 const struct type_unit_group *tu_group
7510 = (const struct type_unit_group *) item;
7512 return hash_stmt_list_entry (&tu_group->hash);
7516 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7518 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7519 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7521 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7524 /* Allocate a hash table for type unit groups. */
7527 allocate_type_unit_groups_table (struct objfile *objfile)
7529 return htab_up (htab_create_alloc (3,
7530 hash_type_unit_group,
7532 NULL, xcalloc, xfree));
7535 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7536 partial symtabs. We combine several TUs per psymtab to not let the size
7537 of any one psymtab grow too big. */
7538 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7539 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7541 /* Helper routine for get_type_unit_group.
7542 Create the type_unit_group object used to hold one or more TUs. */
7544 static struct type_unit_group *
7545 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7547 struct dwarf2_per_objfile *dwarf2_per_objfile
7548 = cu->per_cu->dwarf2_per_objfile;
7549 struct objfile *objfile = dwarf2_per_objfile->objfile;
7550 struct dwarf2_per_cu_data *per_cu;
7551 struct type_unit_group *tu_group;
7553 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7554 struct type_unit_group);
7555 per_cu = &tu_group->per_cu;
7556 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7558 if (dwarf2_per_objfile->using_index)
7560 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7561 struct dwarf2_per_cu_quick_data);
7565 unsigned int line_offset = to_underlying (line_offset_struct);
7566 dwarf2_psymtab *pst;
7569 /* Give the symtab a useful name for debug purposes. */
7570 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7571 name = string_printf ("<type_units_%d>",
7572 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7574 name = string_printf ("<type_units_at_0x%x>", line_offset);
7576 pst = create_partial_symtab (per_cu, name.c_str ());
7577 pst->anonymous = true;
7580 tu_group->hash.dwo_unit = cu->dwo_unit;
7581 tu_group->hash.line_sect_off = line_offset_struct;
7586 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7587 STMT_LIST is a DW_AT_stmt_list attribute. */
7589 static struct type_unit_group *
7590 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7592 struct dwarf2_per_objfile *dwarf2_per_objfile
7593 = cu->per_cu->dwarf2_per_objfile;
7594 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7595 struct type_unit_group *tu_group;
7597 unsigned int line_offset;
7598 struct type_unit_group type_unit_group_for_lookup;
7600 if (dwarf2_per_objfile->type_unit_groups == NULL)
7602 dwarf2_per_objfile->type_unit_groups =
7603 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7606 /* Do we need to create a new group, or can we use an existing one? */
7610 line_offset = DW_UNSND (stmt_list);
7611 ++tu_stats->nr_symtab_sharers;
7615 /* Ugh, no stmt_list. Rare, but we have to handle it.
7616 We can do various things here like create one group per TU or
7617 spread them over multiple groups to split up the expansion work.
7618 To avoid worst case scenarios (too many groups or too large groups)
7619 we, umm, group them in bunches. */
7620 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7621 | (tu_stats->nr_stmt_less_type_units
7622 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7623 ++tu_stats->nr_stmt_less_type_units;
7626 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7627 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7628 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7629 &type_unit_group_for_lookup, INSERT);
7632 tu_group = (struct type_unit_group *) *slot;
7633 gdb_assert (tu_group != NULL);
7637 sect_offset line_offset_struct = (sect_offset) line_offset;
7638 tu_group = create_type_unit_group (cu, line_offset_struct);
7640 ++tu_stats->nr_symtabs;
7646 /* Partial symbol tables. */
7648 /* Create a psymtab named NAME and assign it to PER_CU.
7650 The caller must fill in the following details:
7651 dirname, textlow, texthigh. */
7653 static dwarf2_psymtab *
7654 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7656 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7657 dwarf2_psymtab *pst;
7659 pst = new dwarf2_psymtab (name, objfile, 0);
7661 pst->psymtabs_addrmap_supported = true;
7663 /* This is the glue that links PST into GDB's symbol API. */
7664 pst->per_cu_data = per_cu;
7665 per_cu->v.psymtab = pst;
7670 /* DIE reader function for process_psymtab_comp_unit. */
7673 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7674 const gdb_byte *info_ptr,
7675 struct die_info *comp_unit_die,
7676 int want_partial_unit,
7677 enum language pretend_language)
7679 struct dwarf2_cu *cu = reader->cu;
7680 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7681 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7682 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7684 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7685 dwarf2_psymtab *pst;
7686 enum pc_bounds_kind cu_bounds_kind;
7687 const char *filename;
7689 if (comp_unit_die->tag == DW_TAG_partial_unit && !want_partial_unit)
7692 gdb_assert (! per_cu->is_debug_types);
7694 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7696 /* Allocate a new partial symbol table structure. */
7697 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7698 if (filename == NULL)
7701 pst = create_partial_symtab (per_cu, filename);
7703 /* This must be done before calling dwarf2_build_include_psymtabs. */
7704 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7706 baseaddr = objfile->text_section_offset ();
7708 dwarf2_find_base_address (comp_unit_die, cu);
7710 /* Possibly set the default values of LOWPC and HIGHPC from
7712 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7713 &best_highpc, cu, pst);
7714 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7717 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7720 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7722 /* Store the contiguous range if it is not empty; it can be
7723 empty for CUs with no code. */
7724 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7728 /* Check if comp unit has_children.
7729 If so, read the rest of the partial symbols from this comp unit.
7730 If not, there's no more debug_info for this comp unit. */
7731 if (comp_unit_die->has_children)
7733 struct partial_die_info *first_die;
7734 CORE_ADDR lowpc, highpc;
7736 lowpc = ((CORE_ADDR) -1);
7737 highpc = ((CORE_ADDR) 0);
7739 first_die = load_partial_dies (reader, info_ptr, 1);
7741 scan_partial_symbols (first_die, &lowpc, &highpc,
7742 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7744 /* If we didn't find a lowpc, set it to highpc to avoid
7745 complaints from `maint check'. */
7746 if (lowpc == ((CORE_ADDR) -1))
7749 /* If the compilation unit didn't have an explicit address range,
7750 then use the information extracted from its child dies. */
7751 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7754 best_highpc = highpc;
7757 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7758 best_lowpc + baseaddr)
7760 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7761 best_highpc + baseaddr)
7764 end_psymtab_common (objfile, pst);
7766 if (!cu->per_cu->imported_symtabs_empty ())
7769 int len = cu->per_cu->imported_symtabs_size ();
7771 /* Fill in 'dependencies' here; we fill in 'users' in a
7773 pst->number_of_dependencies = len;
7775 = objfile->partial_symtabs->allocate_dependencies (len);
7776 for (i = 0; i < len; ++i)
7778 pst->dependencies[i]
7779 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7782 cu->per_cu->imported_symtabs_free ();
7785 /* Get the list of files included in the current compilation unit,
7786 and build a psymtab for each of them. */
7787 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7789 if (dwarf_read_debug)
7790 fprintf_unfiltered (gdb_stdlog,
7791 "Psymtab for %s unit @%s: %s - %s"
7792 ", %d global, %d static syms\n",
7793 per_cu->is_debug_types ? "type" : "comp",
7794 sect_offset_str (per_cu->sect_off),
7795 paddress (gdbarch, pst->text_low (objfile)),
7796 paddress (gdbarch, pst->text_high (objfile)),
7797 pst->n_global_syms, pst->n_static_syms);
7800 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7801 Process compilation unit THIS_CU for a psymtab. */
7804 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7805 int want_partial_unit,
7806 enum language pretend_language)
7808 /* If this compilation unit was already read in, free the
7809 cached copy in order to read it in again. This is
7810 necessary because we skipped some symbols when we first
7811 read in the compilation unit (see load_partial_dies).
7812 This problem could be avoided, but the benefit is unclear. */
7813 if (this_cu->cu != NULL)
7814 free_one_cached_comp_unit (this_cu);
7816 cutu_reader reader (this_cu, NULL, 0, 0, false);
7822 else if (this_cu->is_debug_types)
7823 build_type_psymtabs_reader (&reader, reader.info_ptr,
7824 reader.comp_unit_die);
7826 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7827 reader.comp_unit_die,
7831 /* Age out any secondary CUs. */
7832 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7835 /* Reader function for build_type_psymtabs. */
7838 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7839 const gdb_byte *info_ptr,
7840 struct die_info *type_unit_die)
7842 struct dwarf2_per_objfile *dwarf2_per_objfile
7843 = reader->cu->per_cu->dwarf2_per_objfile;
7844 struct objfile *objfile = dwarf2_per_objfile->objfile;
7845 struct dwarf2_cu *cu = reader->cu;
7846 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7847 struct signatured_type *sig_type;
7848 struct type_unit_group *tu_group;
7849 struct attribute *attr;
7850 struct partial_die_info *first_die;
7851 CORE_ADDR lowpc, highpc;
7852 dwarf2_psymtab *pst;
7854 gdb_assert (per_cu->is_debug_types);
7855 sig_type = (struct signatured_type *) per_cu;
7857 if (! type_unit_die->has_children)
7860 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
7861 tu_group = get_type_unit_group (cu, attr);
7863 if (tu_group->tus == nullptr)
7864 tu_group->tus = new std::vector<signatured_type *>;
7865 tu_group->tus->push_back (sig_type);
7867 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7868 pst = create_partial_symtab (per_cu, "");
7869 pst->anonymous = true;
7871 first_die = load_partial_dies (reader, info_ptr, 1);
7873 lowpc = (CORE_ADDR) -1;
7874 highpc = (CORE_ADDR) 0;
7875 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7877 end_psymtab_common (objfile, pst);
7880 /* Struct used to sort TUs by their abbreviation table offset. */
7882 struct tu_abbrev_offset
7884 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7885 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7888 signatured_type *sig_type;
7889 sect_offset abbrev_offset;
7892 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7895 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7896 const struct tu_abbrev_offset &b)
7898 return a.abbrev_offset < b.abbrev_offset;
7901 /* Efficiently read all the type units.
7902 This does the bulk of the work for build_type_psymtabs.
7904 The efficiency is because we sort TUs by the abbrev table they use and
7905 only read each abbrev table once. In one program there are 200K TUs
7906 sharing 8K abbrev tables.
7908 The main purpose of this function is to support building the
7909 dwarf2_per_objfile->type_unit_groups table.
7910 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7911 can collapse the search space by grouping them by stmt_list.
7912 The savings can be significant, in the same program from above the 200K TUs
7913 share 8K stmt_list tables.
7915 FUNC is expected to call get_type_unit_group, which will create the
7916 struct type_unit_group if necessary and add it to
7917 dwarf2_per_objfile->type_unit_groups. */
7920 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7922 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7923 abbrev_table_up abbrev_table;
7924 sect_offset abbrev_offset;
7926 /* It's up to the caller to not call us multiple times. */
7927 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7929 if (dwarf2_per_objfile->all_type_units.empty ())
7932 /* TUs typically share abbrev tables, and there can be way more TUs than
7933 abbrev tables. Sort by abbrev table to reduce the number of times we
7934 read each abbrev table in.
7935 Alternatives are to punt or to maintain a cache of abbrev tables.
7936 This is simpler and efficient enough for now.
7938 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7939 symtab to use). Typically TUs with the same abbrev offset have the same
7940 stmt_list value too so in practice this should work well.
7942 The basic algorithm here is:
7944 sort TUs by abbrev table
7945 for each TU with same abbrev table:
7946 read abbrev table if first user
7947 read TU top level DIE
7948 [IWBN if DWO skeletons had DW_AT_stmt_list]
7951 if (dwarf_read_debug)
7952 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7954 /* Sort in a separate table to maintain the order of all_type_units
7955 for .gdb_index: TU indices directly index all_type_units. */
7956 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7957 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7959 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7960 sorted_by_abbrev.emplace_back
7961 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7962 sig_type->per_cu.section,
7963 sig_type->per_cu.sect_off));
7965 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7966 sort_tu_by_abbrev_offset);
7968 abbrev_offset = (sect_offset) ~(unsigned) 0;
7970 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7972 /* Switch to the next abbrev table if necessary. */
7973 if (abbrev_table == NULL
7974 || tu.abbrev_offset != abbrev_offset)
7976 abbrev_offset = tu.abbrev_offset;
7978 abbrev_table::read (dwarf2_per_objfile->objfile,
7979 &dwarf2_per_objfile->abbrev,
7981 ++tu_stats->nr_uniq_abbrev_tables;
7984 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7986 if (!reader.dummy_p)
7987 build_type_psymtabs_reader (&reader, reader.info_ptr,
7988 reader.comp_unit_die);
7992 /* Print collected type unit statistics. */
7995 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7997 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7999 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8000 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8001 dwarf2_per_objfile->all_type_units.size ());
8002 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8003 tu_stats->nr_uniq_abbrev_tables);
8004 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8005 tu_stats->nr_symtabs);
8006 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8007 tu_stats->nr_symtab_sharers);
8008 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8009 tu_stats->nr_stmt_less_type_units);
8010 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8011 tu_stats->nr_all_type_units_reallocs);
8014 /* Traversal function for build_type_psymtabs. */
8017 build_type_psymtab_dependencies (void **slot, void *info)
8019 struct dwarf2_per_objfile *dwarf2_per_objfile
8020 = (struct dwarf2_per_objfile *) info;
8021 struct objfile *objfile = dwarf2_per_objfile->objfile;
8022 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8023 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8024 dwarf2_psymtab *pst = per_cu->v.psymtab;
8025 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8028 gdb_assert (len > 0);
8029 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8031 pst->number_of_dependencies = len;
8032 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8033 for (i = 0; i < len; ++i)
8035 struct signatured_type *iter = tu_group->tus->at (i);
8036 gdb_assert (iter->per_cu.is_debug_types);
8037 pst->dependencies[i] = iter->per_cu.v.psymtab;
8038 iter->type_unit_group = tu_group;
8041 delete tu_group->tus;
8042 tu_group->tus = nullptr;
8047 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8048 Build partial symbol tables for the .debug_types comp-units. */
8051 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8053 if (! create_all_type_units (dwarf2_per_objfile))
8056 build_type_psymtabs_1 (dwarf2_per_objfile);
8059 /* Traversal function for process_skeletonless_type_unit.
8060 Read a TU in a DWO file and build partial symbols for it. */
8063 process_skeletonless_type_unit (void **slot, void *info)
8065 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8066 struct dwarf2_per_objfile *dwarf2_per_objfile
8067 = (struct dwarf2_per_objfile *) info;
8068 struct signatured_type find_entry, *entry;
8070 /* If this TU doesn't exist in the global table, add it and read it in. */
8072 if (dwarf2_per_objfile->signatured_types == NULL)
8074 dwarf2_per_objfile->signatured_types
8075 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8078 find_entry.signature = dwo_unit->signature;
8079 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
8080 &find_entry, INSERT);
8081 /* If we've already seen this type there's nothing to do. What's happening
8082 is we're doing our own version of comdat-folding here. */
8086 /* This does the job that create_all_type_units would have done for
8088 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8089 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8092 /* This does the job that build_type_psymtabs_1 would have done. */
8093 cutu_reader reader (&entry->per_cu, NULL, 0, 0, false);
8094 if (!reader.dummy_p)
8095 build_type_psymtabs_reader (&reader, reader.info_ptr,
8096 reader.comp_unit_die);
8101 /* Traversal function for process_skeletonless_type_units. */
8104 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8106 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8108 if (dwo_file->tus != NULL)
8109 htab_traverse_noresize (dwo_file->tus.get (),
8110 process_skeletonless_type_unit, info);
8115 /* Scan all TUs of DWO files, verifying we've processed them.
8116 This is needed in case a TU was emitted without its skeleton.
8117 Note: This can't be done until we know what all the DWO files are. */
8120 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8122 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8123 if (get_dwp_file (dwarf2_per_objfile) == NULL
8124 && dwarf2_per_objfile->dwo_files != NULL)
8126 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8127 process_dwo_file_for_skeletonless_type_units,
8128 dwarf2_per_objfile);
8132 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8135 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8137 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8139 dwarf2_psymtab *pst = per_cu->v.psymtab;
8144 for (int j = 0; j < pst->number_of_dependencies; ++j)
8146 /* Set the 'user' field only if it is not already set. */
8147 if (pst->dependencies[j]->user == NULL)
8148 pst->dependencies[j]->user = pst;
8153 /* Build the partial symbol table by doing a quick pass through the
8154 .debug_info and .debug_abbrev sections. */
8157 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8159 struct objfile *objfile = dwarf2_per_objfile->objfile;
8161 if (dwarf_read_debug)
8163 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8164 objfile_name (objfile));
8167 dwarf2_per_objfile->reading_partial_symbols = 1;
8169 dwarf2_per_objfile->info.read (objfile);
8171 /* Any cached compilation units will be linked by the per-objfile
8172 read_in_chain. Make sure to free them when we're done. */
8173 free_cached_comp_units freer (dwarf2_per_objfile);
8175 build_type_psymtabs (dwarf2_per_objfile);
8177 create_all_comp_units (dwarf2_per_objfile);
8179 /* Create a temporary address map on a temporary obstack. We later
8180 copy this to the final obstack. */
8181 auto_obstack temp_obstack;
8183 scoped_restore save_psymtabs_addrmap
8184 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8185 addrmap_create_mutable (&temp_obstack));
8187 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8188 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8190 /* This has to wait until we read the CUs, we need the list of DWOs. */
8191 process_skeletonless_type_units (dwarf2_per_objfile);
8193 /* Now that all TUs have been processed we can fill in the dependencies. */
8194 if (dwarf2_per_objfile->type_unit_groups != NULL)
8196 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
8197 build_type_psymtab_dependencies, dwarf2_per_objfile);
8200 if (dwarf_read_debug)
8201 print_tu_stats (dwarf2_per_objfile);
8203 set_partial_user (dwarf2_per_objfile);
8205 objfile->partial_symtabs->psymtabs_addrmap
8206 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8207 objfile->partial_symtabs->obstack ());
8208 /* At this point we want to keep the address map. */
8209 save_psymtabs_addrmap.release ();
8211 if (dwarf_read_debug)
8212 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8213 objfile_name (objfile));
8216 /* Load the partial DIEs for a secondary CU into memory.
8217 This is also used when rereading a primary CU with load_all_dies. */
8220 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8222 cutu_reader reader (this_cu, NULL, 1, 1, false);
8224 if (!reader.dummy_p)
8226 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
8229 /* Check if comp unit has_children.
8230 If so, read the rest of the partial symbols from this comp unit.
8231 If not, there's no more debug_info for this comp unit. */
8232 if (reader.comp_unit_die->has_children)
8233 load_partial_dies (&reader, reader.info_ptr, 0);
8238 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8239 struct dwarf2_section_info *section,
8240 struct dwarf2_section_info *abbrev_section,
8241 unsigned int is_dwz)
8243 const gdb_byte *info_ptr;
8244 struct objfile *objfile = dwarf2_per_objfile->objfile;
8246 if (dwarf_read_debug)
8247 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8248 section->get_name (),
8249 section->get_file_name ());
8251 section->read (objfile);
8253 info_ptr = section->buffer;
8255 while (info_ptr < section->buffer + section->size)
8257 struct dwarf2_per_cu_data *this_cu;
8259 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8261 comp_unit_head cu_header;
8262 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8263 abbrev_section, info_ptr,
8264 rcuh_kind::COMPILE);
8266 /* Save the compilation unit for later lookup. */
8267 if (cu_header.unit_type != DW_UT_type)
8269 this_cu = XOBNEW (&objfile->objfile_obstack,
8270 struct dwarf2_per_cu_data);
8271 memset (this_cu, 0, sizeof (*this_cu));
8275 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8276 struct signatured_type);
8277 memset (sig_type, 0, sizeof (*sig_type));
8278 sig_type->signature = cu_header.signature;
8279 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8280 this_cu = &sig_type->per_cu;
8282 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8283 this_cu->sect_off = sect_off;
8284 this_cu->length = cu_header.length + cu_header.initial_length_size;
8285 this_cu->is_dwz = is_dwz;
8286 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8287 this_cu->section = section;
8289 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8291 info_ptr = info_ptr + this_cu->length;
8295 /* Create a list of all compilation units in OBJFILE.
8296 This is only done for -readnow and building partial symtabs. */
8299 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8301 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8302 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8303 &dwarf2_per_objfile->abbrev, 0);
8305 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8307 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8311 /* Process all loaded DIEs for compilation unit CU, starting at
8312 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8313 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8314 DW_AT_ranges). See the comments of add_partial_subprogram on how
8315 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8318 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8319 CORE_ADDR *highpc, int set_addrmap,
8320 struct dwarf2_cu *cu)
8322 struct partial_die_info *pdi;
8324 /* Now, march along the PDI's, descending into ones which have
8325 interesting children but skipping the children of the other ones,
8326 until we reach the end of the compilation unit. */
8334 /* Anonymous namespaces or modules have no name but have interesting
8335 children, so we need to look at them. Ditto for anonymous
8338 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8339 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8340 || pdi->tag == DW_TAG_imported_unit
8341 || pdi->tag == DW_TAG_inlined_subroutine)
8345 case DW_TAG_subprogram:
8346 case DW_TAG_inlined_subroutine:
8347 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8349 case DW_TAG_constant:
8350 case DW_TAG_variable:
8351 case DW_TAG_typedef:
8352 case DW_TAG_union_type:
8353 if (!pdi->is_declaration)
8355 add_partial_symbol (pdi, cu);
8358 case DW_TAG_class_type:
8359 case DW_TAG_interface_type:
8360 case DW_TAG_structure_type:
8361 if (!pdi->is_declaration)
8363 add_partial_symbol (pdi, cu);
8365 if ((cu->language == language_rust
8366 || cu->language == language_cplus) && pdi->has_children)
8367 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8370 case DW_TAG_enumeration_type:
8371 if (!pdi->is_declaration)
8372 add_partial_enumeration (pdi, cu);
8374 case DW_TAG_base_type:
8375 case DW_TAG_subrange_type:
8376 /* File scope base type definitions are added to the partial
8378 add_partial_symbol (pdi, cu);
8380 case DW_TAG_namespace:
8381 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8384 if (!pdi->is_declaration)
8385 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8387 case DW_TAG_imported_unit:
8389 struct dwarf2_per_cu_data *per_cu;
8391 /* For now we don't handle imported units in type units. */
8392 if (cu->per_cu->is_debug_types)
8394 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8395 " supported in type units [in module %s]"),
8396 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8399 per_cu = dwarf2_find_containing_comp_unit
8400 (pdi->d.sect_off, pdi->is_dwz,
8401 cu->per_cu->dwarf2_per_objfile);
8403 /* Go read the partial unit, if needed. */
8404 if (per_cu->v.psymtab == NULL)
8405 process_psymtab_comp_unit (per_cu, 1, cu->language);
8407 cu->per_cu->imported_symtabs_push (per_cu);
8410 case DW_TAG_imported_declaration:
8411 add_partial_symbol (pdi, cu);
8418 /* If the die has a sibling, skip to the sibling. */
8420 pdi = pdi->die_sibling;
8424 /* Functions used to compute the fully scoped name of a partial DIE.
8426 Normally, this is simple. For C++, the parent DIE's fully scoped
8427 name is concatenated with "::" and the partial DIE's name.
8428 Enumerators are an exception; they use the scope of their parent
8429 enumeration type, i.e. the name of the enumeration type is not
8430 prepended to the enumerator.
8432 There are two complexities. One is DW_AT_specification; in this
8433 case "parent" means the parent of the target of the specification,
8434 instead of the direct parent of the DIE. The other is compilers
8435 which do not emit DW_TAG_namespace; in this case we try to guess
8436 the fully qualified name of structure types from their members'
8437 linkage names. This must be done using the DIE's children rather
8438 than the children of any DW_AT_specification target. We only need
8439 to do this for structures at the top level, i.e. if the target of
8440 any DW_AT_specification (if any; otherwise the DIE itself) does not
8443 /* Compute the scope prefix associated with PDI's parent, in
8444 compilation unit CU. The result will be allocated on CU's
8445 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8446 field. NULL is returned if no prefix is necessary. */
8448 partial_die_parent_scope (struct partial_die_info *pdi,
8449 struct dwarf2_cu *cu)
8451 const char *grandparent_scope;
8452 struct partial_die_info *parent, *real_pdi;
8454 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8455 then this means the parent of the specification DIE. */
8458 while (real_pdi->has_specification)
8460 auto res = find_partial_die (real_pdi->spec_offset,
8461 real_pdi->spec_is_dwz, cu);
8466 parent = real_pdi->die_parent;
8470 if (parent->scope_set)
8471 return parent->scope;
8475 grandparent_scope = partial_die_parent_scope (parent, cu);
8477 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8478 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8479 Work around this problem here. */
8480 if (cu->language == language_cplus
8481 && parent->tag == DW_TAG_namespace
8482 && strcmp (parent->name, "::") == 0
8483 && grandparent_scope == NULL)
8485 parent->scope = NULL;
8486 parent->scope_set = 1;
8490 /* Nested subroutines in Fortran get a prefix. */
8491 if (pdi->tag == DW_TAG_enumerator)
8492 /* Enumerators should not get the name of the enumeration as a prefix. */
8493 parent->scope = grandparent_scope;
8494 else if (parent->tag == DW_TAG_namespace
8495 || parent->tag == DW_TAG_module
8496 || parent->tag == DW_TAG_structure_type
8497 || parent->tag == DW_TAG_class_type
8498 || parent->tag == DW_TAG_interface_type
8499 || parent->tag == DW_TAG_union_type
8500 || parent->tag == DW_TAG_enumeration_type
8501 || (cu->language == language_fortran
8502 && parent->tag == DW_TAG_subprogram
8503 && pdi->tag == DW_TAG_subprogram))
8505 if (grandparent_scope == NULL)
8506 parent->scope = parent->name;
8508 parent->scope = typename_concat (&cu->comp_unit_obstack,
8510 parent->name, 0, cu);
8514 /* FIXME drow/2004-04-01: What should we be doing with
8515 function-local names? For partial symbols, we should probably be
8517 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8518 dwarf_tag_name (parent->tag),
8519 sect_offset_str (pdi->sect_off));
8520 parent->scope = grandparent_scope;
8523 parent->scope_set = 1;
8524 return parent->scope;
8527 /* Return the fully scoped name associated with PDI, from compilation unit
8528 CU. The result will be allocated with malloc. */
8530 static gdb::unique_xmalloc_ptr<char>
8531 partial_die_full_name (struct partial_die_info *pdi,
8532 struct dwarf2_cu *cu)
8534 const char *parent_scope;
8536 /* If this is a template instantiation, we can not work out the
8537 template arguments from partial DIEs. So, unfortunately, we have
8538 to go through the full DIEs. At least any work we do building
8539 types here will be reused if full symbols are loaded later. */
8540 if (pdi->has_template_arguments)
8544 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8546 struct die_info *die;
8547 struct attribute attr;
8548 struct dwarf2_cu *ref_cu = cu;
8550 /* DW_FORM_ref_addr is using section offset. */
8551 attr.name = (enum dwarf_attribute) 0;
8552 attr.form = DW_FORM_ref_addr;
8553 attr.u.unsnd = to_underlying (pdi->sect_off);
8554 die = follow_die_ref (NULL, &attr, &ref_cu);
8556 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8560 parent_scope = partial_die_parent_scope (pdi, cu);
8561 if (parent_scope == NULL)
8564 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8569 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8571 struct dwarf2_per_objfile *dwarf2_per_objfile
8572 = cu->per_cu->dwarf2_per_objfile;
8573 struct objfile *objfile = dwarf2_per_objfile->objfile;
8574 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8576 const char *actual_name = NULL;
8579 baseaddr = objfile->text_section_offset ();
8581 gdb::unique_xmalloc_ptr<char> built_actual_name
8582 = partial_die_full_name (pdi, cu);
8583 if (built_actual_name != NULL)
8584 actual_name = built_actual_name.get ();
8586 if (actual_name == NULL)
8587 actual_name = pdi->name;
8591 case DW_TAG_inlined_subroutine:
8592 case DW_TAG_subprogram:
8593 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8595 if (pdi->is_external
8596 || cu->language == language_ada
8597 || (cu->language == language_fortran
8598 && pdi->die_parent != NULL
8599 && pdi->die_parent->tag == DW_TAG_subprogram))
8601 /* Normally, only "external" DIEs are part of the global scope.
8602 But in Ada and Fortran, we want to be able to access nested
8603 procedures globally. So all Ada and Fortran subprograms are
8604 stored in the global scope. */
8605 add_psymbol_to_list (actual_name,
8606 built_actual_name != NULL,
8607 VAR_DOMAIN, LOC_BLOCK,
8608 SECT_OFF_TEXT (objfile),
8609 psymbol_placement::GLOBAL,
8611 cu->language, objfile);
8615 add_psymbol_to_list (actual_name,
8616 built_actual_name != NULL,
8617 VAR_DOMAIN, LOC_BLOCK,
8618 SECT_OFF_TEXT (objfile),
8619 psymbol_placement::STATIC,
8620 addr, cu->language, objfile);
8623 if (pdi->main_subprogram && actual_name != NULL)
8624 set_objfile_main_name (objfile, actual_name, cu->language);
8626 case DW_TAG_constant:
8627 add_psymbol_to_list (actual_name,
8628 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8629 -1, (pdi->is_external
8630 ? psymbol_placement::GLOBAL
8631 : psymbol_placement::STATIC),
8632 0, cu->language, objfile);
8634 case DW_TAG_variable:
8636 addr = decode_locdesc (pdi->d.locdesc, cu);
8640 && !dwarf2_per_objfile->has_section_at_zero)
8642 /* A global or static variable may also have been stripped
8643 out by the linker if unused, in which case its address
8644 will be nullified; do not add such variables into partial
8645 symbol table then. */
8647 else if (pdi->is_external)
8650 Don't enter into the minimal symbol tables as there is
8651 a minimal symbol table entry from the ELF symbols already.
8652 Enter into partial symbol table if it has a location
8653 descriptor or a type.
8654 If the location descriptor is missing, new_symbol will create
8655 a LOC_UNRESOLVED symbol, the address of the variable will then
8656 be determined from the minimal symbol table whenever the variable
8658 The address for the partial symbol table entry is not
8659 used by GDB, but it comes in handy for debugging partial symbol
8662 if (pdi->d.locdesc || pdi->has_type)
8663 add_psymbol_to_list (actual_name,
8664 built_actual_name != NULL,
8665 VAR_DOMAIN, LOC_STATIC,
8666 SECT_OFF_TEXT (objfile),
8667 psymbol_placement::GLOBAL,
8668 addr, cu->language, objfile);
8672 int has_loc = pdi->d.locdesc != NULL;
8674 /* Static Variable. Skip symbols whose value we cannot know (those
8675 without location descriptors or constant values). */
8676 if (!has_loc && !pdi->has_const_value)
8679 add_psymbol_to_list (actual_name,
8680 built_actual_name != NULL,
8681 VAR_DOMAIN, LOC_STATIC,
8682 SECT_OFF_TEXT (objfile),
8683 psymbol_placement::STATIC,
8685 cu->language, objfile);
8688 case DW_TAG_typedef:
8689 case DW_TAG_base_type:
8690 case DW_TAG_subrange_type:
8691 add_psymbol_to_list (actual_name,
8692 built_actual_name != NULL,
8693 VAR_DOMAIN, LOC_TYPEDEF, -1,
8694 psymbol_placement::STATIC,
8695 0, cu->language, objfile);
8697 case DW_TAG_imported_declaration:
8698 case DW_TAG_namespace:
8699 add_psymbol_to_list (actual_name,
8700 built_actual_name != NULL,
8701 VAR_DOMAIN, LOC_TYPEDEF, -1,
8702 psymbol_placement::GLOBAL,
8703 0, cu->language, objfile);
8706 /* With Fortran 77 there might be a "BLOCK DATA" module
8707 available without any name. If so, we skip the module as it
8708 doesn't bring any value. */
8709 if (actual_name != nullptr)
8710 add_psymbol_to_list (actual_name,
8711 built_actual_name != NULL,
8712 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8713 psymbol_placement::GLOBAL,
8714 0, cu->language, objfile);
8716 case DW_TAG_class_type:
8717 case DW_TAG_interface_type:
8718 case DW_TAG_structure_type:
8719 case DW_TAG_union_type:
8720 case DW_TAG_enumeration_type:
8721 /* Skip external references. The DWARF standard says in the section
8722 about "Structure, Union, and Class Type Entries": "An incomplete
8723 structure, union or class type is represented by a structure,
8724 union or class entry that does not have a byte size attribute
8725 and that has a DW_AT_declaration attribute." */
8726 if (!pdi->has_byte_size && pdi->is_declaration)
8729 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8730 static vs. global. */
8731 add_psymbol_to_list (actual_name,
8732 built_actual_name != NULL,
8733 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8734 cu->language == language_cplus
8735 ? psymbol_placement::GLOBAL
8736 : psymbol_placement::STATIC,
8737 0, cu->language, objfile);
8740 case DW_TAG_enumerator:
8741 add_psymbol_to_list (actual_name,
8742 built_actual_name != NULL,
8743 VAR_DOMAIN, LOC_CONST, -1,
8744 cu->language == language_cplus
8745 ? psymbol_placement::GLOBAL
8746 : psymbol_placement::STATIC,
8747 0, cu->language, objfile);
8754 /* Read a partial die corresponding to a namespace; also, add a symbol
8755 corresponding to that namespace to the symbol table. NAMESPACE is
8756 the name of the enclosing namespace. */
8759 add_partial_namespace (struct partial_die_info *pdi,
8760 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8761 int set_addrmap, struct dwarf2_cu *cu)
8763 /* Add a symbol for the namespace. */
8765 add_partial_symbol (pdi, cu);
8767 /* Now scan partial symbols in that namespace. */
8769 if (pdi->has_children)
8770 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8773 /* Read a partial die corresponding to a Fortran module. */
8776 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8777 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8779 /* Add a symbol for the namespace. */
8781 add_partial_symbol (pdi, cu);
8783 /* Now scan partial symbols in that module. */
8785 if (pdi->has_children)
8786 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8789 /* Read a partial die corresponding to a subprogram or an inlined
8790 subprogram and create a partial symbol for that subprogram.
8791 When the CU language allows it, this routine also defines a partial
8792 symbol for each nested subprogram that this subprogram contains.
8793 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8794 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8796 PDI may also be a lexical block, in which case we simply search
8797 recursively for subprograms defined inside that lexical block.
8798 Again, this is only performed when the CU language allows this
8799 type of definitions. */
8802 add_partial_subprogram (struct partial_die_info *pdi,
8803 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8804 int set_addrmap, struct dwarf2_cu *cu)
8806 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8808 if (pdi->has_pc_info)
8810 if (pdi->lowpc < *lowpc)
8811 *lowpc = pdi->lowpc;
8812 if (pdi->highpc > *highpc)
8813 *highpc = pdi->highpc;
8816 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8817 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8819 CORE_ADDR this_highpc;
8820 CORE_ADDR this_lowpc;
8822 baseaddr = objfile->text_section_offset ();
8824 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8825 pdi->lowpc + baseaddr)
8828 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8829 pdi->highpc + baseaddr)
8831 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8832 this_lowpc, this_highpc - 1,
8833 cu->per_cu->v.psymtab);
8837 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8839 if (!pdi->is_declaration)
8840 /* Ignore subprogram DIEs that do not have a name, they are
8841 illegal. Do not emit a complaint at this point, we will
8842 do so when we convert this psymtab into a symtab. */
8844 add_partial_symbol (pdi, cu);
8848 if (! pdi->has_children)
8851 if (cu->language == language_ada || cu->language == language_fortran)
8853 pdi = pdi->die_child;
8857 if (pdi->tag == DW_TAG_subprogram
8858 || pdi->tag == DW_TAG_inlined_subroutine
8859 || pdi->tag == DW_TAG_lexical_block)
8860 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8861 pdi = pdi->die_sibling;
8866 /* Read a partial die corresponding to an enumeration type. */
8869 add_partial_enumeration (struct partial_die_info *enum_pdi,
8870 struct dwarf2_cu *cu)
8872 struct partial_die_info *pdi;
8874 if (enum_pdi->name != NULL)
8875 add_partial_symbol (enum_pdi, cu);
8877 pdi = enum_pdi->die_child;
8880 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8881 complaint (_("malformed enumerator DIE ignored"));
8883 add_partial_symbol (pdi, cu);
8884 pdi = pdi->die_sibling;
8888 /* Return the initial uleb128 in the die at INFO_PTR. */
8891 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8893 unsigned int bytes_read;
8895 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8898 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8899 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8901 Return the corresponding abbrev, or NULL if the number is zero (indicating
8902 an empty DIE). In either case *BYTES_READ will be set to the length of
8903 the initial number. */
8905 static struct abbrev_info *
8906 peek_die_abbrev (const die_reader_specs &reader,
8907 const gdb_byte *info_ptr, unsigned int *bytes_read)
8909 dwarf2_cu *cu = reader.cu;
8910 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8911 unsigned int abbrev_number
8912 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8914 if (abbrev_number == 0)
8917 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8920 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8921 " at offset %s [in module %s]"),
8922 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8923 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8929 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8930 Returns a pointer to the end of a series of DIEs, terminated by an empty
8931 DIE. Any children of the skipped DIEs will also be skipped. */
8933 static const gdb_byte *
8934 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8938 unsigned int bytes_read;
8939 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8942 return info_ptr + bytes_read;
8944 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8948 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8949 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8950 abbrev corresponding to that skipped uleb128 should be passed in
8951 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8954 static const gdb_byte *
8955 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8956 struct abbrev_info *abbrev)
8958 unsigned int bytes_read;
8959 struct attribute attr;
8960 bfd *abfd = reader->abfd;
8961 struct dwarf2_cu *cu = reader->cu;
8962 const gdb_byte *buffer = reader->buffer;
8963 const gdb_byte *buffer_end = reader->buffer_end;
8964 unsigned int form, i;
8966 for (i = 0; i < abbrev->num_attrs; i++)
8968 /* The only abbrev we care about is DW_AT_sibling. */
8969 if (abbrev->attrs[i].name == DW_AT_sibling)
8972 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8974 if (attr.form == DW_FORM_ref_addr)
8975 complaint (_("ignoring absolute DW_AT_sibling"));
8978 sect_offset off = dwarf2_get_ref_die_offset (&attr);
8979 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8981 if (sibling_ptr < info_ptr)
8982 complaint (_("DW_AT_sibling points backwards"));
8983 else if (sibling_ptr > reader->buffer_end)
8984 dwarf2_section_buffer_overflow_complaint (reader->die_section);
8990 /* If it isn't DW_AT_sibling, skip this attribute. */
8991 form = abbrev->attrs[i].form;
8995 case DW_FORM_ref_addr:
8996 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8997 and later it is offset sized. */
8998 if (cu->header.version == 2)
8999 info_ptr += cu->header.addr_size;
9001 info_ptr += cu->header.offset_size;
9003 case DW_FORM_GNU_ref_alt:
9004 info_ptr += cu->header.offset_size;
9007 info_ptr += cu->header.addr_size;
9015 case DW_FORM_flag_present:
9016 case DW_FORM_implicit_const:
9033 case DW_FORM_ref_sig8:
9036 case DW_FORM_data16:
9039 case DW_FORM_string:
9040 read_direct_string (abfd, info_ptr, &bytes_read);
9041 info_ptr += bytes_read;
9043 case DW_FORM_sec_offset:
9045 case DW_FORM_GNU_strp_alt:
9046 info_ptr += cu->header.offset_size;
9048 case DW_FORM_exprloc:
9050 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9051 info_ptr += bytes_read;
9053 case DW_FORM_block1:
9054 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9056 case DW_FORM_block2:
9057 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9059 case DW_FORM_block4:
9060 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9066 case DW_FORM_ref_udata:
9067 case DW_FORM_GNU_addr_index:
9068 case DW_FORM_GNU_str_index:
9069 case DW_FORM_rnglistx:
9070 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9072 case DW_FORM_indirect:
9073 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9074 info_ptr += bytes_read;
9075 /* We need to continue parsing from here, so just go back to
9077 goto skip_attribute;
9080 error (_("Dwarf Error: Cannot handle %s "
9081 "in DWARF reader [in module %s]"),
9082 dwarf_form_name (form),
9083 bfd_get_filename (abfd));
9087 if (abbrev->has_children)
9088 return skip_children (reader, info_ptr);
9093 /* Locate ORIG_PDI's sibling.
9094 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9096 static const gdb_byte *
9097 locate_pdi_sibling (const struct die_reader_specs *reader,
9098 struct partial_die_info *orig_pdi,
9099 const gdb_byte *info_ptr)
9101 /* Do we know the sibling already? */
9103 if (orig_pdi->sibling)
9104 return orig_pdi->sibling;
9106 /* Are there any children to deal with? */
9108 if (!orig_pdi->has_children)
9111 /* Skip the children the long way. */
9113 return skip_children (reader, info_ptr);
9116 /* Expand this partial symbol table into a full symbol table. SELF is
9120 dwarf2_psymtab::read_symtab (struct objfile *objfile)
9122 struct dwarf2_per_objfile *dwarf2_per_objfile
9123 = get_dwarf2_per_objfile (objfile);
9125 gdb_assert (!readin);
9126 /* If this psymtab is constructed from a debug-only objfile, the
9127 has_section_at_zero flag will not necessarily be correct. We
9128 can get the correct value for this flag by looking at the data
9129 associated with the (presumably stripped) associated objfile. */
9130 if (objfile->separate_debug_objfile_backlink)
9132 struct dwarf2_per_objfile *dpo_backlink
9133 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9135 dwarf2_per_objfile->has_section_at_zero
9136 = dpo_backlink->has_section_at_zero;
9139 dwarf2_per_objfile->reading_partial_symbols = 0;
9141 expand_psymtab (objfile);
9143 process_cu_includes (dwarf2_per_objfile);
9146 /* Reading in full CUs. */
9148 /* Add PER_CU to the queue. */
9151 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9152 enum language pretend_language)
9155 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
9158 /* If PER_CU is not yet queued, add it to the queue.
9159 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9161 The result is non-zero if PER_CU was queued, otherwise the result is zero
9162 meaning either PER_CU is already queued or it is already loaded.
9164 N.B. There is an invariant here that if a CU is queued then it is loaded.
9165 The caller is required to load PER_CU if we return non-zero. */
9168 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9169 struct dwarf2_per_cu_data *per_cu,
9170 enum language pretend_language)
9172 /* We may arrive here during partial symbol reading, if we need full
9173 DIEs to process an unusual case (e.g. template arguments). Do
9174 not queue PER_CU, just tell our caller to load its DIEs. */
9175 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9177 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9182 /* Mark the dependence relation so that we don't flush PER_CU
9184 if (dependent_cu != NULL)
9185 dwarf2_add_dependence (dependent_cu, per_cu);
9187 /* If it's already on the queue, we have nothing to do. */
9191 /* If the compilation unit is already loaded, just mark it as
9193 if (per_cu->cu != NULL)
9195 per_cu->cu->last_used = 0;
9199 /* Add it to the queue. */
9200 queue_comp_unit (per_cu, pretend_language);
9205 /* Process the queue. */
9208 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9210 if (dwarf_read_debug)
9212 fprintf_unfiltered (gdb_stdlog,
9213 "Expanding one or more symtabs of objfile %s ...\n",
9214 objfile_name (dwarf2_per_objfile->objfile));
9217 /* The queue starts out with one item, but following a DIE reference
9218 may load a new CU, adding it to the end of the queue. */
9219 while (!dwarf2_per_objfile->queue.empty ())
9221 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
9223 if ((dwarf2_per_objfile->using_index
9224 ? !item.per_cu->v.quick->compunit_symtab
9225 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
9226 /* Skip dummy CUs. */
9227 && item.per_cu->cu != NULL)
9229 struct dwarf2_per_cu_data *per_cu = item.per_cu;
9230 unsigned int debug_print_threshold;
9233 if (per_cu->is_debug_types)
9235 struct signatured_type *sig_type =
9236 (struct signatured_type *) per_cu;
9238 sprintf (buf, "TU %s at offset %s",
9239 hex_string (sig_type->signature),
9240 sect_offset_str (per_cu->sect_off));
9241 /* There can be 100s of TUs.
9242 Only print them in verbose mode. */
9243 debug_print_threshold = 2;
9247 sprintf (buf, "CU at offset %s",
9248 sect_offset_str (per_cu->sect_off));
9249 debug_print_threshold = 1;
9252 if (dwarf_read_debug >= debug_print_threshold)
9253 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9255 if (per_cu->is_debug_types)
9256 process_full_type_unit (per_cu, item.pretend_language);
9258 process_full_comp_unit (per_cu, item.pretend_language);
9260 if (dwarf_read_debug >= debug_print_threshold)
9261 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9264 item.per_cu->queued = 0;
9265 dwarf2_per_objfile->queue.pop ();
9268 if (dwarf_read_debug)
9270 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9271 objfile_name (dwarf2_per_objfile->objfile));
9275 /* Read in full symbols for PST, and anything it depends on. */
9278 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
9280 struct dwarf2_per_cu_data *per_cu;
9285 read_dependencies (objfile);
9287 per_cu = per_cu_data;
9291 /* It's an include file, no symbols to read for it.
9292 Everything is in the parent symtab. */
9297 dw2_do_instantiate_symtab (per_cu, false);
9300 /* Trivial hash function for die_info: the hash value of a DIE
9301 is its offset in .debug_info for this objfile. */
9304 die_hash (const void *item)
9306 const struct die_info *die = (const struct die_info *) item;
9308 return to_underlying (die->sect_off);
9311 /* Trivial comparison function for die_info structures: two DIEs
9312 are equal if they have the same offset. */
9315 die_eq (const void *item_lhs, const void *item_rhs)
9317 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9318 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9320 return die_lhs->sect_off == die_rhs->sect_off;
9323 /* Load the DIEs associated with PER_CU into memory. */
9326 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9328 enum language pretend_language)
9330 gdb_assert (! this_cu->is_debug_types);
9332 cutu_reader reader (this_cu, NULL, 1, 1, skip_partial);
9336 struct dwarf2_cu *cu = reader.cu;
9337 const gdb_byte *info_ptr = reader.info_ptr;
9339 gdb_assert (cu->die_hash == NULL);
9341 htab_create_alloc_ex (cu->header.length / 12,
9345 &cu->comp_unit_obstack,
9346 hashtab_obstack_allocate,
9347 dummy_obstack_deallocate);
9349 if (reader.comp_unit_die->has_children)
9350 reader.comp_unit_die->child
9351 = read_die_and_siblings (&reader, reader.info_ptr,
9352 &info_ptr, reader.comp_unit_die);
9353 cu->dies = reader.comp_unit_die;
9354 /* comp_unit_die is not stored in die_hash, no need. */
9356 /* We try not to read any attributes in this function, because not
9357 all CUs needed for references have been loaded yet, and symbol
9358 table processing isn't initialized. But we have to set the CU language,
9359 or we won't be able to build types correctly.
9360 Similarly, if we do not read the producer, we can not apply
9361 producer-specific interpretation. */
9362 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9365 /* Add a DIE to the delayed physname list. */
9368 add_to_method_list (struct type *type, int fnfield_index, int index,
9369 const char *name, struct die_info *die,
9370 struct dwarf2_cu *cu)
9372 struct delayed_method_info mi;
9374 mi.fnfield_index = fnfield_index;
9378 cu->method_list.push_back (mi);
9381 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9382 "const" / "volatile". If so, decrements LEN by the length of the
9383 modifier and return true. Otherwise return false. */
9387 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9389 size_t mod_len = sizeof (mod) - 1;
9390 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9398 /* Compute the physnames of any methods on the CU's method list.
9400 The computation of method physnames is delayed in order to avoid the
9401 (bad) condition that one of the method's formal parameters is of an as yet
9405 compute_delayed_physnames (struct dwarf2_cu *cu)
9407 /* Only C++ delays computing physnames. */
9408 if (cu->method_list.empty ())
9410 gdb_assert (cu->language == language_cplus);
9412 for (const delayed_method_info &mi : cu->method_list)
9414 const char *physname;
9415 struct fn_fieldlist *fn_flp
9416 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9417 physname = dwarf2_physname (mi.name, mi.die, cu);
9418 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9419 = physname ? physname : "";
9421 /* Since there's no tag to indicate whether a method is a
9422 const/volatile overload, extract that information out of the
9424 if (physname != NULL)
9426 size_t len = strlen (physname);
9430 if (physname[len] == ')') /* shortcut */
9432 else if (check_modifier (physname, len, " const"))
9433 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9434 else if (check_modifier (physname, len, " volatile"))
9435 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9442 /* The list is no longer needed. */
9443 cu->method_list.clear ();
9446 /* Go objects should be embedded in a DW_TAG_module DIE,
9447 and it's not clear if/how imported objects will appear.
9448 To keep Go support simple until that's worked out,
9449 go back through what we've read and create something usable.
9450 We could do this while processing each DIE, and feels kinda cleaner,
9451 but that way is more invasive.
9452 This is to, for example, allow the user to type "p var" or "b main"
9453 without having to specify the package name, and allow lookups
9454 of module.object to work in contexts that use the expression
9458 fixup_go_packaging (struct dwarf2_cu *cu)
9460 gdb::unique_xmalloc_ptr<char> package_name;
9461 struct pending *list;
9464 for (list = *cu->get_builder ()->get_global_symbols ();
9468 for (i = 0; i < list->nsyms; ++i)
9470 struct symbol *sym = list->symbol[i];
9472 if (sym->language () == language_go
9473 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9475 gdb::unique_xmalloc_ptr<char> this_package_name
9476 (go_symbol_package_name (sym));
9478 if (this_package_name == NULL)
9480 if (package_name == NULL)
9481 package_name = std::move (this_package_name);
9484 struct objfile *objfile
9485 = cu->per_cu->dwarf2_per_objfile->objfile;
9486 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9487 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9488 (symbol_symtab (sym) != NULL
9489 ? symtab_to_filename_for_display
9490 (symbol_symtab (sym))
9491 : objfile_name (objfile)),
9492 this_package_name.get (), package_name.get ());
9498 if (package_name != NULL)
9500 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9501 const char *saved_package_name
9502 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name.get ());
9503 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9504 saved_package_name);
9507 sym = allocate_symbol (objfile);
9508 sym->set_language (language_go, &objfile->objfile_obstack);
9509 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9510 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9511 e.g., "main" finds the "main" module and not C's main(). */
9512 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9513 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9514 SYMBOL_TYPE (sym) = type;
9516 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9520 /* Allocate a fully-qualified name consisting of the two parts on the
9524 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9526 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9529 /* A helper that allocates a struct discriminant_info to attach to a
9532 static struct discriminant_info *
9533 alloc_discriminant_info (struct type *type, int discriminant_index,
9536 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9537 gdb_assert (discriminant_index == -1
9538 || (discriminant_index >= 0
9539 && discriminant_index < TYPE_NFIELDS (type)));
9540 gdb_assert (default_index == -1
9541 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9543 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9545 struct discriminant_info *disc
9546 = ((struct discriminant_info *)
9548 offsetof (struct discriminant_info, discriminants)
9549 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9550 disc->default_index = default_index;
9551 disc->discriminant_index = discriminant_index;
9553 struct dynamic_prop prop;
9554 prop.kind = PROP_UNDEFINED;
9555 prop.data.baton = disc;
9557 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9562 /* Some versions of rustc emitted enums in an unusual way.
9564 Ordinary enums were emitted as unions. The first element of each
9565 structure in the union was named "RUST$ENUM$DISR". This element
9566 held the discriminant.
9568 These versions of Rust also implemented the "non-zero"
9569 optimization. When the enum had two values, and one is empty and
9570 the other holds a pointer that cannot be zero, the pointer is used
9571 as the discriminant, with a zero value meaning the empty variant.
9572 Here, the union's first member is of the form
9573 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9574 where the fieldnos are the indices of the fields that should be
9575 traversed in order to find the field (which may be several fields deep)
9576 and the variantname is the name of the variant of the case when the
9579 This function recognizes whether TYPE is of one of these forms,
9580 and, if so, smashes it to be a variant type. */
9583 quirk_rust_enum (struct type *type, struct objfile *objfile)
9585 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9587 /* We don't need to deal with empty enums. */
9588 if (TYPE_NFIELDS (type) == 0)
9591 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9592 if (TYPE_NFIELDS (type) == 1
9593 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9595 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9597 /* Decode the field name to find the offset of the
9599 ULONGEST bit_offset = 0;
9600 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9601 while (name[0] >= '0' && name[0] <= '9')
9604 unsigned long index = strtoul (name, &tail, 10);
9607 || index >= TYPE_NFIELDS (field_type)
9608 || (TYPE_FIELD_LOC_KIND (field_type, index)
9609 != FIELD_LOC_KIND_BITPOS))
9611 complaint (_("Could not parse Rust enum encoding string \"%s\""
9613 TYPE_FIELD_NAME (type, 0),
9614 objfile_name (objfile));
9619 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9620 field_type = TYPE_FIELD_TYPE (field_type, index);
9623 /* Make a union to hold the variants. */
9624 struct type *union_type = alloc_type (objfile);
9625 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9626 TYPE_NFIELDS (union_type) = 3;
9627 TYPE_FIELDS (union_type)
9628 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9629 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9630 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9632 /* Put the discriminant must at index 0. */
9633 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9634 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9635 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9636 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9638 /* The order of fields doesn't really matter, so put the real
9639 field at index 1 and the data-less field at index 2. */
9640 struct discriminant_info *disc
9641 = alloc_discriminant_info (union_type, 0, 1);
9642 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9643 TYPE_FIELD_NAME (union_type, 1)
9644 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9645 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9646 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9647 TYPE_FIELD_NAME (union_type, 1));
9649 const char *dataless_name
9650 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9652 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9654 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9655 /* NAME points into the original discriminant name, which
9656 already has the correct lifetime. */
9657 TYPE_FIELD_NAME (union_type, 2) = name;
9658 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9659 disc->discriminants[2] = 0;
9661 /* Smash this type to be a structure type. We have to do this
9662 because the type has already been recorded. */
9663 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9664 TYPE_NFIELDS (type) = 1;
9666 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9668 /* Install the variant part. */
9669 TYPE_FIELD_TYPE (type, 0) = union_type;
9670 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9671 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9673 /* A union with a single anonymous field is probably an old-style
9675 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9677 /* Smash this type to be a structure type. We have to do this
9678 because the type has already been recorded. */
9679 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9681 /* Make a union to hold the variants. */
9682 struct type *union_type = alloc_type (objfile);
9683 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9684 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9685 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9686 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9687 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9689 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9690 const char *variant_name
9691 = rust_last_path_segment (TYPE_NAME (field_type));
9692 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9693 TYPE_NAME (field_type)
9694 = rust_fully_qualify (&objfile->objfile_obstack,
9695 TYPE_NAME (type), variant_name);
9697 /* Install the union in the outer struct type. */
9698 TYPE_NFIELDS (type) = 1;
9700 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9701 TYPE_FIELD_TYPE (type, 0) = union_type;
9702 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9703 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9705 alloc_discriminant_info (union_type, -1, 0);
9709 struct type *disr_type = nullptr;
9710 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9712 disr_type = TYPE_FIELD_TYPE (type, i);
9714 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9716 /* All fields of a true enum will be structs. */
9719 else if (TYPE_NFIELDS (disr_type) == 0)
9721 /* Could be data-less variant, so keep going. */
9722 disr_type = nullptr;
9724 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9725 "RUST$ENUM$DISR") != 0)
9727 /* Not a Rust enum. */
9737 /* If we got here without a discriminant, then it's probably
9739 if (disr_type == nullptr)
9742 /* Smash this type to be a structure type. We have to do this
9743 because the type has already been recorded. */
9744 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9746 /* Make a union to hold the variants. */
9747 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9748 struct type *union_type = alloc_type (objfile);
9749 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9750 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9751 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9752 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9753 TYPE_FIELDS (union_type)
9754 = (struct field *) TYPE_ZALLOC (union_type,
9755 (TYPE_NFIELDS (union_type)
9756 * sizeof (struct field)));
9758 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9759 TYPE_NFIELDS (type) * sizeof (struct field));
9761 /* Install the discriminant at index 0 in the union. */
9762 TYPE_FIELD (union_type, 0) = *disr_field;
9763 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9764 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9766 /* Install the union in the outer struct type. */
9767 TYPE_FIELD_TYPE (type, 0) = union_type;
9768 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9769 TYPE_NFIELDS (type) = 1;
9771 /* Set the size and offset of the union type. */
9772 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9774 /* We need a way to find the correct discriminant given a
9775 variant name. For convenience we build a map here. */
9776 struct type *enum_type = FIELD_TYPE (*disr_field);
9777 std::unordered_map<std::string, ULONGEST> discriminant_map;
9778 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9780 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9783 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9784 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9788 int n_fields = TYPE_NFIELDS (union_type);
9789 struct discriminant_info *disc
9790 = alloc_discriminant_info (union_type, 0, -1);
9791 /* Skip the discriminant here. */
9792 for (int i = 1; i < n_fields; ++i)
9794 /* Find the final word in the name of this variant's type.
9795 That name can be used to look up the correct
9797 const char *variant_name
9798 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9801 auto iter = discriminant_map.find (variant_name);
9802 if (iter != discriminant_map.end ())
9803 disc->discriminants[i] = iter->second;
9805 /* Remove the discriminant field, if it exists. */
9806 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9807 if (TYPE_NFIELDS (sub_type) > 0)
9809 --TYPE_NFIELDS (sub_type);
9810 ++TYPE_FIELDS (sub_type);
9812 TYPE_FIELD_NAME (union_type, i) = variant_name;
9813 TYPE_NAME (sub_type)
9814 = rust_fully_qualify (&objfile->objfile_obstack,
9815 TYPE_NAME (type), variant_name);
9820 /* Rewrite some Rust unions to be structures with variants parts. */
9823 rust_union_quirks (struct dwarf2_cu *cu)
9825 gdb_assert (cu->language == language_rust);
9826 for (type *type_ : cu->rust_unions)
9827 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9828 /* We don't need this any more. */
9829 cu->rust_unions.clear ();
9832 /* Return the symtab for PER_CU. This works properly regardless of
9833 whether we're using the index or psymtabs. */
9835 static struct compunit_symtab *
9836 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9838 return (per_cu->dwarf2_per_objfile->using_index
9839 ? per_cu->v.quick->compunit_symtab
9840 : per_cu->v.psymtab->compunit_symtab);
9843 /* A helper function for computing the list of all symbol tables
9844 included by PER_CU. */
9847 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9848 htab_t all_children, htab_t all_type_symtabs,
9849 struct dwarf2_per_cu_data *per_cu,
9850 struct compunit_symtab *immediate_parent)
9853 struct compunit_symtab *cust;
9855 slot = htab_find_slot (all_children, per_cu, INSERT);
9858 /* This inclusion and its children have been processed. */
9863 /* Only add a CU if it has a symbol table. */
9864 cust = get_compunit_symtab (per_cu);
9867 /* If this is a type unit only add its symbol table if we haven't
9868 seen it yet (type unit per_cu's can share symtabs). */
9869 if (per_cu->is_debug_types)
9871 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9875 result->push_back (cust);
9876 if (cust->user == NULL)
9877 cust->user = immediate_parent;
9882 result->push_back (cust);
9883 if (cust->user == NULL)
9884 cust->user = immediate_parent;
9888 if (!per_cu->imported_symtabs_empty ())
9889 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9891 recursively_compute_inclusions (result, all_children,
9892 all_type_symtabs, ptr, cust);
9896 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9900 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9902 gdb_assert (! per_cu->is_debug_types);
9904 if (!per_cu->imported_symtabs_empty ())
9907 std::vector<compunit_symtab *> result_symtabs;
9908 htab_t all_children, all_type_symtabs;
9909 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9911 /* If we don't have a symtab, we can just skip this case. */
9915 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9916 NULL, xcalloc, xfree);
9917 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9918 NULL, xcalloc, xfree);
9920 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9922 recursively_compute_inclusions (&result_symtabs, all_children,
9923 all_type_symtabs, ptr, cust);
9926 /* Now we have a transitive closure of all the included symtabs. */
9927 len = result_symtabs.size ();
9929 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9930 struct compunit_symtab *, len + 1);
9931 memcpy (cust->includes, result_symtabs.data (),
9932 len * sizeof (compunit_symtab *));
9933 cust->includes[len] = NULL;
9935 htab_delete (all_children);
9936 htab_delete (all_type_symtabs);
9940 /* Compute the 'includes' field for the symtabs of all the CUs we just
9944 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9946 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9948 if (! iter->is_debug_types)
9949 compute_compunit_symtab_includes (iter);
9952 dwarf2_per_objfile->just_read_cus.clear ();
9955 /* Generate full symbol information for PER_CU, whose DIEs have
9956 already been loaded into memory. */
9959 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9960 enum language pretend_language)
9962 struct dwarf2_cu *cu = per_cu->cu;
9963 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9964 struct objfile *objfile = dwarf2_per_objfile->objfile;
9965 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9966 CORE_ADDR lowpc, highpc;
9967 struct compunit_symtab *cust;
9969 struct block *static_block;
9972 baseaddr = objfile->text_section_offset ();
9974 /* Clear the list here in case something was left over. */
9975 cu->method_list.clear ();
9977 cu->language = pretend_language;
9978 cu->language_defn = language_def (cu->language);
9980 /* Do line number decoding in read_file_scope () */
9981 process_die (cu->dies, cu);
9983 /* For now fudge the Go package. */
9984 if (cu->language == language_go)
9985 fixup_go_packaging (cu);
9987 /* Now that we have processed all the DIEs in the CU, all the types
9988 should be complete, and it should now be safe to compute all of the
9990 compute_delayed_physnames (cu);
9992 if (cu->language == language_rust)
9993 rust_union_quirks (cu);
9995 /* Some compilers don't define a DW_AT_high_pc attribute for the
9996 compilation unit. If the DW_AT_high_pc is missing, synthesize
9997 it, by scanning the DIE's below the compilation unit. */
9998 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10000 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10001 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10003 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10004 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10005 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10006 addrmap to help ensure it has an accurate map of pc values belonging to
10008 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10010 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10011 SECT_OFF_TEXT (objfile),
10016 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10018 /* Set symtab language to language from DW_AT_language. If the
10019 compilation is from a C file generated by language preprocessors, do
10020 not set the language if it was already deduced by start_subfile. */
10021 if (!(cu->language == language_c
10022 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10023 COMPUNIT_FILETABS (cust)->language = cu->language;
10025 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10026 produce DW_AT_location with location lists but it can be possibly
10027 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10028 there were bugs in prologue debug info, fixed later in GCC-4.5
10029 by "unwind info for epilogues" patch (which is not directly related).
10031 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10032 needed, it would be wrong due to missing DW_AT_producer there.
10034 Still one can confuse GDB by using non-standard GCC compilation
10035 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10037 if (cu->has_loclist && gcc_4_minor >= 5)
10038 cust->locations_valid = 1;
10040 if (gcc_4_minor >= 5)
10041 cust->epilogue_unwind_valid = 1;
10043 cust->call_site_htab = cu->call_site_htab;
10046 if (dwarf2_per_objfile->using_index)
10047 per_cu->v.quick->compunit_symtab = cust;
10050 dwarf2_psymtab *pst = per_cu->v.psymtab;
10051 pst->compunit_symtab = cust;
10052 pst->readin = true;
10055 /* Push it for inclusion processing later. */
10056 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10058 /* Not needed any more. */
10059 cu->reset_builder ();
10062 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10063 already been loaded into memory. */
10066 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10067 enum language pretend_language)
10069 struct dwarf2_cu *cu = per_cu->cu;
10070 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10071 struct objfile *objfile = dwarf2_per_objfile->objfile;
10072 struct compunit_symtab *cust;
10073 struct signatured_type *sig_type;
10075 gdb_assert (per_cu->is_debug_types);
10076 sig_type = (struct signatured_type *) per_cu;
10078 /* Clear the list here in case something was left over. */
10079 cu->method_list.clear ();
10081 cu->language = pretend_language;
10082 cu->language_defn = language_def (cu->language);
10084 /* The symbol tables are set up in read_type_unit_scope. */
10085 process_die (cu->dies, cu);
10087 /* For now fudge the Go package. */
10088 if (cu->language == language_go)
10089 fixup_go_packaging (cu);
10091 /* Now that we have processed all the DIEs in the CU, all the types
10092 should be complete, and it should now be safe to compute all of the
10094 compute_delayed_physnames (cu);
10096 if (cu->language == language_rust)
10097 rust_union_quirks (cu);
10099 /* TUs share symbol tables.
10100 If this is the first TU to use this symtab, complete the construction
10101 of it with end_expandable_symtab. Otherwise, complete the addition of
10102 this TU's symbols to the existing symtab. */
10103 if (sig_type->type_unit_group->compunit_symtab == NULL)
10105 buildsym_compunit *builder = cu->get_builder ();
10106 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10107 sig_type->type_unit_group->compunit_symtab = cust;
10111 /* Set symtab language to language from DW_AT_language. If the
10112 compilation is from a C file generated by language preprocessors,
10113 do not set the language if it was already deduced by
10115 if (!(cu->language == language_c
10116 && COMPUNIT_FILETABS (cust)->language != language_c))
10117 COMPUNIT_FILETABS (cust)->language = cu->language;
10122 cu->get_builder ()->augment_type_symtab ();
10123 cust = sig_type->type_unit_group->compunit_symtab;
10126 if (dwarf2_per_objfile->using_index)
10127 per_cu->v.quick->compunit_symtab = cust;
10130 dwarf2_psymtab *pst = per_cu->v.psymtab;
10131 pst->compunit_symtab = cust;
10132 pst->readin = true;
10135 /* Not needed any more. */
10136 cu->reset_builder ();
10139 /* Process an imported unit DIE. */
10142 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10144 struct attribute *attr;
10146 /* For now we don't handle imported units in type units. */
10147 if (cu->per_cu->is_debug_types)
10149 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10150 " supported in type units [in module %s]"),
10151 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10154 attr = dwarf2_attr (die, DW_AT_import, cu);
10157 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10158 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10159 dwarf2_per_cu_data *per_cu
10160 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10161 cu->per_cu->dwarf2_per_objfile);
10163 /* If necessary, add it to the queue and load its DIEs. */
10164 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10165 load_full_comp_unit (per_cu, false, cu->language);
10167 cu->per_cu->imported_symtabs_push (per_cu);
10171 /* RAII object that represents a process_die scope: i.e.,
10172 starts/finishes processing a DIE. */
10173 class process_die_scope
10176 process_die_scope (die_info *die, dwarf2_cu *cu)
10177 : m_die (die), m_cu (cu)
10179 /* We should only be processing DIEs not already in process. */
10180 gdb_assert (!m_die->in_process);
10181 m_die->in_process = true;
10184 ~process_die_scope ()
10186 m_die->in_process = false;
10188 /* If we're done processing the DIE for the CU that owns the line
10189 header, we don't need the line header anymore. */
10190 if (m_cu->line_header_die_owner == m_die)
10192 delete m_cu->line_header;
10193 m_cu->line_header = NULL;
10194 m_cu->line_header_die_owner = NULL;
10203 /* Process a die and its children. */
10206 process_die (struct die_info *die, struct dwarf2_cu *cu)
10208 process_die_scope scope (die, cu);
10212 case DW_TAG_padding:
10214 case DW_TAG_compile_unit:
10215 case DW_TAG_partial_unit:
10216 read_file_scope (die, cu);
10218 case DW_TAG_type_unit:
10219 read_type_unit_scope (die, cu);
10221 case DW_TAG_subprogram:
10222 /* Nested subprograms in Fortran get a prefix. */
10223 if (cu->language == language_fortran
10224 && die->parent != NULL
10225 && die->parent->tag == DW_TAG_subprogram)
10226 cu->processing_has_namespace_info = true;
10227 /* Fall through. */
10228 case DW_TAG_inlined_subroutine:
10229 read_func_scope (die, cu);
10231 case DW_TAG_lexical_block:
10232 case DW_TAG_try_block:
10233 case DW_TAG_catch_block:
10234 read_lexical_block_scope (die, cu);
10236 case DW_TAG_call_site:
10237 case DW_TAG_GNU_call_site:
10238 read_call_site_scope (die, cu);
10240 case DW_TAG_class_type:
10241 case DW_TAG_interface_type:
10242 case DW_TAG_structure_type:
10243 case DW_TAG_union_type:
10244 process_structure_scope (die, cu);
10246 case DW_TAG_enumeration_type:
10247 process_enumeration_scope (die, cu);
10250 /* These dies have a type, but processing them does not create
10251 a symbol or recurse to process the children. Therefore we can
10252 read them on-demand through read_type_die. */
10253 case DW_TAG_subroutine_type:
10254 case DW_TAG_set_type:
10255 case DW_TAG_array_type:
10256 case DW_TAG_pointer_type:
10257 case DW_TAG_ptr_to_member_type:
10258 case DW_TAG_reference_type:
10259 case DW_TAG_rvalue_reference_type:
10260 case DW_TAG_string_type:
10263 case DW_TAG_base_type:
10264 case DW_TAG_subrange_type:
10265 case DW_TAG_typedef:
10266 /* Add a typedef symbol for the type definition, if it has a
10268 new_symbol (die, read_type_die (die, cu), cu);
10270 case DW_TAG_common_block:
10271 read_common_block (die, cu);
10273 case DW_TAG_common_inclusion:
10275 case DW_TAG_namespace:
10276 cu->processing_has_namespace_info = true;
10277 read_namespace (die, cu);
10279 case DW_TAG_module:
10280 cu->processing_has_namespace_info = true;
10281 read_module (die, cu);
10283 case DW_TAG_imported_declaration:
10284 cu->processing_has_namespace_info = true;
10285 if (read_namespace_alias (die, cu))
10287 /* The declaration is not a global namespace alias. */
10288 /* Fall through. */
10289 case DW_TAG_imported_module:
10290 cu->processing_has_namespace_info = true;
10291 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10292 || cu->language != language_fortran))
10293 complaint (_("Tag '%s' has unexpected children"),
10294 dwarf_tag_name (die->tag));
10295 read_import_statement (die, cu);
10298 case DW_TAG_imported_unit:
10299 process_imported_unit_die (die, cu);
10302 case DW_TAG_variable:
10303 read_variable (die, cu);
10307 new_symbol (die, NULL, cu);
10312 /* DWARF name computation. */
10314 /* A helper function for dwarf2_compute_name which determines whether DIE
10315 needs to have the name of the scope prepended to the name listed in the
10319 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10321 struct attribute *attr;
10325 case DW_TAG_namespace:
10326 case DW_TAG_typedef:
10327 case DW_TAG_class_type:
10328 case DW_TAG_interface_type:
10329 case DW_TAG_structure_type:
10330 case DW_TAG_union_type:
10331 case DW_TAG_enumeration_type:
10332 case DW_TAG_enumerator:
10333 case DW_TAG_subprogram:
10334 case DW_TAG_inlined_subroutine:
10335 case DW_TAG_member:
10336 case DW_TAG_imported_declaration:
10339 case DW_TAG_variable:
10340 case DW_TAG_constant:
10341 /* We only need to prefix "globally" visible variables. These include
10342 any variable marked with DW_AT_external or any variable that
10343 lives in a namespace. [Variables in anonymous namespaces
10344 require prefixing, but they are not DW_AT_external.] */
10346 if (dwarf2_attr (die, DW_AT_specification, cu))
10348 struct dwarf2_cu *spec_cu = cu;
10350 return die_needs_namespace (die_specification (die, &spec_cu),
10354 attr = dwarf2_attr (die, DW_AT_external, cu);
10355 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10356 && die->parent->tag != DW_TAG_module)
10358 /* A variable in a lexical block of some kind does not need a
10359 namespace, even though in C++ such variables may be external
10360 and have a mangled name. */
10361 if (die->parent->tag == DW_TAG_lexical_block
10362 || die->parent->tag == DW_TAG_try_block
10363 || die->parent->tag == DW_TAG_catch_block
10364 || die->parent->tag == DW_TAG_subprogram)
10373 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10374 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10375 defined for the given DIE. */
10377 static struct attribute *
10378 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10380 struct attribute *attr;
10382 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10384 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10389 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10390 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10391 defined for the given DIE. */
10393 static const char *
10394 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10396 const char *linkage_name;
10398 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10399 if (linkage_name == NULL)
10400 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10402 return linkage_name;
10405 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10406 compute the physname for the object, which include a method's:
10407 - formal parameters (C++),
10408 - receiver type (Go),
10410 The term "physname" is a bit confusing.
10411 For C++, for example, it is the demangled name.
10412 For Go, for example, it's the mangled name.
10414 For Ada, return the DIE's linkage name rather than the fully qualified
10415 name. PHYSNAME is ignored..
10417 The result is allocated on the objfile_obstack and canonicalized. */
10419 static const char *
10420 dwarf2_compute_name (const char *name,
10421 struct die_info *die, struct dwarf2_cu *cu,
10424 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10427 name = dwarf2_name (die, cu);
10429 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10430 but otherwise compute it by typename_concat inside GDB.
10431 FIXME: Actually this is not really true, or at least not always true.
10432 It's all very confusing. compute_and_set_names doesn't try to demangle
10433 Fortran names because there is no mangling standard. So new_symbol
10434 will set the demangled name to the result of dwarf2_full_name, and it is
10435 the demangled name that GDB uses if it exists. */
10436 if (cu->language == language_ada
10437 || (cu->language == language_fortran && physname))
10439 /* For Ada unit, we prefer the linkage name over the name, as
10440 the former contains the exported name, which the user expects
10441 to be able to reference. Ideally, we want the user to be able
10442 to reference this entity using either natural or linkage name,
10443 but we haven't started looking at this enhancement yet. */
10444 const char *linkage_name = dw2_linkage_name (die, cu);
10446 if (linkage_name != NULL)
10447 return linkage_name;
10450 /* These are the only languages we know how to qualify names in. */
10452 && (cu->language == language_cplus
10453 || cu->language == language_fortran || cu->language == language_d
10454 || cu->language == language_rust))
10456 if (die_needs_namespace (die, cu))
10458 const char *prefix;
10459 const char *canonical_name = NULL;
10463 prefix = determine_prefix (die, cu);
10464 if (*prefix != '\0')
10466 gdb::unique_xmalloc_ptr<char> prefixed_name
10467 (typename_concat (NULL, prefix, name, physname, cu));
10469 buf.puts (prefixed_name.get ());
10474 /* Template parameters may be specified in the DIE's DW_AT_name, or
10475 as children with DW_TAG_template_type_param or
10476 DW_TAG_value_type_param. If the latter, add them to the name
10477 here. If the name already has template parameters, then
10478 skip this step; some versions of GCC emit both, and
10479 it is more efficient to use the pre-computed name.
10481 Something to keep in mind about this process: it is very
10482 unlikely, or in some cases downright impossible, to produce
10483 something that will match the mangled name of a function.
10484 If the definition of the function has the same debug info,
10485 we should be able to match up with it anyway. But fallbacks
10486 using the minimal symbol, for instance to find a method
10487 implemented in a stripped copy of libstdc++, will not work.
10488 If we do not have debug info for the definition, we will have to
10489 match them up some other way.
10491 When we do name matching there is a related problem with function
10492 templates; two instantiated function templates are allowed to
10493 differ only by their return types, which we do not add here. */
10495 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10497 struct attribute *attr;
10498 struct die_info *child;
10501 die->building_fullname = 1;
10503 for (child = die->child; child != NULL; child = child->sibling)
10507 const gdb_byte *bytes;
10508 struct dwarf2_locexpr_baton *baton;
10511 if (child->tag != DW_TAG_template_type_param
10512 && child->tag != DW_TAG_template_value_param)
10523 attr = dwarf2_attr (child, DW_AT_type, cu);
10526 complaint (_("template parameter missing DW_AT_type"));
10527 buf.puts ("UNKNOWN_TYPE");
10530 type = die_type (child, cu);
10532 if (child->tag == DW_TAG_template_type_param)
10534 c_print_type (type, "", &buf, -1, 0, cu->language,
10535 &type_print_raw_options);
10539 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10542 complaint (_("template parameter missing "
10543 "DW_AT_const_value"));
10544 buf.puts ("UNKNOWN_VALUE");
10548 dwarf2_const_value_attr (attr, type, name,
10549 &cu->comp_unit_obstack, cu,
10550 &value, &bytes, &baton);
10552 if (TYPE_NOSIGN (type))
10553 /* GDB prints characters as NUMBER 'CHAR'. If that's
10554 changed, this can use value_print instead. */
10555 c_printchar (value, type, &buf);
10558 struct value_print_options opts;
10561 v = dwarf2_evaluate_loc_desc (type, NULL,
10565 else if (bytes != NULL)
10567 v = allocate_value (type);
10568 memcpy (value_contents_writeable (v), bytes,
10569 TYPE_LENGTH (type));
10572 v = value_from_longest (type, value);
10574 /* Specify decimal so that we do not depend on
10576 get_formatted_print_options (&opts, 'd');
10578 value_print (v, &buf, &opts);
10583 die->building_fullname = 0;
10587 /* Close the argument list, with a space if necessary
10588 (nested templates). */
10589 if (!buf.empty () && buf.string ().back () == '>')
10596 /* For C++ methods, append formal parameter type
10597 information, if PHYSNAME. */
10599 if (physname && die->tag == DW_TAG_subprogram
10600 && cu->language == language_cplus)
10602 struct type *type = read_type_die (die, cu);
10604 c_type_print_args (type, &buf, 1, cu->language,
10605 &type_print_raw_options);
10607 if (cu->language == language_cplus)
10609 /* Assume that an artificial first parameter is
10610 "this", but do not crash if it is not. RealView
10611 marks unnamed (and thus unused) parameters as
10612 artificial; there is no way to differentiate
10614 if (TYPE_NFIELDS (type) > 0
10615 && TYPE_FIELD_ARTIFICIAL (type, 0)
10616 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10617 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10619 buf.puts (" const");
10623 const std::string &intermediate_name = buf.string ();
10625 if (cu->language == language_cplus)
10627 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10628 &objfile->per_bfd->storage_obstack);
10630 /* If we only computed INTERMEDIATE_NAME, or if
10631 INTERMEDIATE_NAME is already canonical, then we need to
10632 copy it to the appropriate obstack. */
10633 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10634 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
10635 intermediate_name);
10637 name = canonical_name;
10644 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10645 If scope qualifiers are appropriate they will be added. The result
10646 will be allocated on the storage_obstack, or NULL if the DIE does
10647 not have a name. NAME may either be from a previous call to
10648 dwarf2_name or NULL.
10650 The output string will be canonicalized (if C++). */
10652 static const char *
10653 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10655 return dwarf2_compute_name (name, die, cu, 0);
10658 /* Construct a physname for the given DIE in CU. NAME may either be
10659 from a previous call to dwarf2_name or NULL. The result will be
10660 allocated on the objfile_objstack or NULL if the DIE does not have a
10663 The output string will be canonicalized (if C++). */
10665 static const char *
10666 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10668 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10669 const char *retval, *mangled = NULL, *canon = NULL;
10672 /* In this case dwarf2_compute_name is just a shortcut not building anything
10674 if (!die_needs_namespace (die, cu))
10675 return dwarf2_compute_name (name, die, cu, 1);
10677 mangled = dw2_linkage_name (die, cu);
10679 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10680 See https://github.com/rust-lang/rust/issues/32925. */
10681 if (cu->language == language_rust && mangled != NULL
10682 && strchr (mangled, '{') != NULL)
10685 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10687 gdb::unique_xmalloc_ptr<char> demangled;
10688 if (mangled != NULL)
10691 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10693 /* Do nothing (do not demangle the symbol name). */
10695 else if (cu->language == language_go)
10697 /* This is a lie, but we already lie to the caller new_symbol.
10698 new_symbol assumes we return the mangled name.
10699 This just undoes that lie until things are cleaned up. */
10703 /* Use DMGL_RET_DROP for C++ template functions to suppress
10704 their return type. It is easier for GDB users to search
10705 for such functions as `name(params)' than `long name(params)'.
10706 In such case the minimal symbol names do not match the full
10707 symbol names but for template functions there is never a need
10708 to look up their definition from their declaration so
10709 the only disadvantage remains the minimal symbol variant
10710 `long name(params)' does not have the proper inferior type. */
10711 demangled.reset (gdb_demangle (mangled,
10712 (DMGL_PARAMS | DMGL_ANSI
10713 | DMGL_RET_DROP)));
10716 canon = demangled.get ();
10724 if (canon == NULL || check_physname)
10726 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10728 if (canon != NULL && strcmp (physname, canon) != 0)
10730 /* It may not mean a bug in GDB. The compiler could also
10731 compute DW_AT_linkage_name incorrectly. But in such case
10732 GDB would need to be bug-to-bug compatible. */
10734 complaint (_("Computed physname <%s> does not match demangled <%s> "
10735 "(from linkage <%s>) - DIE at %s [in module %s]"),
10736 physname, canon, mangled, sect_offset_str (die->sect_off),
10737 objfile_name (objfile));
10739 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10740 is available here - over computed PHYSNAME. It is safer
10741 against both buggy GDB and buggy compilers. */
10755 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
10760 /* Inspect DIE in CU for a namespace alias. If one exists, record
10761 a new symbol for it.
10763 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10766 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10768 struct attribute *attr;
10770 /* If the die does not have a name, this is not a namespace
10772 attr = dwarf2_attr (die, DW_AT_name, cu);
10776 struct die_info *d = die;
10777 struct dwarf2_cu *imported_cu = cu;
10779 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10780 keep inspecting DIEs until we hit the underlying import. */
10781 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10782 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10784 attr = dwarf2_attr (d, DW_AT_import, cu);
10788 d = follow_die_ref (d, attr, &imported_cu);
10789 if (d->tag != DW_TAG_imported_declaration)
10793 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10795 complaint (_("DIE at %s has too many recursively imported "
10796 "declarations"), sect_offset_str (d->sect_off));
10803 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10805 type = get_die_type_at_offset (sect_off, cu->per_cu);
10806 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10808 /* This declaration is a global namespace alias. Add
10809 a symbol for it whose type is the aliased namespace. */
10810 new_symbol (die, type, cu);
10819 /* Return the using directives repository (global or local?) to use in the
10820 current context for CU.
10822 For Ada, imported declarations can materialize renamings, which *may* be
10823 global. However it is impossible (for now?) in DWARF to distinguish
10824 "external" imported declarations and "static" ones. As all imported
10825 declarations seem to be static in all other languages, make them all CU-wide
10826 global only in Ada. */
10828 static struct using_direct **
10829 using_directives (struct dwarf2_cu *cu)
10831 if (cu->language == language_ada
10832 && cu->get_builder ()->outermost_context_p ())
10833 return cu->get_builder ()->get_global_using_directives ();
10835 return cu->get_builder ()->get_local_using_directives ();
10838 /* Read the import statement specified by the given die and record it. */
10841 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10843 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10844 struct attribute *import_attr;
10845 struct die_info *imported_die, *child_die;
10846 struct dwarf2_cu *imported_cu;
10847 const char *imported_name;
10848 const char *imported_name_prefix;
10849 const char *canonical_name;
10850 const char *import_alias;
10851 const char *imported_declaration = NULL;
10852 const char *import_prefix;
10853 std::vector<const char *> excludes;
10855 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10856 if (import_attr == NULL)
10858 complaint (_("Tag '%s' has no DW_AT_import"),
10859 dwarf_tag_name (die->tag));
10864 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10865 imported_name = dwarf2_name (imported_die, imported_cu);
10866 if (imported_name == NULL)
10868 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10870 The import in the following code:
10884 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10885 <52> DW_AT_decl_file : 1
10886 <53> DW_AT_decl_line : 6
10887 <54> DW_AT_import : <0x75>
10888 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10889 <59> DW_AT_name : B
10890 <5b> DW_AT_decl_file : 1
10891 <5c> DW_AT_decl_line : 2
10892 <5d> DW_AT_type : <0x6e>
10894 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10895 <76> DW_AT_byte_size : 4
10896 <77> DW_AT_encoding : 5 (signed)
10898 imports the wrong die ( 0x75 instead of 0x58 ).
10899 This case will be ignored until the gcc bug is fixed. */
10903 /* Figure out the local name after import. */
10904 import_alias = dwarf2_name (die, cu);
10906 /* Figure out where the statement is being imported to. */
10907 import_prefix = determine_prefix (die, cu);
10909 /* Figure out what the scope of the imported die is and prepend it
10910 to the name of the imported die. */
10911 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10913 if (imported_die->tag != DW_TAG_namespace
10914 && imported_die->tag != DW_TAG_module)
10916 imported_declaration = imported_name;
10917 canonical_name = imported_name_prefix;
10919 else if (strlen (imported_name_prefix) > 0)
10920 canonical_name = obconcat (&objfile->objfile_obstack,
10921 imported_name_prefix,
10922 (cu->language == language_d ? "." : "::"),
10923 imported_name, (char *) NULL);
10925 canonical_name = imported_name;
10927 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10928 for (child_die = die->child; child_die && child_die->tag;
10929 child_die = sibling_die (child_die))
10931 /* DWARF-4: A Fortran use statement with a “rename list” may be
10932 represented by an imported module entry with an import attribute
10933 referring to the module and owned entries corresponding to those
10934 entities that are renamed as part of being imported. */
10936 if (child_die->tag != DW_TAG_imported_declaration)
10938 complaint (_("child DW_TAG_imported_declaration expected "
10939 "- DIE at %s [in module %s]"),
10940 sect_offset_str (child_die->sect_off),
10941 objfile_name (objfile));
10945 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10946 if (import_attr == NULL)
10948 complaint (_("Tag '%s' has no DW_AT_import"),
10949 dwarf_tag_name (child_die->tag));
10954 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10956 imported_name = dwarf2_name (imported_die, imported_cu);
10957 if (imported_name == NULL)
10959 complaint (_("child DW_TAG_imported_declaration has unknown "
10960 "imported name - DIE at %s [in module %s]"),
10961 sect_offset_str (child_die->sect_off),
10962 objfile_name (objfile));
10966 excludes.push_back (imported_name);
10968 process_die (child_die, cu);
10971 add_using_directive (using_directives (cu),
10975 imported_declaration,
10978 &objfile->objfile_obstack);
10981 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10982 types, but gives them a size of zero. Starting with version 14,
10983 ICC is compatible with GCC. */
10986 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10988 if (!cu->checked_producer)
10989 check_producer (cu);
10991 return cu->producer_is_icc_lt_14;
10994 /* ICC generates a DW_AT_type for C void functions. This was observed on
10995 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10996 which says that void functions should not have a DW_AT_type. */
10999 producer_is_icc (struct dwarf2_cu *cu)
11001 if (!cu->checked_producer)
11002 check_producer (cu);
11004 return cu->producer_is_icc;
11007 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11008 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11009 this, it was first present in GCC release 4.3.0. */
11012 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11014 if (!cu->checked_producer)
11015 check_producer (cu);
11017 return cu->producer_is_gcc_lt_4_3;
11020 static file_and_directory
11021 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11023 file_and_directory res;
11025 /* Find the filename. Do not use dwarf2_name here, since the filename
11026 is not a source language identifier. */
11027 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11028 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11030 if (res.comp_dir == NULL
11031 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11032 && IS_ABSOLUTE_PATH (res.name))
11034 res.comp_dir_storage = ldirname (res.name);
11035 if (!res.comp_dir_storage.empty ())
11036 res.comp_dir = res.comp_dir_storage.c_str ();
11038 if (res.comp_dir != NULL)
11040 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11041 directory, get rid of it. */
11042 const char *cp = strchr (res.comp_dir, ':');
11044 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11045 res.comp_dir = cp + 1;
11048 if (res.name == NULL)
11049 res.name = "<unknown>";
11054 /* Handle DW_AT_stmt_list for a compilation unit.
11055 DIE is the DW_TAG_compile_unit die for CU.
11056 COMP_DIR is the compilation directory. LOWPC is passed to
11057 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11060 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11061 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11063 struct dwarf2_per_objfile *dwarf2_per_objfile
11064 = cu->per_cu->dwarf2_per_objfile;
11065 struct attribute *attr;
11066 struct line_header line_header_local;
11067 hashval_t line_header_local_hash;
11069 int decode_mapping;
11071 gdb_assert (! cu->per_cu->is_debug_types);
11073 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11077 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11079 /* The line header hash table is only created if needed (it exists to
11080 prevent redundant reading of the line table for partial_units).
11081 If we're given a partial_unit, we'll need it. If we're given a
11082 compile_unit, then use the line header hash table if it's already
11083 created, but don't create one just yet. */
11085 if (dwarf2_per_objfile->line_header_hash == NULL
11086 && die->tag == DW_TAG_partial_unit)
11088 dwarf2_per_objfile->line_header_hash
11089 .reset (htab_create_alloc (127, line_header_hash_voidp,
11090 line_header_eq_voidp,
11091 free_line_header_voidp,
11095 line_header_local.sect_off = line_offset;
11096 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11097 line_header_local_hash = line_header_hash (&line_header_local);
11098 if (dwarf2_per_objfile->line_header_hash != NULL)
11100 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11101 &line_header_local,
11102 line_header_local_hash, NO_INSERT);
11104 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11105 is not present in *SLOT (since if there is something in *SLOT then
11106 it will be for a partial_unit). */
11107 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11109 gdb_assert (*slot != NULL);
11110 cu->line_header = (struct line_header *) *slot;
11115 /* dwarf_decode_line_header does not yet provide sufficient information.
11116 We always have to call also dwarf_decode_lines for it. */
11117 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11121 cu->line_header = lh.release ();
11122 cu->line_header_die_owner = die;
11124 if (dwarf2_per_objfile->line_header_hash == NULL)
11128 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
11129 &line_header_local,
11130 line_header_local_hash, INSERT);
11131 gdb_assert (slot != NULL);
11133 if (slot != NULL && *slot == NULL)
11135 /* This newly decoded line number information unit will be owned
11136 by line_header_hash hash table. */
11137 *slot = cu->line_header;
11138 cu->line_header_die_owner = NULL;
11142 /* We cannot free any current entry in (*slot) as that struct line_header
11143 may be already used by multiple CUs. Create only temporary decoded
11144 line_header for this CU - it may happen at most once for each line
11145 number information unit. And if we're not using line_header_hash
11146 then this is what we want as well. */
11147 gdb_assert (die->tag != DW_TAG_partial_unit);
11149 decode_mapping = (die->tag != DW_TAG_partial_unit);
11150 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11155 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11158 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11160 struct dwarf2_per_objfile *dwarf2_per_objfile
11161 = cu->per_cu->dwarf2_per_objfile;
11162 struct objfile *objfile = dwarf2_per_objfile->objfile;
11163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11164 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11165 CORE_ADDR highpc = ((CORE_ADDR) 0);
11166 struct attribute *attr;
11167 struct die_info *child_die;
11168 CORE_ADDR baseaddr;
11170 prepare_one_comp_unit (cu, die, cu->language);
11171 baseaddr = objfile->text_section_offset ();
11173 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11175 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11176 from finish_block. */
11177 if (lowpc == ((CORE_ADDR) -1))
11179 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11181 file_and_directory fnd = find_file_and_directory (die, cu);
11183 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11184 standardised yet. As a workaround for the language detection we fall
11185 back to the DW_AT_producer string. */
11186 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11187 cu->language = language_opencl;
11189 /* Similar hack for Go. */
11190 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11191 set_cu_language (DW_LANG_Go, cu);
11193 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11195 /* Decode line number information if present. We do this before
11196 processing child DIEs, so that the line header table is available
11197 for DW_AT_decl_file. */
11198 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11200 /* Process all dies in compilation unit. */
11201 if (die->child != NULL)
11203 child_die = die->child;
11204 while (child_die && child_die->tag)
11206 process_die (child_die, cu);
11207 child_die = sibling_die (child_die);
11211 /* Decode macro information, if present. Dwarf 2 macro information
11212 refers to information in the line number info statement program
11213 header, so we can only read it if we've read the header
11215 attr = dwarf2_attr (die, DW_AT_macros, cu);
11217 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11218 if (attr && cu->line_header)
11220 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11221 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11223 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11227 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11228 if (attr && cu->line_header)
11230 unsigned int macro_offset = DW_UNSND (attr);
11232 dwarf_decode_macros (cu, macro_offset, 0);
11238 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11240 struct type_unit_group *tu_group;
11242 struct attribute *attr;
11244 struct signatured_type *sig_type;
11246 gdb_assert (per_cu->is_debug_types);
11247 sig_type = (struct signatured_type *) per_cu;
11249 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11251 /* If we're using .gdb_index (includes -readnow) then
11252 per_cu->type_unit_group may not have been set up yet. */
11253 if (sig_type->type_unit_group == NULL)
11254 sig_type->type_unit_group = get_type_unit_group (this, attr);
11255 tu_group = sig_type->type_unit_group;
11257 /* If we've already processed this stmt_list there's no real need to
11258 do it again, we could fake it and just recreate the part we need
11259 (file name,index -> symtab mapping). If data shows this optimization
11260 is useful we can do it then. */
11261 first_time = tu_group->compunit_symtab == NULL;
11263 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11268 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11269 lh = dwarf_decode_line_header (line_offset, this);
11274 start_symtab ("", NULL, 0);
11277 gdb_assert (tu_group->symtabs == NULL);
11278 gdb_assert (m_builder == nullptr);
11279 struct compunit_symtab *cust = tu_group->compunit_symtab;
11280 m_builder.reset (new struct buildsym_compunit
11281 (COMPUNIT_OBJFILE (cust), "",
11282 COMPUNIT_DIRNAME (cust),
11283 compunit_language (cust),
11289 line_header = lh.release ();
11290 line_header_die_owner = die;
11294 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11296 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11297 still initializing it, and our caller (a few levels up)
11298 process_full_type_unit still needs to know if this is the first
11301 tu_group->num_symtabs = line_header->file_names_size ();
11302 tu_group->symtabs = XNEWVEC (struct symtab *,
11303 line_header->file_names_size ());
11305 auto &file_names = line_header->file_names ();
11306 for (i = 0; i < file_names.size (); ++i)
11308 file_entry &fe = file_names[i];
11309 dwarf2_start_subfile (this, fe.name,
11310 fe.include_dir (line_header));
11311 buildsym_compunit *b = get_builder ();
11312 if (b->get_current_subfile ()->symtab == NULL)
11314 /* NOTE: start_subfile will recognize when it's been
11315 passed a file it has already seen. So we can't
11316 assume there's a simple mapping from
11317 cu->line_header->file_names to subfiles, plus
11318 cu->line_header->file_names may contain dups. */
11319 b->get_current_subfile ()->symtab
11320 = allocate_symtab (cust, b->get_current_subfile ()->name);
11323 fe.symtab = b->get_current_subfile ()->symtab;
11324 tu_group->symtabs[i] = fe.symtab;
11329 gdb_assert (m_builder == nullptr);
11330 struct compunit_symtab *cust = tu_group->compunit_symtab;
11331 m_builder.reset (new struct buildsym_compunit
11332 (COMPUNIT_OBJFILE (cust), "",
11333 COMPUNIT_DIRNAME (cust),
11334 compunit_language (cust),
11337 auto &file_names = line_header->file_names ();
11338 for (i = 0; i < file_names.size (); ++i)
11340 file_entry &fe = file_names[i];
11341 fe.symtab = tu_group->symtabs[i];
11345 /* The main symtab is allocated last. Type units don't have DW_AT_name
11346 so they don't have a "real" (so to speak) symtab anyway.
11347 There is later code that will assign the main symtab to all symbols
11348 that don't have one. We need to handle the case of a symbol with a
11349 missing symtab (DW_AT_decl_file) anyway. */
11352 /* Process DW_TAG_type_unit.
11353 For TUs we want to skip the first top level sibling if it's not the
11354 actual type being defined by this TU. In this case the first top
11355 level sibling is there to provide context only. */
11358 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11360 struct die_info *child_die;
11362 prepare_one_comp_unit (cu, die, language_minimal);
11364 /* Initialize (or reinitialize) the machinery for building symtabs.
11365 We do this before processing child DIEs, so that the line header table
11366 is available for DW_AT_decl_file. */
11367 cu->setup_type_unit_groups (die);
11369 if (die->child != NULL)
11371 child_die = die->child;
11372 while (child_die && child_die->tag)
11374 process_die (child_die, cu);
11375 child_die = sibling_die (child_die);
11382 http://gcc.gnu.org/wiki/DebugFission
11383 http://gcc.gnu.org/wiki/DebugFissionDWP
11385 To simplify handling of both DWO files ("object" files with the DWARF info)
11386 and DWP files (a file with the DWOs packaged up into one file), we treat
11387 DWP files as having a collection of virtual DWO files. */
11390 hash_dwo_file (const void *item)
11392 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11395 hash = htab_hash_string (dwo_file->dwo_name);
11396 if (dwo_file->comp_dir != NULL)
11397 hash += htab_hash_string (dwo_file->comp_dir);
11402 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11404 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11405 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11407 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11409 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11410 return lhs->comp_dir == rhs->comp_dir;
11411 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11414 /* Allocate a hash table for DWO files. */
11417 allocate_dwo_file_hash_table (struct objfile *objfile)
11419 auto delete_dwo_file = [] (void *item)
11421 struct dwo_file *dwo_file = (struct dwo_file *) item;
11426 return htab_up (htab_create_alloc (41,
11433 /* Lookup DWO file DWO_NAME. */
11436 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11437 const char *dwo_name,
11438 const char *comp_dir)
11440 struct dwo_file find_entry;
11443 if (dwarf2_per_objfile->dwo_files == NULL)
11444 dwarf2_per_objfile->dwo_files
11445 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11447 find_entry.dwo_name = dwo_name;
11448 find_entry.comp_dir = comp_dir;
11449 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11456 hash_dwo_unit (const void *item)
11458 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11460 /* This drops the top 32 bits of the id, but is ok for a hash. */
11461 return dwo_unit->signature;
11465 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11467 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11468 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11470 /* The signature is assumed to be unique within the DWO file.
11471 So while object file CU dwo_id's always have the value zero,
11472 that's OK, assuming each object file DWO file has only one CU,
11473 and that's the rule for now. */
11474 return lhs->signature == rhs->signature;
11477 /* Allocate a hash table for DWO CUs,TUs.
11478 There is one of these tables for each of CUs,TUs for each DWO file. */
11481 allocate_dwo_unit_table (struct objfile *objfile)
11483 /* Start out with a pretty small number.
11484 Generally DWO files contain only one CU and maybe some TUs. */
11485 return htab_up (htab_create_alloc (3,
11488 NULL, xcalloc, xfree));
11491 /* die_reader_func for create_dwo_cu. */
11494 create_dwo_cu_reader (const struct die_reader_specs *reader,
11495 const gdb_byte *info_ptr,
11496 struct die_info *comp_unit_die,
11497 struct dwo_file *dwo_file,
11498 struct dwo_unit *dwo_unit)
11500 struct dwarf2_cu *cu = reader->cu;
11501 sect_offset sect_off = cu->per_cu->sect_off;
11502 struct dwarf2_section_info *section = cu->per_cu->section;
11504 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11505 if (!signature.has_value ())
11507 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11508 " its dwo_id [in module %s]"),
11509 sect_offset_str (sect_off), dwo_file->dwo_name);
11513 dwo_unit->dwo_file = dwo_file;
11514 dwo_unit->signature = *signature;
11515 dwo_unit->section = section;
11516 dwo_unit->sect_off = sect_off;
11517 dwo_unit->length = cu->per_cu->length;
11519 if (dwarf_read_debug)
11520 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11521 sect_offset_str (sect_off),
11522 hex_string (dwo_unit->signature));
11525 /* Create the dwo_units for the CUs in a DWO_FILE.
11526 Note: This function processes DWO files only, not DWP files. */
11529 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11530 dwarf2_cu *cu, struct dwo_file &dwo_file,
11531 dwarf2_section_info §ion, htab_up &cus_htab)
11533 struct objfile *objfile = dwarf2_per_objfile->objfile;
11534 const gdb_byte *info_ptr, *end_ptr;
11536 section.read (objfile);
11537 info_ptr = section.buffer;
11539 if (info_ptr == NULL)
11542 if (dwarf_read_debug)
11544 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11545 section.get_name (),
11546 section.get_file_name ());
11549 end_ptr = info_ptr + section.size;
11550 while (info_ptr < end_ptr)
11552 struct dwarf2_per_cu_data per_cu;
11553 struct dwo_unit read_unit {};
11554 struct dwo_unit *dwo_unit;
11556 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11558 memset (&per_cu, 0, sizeof (per_cu));
11559 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11560 per_cu.is_debug_types = 0;
11561 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11562 per_cu.section = §ion;
11564 cutu_reader reader (&per_cu, cu, &dwo_file);
11565 if (!reader.dummy_p)
11566 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11567 &dwo_file, &read_unit);
11568 info_ptr += per_cu.length;
11570 // If the unit could not be parsed, skip it.
11571 if (read_unit.dwo_file == NULL)
11574 if (cus_htab == NULL)
11575 cus_htab = allocate_dwo_unit_table (objfile);
11577 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11578 *dwo_unit = read_unit;
11579 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11580 gdb_assert (slot != NULL);
11583 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11584 sect_offset dup_sect_off = dup_cu->sect_off;
11586 complaint (_("debug cu entry at offset %s is duplicate to"
11587 " the entry at offset %s, signature %s"),
11588 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11589 hex_string (dwo_unit->signature));
11591 *slot = (void *)dwo_unit;
11595 /* DWP file .debug_{cu,tu}_index section format:
11596 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11600 Both index sections have the same format, and serve to map a 64-bit
11601 signature to a set of section numbers. Each section begins with a header,
11602 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11603 indexes, and a pool of 32-bit section numbers. The index sections will be
11604 aligned at 8-byte boundaries in the file.
11606 The index section header consists of:
11608 V, 32 bit version number
11610 N, 32 bit number of compilation units or type units in the index
11611 M, 32 bit number of slots in the hash table
11613 Numbers are recorded using the byte order of the application binary.
11615 The hash table begins at offset 16 in the section, and consists of an array
11616 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11617 order of the application binary). Unused slots in the hash table are 0.
11618 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11620 The parallel table begins immediately after the hash table
11621 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11622 array of 32-bit indexes (using the byte order of the application binary),
11623 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11624 table contains a 32-bit index into the pool of section numbers. For unused
11625 hash table slots, the corresponding entry in the parallel table will be 0.
11627 The pool of section numbers begins immediately following the hash table
11628 (at offset 16 + 12 * M from the beginning of the section). The pool of
11629 section numbers consists of an array of 32-bit words (using the byte order
11630 of the application binary). Each item in the array is indexed starting
11631 from 0. The hash table entry provides the index of the first section
11632 number in the set. Additional section numbers in the set follow, and the
11633 set is terminated by a 0 entry (section number 0 is not used in ELF).
11635 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11636 section must be the first entry in the set, and the .debug_abbrev.dwo must
11637 be the second entry. Other members of the set may follow in any order.
11643 DWP Version 2 combines all the .debug_info, etc. sections into one,
11644 and the entries in the index tables are now offsets into these sections.
11645 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11648 Index Section Contents:
11650 Hash Table of Signatures dwp_hash_table.hash_table
11651 Parallel Table of Indices dwp_hash_table.unit_table
11652 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11653 Table of Section Sizes dwp_hash_table.v2.sizes
11655 The index section header consists of:
11657 V, 32 bit version number
11658 L, 32 bit number of columns in the table of section offsets
11659 N, 32 bit number of compilation units or type units in the index
11660 M, 32 bit number of slots in the hash table
11662 Numbers are recorded using the byte order of the application binary.
11664 The hash table has the same format as version 1.
11665 The parallel table of indices has the same format as version 1,
11666 except that the entries are origin-1 indices into the table of sections
11667 offsets and the table of section sizes.
11669 The table of offsets begins immediately following the parallel table
11670 (at offset 16 + 12 * M from the beginning of the section). The table is
11671 a two-dimensional array of 32-bit words (using the byte order of the
11672 application binary), with L columns and N+1 rows, in row-major order.
11673 Each row in the array is indexed starting from 0. The first row provides
11674 a key to the remaining rows: each column in this row provides an identifier
11675 for a debug section, and the offsets in the same column of subsequent rows
11676 refer to that section. The section identifiers are:
11678 DW_SECT_INFO 1 .debug_info.dwo
11679 DW_SECT_TYPES 2 .debug_types.dwo
11680 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11681 DW_SECT_LINE 4 .debug_line.dwo
11682 DW_SECT_LOC 5 .debug_loc.dwo
11683 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11684 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11685 DW_SECT_MACRO 8 .debug_macro.dwo
11687 The offsets provided by the CU and TU index sections are the base offsets
11688 for the contributions made by each CU or TU to the corresponding section
11689 in the package file. Each CU and TU header contains an abbrev_offset
11690 field, used to find the abbreviations table for that CU or TU within the
11691 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11692 be interpreted as relative to the base offset given in the index section.
11693 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11694 should be interpreted as relative to the base offset for .debug_line.dwo,
11695 and offsets into other debug sections obtained from DWARF attributes should
11696 also be interpreted as relative to the corresponding base offset.
11698 The table of sizes begins immediately following the table of offsets.
11699 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11700 with L columns and N rows, in row-major order. Each row in the array is
11701 indexed starting from 1 (row 0 is shared by the two tables).
11705 Hash table lookup is handled the same in version 1 and 2:
11707 We assume that N and M will not exceed 2^32 - 1.
11708 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11710 Given a 64-bit compilation unit signature or a type signature S, an entry
11711 in the hash table is located as follows:
11713 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11714 the low-order k bits all set to 1.
11716 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11718 3) If the hash table entry at index H matches the signature, use that
11719 entry. If the hash table entry at index H is unused (all zeroes),
11720 terminate the search: the signature is not present in the table.
11722 4) Let H = (H + H') modulo M. Repeat at Step 3.
11724 Because M > N and H' and M are relatively prime, the search is guaranteed
11725 to stop at an unused slot or find the match. */
11727 /* Create a hash table to map DWO IDs to their CU/TU entry in
11728 .debug_{info,types}.dwo in DWP_FILE.
11729 Returns NULL if there isn't one.
11730 Note: This function processes DWP files only, not DWO files. */
11732 static struct dwp_hash_table *
11733 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11734 struct dwp_file *dwp_file, int is_debug_types)
11736 struct objfile *objfile = dwarf2_per_objfile->objfile;
11737 bfd *dbfd = dwp_file->dbfd.get ();
11738 const gdb_byte *index_ptr, *index_end;
11739 struct dwarf2_section_info *index;
11740 uint32_t version, nr_columns, nr_units, nr_slots;
11741 struct dwp_hash_table *htab;
11743 if (is_debug_types)
11744 index = &dwp_file->sections.tu_index;
11746 index = &dwp_file->sections.cu_index;
11748 if (index->empty ())
11750 index->read (objfile);
11752 index_ptr = index->buffer;
11753 index_end = index_ptr + index->size;
11755 version = read_4_bytes (dbfd, index_ptr);
11758 nr_columns = read_4_bytes (dbfd, index_ptr);
11762 nr_units = read_4_bytes (dbfd, index_ptr);
11764 nr_slots = read_4_bytes (dbfd, index_ptr);
11767 if (version != 1 && version != 2)
11769 error (_("Dwarf Error: unsupported DWP file version (%s)"
11770 " [in module %s]"),
11771 pulongest (version), dwp_file->name);
11773 if (nr_slots != (nr_slots & -nr_slots))
11775 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11776 " is not power of 2 [in module %s]"),
11777 pulongest (nr_slots), dwp_file->name);
11780 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11781 htab->version = version;
11782 htab->nr_columns = nr_columns;
11783 htab->nr_units = nr_units;
11784 htab->nr_slots = nr_slots;
11785 htab->hash_table = index_ptr;
11786 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11788 /* Exit early if the table is empty. */
11789 if (nr_slots == 0 || nr_units == 0
11790 || (version == 2 && nr_columns == 0))
11792 /* All must be zero. */
11793 if (nr_slots != 0 || nr_units != 0
11794 || (version == 2 && nr_columns != 0))
11796 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11797 " all zero [in modules %s]"),
11805 htab->section_pool.v1.indices =
11806 htab->unit_table + sizeof (uint32_t) * nr_slots;
11807 /* It's harder to decide whether the section is too small in v1.
11808 V1 is deprecated anyway so we punt. */
11812 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11813 int *ids = htab->section_pool.v2.section_ids;
11814 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11815 /* Reverse map for error checking. */
11816 int ids_seen[DW_SECT_MAX + 1];
11819 if (nr_columns < 2)
11821 error (_("Dwarf Error: bad DWP hash table, too few columns"
11822 " in section table [in module %s]"),
11825 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11827 error (_("Dwarf Error: bad DWP hash table, too many columns"
11828 " in section table [in module %s]"),
11831 memset (ids, 255, sizeof_ids);
11832 memset (ids_seen, 255, sizeof (ids_seen));
11833 for (i = 0; i < nr_columns; ++i)
11835 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11837 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11839 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11840 " in section table [in module %s]"),
11841 id, dwp_file->name);
11843 if (ids_seen[id] != -1)
11845 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11846 " id %d in section table [in module %s]"),
11847 id, dwp_file->name);
11852 /* Must have exactly one info or types section. */
11853 if (((ids_seen[DW_SECT_INFO] != -1)
11854 + (ids_seen[DW_SECT_TYPES] != -1))
11857 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11858 " DWO info/types section [in module %s]"),
11861 /* Must have an abbrev section. */
11862 if (ids_seen[DW_SECT_ABBREV] == -1)
11864 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11865 " section [in module %s]"),
11868 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11869 htab->section_pool.v2.sizes =
11870 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11871 * nr_units * nr_columns);
11872 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11873 * nr_units * nr_columns))
11876 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11877 " [in module %s]"),
11885 /* Update SECTIONS with the data from SECTP.
11887 This function is like the other "locate" section routines that are
11888 passed to bfd_map_over_sections, but in this context the sections to
11889 read comes from the DWP V1 hash table, not the full ELF section table.
11891 The result is non-zero for success, or zero if an error was found. */
11894 locate_v1_virtual_dwo_sections (asection *sectp,
11895 struct virtual_v1_dwo_sections *sections)
11897 const struct dwop_section_names *names = &dwop_section_names;
11899 if (section_is_p (sectp->name, &names->abbrev_dwo))
11901 /* There can be only one. */
11902 if (sections->abbrev.s.section != NULL)
11904 sections->abbrev.s.section = sectp;
11905 sections->abbrev.size = bfd_section_size (sectp);
11907 else if (section_is_p (sectp->name, &names->info_dwo)
11908 || section_is_p (sectp->name, &names->types_dwo))
11910 /* There can be only one. */
11911 if (sections->info_or_types.s.section != NULL)
11913 sections->info_or_types.s.section = sectp;
11914 sections->info_or_types.size = bfd_section_size (sectp);
11916 else if (section_is_p (sectp->name, &names->line_dwo))
11918 /* There can be only one. */
11919 if (sections->line.s.section != NULL)
11921 sections->line.s.section = sectp;
11922 sections->line.size = bfd_section_size (sectp);
11924 else if (section_is_p (sectp->name, &names->loc_dwo))
11926 /* There can be only one. */
11927 if (sections->loc.s.section != NULL)
11929 sections->loc.s.section = sectp;
11930 sections->loc.size = bfd_section_size (sectp);
11932 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11934 /* There can be only one. */
11935 if (sections->macinfo.s.section != NULL)
11937 sections->macinfo.s.section = sectp;
11938 sections->macinfo.size = bfd_section_size (sectp);
11940 else if (section_is_p (sectp->name, &names->macro_dwo))
11942 /* There can be only one. */
11943 if (sections->macro.s.section != NULL)
11945 sections->macro.s.section = sectp;
11946 sections->macro.size = bfd_section_size (sectp);
11948 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11950 /* There can be only one. */
11951 if (sections->str_offsets.s.section != NULL)
11953 sections->str_offsets.s.section = sectp;
11954 sections->str_offsets.size = bfd_section_size (sectp);
11958 /* No other kind of section is valid. */
11965 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11966 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11967 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11968 This is for DWP version 1 files. */
11970 static struct dwo_unit *
11971 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11972 struct dwp_file *dwp_file,
11973 uint32_t unit_index,
11974 const char *comp_dir,
11975 ULONGEST signature, int is_debug_types)
11977 struct objfile *objfile = dwarf2_per_objfile->objfile;
11978 const struct dwp_hash_table *dwp_htab =
11979 is_debug_types ? dwp_file->tus : dwp_file->cus;
11980 bfd *dbfd = dwp_file->dbfd.get ();
11981 const char *kind = is_debug_types ? "TU" : "CU";
11982 struct dwo_file *dwo_file;
11983 struct dwo_unit *dwo_unit;
11984 struct virtual_v1_dwo_sections sections;
11985 void **dwo_file_slot;
11988 gdb_assert (dwp_file->version == 1);
11990 if (dwarf_read_debug)
11992 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11994 pulongest (unit_index), hex_string (signature),
11998 /* Fetch the sections of this DWO unit.
11999 Put a limit on the number of sections we look for so that bad data
12000 doesn't cause us to loop forever. */
12002 #define MAX_NR_V1_DWO_SECTIONS \
12003 (1 /* .debug_info or .debug_types */ \
12004 + 1 /* .debug_abbrev */ \
12005 + 1 /* .debug_line */ \
12006 + 1 /* .debug_loc */ \
12007 + 1 /* .debug_str_offsets */ \
12008 + 1 /* .debug_macro or .debug_macinfo */ \
12009 + 1 /* trailing zero */)
12011 memset (§ions, 0, sizeof (sections));
12013 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12016 uint32_t section_nr =
12017 read_4_bytes (dbfd,
12018 dwp_htab->section_pool.v1.indices
12019 + (unit_index + i) * sizeof (uint32_t));
12021 if (section_nr == 0)
12023 if (section_nr >= dwp_file->num_sections)
12025 error (_("Dwarf Error: bad DWP hash table, section number too large"
12026 " [in module %s]"),
12030 sectp = dwp_file->elf_sections[section_nr];
12031 if (! locate_v1_virtual_dwo_sections (sectp, §ions))
12033 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12034 " [in module %s]"),
12040 || sections.info_or_types.empty ()
12041 || sections.abbrev.empty ())
12043 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12044 " [in module %s]"),
12047 if (i == MAX_NR_V1_DWO_SECTIONS)
12049 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12050 " [in module %s]"),
12054 /* It's easier for the rest of the code if we fake a struct dwo_file and
12055 have dwo_unit "live" in that. At least for now.
12057 The DWP file can be made up of a random collection of CUs and TUs.
12058 However, for each CU + set of TUs that came from the same original DWO
12059 file, we can combine them back into a virtual DWO file to save space
12060 (fewer struct dwo_file objects to allocate). Remember that for really
12061 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12063 std::string virtual_dwo_name =
12064 string_printf ("virtual-dwo/%d-%d-%d-%d",
12065 sections.abbrev.get_id (),
12066 sections.line.get_id (),
12067 sections.loc.get_id (),
12068 sections.str_offsets.get_id ());
12069 /* Can we use an existing virtual DWO file? */
12070 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12071 virtual_dwo_name.c_str (),
12073 /* Create one if necessary. */
12074 if (*dwo_file_slot == NULL)
12076 if (dwarf_read_debug)
12078 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12079 virtual_dwo_name.c_str ());
12081 dwo_file = new struct dwo_file;
12082 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12084 dwo_file->comp_dir = comp_dir;
12085 dwo_file->sections.abbrev = sections.abbrev;
12086 dwo_file->sections.line = sections.line;
12087 dwo_file->sections.loc = sections.loc;
12088 dwo_file->sections.macinfo = sections.macinfo;
12089 dwo_file->sections.macro = sections.macro;
12090 dwo_file->sections.str_offsets = sections.str_offsets;
12091 /* The "str" section is global to the entire DWP file. */
12092 dwo_file->sections.str = dwp_file->sections.str;
12093 /* The info or types section is assigned below to dwo_unit,
12094 there's no need to record it in dwo_file.
12095 Also, we can't simply record type sections in dwo_file because
12096 we record a pointer into the vector in dwo_unit. As we collect more
12097 types we'll grow the vector and eventually have to reallocate space
12098 for it, invalidating all copies of pointers into the previous
12100 *dwo_file_slot = dwo_file;
12104 if (dwarf_read_debug)
12106 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12107 virtual_dwo_name.c_str ());
12109 dwo_file = (struct dwo_file *) *dwo_file_slot;
12112 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12113 dwo_unit->dwo_file = dwo_file;
12114 dwo_unit->signature = signature;
12115 dwo_unit->section =
12116 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12117 *dwo_unit->section = sections.info_or_types;
12118 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12123 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12124 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12125 piece within that section used by a TU/CU, return a virtual section
12126 of just that piece. */
12128 static struct dwarf2_section_info
12129 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12130 struct dwarf2_section_info *section,
12131 bfd_size_type offset, bfd_size_type size)
12133 struct dwarf2_section_info result;
12136 gdb_assert (section != NULL);
12137 gdb_assert (!section->is_virtual);
12139 memset (&result, 0, sizeof (result));
12140 result.s.containing_section = section;
12141 result.is_virtual = true;
12146 sectp = section->get_bfd_section ();
12148 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12149 bounds of the real section. This is a pretty-rare event, so just
12150 flag an error (easier) instead of a warning and trying to cope. */
12152 || offset + size > bfd_section_size (sectp))
12154 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12155 " in section %s [in module %s]"),
12156 sectp ? bfd_section_name (sectp) : "<unknown>",
12157 objfile_name (dwarf2_per_objfile->objfile));
12160 result.virtual_offset = offset;
12161 result.size = size;
12165 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12166 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12167 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12168 This is for DWP version 2 files. */
12170 static struct dwo_unit *
12171 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12172 struct dwp_file *dwp_file,
12173 uint32_t unit_index,
12174 const char *comp_dir,
12175 ULONGEST signature, int is_debug_types)
12177 struct objfile *objfile = dwarf2_per_objfile->objfile;
12178 const struct dwp_hash_table *dwp_htab =
12179 is_debug_types ? dwp_file->tus : dwp_file->cus;
12180 bfd *dbfd = dwp_file->dbfd.get ();
12181 const char *kind = is_debug_types ? "TU" : "CU";
12182 struct dwo_file *dwo_file;
12183 struct dwo_unit *dwo_unit;
12184 struct virtual_v2_dwo_sections sections;
12185 void **dwo_file_slot;
12188 gdb_assert (dwp_file->version == 2);
12190 if (dwarf_read_debug)
12192 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12194 pulongest (unit_index), hex_string (signature),
12198 /* Fetch the section offsets of this DWO unit. */
12200 memset (§ions, 0, sizeof (sections));
12202 for (i = 0; i < dwp_htab->nr_columns; ++i)
12204 uint32_t offset = read_4_bytes (dbfd,
12205 dwp_htab->section_pool.v2.offsets
12206 + (((unit_index - 1) * dwp_htab->nr_columns
12208 * sizeof (uint32_t)));
12209 uint32_t size = read_4_bytes (dbfd,
12210 dwp_htab->section_pool.v2.sizes
12211 + (((unit_index - 1) * dwp_htab->nr_columns
12213 * sizeof (uint32_t)));
12215 switch (dwp_htab->section_pool.v2.section_ids[i])
12218 case DW_SECT_TYPES:
12219 sections.info_or_types_offset = offset;
12220 sections.info_or_types_size = size;
12222 case DW_SECT_ABBREV:
12223 sections.abbrev_offset = offset;
12224 sections.abbrev_size = size;
12227 sections.line_offset = offset;
12228 sections.line_size = size;
12231 sections.loc_offset = offset;
12232 sections.loc_size = size;
12234 case DW_SECT_STR_OFFSETS:
12235 sections.str_offsets_offset = offset;
12236 sections.str_offsets_size = size;
12238 case DW_SECT_MACINFO:
12239 sections.macinfo_offset = offset;
12240 sections.macinfo_size = size;
12242 case DW_SECT_MACRO:
12243 sections.macro_offset = offset;
12244 sections.macro_size = size;
12249 /* It's easier for the rest of the code if we fake a struct dwo_file and
12250 have dwo_unit "live" in that. At least for now.
12252 The DWP file can be made up of a random collection of CUs and TUs.
12253 However, for each CU + set of TUs that came from the same original DWO
12254 file, we can combine them back into a virtual DWO file to save space
12255 (fewer struct dwo_file objects to allocate). Remember that for really
12256 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12258 std::string virtual_dwo_name =
12259 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12260 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12261 (long) (sections.line_size ? sections.line_offset : 0),
12262 (long) (sections.loc_size ? sections.loc_offset : 0),
12263 (long) (sections.str_offsets_size
12264 ? sections.str_offsets_offset : 0));
12265 /* Can we use an existing virtual DWO file? */
12266 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12267 virtual_dwo_name.c_str (),
12269 /* Create one if necessary. */
12270 if (*dwo_file_slot == NULL)
12272 if (dwarf_read_debug)
12274 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12275 virtual_dwo_name.c_str ());
12277 dwo_file = new struct dwo_file;
12278 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12280 dwo_file->comp_dir = comp_dir;
12281 dwo_file->sections.abbrev =
12282 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12283 sections.abbrev_offset, sections.abbrev_size);
12284 dwo_file->sections.line =
12285 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12286 sections.line_offset, sections.line_size);
12287 dwo_file->sections.loc =
12288 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12289 sections.loc_offset, sections.loc_size);
12290 dwo_file->sections.macinfo =
12291 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12292 sections.macinfo_offset, sections.macinfo_size);
12293 dwo_file->sections.macro =
12294 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12295 sections.macro_offset, sections.macro_size);
12296 dwo_file->sections.str_offsets =
12297 create_dwp_v2_section (dwarf2_per_objfile,
12298 &dwp_file->sections.str_offsets,
12299 sections.str_offsets_offset,
12300 sections.str_offsets_size);
12301 /* The "str" section is global to the entire DWP file. */
12302 dwo_file->sections.str = dwp_file->sections.str;
12303 /* The info or types section is assigned below to dwo_unit,
12304 there's no need to record it in dwo_file.
12305 Also, we can't simply record type sections in dwo_file because
12306 we record a pointer into the vector in dwo_unit. As we collect more
12307 types we'll grow the vector and eventually have to reallocate space
12308 for it, invalidating all copies of pointers into the previous
12310 *dwo_file_slot = dwo_file;
12314 if (dwarf_read_debug)
12316 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12317 virtual_dwo_name.c_str ());
12319 dwo_file = (struct dwo_file *) *dwo_file_slot;
12322 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12323 dwo_unit->dwo_file = dwo_file;
12324 dwo_unit->signature = signature;
12325 dwo_unit->section =
12326 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12327 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12329 ? &dwp_file->sections.types
12330 : &dwp_file->sections.info,
12331 sections.info_or_types_offset,
12332 sections.info_or_types_size);
12333 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12338 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12339 Returns NULL if the signature isn't found. */
12341 static struct dwo_unit *
12342 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12343 struct dwp_file *dwp_file, const char *comp_dir,
12344 ULONGEST signature, int is_debug_types)
12346 const struct dwp_hash_table *dwp_htab =
12347 is_debug_types ? dwp_file->tus : dwp_file->cus;
12348 bfd *dbfd = dwp_file->dbfd.get ();
12349 uint32_t mask = dwp_htab->nr_slots - 1;
12350 uint32_t hash = signature & mask;
12351 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12354 struct dwo_unit find_dwo_cu;
12356 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12357 find_dwo_cu.signature = signature;
12358 slot = htab_find_slot (is_debug_types
12359 ? dwp_file->loaded_tus.get ()
12360 : dwp_file->loaded_cus.get (),
12361 &find_dwo_cu, INSERT);
12364 return (struct dwo_unit *) *slot;
12366 /* Use a for loop so that we don't loop forever on bad debug info. */
12367 for (i = 0; i < dwp_htab->nr_slots; ++i)
12369 ULONGEST signature_in_table;
12371 signature_in_table =
12372 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12373 if (signature_in_table == signature)
12375 uint32_t unit_index =
12376 read_4_bytes (dbfd,
12377 dwp_htab->unit_table + hash * sizeof (uint32_t));
12379 if (dwp_file->version == 1)
12381 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12382 dwp_file, unit_index,
12383 comp_dir, signature,
12388 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12389 dwp_file, unit_index,
12390 comp_dir, signature,
12393 return (struct dwo_unit *) *slot;
12395 if (signature_in_table == 0)
12397 hash = (hash + hash2) & mask;
12400 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12401 " [in module %s]"),
12405 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12406 Open the file specified by FILE_NAME and hand it off to BFD for
12407 preliminary analysis. Return a newly initialized bfd *, which
12408 includes a canonicalized copy of FILE_NAME.
12409 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12410 SEARCH_CWD is true if the current directory is to be searched.
12411 It will be searched before debug-file-directory.
12412 If successful, the file is added to the bfd include table of the
12413 objfile's bfd (see gdb_bfd_record_inclusion).
12414 If unable to find/open the file, return NULL.
12415 NOTE: This function is derived from symfile_bfd_open. */
12417 static gdb_bfd_ref_ptr
12418 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12419 const char *file_name, int is_dwp, int search_cwd)
12422 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12423 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12424 to debug_file_directory. */
12425 const char *search_path;
12426 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12428 gdb::unique_xmalloc_ptr<char> search_path_holder;
12431 if (*debug_file_directory != '\0')
12433 search_path_holder.reset (concat (".", dirname_separator_string,
12434 debug_file_directory,
12436 search_path = search_path_holder.get ();
12442 search_path = debug_file_directory;
12444 openp_flags flags = OPF_RETURN_REALPATH;
12446 flags |= OPF_SEARCH_IN_PATH;
12448 gdb::unique_xmalloc_ptr<char> absolute_name;
12449 desc = openp (search_path, flags, file_name,
12450 O_RDONLY | O_BINARY, &absolute_name);
12454 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12456 if (sym_bfd == NULL)
12458 bfd_set_cacheable (sym_bfd.get (), 1);
12460 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12463 /* Success. Record the bfd as having been included by the objfile's bfd.
12464 This is important because things like demangled_names_hash lives in the
12465 objfile's per_bfd space and may have references to things like symbol
12466 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12467 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12472 /* Try to open DWO file FILE_NAME.
12473 COMP_DIR is the DW_AT_comp_dir attribute.
12474 The result is the bfd handle of the file.
12475 If there is a problem finding or opening the file, return NULL.
12476 Upon success, the canonicalized path of the file is stored in the bfd,
12477 same as symfile_bfd_open. */
12479 static gdb_bfd_ref_ptr
12480 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12481 const char *file_name, const char *comp_dir)
12483 if (IS_ABSOLUTE_PATH (file_name))
12484 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12485 0 /*is_dwp*/, 0 /*search_cwd*/);
12487 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12489 if (comp_dir != NULL)
12491 gdb::unique_xmalloc_ptr<char> path_to_try
12492 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12494 /* NOTE: If comp_dir is a relative path, this will also try the
12495 search path, which seems useful. */
12496 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12497 path_to_try.get (),
12499 1 /*search_cwd*/));
12504 /* That didn't work, try debug-file-directory, which, despite its name,
12505 is a list of paths. */
12507 if (*debug_file_directory == '\0')
12510 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12511 0 /*is_dwp*/, 1 /*search_cwd*/);
12514 /* This function is mapped across the sections and remembers the offset and
12515 size of each of the DWO debugging sections we are interested in. */
12518 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12520 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12521 const struct dwop_section_names *names = &dwop_section_names;
12523 if (section_is_p (sectp->name, &names->abbrev_dwo))
12525 dwo_sections->abbrev.s.section = sectp;
12526 dwo_sections->abbrev.size = bfd_section_size (sectp);
12528 else if (section_is_p (sectp->name, &names->info_dwo))
12530 dwo_sections->info.s.section = sectp;
12531 dwo_sections->info.size = bfd_section_size (sectp);
12533 else if (section_is_p (sectp->name, &names->line_dwo))
12535 dwo_sections->line.s.section = sectp;
12536 dwo_sections->line.size = bfd_section_size (sectp);
12538 else if (section_is_p (sectp->name, &names->loc_dwo))
12540 dwo_sections->loc.s.section = sectp;
12541 dwo_sections->loc.size = bfd_section_size (sectp);
12543 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12545 dwo_sections->macinfo.s.section = sectp;
12546 dwo_sections->macinfo.size = bfd_section_size (sectp);
12548 else if (section_is_p (sectp->name, &names->macro_dwo))
12550 dwo_sections->macro.s.section = sectp;
12551 dwo_sections->macro.size = bfd_section_size (sectp);
12553 else if (section_is_p (sectp->name, &names->str_dwo))
12555 dwo_sections->str.s.section = sectp;
12556 dwo_sections->str.size = bfd_section_size (sectp);
12558 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12560 dwo_sections->str_offsets.s.section = sectp;
12561 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12563 else if (section_is_p (sectp->name, &names->types_dwo))
12565 struct dwarf2_section_info type_section;
12567 memset (&type_section, 0, sizeof (type_section));
12568 type_section.s.section = sectp;
12569 type_section.size = bfd_section_size (sectp);
12570 dwo_sections->types.push_back (type_section);
12574 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12575 by PER_CU. This is for the non-DWP case.
12576 The result is NULL if DWO_NAME can't be found. */
12578 static struct dwo_file *
12579 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12580 const char *dwo_name, const char *comp_dir)
12582 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12584 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12587 if (dwarf_read_debug)
12588 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12592 dwo_file_up dwo_file (new struct dwo_file);
12593 dwo_file->dwo_name = dwo_name;
12594 dwo_file->comp_dir = comp_dir;
12595 dwo_file->dbfd = std::move (dbfd);
12597 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12598 &dwo_file->sections);
12600 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12601 dwo_file->sections.info, dwo_file->cus);
12603 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12604 dwo_file->sections.types, dwo_file->tus);
12606 if (dwarf_read_debug)
12607 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12609 return dwo_file.release ();
12612 /* This function is mapped across the sections and remembers the offset and
12613 size of each of the DWP debugging sections common to version 1 and 2 that
12614 we are interested in. */
12617 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12618 void *dwp_file_ptr)
12620 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12621 const struct dwop_section_names *names = &dwop_section_names;
12622 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12624 /* Record the ELF section number for later lookup: this is what the
12625 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12626 gdb_assert (elf_section_nr < dwp_file->num_sections);
12627 dwp_file->elf_sections[elf_section_nr] = sectp;
12629 /* Look for specific sections that we need. */
12630 if (section_is_p (sectp->name, &names->str_dwo))
12632 dwp_file->sections.str.s.section = sectp;
12633 dwp_file->sections.str.size = bfd_section_size (sectp);
12635 else if (section_is_p (sectp->name, &names->cu_index))
12637 dwp_file->sections.cu_index.s.section = sectp;
12638 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12640 else if (section_is_p (sectp->name, &names->tu_index))
12642 dwp_file->sections.tu_index.s.section = sectp;
12643 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12647 /* This function is mapped across the sections and remembers the offset and
12648 size of each of the DWP version 2 debugging sections that we are interested
12649 in. This is split into a separate function because we don't know if we
12650 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12653 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12655 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12656 const struct dwop_section_names *names = &dwop_section_names;
12657 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12659 /* Record the ELF section number for later lookup: this is what the
12660 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12661 gdb_assert (elf_section_nr < dwp_file->num_sections);
12662 dwp_file->elf_sections[elf_section_nr] = sectp;
12664 /* Look for specific sections that we need. */
12665 if (section_is_p (sectp->name, &names->abbrev_dwo))
12667 dwp_file->sections.abbrev.s.section = sectp;
12668 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12670 else if (section_is_p (sectp->name, &names->info_dwo))
12672 dwp_file->sections.info.s.section = sectp;
12673 dwp_file->sections.info.size = bfd_section_size (sectp);
12675 else if (section_is_p (sectp->name, &names->line_dwo))
12677 dwp_file->sections.line.s.section = sectp;
12678 dwp_file->sections.line.size = bfd_section_size (sectp);
12680 else if (section_is_p (sectp->name, &names->loc_dwo))
12682 dwp_file->sections.loc.s.section = sectp;
12683 dwp_file->sections.loc.size = bfd_section_size (sectp);
12685 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12687 dwp_file->sections.macinfo.s.section = sectp;
12688 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12690 else if (section_is_p (sectp->name, &names->macro_dwo))
12692 dwp_file->sections.macro.s.section = sectp;
12693 dwp_file->sections.macro.size = bfd_section_size (sectp);
12695 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12697 dwp_file->sections.str_offsets.s.section = sectp;
12698 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12700 else if (section_is_p (sectp->name, &names->types_dwo))
12702 dwp_file->sections.types.s.section = sectp;
12703 dwp_file->sections.types.size = bfd_section_size (sectp);
12707 /* Hash function for dwp_file loaded CUs/TUs. */
12710 hash_dwp_loaded_cutus (const void *item)
12712 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12714 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12715 return dwo_unit->signature;
12718 /* Equality function for dwp_file loaded CUs/TUs. */
12721 eq_dwp_loaded_cutus (const void *a, const void *b)
12723 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12724 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12726 return dua->signature == dub->signature;
12729 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12732 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
12734 return htab_up (htab_create_alloc (3,
12735 hash_dwp_loaded_cutus,
12736 eq_dwp_loaded_cutus,
12737 NULL, xcalloc, xfree));
12740 /* Try to open DWP file FILE_NAME.
12741 The result is the bfd handle of the file.
12742 If there is a problem finding or opening the file, return NULL.
12743 Upon success, the canonicalized path of the file is stored in the bfd,
12744 same as symfile_bfd_open. */
12746 static gdb_bfd_ref_ptr
12747 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12748 const char *file_name)
12750 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12752 1 /*search_cwd*/));
12756 /* Work around upstream bug 15652.
12757 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12758 [Whether that's a "bug" is debatable, but it is getting in our way.]
12759 We have no real idea where the dwp file is, because gdb's realpath-ing
12760 of the executable's path may have discarded the needed info.
12761 [IWBN if the dwp file name was recorded in the executable, akin to
12762 .gnu_debuglink, but that doesn't exist yet.]
12763 Strip the directory from FILE_NAME and search again. */
12764 if (*debug_file_directory != '\0')
12766 /* Don't implicitly search the current directory here.
12767 If the user wants to search "." to handle this case,
12768 it must be added to debug-file-directory. */
12769 return try_open_dwop_file (dwarf2_per_objfile,
12770 lbasename (file_name), 1 /*is_dwp*/,
12777 /* Initialize the use of the DWP file for the current objfile.
12778 By convention the name of the DWP file is ${objfile}.dwp.
12779 The result is NULL if it can't be found. */
12781 static std::unique_ptr<struct dwp_file>
12782 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12784 struct objfile *objfile = dwarf2_per_objfile->objfile;
12786 /* Try to find first .dwp for the binary file before any symbolic links
12789 /* If the objfile is a debug file, find the name of the real binary
12790 file and get the name of dwp file from there. */
12791 std::string dwp_name;
12792 if (objfile->separate_debug_objfile_backlink != NULL)
12794 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12795 const char *backlink_basename = lbasename (backlink->original_name);
12797 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12800 dwp_name = objfile->original_name;
12802 dwp_name += ".dwp";
12804 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12806 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12808 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12809 dwp_name = objfile_name (objfile);
12810 dwp_name += ".dwp";
12811 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12816 if (dwarf_read_debug)
12817 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12818 return std::unique_ptr<dwp_file> ();
12821 const char *name = bfd_get_filename (dbfd.get ());
12822 std::unique_ptr<struct dwp_file> dwp_file
12823 (new struct dwp_file (name, std::move (dbfd)));
12825 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12826 dwp_file->elf_sections =
12827 OBSTACK_CALLOC (&objfile->objfile_obstack,
12828 dwp_file->num_sections, asection *);
12830 bfd_map_over_sections (dwp_file->dbfd.get (),
12831 dwarf2_locate_common_dwp_sections,
12834 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12837 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12840 /* The DWP file version is stored in the hash table. Oh well. */
12841 if (dwp_file->cus && dwp_file->tus
12842 && dwp_file->cus->version != dwp_file->tus->version)
12844 /* Technically speaking, we should try to limp along, but this is
12845 pretty bizarre. We use pulongest here because that's the established
12846 portability solution (e.g, we cannot use %u for uint32_t). */
12847 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12848 " TU version %s [in DWP file %s]"),
12849 pulongest (dwp_file->cus->version),
12850 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12854 dwp_file->version = dwp_file->cus->version;
12855 else if (dwp_file->tus)
12856 dwp_file->version = dwp_file->tus->version;
12858 dwp_file->version = 2;
12860 if (dwp_file->version == 2)
12861 bfd_map_over_sections (dwp_file->dbfd.get (),
12862 dwarf2_locate_v2_dwp_sections,
12865 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
12866 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
12868 if (dwarf_read_debug)
12870 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12871 fprintf_unfiltered (gdb_stdlog,
12872 " %s CUs, %s TUs\n",
12873 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12874 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12880 /* Wrapper around open_and_init_dwp_file, only open it once. */
12882 static struct dwp_file *
12883 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12885 if (! dwarf2_per_objfile->dwp_checked)
12887 dwarf2_per_objfile->dwp_file
12888 = open_and_init_dwp_file (dwarf2_per_objfile);
12889 dwarf2_per_objfile->dwp_checked = 1;
12891 return dwarf2_per_objfile->dwp_file.get ();
12894 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12895 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12896 or in the DWP file for the objfile, referenced by THIS_UNIT.
12897 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12898 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12900 This is called, for example, when wanting to read a variable with a
12901 complex location. Therefore we don't want to do file i/o for every call.
12902 Therefore we don't want to look for a DWO file on every call.
12903 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12904 then we check if we've already seen DWO_NAME, and only THEN do we check
12907 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12908 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12910 static struct dwo_unit *
12911 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12912 const char *dwo_name, const char *comp_dir,
12913 ULONGEST signature, int is_debug_types)
12915 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12916 struct objfile *objfile = dwarf2_per_objfile->objfile;
12917 const char *kind = is_debug_types ? "TU" : "CU";
12918 void **dwo_file_slot;
12919 struct dwo_file *dwo_file;
12920 struct dwp_file *dwp_file;
12922 /* First see if there's a DWP file.
12923 If we have a DWP file but didn't find the DWO inside it, don't
12924 look for the original DWO file. It makes gdb behave differently
12925 depending on whether one is debugging in the build tree. */
12927 dwp_file = get_dwp_file (dwarf2_per_objfile);
12928 if (dwp_file != NULL)
12930 const struct dwp_hash_table *dwp_htab =
12931 is_debug_types ? dwp_file->tus : dwp_file->cus;
12933 if (dwp_htab != NULL)
12935 struct dwo_unit *dwo_cutu =
12936 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12937 signature, is_debug_types);
12939 if (dwo_cutu != NULL)
12941 if (dwarf_read_debug)
12943 fprintf_unfiltered (gdb_stdlog,
12944 "Virtual DWO %s %s found: @%s\n",
12945 kind, hex_string (signature),
12946 host_address_to_string (dwo_cutu));
12954 /* No DWP file, look for the DWO file. */
12956 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12957 dwo_name, comp_dir);
12958 if (*dwo_file_slot == NULL)
12960 /* Read in the file and build a table of the CUs/TUs it contains. */
12961 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12963 /* NOTE: This will be NULL if unable to open the file. */
12964 dwo_file = (struct dwo_file *) *dwo_file_slot;
12966 if (dwo_file != NULL)
12968 struct dwo_unit *dwo_cutu = NULL;
12970 if (is_debug_types && dwo_file->tus)
12972 struct dwo_unit find_dwo_cutu;
12974 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12975 find_dwo_cutu.signature = signature;
12977 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12980 else if (!is_debug_types && dwo_file->cus)
12982 struct dwo_unit find_dwo_cutu;
12984 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12985 find_dwo_cutu.signature = signature;
12986 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12990 if (dwo_cutu != NULL)
12992 if (dwarf_read_debug)
12994 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12995 kind, dwo_name, hex_string (signature),
12996 host_address_to_string (dwo_cutu));
13003 /* We didn't find it. This could mean a dwo_id mismatch, or
13004 someone deleted the DWO/DWP file, or the search path isn't set up
13005 correctly to find the file. */
13007 if (dwarf_read_debug)
13009 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13010 kind, dwo_name, hex_string (signature));
13013 /* This is a warning and not a complaint because it can be caused by
13014 pilot error (e.g., user accidentally deleting the DWO). */
13016 /* Print the name of the DWP file if we looked there, helps the user
13017 better diagnose the problem. */
13018 std::string dwp_text;
13020 if (dwp_file != NULL)
13021 dwp_text = string_printf (" [in DWP file %s]",
13022 lbasename (dwp_file->name));
13024 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13025 " [in module %s]"),
13026 kind, dwo_name, hex_string (signature),
13028 this_unit->is_debug_types ? "TU" : "CU",
13029 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13034 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13035 See lookup_dwo_cutu_unit for details. */
13037 static struct dwo_unit *
13038 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13039 const char *dwo_name, const char *comp_dir,
13040 ULONGEST signature)
13042 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13045 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13046 See lookup_dwo_cutu_unit for details. */
13048 static struct dwo_unit *
13049 lookup_dwo_type_unit (struct signatured_type *this_tu,
13050 const char *dwo_name, const char *comp_dir)
13052 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13055 /* Traversal function for queue_and_load_all_dwo_tus. */
13058 queue_and_load_dwo_tu (void **slot, void *info)
13060 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13061 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13062 ULONGEST signature = dwo_unit->signature;
13063 struct signatured_type *sig_type =
13064 lookup_dwo_signatured_type (per_cu->cu, signature);
13066 if (sig_type != NULL)
13068 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13070 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13071 a real dependency of PER_CU on SIG_TYPE. That is detected later
13072 while processing PER_CU. */
13073 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13074 load_full_type_unit (sig_cu);
13075 per_cu->imported_symtabs_push (sig_cu);
13081 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13082 The DWO may have the only definition of the type, though it may not be
13083 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13084 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13087 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13089 struct dwo_unit *dwo_unit;
13090 struct dwo_file *dwo_file;
13092 gdb_assert (!per_cu->is_debug_types);
13093 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13094 gdb_assert (per_cu->cu != NULL);
13096 dwo_unit = per_cu->cu->dwo_unit;
13097 gdb_assert (dwo_unit != NULL);
13099 dwo_file = dwo_unit->dwo_file;
13100 if (dwo_file->tus != NULL)
13101 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
13105 /* Read in various DIEs. */
13107 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13108 Inherit only the children of the DW_AT_abstract_origin DIE not being
13109 already referenced by DW_AT_abstract_origin from the children of the
13113 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13115 struct die_info *child_die;
13116 sect_offset *offsetp;
13117 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13118 struct die_info *origin_die;
13119 /* Iterator of the ORIGIN_DIE children. */
13120 struct die_info *origin_child_die;
13121 struct attribute *attr;
13122 struct dwarf2_cu *origin_cu;
13123 struct pending **origin_previous_list_in_scope;
13125 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13129 /* Note that following die references may follow to a die in a
13133 origin_die = follow_die_ref (die, attr, &origin_cu);
13135 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13137 origin_previous_list_in_scope = origin_cu->list_in_scope;
13138 origin_cu->list_in_scope = cu->list_in_scope;
13140 if (die->tag != origin_die->tag
13141 && !(die->tag == DW_TAG_inlined_subroutine
13142 && origin_die->tag == DW_TAG_subprogram))
13143 complaint (_("DIE %s and its abstract origin %s have different tags"),
13144 sect_offset_str (die->sect_off),
13145 sect_offset_str (origin_die->sect_off));
13147 std::vector<sect_offset> offsets;
13149 for (child_die = die->child;
13150 child_die && child_die->tag;
13151 child_die = sibling_die (child_die))
13153 struct die_info *child_origin_die;
13154 struct dwarf2_cu *child_origin_cu;
13156 /* We are trying to process concrete instance entries:
13157 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13158 it's not relevant to our analysis here. i.e. detecting DIEs that are
13159 present in the abstract instance but not referenced in the concrete
13161 if (child_die->tag == DW_TAG_call_site
13162 || child_die->tag == DW_TAG_GNU_call_site)
13165 /* For each CHILD_DIE, find the corresponding child of
13166 ORIGIN_DIE. If there is more than one layer of
13167 DW_AT_abstract_origin, follow them all; there shouldn't be,
13168 but GCC versions at least through 4.4 generate this (GCC PR
13170 child_origin_die = child_die;
13171 child_origin_cu = cu;
13174 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13178 child_origin_die = follow_die_ref (child_origin_die, attr,
13182 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13183 counterpart may exist. */
13184 if (child_origin_die != child_die)
13186 if (child_die->tag != child_origin_die->tag
13187 && !(child_die->tag == DW_TAG_inlined_subroutine
13188 && child_origin_die->tag == DW_TAG_subprogram))
13189 complaint (_("Child DIE %s and its abstract origin %s have "
13191 sect_offset_str (child_die->sect_off),
13192 sect_offset_str (child_origin_die->sect_off));
13193 if (child_origin_die->parent != origin_die)
13194 complaint (_("Child DIE %s and its abstract origin %s have "
13195 "different parents"),
13196 sect_offset_str (child_die->sect_off),
13197 sect_offset_str (child_origin_die->sect_off));
13199 offsets.push_back (child_origin_die->sect_off);
13202 std::sort (offsets.begin (), offsets.end ());
13203 sect_offset *offsets_end = offsets.data () + offsets.size ();
13204 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13205 if (offsetp[-1] == *offsetp)
13206 complaint (_("Multiple children of DIE %s refer "
13207 "to DIE %s as their abstract origin"),
13208 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13210 offsetp = offsets.data ();
13211 origin_child_die = origin_die->child;
13212 while (origin_child_die && origin_child_die->tag)
13214 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13215 while (offsetp < offsets_end
13216 && *offsetp < origin_child_die->sect_off)
13218 if (offsetp >= offsets_end
13219 || *offsetp > origin_child_die->sect_off)
13221 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13222 Check whether we're already processing ORIGIN_CHILD_DIE.
13223 This can happen with mutually referenced abstract_origins.
13225 if (!origin_child_die->in_process)
13226 process_die (origin_child_die, origin_cu);
13228 origin_child_die = sibling_die (origin_child_die);
13230 origin_cu->list_in_scope = origin_previous_list_in_scope;
13232 if (cu != origin_cu)
13233 compute_delayed_physnames (origin_cu);
13237 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13239 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13241 struct context_stack *newobj;
13244 struct die_info *child_die;
13245 struct attribute *attr, *call_line, *call_file;
13247 CORE_ADDR baseaddr;
13248 struct block *block;
13249 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13250 std::vector<struct symbol *> template_args;
13251 struct template_symbol *templ_func = NULL;
13255 /* If we do not have call site information, we can't show the
13256 caller of this inlined function. That's too confusing, so
13257 only use the scope for local variables. */
13258 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13259 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13260 if (call_line == NULL || call_file == NULL)
13262 read_lexical_block_scope (die, cu);
13267 baseaddr = objfile->text_section_offset ();
13269 name = dwarf2_name (die, cu);
13271 /* Ignore functions with missing or empty names. These are actually
13272 illegal according to the DWARF standard. */
13275 complaint (_("missing name for subprogram DIE at %s"),
13276 sect_offset_str (die->sect_off));
13280 /* Ignore functions with missing or invalid low and high pc attributes. */
13281 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13282 <= PC_BOUNDS_INVALID)
13284 attr = dwarf2_attr (die, DW_AT_external, cu);
13285 if (!attr || !DW_UNSND (attr))
13286 complaint (_("cannot get low and high bounds "
13287 "for subprogram DIE at %s"),
13288 sect_offset_str (die->sect_off));
13292 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13293 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13295 /* If we have any template arguments, then we must allocate a
13296 different sort of symbol. */
13297 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13299 if (child_die->tag == DW_TAG_template_type_param
13300 || child_die->tag == DW_TAG_template_value_param)
13302 templ_func = allocate_template_symbol (objfile);
13303 templ_func->subclass = SYMBOL_TEMPLATE;
13308 newobj = cu->get_builder ()->push_context (0, lowpc);
13309 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13310 (struct symbol *) templ_func);
13312 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13313 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13316 /* If there is a location expression for DW_AT_frame_base, record
13318 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13319 if (attr != nullptr)
13320 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13322 /* If there is a location for the static link, record it. */
13323 newobj->static_link = NULL;
13324 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13325 if (attr != nullptr)
13327 newobj->static_link
13328 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13329 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13330 dwarf2_per_cu_addr_type (cu->per_cu));
13333 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13335 if (die->child != NULL)
13337 child_die = die->child;
13338 while (child_die && child_die->tag)
13340 if (child_die->tag == DW_TAG_template_type_param
13341 || child_die->tag == DW_TAG_template_value_param)
13343 struct symbol *arg = new_symbol (child_die, NULL, cu);
13346 template_args.push_back (arg);
13349 process_die (child_die, cu);
13350 child_die = sibling_die (child_die);
13354 inherit_abstract_dies (die, cu);
13356 /* If we have a DW_AT_specification, we might need to import using
13357 directives from the context of the specification DIE. See the
13358 comment in determine_prefix. */
13359 if (cu->language == language_cplus
13360 && dwarf2_attr (die, DW_AT_specification, cu))
13362 struct dwarf2_cu *spec_cu = cu;
13363 struct die_info *spec_die = die_specification (die, &spec_cu);
13367 child_die = spec_die->child;
13368 while (child_die && child_die->tag)
13370 if (child_die->tag == DW_TAG_imported_module)
13371 process_die (child_die, spec_cu);
13372 child_die = sibling_die (child_die);
13375 /* In some cases, GCC generates specification DIEs that
13376 themselves contain DW_AT_specification attributes. */
13377 spec_die = die_specification (spec_die, &spec_cu);
13381 struct context_stack cstk = cu->get_builder ()->pop_context ();
13382 /* Make a block for the local symbols within. */
13383 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13384 cstk.static_link, lowpc, highpc);
13386 /* For C++, set the block's scope. */
13387 if ((cu->language == language_cplus
13388 || cu->language == language_fortran
13389 || cu->language == language_d
13390 || cu->language == language_rust)
13391 && cu->processing_has_namespace_info)
13392 block_set_scope (block, determine_prefix (die, cu),
13393 &objfile->objfile_obstack);
13395 /* If we have address ranges, record them. */
13396 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13398 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13400 /* Attach template arguments to function. */
13401 if (!template_args.empty ())
13403 gdb_assert (templ_func != NULL);
13405 templ_func->n_template_arguments = template_args.size ();
13406 templ_func->template_arguments
13407 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13408 templ_func->n_template_arguments);
13409 memcpy (templ_func->template_arguments,
13410 template_args.data (),
13411 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13413 /* Make sure that the symtab is set on the new symbols. Even
13414 though they don't appear in this symtab directly, other parts
13415 of gdb assume that symbols do, and this is reasonably
13417 for (symbol *sym : template_args)
13418 symbol_set_symtab (sym, symbol_symtab (templ_func));
13421 /* In C++, we can have functions nested inside functions (e.g., when
13422 a function declares a class that has methods). This means that
13423 when we finish processing a function scope, we may need to go
13424 back to building a containing block's symbol lists. */
13425 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13426 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13428 /* If we've finished processing a top-level function, subsequent
13429 symbols go in the file symbol list. */
13430 if (cu->get_builder ()->outermost_context_p ())
13431 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13434 /* Process all the DIES contained within a lexical block scope. Start
13435 a new scope, process the dies, and then close the scope. */
13438 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13441 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13442 CORE_ADDR lowpc, highpc;
13443 struct die_info *child_die;
13444 CORE_ADDR baseaddr;
13446 baseaddr = objfile->text_section_offset ();
13448 /* Ignore blocks with missing or invalid low and high pc attributes. */
13449 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13450 as multiple lexical blocks? Handling children in a sane way would
13451 be nasty. Might be easier to properly extend generic blocks to
13452 describe ranges. */
13453 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13455 case PC_BOUNDS_NOT_PRESENT:
13456 /* DW_TAG_lexical_block has no attributes, process its children as if
13457 there was no wrapping by that DW_TAG_lexical_block.
13458 GCC does no longer produces such DWARF since GCC r224161. */
13459 for (child_die = die->child;
13460 child_die != NULL && child_die->tag;
13461 child_die = sibling_die (child_die))
13462 process_die (child_die, cu);
13464 case PC_BOUNDS_INVALID:
13467 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13468 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13470 cu->get_builder ()->push_context (0, lowpc);
13471 if (die->child != NULL)
13473 child_die = die->child;
13474 while (child_die && child_die->tag)
13476 process_die (child_die, cu);
13477 child_die = sibling_die (child_die);
13480 inherit_abstract_dies (die, cu);
13481 struct context_stack cstk = cu->get_builder ()->pop_context ();
13483 if (*cu->get_builder ()->get_local_symbols () != NULL
13484 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13486 struct block *block
13487 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13488 cstk.start_addr, highpc);
13490 /* Note that recording ranges after traversing children, as we
13491 do here, means that recording a parent's ranges entails
13492 walking across all its children's ranges as they appear in
13493 the address map, which is quadratic behavior.
13495 It would be nicer to record the parent's ranges before
13496 traversing its children, simply overriding whatever you find
13497 there. But since we don't even decide whether to create a
13498 block until after we've traversed its children, that's hard
13500 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13502 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13503 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13506 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13509 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13511 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13512 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13513 CORE_ADDR pc, baseaddr;
13514 struct attribute *attr;
13515 struct call_site *call_site, call_site_local;
13518 struct die_info *child_die;
13520 baseaddr = objfile->text_section_offset ();
13522 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13525 /* This was a pre-DWARF-5 GNU extension alias
13526 for DW_AT_call_return_pc. */
13527 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13531 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13532 "DIE %s [in module %s]"),
13533 sect_offset_str (die->sect_off), objfile_name (objfile));
13536 pc = attr->value_as_address () + baseaddr;
13537 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13539 if (cu->call_site_htab == NULL)
13540 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13541 NULL, &objfile->objfile_obstack,
13542 hashtab_obstack_allocate, NULL);
13543 call_site_local.pc = pc;
13544 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13547 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13548 "DIE %s [in module %s]"),
13549 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13550 objfile_name (objfile));
13554 /* Count parameters at the caller. */
13557 for (child_die = die->child; child_die && child_die->tag;
13558 child_die = sibling_die (child_die))
13560 if (child_die->tag != DW_TAG_call_site_parameter
13561 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13563 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13564 "DW_TAG_call_site child DIE %s [in module %s]"),
13565 child_die->tag, sect_offset_str (child_die->sect_off),
13566 objfile_name (objfile));
13574 = ((struct call_site *)
13575 obstack_alloc (&objfile->objfile_obstack,
13576 sizeof (*call_site)
13577 + (sizeof (*call_site->parameter) * (nparams - 1))));
13579 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13580 call_site->pc = pc;
13582 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13583 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13585 struct die_info *func_die;
13587 /* Skip also over DW_TAG_inlined_subroutine. */
13588 for (func_die = die->parent;
13589 func_die && func_die->tag != DW_TAG_subprogram
13590 && func_die->tag != DW_TAG_subroutine_type;
13591 func_die = func_die->parent);
13593 /* DW_AT_call_all_calls is a superset
13594 of DW_AT_call_all_tail_calls. */
13596 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13597 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13598 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13599 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13601 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13602 not complete. But keep CALL_SITE for look ups via call_site_htab,
13603 both the initial caller containing the real return address PC and
13604 the final callee containing the current PC of a chain of tail
13605 calls do not need to have the tail call list complete. But any
13606 function candidate for a virtual tail call frame searched via
13607 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13608 determined unambiguously. */
13612 struct type *func_type = NULL;
13615 func_type = get_die_type (func_die, cu);
13616 if (func_type != NULL)
13618 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13620 /* Enlist this call site to the function. */
13621 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13622 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13625 complaint (_("Cannot find function owning DW_TAG_call_site "
13626 "DIE %s [in module %s]"),
13627 sect_offset_str (die->sect_off), objfile_name (objfile));
13631 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13633 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13635 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13638 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13639 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13641 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13642 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13643 /* Keep NULL DWARF_BLOCK. */;
13644 else if (attr->form_is_block ())
13646 struct dwarf2_locexpr_baton *dlbaton;
13648 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13649 dlbaton->data = DW_BLOCK (attr)->data;
13650 dlbaton->size = DW_BLOCK (attr)->size;
13651 dlbaton->per_cu = cu->per_cu;
13653 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13655 else if (attr->form_is_ref ())
13657 struct dwarf2_cu *target_cu = cu;
13658 struct die_info *target_die;
13660 target_die = follow_die_ref (die, attr, &target_cu);
13661 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13662 if (die_is_declaration (target_die, target_cu))
13664 const char *target_physname;
13666 /* Prefer the mangled name; otherwise compute the demangled one. */
13667 target_physname = dw2_linkage_name (target_die, target_cu);
13668 if (target_physname == NULL)
13669 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13670 if (target_physname == NULL)
13671 complaint (_("DW_AT_call_target target DIE has invalid "
13672 "physname, for referencing DIE %s [in module %s]"),
13673 sect_offset_str (die->sect_off), objfile_name (objfile));
13675 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13681 /* DW_AT_entry_pc should be preferred. */
13682 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13683 <= PC_BOUNDS_INVALID)
13684 complaint (_("DW_AT_call_target target DIE has invalid "
13685 "low pc, for referencing DIE %s [in module %s]"),
13686 sect_offset_str (die->sect_off), objfile_name (objfile));
13689 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13690 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13695 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13696 "block nor reference, for DIE %s [in module %s]"),
13697 sect_offset_str (die->sect_off), objfile_name (objfile));
13699 call_site->per_cu = cu->per_cu;
13701 for (child_die = die->child;
13702 child_die && child_die->tag;
13703 child_die = sibling_die (child_die))
13705 struct call_site_parameter *parameter;
13706 struct attribute *loc, *origin;
13708 if (child_die->tag != DW_TAG_call_site_parameter
13709 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13711 /* Already printed the complaint above. */
13715 gdb_assert (call_site->parameter_count < nparams);
13716 parameter = &call_site->parameter[call_site->parameter_count];
13718 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13719 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13720 register is contained in DW_AT_call_value. */
13722 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13723 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13724 if (origin == NULL)
13726 /* This was a pre-DWARF-5 GNU extension alias
13727 for DW_AT_call_parameter. */
13728 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13730 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13732 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13734 sect_offset sect_off
13735 = (sect_offset) dwarf2_get_ref_die_offset (origin);
13736 if (!offset_in_cu_p (&cu->header, sect_off))
13738 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13739 binding can be done only inside one CU. Such referenced DIE
13740 therefore cannot be even moved to DW_TAG_partial_unit. */
13741 complaint (_("DW_AT_call_parameter offset is not in CU for "
13742 "DW_TAG_call_site child DIE %s [in module %s]"),
13743 sect_offset_str (child_die->sect_off),
13744 objfile_name (objfile));
13747 parameter->u.param_cu_off
13748 = (cu_offset) (sect_off - cu->header.sect_off);
13750 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13752 complaint (_("No DW_FORM_block* DW_AT_location for "
13753 "DW_TAG_call_site child DIE %s [in module %s]"),
13754 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13759 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13760 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13761 if (parameter->u.dwarf_reg != -1)
13762 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13763 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13764 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13765 ¶meter->u.fb_offset))
13766 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13769 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13770 "for DW_FORM_block* DW_AT_location is supported for "
13771 "DW_TAG_call_site child DIE %s "
13773 sect_offset_str (child_die->sect_off),
13774 objfile_name (objfile));
13779 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13781 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13782 if (attr == NULL || !attr->form_is_block ())
13784 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13785 "DW_TAG_call_site child DIE %s [in module %s]"),
13786 sect_offset_str (child_die->sect_off),
13787 objfile_name (objfile));
13790 parameter->value = DW_BLOCK (attr)->data;
13791 parameter->value_size = DW_BLOCK (attr)->size;
13793 /* Parameters are not pre-cleared by memset above. */
13794 parameter->data_value = NULL;
13795 parameter->data_value_size = 0;
13796 call_site->parameter_count++;
13798 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13800 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13801 if (attr != nullptr)
13803 if (!attr->form_is_block ())
13804 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13805 "DW_TAG_call_site child DIE %s [in module %s]"),
13806 sect_offset_str (child_die->sect_off),
13807 objfile_name (objfile));
13810 parameter->data_value = DW_BLOCK (attr)->data;
13811 parameter->data_value_size = DW_BLOCK (attr)->size;
13817 /* Helper function for read_variable. If DIE represents a virtual
13818 table, then return the type of the concrete object that is
13819 associated with the virtual table. Otherwise, return NULL. */
13821 static struct type *
13822 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13824 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13828 /* Find the type DIE. */
13829 struct die_info *type_die = NULL;
13830 struct dwarf2_cu *type_cu = cu;
13832 if (attr->form_is_ref ())
13833 type_die = follow_die_ref (die, attr, &type_cu);
13834 if (type_die == NULL)
13837 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13839 return die_containing_type (type_die, type_cu);
13842 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13845 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13847 struct rust_vtable_symbol *storage = NULL;
13849 if (cu->language == language_rust)
13851 struct type *containing_type = rust_containing_type (die, cu);
13853 if (containing_type != NULL)
13855 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13857 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13858 initialize_objfile_symbol (storage);
13859 storage->concrete_type = containing_type;
13860 storage->subclass = SYMBOL_RUST_VTABLE;
13864 struct symbol *res = new_symbol (die, NULL, cu, storage);
13865 struct attribute *abstract_origin
13866 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13867 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13868 if (res == NULL && loc && abstract_origin)
13870 /* We have a variable without a name, but with a location and an abstract
13871 origin. This may be a concrete instance of an abstract variable
13872 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13874 struct dwarf2_cu *origin_cu = cu;
13875 struct die_info *origin_die
13876 = follow_die_ref (die, abstract_origin, &origin_cu);
13877 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13878 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13882 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13883 reading .debug_rnglists.
13884 Callback's type should be:
13885 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13886 Return true if the attributes are present and valid, otherwise,
13889 template <typename Callback>
13891 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13892 Callback &&callback)
13894 struct dwarf2_per_objfile *dwarf2_per_objfile
13895 = cu->per_cu->dwarf2_per_objfile;
13896 struct objfile *objfile = dwarf2_per_objfile->objfile;
13897 bfd *obfd = objfile->obfd;
13898 /* Base address selection entry. */
13901 const gdb_byte *buffer;
13902 CORE_ADDR baseaddr;
13903 bool overflow = false;
13905 found_base = cu->base_known;
13906 base = cu->base_address;
13908 dwarf2_per_objfile->rnglists.read (objfile);
13909 if (offset >= dwarf2_per_objfile->rnglists.size)
13911 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13915 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13917 baseaddr = objfile->text_section_offset ();
13921 /* Initialize it due to a false compiler warning. */
13922 CORE_ADDR range_beginning = 0, range_end = 0;
13923 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13924 + dwarf2_per_objfile->rnglists.size);
13925 unsigned int bytes_read;
13927 if (buffer == buf_end)
13932 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13935 case DW_RLE_end_of_list:
13937 case DW_RLE_base_address:
13938 if (buffer + cu->header.addr_size > buf_end)
13943 base = read_address (obfd, buffer, cu, &bytes_read);
13945 buffer += bytes_read;
13947 case DW_RLE_start_length:
13948 if (buffer + cu->header.addr_size > buf_end)
13953 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13954 buffer += bytes_read;
13955 range_end = (range_beginning
13956 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13957 buffer += bytes_read;
13958 if (buffer > buf_end)
13964 case DW_RLE_offset_pair:
13965 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13966 buffer += bytes_read;
13967 if (buffer > buf_end)
13972 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13973 buffer += bytes_read;
13974 if (buffer > buf_end)
13980 case DW_RLE_start_end:
13981 if (buffer + 2 * cu->header.addr_size > buf_end)
13986 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
13987 buffer += bytes_read;
13988 range_end = read_address (obfd, buffer, cu, &bytes_read);
13989 buffer += bytes_read;
13992 complaint (_("Invalid .debug_rnglists data (no base address)"));
13995 if (rlet == DW_RLE_end_of_list || overflow)
13997 if (rlet == DW_RLE_base_address)
14002 /* We have no valid base address for the ranges
14004 complaint (_("Invalid .debug_rnglists data (no base address)"));
14008 if (range_beginning > range_end)
14010 /* Inverted range entries are invalid. */
14011 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14015 /* Empty range entries have no effect. */
14016 if (range_beginning == range_end)
14019 range_beginning += base;
14022 /* A not-uncommon case of bad debug info.
14023 Don't pollute the addrmap with bad data. */
14024 if (range_beginning + baseaddr == 0
14025 && !dwarf2_per_objfile->has_section_at_zero)
14027 complaint (_(".debug_rnglists entry has start address of zero"
14028 " [in module %s]"), objfile_name (objfile));
14032 callback (range_beginning, range_end);
14037 complaint (_("Offset %d is not terminated "
14038 "for DW_AT_ranges attribute"),
14046 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14047 Callback's type should be:
14048 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14049 Return 1 if the attributes are present and valid, otherwise, return 0. */
14051 template <typename Callback>
14053 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14054 Callback &&callback)
14056 struct dwarf2_per_objfile *dwarf2_per_objfile
14057 = cu->per_cu->dwarf2_per_objfile;
14058 struct objfile *objfile = dwarf2_per_objfile->objfile;
14059 struct comp_unit_head *cu_header = &cu->header;
14060 bfd *obfd = objfile->obfd;
14061 unsigned int addr_size = cu_header->addr_size;
14062 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14063 /* Base address selection entry. */
14066 unsigned int dummy;
14067 const gdb_byte *buffer;
14068 CORE_ADDR baseaddr;
14070 if (cu_header->version >= 5)
14071 return dwarf2_rnglists_process (offset, cu, callback);
14073 found_base = cu->base_known;
14074 base = cu->base_address;
14076 dwarf2_per_objfile->ranges.read (objfile);
14077 if (offset >= dwarf2_per_objfile->ranges.size)
14079 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14083 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14085 baseaddr = objfile->text_section_offset ();
14089 CORE_ADDR range_beginning, range_end;
14091 range_beginning = read_address (obfd, buffer, cu, &dummy);
14092 buffer += addr_size;
14093 range_end = read_address (obfd, buffer, cu, &dummy);
14094 buffer += addr_size;
14095 offset += 2 * addr_size;
14097 /* An end of list marker is a pair of zero addresses. */
14098 if (range_beginning == 0 && range_end == 0)
14099 /* Found the end of list entry. */
14102 /* Each base address selection entry is a pair of 2 values.
14103 The first is the largest possible address, the second is
14104 the base address. Check for a base address here. */
14105 if ((range_beginning & mask) == mask)
14107 /* If we found the largest possible address, then we already
14108 have the base address in range_end. */
14116 /* We have no valid base address for the ranges
14118 complaint (_("Invalid .debug_ranges data (no base address)"));
14122 if (range_beginning > range_end)
14124 /* Inverted range entries are invalid. */
14125 complaint (_("Invalid .debug_ranges data (inverted range)"));
14129 /* Empty range entries have no effect. */
14130 if (range_beginning == range_end)
14133 range_beginning += base;
14136 /* A not-uncommon case of bad debug info.
14137 Don't pollute the addrmap with bad data. */
14138 if (range_beginning + baseaddr == 0
14139 && !dwarf2_per_objfile->has_section_at_zero)
14141 complaint (_(".debug_ranges entry has start address of zero"
14142 " [in module %s]"), objfile_name (objfile));
14146 callback (range_beginning, range_end);
14152 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14153 Return 1 if the attributes are present and valid, otherwise, return 0.
14154 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14157 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14158 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14159 dwarf2_psymtab *ranges_pst)
14161 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14162 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14163 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14166 CORE_ADDR high = 0;
14169 retval = dwarf2_ranges_process (offset, cu,
14170 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14172 if (ranges_pst != NULL)
14177 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14178 range_beginning + baseaddr)
14180 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14181 range_end + baseaddr)
14183 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14184 lowpc, highpc - 1, ranges_pst);
14187 /* FIXME: This is recording everything as a low-high
14188 segment of consecutive addresses. We should have a
14189 data structure for discontiguous block ranges
14193 low = range_beginning;
14199 if (range_beginning < low)
14200 low = range_beginning;
14201 if (range_end > high)
14209 /* If the first entry is an end-of-list marker, the range
14210 describes an empty scope, i.e. no instructions. */
14216 *high_return = high;
14220 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14221 definition for the return value. *LOWPC and *HIGHPC are set iff
14222 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14224 static enum pc_bounds_kind
14225 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14226 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14227 dwarf2_psymtab *pst)
14229 struct dwarf2_per_objfile *dwarf2_per_objfile
14230 = cu->per_cu->dwarf2_per_objfile;
14231 struct attribute *attr;
14232 struct attribute *attr_high;
14234 CORE_ADDR high = 0;
14235 enum pc_bounds_kind ret;
14237 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14240 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14241 if (attr != nullptr)
14243 low = attr->value_as_address ();
14244 high = attr_high->value_as_address ();
14245 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14249 /* Found high w/o low attribute. */
14250 return PC_BOUNDS_INVALID;
14252 /* Found consecutive range of addresses. */
14253 ret = PC_BOUNDS_HIGH_LOW;
14257 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14260 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14261 We take advantage of the fact that DW_AT_ranges does not appear
14262 in DW_TAG_compile_unit of DWO files. */
14263 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14264 unsigned int ranges_offset = (DW_UNSND (attr)
14265 + (need_ranges_base
14269 /* Value of the DW_AT_ranges attribute is the offset in the
14270 .debug_ranges section. */
14271 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14272 return PC_BOUNDS_INVALID;
14273 /* Found discontinuous range of addresses. */
14274 ret = PC_BOUNDS_RANGES;
14277 return PC_BOUNDS_NOT_PRESENT;
14280 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14282 return PC_BOUNDS_INVALID;
14284 /* When using the GNU linker, .gnu.linkonce. sections are used to
14285 eliminate duplicate copies of functions and vtables and such.
14286 The linker will arbitrarily choose one and discard the others.
14287 The AT_*_pc values for such functions refer to local labels in
14288 these sections. If the section from that file was discarded, the
14289 labels are not in the output, so the relocs get a value of 0.
14290 If this is a discarded function, mark the pc bounds as invalid,
14291 so that GDB will ignore it. */
14292 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14293 return PC_BOUNDS_INVALID;
14301 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14302 its low and high PC addresses. Do nothing if these addresses could not
14303 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14304 and HIGHPC to the high address if greater than HIGHPC. */
14307 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14308 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14309 struct dwarf2_cu *cu)
14311 CORE_ADDR low, high;
14312 struct die_info *child = die->child;
14314 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14316 *lowpc = std::min (*lowpc, low);
14317 *highpc = std::max (*highpc, high);
14320 /* If the language does not allow nested subprograms (either inside
14321 subprograms or lexical blocks), we're done. */
14322 if (cu->language != language_ada)
14325 /* Check all the children of the given DIE. If it contains nested
14326 subprograms, then check their pc bounds. Likewise, we need to
14327 check lexical blocks as well, as they may also contain subprogram
14329 while (child && child->tag)
14331 if (child->tag == DW_TAG_subprogram
14332 || child->tag == DW_TAG_lexical_block)
14333 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14334 child = sibling_die (child);
14338 /* Get the low and high pc's represented by the scope DIE, and store
14339 them in *LOWPC and *HIGHPC. If the correct values can't be
14340 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14343 get_scope_pc_bounds (struct die_info *die,
14344 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14345 struct dwarf2_cu *cu)
14347 CORE_ADDR best_low = (CORE_ADDR) -1;
14348 CORE_ADDR best_high = (CORE_ADDR) 0;
14349 CORE_ADDR current_low, current_high;
14351 if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)
14352 >= PC_BOUNDS_RANGES)
14354 best_low = current_low;
14355 best_high = current_high;
14359 struct die_info *child = die->child;
14361 while (child && child->tag)
14363 switch (child->tag) {
14364 case DW_TAG_subprogram:
14365 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14367 case DW_TAG_namespace:
14368 case DW_TAG_module:
14369 /* FIXME: carlton/2004-01-16: Should we do this for
14370 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14371 that current GCC's always emit the DIEs corresponding
14372 to definitions of methods of classes as children of a
14373 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14374 the DIEs giving the declarations, which could be
14375 anywhere). But I don't see any reason why the
14376 standards says that they have to be there. */
14377 get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu);
14379 if (current_low != ((CORE_ADDR) -1))
14381 best_low = std::min (best_low, current_low);
14382 best_high = std::max (best_high, current_high);
14390 child = sibling_die (child);
14395 *highpc = best_high;
14398 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14402 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14403 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14405 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14407 struct attribute *attr;
14408 struct attribute *attr_high;
14410 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14413 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14414 if (attr != nullptr)
14416 CORE_ADDR low = attr->value_as_address ();
14417 CORE_ADDR high = attr_high->value_as_address ();
14419 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14422 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14423 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14424 cu->get_builder ()->record_block_range (block, low, high - 1);
14428 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14429 if (attr != nullptr)
14431 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14432 We take advantage of the fact that DW_AT_ranges does not appear
14433 in DW_TAG_compile_unit of DWO files. */
14434 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14436 /* The value of the DW_AT_ranges attribute is the offset of the
14437 address range list in the .debug_ranges section. */
14438 unsigned long offset = (DW_UNSND (attr)
14439 + (need_ranges_base ? cu->ranges_base : 0));
14441 std::vector<blockrange> blockvec;
14442 dwarf2_ranges_process (offset, cu,
14443 [&] (CORE_ADDR start, CORE_ADDR end)
14447 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14448 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14449 cu->get_builder ()->record_block_range (block, start, end - 1);
14450 blockvec.emplace_back (start, end);
14453 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14457 /* Check whether the producer field indicates either of GCC < 4.6, or the
14458 Intel C/C++ compiler, and cache the result in CU. */
14461 check_producer (struct dwarf2_cu *cu)
14465 if (cu->producer == NULL)
14467 /* For unknown compilers expect their behavior is DWARF version
14470 GCC started to support .debug_types sections by -gdwarf-4 since
14471 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14472 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14473 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14474 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14476 else if (producer_is_gcc (cu->producer, &major, &minor))
14478 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14479 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14481 else if (producer_is_icc (cu->producer, &major, &minor))
14483 cu->producer_is_icc = true;
14484 cu->producer_is_icc_lt_14 = major < 14;
14486 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14487 cu->producer_is_codewarrior = true;
14490 /* For other non-GCC compilers, expect their behavior is DWARF version
14494 cu->checked_producer = true;
14497 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14498 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14499 during 4.6.0 experimental. */
14502 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14504 if (!cu->checked_producer)
14505 check_producer (cu);
14507 return cu->producer_is_gxx_lt_4_6;
14511 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14512 with incorrect is_stmt attributes. */
14515 producer_is_codewarrior (struct dwarf2_cu *cu)
14517 if (!cu->checked_producer)
14518 check_producer (cu);
14520 return cu->producer_is_codewarrior;
14523 /* Return the default accessibility type if it is not overridden by
14524 DW_AT_accessibility. */
14526 static enum dwarf_access_attribute
14527 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14529 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14531 /* The default DWARF 2 accessibility for members is public, the default
14532 accessibility for inheritance is private. */
14534 if (die->tag != DW_TAG_inheritance)
14535 return DW_ACCESS_public;
14537 return DW_ACCESS_private;
14541 /* DWARF 3+ defines the default accessibility a different way. The same
14542 rules apply now for DW_TAG_inheritance as for the members and it only
14543 depends on the container kind. */
14545 if (die->parent->tag == DW_TAG_class_type)
14546 return DW_ACCESS_private;
14548 return DW_ACCESS_public;
14552 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14553 offset. If the attribute was not found return 0, otherwise return
14554 1. If it was found but could not properly be handled, set *OFFSET
14558 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14561 struct attribute *attr;
14563 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14568 /* Note that we do not check for a section offset first here.
14569 This is because DW_AT_data_member_location is new in DWARF 4,
14570 so if we see it, we can assume that a constant form is really
14571 a constant and not a section offset. */
14572 if (attr->form_is_constant ())
14573 *offset = dwarf2_get_attr_constant_value (attr, 0);
14574 else if (attr->form_is_section_offset ())
14575 dwarf2_complex_location_expr_complaint ();
14576 else if (attr->form_is_block ())
14577 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14579 dwarf2_complex_location_expr_complaint ();
14587 /* Add an aggregate field to the field list. */
14590 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14591 struct dwarf2_cu *cu)
14593 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14595 struct nextfield *new_field;
14596 struct attribute *attr;
14598 const char *fieldname = "";
14600 if (die->tag == DW_TAG_inheritance)
14602 fip->baseclasses.emplace_back ();
14603 new_field = &fip->baseclasses.back ();
14607 fip->fields.emplace_back ();
14608 new_field = &fip->fields.back ();
14613 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14614 if (attr != nullptr)
14615 new_field->accessibility = DW_UNSND (attr);
14617 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14618 if (new_field->accessibility != DW_ACCESS_public)
14619 fip->non_public_fields = 1;
14621 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14622 if (attr != nullptr)
14623 new_field->virtuality = DW_UNSND (attr);
14625 new_field->virtuality = DW_VIRTUALITY_none;
14627 fp = &new_field->field;
14629 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14633 /* Data member other than a C++ static data member. */
14635 /* Get type of field. */
14636 fp->type = die_type (die, cu);
14638 SET_FIELD_BITPOS (*fp, 0);
14640 /* Get bit size of field (zero if none). */
14641 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14642 if (attr != nullptr)
14644 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14648 FIELD_BITSIZE (*fp) = 0;
14651 /* Get bit offset of field. */
14652 if (handle_data_member_location (die, cu, &offset))
14653 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14654 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14655 if (attr != nullptr)
14657 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14659 /* For big endian bits, the DW_AT_bit_offset gives the
14660 additional bit offset from the MSB of the containing
14661 anonymous object to the MSB of the field. We don't
14662 have to do anything special since we don't need to
14663 know the size of the anonymous object. */
14664 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14668 /* For little endian bits, compute the bit offset to the
14669 MSB of the anonymous object, subtract off the number of
14670 bits from the MSB of the field to the MSB of the
14671 object, and then subtract off the number of bits of
14672 the field itself. The result is the bit offset of
14673 the LSB of the field. */
14674 int anonymous_size;
14675 int bit_offset = DW_UNSND (attr);
14677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14678 if (attr != nullptr)
14680 /* The size of the anonymous object containing
14681 the bit field is explicit, so use the
14682 indicated size (in bytes). */
14683 anonymous_size = DW_UNSND (attr);
14687 /* The size of the anonymous object containing
14688 the bit field must be inferred from the type
14689 attribute of the data member containing the
14691 anonymous_size = TYPE_LENGTH (fp->type);
14693 SET_FIELD_BITPOS (*fp,
14694 (FIELD_BITPOS (*fp)
14695 + anonymous_size * bits_per_byte
14696 - bit_offset - FIELD_BITSIZE (*fp)));
14699 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14701 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14702 + dwarf2_get_attr_constant_value (attr, 0)));
14704 /* Get name of field. */
14705 fieldname = dwarf2_name (die, cu);
14706 if (fieldname == NULL)
14709 /* The name is already allocated along with this objfile, so we don't
14710 need to duplicate it for the type. */
14711 fp->name = fieldname;
14713 /* Change accessibility for artificial fields (e.g. virtual table
14714 pointer or virtual base class pointer) to private. */
14715 if (dwarf2_attr (die, DW_AT_artificial, cu))
14717 FIELD_ARTIFICIAL (*fp) = 1;
14718 new_field->accessibility = DW_ACCESS_private;
14719 fip->non_public_fields = 1;
14722 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14724 /* C++ static member. */
14726 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14727 is a declaration, but all versions of G++ as of this writing
14728 (so through at least 3.2.1) incorrectly generate
14729 DW_TAG_variable tags. */
14731 const char *physname;
14733 /* Get name of field. */
14734 fieldname = dwarf2_name (die, cu);
14735 if (fieldname == NULL)
14738 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14740 /* Only create a symbol if this is an external value.
14741 new_symbol checks this and puts the value in the global symbol
14742 table, which we want. If it is not external, new_symbol
14743 will try to put the value in cu->list_in_scope which is wrong. */
14744 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14746 /* A static const member, not much different than an enum as far as
14747 we're concerned, except that we can support more types. */
14748 new_symbol (die, NULL, cu);
14751 /* Get physical name. */
14752 physname = dwarf2_physname (fieldname, die, cu);
14754 /* The name is already allocated along with this objfile, so we don't
14755 need to duplicate it for the type. */
14756 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14757 FIELD_TYPE (*fp) = die_type (die, cu);
14758 FIELD_NAME (*fp) = fieldname;
14760 else if (die->tag == DW_TAG_inheritance)
14764 /* C++ base class field. */
14765 if (handle_data_member_location (die, cu, &offset))
14766 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14767 FIELD_BITSIZE (*fp) = 0;
14768 FIELD_TYPE (*fp) = die_type (die, cu);
14769 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14771 else if (die->tag == DW_TAG_variant_part)
14773 /* process_structure_scope will treat this DIE as a union. */
14774 process_structure_scope (die, cu);
14776 /* The variant part is relative to the start of the enclosing
14778 SET_FIELD_BITPOS (*fp, 0);
14779 fp->type = get_die_type (die, cu);
14780 fp->artificial = 1;
14781 fp->name = "<<variant>>";
14783 /* Normally a DW_TAG_variant_part won't have a size, but our
14784 representation requires one, so set it to the maximum of the
14785 child sizes, being sure to account for the offset at which
14786 each child is seen. */
14787 if (TYPE_LENGTH (fp->type) == 0)
14790 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14792 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14793 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14797 TYPE_LENGTH (fp->type) = max;
14801 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14804 /* Can the type given by DIE define another type? */
14807 type_can_define_types (const struct die_info *die)
14811 case DW_TAG_typedef:
14812 case DW_TAG_class_type:
14813 case DW_TAG_structure_type:
14814 case DW_TAG_union_type:
14815 case DW_TAG_enumeration_type:
14823 /* Add a type definition defined in the scope of the FIP's class. */
14826 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14827 struct dwarf2_cu *cu)
14829 struct decl_field fp;
14830 memset (&fp, 0, sizeof (fp));
14832 gdb_assert (type_can_define_types (die));
14834 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14835 fp.name = dwarf2_name (die, cu);
14836 fp.type = read_type_die (die, cu);
14838 /* Save accessibility. */
14839 enum dwarf_access_attribute accessibility;
14840 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14842 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14844 accessibility = dwarf2_default_access_attribute (die, cu);
14845 switch (accessibility)
14847 case DW_ACCESS_public:
14848 /* The assumed value if neither private nor protected. */
14850 case DW_ACCESS_private:
14853 case DW_ACCESS_protected:
14854 fp.is_protected = 1;
14857 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14860 if (die->tag == DW_TAG_typedef)
14861 fip->typedef_field_list.push_back (fp);
14863 fip->nested_types_list.push_back (fp);
14866 /* Create the vector of fields, and attach it to the type. */
14869 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14870 struct dwarf2_cu *cu)
14872 int nfields = fip->nfields;
14874 /* Record the field count, allocate space for the array of fields,
14875 and create blank accessibility bitfields if necessary. */
14876 TYPE_NFIELDS (type) = nfields;
14877 TYPE_FIELDS (type) = (struct field *)
14878 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14880 if (fip->non_public_fields && cu->language != language_ada)
14882 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14884 TYPE_FIELD_PRIVATE_BITS (type) =
14885 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14886 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14888 TYPE_FIELD_PROTECTED_BITS (type) =
14889 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14890 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14892 TYPE_FIELD_IGNORE_BITS (type) =
14893 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14894 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14897 /* If the type has baseclasses, allocate and clear a bit vector for
14898 TYPE_FIELD_VIRTUAL_BITS. */
14899 if (!fip->baseclasses.empty () && cu->language != language_ada)
14901 int num_bytes = B_BYTES (fip->baseclasses.size ());
14902 unsigned char *pointer;
14904 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14905 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14906 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14907 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14908 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14911 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14913 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14915 for (int index = 0; index < nfields; ++index)
14917 struct nextfield &field = fip->fields[index];
14919 if (field.variant.is_discriminant)
14920 di->discriminant_index = index;
14921 else if (field.variant.default_branch)
14922 di->default_index = index;
14924 di->discriminants[index] = field.variant.discriminant_value;
14928 /* Copy the saved-up fields into the field vector. */
14929 for (int i = 0; i < nfields; ++i)
14931 struct nextfield &field
14932 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14933 : fip->fields[i - fip->baseclasses.size ()]);
14935 TYPE_FIELD (type, i) = field.field;
14936 switch (field.accessibility)
14938 case DW_ACCESS_private:
14939 if (cu->language != language_ada)
14940 SET_TYPE_FIELD_PRIVATE (type, i);
14943 case DW_ACCESS_protected:
14944 if (cu->language != language_ada)
14945 SET_TYPE_FIELD_PROTECTED (type, i);
14948 case DW_ACCESS_public:
14952 /* Unknown accessibility. Complain and treat it as public. */
14954 complaint (_("unsupported accessibility %d"),
14955 field.accessibility);
14959 if (i < fip->baseclasses.size ())
14961 switch (field.virtuality)
14963 case DW_VIRTUALITY_virtual:
14964 case DW_VIRTUALITY_pure_virtual:
14965 if (cu->language == language_ada)
14966 error (_("unexpected virtuality in component of Ada type"));
14967 SET_TYPE_FIELD_VIRTUAL (type, i);
14974 /* Return true if this member function is a constructor, false
14978 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14980 const char *fieldname;
14981 const char *type_name;
14984 if (die->parent == NULL)
14987 if (die->parent->tag != DW_TAG_structure_type
14988 && die->parent->tag != DW_TAG_union_type
14989 && die->parent->tag != DW_TAG_class_type)
14992 fieldname = dwarf2_name (die, cu);
14993 type_name = dwarf2_name (die->parent, cu);
14994 if (fieldname == NULL || type_name == NULL)
14997 len = strlen (fieldname);
14998 return (strncmp (fieldname, type_name, len) == 0
14999 && (type_name[len] == '\0' || type_name[len] == '<'));
15002 /* Check if the given VALUE is a recognized enum
15003 dwarf_defaulted_attribute constant according to DWARF5 spec,
15007 is_valid_DW_AT_defaulted (ULONGEST value)
15011 case DW_DEFAULTED_no:
15012 case DW_DEFAULTED_in_class:
15013 case DW_DEFAULTED_out_of_class:
15017 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
15021 /* Add a member function to the proper fieldlist. */
15024 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15025 struct type *type, struct dwarf2_cu *cu)
15027 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15028 struct attribute *attr;
15030 struct fnfieldlist *flp = nullptr;
15031 struct fn_field *fnp;
15032 const char *fieldname;
15033 struct type *this_type;
15034 enum dwarf_access_attribute accessibility;
15036 if (cu->language == language_ada)
15037 error (_("unexpected member function in Ada type"));
15039 /* Get name of member function. */
15040 fieldname = dwarf2_name (die, cu);
15041 if (fieldname == NULL)
15044 /* Look up member function name in fieldlist. */
15045 for (i = 0; i < fip->fnfieldlists.size (); i++)
15047 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15049 flp = &fip->fnfieldlists[i];
15054 /* Create a new fnfieldlist if necessary. */
15055 if (flp == nullptr)
15057 fip->fnfieldlists.emplace_back ();
15058 flp = &fip->fnfieldlists.back ();
15059 flp->name = fieldname;
15060 i = fip->fnfieldlists.size () - 1;
15063 /* Create a new member function field and add it to the vector of
15065 flp->fnfields.emplace_back ();
15066 fnp = &flp->fnfields.back ();
15068 /* Delay processing of the physname until later. */
15069 if (cu->language == language_cplus)
15070 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15074 const char *physname = dwarf2_physname (fieldname, die, cu);
15075 fnp->physname = physname ? physname : "";
15078 fnp->type = alloc_type (objfile);
15079 this_type = read_type_die (die, cu);
15080 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15082 int nparams = TYPE_NFIELDS (this_type);
15084 /* TYPE is the domain of this method, and THIS_TYPE is the type
15085 of the method itself (TYPE_CODE_METHOD). */
15086 smash_to_method_type (fnp->type, type,
15087 TYPE_TARGET_TYPE (this_type),
15088 TYPE_FIELDS (this_type),
15089 TYPE_NFIELDS (this_type),
15090 TYPE_VARARGS (this_type));
15092 /* Handle static member functions.
15093 Dwarf2 has no clean way to discern C++ static and non-static
15094 member functions. G++ helps GDB by marking the first
15095 parameter for non-static member functions (which is the this
15096 pointer) as artificial. We obtain this information from
15097 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15098 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15099 fnp->voffset = VOFFSET_STATIC;
15102 complaint (_("member function type missing for '%s'"),
15103 dwarf2_full_name (fieldname, die, cu));
15105 /* Get fcontext from DW_AT_containing_type if present. */
15106 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15107 fnp->fcontext = die_containing_type (die, cu);
15109 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15110 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15112 /* Get accessibility. */
15113 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15114 if (attr != nullptr)
15115 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15117 accessibility = dwarf2_default_access_attribute (die, cu);
15118 switch (accessibility)
15120 case DW_ACCESS_private:
15121 fnp->is_private = 1;
15123 case DW_ACCESS_protected:
15124 fnp->is_protected = 1;
15128 /* Check for artificial methods. */
15129 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15130 if (attr && DW_UNSND (attr) != 0)
15131 fnp->is_artificial = 1;
15133 /* Check for defaulted methods. */
15134 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15135 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15136 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15138 /* Check for deleted methods. */
15139 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15140 if (attr != nullptr && DW_UNSND (attr) != 0)
15141 fnp->is_deleted = 1;
15143 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15145 /* Get index in virtual function table if it is a virtual member
15146 function. For older versions of GCC, this is an offset in the
15147 appropriate virtual table, as specified by DW_AT_containing_type.
15148 For everyone else, it is an expression to be evaluated relative
15149 to the object address. */
15151 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15152 if (attr != nullptr)
15154 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15156 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15158 /* Old-style GCC. */
15159 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15161 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15162 || (DW_BLOCK (attr)->size > 1
15163 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15164 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15166 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15167 if ((fnp->voffset % cu->header.addr_size) != 0)
15168 dwarf2_complex_location_expr_complaint ();
15170 fnp->voffset /= cu->header.addr_size;
15174 dwarf2_complex_location_expr_complaint ();
15176 if (!fnp->fcontext)
15178 /* If there is no `this' field and no DW_AT_containing_type,
15179 we cannot actually find a base class context for the
15181 if (TYPE_NFIELDS (this_type) == 0
15182 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15184 complaint (_("cannot determine context for virtual member "
15185 "function \"%s\" (offset %s)"),
15186 fieldname, sect_offset_str (die->sect_off));
15191 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15195 else if (attr->form_is_section_offset ())
15197 dwarf2_complex_location_expr_complaint ();
15201 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15207 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15208 if (attr && DW_UNSND (attr))
15210 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15211 complaint (_("Member function \"%s\" (offset %s) is virtual "
15212 "but the vtable offset is not specified"),
15213 fieldname, sect_offset_str (die->sect_off));
15214 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15215 TYPE_CPLUS_DYNAMIC (type) = 1;
15220 /* Create the vector of member function fields, and attach it to the type. */
15223 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15224 struct dwarf2_cu *cu)
15226 if (cu->language == language_ada)
15227 error (_("unexpected member functions in Ada type"));
15229 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15230 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15232 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15234 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15236 struct fnfieldlist &nf = fip->fnfieldlists[i];
15237 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15239 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15240 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15241 fn_flp->fn_fields = (struct fn_field *)
15242 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15244 for (int k = 0; k < nf.fnfields.size (); ++k)
15245 fn_flp->fn_fields[k] = nf.fnfields[k];
15248 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15251 /* Returns non-zero if NAME is the name of a vtable member in CU's
15252 language, zero otherwise. */
15254 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15256 static const char vptr[] = "_vptr";
15258 /* Look for the C++ form of the vtable. */
15259 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15265 /* GCC outputs unnamed structures that are really pointers to member
15266 functions, with the ABI-specified layout. If TYPE describes
15267 such a structure, smash it into a member function type.
15269 GCC shouldn't do this; it should just output pointer to member DIEs.
15270 This is GCC PR debug/28767. */
15273 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15275 struct type *pfn_type, *self_type, *new_type;
15277 /* Check for a structure with no name and two children. */
15278 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15281 /* Check for __pfn and __delta members. */
15282 if (TYPE_FIELD_NAME (type, 0) == NULL
15283 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15284 || TYPE_FIELD_NAME (type, 1) == NULL
15285 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15288 /* Find the type of the method. */
15289 pfn_type = TYPE_FIELD_TYPE (type, 0);
15290 if (pfn_type == NULL
15291 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15292 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15295 /* Look for the "this" argument. */
15296 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15297 if (TYPE_NFIELDS (pfn_type) == 0
15298 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15299 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15302 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15303 new_type = alloc_type (objfile);
15304 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15305 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15306 TYPE_VARARGS (pfn_type));
15307 smash_to_methodptr_type (type, new_type);
15310 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15311 appropriate error checking and issuing complaints if there is a
15315 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15317 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15319 if (attr == nullptr)
15322 if (!attr->form_is_constant ())
15324 complaint (_("DW_AT_alignment must have constant form"
15325 " - DIE at %s [in module %s]"),
15326 sect_offset_str (die->sect_off),
15327 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15332 if (attr->form == DW_FORM_sdata)
15334 LONGEST val = DW_SND (attr);
15337 complaint (_("DW_AT_alignment value must not be negative"
15338 " - DIE at %s [in module %s]"),
15339 sect_offset_str (die->sect_off),
15340 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15346 align = DW_UNSND (attr);
15350 complaint (_("DW_AT_alignment value must not be zero"
15351 " - DIE at %s [in module %s]"),
15352 sect_offset_str (die->sect_off),
15353 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15356 if ((align & (align - 1)) != 0)
15358 complaint (_("DW_AT_alignment value must be a power of 2"
15359 " - DIE at %s [in module %s]"),
15360 sect_offset_str (die->sect_off),
15361 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15368 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15369 the alignment for TYPE. */
15372 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15375 if (!set_type_align (type, get_alignment (cu, die)))
15376 complaint (_("DW_AT_alignment value too large"
15377 " - DIE at %s [in module %s]"),
15378 sect_offset_str (die->sect_off),
15379 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15382 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15383 constant for a type, according to DWARF5 spec, Table 5.5. */
15386 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15391 case DW_CC_pass_by_reference:
15392 case DW_CC_pass_by_value:
15396 complaint (_("unrecognized DW_AT_calling_convention value "
15397 "(%s) for a type"), pulongest (value));
15402 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15403 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15404 also according to GNU-specific values (see include/dwarf2.h). */
15407 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15412 case DW_CC_program:
15416 case DW_CC_GNU_renesas_sh:
15417 case DW_CC_GNU_borland_fastcall_i386:
15418 case DW_CC_GDB_IBM_OpenCL:
15422 complaint (_("unrecognized DW_AT_calling_convention value "
15423 "(%s) for a subroutine"), pulongest (value));
15428 /* Called when we find the DIE that starts a structure or union scope
15429 (definition) to create a type for the structure or union. Fill in
15430 the type's name and general properties; the members will not be
15431 processed until process_structure_scope. A symbol table entry for
15432 the type will also not be done until process_structure_scope (assuming
15433 the type has a name).
15435 NOTE: we need to call these functions regardless of whether or not the
15436 DIE has a DW_AT_name attribute, since it might be an anonymous
15437 structure or union. This gets the type entered into our set of
15438 user defined types. */
15440 static struct type *
15441 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15443 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15445 struct attribute *attr;
15448 /* If the definition of this type lives in .debug_types, read that type.
15449 Don't follow DW_AT_specification though, that will take us back up
15450 the chain and we want to go down. */
15451 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15452 if (attr != nullptr)
15454 type = get_DW_AT_signature_type (die, attr, cu);
15456 /* The type's CU may not be the same as CU.
15457 Ensure TYPE is recorded with CU in die_type_hash. */
15458 return set_die_type (die, type, cu);
15461 type = alloc_type (objfile);
15462 INIT_CPLUS_SPECIFIC (type);
15464 name = dwarf2_name (die, cu);
15467 if (cu->language == language_cplus
15468 || cu->language == language_d
15469 || cu->language == language_rust)
15471 const char *full_name = dwarf2_full_name (name, die, cu);
15473 /* dwarf2_full_name might have already finished building the DIE's
15474 type. If so, there is no need to continue. */
15475 if (get_die_type (die, cu) != NULL)
15476 return get_die_type (die, cu);
15478 TYPE_NAME (type) = full_name;
15482 /* The name is already allocated along with this objfile, so
15483 we don't need to duplicate it for the type. */
15484 TYPE_NAME (type) = name;
15488 if (die->tag == DW_TAG_structure_type)
15490 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15492 else if (die->tag == DW_TAG_union_type)
15494 TYPE_CODE (type) = TYPE_CODE_UNION;
15496 else if (die->tag == DW_TAG_variant_part)
15498 TYPE_CODE (type) = TYPE_CODE_UNION;
15499 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15503 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15506 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15507 TYPE_DECLARED_CLASS (type) = 1;
15509 /* Store the calling convention in the type if it's available in
15510 the die. Otherwise the calling convention remains set to
15511 the default value DW_CC_normal. */
15512 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15513 if (attr != nullptr
15514 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15516 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15517 TYPE_CPLUS_CALLING_CONVENTION (type)
15518 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15522 if (attr != nullptr)
15524 if (attr->form_is_constant ())
15525 TYPE_LENGTH (type) = DW_UNSND (attr);
15528 /* For the moment, dynamic type sizes are not supported
15529 by GDB's struct type. The actual size is determined
15530 on-demand when resolving the type of a given object,
15531 so set the type's length to zero for now. Otherwise,
15532 we record an expression as the length, and that expression
15533 could lead to a very large value, which could eventually
15534 lead to us trying to allocate that much memory when creating
15535 a value of that type. */
15536 TYPE_LENGTH (type) = 0;
15541 TYPE_LENGTH (type) = 0;
15544 maybe_set_alignment (cu, die, type);
15546 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15548 /* ICC<14 does not output the required DW_AT_declaration on
15549 incomplete types, but gives them a size of zero. */
15550 TYPE_STUB (type) = 1;
15553 TYPE_STUB_SUPPORTED (type) = 1;
15555 if (die_is_declaration (die, cu))
15556 TYPE_STUB (type) = 1;
15557 else if (attr == NULL && die->child == NULL
15558 && producer_is_realview (cu->producer))
15559 /* RealView does not output the required DW_AT_declaration
15560 on incomplete types. */
15561 TYPE_STUB (type) = 1;
15563 /* We need to add the type field to the die immediately so we don't
15564 infinitely recurse when dealing with pointers to the structure
15565 type within the structure itself. */
15566 set_die_type (die, type, cu);
15568 /* set_die_type should be already done. */
15569 set_descriptive_type (type, die, cu);
15574 /* A helper for process_structure_scope that handles a single member
15578 handle_struct_member_die (struct die_info *child_die, struct type *type,
15579 struct field_info *fi,
15580 std::vector<struct symbol *> *template_args,
15581 struct dwarf2_cu *cu)
15583 if (child_die->tag == DW_TAG_member
15584 || child_die->tag == DW_TAG_variable
15585 || child_die->tag == DW_TAG_variant_part)
15587 /* NOTE: carlton/2002-11-05: A C++ static data member
15588 should be a DW_TAG_member that is a declaration, but
15589 all versions of G++ as of this writing (so through at
15590 least 3.2.1) incorrectly generate DW_TAG_variable
15591 tags for them instead. */
15592 dwarf2_add_field (fi, child_die, cu);
15594 else if (child_die->tag == DW_TAG_subprogram)
15596 /* Rust doesn't have member functions in the C++ sense.
15597 However, it does emit ordinary functions as children
15598 of a struct DIE. */
15599 if (cu->language == language_rust)
15600 read_func_scope (child_die, cu);
15603 /* C++ member function. */
15604 dwarf2_add_member_fn (fi, child_die, type, cu);
15607 else if (child_die->tag == DW_TAG_inheritance)
15609 /* C++ base class field. */
15610 dwarf2_add_field (fi, child_die, cu);
15612 else if (type_can_define_types (child_die))
15613 dwarf2_add_type_defn (fi, child_die, cu);
15614 else if (child_die->tag == DW_TAG_template_type_param
15615 || child_die->tag == DW_TAG_template_value_param)
15617 struct symbol *arg = new_symbol (child_die, NULL, cu);
15620 template_args->push_back (arg);
15622 else if (child_die->tag == DW_TAG_variant)
15624 /* In a variant we want to get the discriminant and also add a
15625 field for our sole member child. */
15626 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15628 for (die_info *variant_child = child_die->child;
15629 variant_child != NULL;
15630 variant_child = sibling_die (variant_child))
15632 if (variant_child->tag == DW_TAG_member)
15634 handle_struct_member_die (variant_child, type, fi,
15635 template_args, cu);
15636 /* Only handle the one. */
15641 /* We don't handle this but we might as well report it if we see
15643 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15644 complaint (_("DW_AT_discr_list is not supported yet"
15645 " - DIE at %s [in module %s]"),
15646 sect_offset_str (child_die->sect_off),
15647 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15649 /* The first field was just added, so we can stash the
15650 discriminant there. */
15651 gdb_assert (!fi->fields.empty ());
15653 fi->fields.back ().variant.default_branch = true;
15655 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15659 /* Finish creating a structure or union type, including filling in
15660 its members and creating a symbol for it. */
15663 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15665 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15666 struct die_info *child_die;
15669 type = get_die_type (die, cu);
15671 type = read_structure_type (die, cu);
15673 /* When reading a DW_TAG_variant_part, we need to notice when we
15674 read the discriminant member, so we can record it later in the
15675 discriminant_info. */
15676 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15677 sect_offset discr_offset {};
15678 bool has_template_parameters = false;
15680 if (is_variant_part)
15682 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15685 /* Maybe it's a univariant form, an extension we support.
15686 In this case arrange not to check the offset. */
15687 is_variant_part = false;
15689 else if (discr->form_is_ref ())
15691 struct dwarf2_cu *target_cu = cu;
15692 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15694 discr_offset = target_die->sect_off;
15698 complaint (_("DW_AT_discr does not have DIE reference form"
15699 " - DIE at %s [in module %s]"),
15700 sect_offset_str (die->sect_off),
15701 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15702 is_variant_part = false;
15706 if (die->child != NULL && ! die_is_declaration (die, cu))
15708 struct field_info fi;
15709 std::vector<struct symbol *> template_args;
15711 child_die = die->child;
15713 while (child_die && child_die->tag)
15715 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15717 if (is_variant_part && discr_offset == child_die->sect_off)
15718 fi.fields.back ().variant.is_discriminant = true;
15720 child_die = sibling_die (child_die);
15723 /* Attach template arguments to type. */
15724 if (!template_args.empty ())
15726 has_template_parameters = true;
15727 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15728 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15729 TYPE_TEMPLATE_ARGUMENTS (type)
15730 = XOBNEWVEC (&objfile->objfile_obstack,
15732 TYPE_N_TEMPLATE_ARGUMENTS (type));
15733 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15734 template_args.data (),
15735 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15736 * sizeof (struct symbol *)));
15739 /* Attach fields and member functions to the type. */
15741 dwarf2_attach_fields_to_type (&fi, type, cu);
15742 if (!fi.fnfieldlists.empty ())
15744 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15746 /* Get the type which refers to the base class (possibly this
15747 class itself) which contains the vtable pointer for the current
15748 class from the DW_AT_containing_type attribute. This use of
15749 DW_AT_containing_type is a GNU extension. */
15751 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15753 struct type *t = die_containing_type (die, cu);
15755 set_type_vptr_basetype (type, t);
15760 /* Our own class provides vtbl ptr. */
15761 for (i = TYPE_NFIELDS (t) - 1;
15762 i >= TYPE_N_BASECLASSES (t);
15765 const char *fieldname = TYPE_FIELD_NAME (t, i);
15767 if (is_vtable_name (fieldname, cu))
15769 set_type_vptr_fieldno (type, i);
15774 /* Complain if virtual function table field not found. */
15775 if (i < TYPE_N_BASECLASSES (t))
15776 complaint (_("virtual function table pointer "
15777 "not found when defining class '%s'"),
15778 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15782 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15785 else if (cu->producer
15786 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15788 /* The IBM XLC compiler does not provide direct indication
15789 of the containing type, but the vtable pointer is
15790 always named __vfp. */
15794 for (i = TYPE_NFIELDS (type) - 1;
15795 i >= TYPE_N_BASECLASSES (type);
15798 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15800 set_type_vptr_fieldno (type, i);
15801 set_type_vptr_basetype (type, type);
15808 /* Copy fi.typedef_field_list linked list elements content into the
15809 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15810 if (!fi.typedef_field_list.empty ())
15812 int count = fi.typedef_field_list.size ();
15814 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15815 TYPE_TYPEDEF_FIELD_ARRAY (type)
15816 = ((struct decl_field *)
15818 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15819 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15821 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15822 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15825 /* Copy fi.nested_types_list linked list elements content into the
15826 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15827 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15829 int count = fi.nested_types_list.size ();
15831 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15832 TYPE_NESTED_TYPES_ARRAY (type)
15833 = ((struct decl_field *)
15834 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15835 TYPE_NESTED_TYPES_COUNT (type) = count;
15837 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15838 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15842 quirk_gcc_member_function_pointer (type, objfile);
15843 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15844 cu->rust_unions.push_back (type);
15846 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15847 snapshots) has been known to create a die giving a declaration
15848 for a class that has, as a child, a die giving a definition for a
15849 nested class. So we have to process our children even if the
15850 current die is a declaration. Normally, of course, a declaration
15851 won't have any children at all. */
15853 child_die = die->child;
15855 while (child_die != NULL && child_die->tag)
15857 if (child_die->tag == DW_TAG_member
15858 || child_die->tag == DW_TAG_variable
15859 || child_die->tag == DW_TAG_inheritance
15860 || child_die->tag == DW_TAG_template_value_param
15861 || child_die->tag == DW_TAG_template_type_param)
15866 process_die (child_die, cu);
15868 child_die = sibling_die (child_die);
15871 /* Do not consider external references. According to the DWARF standard,
15872 these DIEs are identified by the fact that they have no byte_size
15873 attribute, and a declaration attribute. */
15874 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15875 || !die_is_declaration (die, cu))
15877 struct symbol *sym = new_symbol (die, type, cu);
15879 if (has_template_parameters)
15881 struct symtab *symtab;
15882 if (sym != nullptr)
15883 symtab = symbol_symtab (sym);
15884 else if (cu->line_header != nullptr)
15886 /* Any related symtab will do. */
15888 = cu->line_header->file_names ()[0].symtab;
15893 complaint (_("could not find suitable "
15894 "symtab for template parameter"
15895 " - DIE at %s [in module %s]"),
15896 sect_offset_str (die->sect_off),
15897 objfile_name (objfile));
15900 if (symtab != nullptr)
15902 /* Make sure that the symtab is set on the new symbols.
15903 Even though they don't appear in this symtab directly,
15904 other parts of gdb assume that symbols do, and this is
15905 reasonably true. */
15906 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15907 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15913 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15914 update TYPE using some information only available in DIE's children. */
15917 update_enumeration_type_from_children (struct die_info *die,
15919 struct dwarf2_cu *cu)
15921 struct die_info *child_die;
15922 int unsigned_enum = 1;
15926 auto_obstack obstack;
15928 for (child_die = die->child;
15929 child_die != NULL && child_die->tag;
15930 child_die = sibling_die (child_die))
15932 struct attribute *attr;
15934 const gdb_byte *bytes;
15935 struct dwarf2_locexpr_baton *baton;
15938 if (child_die->tag != DW_TAG_enumerator)
15941 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15945 name = dwarf2_name (child_die, cu);
15947 name = "<anonymous enumerator>";
15949 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15950 &value, &bytes, &baton);
15956 else if ((mask & value) != 0)
15961 /* If we already know that the enum type is neither unsigned, nor
15962 a flag type, no need to look at the rest of the enumerates. */
15963 if (!unsigned_enum && !flag_enum)
15968 TYPE_UNSIGNED (type) = 1;
15970 TYPE_FLAG_ENUM (type) = 1;
15973 /* Given a DW_AT_enumeration_type die, set its type. We do not
15974 complete the type's fields yet, or create any symbols. */
15976 static struct type *
15977 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15979 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15981 struct attribute *attr;
15984 /* If the definition of this type lives in .debug_types, read that type.
15985 Don't follow DW_AT_specification though, that will take us back up
15986 the chain and we want to go down. */
15987 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15988 if (attr != nullptr)
15990 type = get_DW_AT_signature_type (die, attr, cu);
15992 /* The type's CU may not be the same as CU.
15993 Ensure TYPE is recorded with CU in die_type_hash. */
15994 return set_die_type (die, type, cu);
15997 type = alloc_type (objfile);
15999 TYPE_CODE (type) = TYPE_CODE_ENUM;
16000 name = dwarf2_full_name (NULL, die, cu);
16002 TYPE_NAME (type) = name;
16004 attr = dwarf2_attr (die, DW_AT_type, cu);
16007 struct type *underlying_type = die_type (die, cu);
16009 TYPE_TARGET_TYPE (type) = underlying_type;
16012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16013 if (attr != nullptr)
16015 TYPE_LENGTH (type) = DW_UNSND (attr);
16019 TYPE_LENGTH (type) = 0;
16022 maybe_set_alignment (cu, die, type);
16024 /* The enumeration DIE can be incomplete. In Ada, any type can be
16025 declared as private in the package spec, and then defined only
16026 inside the package body. Such types are known as Taft Amendment
16027 Types. When another package uses such a type, an incomplete DIE
16028 may be generated by the compiler. */
16029 if (die_is_declaration (die, cu))
16030 TYPE_STUB (type) = 1;
16032 /* Finish the creation of this type by using the enum's children.
16033 We must call this even when the underlying type has been provided
16034 so that we can determine if we're looking at a "flag" enum. */
16035 update_enumeration_type_from_children (die, type, cu);
16037 /* If this type has an underlying type that is not a stub, then we
16038 may use its attributes. We always use the "unsigned" attribute
16039 in this situation, because ordinarily we guess whether the type
16040 is unsigned -- but the guess can be wrong and the underlying type
16041 can tell us the reality. However, we defer to a local size
16042 attribute if one exists, because this lets the compiler override
16043 the underlying type if needed. */
16044 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16046 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16047 if (TYPE_LENGTH (type) == 0)
16048 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16049 if (TYPE_RAW_ALIGN (type) == 0
16050 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16051 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16054 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16056 return set_die_type (die, type, cu);
16059 /* Given a pointer to a die which begins an enumeration, process all
16060 the dies that define the members of the enumeration, and create the
16061 symbol for the enumeration type.
16063 NOTE: We reverse the order of the element list. */
16066 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16068 struct type *this_type;
16070 this_type = get_die_type (die, cu);
16071 if (this_type == NULL)
16072 this_type = read_enumeration_type (die, cu);
16074 if (die->child != NULL)
16076 struct die_info *child_die;
16077 struct symbol *sym;
16078 std::vector<struct field> fields;
16081 child_die = die->child;
16082 while (child_die && child_die->tag)
16084 if (child_die->tag != DW_TAG_enumerator)
16086 process_die (child_die, cu);
16090 name = dwarf2_name (child_die, cu);
16093 sym = new_symbol (child_die, this_type, cu);
16095 fields.emplace_back ();
16096 struct field &field = fields.back ();
16098 FIELD_NAME (field) = sym->linkage_name ();
16099 FIELD_TYPE (field) = NULL;
16100 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
16101 FIELD_BITSIZE (field) = 0;
16105 child_die = sibling_die (child_die);
16108 if (!fields.empty ())
16110 TYPE_NFIELDS (this_type) = fields.size ();
16111 TYPE_FIELDS (this_type) = (struct field *)
16112 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
16113 memcpy (TYPE_FIELDS (this_type), fields.data (),
16114 sizeof (struct field) * fields.size ());
16118 /* If we are reading an enum from a .debug_types unit, and the enum
16119 is a declaration, and the enum is not the signatured type in the
16120 unit, then we do not want to add a symbol for it. Adding a
16121 symbol would in some cases obscure the true definition of the
16122 enum, giving users an incomplete type when the definition is
16123 actually available. Note that we do not want to do this for all
16124 enums which are just declarations, because C++0x allows forward
16125 enum declarations. */
16126 if (cu->per_cu->is_debug_types
16127 && die_is_declaration (die, cu))
16129 struct signatured_type *sig_type;
16131 sig_type = (struct signatured_type *) cu->per_cu;
16132 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16133 if (sig_type->type_offset_in_section != die->sect_off)
16137 new_symbol (die, this_type, cu);
16140 /* Extract all information from a DW_TAG_array_type DIE and put it in
16141 the DIE's type field. For now, this only handles one dimensional
16144 static struct type *
16145 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16147 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16148 struct die_info *child_die;
16150 struct type *element_type, *range_type, *index_type;
16151 struct attribute *attr;
16153 struct dynamic_prop *byte_stride_prop = NULL;
16154 unsigned int bit_stride = 0;
16156 element_type = die_type (die, cu);
16158 /* The die_type call above may have already set the type for this DIE. */
16159 type = get_die_type (die, cu);
16163 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16167 struct type *prop_type
16168 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16171 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16172 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16176 complaint (_("unable to read array DW_AT_byte_stride "
16177 " - DIE at %s [in module %s]"),
16178 sect_offset_str (die->sect_off),
16179 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16180 /* Ignore this attribute. We will likely not be able to print
16181 arrays of this type correctly, but there is little we can do
16182 to help if we cannot read the attribute's value. */
16183 byte_stride_prop = NULL;
16187 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16189 bit_stride = DW_UNSND (attr);
16191 /* Irix 6.2 native cc creates array types without children for
16192 arrays with unspecified length. */
16193 if (die->child == NULL)
16195 index_type = objfile_type (objfile)->builtin_int;
16196 range_type = create_static_range_type (NULL, index_type, 0, -1);
16197 type = create_array_type_with_stride (NULL, element_type, range_type,
16198 byte_stride_prop, bit_stride);
16199 return set_die_type (die, type, cu);
16202 std::vector<struct type *> range_types;
16203 child_die = die->child;
16204 while (child_die && child_die->tag)
16206 if (child_die->tag == DW_TAG_subrange_type)
16208 struct type *child_type = read_type_die (child_die, cu);
16210 if (child_type != NULL)
16212 /* The range type was succesfully read. Save it for the
16213 array type creation. */
16214 range_types.push_back (child_type);
16217 child_die = sibling_die (child_die);
16220 /* Dwarf2 dimensions are output from left to right, create the
16221 necessary array types in backwards order. */
16223 type = element_type;
16225 if (read_array_order (die, cu) == DW_ORD_col_major)
16229 while (i < range_types.size ())
16230 type = create_array_type_with_stride (NULL, type, range_types[i++],
16231 byte_stride_prop, bit_stride);
16235 size_t ndim = range_types.size ();
16237 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16238 byte_stride_prop, bit_stride);
16241 /* Understand Dwarf2 support for vector types (like they occur on
16242 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16243 array type. This is not part of the Dwarf2/3 standard yet, but a
16244 custom vendor extension. The main difference between a regular
16245 array and the vector variant is that vectors are passed by value
16247 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16248 if (attr != nullptr)
16249 make_vector_type (type);
16251 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16252 implementation may choose to implement triple vectors using this
16254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16255 if (attr != nullptr)
16257 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16258 TYPE_LENGTH (type) = DW_UNSND (attr);
16260 complaint (_("DW_AT_byte_size for array type smaller "
16261 "than the total size of elements"));
16264 name = dwarf2_name (die, cu);
16266 TYPE_NAME (type) = name;
16268 maybe_set_alignment (cu, die, type);
16270 /* Install the type in the die. */
16271 set_die_type (die, type, cu);
16273 /* set_die_type should be already done. */
16274 set_descriptive_type (type, die, cu);
16279 static enum dwarf_array_dim_ordering
16280 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16282 struct attribute *attr;
16284 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16286 if (attr != nullptr)
16287 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16289 /* GNU F77 is a special case, as at 08/2004 array type info is the
16290 opposite order to the dwarf2 specification, but data is still
16291 laid out as per normal fortran.
16293 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16294 version checking. */
16296 if (cu->language == language_fortran
16297 && cu->producer && strstr (cu->producer, "GNU F77"))
16299 return DW_ORD_row_major;
16302 switch (cu->language_defn->la_array_ordering)
16304 case array_column_major:
16305 return DW_ORD_col_major;
16306 case array_row_major:
16308 return DW_ORD_row_major;
16312 /* Extract all information from a DW_TAG_set_type DIE and put it in
16313 the DIE's type field. */
16315 static struct type *
16316 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16318 struct type *domain_type, *set_type;
16319 struct attribute *attr;
16321 domain_type = die_type (die, cu);
16323 /* The die_type call above may have already set the type for this DIE. */
16324 set_type = get_die_type (die, cu);
16328 set_type = create_set_type (NULL, domain_type);
16330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16331 if (attr != nullptr)
16332 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16334 maybe_set_alignment (cu, die, set_type);
16336 return set_die_type (die, set_type, cu);
16339 /* A helper for read_common_block that creates a locexpr baton.
16340 SYM is the symbol which we are marking as computed.
16341 COMMON_DIE is the DIE for the common block.
16342 COMMON_LOC is the location expression attribute for the common
16344 MEMBER_LOC is the location expression attribute for the particular
16345 member of the common block that we are processing.
16346 CU is the CU from which the above come. */
16349 mark_common_block_symbol_computed (struct symbol *sym,
16350 struct die_info *common_die,
16351 struct attribute *common_loc,
16352 struct attribute *member_loc,
16353 struct dwarf2_cu *cu)
16355 struct dwarf2_per_objfile *dwarf2_per_objfile
16356 = cu->per_cu->dwarf2_per_objfile;
16357 struct objfile *objfile = dwarf2_per_objfile->objfile;
16358 struct dwarf2_locexpr_baton *baton;
16360 unsigned int cu_off;
16361 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16362 LONGEST offset = 0;
16364 gdb_assert (common_loc && member_loc);
16365 gdb_assert (common_loc->form_is_block ());
16366 gdb_assert (member_loc->form_is_block ()
16367 || member_loc->form_is_constant ());
16369 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16370 baton->per_cu = cu->per_cu;
16371 gdb_assert (baton->per_cu);
16373 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16375 if (member_loc->form_is_constant ())
16377 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16378 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16381 baton->size += DW_BLOCK (member_loc)->size;
16383 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16386 *ptr++ = DW_OP_call4;
16387 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16388 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16391 if (member_loc->form_is_constant ())
16393 *ptr++ = DW_OP_addr;
16394 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16395 ptr += cu->header.addr_size;
16399 /* We have to copy the data here, because DW_OP_call4 will only
16400 use a DW_AT_location attribute. */
16401 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16402 ptr += DW_BLOCK (member_loc)->size;
16405 *ptr++ = DW_OP_plus;
16406 gdb_assert (ptr - baton->data == baton->size);
16408 SYMBOL_LOCATION_BATON (sym) = baton;
16409 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16412 /* Create appropriate locally-scoped variables for all the
16413 DW_TAG_common_block entries. Also create a struct common_block
16414 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16415 is used to separate the common blocks name namespace from regular
16419 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16421 struct attribute *attr;
16423 attr = dwarf2_attr (die, DW_AT_location, cu);
16424 if (attr != nullptr)
16426 /* Support the .debug_loc offsets. */
16427 if (attr->form_is_block ())
16431 else if (attr->form_is_section_offset ())
16433 dwarf2_complex_location_expr_complaint ();
16438 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16439 "common block member");
16444 if (die->child != NULL)
16446 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16447 struct die_info *child_die;
16448 size_t n_entries = 0, size;
16449 struct common_block *common_block;
16450 struct symbol *sym;
16452 for (child_die = die->child;
16453 child_die && child_die->tag;
16454 child_die = sibling_die (child_die))
16457 size = (sizeof (struct common_block)
16458 + (n_entries - 1) * sizeof (struct symbol *));
16460 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16462 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16463 common_block->n_entries = 0;
16465 for (child_die = die->child;
16466 child_die && child_die->tag;
16467 child_die = sibling_die (child_die))
16469 /* Create the symbol in the DW_TAG_common_block block in the current
16471 sym = new_symbol (child_die, NULL, cu);
16474 struct attribute *member_loc;
16476 common_block->contents[common_block->n_entries++] = sym;
16478 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16482 /* GDB has handled this for a long time, but it is
16483 not specified by DWARF. It seems to have been
16484 emitted by gfortran at least as recently as:
16485 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16486 complaint (_("Variable in common block has "
16487 "DW_AT_data_member_location "
16488 "- DIE at %s [in module %s]"),
16489 sect_offset_str (child_die->sect_off),
16490 objfile_name (objfile));
16492 if (member_loc->form_is_section_offset ())
16493 dwarf2_complex_location_expr_complaint ();
16494 else if (member_loc->form_is_constant ()
16495 || member_loc->form_is_block ())
16497 if (attr != nullptr)
16498 mark_common_block_symbol_computed (sym, die, attr,
16502 dwarf2_complex_location_expr_complaint ();
16507 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16508 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16512 /* Create a type for a C++ namespace. */
16514 static struct type *
16515 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16517 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16518 const char *previous_prefix, *name;
16522 /* For extensions, reuse the type of the original namespace. */
16523 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16525 struct die_info *ext_die;
16526 struct dwarf2_cu *ext_cu = cu;
16528 ext_die = dwarf2_extension (die, &ext_cu);
16529 type = read_type_die (ext_die, ext_cu);
16531 /* EXT_CU may not be the same as CU.
16532 Ensure TYPE is recorded with CU in die_type_hash. */
16533 return set_die_type (die, type, cu);
16536 name = namespace_name (die, &is_anonymous, cu);
16538 /* Now build the name of the current namespace. */
16540 previous_prefix = determine_prefix (die, cu);
16541 if (previous_prefix[0] != '\0')
16542 name = typename_concat (&objfile->objfile_obstack,
16543 previous_prefix, name, 0, cu);
16545 /* Create the type. */
16546 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16548 return set_die_type (die, type, cu);
16551 /* Read a namespace scope. */
16554 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16556 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16559 /* Add a symbol associated to this if we haven't seen the namespace
16560 before. Also, add a using directive if it's an anonymous
16563 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16567 type = read_type_die (die, cu);
16568 new_symbol (die, type, cu);
16570 namespace_name (die, &is_anonymous, cu);
16573 const char *previous_prefix = determine_prefix (die, cu);
16575 std::vector<const char *> excludes;
16576 add_using_directive (using_directives (cu),
16577 previous_prefix, TYPE_NAME (type), NULL,
16578 NULL, excludes, 0, &objfile->objfile_obstack);
16582 if (die->child != NULL)
16584 struct die_info *child_die = die->child;
16586 while (child_die && child_die->tag)
16588 process_die (child_die, cu);
16589 child_die = sibling_die (child_die);
16594 /* Read a Fortran module as type. This DIE can be only a declaration used for
16595 imported module. Still we need that type as local Fortran "use ... only"
16596 declaration imports depend on the created type in determine_prefix. */
16598 static struct type *
16599 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16601 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16602 const char *module_name;
16605 module_name = dwarf2_name (die, cu);
16606 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16608 return set_die_type (die, type, cu);
16611 /* Read a Fortran module. */
16614 read_module (struct die_info *die, struct dwarf2_cu *cu)
16616 struct die_info *child_die = die->child;
16619 type = read_type_die (die, cu);
16620 new_symbol (die, type, cu);
16622 while (child_die && child_die->tag)
16624 process_die (child_die, cu);
16625 child_die = sibling_die (child_die);
16629 /* Return the name of the namespace represented by DIE. Set
16630 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16633 static const char *
16634 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16636 struct die_info *current_die;
16637 const char *name = NULL;
16639 /* Loop through the extensions until we find a name. */
16641 for (current_die = die;
16642 current_die != NULL;
16643 current_die = dwarf2_extension (die, &cu))
16645 /* We don't use dwarf2_name here so that we can detect the absence
16646 of a name -> anonymous namespace. */
16647 name = dwarf2_string_attr (die, DW_AT_name, cu);
16653 /* Is it an anonymous namespace? */
16655 *is_anonymous = (name == NULL);
16657 name = CP_ANONYMOUS_NAMESPACE_STR;
16662 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16663 the user defined type vector. */
16665 static struct type *
16666 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16668 struct gdbarch *gdbarch
16669 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16670 struct comp_unit_head *cu_header = &cu->header;
16672 struct attribute *attr_byte_size;
16673 struct attribute *attr_address_class;
16674 int byte_size, addr_class;
16675 struct type *target_type;
16677 target_type = die_type (die, cu);
16679 /* The die_type call above may have already set the type for this DIE. */
16680 type = get_die_type (die, cu);
16684 type = lookup_pointer_type (target_type);
16686 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16687 if (attr_byte_size)
16688 byte_size = DW_UNSND (attr_byte_size);
16690 byte_size = cu_header->addr_size;
16692 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16693 if (attr_address_class)
16694 addr_class = DW_UNSND (attr_address_class);
16696 addr_class = DW_ADDR_none;
16698 ULONGEST alignment = get_alignment (cu, die);
16700 /* If the pointer size, alignment, or address class is different
16701 than the default, create a type variant marked as such and set
16702 the length accordingly. */
16703 if (TYPE_LENGTH (type) != byte_size
16704 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16705 && alignment != TYPE_RAW_ALIGN (type))
16706 || addr_class != DW_ADDR_none)
16708 if (gdbarch_address_class_type_flags_p (gdbarch))
16712 type_flags = gdbarch_address_class_type_flags
16713 (gdbarch, byte_size, addr_class);
16714 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16716 type = make_type_with_address_space (type, type_flags);
16718 else if (TYPE_LENGTH (type) != byte_size)
16720 complaint (_("invalid pointer size %d"), byte_size);
16722 else if (TYPE_RAW_ALIGN (type) != alignment)
16724 complaint (_("Invalid DW_AT_alignment"
16725 " - DIE at %s [in module %s]"),
16726 sect_offset_str (die->sect_off),
16727 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16731 /* Should we also complain about unhandled address classes? */
16735 TYPE_LENGTH (type) = byte_size;
16736 set_type_align (type, alignment);
16737 return set_die_type (die, type, cu);
16740 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16741 the user defined type vector. */
16743 static struct type *
16744 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16747 struct type *to_type;
16748 struct type *domain;
16750 to_type = die_type (die, cu);
16751 domain = die_containing_type (die, cu);
16753 /* The calls above may have already set the type for this DIE. */
16754 type = get_die_type (die, cu);
16758 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16759 type = lookup_methodptr_type (to_type);
16760 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16762 struct type *new_type
16763 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16765 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16766 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16767 TYPE_VARARGS (to_type));
16768 type = lookup_methodptr_type (new_type);
16771 type = lookup_memberptr_type (to_type, domain);
16773 return set_die_type (die, type, cu);
16776 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16777 the user defined type vector. */
16779 static struct type *
16780 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16781 enum type_code refcode)
16783 struct comp_unit_head *cu_header = &cu->header;
16784 struct type *type, *target_type;
16785 struct attribute *attr;
16787 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16789 target_type = die_type (die, cu);
16791 /* The die_type call above may have already set the type for this DIE. */
16792 type = get_die_type (die, cu);
16796 type = lookup_reference_type (target_type, refcode);
16797 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16798 if (attr != nullptr)
16800 TYPE_LENGTH (type) = DW_UNSND (attr);
16804 TYPE_LENGTH (type) = cu_header->addr_size;
16806 maybe_set_alignment (cu, die, type);
16807 return set_die_type (die, type, cu);
16810 /* Add the given cv-qualifiers to the element type of the array. GCC
16811 outputs DWARF type qualifiers that apply to an array, not the
16812 element type. But GDB relies on the array element type to carry
16813 the cv-qualifiers. This mimics section 6.7.3 of the C99
16816 static struct type *
16817 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16818 struct type *base_type, int cnst, int voltl)
16820 struct type *el_type, *inner_array;
16822 base_type = copy_type (base_type);
16823 inner_array = base_type;
16825 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16827 TYPE_TARGET_TYPE (inner_array) =
16828 copy_type (TYPE_TARGET_TYPE (inner_array));
16829 inner_array = TYPE_TARGET_TYPE (inner_array);
16832 el_type = TYPE_TARGET_TYPE (inner_array);
16833 cnst |= TYPE_CONST (el_type);
16834 voltl |= TYPE_VOLATILE (el_type);
16835 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16837 return set_die_type (die, base_type, cu);
16840 static struct type *
16841 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16843 struct type *base_type, *cv_type;
16845 base_type = die_type (die, cu);
16847 /* The die_type call above may have already set the type for this DIE. */
16848 cv_type = get_die_type (die, cu);
16852 /* In case the const qualifier is applied to an array type, the element type
16853 is so qualified, not the array type (section 6.7.3 of C99). */
16854 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16855 return add_array_cv_type (die, cu, base_type, 1, 0);
16857 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16858 return set_die_type (die, cv_type, cu);
16861 static struct type *
16862 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16864 struct type *base_type, *cv_type;
16866 base_type = die_type (die, cu);
16868 /* The die_type call above may have already set the type for this DIE. */
16869 cv_type = get_die_type (die, cu);
16873 /* In case the volatile qualifier is applied to an array type, the
16874 element type is so qualified, not the array type (section 6.7.3
16876 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16877 return add_array_cv_type (die, cu, base_type, 0, 1);
16879 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16880 return set_die_type (die, cv_type, cu);
16883 /* Handle DW_TAG_restrict_type. */
16885 static struct type *
16886 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16888 struct type *base_type, *cv_type;
16890 base_type = die_type (die, cu);
16892 /* The die_type call above may have already set the type for this DIE. */
16893 cv_type = get_die_type (die, cu);
16897 cv_type = make_restrict_type (base_type);
16898 return set_die_type (die, cv_type, cu);
16901 /* Handle DW_TAG_atomic_type. */
16903 static struct type *
16904 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16906 struct type *base_type, *cv_type;
16908 base_type = die_type (die, cu);
16910 /* The die_type call above may have already set the type for this DIE. */
16911 cv_type = get_die_type (die, cu);
16915 cv_type = make_atomic_type (base_type);
16916 return set_die_type (die, cv_type, cu);
16919 /* Extract all information from a DW_TAG_string_type DIE and add to
16920 the user defined type vector. It isn't really a user defined type,
16921 but it behaves like one, with other DIE's using an AT_user_def_type
16922 attribute to reference it. */
16924 static struct type *
16925 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16927 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16928 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16929 struct type *type, *range_type, *index_type, *char_type;
16930 struct attribute *attr;
16931 struct dynamic_prop prop;
16932 bool length_is_constant = true;
16935 /* There are a couple of places where bit sizes might be made use of
16936 when parsing a DW_TAG_string_type, however, no producer that we know
16937 of make use of these. Handling bit sizes that are a multiple of the
16938 byte size is easy enough, but what about other bit sizes? Lets deal
16939 with that problem when we have to. Warn about these attributes being
16940 unsupported, then parse the type and ignore them like we always
16942 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16943 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16945 static bool warning_printed = false;
16946 if (!warning_printed)
16948 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16949 "currently supported on DW_TAG_string_type."));
16950 warning_printed = true;
16954 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16955 if (attr != nullptr && !attr->form_is_constant ())
16957 /* The string length describes the location at which the length of
16958 the string can be found. The size of the length field can be
16959 specified with one of the attributes below. */
16960 struct type *prop_type;
16961 struct attribute *len
16962 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16963 if (len == nullptr)
16964 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16965 if (len != nullptr && len->form_is_constant ())
16967 /* Pass 0 as the default as we know this attribute is constant
16968 and the default value will not be returned. */
16969 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
16970 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
16974 /* If the size is not specified then we assume it is the size of
16975 an address on this target. */
16976 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
16979 /* Convert the attribute into a dynamic property. */
16980 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16983 length_is_constant = false;
16985 else if (attr != nullptr)
16987 /* This DW_AT_string_length just contains the length with no
16988 indirection. There's no need to create a dynamic property in this
16989 case. Pass 0 for the default value as we know it will not be
16990 returned in this case. */
16991 length = dwarf2_get_attr_constant_value (attr, 0);
16993 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16995 /* We don't currently support non-constant byte sizes for strings. */
16996 length = dwarf2_get_attr_constant_value (attr, 1);
17000 /* Use 1 as a fallback length if we have nothing else. */
17004 index_type = objfile_type (objfile)->builtin_int;
17005 if (length_is_constant)
17006 range_type = create_static_range_type (NULL, index_type, 1, length);
17009 struct dynamic_prop low_bound;
17011 low_bound.kind = PROP_CONST;
17012 low_bound.data.const_val = 1;
17013 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17015 char_type = language_string_char_type (cu->language_defn, gdbarch);
17016 type = create_string_type (NULL, char_type, range_type);
17018 return set_die_type (die, type, cu);
17021 /* Assuming that DIE corresponds to a function, returns nonzero
17022 if the function is prototyped. */
17025 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17027 struct attribute *attr;
17029 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17030 if (attr && (DW_UNSND (attr) != 0))
17033 /* The DWARF standard implies that the DW_AT_prototyped attribute
17034 is only meaningful for C, but the concept also extends to other
17035 languages that allow unprototyped functions (Eg: Objective C).
17036 For all other languages, assume that functions are always
17038 if (cu->language != language_c
17039 && cu->language != language_objc
17040 && cu->language != language_opencl)
17043 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17044 prototyped and unprototyped functions; default to prototyped,
17045 since that is more common in modern code (and RealView warns
17046 about unprototyped functions). */
17047 if (producer_is_realview (cu->producer))
17053 /* Handle DIES due to C code like:
17057 int (*funcp)(int a, long l);
17061 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17063 static struct type *
17064 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17067 struct type *type; /* Type that this function returns. */
17068 struct type *ftype; /* Function that returns above type. */
17069 struct attribute *attr;
17071 type = die_type (die, cu);
17073 /* The die_type call above may have already set the type for this DIE. */
17074 ftype = get_die_type (die, cu);
17078 ftype = lookup_function_type (type);
17080 if (prototyped_function_p (die, cu))
17081 TYPE_PROTOTYPED (ftype) = 1;
17083 /* Store the calling convention in the type if it's available in
17084 the subroutine die. Otherwise set the calling convention to
17085 the default value DW_CC_normal. */
17086 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17087 if (attr != nullptr
17088 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17089 TYPE_CALLING_CONVENTION (ftype)
17090 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17091 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17092 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17094 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17096 /* Record whether the function returns normally to its caller or not
17097 if the DWARF producer set that information. */
17098 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17099 if (attr && (DW_UNSND (attr) != 0))
17100 TYPE_NO_RETURN (ftype) = 1;
17102 /* We need to add the subroutine type to the die immediately so
17103 we don't infinitely recurse when dealing with parameters
17104 declared as the same subroutine type. */
17105 set_die_type (die, ftype, cu);
17107 if (die->child != NULL)
17109 struct type *void_type = objfile_type (objfile)->builtin_void;
17110 struct die_info *child_die;
17111 int nparams, iparams;
17113 /* Count the number of parameters.
17114 FIXME: GDB currently ignores vararg functions, but knows about
17115 vararg member functions. */
17117 child_die = die->child;
17118 while (child_die && child_die->tag)
17120 if (child_die->tag == DW_TAG_formal_parameter)
17122 else if (child_die->tag == DW_TAG_unspecified_parameters)
17123 TYPE_VARARGS (ftype) = 1;
17124 child_die = sibling_die (child_die);
17127 /* Allocate storage for parameters and fill them in. */
17128 TYPE_NFIELDS (ftype) = nparams;
17129 TYPE_FIELDS (ftype) = (struct field *)
17130 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17132 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17133 even if we error out during the parameters reading below. */
17134 for (iparams = 0; iparams < nparams; iparams++)
17135 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17138 child_die = die->child;
17139 while (child_die && child_die->tag)
17141 if (child_die->tag == DW_TAG_formal_parameter)
17143 struct type *arg_type;
17145 /* DWARF version 2 has no clean way to discern C++
17146 static and non-static member functions. G++ helps
17147 GDB by marking the first parameter for non-static
17148 member functions (which is the this pointer) as
17149 artificial. We pass this information to
17150 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17152 DWARF version 3 added DW_AT_object_pointer, which GCC
17153 4.5 does not yet generate. */
17154 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17155 if (attr != nullptr)
17156 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17158 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17159 arg_type = die_type (child_die, cu);
17161 /* RealView does not mark THIS as const, which the testsuite
17162 expects. GCC marks THIS as const in method definitions,
17163 but not in the class specifications (GCC PR 43053). */
17164 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17165 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17168 struct dwarf2_cu *arg_cu = cu;
17169 const char *name = dwarf2_name (child_die, cu);
17171 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17172 if (attr != nullptr)
17174 /* If the compiler emits this, use it. */
17175 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17178 else if (name && strcmp (name, "this") == 0)
17179 /* Function definitions will have the argument names. */
17181 else if (name == NULL && iparams == 0)
17182 /* Declarations may not have the names, so like
17183 elsewhere in GDB, assume an artificial first
17184 argument is "this". */
17188 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17192 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17195 child_die = sibling_die (child_die);
17202 static struct type *
17203 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17205 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17206 const char *name = NULL;
17207 struct type *this_type, *target_type;
17209 name = dwarf2_full_name (NULL, die, cu);
17210 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17211 TYPE_TARGET_STUB (this_type) = 1;
17212 set_die_type (die, this_type, cu);
17213 target_type = die_type (die, cu);
17214 if (target_type != this_type)
17215 TYPE_TARGET_TYPE (this_type) = target_type;
17218 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17219 spec and cause infinite loops in GDB. */
17220 complaint (_("Self-referential DW_TAG_typedef "
17221 "- DIE at %s [in module %s]"),
17222 sect_offset_str (die->sect_off), objfile_name (objfile));
17223 TYPE_TARGET_TYPE (this_type) = NULL;
17228 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17229 (which may be different from NAME) to the architecture back-end to allow
17230 it to guess the correct format if necessary. */
17232 static struct type *
17233 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17234 const char *name_hint, enum bfd_endian byte_order)
17236 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17237 const struct floatformat **format;
17240 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17242 type = init_float_type (objfile, bits, name, format, byte_order);
17244 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17249 /* Allocate an integer type of size BITS and name NAME. */
17251 static struct type *
17252 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17253 int bits, int unsigned_p, const char *name)
17257 /* Versions of Intel's C Compiler generate an integer type called "void"
17258 instead of using DW_TAG_unspecified_type. This has been seen on
17259 at least versions 14, 17, and 18. */
17260 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17261 && strcmp (name, "void") == 0)
17262 type = objfile_type (objfile)->builtin_void;
17264 type = init_integer_type (objfile, bits, unsigned_p, name);
17269 /* Initialise and return a floating point type of size BITS suitable for
17270 use as a component of a complex number. The NAME_HINT is passed through
17271 when initialising the floating point type and is the name of the complex
17274 As DWARF doesn't currently provide an explicit name for the components
17275 of a complex number, but it can be helpful to have these components
17276 named, we try to select a suitable name based on the size of the
17278 static struct type *
17279 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17280 struct objfile *objfile,
17281 int bits, const char *name_hint,
17282 enum bfd_endian byte_order)
17284 gdbarch *gdbarch = get_objfile_arch (objfile);
17285 struct type *tt = nullptr;
17287 /* Try to find a suitable floating point builtin type of size BITS.
17288 We're going to use the name of this type as the name for the complex
17289 target type that we are about to create. */
17290 switch (cu->language)
17292 case language_fortran:
17296 tt = builtin_f_type (gdbarch)->builtin_real;
17299 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17301 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17303 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17311 tt = builtin_type (gdbarch)->builtin_float;
17314 tt = builtin_type (gdbarch)->builtin_double;
17316 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17318 tt = builtin_type (gdbarch)->builtin_long_double;
17324 /* If the type we found doesn't match the size we were looking for, then
17325 pretend we didn't find a type at all, the complex target type we
17326 create will then be nameless. */
17327 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17330 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17331 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17334 /* Find a representation of a given base type and install
17335 it in the TYPE field of the die. */
17337 static struct type *
17338 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17340 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17342 struct attribute *attr;
17343 int encoding = 0, bits = 0;
17347 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17348 if (attr != nullptr)
17349 encoding = DW_UNSND (attr);
17350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17351 if (attr != nullptr)
17352 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17353 name = dwarf2_name (die, cu);
17355 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17357 arch = get_objfile_arch (objfile);
17358 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17360 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17363 int endianity = DW_UNSND (attr);
17368 byte_order = BFD_ENDIAN_BIG;
17370 case DW_END_little:
17371 byte_order = BFD_ENDIAN_LITTLE;
17374 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17381 case DW_ATE_address:
17382 /* Turn DW_ATE_address into a void * pointer. */
17383 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17384 type = init_pointer_type (objfile, bits, name, type);
17386 case DW_ATE_boolean:
17387 type = init_boolean_type (objfile, bits, 1, name);
17389 case DW_ATE_complex_float:
17390 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17392 type = init_complex_type (objfile, name, type);
17394 case DW_ATE_decimal_float:
17395 type = init_decfloat_type (objfile, bits, name);
17398 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17400 case DW_ATE_signed:
17401 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17403 case DW_ATE_unsigned:
17404 if (cu->language == language_fortran
17406 && startswith (name, "character("))
17407 type = init_character_type (objfile, bits, 1, name);
17409 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17411 case DW_ATE_signed_char:
17412 if (cu->language == language_ada || cu->language == language_m2
17413 || cu->language == language_pascal
17414 || cu->language == language_fortran)
17415 type = init_character_type (objfile, bits, 0, name);
17417 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17419 case DW_ATE_unsigned_char:
17420 if (cu->language == language_ada || cu->language == language_m2
17421 || cu->language == language_pascal
17422 || cu->language == language_fortran
17423 || cu->language == language_rust)
17424 type = init_character_type (objfile, bits, 1, name);
17426 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17431 type = builtin_type (arch)->builtin_char16;
17432 else if (bits == 32)
17433 type = builtin_type (arch)->builtin_char32;
17436 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17438 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17440 return set_die_type (die, type, cu);
17445 complaint (_("unsupported DW_AT_encoding: '%s'"),
17446 dwarf_type_encoding_name (encoding));
17447 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17451 if (name && strcmp (name, "char") == 0)
17452 TYPE_NOSIGN (type) = 1;
17454 maybe_set_alignment (cu, die, type);
17456 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17458 return set_die_type (die, type, cu);
17461 /* Parse dwarf attribute if it's a block, reference or constant and put the
17462 resulting value of the attribute into struct bound_prop.
17463 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17466 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17467 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17468 struct type *default_type)
17470 struct dwarf2_property_baton *baton;
17471 struct obstack *obstack
17472 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17474 gdb_assert (default_type != NULL);
17476 if (attr == NULL || prop == NULL)
17479 if (attr->form_is_block ())
17481 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17482 baton->property_type = default_type;
17483 baton->locexpr.per_cu = cu->per_cu;
17484 baton->locexpr.size = DW_BLOCK (attr)->size;
17485 baton->locexpr.data = DW_BLOCK (attr)->data;
17486 switch (attr->name)
17488 case DW_AT_string_length:
17489 baton->locexpr.is_reference = true;
17492 baton->locexpr.is_reference = false;
17495 prop->data.baton = baton;
17496 prop->kind = PROP_LOCEXPR;
17497 gdb_assert (prop->data.baton != NULL);
17499 else if (attr->form_is_ref ())
17501 struct dwarf2_cu *target_cu = cu;
17502 struct die_info *target_die;
17503 struct attribute *target_attr;
17505 target_die = follow_die_ref (die, attr, &target_cu);
17506 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17507 if (target_attr == NULL)
17508 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17510 if (target_attr == NULL)
17513 switch (target_attr->name)
17515 case DW_AT_location:
17516 if (target_attr->form_is_section_offset ())
17518 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17519 baton->property_type = die_type (target_die, target_cu);
17520 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17521 prop->data.baton = baton;
17522 prop->kind = PROP_LOCLIST;
17523 gdb_assert (prop->data.baton != NULL);
17525 else if (target_attr->form_is_block ())
17527 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17528 baton->property_type = die_type (target_die, target_cu);
17529 baton->locexpr.per_cu = cu->per_cu;
17530 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17531 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17532 baton->locexpr.is_reference = true;
17533 prop->data.baton = baton;
17534 prop->kind = PROP_LOCEXPR;
17535 gdb_assert (prop->data.baton != NULL);
17539 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17540 "dynamic property");
17544 case DW_AT_data_member_location:
17548 if (!handle_data_member_location (target_die, target_cu,
17552 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17553 baton->property_type = read_type_die (target_die->parent,
17555 baton->offset_info.offset = offset;
17556 baton->offset_info.type = die_type (target_die, target_cu);
17557 prop->data.baton = baton;
17558 prop->kind = PROP_ADDR_OFFSET;
17563 else if (attr->form_is_constant ())
17565 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17566 prop->kind = PROP_CONST;
17570 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17571 dwarf2_name (die, cu));
17578 /* Find an integer type SIZE_IN_BYTES bytes in size and return it.
17579 UNSIGNED_P controls if the integer is unsigned or not. */
17581 static struct type *
17582 dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
17583 int size_in_bytes, bool unsigned_p)
17585 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17586 struct type *int_type;
17588 /* Helper macro to examine the various builtin types. */
17589 #define TRY_TYPE(F) \
17590 int_type = (unsigned_p \
17591 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17592 : objfile_type (objfile)->builtin_ ## F); \
17593 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17600 TRY_TYPE (long_long);
17604 gdb_assert_not_reached ("unable to find suitable integer type");
17607 /* Find an integer type the same size as the address size given in the
17608 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
17609 is unsigned or not. */
17611 static struct type *
17612 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
17615 int addr_size = dwarf2_per_cu_addr_size (per_cu);
17616 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
17619 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17620 present (which is valid) then compute the default type based on the
17621 compilation units address size. */
17623 static struct type *
17624 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17626 struct type *index_type = die_type (die, cu);
17628 /* Dwarf-2 specifications explicitly allows to create subrange types
17629 without specifying a base type.
17630 In that case, the base type must be set to the type of
17631 the lower bound, upper bound or count, in that order, if any of these
17632 three attributes references an object that has a type.
17633 If no base type is found, the Dwarf-2 specifications say that
17634 a signed integer type of size equal to the size of an address should
17636 For the following C code: `extern char gdb_int [];'
17637 GCC produces an empty range DIE.
17638 FIXME: muller/2010-05-28: Possible references to object for low bound,
17639 high bound or count are not yet handled by this code. */
17640 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17641 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17646 /* Read the given DW_AT_subrange DIE. */
17648 static struct type *
17649 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17651 struct type *base_type, *orig_base_type;
17652 struct type *range_type;
17653 struct attribute *attr;
17654 struct dynamic_prop low, high;
17655 int low_default_is_valid;
17656 int high_bound_is_count = 0;
17658 ULONGEST negative_mask;
17660 orig_base_type = read_subrange_index_type (die, cu);
17662 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17663 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17664 creating the range type, but we use the result of check_typedef
17665 when examining properties of the type. */
17666 base_type = check_typedef (orig_base_type);
17668 /* The die_type call above may have already set the type for this DIE. */
17669 range_type = get_die_type (die, cu);
17673 low.kind = PROP_CONST;
17674 high.kind = PROP_CONST;
17675 high.data.const_val = 0;
17677 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17678 omitting DW_AT_lower_bound. */
17679 switch (cu->language)
17682 case language_cplus:
17683 low.data.const_val = 0;
17684 low_default_is_valid = 1;
17686 case language_fortran:
17687 low.data.const_val = 1;
17688 low_default_is_valid = 1;
17691 case language_objc:
17692 case language_rust:
17693 low.data.const_val = 0;
17694 low_default_is_valid = (cu->header.version >= 4);
17698 case language_pascal:
17699 low.data.const_val = 1;
17700 low_default_is_valid = (cu->header.version >= 4);
17703 low.data.const_val = 0;
17704 low_default_is_valid = 0;
17708 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17709 if (attr != nullptr)
17710 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17711 else if (!low_default_is_valid)
17712 complaint (_("Missing DW_AT_lower_bound "
17713 "- DIE at %s [in module %s]"),
17714 sect_offset_str (die->sect_off),
17715 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17717 struct attribute *attr_ub, *attr_count;
17718 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17719 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17721 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17722 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17724 /* If bounds are constant do the final calculation here. */
17725 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17726 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17728 high_bound_is_count = 1;
17732 if (attr_ub != NULL)
17733 complaint (_("Unresolved DW_AT_upper_bound "
17734 "- DIE at %s [in module %s]"),
17735 sect_offset_str (die->sect_off),
17736 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17737 if (attr_count != NULL)
17738 complaint (_("Unresolved DW_AT_count "
17739 "- DIE at %s [in module %s]"),
17740 sect_offset_str (die->sect_off),
17741 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17746 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17747 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17748 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
17750 /* Normally, the DWARF producers are expected to use a signed
17751 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17752 But this is unfortunately not always the case, as witnessed
17753 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17754 is used instead. To work around that ambiguity, we treat
17755 the bounds as signed, and thus sign-extend their values, when
17756 the base type is signed. */
17758 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17759 if (low.kind == PROP_CONST
17760 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17761 low.data.const_val |= negative_mask;
17762 if (high.kind == PROP_CONST
17763 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17764 high.data.const_val |= negative_mask;
17766 /* Check for bit and byte strides. */
17767 struct dynamic_prop byte_stride_prop;
17768 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17769 if (attr_byte_stride != nullptr)
17771 struct type *prop_type
17772 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17773 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17777 struct dynamic_prop bit_stride_prop;
17778 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17779 if (attr_bit_stride != nullptr)
17781 /* It only makes sense to have either a bit or byte stride. */
17782 if (attr_byte_stride != nullptr)
17784 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17785 "- DIE at %s [in module %s]"),
17786 sect_offset_str (die->sect_off),
17787 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17788 attr_bit_stride = nullptr;
17792 struct type *prop_type
17793 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
17794 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17799 if (attr_byte_stride != nullptr
17800 || attr_bit_stride != nullptr)
17802 bool byte_stride_p = (attr_byte_stride != nullptr);
17803 struct dynamic_prop *stride
17804 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17807 = create_range_type_with_stride (NULL, orig_base_type, &low,
17808 &high, bias, stride, byte_stride_p);
17811 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17813 if (high_bound_is_count)
17814 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17816 /* Ada expects an empty array on no boundary attributes. */
17817 if (attr == NULL && cu->language != language_ada)
17818 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17820 name = dwarf2_name (die, cu);
17822 TYPE_NAME (range_type) = name;
17824 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17825 if (attr != nullptr)
17826 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17828 maybe_set_alignment (cu, die, range_type);
17830 set_die_type (die, range_type, cu);
17832 /* set_die_type should be already done. */
17833 set_descriptive_type (range_type, die, cu);
17838 static struct type *
17839 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17843 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17845 TYPE_NAME (type) = dwarf2_name (die, cu);
17847 /* In Ada, an unspecified type is typically used when the description
17848 of the type is deferred to a different unit. When encountering
17849 such a type, we treat it as a stub, and try to resolve it later on,
17851 if (cu->language == language_ada)
17852 TYPE_STUB (type) = 1;
17854 return set_die_type (die, type, cu);
17857 /* Read a single die and all its descendents. Set the die's sibling
17858 field to NULL; set other fields in the die correctly, and set all
17859 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17860 location of the info_ptr after reading all of those dies. PARENT
17861 is the parent of the die in question. */
17863 static struct die_info *
17864 read_die_and_children (const struct die_reader_specs *reader,
17865 const gdb_byte *info_ptr,
17866 const gdb_byte **new_info_ptr,
17867 struct die_info *parent)
17869 struct die_info *die;
17870 const gdb_byte *cur_ptr;
17872 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17875 *new_info_ptr = cur_ptr;
17878 store_in_ref_table (die, reader->cu);
17880 if (die->has_children)
17881 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17885 *new_info_ptr = cur_ptr;
17888 die->sibling = NULL;
17889 die->parent = parent;
17893 /* Read a die, all of its descendents, and all of its siblings; set
17894 all of the fields of all of the dies correctly. Arguments are as
17895 in read_die_and_children. */
17897 static struct die_info *
17898 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17899 const gdb_byte *info_ptr,
17900 const gdb_byte **new_info_ptr,
17901 struct die_info *parent)
17903 struct die_info *first_die, *last_sibling;
17904 const gdb_byte *cur_ptr;
17906 cur_ptr = info_ptr;
17907 first_die = last_sibling = NULL;
17911 struct die_info *die
17912 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17916 *new_info_ptr = cur_ptr;
17923 last_sibling->sibling = die;
17925 last_sibling = die;
17929 /* Read a die, all of its descendents, and all of its siblings; set
17930 all of the fields of all of the dies correctly. Arguments are as
17931 in read_die_and_children.
17932 This the main entry point for reading a DIE and all its children. */
17934 static struct die_info *
17935 read_die_and_siblings (const struct die_reader_specs *reader,
17936 const gdb_byte *info_ptr,
17937 const gdb_byte **new_info_ptr,
17938 struct die_info *parent)
17940 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17941 new_info_ptr, parent);
17943 if (dwarf_die_debug)
17945 fprintf_unfiltered (gdb_stdlog,
17946 "Read die from %s@0x%x of %s:\n",
17947 reader->die_section->get_name (),
17948 (unsigned) (info_ptr - reader->die_section->buffer),
17949 bfd_get_filename (reader->abfd));
17950 dump_die (die, dwarf_die_debug);
17956 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17958 The caller is responsible for filling in the extra attributes
17959 and updating (*DIEP)->num_attrs.
17960 Set DIEP to point to a newly allocated die with its information,
17961 except for its child, sibling, and parent fields. */
17963 static const gdb_byte *
17964 read_full_die_1 (const struct die_reader_specs *reader,
17965 struct die_info **diep, const gdb_byte *info_ptr,
17966 int num_extra_attrs)
17968 unsigned int abbrev_number, bytes_read, i;
17969 struct abbrev_info *abbrev;
17970 struct die_info *die;
17971 struct dwarf2_cu *cu = reader->cu;
17972 bfd *abfd = reader->abfd;
17974 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17975 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17976 info_ptr += bytes_read;
17977 if (!abbrev_number)
17983 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17985 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17987 bfd_get_filename (abfd));
17989 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17990 die->sect_off = sect_off;
17991 die->tag = abbrev->tag;
17992 die->abbrev = abbrev_number;
17993 die->has_children = abbrev->has_children;
17995 /* Make the result usable.
17996 The caller needs to update num_attrs after adding the extra
17998 die->num_attrs = abbrev->num_attrs;
18000 std::vector<int> indexes_that_need_reprocess;
18001 for (i = 0; i < abbrev->num_attrs; ++i)
18003 bool need_reprocess;
18005 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18006 info_ptr, &need_reprocess);
18007 if (need_reprocess)
18008 indexes_that_need_reprocess.push_back (i);
18011 struct attribute *attr = dwarf2_attr_no_follow (die, DW_AT_str_offsets_base);
18012 if (attr != nullptr)
18013 cu->str_offsets_base = DW_UNSND (attr);
18015 auto maybe_addr_base = lookup_addr_base(die);
18016 if (maybe_addr_base.has_value ())
18017 cu->addr_base = *maybe_addr_base;
18018 for (int index : indexes_that_need_reprocess)
18019 read_attribute_reprocess (reader, &die->attrs[index]);
18024 /* Read a die and all its attributes.
18025 Set DIEP to point to a newly allocated die with its information,
18026 except for its child, sibling, and parent fields. */
18028 static const gdb_byte *
18029 read_full_die (const struct die_reader_specs *reader,
18030 struct die_info **diep, const gdb_byte *info_ptr)
18032 const gdb_byte *result;
18034 result = read_full_die_1 (reader, diep, info_ptr, 0);
18036 if (dwarf_die_debug)
18038 fprintf_unfiltered (gdb_stdlog,
18039 "Read die from %s@0x%x of %s:\n",
18040 reader->die_section->get_name (),
18041 (unsigned) (info_ptr - reader->die_section->buffer),
18042 bfd_get_filename (reader->abfd));
18043 dump_die (*diep, dwarf_die_debug);
18050 /* Returns nonzero if TAG represents a type that we might generate a partial
18054 is_type_tag_for_partial (int tag)
18059 /* Some types that would be reasonable to generate partial symbols for,
18060 that we don't at present. */
18061 case DW_TAG_array_type:
18062 case DW_TAG_file_type:
18063 case DW_TAG_ptr_to_member_type:
18064 case DW_TAG_set_type:
18065 case DW_TAG_string_type:
18066 case DW_TAG_subroutine_type:
18068 case DW_TAG_base_type:
18069 case DW_TAG_class_type:
18070 case DW_TAG_interface_type:
18071 case DW_TAG_enumeration_type:
18072 case DW_TAG_structure_type:
18073 case DW_TAG_subrange_type:
18074 case DW_TAG_typedef:
18075 case DW_TAG_union_type:
18082 /* Load all DIEs that are interesting for partial symbols into memory. */
18084 static struct partial_die_info *
18085 load_partial_dies (const struct die_reader_specs *reader,
18086 const gdb_byte *info_ptr, int building_psymtab)
18088 struct dwarf2_cu *cu = reader->cu;
18089 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18090 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18091 unsigned int bytes_read;
18092 unsigned int load_all = 0;
18093 int nesting_level = 1;
18098 gdb_assert (cu->per_cu != NULL);
18099 if (cu->per_cu->load_all_dies)
18103 = htab_create_alloc_ex (cu->header.length / 12,
18107 &cu->comp_unit_obstack,
18108 hashtab_obstack_allocate,
18109 dummy_obstack_deallocate);
18113 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18115 /* A NULL abbrev means the end of a series of children. */
18116 if (abbrev == NULL)
18118 if (--nesting_level == 0)
18121 info_ptr += bytes_read;
18122 last_die = parent_die;
18123 parent_die = parent_die->die_parent;
18127 /* Check for template arguments. We never save these; if
18128 they're seen, we just mark the parent, and go on our way. */
18129 if (parent_die != NULL
18130 && cu->language == language_cplus
18131 && (abbrev->tag == DW_TAG_template_type_param
18132 || abbrev->tag == DW_TAG_template_value_param))
18134 parent_die->has_template_arguments = 1;
18138 /* We don't need a partial DIE for the template argument. */
18139 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18144 /* We only recurse into c++ subprograms looking for template arguments.
18145 Skip their other children. */
18147 && cu->language == language_cplus
18148 && parent_die != NULL
18149 && parent_die->tag == DW_TAG_subprogram)
18151 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18155 /* Check whether this DIE is interesting enough to save. Normally
18156 we would not be interested in members here, but there may be
18157 later variables referencing them via DW_AT_specification (for
18158 static members). */
18160 && !is_type_tag_for_partial (abbrev->tag)
18161 && abbrev->tag != DW_TAG_constant
18162 && abbrev->tag != DW_TAG_enumerator
18163 && abbrev->tag != DW_TAG_subprogram
18164 && abbrev->tag != DW_TAG_inlined_subroutine
18165 && abbrev->tag != DW_TAG_lexical_block
18166 && abbrev->tag != DW_TAG_variable
18167 && abbrev->tag != DW_TAG_namespace
18168 && abbrev->tag != DW_TAG_module
18169 && abbrev->tag != DW_TAG_member
18170 && abbrev->tag != DW_TAG_imported_unit
18171 && abbrev->tag != DW_TAG_imported_declaration)
18173 /* Otherwise we skip to the next sibling, if any. */
18174 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18178 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18181 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18183 /* This two-pass algorithm for processing partial symbols has a
18184 high cost in cache pressure. Thus, handle some simple cases
18185 here which cover the majority of C partial symbols. DIEs
18186 which neither have specification tags in them, nor could have
18187 specification tags elsewhere pointing at them, can simply be
18188 processed and discarded.
18190 This segment is also optional; scan_partial_symbols and
18191 add_partial_symbol will handle these DIEs if we chain
18192 them in normally. When compilers which do not emit large
18193 quantities of duplicate debug information are more common,
18194 this code can probably be removed. */
18196 /* Any complete simple types at the top level (pretty much all
18197 of them, for a language without namespaces), can be processed
18199 if (parent_die == NULL
18200 && pdi.has_specification == 0
18201 && pdi.is_declaration == 0
18202 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18203 || pdi.tag == DW_TAG_base_type
18204 || pdi.tag == DW_TAG_subrange_type))
18206 if (building_psymtab && pdi.name != NULL)
18207 add_psymbol_to_list (pdi.name, false,
18208 VAR_DOMAIN, LOC_TYPEDEF, -1,
18209 psymbol_placement::STATIC,
18210 0, cu->language, objfile);
18211 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18215 /* The exception for DW_TAG_typedef with has_children above is
18216 a workaround of GCC PR debug/47510. In the case of this complaint
18217 type_name_or_error will error on such types later.
18219 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18220 it could not find the child DIEs referenced later, this is checked
18221 above. In correct DWARF DW_TAG_typedef should have no children. */
18223 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18224 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18225 "- DIE at %s [in module %s]"),
18226 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18228 /* If we're at the second level, and we're an enumerator, and
18229 our parent has no specification (meaning possibly lives in a
18230 namespace elsewhere), then we can add the partial symbol now
18231 instead of queueing it. */
18232 if (pdi.tag == DW_TAG_enumerator
18233 && parent_die != NULL
18234 && parent_die->die_parent == NULL
18235 && parent_die->tag == DW_TAG_enumeration_type
18236 && parent_die->has_specification == 0)
18238 if (pdi.name == NULL)
18239 complaint (_("malformed enumerator DIE ignored"));
18240 else if (building_psymtab)
18241 add_psymbol_to_list (pdi.name, false,
18242 VAR_DOMAIN, LOC_CONST, -1,
18243 cu->language == language_cplus
18244 ? psymbol_placement::GLOBAL
18245 : psymbol_placement::STATIC,
18246 0, cu->language, objfile);
18248 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18252 struct partial_die_info *part_die
18253 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18255 /* We'll save this DIE so link it in. */
18256 part_die->die_parent = parent_die;
18257 part_die->die_sibling = NULL;
18258 part_die->die_child = NULL;
18260 if (last_die && last_die == parent_die)
18261 last_die->die_child = part_die;
18263 last_die->die_sibling = part_die;
18265 last_die = part_die;
18267 if (first_die == NULL)
18268 first_die = part_die;
18270 /* Maybe add the DIE to the hash table. Not all DIEs that we
18271 find interesting need to be in the hash table, because we
18272 also have the parent/sibling/child chains; only those that we
18273 might refer to by offset later during partial symbol reading.
18275 For now this means things that might have be the target of a
18276 DW_AT_specification, DW_AT_abstract_origin, or
18277 DW_AT_extension. DW_AT_extension will refer only to
18278 namespaces; DW_AT_abstract_origin refers to functions (and
18279 many things under the function DIE, but we do not recurse
18280 into function DIEs during partial symbol reading) and
18281 possibly variables as well; DW_AT_specification refers to
18282 declarations. Declarations ought to have the DW_AT_declaration
18283 flag. It happens that GCC forgets to put it in sometimes, but
18284 only for functions, not for types.
18286 Adding more things than necessary to the hash table is harmless
18287 except for the performance cost. Adding too few will result in
18288 wasted time in find_partial_die, when we reread the compilation
18289 unit with load_all_dies set. */
18292 || abbrev->tag == DW_TAG_constant
18293 || abbrev->tag == DW_TAG_subprogram
18294 || abbrev->tag == DW_TAG_variable
18295 || abbrev->tag == DW_TAG_namespace
18296 || part_die->is_declaration)
18300 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18301 to_underlying (part_die->sect_off),
18306 /* For some DIEs we want to follow their children (if any). For C
18307 we have no reason to follow the children of structures; for other
18308 languages we have to, so that we can get at method physnames
18309 to infer fully qualified class names, for DW_AT_specification,
18310 and for C++ template arguments. For C++, we also look one level
18311 inside functions to find template arguments (if the name of the
18312 function does not already contain the template arguments).
18314 For Ada and Fortran, we need to scan the children of subprograms
18315 and lexical blocks as well because these languages allow the
18316 definition of nested entities that could be interesting for the
18317 debugger, such as nested subprograms for instance. */
18318 if (last_die->has_children
18320 || last_die->tag == DW_TAG_namespace
18321 || last_die->tag == DW_TAG_module
18322 || last_die->tag == DW_TAG_enumeration_type
18323 || (cu->language == language_cplus
18324 && last_die->tag == DW_TAG_subprogram
18325 && (last_die->name == NULL
18326 || strchr (last_die->name, '<') == NULL))
18327 || (cu->language != language_c
18328 && (last_die->tag == DW_TAG_class_type
18329 || last_die->tag == DW_TAG_interface_type
18330 || last_die->tag == DW_TAG_structure_type
18331 || last_die->tag == DW_TAG_union_type))
18332 || ((cu->language == language_ada
18333 || cu->language == language_fortran)
18334 && (last_die->tag == DW_TAG_subprogram
18335 || last_die->tag == DW_TAG_lexical_block))))
18338 parent_die = last_die;
18342 /* Otherwise we skip to the next sibling, if any. */
18343 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18345 /* Back to the top, do it again. */
18349 partial_die_info::partial_die_info (sect_offset sect_off_,
18350 struct abbrev_info *abbrev)
18351 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18355 /* Read a minimal amount of information into the minimal die structure.
18356 INFO_PTR should point just after the initial uleb128 of a DIE. */
18359 partial_die_info::read (const struct die_reader_specs *reader,
18360 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18362 struct dwarf2_cu *cu = reader->cu;
18363 struct dwarf2_per_objfile *dwarf2_per_objfile
18364 = cu->per_cu->dwarf2_per_objfile;
18366 int has_low_pc_attr = 0;
18367 int has_high_pc_attr = 0;
18368 int high_pc_relative = 0;
18370 std::vector<struct attribute> attr_vec (abbrev.num_attrs);
18371 for (i = 0; i < abbrev.num_attrs; ++i)
18373 bool need_reprocess;
18374 info_ptr = read_attribute (reader, &attr_vec[i], &abbrev.attrs[i],
18375 info_ptr, &need_reprocess);
18376 /* String and address offsets that need to do the reprocessing have
18377 already been read at this point, so there is no need to wait until
18378 the loop terminates to do the reprocessing. */
18379 if (need_reprocess)
18380 read_attribute_reprocess (reader, &attr_vec[i]);
18381 attribute &attr = attr_vec[i];
18382 /* Store the data if it is of an attribute we want to keep in a
18383 partial symbol table. */
18389 case DW_TAG_compile_unit:
18390 case DW_TAG_partial_unit:
18391 case DW_TAG_type_unit:
18392 /* Compilation units have a DW_AT_name that is a filename, not
18393 a source language identifier. */
18394 case DW_TAG_enumeration_type:
18395 case DW_TAG_enumerator:
18396 /* These tags always have simple identifiers already; no need
18397 to canonicalize them. */
18398 name = DW_STRING (&attr);
18402 struct objfile *objfile = dwarf2_per_objfile->objfile;
18405 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18406 &objfile->per_bfd->storage_obstack);
18411 case DW_AT_linkage_name:
18412 case DW_AT_MIPS_linkage_name:
18413 /* Note that both forms of linkage name might appear. We
18414 assume they will be the same, and we only store the last
18416 linkage_name = DW_STRING (&attr);
18419 has_low_pc_attr = 1;
18420 lowpc = attr.value_as_address ();
18422 case DW_AT_high_pc:
18423 has_high_pc_attr = 1;
18424 highpc = attr.value_as_address ();
18425 if (cu->header.version >= 4 && attr.form_is_constant ())
18426 high_pc_relative = 1;
18428 case DW_AT_location:
18429 /* Support the .debug_loc offsets. */
18430 if (attr.form_is_block ())
18432 d.locdesc = DW_BLOCK (&attr);
18434 else if (attr.form_is_section_offset ())
18436 dwarf2_complex_location_expr_complaint ();
18440 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18441 "partial symbol information");
18444 case DW_AT_external:
18445 is_external = DW_UNSND (&attr);
18447 case DW_AT_declaration:
18448 is_declaration = DW_UNSND (&attr);
18453 case DW_AT_abstract_origin:
18454 case DW_AT_specification:
18455 case DW_AT_extension:
18456 has_specification = 1;
18457 spec_offset = dwarf2_get_ref_die_offset (&attr);
18458 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18459 || cu->per_cu->is_dwz);
18461 case DW_AT_sibling:
18462 /* Ignore absolute siblings, they might point outside of
18463 the current compile unit. */
18464 if (attr.form == DW_FORM_ref_addr)
18465 complaint (_("ignoring absolute DW_AT_sibling"));
18468 const gdb_byte *buffer = reader->buffer;
18469 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18470 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18472 if (sibling_ptr < info_ptr)
18473 complaint (_("DW_AT_sibling points backwards"));
18474 else if (sibling_ptr > reader->buffer_end)
18475 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18477 sibling = sibling_ptr;
18480 case DW_AT_byte_size:
18483 case DW_AT_const_value:
18484 has_const_value = 1;
18486 case DW_AT_calling_convention:
18487 /* DWARF doesn't provide a way to identify a program's source-level
18488 entry point. DW_AT_calling_convention attributes are only meant
18489 to describe functions' calling conventions.
18491 However, because it's a necessary piece of information in
18492 Fortran, and before DWARF 4 DW_CC_program was the only
18493 piece of debugging information whose definition refers to
18494 a 'main program' at all, several compilers marked Fortran
18495 main programs with DW_CC_program --- even when those
18496 functions use the standard calling conventions.
18498 Although DWARF now specifies a way to provide this
18499 information, we support this practice for backward
18501 if (DW_UNSND (&attr) == DW_CC_program
18502 && cu->language == language_fortran)
18503 main_subprogram = 1;
18506 if (DW_UNSND (&attr) == DW_INL_inlined
18507 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18508 may_be_inlined = 1;
18512 if (tag == DW_TAG_imported_unit)
18514 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18515 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18516 || cu->per_cu->is_dwz);
18520 case DW_AT_main_subprogram:
18521 main_subprogram = DW_UNSND (&attr);
18526 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18527 but that requires a full DIE, so instead we just
18529 int need_ranges_base = tag != DW_TAG_compile_unit;
18530 unsigned int ranges_offset = (DW_UNSND (&attr)
18531 + (need_ranges_base
18535 /* Value of the DW_AT_ranges attribute is the offset in the
18536 .debug_ranges section. */
18537 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18548 /* For Ada, if both the name and the linkage name appear, we prefer
18549 the latter. This lets "catch exception" work better, regardless
18550 of the order in which the name and linkage name were emitted.
18551 Really, though, this is just a workaround for the fact that gdb
18552 doesn't store both the name and the linkage name. */
18553 if (cu->language == language_ada && linkage_name != nullptr)
18554 name = linkage_name;
18556 if (high_pc_relative)
18559 if (has_low_pc_attr && has_high_pc_attr)
18561 /* When using the GNU linker, .gnu.linkonce. sections are used to
18562 eliminate duplicate copies of functions and vtables and such.
18563 The linker will arbitrarily choose one and discard the others.
18564 The AT_*_pc values for such functions refer to local labels in
18565 these sections. If the section from that file was discarded, the
18566 labels are not in the output, so the relocs get a value of 0.
18567 If this is a discarded function, mark the pc bounds as invalid,
18568 so that GDB will ignore it. */
18569 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18571 struct objfile *objfile = dwarf2_per_objfile->objfile;
18572 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18574 complaint (_("DW_AT_low_pc %s is zero "
18575 "for DIE at %s [in module %s]"),
18576 paddress (gdbarch, lowpc),
18577 sect_offset_str (sect_off),
18578 objfile_name (objfile));
18580 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18581 else if (lowpc >= highpc)
18583 struct objfile *objfile = dwarf2_per_objfile->objfile;
18584 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18586 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18587 "for DIE at %s [in module %s]"),
18588 paddress (gdbarch, lowpc),
18589 paddress (gdbarch, highpc),
18590 sect_offset_str (sect_off),
18591 objfile_name (objfile));
18600 /* Find a cached partial DIE at OFFSET in CU. */
18602 struct partial_die_info *
18603 dwarf2_cu::find_partial_die (sect_offset sect_off)
18605 struct partial_die_info *lookup_die = NULL;
18606 struct partial_die_info part_die (sect_off);
18608 lookup_die = ((struct partial_die_info *)
18609 htab_find_with_hash (partial_dies, &part_die,
18610 to_underlying (sect_off)));
18615 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18616 except in the case of .debug_types DIEs which do not reference
18617 outside their CU (they do however referencing other types via
18618 DW_FORM_ref_sig8). */
18620 static const struct cu_partial_die_info
18621 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18623 struct dwarf2_per_objfile *dwarf2_per_objfile
18624 = cu->per_cu->dwarf2_per_objfile;
18625 struct objfile *objfile = dwarf2_per_objfile->objfile;
18626 struct dwarf2_per_cu_data *per_cu = NULL;
18627 struct partial_die_info *pd = NULL;
18629 if (offset_in_dwz == cu->per_cu->is_dwz
18630 && offset_in_cu_p (&cu->header, sect_off))
18632 pd = cu->find_partial_die (sect_off);
18635 /* We missed recording what we needed.
18636 Load all dies and try again. */
18637 per_cu = cu->per_cu;
18641 /* TUs don't reference other CUs/TUs (except via type signatures). */
18642 if (cu->per_cu->is_debug_types)
18644 error (_("Dwarf Error: Type Unit at offset %s contains"
18645 " external reference to offset %s [in module %s].\n"),
18646 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18647 bfd_get_filename (objfile->obfd));
18649 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18650 dwarf2_per_objfile);
18652 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18653 load_partial_comp_unit (per_cu);
18655 per_cu->cu->last_used = 0;
18656 pd = per_cu->cu->find_partial_die (sect_off);
18659 /* If we didn't find it, and not all dies have been loaded,
18660 load them all and try again. */
18662 if (pd == NULL && per_cu->load_all_dies == 0)
18664 per_cu->load_all_dies = 1;
18666 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18667 THIS_CU->cu may already be in use. So we can't just free it and
18668 replace its DIEs with the ones we read in. Instead, we leave those
18669 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18670 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18672 load_partial_comp_unit (per_cu);
18674 pd = per_cu->cu->find_partial_die (sect_off);
18678 internal_error (__FILE__, __LINE__,
18679 _("could not find partial DIE %s "
18680 "in cache [from module %s]\n"),
18681 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18682 return { per_cu->cu, pd };
18685 /* See if we can figure out if the class lives in a namespace. We do
18686 this by looking for a member function; its demangled name will
18687 contain namespace info, if there is any. */
18690 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18691 struct dwarf2_cu *cu)
18693 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18694 what template types look like, because the demangler
18695 frequently doesn't give the same name as the debug info. We
18696 could fix this by only using the demangled name to get the
18697 prefix (but see comment in read_structure_type). */
18699 struct partial_die_info *real_pdi;
18700 struct partial_die_info *child_pdi;
18702 /* If this DIE (this DIE's specification, if any) has a parent, then
18703 we should not do this. We'll prepend the parent's fully qualified
18704 name when we create the partial symbol. */
18706 real_pdi = struct_pdi;
18707 while (real_pdi->has_specification)
18709 auto res = find_partial_die (real_pdi->spec_offset,
18710 real_pdi->spec_is_dwz, cu);
18711 real_pdi = res.pdi;
18715 if (real_pdi->die_parent != NULL)
18718 for (child_pdi = struct_pdi->die_child;
18720 child_pdi = child_pdi->die_sibling)
18722 if (child_pdi->tag == DW_TAG_subprogram
18723 && child_pdi->linkage_name != NULL)
18725 gdb::unique_xmalloc_ptr<char> actual_class_name
18726 (language_class_name_from_physname (cu->language_defn,
18727 child_pdi->linkage_name));
18728 if (actual_class_name != NULL)
18730 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18732 = obstack_strdup (&objfile->per_bfd->storage_obstack,
18733 actual_class_name.get ());
18741 partial_die_info::fixup (struct dwarf2_cu *cu)
18743 /* Once we've fixed up a die, there's no point in doing so again.
18744 This also avoids a memory leak if we were to call
18745 guess_partial_die_structure_name multiple times. */
18749 /* If we found a reference attribute and the DIE has no name, try
18750 to find a name in the referred to DIE. */
18752 if (name == NULL && has_specification)
18754 struct partial_die_info *spec_die;
18756 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18757 spec_die = res.pdi;
18760 spec_die->fixup (cu);
18762 if (spec_die->name)
18764 name = spec_die->name;
18766 /* Copy DW_AT_external attribute if it is set. */
18767 if (spec_die->is_external)
18768 is_external = spec_die->is_external;
18772 /* Set default names for some unnamed DIEs. */
18774 if (name == NULL && tag == DW_TAG_namespace)
18775 name = CP_ANONYMOUS_NAMESPACE_STR;
18777 /* If there is no parent die to provide a namespace, and there are
18778 children, see if we can determine the namespace from their linkage
18780 if (cu->language == language_cplus
18781 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18782 && die_parent == NULL
18784 && (tag == DW_TAG_class_type
18785 || tag == DW_TAG_structure_type
18786 || tag == DW_TAG_union_type))
18787 guess_partial_die_structure_name (this, cu);
18789 /* GCC might emit a nameless struct or union that has a linkage
18790 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18792 && (tag == DW_TAG_class_type
18793 || tag == DW_TAG_interface_type
18794 || tag == DW_TAG_structure_type
18795 || tag == DW_TAG_union_type)
18796 && linkage_name != NULL)
18798 gdb::unique_xmalloc_ptr<char> demangled
18799 (gdb_demangle (linkage_name, DMGL_TYPES));
18800 if (demangled != nullptr)
18804 /* Strip any leading namespaces/classes, keep only the base name.
18805 DW_AT_name for named DIEs does not contain the prefixes. */
18806 base = strrchr (demangled.get (), ':');
18807 if (base && base > demangled.get () && base[-1] == ':')
18810 base = demangled.get ();
18812 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18813 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
18820 /* Process the attributes that had to be skipped in the first round. These
18821 attributes are the ones that need str_offsets_base or addr_base attributes.
18822 They could not have been processed in the first round, because at the time
18823 the values of str_offsets_base or addr_base may not have been known. */
18824 void read_attribute_reprocess (const struct die_reader_specs *reader,
18825 struct attribute *attr)
18827 struct dwarf2_cu *cu = reader->cu;
18828 switch (attr->form)
18830 case DW_FORM_addrx:
18831 case DW_FORM_GNU_addr_index:
18832 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18835 case DW_FORM_strx1:
18836 case DW_FORM_strx2:
18837 case DW_FORM_strx3:
18838 case DW_FORM_strx4:
18839 case DW_FORM_GNU_str_index:
18841 unsigned int str_index = DW_UNSND (attr);
18842 if (reader->dwo_file != NULL)
18844 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18845 DW_STRING_IS_CANONICAL (attr) = 0;
18849 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18850 DW_STRING_IS_CANONICAL (attr) = 0;
18855 gdb_assert_not_reached (_("Unexpected DWARF form."));
18859 /* Read an attribute value described by an attribute form. */
18861 static const gdb_byte *
18862 read_attribute_value (const struct die_reader_specs *reader,
18863 struct attribute *attr, unsigned form,
18864 LONGEST implicit_const, const gdb_byte *info_ptr,
18865 bool *need_reprocess)
18867 struct dwarf2_cu *cu = reader->cu;
18868 struct dwarf2_per_objfile *dwarf2_per_objfile
18869 = cu->per_cu->dwarf2_per_objfile;
18870 struct objfile *objfile = dwarf2_per_objfile->objfile;
18871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18872 bfd *abfd = reader->abfd;
18873 struct comp_unit_head *cu_header = &cu->header;
18874 unsigned int bytes_read;
18875 struct dwarf_block *blk;
18876 *need_reprocess = false;
18878 attr->form = (enum dwarf_form) form;
18881 case DW_FORM_ref_addr:
18882 if (cu->header.version == 2)
18883 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18885 DW_UNSND (attr) = read_offset (abfd, info_ptr,
18886 &cu->header, &bytes_read);
18887 info_ptr += bytes_read;
18889 case DW_FORM_GNU_ref_alt:
18890 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18891 info_ptr += bytes_read;
18894 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
18895 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18896 info_ptr += bytes_read;
18898 case DW_FORM_block2:
18899 blk = dwarf_alloc_block (cu);
18900 blk->size = read_2_bytes (abfd, info_ptr);
18902 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18903 info_ptr += blk->size;
18904 DW_BLOCK (attr) = blk;
18906 case DW_FORM_block4:
18907 blk = dwarf_alloc_block (cu);
18908 blk->size = read_4_bytes (abfd, info_ptr);
18910 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18911 info_ptr += blk->size;
18912 DW_BLOCK (attr) = blk;
18914 case DW_FORM_data2:
18915 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18918 case DW_FORM_data4:
18919 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18922 case DW_FORM_data8:
18923 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18926 case DW_FORM_data16:
18927 blk = dwarf_alloc_block (cu);
18929 blk->data = read_n_bytes (abfd, info_ptr, 16);
18931 DW_BLOCK (attr) = blk;
18933 case DW_FORM_sec_offset:
18934 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
18935 info_ptr += bytes_read;
18937 case DW_FORM_string:
18938 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18939 DW_STRING_IS_CANONICAL (attr) = 0;
18940 info_ptr += bytes_read;
18943 if (!cu->per_cu->is_dwz)
18945 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18946 abfd, info_ptr, cu_header,
18948 DW_STRING_IS_CANONICAL (attr) = 0;
18949 info_ptr += bytes_read;
18953 case DW_FORM_line_strp:
18954 if (!cu->per_cu->is_dwz)
18956 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
18958 cu_header, &bytes_read);
18959 DW_STRING_IS_CANONICAL (attr) = 0;
18960 info_ptr += bytes_read;
18964 case DW_FORM_GNU_strp_alt:
18966 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18967 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
18970 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
18972 DW_STRING_IS_CANONICAL (attr) = 0;
18973 info_ptr += bytes_read;
18976 case DW_FORM_exprloc:
18977 case DW_FORM_block:
18978 blk = dwarf_alloc_block (cu);
18979 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18980 info_ptr += bytes_read;
18981 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18982 info_ptr += blk->size;
18983 DW_BLOCK (attr) = blk;
18985 case DW_FORM_block1:
18986 blk = dwarf_alloc_block (cu);
18987 blk->size = read_1_byte (abfd, info_ptr);
18989 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18990 info_ptr += blk->size;
18991 DW_BLOCK (attr) = blk;
18993 case DW_FORM_data1:
18994 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18998 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19001 case DW_FORM_flag_present:
19002 DW_UNSND (attr) = 1;
19004 case DW_FORM_sdata:
19005 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19006 info_ptr += bytes_read;
19008 case DW_FORM_udata:
19009 case DW_FORM_rnglistx:
19010 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19011 info_ptr += bytes_read;
19014 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19015 + read_1_byte (abfd, info_ptr));
19019 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19020 + read_2_bytes (abfd, info_ptr));
19024 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19025 + read_4_bytes (abfd, info_ptr));
19029 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19030 + read_8_bytes (abfd, info_ptr));
19033 case DW_FORM_ref_sig8:
19034 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19037 case DW_FORM_ref_udata:
19038 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19039 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19040 info_ptr += bytes_read;
19042 case DW_FORM_indirect:
19043 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19044 info_ptr += bytes_read;
19045 if (form == DW_FORM_implicit_const)
19047 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19048 info_ptr += bytes_read;
19050 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19051 info_ptr, need_reprocess);
19053 case DW_FORM_implicit_const:
19054 DW_SND (attr) = implicit_const;
19056 case DW_FORM_addrx:
19057 case DW_FORM_GNU_addr_index:
19058 *need_reprocess = true;
19059 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19060 info_ptr += bytes_read;
19063 case DW_FORM_strx1:
19064 case DW_FORM_strx2:
19065 case DW_FORM_strx3:
19066 case DW_FORM_strx4:
19067 case DW_FORM_GNU_str_index:
19069 ULONGEST str_index;
19070 if (form == DW_FORM_strx1)
19072 str_index = read_1_byte (abfd, info_ptr);
19075 else if (form == DW_FORM_strx2)
19077 str_index = read_2_bytes (abfd, info_ptr);
19080 else if (form == DW_FORM_strx3)
19082 str_index = read_3_bytes (abfd, info_ptr);
19085 else if (form == DW_FORM_strx4)
19087 str_index = read_4_bytes (abfd, info_ptr);
19092 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19093 info_ptr += bytes_read;
19095 *need_reprocess = true;
19096 DW_UNSND (attr) = str_index;
19100 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19101 dwarf_form_name (form),
19102 bfd_get_filename (abfd));
19106 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19107 attr->form = DW_FORM_GNU_ref_alt;
19109 /* We have seen instances where the compiler tried to emit a byte
19110 size attribute of -1 which ended up being encoded as an unsigned
19111 0xffffffff. Although 0xffffffff is technically a valid size value,
19112 an object of this size seems pretty unlikely so we can relatively
19113 safely treat these cases as if the size attribute was invalid and
19114 treat them as zero by default. */
19115 if (attr->name == DW_AT_byte_size
19116 && form == DW_FORM_data4
19117 && DW_UNSND (attr) >= 0xffffffff)
19120 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19121 hex_string (DW_UNSND (attr)));
19122 DW_UNSND (attr) = 0;
19128 /* Read an attribute described by an abbreviated attribute. */
19130 static const gdb_byte *
19131 read_attribute (const struct die_reader_specs *reader,
19132 struct attribute *attr, struct attr_abbrev *abbrev,
19133 const gdb_byte *info_ptr, bool *need_reprocess)
19135 attr->name = abbrev->name;
19136 return read_attribute_value (reader, attr, abbrev->form,
19137 abbrev->implicit_const, info_ptr,
19142 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19143 unsigned int *bytes_read)
19145 struct comp_unit_head *cu_header = &cu->header;
19146 CORE_ADDR retval = 0;
19148 if (cu_header->signed_addr_p)
19150 switch (cu_header->addr_size)
19153 retval = bfd_get_signed_16 (abfd, buf);
19156 retval = bfd_get_signed_32 (abfd, buf);
19159 retval = bfd_get_signed_64 (abfd, buf);
19162 internal_error (__FILE__, __LINE__,
19163 _("read_address: bad switch, signed [in module %s]"),
19164 bfd_get_filename (abfd));
19169 switch (cu_header->addr_size)
19172 retval = bfd_get_16 (abfd, buf);
19175 retval = bfd_get_32 (abfd, buf);
19178 retval = bfd_get_64 (abfd, buf);
19181 internal_error (__FILE__, __LINE__,
19182 _("read_address: bad switch, "
19183 "unsigned [in module %s]"),
19184 bfd_get_filename (abfd));
19188 *bytes_read = cu_header->addr_size;
19192 /* Read the initial length from a section. The (draft) DWARF 3
19193 specification allows the initial length to take up either 4 bytes
19194 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19195 bytes describe the length and all offsets will be 8 bytes in length
19198 An older, non-standard 64-bit format is also handled by this
19199 function. The older format in question stores the initial length
19200 as an 8-byte quantity without an escape value. Lengths greater
19201 than 2^32 aren't very common which means that the initial 4 bytes
19202 is almost always zero. Since a length value of zero doesn't make
19203 sense for the 32-bit format, this initial zero can be considered to
19204 be an escape value which indicates the presence of the older 64-bit
19205 format. As written, the code can't detect (old format) lengths
19206 greater than 4GB. If it becomes necessary to handle lengths
19207 somewhat larger than 4GB, we could allow other small values (such
19208 as the non-sensical values of 1, 2, and 3) to also be used as
19209 escape values indicating the presence of the old format.
19211 The value returned via bytes_read should be used to increment the
19212 relevant pointer after calling read_initial_length().
19214 [ Note: read_initial_length() and read_offset() are based on the
19215 document entitled "DWARF Debugging Information Format", revision
19216 3, draft 8, dated November 19, 2001. This document was obtained
19219 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19221 This document is only a draft and is subject to change. (So beware.)
19223 Details regarding the older, non-standard 64-bit format were
19224 determined empirically by examining 64-bit ELF files produced by
19225 the SGI toolchain on an IRIX 6.5 machine.
19227 - Kevin, July 16, 2002
19231 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19233 LONGEST length = bfd_get_32 (abfd, buf);
19235 if (length == 0xffffffff)
19237 length = bfd_get_64 (abfd, buf + 4);
19240 else if (length == 0)
19242 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19243 length = bfd_get_64 (abfd, buf);
19254 /* Cover function for read_initial_length.
19255 Returns the length of the object at BUF, and stores the size of the
19256 initial length in *BYTES_READ and stores the size that offsets will be in
19258 If the initial length size is not equivalent to that specified in
19259 CU_HEADER then issue a complaint.
19260 This is useful when reading non-comp-unit headers. */
19263 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19264 const struct comp_unit_head *cu_header,
19265 unsigned int *bytes_read,
19266 unsigned int *offset_size)
19268 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19270 gdb_assert (cu_header->initial_length_size == 4
19271 || cu_header->initial_length_size == 8
19272 || cu_header->initial_length_size == 12);
19274 if (cu_header->initial_length_size != *bytes_read)
19275 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19277 *offset_size = (*bytes_read == 4) ? 4 : 8;
19281 /* Read an offset from the data stream. The size of the offset is
19282 given by cu_header->offset_size. */
19285 read_offset (bfd *abfd, const gdb_byte *buf,
19286 const struct comp_unit_head *cu_header,
19287 unsigned int *bytes_read)
19289 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19291 *bytes_read = cu_header->offset_size;
19295 /* Read an offset from the data stream. */
19298 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19300 LONGEST retval = 0;
19302 switch (offset_size)
19305 retval = bfd_get_32 (abfd, buf);
19308 retval = bfd_get_64 (abfd, buf);
19311 internal_error (__FILE__, __LINE__,
19312 _("read_offset_1: bad switch [in module %s]"),
19313 bfd_get_filename (abfd));
19319 static const gdb_byte *
19320 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19322 /* If the size of a host char is 8 bits, we can return a pointer
19323 to the buffer, otherwise we have to copy the data to a buffer
19324 allocated on the temporary obstack. */
19325 gdb_assert (HOST_CHAR_BIT == 8);
19329 static const char *
19330 read_direct_string (bfd *abfd, const gdb_byte *buf,
19331 unsigned int *bytes_read_ptr)
19333 /* If the size of a host char is 8 bits, we can return a pointer
19334 to the string, otherwise we have to copy the string to a buffer
19335 allocated on the temporary obstack. */
19336 gdb_assert (HOST_CHAR_BIT == 8);
19339 *bytes_read_ptr = 1;
19342 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19343 return (const char *) buf;
19346 /* Return pointer to string at section SECT offset STR_OFFSET with error
19347 reporting strings FORM_NAME and SECT_NAME. */
19349 static const char *
19350 read_indirect_string_at_offset_from (struct objfile *objfile,
19351 bfd *abfd, LONGEST str_offset,
19352 struct dwarf2_section_info *sect,
19353 const char *form_name,
19354 const char *sect_name)
19356 sect->read (objfile);
19357 if (sect->buffer == NULL)
19358 error (_("%s used without %s section [in module %s]"),
19359 form_name, sect_name, bfd_get_filename (abfd));
19360 if (str_offset >= sect->size)
19361 error (_("%s pointing outside of %s section [in module %s]"),
19362 form_name, sect_name, bfd_get_filename (abfd));
19363 gdb_assert (HOST_CHAR_BIT == 8);
19364 if (sect->buffer[str_offset] == '\0')
19366 return (const char *) (sect->buffer + str_offset);
19369 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19371 static const char *
19372 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19373 bfd *abfd, LONGEST str_offset)
19375 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19377 &dwarf2_per_objfile->str,
19378 "DW_FORM_strp", ".debug_str");
19381 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19383 static const char *
19384 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19385 bfd *abfd, LONGEST str_offset)
19387 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19389 &dwarf2_per_objfile->line_str,
19390 "DW_FORM_line_strp",
19391 ".debug_line_str");
19394 /* Read a string at offset STR_OFFSET in the .debug_str section from
19395 the .dwz file DWZ. Throw an error if the offset is too large. If
19396 the string consists of a single NUL byte, return NULL; otherwise
19397 return a pointer to the string. */
19399 static const char *
19400 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19401 LONGEST str_offset)
19403 dwz->str.read (objfile);
19405 if (dwz->str.buffer == NULL)
19406 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19407 "section [in module %s]"),
19408 bfd_get_filename (dwz->dwz_bfd.get ()));
19409 if (str_offset >= dwz->str.size)
19410 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19411 ".debug_str section [in module %s]"),
19412 bfd_get_filename (dwz->dwz_bfd.get ()));
19413 gdb_assert (HOST_CHAR_BIT == 8);
19414 if (dwz->str.buffer[str_offset] == '\0')
19416 return (const char *) (dwz->str.buffer + str_offset);
19419 /* Return pointer to string at .debug_str offset as read from BUF.
19420 BUF is assumed to be in a compilation unit described by CU_HEADER.
19421 Return *BYTES_READ_PTR count of bytes read from BUF. */
19423 static const char *
19424 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19425 const gdb_byte *buf,
19426 const struct comp_unit_head *cu_header,
19427 unsigned int *bytes_read_ptr)
19429 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19431 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19434 /* Return pointer to string at .debug_line_str offset as read from BUF.
19435 BUF is assumed to be in a compilation unit described by CU_HEADER.
19436 Return *BYTES_READ_PTR count of bytes read from BUF. */
19438 static const char *
19439 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19440 bfd *abfd, const gdb_byte *buf,
19441 const struct comp_unit_head *cu_header,
19442 unsigned int *bytes_read_ptr)
19444 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19446 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19450 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19451 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19452 ADDR_SIZE is the size of addresses from the CU header. */
19455 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19456 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19459 struct objfile *objfile = dwarf2_per_objfile->objfile;
19460 bfd *abfd = objfile->obfd;
19461 const gdb_byte *info_ptr;
19462 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19464 dwarf2_per_objfile->addr.read (objfile);
19465 if (dwarf2_per_objfile->addr.buffer == NULL)
19466 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19467 objfile_name (objfile));
19468 if (addr_base_or_zero + addr_index * addr_size
19469 >= dwarf2_per_objfile->addr.size)
19470 error (_("DW_FORM_addr_index pointing outside of "
19471 ".debug_addr section [in module %s]"),
19472 objfile_name (objfile));
19473 info_ptr = (dwarf2_per_objfile->addr.buffer
19474 + addr_base_or_zero + addr_index * addr_size);
19475 if (addr_size == 4)
19476 return bfd_get_32 (abfd, info_ptr);
19478 return bfd_get_64 (abfd, info_ptr);
19481 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19484 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19486 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19487 cu->addr_base, cu->header.addr_size);
19490 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19493 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19494 unsigned int *bytes_read)
19496 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19497 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19499 return read_addr_index (cu, addr_index);
19502 /* Given an index in .debug_addr, fetch the value.
19503 NOTE: This can be called during dwarf expression evaluation,
19504 long after the debug information has been read, and thus per_cu->cu
19505 may no longer exist. */
19508 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19509 unsigned int addr_index)
19511 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19512 struct dwarf2_cu *cu = per_cu->cu;
19513 gdb::optional<ULONGEST> addr_base;
19516 /* We need addr_base and addr_size.
19517 If we don't have PER_CU->cu, we have to get it.
19518 Nasty, but the alternative is storing the needed info in PER_CU,
19519 which at this point doesn't seem justified: it's not clear how frequently
19520 it would get used and it would increase the size of every PER_CU.
19521 Entry points like dwarf2_per_cu_addr_size do a similar thing
19522 so we're not in uncharted territory here.
19523 Alas we need to be a bit more complicated as addr_base is contained
19526 We don't need to read the entire CU(/TU).
19527 We just need the header and top level die.
19529 IWBN to use the aging mechanism to let us lazily later discard the CU.
19530 For now we skip this optimization. */
19534 addr_base = cu->addr_base;
19535 addr_size = cu->header.addr_size;
19539 cutu_reader reader (per_cu, NULL, 0, 0, false);
19540 addr_base = reader.cu->addr_base;
19541 addr_size = reader.cu->header.addr_size;
19544 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19548 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19549 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19552 static const char *
19553 read_str_index (struct dwarf2_cu *cu,
19554 struct dwarf2_section_info *str_section,
19555 struct dwarf2_section_info *str_offsets_section,
19556 ULONGEST str_offsets_base, ULONGEST str_index)
19558 struct dwarf2_per_objfile *dwarf2_per_objfile
19559 = cu->per_cu->dwarf2_per_objfile;
19560 struct objfile *objfile = dwarf2_per_objfile->objfile;
19561 const char *objf_name = objfile_name (objfile);
19562 bfd *abfd = objfile->obfd;
19563 const gdb_byte *info_ptr;
19564 ULONGEST str_offset;
19565 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19567 str_section->read (objfile);
19568 str_offsets_section->read (objfile);
19569 if (str_section->buffer == NULL)
19570 error (_("%s used without %s section"
19571 " in CU at offset %s [in module %s]"),
19572 form_name, str_section->get_name (),
19573 sect_offset_str (cu->header.sect_off), objf_name);
19574 if (str_offsets_section->buffer == NULL)
19575 error (_("%s used without %s section"
19576 " in CU at offset %s [in module %s]"),
19577 form_name, str_section->get_name (),
19578 sect_offset_str (cu->header.sect_off), objf_name);
19579 info_ptr = (str_offsets_section->buffer
19581 + str_index * cu->header.offset_size);
19582 if (cu->header.offset_size == 4)
19583 str_offset = bfd_get_32 (abfd, info_ptr);
19585 str_offset = bfd_get_64 (abfd, info_ptr);
19586 if (str_offset >= str_section->size)
19587 error (_("Offset from %s pointing outside of"
19588 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19589 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19590 return (const char *) (str_section->buffer + str_offset);
19593 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19595 static const char *
19596 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19598 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19599 ? reader->cu->header.addr_size : 0;
19600 return read_str_index (reader->cu,
19601 &reader->dwo_file->sections.str,
19602 &reader->dwo_file->sections.str_offsets,
19603 str_offsets_base, str_index);
19606 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19608 static const char *
19609 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19611 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19612 const char *objf_name = objfile_name (objfile);
19613 static const char form_name[] = "DW_FORM_GNU_str_index";
19614 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19616 if (!cu->str_offsets_base.has_value ())
19617 error (_("%s used in Fission stub without %s"
19618 " in CU at offset 0x%lx [in module %s]"),
19619 form_name, str_offsets_attr_name,
19620 (long) cu->header.offset_size, objf_name);
19622 return read_str_index (cu,
19623 &cu->per_cu->dwarf2_per_objfile->str,
19624 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19625 *cu->str_offsets_base, str_index);
19628 /* Return the length of an LEB128 number in BUF. */
19631 leb128_size (const gdb_byte *buf)
19633 const gdb_byte *begin = buf;
19639 if ((byte & 128) == 0)
19640 return buf - begin;
19645 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19654 cu->language = language_c;
19657 case DW_LANG_C_plus_plus:
19658 case DW_LANG_C_plus_plus_11:
19659 case DW_LANG_C_plus_plus_14:
19660 cu->language = language_cplus;
19663 cu->language = language_d;
19665 case DW_LANG_Fortran77:
19666 case DW_LANG_Fortran90:
19667 case DW_LANG_Fortran95:
19668 case DW_LANG_Fortran03:
19669 case DW_LANG_Fortran08:
19670 cu->language = language_fortran;
19673 cu->language = language_go;
19675 case DW_LANG_Mips_Assembler:
19676 cu->language = language_asm;
19678 case DW_LANG_Ada83:
19679 case DW_LANG_Ada95:
19680 cu->language = language_ada;
19682 case DW_LANG_Modula2:
19683 cu->language = language_m2;
19685 case DW_LANG_Pascal83:
19686 cu->language = language_pascal;
19689 cu->language = language_objc;
19692 case DW_LANG_Rust_old:
19693 cu->language = language_rust;
19695 case DW_LANG_Cobol74:
19696 case DW_LANG_Cobol85:
19698 cu->language = language_minimal;
19701 cu->language_defn = language_def (cu->language);
19704 /* Return the named attribute or NULL if not there. */
19706 static struct attribute *
19707 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19712 struct attribute *spec = NULL;
19714 for (i = 0; i < die->num_attrs; ++i)
19716 if (die->attrs[i].name == name)
19717 return &die->attrs[i];
19718 if (die->attrs[i].name == DW_AT_specification
19719 || die->attrs[i].name == DW_AT_abstract_origin)
19720 spec = &die->attrs[i];
19726 die = follow_die_ref (die, spec, &cu);
19732 /* Return the named attribute or NULL if not there,
19733 but do not follow DW_AT_specification, etc.
19734 This is for use in contexts where we're reading .debug_types dies.
19735 Following DW_AT_specification, DW_AT_abstract_origin will take us
19736 back up the chain, and we want to go down. */
19738 static struct attribute *
19739 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19743 for (i = 0; i < die->num_attrs; ++i)
19744 if (die->attrs[i].name == name)
19745 return &die->attrs[i];
19750 /* Return the string associated with a string-typed attribute, or NULL if it
19751 is either not found or is of an incorrect type. */
19753 static const char *
19754 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19756 struct attribute *attr;
19757 const char *str = NULL;
19759 attr = dwarf2_attr (die, name, cu);
19763 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19764 || attr->form == DW_FORM_string
19765 || attr->form == DW_FORM_strx
19766 || attr->form == DW_FORM_strx1
19767 || attr->form == DW_FORM_strx2
19768 || attr->form == DW_FORM_strx3
19769 || attr->form == DW_FORM_strx4
19770 || attr->form == DW_FORM_GNU_str_index
19771 || attr->form == DW_FORM_GNU_strp_alt)
19772 str = DW_STRING (attr);
19774 complaint (_("string type expected for attribute %s for "
19775 "DIE at %s in module %s"),
19776 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19783 /* Return the dwo name or NULL if not present. If present, it is in either
19784 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19785 static const char *
19786 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19788 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19789 if (dwo_name == nullptr)
19790 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19794 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19795 and holds a non-zero value. This function should only be used for
19796 DW_FORM_flag or DW_FORM_flag_present attributes. */
19799 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19801 struct attribute *attr = dwarf2_attr (die, name, cu);
19803 return (attr && DW_UNSND (attr));
19807 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19809 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19810 which value is non-zero. However, we have to be careful with
19811 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19812 (via dwarf2_flag_true_p) follows this attribute. So we may
19813 end up accidently finding a declaration attribute that belongs
19814 to a different DIE referenced by the specification attribute,
19815 even though the given DIE does not have a declaration attribute. */
19816 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19817 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19820 /* Return the die giving the specification for DIE, if there is
19821 one. *SPEC_CU is the CU containing DIE on input, and the CU
19822 containing the return value on output. If there is no
19823 specification, but there is an abstract origin, that is
19826 static struct die_info *
19827 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19829 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19832 if (spec_attr == NULL)
19833 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19835 if (spec_attr == NULL)
19838 return follow_die_ref (die, spec_attr, spec_cu);
19841 /* Stub for free_line_header to match void * callback types. */
19844 free_line_header_voidp (void *arg)
19846 struct line_header *lh = (struct line_header *) arg;
19852 line_header::add_include_dir (const char *include_dir)
19854 if (dwarf_line_debug >= 2)
19858 new_size = m_include_dirs.size ();
19860 new_size = m_include_dirs.size () + 1;
19861 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
19862 new_size, include_dir);
19864 m_include_dirs.push_back (include_dir);
19868 line_header::add_file_name (const char *name,
19870 unsigned int mod_time,
19871 unsigned int length)
19873 if (dwarf_line_debug >= 2)
19877 new_size = file_names_size ();
19879 new_size = file_names_size () + 1;
19880 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
19883 m_file_names.emplace_back (name, d_index, mod_time, length);
19886 /* A convenience function to find the proper .debug_line section for a CU. */
19888 static struct dwarf2_section_info *
19889 get_debug_line_section (struct dwarf2_cu *cu)
19891 struct dwarf2_section_info *section;
19892 struct dwarf2_per_objfile *dwarf2_per_objfile
19893 = cu->per_cu->dwarf2_per_objfile;
19895 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19897 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19898 section = &cu->dwo_unit->dwo_file->sections.line;
19899 else if (cu->per_cu->is_dwz)
19901 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19903 section = &dwz->line;
19906 section = &dwarf2_per_objfile->line;
19911 /* Read directory or file name entry format, starting with byte of
19912 format count entries, ULEB128 pairs of entry formats, ULEB128 of
19913 entries count and the entries themselves in the described entry
19917 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
19918 bfd *abfd, const gdb_byte **bufp,
19919 struct line_header *lh,
19920 const struct comp_unit_head *cu_header,
19921 void (*callback) (struct line_header *lh,
19924 unsigned int mod_time,
19925 unsigned int length))
19927 gdb_byte format_count, formati;
19928 ULONGEST data_count, datai;
19929 const gdb_byte *buf = *bufp;
19930 const gdb_byte *format_header_data;
19931 unsigned int bytes_read;
19933 format_count = read_1_byte (abfd, buf);
19935 format_header_data = buf;
19936 for (formati = 0; formati < format_count; formati++)
19938 read_unsigned_leb128 (abfd, buf, &bytes_read);
19940 read_unsigned_leb128 (abfd, buf, &bytes_read);
19944 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
19946 for (datai = 0; datai < data_count; datai++)
19948 const gdb_byte *format = format_header_data;
19949 struct file_entry fe;
19951 for (formati = 0; formati < format_count; formati++)
19953 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
19954 format += bytes_read;
19956 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
19957 format += bytes_read;
19959 gdb::optional<const char *> string;
19960 gdb::optional<unsigned int> uint;
19964 case DW_FORM_string:
19965 string.emplace (read_direct_string (abfd, buf, &bytes_read));
19969 case DW_FORM_line_strp:
19970 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
19977 case DW_FORM_data1:
19978 uint.emplace (read_1_byte (abfd, buf));
19982 case DW_FORM_data2:
19983 uint.emplace (read_2_bytes (abfd, buf));
19987 case DW_FORM_data4:
19988 uint.emplace (read_4_bytes (abfd, buf));
19992 case DW_FORM_data8:
19993 uint.emplace (read_8_bytes (abfd, buf));
19997 case DW_FORM_data16:
19998 /* This is used for MD5, but file_entry does not record MD5s. */
20002 case DW_FORM_udata:
20003 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20007 case DW_FORM_block:
20008 /* It is valid only for DW_LNCT_timestamp which is ignored by
20013 switch (content_type)
20016 if (string.has_value ())
20019 case DW_LNCT_directory_index:
20020 if (uint.has_value ())
20021 fe.d_index = (dir_index) *uint;
20023 case DW_LNCT_timestamp:
20024 if (uint.has_value ())
20025 fe.mod_time = *uint;
20028 if (uint.has_value ())
20034 complaint (_("Unknown format content type %s"),
20035 pulongest (content_type));
20039 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20045 /* Read the statement program header starting at OFFSET in
20046 .debug_line, or .debug_line.dwo. Return a pointer
20047 to a struct line_header, allocated using xmalloc.
20048 Returns NULL if there is a problem reading the header, e.g., if it
20049 has a version we don't understand.
20051 NOTE: the strings in the include directory and file name tables of
20052 the returned object point into the dwarf line section buffer,
20053 and must not be freed. */
20055 static line_header_up
20056 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20058 const gdb_byte *line_ptr;
20059 unsigned int bytes_read, offset_size;
20061 const char *cur_dir, *cur_file;
20062 struct dwarf2_section_info *section;
20064 struct dwarf2_per_objfile *dwarf2_per_objfile
20065 = cu->per_cu->dwarf2_per_objfile;
20067 section = get_debug_line_section (cu);
20068 section->read (dwarf2_per_objfile->objfile);
20069 if (section->buffer == NULL)
20071 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20072 complaint (_("missing .debug_line.dwo section"));
20074 complaint (_("missing .debug_line section"));
20078 /* We can't do this until we know the section is non-empty.
20079 Only then do we know we have such a section. */
20080 abfd = section->get_bfd_owner ();
20082 /* Make sure that at least there's room for the total_length field.
20083 That could be 12 bytes long, but we're just going to fudge that. */
20084 if (to_underlying (sect_off) + 4 >= section->size)
20086 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20090 line_header_up lh (new line_header ());
20092 lh->sect_off = sect_off;
20093 lh->offset_in_dwz = cu->per_cu->is_dwz;
20095 line_ptr = section->buffer + to_underlying (sect_off);
20097 /* Read in the header. */
20099 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20100 &bytes_read, &offset_size);
20101 line_ptr += bytes_read;
20103 const gdb_byte *start_here = line_ptr;
20105 if (line_ptr + lh->total_length > (section->buffer + section->size))
20107 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20110 lh->statement_program_end = start_here + lh->total_length;
20111 lh->version = read_2_bytes (abfd, line_ptr);
20113 if (lh->version > 5)
20115 /* This is a version we don't understand. The format could have
20116 changed in ways we don't handle properly so just punt. */
20117 complaint (_("unsupported version in .debug_line section"));
20120 if (lh->version >= 5)
20122 gdb_byte segment_selector_size;
20124 /* Skip address size. */
20125 read_1_byte (abfd, line_ptr);
20128 segment_selector_size = read_1_byte (abfd, line_ptr);
20130 if (segment_selector_size != 0)
20132 complaint (_("unsupported segment selector size %u "
20133 "in .debug_line section"),
20134 segment_selector_size);
20138 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20139 line_ptr += offset_size;
20140 lh->statement_program_start = line_ptr + lh->header_length;
20141 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20143 if (lh->version >= 4)
20145 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20149 lh->maximum_ops_per_instruction = 1;
20151 if (lh->maximum_ops_per_instruction == 0)
20153 lh->maximum_ops_per_instruction = 1;
20154 complaint (_("invalid maximum_ops_per_instruction "
20155 "in `.debug_line' section"));
20158 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20160 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20162 lh->line_range = read_1_byte (abfd, line_ptr);
20164 lh->opcode_base = read_1_byte (abfd, line_ptr);
20166 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20168 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20169 for (i = 1; i < lh->opcode_base; ++i)
20171 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20175 if (lh->version >= 5)
20177 /* Read directory table. */
20178 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20180 [] (struct line_header *header, const char *name,
20181 dir_index d_index, unsigned int mod_time,
20182 unsigned int length)
20184 header->add_include_dir (name);
20187 /* Read file name table. */
20188 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20190 [] (struct line_header *header, const char *name,
20191 dir_index d_index, unsigned int mod_time,
20192 unsigned int length)
20194 header->add_file_name (name, d_index, mod_time, length);
20199 /* Read directory table. */
20200 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20202 line_ptr += bytes_read;
20203 lh->add_include_dir (cur_dir);
20205 line_ptr += bytes_read;
20207 /* Read file name table. */
20208 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20210 unsigned int mod_time, length;
20213 line_ptr += bytes_read;
20214 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20215 line_ptr += bytes_read;
20216 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20217 line_ptr += bytes_read;
20218 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20219 line_ptr += bytes_read;
20221 lh->add_file_name (cur_file, d_index, mod_time, length);
20223 line_ptr += bytes_read;
20226 if (line_ptr > (section->buffer + section->size))
20227 complaint (_("line number info header doesn't "
20228 "fit in `.debug_line' section"));
20233 /* Subroutine of dwarf_decode_lines to simplify it.
20234 Return the file name of the psymtab for the given file_entry.
20235 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20236 If space for the result is malloc'd, *NAME_HOLDER will be set.
20237 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20239 static const char *
20240 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20241 const dwarf2_psymtab *pst,
20242 const char *comp_dir,
20243 gdb::unique_xmalloc_ptr<char> *name_holder)
20245 const char *include_name = fe.name;
20246 const char *include_name_to_compare = include_name;
20247 const char *pst_filename;
20250 const char *dir_name = fe.include_dir (lh);
20252 gdb::unique_xmalloc_ptr<char> hold_compare;
20253 if (!IS_ABSOLUTE_PATH (include_name)
20254 && (dir_name != NULL || comp_dir != NULL))
20256 /* Avoid creating a duplicate psymtab for PST.
20257 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20258 Before we do the comparison, however, we need to account
20259 for DIR_NAME and COMP_DIR.
20260 First prepend dir_name (if non-NULL). If we still don't
20261 have an absolute path prepend comp_dir (if non-NULL).
20262 However, the directory we record in the include-file's
20263 psymtab does not contain COMP_DIR (to match the
20264 corresponding symtab(s)).
20269 bash$ gcc -g ./hello.c
20270 include_name = "hello.c"
20272 DW_AT_comp_dir = comp_dir = "/tmp"
20273 DW_AT_name = "./hello.c"
20277 if (dir_name != NULL)
20279 name_holder->reset (concat (dir_name, SLASH_STRING,
20280 include_name, (char *) NULL));
20281 include_name = name_holder->get ();
20282 include_name_to_compare = include_name;
20284 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20286 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20287 include_name, (char *) NULL));
20288 include_name_to_compare = hold_compare.get ();
20292 pst_filename = pst->filename;
20293 gdb::unique_xmalloc_ptr<char> copied_name;
20294 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20296 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20297 pst_filename, (char *) NULL));
20298 pst_filename = copied_name.get ();
20301 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20305 return include_name;
20308 /* State machine to track the state of the line number program. */
20310 class lnp_state_machine
20313 /* Initialize a machine state for the start of a line number
20315 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20316 bool record_lines_p);
20318 file_entry *current_file ()
20320 /* lh->file_names is 0-based, but the file name numbers in the
20321 statement program are 1-based. */
20322 return m_line_header->file_name_at (m_file);
20325 /* Record the line in the state machine. END_SEQUENCE is true if
20326 we're processing the end of a sequence. */
20327 void record_line (bool end_sequence);
20329 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20330 nop-out rest of the lines in this sequence. */
20331 void check_line_address (struct dwarf2_cu *cu,
20332 const gdb_byte *line_ptr,
20333 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20335 void handle_set_discriminator (unsigned int discriminator)
20337 m_discriminator = discriminator;
20338 m_line_has_non_zero_discriminator |= discriminator != 0;
20341 /* Handle DW_LNE_set_address. */
20342 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20345 address += baseaddr;
20346 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20349 /* Handle DW_LNS_advance_pc. */
20350 void handle_advance_pc (CORE_ADDR adjust);
20352 /* Handle a special opcode. */
20353 void handle_special_opcode (unsigned char op_code);
20355 /* Handle DW_LNS_advance_line. */
20356 void handle_advance_line (int line_delta)
20358 advance_line (line_delta);
20361 /* Handle DW_LNS_set_file. */
20362 void handle_set_file (file_name_index file);
20364 /* Handle DW_LNS_negate_stmt. */
20365 void handle_negate_stmt ()
20367 m_is_stmt = !m_is_stmt;
20370 /* Handle DW_LNS_const_add_pc. */
20371 void handle_const_add_pc ();
20373 /* Handle DW_LNS_fixed_advance_pc. */
20374 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20376 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20380 /* Handle DW_LNS_copy. */
20381 void handle_copy ()
20383 record_line (false);
20384 m_discriminator = 0;
20387 /* Handle DW_LNE_end_sequence. */
20388 void handle_end_sequence ()
20390 m_currently_recording_lines = true;
20394 /* Advance the line by LINE_DELTA. */
20395 void advance_line (int line_delta)
20397 m_line += line_delta;
20399 if (line_delta != 0)
20400 m_line_has_non_zero_discriminator = m_discriminator != 0;
20403 struct dwarf2_cu *m_cu;
20405 gdbarch *m_gdbarch;
20407 /* True if we're recording lines.
20408 Otherwise we're building partial symtabs and are just interested in
20409 finding include files mentioned by the line number program. */
20410 bool m_record_lines_p;
20412 /* The line number header. */
20413 line_header *m_line_header;
20415 /* These are part of the standard DWARF line number state machine,
20416 and initialized according to the DWARF spec. */
20418 unsigned char m_op_index = 0;
20419 /* The line table index of the current file. */
20420 file_name_index m_file = 1;
20421 unsigned int m_line = 1;
20423 /* These are initialized in the constructor. */
20425 CORE_ADDR m_address;
20427 unsigned int m_discriminator;
20429 /* Additional bits of state we need to track. */
20431 /* The last file that we called dwarf2_start_subfile for.
20432 This is only used for TLLs. */
20433 unsigned int m_last_file = 0;
20434 /* The last file a line number was recorded for. */
20435 struct subfile *m_last_subfile = NULL;
20437 /* When true, record the lines we decode. */
20438 bool m_currently_recording_lines = false;
20440 /* The last line number that was recorded, used to coalesce
20441 consecutive entries for the same line. This can happen, for
20442 example, when discriminators are present. PR 17276. */
20443 unsigned int m_last_line = 0;
20444 bool m_line_has_non_zero_discriminator = false;
20448 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20450 CORE_ADDR addr_adj = (((m_op_index + adjust)
20451 / m_line_header->maximum_ops_per_instruction)
20452 * m_line_header->minimum_instruction_length);
20453 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20454 m_op_index = ((m_op_index + adjust)
20455 % m_line_header->maximum_ops_per_instruction);
20459 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20461 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20462 CORE_ADDR addr_adj = (((m_op_index
20463 + (adj_opcode / m_line_header->line_range))
20464 / m_line_header->maximum_ops_per_instruction)
20465 * m_line_header->minimum_instruction_length);
20466 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20467 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20468 % m_line_header->maximum_ops_per_instruction);
20470 int line_delta = (m_line_header->line_base
20471 + (adj_opcode % m_line_header->line_range));
20472 advance_line (line_delta);
20473 record_line (false);
20474 m_discriminator = 0;
20478 lnp_state_machine::handle_set_file (file_name_index file)
20482 const file_entry *fe = current_file ();
20484 dwarf2_debug_line_missing_file_complaint ();
20485 else if (m_record_lines_p)
20487 const char *dir = fe->include_dir (m_line_header);
20489 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20490 m_line_has_non_zero_discriminator = m_discriminator != 0;
20491 dwarf2_start_subfile (m_cu, fe->name, dir);
20496 lnp_state_machine::handle_const_add_pc ()
20499 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20502 = (((m_op_index + adjust)
20503 / m_line_header->maximum_ops_per_instruction)
20504 * m_line_header->minimum_instruction_length);
20506 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20507 m_op_index = ((m_op_index + adjust)
20508 % m_line_header->maximum_ops_per_instruction);
20511 /* Return non-zero if we should add LINE to the line number table.
20512 LINE is the line to add, LAST_LINE is the last line that was added,
20513 LAST_SUBFILE is the subfile for LAST_LINE.
20514 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20515 had a non-zero discriminator.
20517 We have to be careful in the presence of discriminators.
20518 E.g., for this line:
20520 for (i = 0; i < 100000; i++);
20522 clang can emit four line number entries for that one line,
20523 each with a different discriminator.
20524 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20526 However, we want gdb to coalesce all four entries into one.
20527 Otherwise the user could stepi into the middle of the line and
20528 gdb would get confused about whether the pc really was in the
20529 middle of the line.
20531 Things are further complicated by the fact that two consecutive
20532 line number entries for the same line is a heuristic used by gcc
20533 to denote the end of the prologue. So we can't just discard duplicate
20534 entries, we have to be selective about it. The heuristic we use is
20535 that we only collapse consecutive entries for the same line if at least
20536 one of those entries has a non-zero discriminator. PR 17276.
20538 Note: Addresses in the line number state machine can never go backwards
20539 within one sequence, thus this coalescing is ok. */
20542 dwarf_record_line_p (struct dwarf2_cu *cu,
20543 unsigned int line, unsigned int last_line,
20544 int line_has_non_zero_discriminator,
20545 struct subfile *last_subfile)
20547 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20549 if (line != last_line)
20551 /* Same line for the same file that we've seen already.
20552 As a last check, for pr 17276, only record the line if the line
20553 has never had a non-zero discriminator. */
20554 if (!line_has_non_zero_discriminator)
20559 /* Use the CU's builder to record line number LINE beginning at
20560 address ADDRESS in the line table of subfile SUBFILE. */
20563 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20564 unsigned int line, CORE_ADDR address,
20565 struct dwarf2_cu *cu)
20567 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20569 if (dwarf_line_debug)
20571 fprintf_unfiltered (gdb_stdlog,
20572 "Recording line %u, file %s, address %s\n",
20573 line, lbasename (subfile->name),
20574 paddress (gdbarch, address));
20578 cu->get_builder ()->record_line (subfile, line, addr);
20581 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20582 Mark the end of a set of line number records.
20583 The arguments are the same as for dwarf_record_line_1.
20584 If SUBFILE is NULL the request is ignored. */
20587 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20588 CORE_ADDR address, struct dwarf2_cu *cu)
20590 if (subfile == NULL)
20593 if (dwarf_line_debug)
20595 fprintf_unfiltered (gdb_stdlog,
20596 "Finishing current line, file %s, address %s\n",
20597 lbasename (subfile->name),
20598 paddress (gdbarch, address));
20601 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20605 lnp_state_machine::record_line (bool end_sequence)
20607 if (dwarf_line_debug)
20609 fprintf_unfiltered (gdb_stdlog,
20610 "Processing actual line %u: file %u,"
20611 " address %s, is_stmt %u, discrim %u%s\n",
20613 paddress (m_gdbarch, m_address),
20614 m_is_stmt, m_discriminator,
20615 (end_sequence ? "\t(end sequence)" : ""));
20618 file_entry *fe = current_file ();
20621 dwarf2_debug_line_missing_file_complaint ();
20622 /* For now we ignore lines not starting on an instruction boundary.
20623 But not when processing end_sequence for compatibility with the
20624 previous version of the code. */
20625 else if (m_op_index == 0 || end_sequence)
20627 fe->included_p = 1;
20628 if (m_record_lines_p
20629 && (producer_is_codewarrior (m_cu) || m_is_stmt || end_sequence))
20631 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20634 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20635 m_currently_recording_lines ? m_cu : nullptr);
20640 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20641 m_line_has_non_zero_discriminator,
20644 buildsym_compunit *builder = m_cu->get_builder ();
20645 dwarf_record_line_1 (m_gdbarch,
20646 builder->get_current_subfile (),
20648 m_currently_recording_lines ? m_cu : nullptr);
20650 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20651 m_last_line = m_line;
20657 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20658 line_header *lh, bool record_lines_p)
20662 m_record_lines_p = record_lines_p;
20663 m_line_header = lh;
20665 m_currently_recording_lines = true;
20667 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20668 was a line entry for it so that the backend has a chance to adjust it
20669 and also record it in case it needs it. This is currently used by MIPS
20670 code, cf. `mips_adjust_dwarf2_line'. */
20671 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20672 m_is_stmt = lh->default_is_stmt;
20673 m_discriminator = 0;
20677 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20678 const gdb_byte *line_ptr,
20679 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20681 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20682 the pc range of the CU. However, we restrict the test to only ADDRESS
20683 values of zero to preserve GDB's previous behaviour which is to handle
20684 the specific case of a function being GC'd by the linker. */
20686 if (address == 0 && address < unrelocated_lowpc)
20688 /* This line table is for a function which has been
20689 GCd by the linker. Ignore it. PR gdb/12528 */
20691 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20692 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20694 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20695 line_offset, objfile_name (objfile));
20696 m_currently_recording_lines = false;
20697 /* Note: m_currently_recording_lines is left as false until we see
20698 DW_LNE_end_sequence. */
20702 /* Subroutine of dwarf_decode_lines to simplify it.
20703 Process the line number information in LH.
20704 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20705 program in order to set included_p for every referenced header. */
20708 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20709 const int decode_for_pst_p, CORE_ADDR lowpc)
20711 const gdb_byte *line_ptr, *extended_end;
20712 const gdb_byte *line_end;
20713 unsigned int bytes_read, extended_len;
20714 unsigned char op_code, extended_op;
20715 CORE_ADDR baseaddr;
20716 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20717 bfd *abfd = objfile->obfd;
20718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20719 /* True if we're recording line info (as opposed to building partial
20720 symtabs and just interested in finding include files mentioned by
20721 the line number program). */
20722 bool record_lines_p = !decode_for_pst_p;
20724 baseaddr = objfile->text_section_offset ();
20726 line_ptr = lh->statement_program_start;
20727 line_end = lh->statement_program_end;
20729 /* Read the statement sequences until there's nothing left. */
20730 while (line_ptr < line_end)
20732 /* The DWARF line number program state machine. Reset the state
20733 machine at the start of each sequence. */
20734 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20735 bool end_sequence = false;
20737 if (record_lines_p)
20739 /* Start a subfile for the current file of the state
20741 const file_entry *fe = state_machine.current_file ();
20744 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20747 /* Decode the table. */
20748 while (line_ptr < line_end && !end_sequence)
20750 op_code = read_1_byte (abfd, line_ptr);
20753 if (op_code >= lh->opcode_base)
20755 /* Special opcode. */
20756 state_machine.handle_special_opcode (op_code);
20758 else switch (op_code)
20760 case DW_LNS_extended_op:
20761 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20763 line_ptr += bytes_read;
20764 extended_end = line_ptr + extended_len;
20765 extended_op = read_1_byte (abfd, line_ptr);
20767 switch (extended_op)
20769 case DW_LNE_end_sequence:
20770 state_machine.handle_end_sequence ();
20771 end_sequence = true;
20773 case DW_LNE_set_address:
20776 = read_address (abfd, line_ptr, cu, &bytes_read);
20777 line_ptr += bytes_read;
20779 state_machine.check_line_address (cu, line_ptr,
20780 lowpc - baseaddr, address);
20781 state_machine.handle_set_address (baseaddr, address);
20784 case DW_LNE_define_file:
20786 const char *cur_file;
20787 unsigned int mod_time, length;
20790 cur_file = read_direct_string (abfd, line_ptr,
20792 line_ptr += bytes_read;
20793 dindex = (dir_index)
20794 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20795 line_ptr += bytes_read;
20797 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20798 line_ptr += bytes_read;
20800 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20801 line_ptr += bytes_read;
20802 lh->add_file_name (cur_file, dindex, mod_time, length);
20805 case DW_LNE_set_discriminator:
20807 /* The discriminator is not interesting to the
20808 debugger; just ignore it. We still need to
20809 check its value though:
20810 if there are consecutive entries for the same
20811 (non-prologue) line we want to coalesce them.
20814 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20815 line_ptr += bytes_read;
20817 state_machine.handle_set_discriminator (discr);
20821 complaint (_("mangled .debug_line section"));
20824 /* Make sure that we parsed the extended op correctly. If e.g.
20825 we expected a different address size than the producer used,
20826 we may have read the wrong number of bytes. */
20827 if (line_ptr != extended_end)
20829 complaint (_("mangled .debug_line section"));
20834 state_machine.handle_copy ();
20836 case DW_LNS_advance_pc:
20839 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20840 line_ptr += bytes_read;
20842 state_machine.handle_advance_pc (adjust);
20845 case DW_LNS_advance_line:
20848 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20849 line_ptr += bytes_read;
20851 state_machine.handle_advance_line (line_delta);
20854 case DW_LNS_set_file:
20856 file_name_index file
20857 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20859 line_ptr += bytes_read;
20861 state_machine.handle_set_file (file);
20864 case DW_LNS_set_column:
20865 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20866 line_ptr += bytes_read;
20868 case DW_LNS_negate_stmt:
20869 state_machine.handle_negate_stmt ();
20871 case DW_LNS_set_basic_block:
20873 /* Add to the address register of the state machine the
20874 address increment value corresponding to special opcode
20875 255. I.e., this value is scaled by the minimum
20876 instruction length since special opcode 255 would have
20877 scaled the increment. */
20878 case DW_LNS_const_add_pc:
20879 state_machine.handle_const_add_pc ();
20881 case DW_LNS_fixed_advance_pc:
20883 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20886 state_machine.handle_fixed_advance_pc (addr_adj);
20891 /* Unknown standard opcode, ignore it. */
20894 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20896 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20897 line_ptr += bytes_read;
20904 dwarf2_debug_line_missing_end_sequence_complaint ();
20906 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20907 in which case we still finish recording the last line). */
20908 state_machine.record_line (true);
20912 /* Decode the Line Number Program (LNP) for the given line_header
20913 structure and CU. The actual information extracted and the type
20914 of structures created from the LNP depends on the value of PST.
20916 1. If PST is NULL, then this procedure uses the data from the program
20917 to create all necessary symbol tables, and their linetables.
20919 2. If PST is not NULL, this procedure reads the program to determine
20920 the list of files included by the unit represented by PST, and
20921 builds all the associated partial symbol tables.
20923 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20924 It is used for relative paths in the line table.
20925 NOTE: When processing partial symtabs (pst != NULL),
20926 comp_dir == pst->dirname.
20928 NOTE: It is important that psymtabs have the same file name (via strcmp)
20929 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20930 symtab we don't use it in the name of the psymtabs we create.
20931 E.g. expand_line_sal requires this when finding psymtabs to expand.
20932 A good testcase for this is mb-inline.exp.
20934 LOWPC is the lowest address in CU (or 0 if not known).
20936 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20937 for its PC<->lines mapping information. Otherwise only the filename
20938 table is read in. */
20941 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20942 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20943 CORE_ADDR lowpc, int decode_mapping)
20945 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20946 const int decode_for_pst_p = (pst != NULL);
20948 if (decode_mapping)
20949 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20951 if (decode_for_pst_p)
20953 /* Now that we're done scanning the Line Header Program, we can
20954 create the psymtab of each included file. */
20955 for (auto &file_entry : lh->file_names ())
20956 if (file_entry.included_p == 1)
20958 gdb::unique_xmalloc_ptr<char> name_holder;
20959 const char *include_name =
20960 psymtab_include_file_name (lh, file_entry, pst,
20961 comp_dir, &name_holder);
20962 if (include_name != NULL)
20963 dwarf2_create_include_psymtab (include_name, pst, objfile);
20968 /* Make sure a symtab is created for every file, even files
20969 which contain only variables (i.e. no code with associated
20971 buildsym_compunit *builder = cu->get_builder ();
20972 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20974 for (auto &fe : lh->file_names ())
20976 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20977 if (builder->get_current_subfile ()->symtab == NULL)
20979 builder->get_current_subfile ()->symtab
20980 = allocate_symtab (cust,
20981 builder->get_current_subfile ()->name);
20983 fe.symtab = builder->get_current_subfile ()->symtab;
20988 /* Start a subfile for DWARF. FILENAME is the name of the file and
20989 DIRNAME the name of the source directory which contains FILENAME
20990 or NULL if not known.
20991 This routine tries to keep line numbers from identical absolute and
20992 relative file names in a common subfile.
20994 Using the `list' example from the GDB testsuite, which resides in
20995 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20996 of /srcdir/list0.c yields the following debugging information for list0.c:
20998 DW_AT_name: /srcdir/list0.c
20999 DW_AT_comp_dir: /compdir
21000 files.files[0].name: list0.h
21001 files.files[0].dir: /srcdir
21002 files.files[1].name: list0.c
21003 files.files[1].dir: /srcdir
21005 The line number information for list0.c has to end up in a single
21006 subfile, so that `break /srcdir/list0.c:1' works as expected.
21007 start_subfile will ensure that this happens provided that we pass the
21008 concatenation of files.files[1].dir and files.files[1].name as the
21012 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21013 const char *dirname)
21015 gdb::unique_xmalloc_ptr<char> copy;
21017 /* In order not to lose the line information directory,
21018 we concatenate it to the filename when it makes sense.
21019 Note that the Dwarf3 standard says (speaking of filenames in line
21020 information): ``The directory index is ignored for file names
21021 that represent full path names''. Thus ignoring dirname in the
21022 `else' branch below isn't an issue. */
21024 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21026 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21027 filename = copy.get ();
21030 cu->get_builder ()->start_subfile (filename);
21033 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21034 buildsym_compunit constructor. */
21036 struct compunit_symtab *
21037 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21040 gdb_assert (m_builder == nullptr);
21042 m_builder.reset (new struct buildsym_compunit
21043 (per_cu->dwarf2_per_objfile->objfile,
21044 name, comp_dir, language, low_pc));
21046 list_in_scope = get_builder ()->get_file_symbols ();
21048 get_builder ()->record_debugformat ("DWARF 2");
21049 get_builder ()->record_producer (producer);
21051 processing_has_namespace_info = false;
21053 return get_builder ()->get_compunit_symtab ();
21057 var_decode_location (struct attribute *attr, struct symbol *sym,
21058 struct dwarf2_cu *cu)
21060 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21061 struct comp_unit_head *cu_header = &cu->header;
21063 /* NOTE drow/2003-01-30: There used to be a comment and some special
21064 code here to turn a symbol with DW_AT_external and a
21065 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21066 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21067 with some versions of binutils) where shared libraries could have
21068 relocations against symbols in their debug information - the
21069 minimal symbol would have the right address, but the debug info
21070 would not. It's no longer necessary, because we will explicitly
21071 apply relocations when we read in the debug information now. */
21073 /* A DW_AT_location attribute with no contents indicates that a
21074 variable has been optimized away. */
21075 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
21077 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21081 /* Handle one degenerate form of location expression specially, to
21082 preserve GDB's previous behavior when section offsets are
21083 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21084 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21086 if (attr->form_is_block ()
21087 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21088 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21089 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21090 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21091 && (DW_BLOCK (attr)->size
21092 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21094 unsigned int dummy;
21096 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21097 SET_SYMBOL_VALUE_ADDRESS (sym,
21098 read_address (objfile->obfd,
21099 DW_BLOCK (attr)->data + 1,
21102 SET_SYMBOL_VALUE_ADDRESS
21103 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21105 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21106 fixup_symbol_section (sym, objfile);
21107 SET_SYMBOL_VALUE_ADDRESS
21109 SYMBOL_VALUE_ADDRESS (sym)
21110 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
21114 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21115 expression evaluator, and use LOC_COMPUTED only when necessary
21116 (i.e. when the value of a register or memory location is
21117 referenced, or a thread-local block, etc.). Then again, it might
21118 not be worthwhile. I'm assuming that it isn't unless performance
21119 or memory numbers show me otherwise. */
21121 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21123 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21124 cu->has_loclist = true;
21127 /* Given a pointer to a DWARF information entry, figure out if we need
21128 to make a symbol table entry for it, and if so, create a new entry
21129 and return a pointer to it.
21130 If TYPE is NULL, determine symbol type from the die, otherwise
21131 used the passed type.
21132 If SPACE is not NULL, use it to hold the new symbol. If it is
21133 NULL, allocate a new symbol on the objfile's obstack. */
21135 static struct symbol *
21136 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21137 struct symbol *space)
21139 struct dwarf2_per_objfile *dwarf2_per_objfile
21140 = cu->per_cu->dwarf2_per_objfile;
21141 struct objfile *objfile = dwarf2_per_objfile->objfile;
21142 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21143 struct symbol *sym = NULL;
21145 struct attribute *attr = NULL;
21146 struct attribute *attr2 = NULL;
21147 CORE_ADDR baseaddr;
21148 struct pending **list_to_add = NULL;
21150 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21152 baseaddr = objfile->text_section_offset ();
21154 name = dwarf2_name (die, cu);
21157 const char *linkagename;
21158 int suppress_add = 0;
21163 sym = allocate_symbol (objfile);
21164 OBJSTAT (objfile, n_syms++);
21166 /* Cache this symbol's name and the name's demangled form (if any). */
21167 sym->set_language (cu->language, &objfile->objfile_obstack);
21168 linkagename = dwarf2_physname (name, die, cu);
21169 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
21171 /* Fortran does not have mangling standard and the mangling does differ
21172 between gfortran, iFort etc. */
21173 if (cu->language == language_fortran
21174 && symbol_get_demangled_name (sym) == NULL)
21175 symbol_set_demangled_name (sym,
21176 dwarf2_full_name (name, die, cu),
21179 /* Default assumptions.
21180 Use the passed type or decode it from the die. */
21181 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21182 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21184 SYMBOL_TYPE (sym) = type;
21186 SYMBOL_TYPE (sym) = die_type (die, cu);
21187 attr = dwarf2_attr (die,
21188 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21190 if (attr != nullptr)
21192 SYMBOL_LINE (sym) = DW_UNSND (attr);
21195 attr = dwarf2_attr (die,
21196 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21198 if (attr != nullptr)
21200 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21201 struct file_entry *fe;
21203 if (cu->line_header != NULL)
21204 fe = cu->line_header->file_name_at (file_index);
21209 complaint (_("file index out of range"));
21211 symbol_set_symtab (sym, fe->symtab);
21217 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21218 if (attr != nullptr)
21222 addr = attr->value_as_address ();
21223 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21224 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21226 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21227 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21228 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21229 add_symbol_to_list (sym, cu->list_in_scope);
21231 case DW_TAG_subprogram:
21232 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21234 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21235 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21236 if ((attr2 && (DW_UNSND (attr2) != 0))
21237 || cu->language == language_ada
21238 || cu->language == language_fortran)
21240 /* Subprograms marked external are stored as a global symbol.
21241 Ada and Fortran subprograms, whether marked external or
21242 not, are always stored as a global symbol, because we want
21243 to be able to access them globally. For instance, we want
21244 to be able to break on a nested subprogram without having
21245 to specify the context. */
21246 list_to_add = cu->get_builder ()->get_global_symbols ();
21250 list_to_add = cu->list_in_scope;
21253 case DW_TAG_inlined_subroutine:
21254 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21256 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21257 SYMBOL_INLINED (sym) = 1;
21258 list_to_add = cu->list_in_scope;
21260 case DW_TAG_template_value_param:
21262 /* Fall through. */
21263 case DW_TAG_constant:
21264 case DW_TAG_variable:
21265 case DW_TAG_member:
21266 /* Compilation with minimal debug info may result in
21267 variables with missing type entries. Change the
21268 misleading `void' type to something sensible. */
21269 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21270 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21272 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21273 /* In the case of DW_TAG_member, we should only be called for
21274 static const members. */
21275 if (die->tag == DW_TAG_member)
21277 /* dwarf2_add_field uses die_is_declaration,
21278 so we do the same. */
21279 gdb_assert (die_is_declaration (die, cu));
21282 if (attr != nullptr)
21284 dwarf2_const_value (attr, sym, cu);
21285 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21288 if (attr2 && (DW_UNSND (attr2) != 0))
21289 list_to_add = cu->get_builder ()->get_global_symbols ();
21291 list_to_add = cu->list_in_scope;
21295 attr = dwarf2_attr (die, DW_AT_location, cu);
21296 if (attr != nullptr)
21298 var_decode_location (attr, sym, cu);
21299 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21301 /* Fortran explicitly imports any global symbols to the local
21302 scope by DW_TAG_common_block. */
21303 if (cu->language == language_fortran && die->parent
21304 && die->parent->tag == DW_TAG_common_block)
21307 if (SYMBOL_CLASS (sym) == LOC_STATIC
21308 && SYMBOL_VALUE_ADDRESS (sym) == 0
21309 && !dwarf2_per_objfile->has_section_at_zero)
21311 /* When a static variable is eliminated by the linker,
21312 the corresponding debug information is not stripped
21313 out, but the variable address is set to null;
21314 do not add such variables into symbol table. */
21316 else if (attr2 && (DW_UNSND (attr2) != 0))
21318 if (SYMBOL_CLASS (sym) == LOC_STATIC
21319 && (objfile->flags & OBJF_MAINLINE) == 0
21320 && dwarf2_per_objfile->can_copy)
21322 /* A global static variable might be subject to
21323 copy relocation. We first check for a local
21324 minsym, though, because maybe the symbol was
21325 marked hidden, in which case this would not
21327 bound_minimal_symbol found
21328 = (lookup_minimal_symbol_linkage
21329 (sym->linkage_name (), objfile));
21330 if (found.minsym != nullptr)
21331 sym->maybe_copied = 1;
21334 /* A variable with DW_AT_external is never static,
21335 but it may be block-scoped. */
21337 = ((cu->list_in_scope
21338 == cu->get_builder ()->get_file_symbols ())
21339 ? cu->get_builder ()->get_global_symbols ()
21340 : cu->list_in_scope);
21343 list_to_add = cu->list_in_scope;
21347 /* We do not know the address of this symbol.
21348 If it is an external symbol and we have type information
21349 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21350 The address of the variable will then be determined from
21351 the minimal symbol table whenever the variable is
21353 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21355 /* Fortran explicitly imports any global symbols to the local
21356 scope by DW_TAG_common_block. */
21357 if (cu->language == language_fortran && die->parent
21358 && die->parent->tag == DW_TAG_common_block)
21360 /* SYMBOL_CLASS doesn't matter here because
21361 read_common_block is going to reset it. */
21363 list_to_add = cu->list_in_scope;
21365 else if (attr2 && (DW_UNSND (attr2) != 0)
21366 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21368 /* A variable with DW_AT_external is never static, but it
21369 may be block-scoped. */
21371 = ((cu->list_in_scope
21372 == cu->get_builder ()->get_file_symbols ())
21373 ? cu->get_builder ()->get_global_symbols ()
21374 : cu->list_in_scope);
21376 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21378 else if (!die_is_declaration (die, cu))
21380 /* Use the default LOC_OPTIMIZED_OUT class. */
21381 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21383 list_to_add = cu->list_in_scope;
21387 case DW_TAG_formal_parameter:
21389 /* If we are inside a function, mark this as an argument. If
21390 not, we might be looking at an argument to an inlined function
21391 when we do not have enough information to show inlined frames;
21392 pretend it's a local variable in that case so that the user can
21394 struct context_stack *curr
21395 = cu->get_builder ()->get_current_context_stack ();
21396 if (curr != nullptr && curr->name != nullptr)
21397 SYMBOL_IS_ARGUMENT (sym) = 1;
21398 attr = dwarf2_attr (die, DW_AT_location, cu);
21399 if (attr != nullptr)
21401 var_decode_location (attr, sym, cu);
21403 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21404 if (attr != nullptr)
21406 dwarf2_const_value (attr, sym, cu);
21409 list_to_add = cu->list_in_scope;
21412 case DW_TAG_unspecified_parameters:
21413 /* From varargs functions; gdb doesn't seem to have any
21414 interest in this information, so just ignore it for now.
21417 case DW_TAG_template_type_param:
21419 /* Fall through. */
21420 case DW_TAG_class_type:
21421 case DW_TAG_interface_type:
21422 case DW_TAG_structure_type:
21423 case DW_TAG_union_type:
21424 case DW_TAG_set_type:
21425 case DW_TAG_enumeration_type:
21426 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21427 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21430 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21431 really ever be static objects: otherwise, if you try
21432 to, say, break of a class's method and you're in a file
21433 which doesn't mention that class, it won't work unless
21434 the check for all static symbols in lookup_symbol_aux
21435 saves you. See the OtherFileClass tests in
21436 gdb.c++/namespace.exp. */
21440 buildsym_compunit *builder = cu->get_builder ();
21442 = (cu->list_in_scope == builder->get_file_symbols ()
21443 && cu->language == language_cplus
21444 ? builder->get_global_symbols ()
21445 : cu->list_in_scope);
21447 /* The semantics of C++ state that "struct foo {
21448 ... }" also defines a typedef for "foo". */
21449 if (cu->language == language_cplus
21450 || cu->language == language_ada
21451 || cu->language == language_d
21452 || cu->language == language_rust)
21454 /* The symbol's name is already allocated along
21455 with this objfile, so we don't need to
21456 duplicate it for the type. */
21457 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21458 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
21463 case DW_TAG_typedef:
21464 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21465 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21466 list_to_add = cu->list_in_scope;
21468 case DW_TAG_base_type:
21469 case DW_TAG_subrange_type:
21470 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21471 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21472 list_to_add = cu->list_in_scope;
21474 case DW_TAG_enumerator:
21475 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21476 if (attr != nullptr)
21478 dwarf2_const_value (attr, sym, cu);
21481 /* NOTE: carlton/2003-11-10: See comment above in the
21482 DW_TAG_class_type, etc. block. */
21485 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21486 && cu->language == language_cplus
21487 ? cu->get_builder ()->get_global_symbols ()
21488 : cu->list_in_scope);
21491 case DW_TAG_imported_declaration:
21492 case DW_TAG_namespace:
21493 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21494 list_to_add = cu->get_builder ()->get_global_symbols ();
21496 case DW_TAG_module:
21497 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21498 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21499 list_to_add = cu->get_builder ()->get_global_symbols ();
21501 case DW_TAG_common_block:
21502 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21503 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21504 add_symbol_to_list (sym, cu->list_in_scope);
21507 /* Not a tag we recognize. Hopefully we aren't processing
21508 trash data, but since we must specifically ignore things
21509 we don't recognize, there is nothing else we should do at
21511 complaint (_("unsupported tag: '%s'"),
21512 dwarf_tag_name (die->tag));
21518 sym->hash_next = objfile->template_symbols;
21519 objfile->template_symbols = sym;
21520 list_to_add = NULL;
21523 if (list_to_add != NULL)
21524 add_symbol_to_list (sym, list_to_add);
21526 /* For the benefit of old versions of GCC, check for anonymous
21527 namespaces based on the demangled name. */
21528 if (!cu->processing_has_namespace_info
21529 && cu->language == language_cplus)
21530 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21535 /* Given an attr with a DW_FORM_dataN value in host byte order,
21536 zero-extend it as appropriate for the symbol's type. The DWARF
21537 standard (v4) is not entirely clear about the meaning of using
21538 DW_FORM_dataN for a constant with a signed type, where the type is
21539 wider than the data. The conclusion of a discussion on the DWARF
21540 list was that this is unspecified. We choose to always zero-extend
21541 because that is the interpretation long in use by GCC. */
21544 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21545 struct dwarf2_cu *cu, LONGEST *value, int bits)
21547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21548 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21549 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21550 LONGEST l = DW_UNSND (attr);
21552 if (bits < sizeof (*value) * 8)
21554 l &= ((LONGEST) 1 << bits) - 1;
21557 else if (bits == sizeof (*value) * 8)
21561 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21562 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21569 /* Read a constant value from an attribute. Either set *VALUE, or if
21570 the value does not fit in *VALUE, set *BYTES - either already
21571 allocated on the objfile obstack, or newly allocated on OBSTACK,
21572 or, set *BATON, if we translated the constant to a location
21576 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21577 const char *name, struct obstack *obstack,
21578 struct dwarf2_cu *cu,
21579 LONGEST *value, const gdb_byte **bytes,
21580 struct dwarf2_locexpr_baton **baton)
21582 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21583 struct comp_unit_head *cu_header = &cu->header;
21584 struct dwarf_block *blk;
21585 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21586 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21592 switch (attr->form)
21595 case DW_FORM_addrx:
21596 case DW_FORM_GNU_addr_index:
21600 if (TYPE_LENGTH (type) != cu_header->addr_size)
21601 dwarf2_const_value_length_mismatch_complaint (name,
21602 cu_header->addr_size,
21603 TYPE_LENGTH (type));
21604 /* Symbols of this form are reasonably rare, so we just
21605 piggyback on the existing location code rather than writing
21606 a new implementation of symbol_computed_ops. */
21607 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21608 (*baton)->per_cu = cu->per_cu;
21609 gdb_assert ((*baton)->per_cu);
21611 (*baton)->size = 2 + cu_header->addr_size;
21612 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21613 (*baton)->data = data;
21615 data[0] = DW_OP_addr;
21616 store_unsigned_integer (&data[1], cu_header->addr_size,
21617 byte_order, DW_ADDR (attr));
21618 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21621 case DW_FORM_string:
21624 case DW_FORM_GNU_str_index:
21625 case DW_FORM_GNU_strp_alt:
21626 /* DW_STRING is already allocated on the objfile obstack, point
21628 *bytes = (const gdb_byte *) DW_STRING (attr);
21630 case DW_FORM_block1:
21631 case DW_FORM_block2:
21632 case DW_FORM_block4:
21633 case DW_FORM_block:
21634 case DW_FORM_exprloc:
21635 case DW_FORM_data16:
21636 blk = DW_BLOCK (attr);
21637 if (TYPE_LENGTH (type) != blk->size)
21638 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21639 TYPE_LENGTH (type));
21640 *bytes = blk->data;
21643 /* The DW_AT_const_value attributes are supposed to carry the
21644 symbol's value "represented as it would be on the target
21645 architecture." By the time we get here, it's already been
21646 converted to host endianness, so we just need to sign- or
21647 zero-extend it as appropriate. */
21648 case DW_FORM_data1:
21649 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21651 case DW_FORM_data2:
21652 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21654 case DW_FORM_data4:
21655 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21657 case DW_FORM_data8:
21658 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21661 case DW_FORM_sdata:
21662 case DW_FORM_implicit_const:
21663 *value = DW_SND (attr);
21666 case DW_FORM_udata:
21667 *value = DW_UNSND (attr);
21671 complaint (_("unsupported const value attribute form: '%s'"),
21672 dwarf_form_name (attr->form));
21679 /* Copy constant value from an attribute to a symbol. */
21682 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21683 struct dwarf2_cu *cu)
21685 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21687 const gdb_byte *bytes;
21688 struct dwarf2_locexpr_baton *baton;
21690 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21691 sym->print_name (),
21692 &objfile->objfile_obstack, cu,
21693 &value, &bytes, &baton);
21697 SYMBOL_LOCATION_BATON (sym) = baton;
21698 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21700 else if (bytes != NULL)
21702 SYMBOL_VALUE_BYTES (sym) = bytes;
21703 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21707 SYMBOL_VALUE (sym) = value;
21708 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21712 /* Return the type of the die in question using its DW_AT_type attribute. */
21714 static struct type *
21715 die_type (struct die_info *die, struct dwarf2_cu *cu)
21717 struct attribute *type_attr;
21719 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21722 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21723 /* A missing DW_AT_type represents a void type. */
21724 return objfile_type (objfile)->builtin_void;
21727 return lookup_die_type (die, type_attr, cu);
21730 /* True iff CU's producer generates GNAT Ada auxiliary information
21731 that allows to find parallel types through that information instead
21732 of having to do expensive parallel lookups by type name. */
21735 need_gnat_info (struct dwarf2_cu *cu)
21737 /* Assume that the Ada compiler was GNAT, which always produces
21738 the auxiliary information. */
21739 return (cu->language == language_ada);
21742 /* Return the auxiliary type of the die in question using its
21743 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21744 attribute is not present. */
21746 static struct type *
21747 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21749 struct attribute *type_attr;
21751 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21755 return lookup_die_type (die, type_attr, cu);
21758 /* If DIE has a descriptive_type attribute, then set the TYPE's
21759 descriptive type accordingly. */
21762 set_descriptive_type (struct type *type, struct die_info *die,
21763 struct dwarf2_cu *cu)
21765 struct type *descriptive_type = die_descriptive_type (die, cu);
21767 if (descriptive_type)
21769 ALLOCATE_GNAT_AUX_TYPE (type);
21770 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21774 /* Return the containing type of the die in question using its
21775 DW_AT_containing_type attribute. */
21777 static struct type *
21778 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21780 struct attribute *type_attr;
21781 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21783 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21785 error (_("Dwarf Error: Problem turning containing type into gdb type "
21786 "[in module %s]"), objfile_name (objfile));
21788 return lookup_die_type (die, type_attr, cu);
21791 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21793 static struct type *
21794 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21796 struct dwarf2_per_objfile *dwarf2_per_objfile
21797 = cu->per_cu->dwarf2_per_objfile;
21798 struct objfile *objfile = dwarf2_per_objfile->objfile;
21801 std::string message
21802 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21803 objfile_name (objfile),
21804 sect_offset_str (cu->header.sect_off),
21805 sect_offset_str (die->sect_off));
21806 saved = obstack_strdup (&objfile->objfile_obstack, message);
21808 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21811 /* Look up the type of DIE in CU using its type attribute ATTR.
21812 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21813 DW_AT_containing_type.
21814 If there is no type substitute an error marker. */
21816 static struct type *
21817 lookup_die_type (struct die_info *die, const struct attribute *attr,
21818 struct dwarf2_cu *cu)
21820 struct dwarf2_per_objfile *dwarf2_per_objfile
21821 = cu->per_cu->dwarf2_per_objfile;
21822 struct objfile *objfile = dwarf2_per_objfile->objfile;
21823 struct type *this_type;
21825 gdb_assert (attr->name == DW_AT_type
21826 || attr->name == DW_AT_GNAT_descriptive_type
21827 || attr->name == DW_AT_containing_type);
21829 /* First see if we have it cached. */
21831 if (attr->form == DW_FORM_GNU_ref_alt)
21833 struct dwarf2_per_cu_data *per_cu;
21834 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21836 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21837 dwarf2_per_objfile);
21838 this_type = get_die_type_at_offset (sect_off, per_cu);
21840 else if (attr->form_is_ref ())
21842 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
21844 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21846 else if (attr->form == DW_FORM_ref_sig8)
21848 ULONGEST signature = DW_SIGNATURE (attr);
21850 return get_signatured_type (die, signature, cu);
21854 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21855 " at %s [in module %s]"),
21856 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21857 objfile_name (objfile));
21858 return build_error_marker_type (cu, die);
21861 /* If not cached we need to read it in. */
21863 if (this_type == NULL)
21865 struct die_info *type_die = NULL;
21866 struct dwarf2_cu *type_cu = cu;
21868 if (attr->form_is_ref ())
21869 type_die = follow_die_ref (die, attr, &type_cu);
21870 if (type_die == NULL)
21871 return build_error_marker_type (cu, die);
21872 /* If we find the type now, it's probably because the type came
21873 from an inter-CU reference and the type's CU got expanded before
21875 this_type = read_type_die (type_die, type_cu);
21878 /* If we still don't have a type use an error marker. */
21880 if (this_type == NULL)
21881 return build_error_marker_type (cu, die);
21886 /* Return the type in DIE, CU.
21887 Returns NULL for invalid types.
21889 This first does a lookup in die_type_hash,
21890 and only reads the die in if necessary.
21892 NOTE: This can be called when reading in partial or full symbols. */
21894 static struct type *
21895 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21897 struct type *this_type;
21899 this_type = get_die_type (die, cu);
21903 return read_type_die_1 (die, cu);
21906 /* Read the type in DIE, CU.
21907 Returns NULL for invalid types. */
21909 static struct type *
21910 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21912 struct type *this_type = NULL;
21916 case DW_TAG_class_type:
21917 case DW_TAG_interface_type:
21918 case DW_TAG_structure_type:
21919 case DW_TAG_union_type:
21920 this_type = read_structure_type (die, cu);
21922 case DW_TAG_enumeration_type:
21923 this_type = read_enumeration_type (die, cu);
21925 case DW_TAG_subprogram:
21926 case DW_TAG_subroutine_type:
21927 case DW_TAG_inlined_subroutine:
21928 this_type = read_subroutine_type (die, cu);
21930 case DW_TAG_array_type:
21931 this_type = read_array_type (die, cu);
21933 case DW_TAG_set_type:
21934 this_type = read_set_type (die, cu);
21936 case DW_TAG_pointer_type:
21937 this_type = read_tag_pointer_type (die, cu);
21939 case DW_TAG_ptr_to_member_type:
21940 this_type = read_tag_ptr_to_member_type (die, cu);
21942 case DW_TAG_reference_type:
21943 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21945 case DW_TAG_rvalue_reference_type:
21946 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21948 case DW_TAG_const_type:
21949 this_type = read_tag_const_type (die, cu);
21951 case DW_TAG_volatile_type:
21952 this_type = read_tag_volatile_type (die, cu);
21954 case DW_TAG_restrict_type:
21955 this_type = read_tag_restrict_type (die, cu);
21957 case DW_TAG_string_type:
21958 this_type = read_tag_string_type (die, cu);
21960 case DW_TAG_typedef:
21961 this_type = read_typedef (die, cu);
21963 case DW_TAG_subrange_type:
21964 this_type = read_subrange_type (die, cu);
21966 case DW_TAG_base_type:
21967 this_type = read_base_type (die, cu);
21969 case DW_TAG_unspecified_type:
21970 this_type = read_unspecified_type (die, cu);
21972 case DW_TAG_namespace:
21973 this_type = read_namespace_type (die, cu);
21975 case DW_TAG_module:
21976 this_type = read_module_type (die, cu);
21978 case DW_TAG_atomic_type:
21979 this_type = read_tag_atomic_type (die, cu);
21982 complaint (_("unexpected tag in read_type_die: '%s'"),
21983 dwarf_tag_name (die->tag));
21990 /* See if we can figure out if the class lives in a namespace. We do
21991 this by looking for a member function; its demangled name will
21992 contain namespace info, if there is any.
21993 Return the computed name or NULL.
21994 Space for the result is allocated on the objfile's obstack.
21995 This is the full-die version of guess_partial_die_structure_name.
21996 In this case we know DIE has no useful parent. */
21998 static const char *
21999 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22001 struct die_info *spec_die;
22002 struct dwarf2_cu *spec_cu;
22003 struct die_info *child;
22004 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22007 spec_die = die_specification (die, &spec_cu);
22008 if (spec_die != NULL)
22014 for (child = die->child;
22016 child = child->sibling)
22018 if (child->tag == DW_TAG_subprogram)
22020 const char *linkage_name = dw2_linkage_name (child, cu);
22022 if (linkage_name != NULL)
22024 gdb::unique_xmalloc_ptr<char> actual_name
22025 (language_class_name_from_physname (cu->language_defn,
22027 const char *name = NULL;
22029 if (actual_name != NULL)
22031 const char *die_name = dwarf2_name (die, cu);
22033 if (die_name != NULL
22034 && strcmp (die_name, actual_name.get ()) != 0)
22036 /* Strip off the class name from the full name.
22037 We want the prefix. */
22038 int die_name_len = strlen (die_name);
22039 int actual_name_len = strlen (actual_name.get ());
22040 const char *ptr = actual_name.get ();
22042 /* Test for '::' as a sanity check. */
22043 if (actual_name_len > die_name_len + 2
22044 && ptr[actual_name_len - die_name_len - 1] == ':')
22045 name = obstack_strndup (
22046 &objfile->per_bfd->storage_obstack,
22047 ptr, actual_name_len - die_name_len - 2);
22058 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22059 prefix part in such case. See
22060 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22062 static const char *
22063 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22065 struct attribute *attr;
22068 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22069 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22072 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22075 attr = dw2_linkage_name_attr (die, cu);
22076 if (attr == NULL || DW_STRING (attr) == NULL)
22079 /* dwarf2_name had to be already called. */
22080 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22082 /* Strip the base name, keep any leading namespaces/classes. */
22083 base = strrchr (DW_STRING (attr), ':');
22084 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22087 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22088 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22090 &base[-1] - DW_STRING (attr));
22093 /* Return the name of the namespace/class that DIE is defined within,
22094 or "" if we can't tell. The caller should not xfree the result.
22096 For example, if we're within the method foo() in the following
22106 then determine_prefix on foo's die will return "N::C". */
22108 static const char *
22109 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22111 struct dwarf2_per_objfile *dwarf2_per_objfile
22112 = cu->per_cu->dwarf2_per_objfile;
22113 struct die_info *parent, *spec_die;
22114 struct dwarf2_cu *spec_cu;
22115 struct type *parent_type;
22116 const char *retval;
22118 if (cu->language != language_cplus
22119 && cu->language != language_fortran && cu->language != language_d
22120 && cu->language != language_rust)
22123 retval = anonymous_struct_prefix (die, cu);
22127 /* We have to be careful in the presence of DW_AT_specification.
22128 For example, with GCC 3.4, given the code
22132 // Definition of N::foo.
22136 then we'll have a tree of DIEs like this:
22138 1: DW_TAG_compile_unit
22139 2: DW_TAG_namespace // N
22140 3: DW_TAG_subprogram // declaration of N::foo
22141 4: DW_TAG_subprogram // definition of N::foo
22142 DW_AT_specification // refers to die #3
22144 Thus, when processing die #4, we have to pretend that we're in
22145 the context of its DW_AT_specification, namely the contex of die
22148 spec_die = die_specification (die, &spec_cu);
22149 if (spec_die == NULL)
22150 parent = die->parent;
22153 parent = spec_die->parent;
22157 if (parent == NULL)
22159 else if (parent->building_fullname)
22162 const char *parent_name;
22164 /* It has been seen on RealView 2.2 built binaries,
22165 DW_TAG_template_type_param types actually _defined_ as
22166 children of the parent class:
22169 template class <class Enum> Class{};
22170 Class<enum E> class_e;
22172 1: DW_TAG_class_type (Class)
22173 2: DW_TAG_enumeration_type (E)
22174 3: DW_TAG_enumerator (enum1:0)
22175 3: DW_TAG_enumerator (enum2:1)
22177 2: DW_TAG_template_type_param
22178 DW_AT_type DW_FORM_ref_udata (E)
22180 Besides being broken debug info, it can put GDB into an
22181 infinite loop. Consider:
22183 When we're building the full name for Class<E>, we'll start
22184 at Class, and go look over its template type parameters,
22185 finding E. We'll then try to build the full name of E, and
22186 reach here. We're now trying to build the full name of E,
22187 and look over the parent DIE for containing scope. In the
22188 broken case, if we followed the parent DIE of E, we'd again
22189 find Class, and once again go look at its template type
22190 arguments, etc., etc. Simply don't consider such parent die
22191 as source-level parent of this die (it can't be, the language
22192 doesn't allow it), and break the loop here. */
22193 name = dwarf2_name (die, cu);
22194 parent_name = dwarf2_name (parent, cu);
22195 complaint (_("template param type '%s' defined within parent '%s'"),
22196 name ? name : "<unknown>",
22197 parent_name ? parent_name : "<unknown>");
22201 switch (parent->tag)
22203 case DW_TAG_namespace:
22204 parent_type = read_type_die (parent, cu);
22205 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22206 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22207 Work around this problem here. */
22208 if (cu->language == language_cplus
22209 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22211 /* We give a name to even anonymous namespaces. */
22212 return TYPE_NAME (parent_type);
22213 case DW_TAG_class_type:
22214 case DW_TAG_interface_type:
22215 case DW_TAG_structure_type:
22216 case DW_TAG_union_type:
22217 case DW_TAG_module:
22218 parent_type = read_type_die (parent, cu);
22219 if (TYPE_NAME (parent_type) != NULL)
22220 return TYPE_NAME (parent_type);
22222 /* An anonymous structure is only allowed non-static data
22223 members; no typedefs, no member functions, et cetera.
22224 So it does not need a prefix. */
22226 case DW_TAG_compile_unit:
22227 case DW_TAG_partial_unit:
22228 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22229 if (cu->language == language_cplus
22230 && !dwarf2_per_objfile->types.empty ()
22231 && die->child != NULL
22232 && (die->tag == DW_TAG_class_type
22233 || die->tag == DW_TAG_structure_type
22234 || die->tag == DW_TAG_union_type))
22236 const char *name = guess_full_die_structure_name (die, cu);
22241 case DW_TAG_subprogram:
22242 /* Nested subroutines in Fortran get a prefix with the name
22243 of the parent's subroutine. */
22244 if (cu->language == language_fortran)
22246 if ((die->tag == DW_TAG_subprogram)
22247 && (dwarf2_name (parent, cu) != NULL))
22248 return dwarf2_name (parent, cu);
22250 return determine_prefix (parent, cu);
22251 case DW_TAG_enumeration_type:
22252 parent_type = read_type_die (parent, cu);
22253 if (TYPE_DECLARED_CLASS (parent_type))
22255 if (TYPE_NAME (parent_type) != NULL)
22256 return TYPE_NAME (parent_type);
22259 /* Fall through. */
22261 return determine_prefix (parent, cu);
22265 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22266 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22267 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22268 an obconcat, otherwise allocate storage for the result. The CU argument is
22269 used to determine the language and hence, the appropriate separator. */
22271 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22274 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22275 int physname, struct dwarf2_cu *cu)
22277 const char *lead = "";
22280 if (suffix == NULL || suffix[0] == '\0'
22281 || prefix == NULL || prefix[0] == '\0')
22283 else if (cu->language == language_d)
22285 /* For D, the 'main' function could be defined in any module, but it
22286 should never be prefixed. */
22287 if (strcmp (suffix, "D main") == 0)
22295 else if (cu->language == language_fortran && physname)
22297 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22298 DW_AT_MIPS_linkage_name is preferred and used instead. */
22306 if (prefix == NULL)
22308 if (suffix == NULL)
22315 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22317 strcpy (retval, lead);
22318 strcat (retval, prefix);
22319 strcat (retval, sep);
22320 strcat (retval, suffix);
22325 /* We have an obstack. */
22326 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22330 /* Return sibling of die, NULL if no sibling. */
22332 static struct die_info *
22333 sibling_die (struct die_info *die)
22335 return die->sibling;
22338 /* Get name of a die, return NULL if not found. */
22340 static const char *
22341 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22342 struct obstack *obstack)
22344 if (name && cu->language == language_cplus)
22346 std::string canon_name = cp_canonicalize_string (name);
22348 if (!canon_name.empty ())
22350 if (canon_name != name)
22351 name = obstack_strdup (obstack, canon_name);
22358 /* Get name of a die, return NULL if not found.
22359 Anonymous namespaces are converted to their magic string. */
22361 static const char *
22362 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22364 struct attribute *attr;
22365 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22367 attr = dwarf2_attr (die, DW_AT_name, cu);
22368 if ((!attr || !DW_STRING (attr))
22369 && die->tag != DW_TAG_namespace
22370 && die->tag != DW_TAG_class_type
22371 && die->tag != DW_TAG_interface_type
22372 && die->tag != DW_TAG_structure_type
22373 && die->tag != DW_TAG_union_type)
22378 case DW_TAG_compile_unit:
22379 case DW_TAG_partial_unit:
22380 /* Compilation units have a DW_AT_name that is a filename, not
22381 a source language identifier. */
22382 case DW_TAG_enumeration_type:
22383 case DW_TAG_enumerator:
22384 /* These tags always have simple identifiers already; no need
22385 to canonicalize them. */
22386 return DW_STRING (attr);
22388 case DW_TAG_namespace:
22389 if (attr != NULL && DW_STRING (attr) != NULL)
22390 return DW_STRING (attr);
22391 return CP_ANONYMOUS_NAMESPACE_STR;
22393 case DW_TAG_class_type:
22394 case DW_TAG_interface_type:
22395 case DW_TAG_structure_type:
22396 case DW_TAG_union_type:
22397 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22398 structures or unions. These were of the form "._%d" in GCC 4.1,
22399 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22400 and GCC 4.4. We work around this problem by ignoring these. */
22401 if (attr && DW_STRING (attr)
22402 && (startswith (DW_STRING (attr), "._")
22403 || startswith (DW_STRING (attr), "<anonymous")))
22406 /* GCC might emit a nameless typedef that has a linkage name. See
22407 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22408 if (!attr || DW_STRING (attr) == NULL)
22410 attr = dw2_linkage_name_attr (die, cu);
22411 if (attr == NULL || DW_STRING (attr) == NULL)
22414 /* Avoid demangling DW_STRING (attr) the second time on a second
22415 call for the same DIE. */
22416 if (!DW_STRING_IS_CANONICAL (attr))
22418 gdb::unique_xmalloc_ptr<char> demangled
22419 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
22423 /* FIXME: we already did this for the partial symbol... */
22425 = obstack_strdup (&objfile->per_bfd->storage_obstack,
22427 DW_STRING_IS_CANONICAL (attr) = 1;
22429 /* Strip any leading namespaces/classes, keep only the base name.
22430 DW_AT_name for named DIEs does not contain the prefixes. */
22431 base = strrchr (DW_STRING (attr), ':');
22432 if (base && base > DW_STRING (attr) && base[-1] == ':')
22435 return DW_STRING (attr);
22444 if (!DW_STRING_IS_CANONICAL (attr))
22447 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22448 &objfile->per_bfd->storage_obstack);
22449 DW_STRING_IS_CANONICAL (attr) = 1;
22451 return DW_STRING (attr);
22454 /* Return the die that this die in an extension of, or NULL if there
22455 is none. *EXT_CU is the CU containing DIE on input, and the CU
22456 containing the return value on output. */
22458 static struct die_info *
22459 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22461 struct attribute *attr;
22463 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22467 return follow_die_ref (die, attr, ext_cu);
22470 /* A convenience function that returns an "unknown" DWARF name,
22471 including the value of V. STR is the name of the entity being
22472 printed, e.g., "TAG". */
22474 static const char *
22475 dwarf_unknown (const char *str, unsigned v)
22477 char *cell = get_print_cell ();
22478 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
22482 /* Convert a DIE tag into its string name. */
22484 static const char *
22485 dwarf_tag_name (unsigned tag)
22487 const char *name = get_DW_TAG_name (tag);
22490 return dwarf_unknown ("TAG", tag);
22495 /* Convert a DWARF attribute code into its string name. */
22497 static const char *
22498 dwarf_attr_name (unsigned attr)
22502 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22503 if (attr == DW_AT_MIPS_fde)
22504 return "DW_AT_MIPS_fde";
22506 if (attr == DW_AT_HP_block_index)
22507 return "DW_AT_HP_block_index";
22510 name = get_DW_AT_name (attr);
22513 return dwarf_unknown ("AT", attr);
22518 /* Convert a unit type to corresponding DW_UT name. */
22520 static const char *
22521 dwarf_unit_type_name (int unit_type) {
22525 return "DW_UT_compile (0x01)";
22527 return "DW_UT_type (0x02)";
22529 return "DW_UT_partial (0x03)";
22531 return "DW_UT_skeleton (0x04)";
22533 return "DW_UT_split_compile (0x05)";
22535 return "DW_UT_split_type (0x06)";
22537 return "DW_UT_lo_user (0x80)";
22539 return "DW_UT_hi_user (0xff)";
22545 /* Convert a DWARF value form code into its string name. */
22547 static const char *
22548 dwarf_form_name (unsigned form)
22550 const char *name = get_DW_FORM_name (form);
22553 return dwarf_unknown ("FORM", form);
22558 static const char *
22559 dwarf_bool_name (unsigned mybool)
22567 /* Convert a DWARF type code into its string name. */
22569 static const char *
22570 dwarf_type_encoding_name (unsigned enc)
22572 const char *name = get_DW_ATE_name (enc);
22575 return dwarf_unknown ("ATE", enc);
22581 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22585 print_spaces (indent, f);
22586 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22587 dwarf_tag_name (die->tag), die->abbrev,
22588 sect_offset_str (die->sect_off));
22590 if (die->parent != NULL)
22592 print_spaces (indent, f);
22593 fprintf_unfiltered (f, " parent at offset: %s\n",
22594 sect_offset_str (die->parent->sect_off));
22597 print_spaces (indent, f);
22598 fprintf_unfiltered (f, " has children: %s\n",
22599 dwarf_bool_name (die->child != NULL));
22601 print_spaces (indent, f);
22602 fprintf_unfiltered (f, " attributes:\n");
22604 for (i = 0; i < die->num_attrs; ++i)
22606 print_spaces (indent, f);
22607 fprintf_unfiltered (f, " %s (%s) ",
22608 dwarf_attr_name (die->attrs[i].name),
22609 dwarf_form_name (die->attrs[i].form));
22611 switch (die->attrs[i].form)
22614 case DW_FORM_addrx:
22615 case DW_FORM_GNU_addr_index:
22616 fprintf_unfiltered (f, "address: ");
22617 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22619 case DW_FORM_block2:
22620 case DW_FORM_block4:
22621 case DW_FORM_block:
22622 case DW_FORM_block1:
22623 fprintf_unfiltered (f, "block: size %s",
22624 pulongest (DW_BLOCK (&die->attrs[i])->size));
22626 case DW_FORM_exprloc:
22627 fprintf_unfiltered (f, "expression: size %s",
22628 pulongest (DW_BLOCK (&die->attrs[i])->size));
22630 case DW_FORM_data16:
22631 fprintf_unfiltered (f, "constant of 16 bytes");
22633 case DW_FORM_ref_addr:
22634 fprintf_unfiltered (f, "ref address: ");
22635 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22637 case DW_FORM_GNU_ref_alt:
22638 fprintf_unfiltered (f, "alt ref address: ");
22639 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22645 case DW_FORM_ref_udata:
22646 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22647 (long) (DW_UNSND (&die->attrs[i])));
22649 case DW_FORM_data1:
22650 case DW_FORM_data2:
22651 case DW_FORM_data4:
22652 case DW_FORM_data8:
22653 case DW_FORM_udata:
22654 case DW_FORM_sdata:
22655 fprintf_unfiltered (f, "constant: %s",
22656 pulongest (DW_UNSND (&die->attrs[i])));
22658 case DW_FORM_sec_offset:
22659 fprintf_unfiltered (f, "section offset: %s",
22660 pulongest (DW_UNSND (&die->attrs[i])));
22662 case DW_FORM_ref_sig8:
22663 fprintf_unfiltered (f, "signature: %s",
22664 hex_string (DW_SIGNATURE (&die->attrs[i])));
22666 case DW_FORM_string:
22668 case DW_FORM_line_strp:
22670 case DW_FORM_GNU_str_index:
22671 case DW_FORM_GNU_strp_alt:
22672 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22673 DW_STRING (&die->attrs[i])
22674 ? DW_STRING (&die->attrs[i]) : "",
22675 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22678 if (DW_UNSND (&die->attrs[i]))
22679 fprintf_unfiltered (f, "flag: TRUE");
22681 fprintf_unfiltered (f, "flag: FALSE");
22683 case DW_FORM_flag_present:
22684 fprintf_unfiltered (f, "flag: TRUE");
22686 case DW_FORM_indirect:
22687 /* The reader will have reduced the indirect form to
22688 the "base form" so this form should not occur. */
22689 fprintf_unfiltered (f,
22690 "unexpected attribute form: DW_FORM_indirect");
22692 case DW_FORM_implicit_const:
22693 fprintf_unfiltered (f, "constant: %s",
22694 plongest (DW_SND (&die->attrs[i])));
22697 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22698 die->attrs[i].form);
22701 fprintf_unfiltered (f, "\n");
22706 dump_die_for_error (struct die_info *die)
22708 dump_die_shallow (gdb_stderr, 0, die);
22712 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22714 int indent = level * 4;
22716 gdb_assert (die != NULL);
22718 if (level >= max_level)
22721 dump_die_shallow (f, indent, die);
22723 if (die->child != NULL)
22725 print_spaces (indent, f);
22726 fprintf_unfiltered (f, " Children:");
22727 if (level + 1 < max_level)
22729 fprintf_unfiltered (f, "\n");
22730 dump_die_1 (f, level + 1, max_level, die->child);
22734 fprintf_unfiltered (f,
22735 " [not printed, max nesting level reached]\n");
22739 if (die->sibling != NULL && level > 0)
22741 dump_die_1 (f, level, max_level, die->sibling);
22745 /* This is called from the pdie macro in gdbinit.in.
22746 It's not static so gcc will keep a copy callable from gdb. */
22749 dump_die (struct die_info *die, int max_level)
22751 dump_die_1 (gdb_stdlog, 0, max_level, die);
22755 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22759 slot = htab_find_slot_with_hash (cu->die_hash, die,
22760 to_underlying (die->sect_off),
22766 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22770 dwarf2_get_ref_die_offset (const struct attribute *attr)
22772 if (attr->form_is_ref ())
22773 return (sect_offset) DW_UNSND (attr);
22775 complaint (_("unsupported die ref attribute form: '%s'"),
22776 dwarf_form_name (attr->form));
22780 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22781 * the value held by the attribute is not constant. */
22784 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22786 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22787 return DW_SND (attr);
22788 else if (attr->form == DW_FORM_udata
22789 || attr->form == DW_FORM_data1
22790 || attr->form == DW_FORM_data2
22791 || attr->form == DW_FORM_data4
22792 || attr->form == DW_FORM_data8)
22793 return DW_UNSND (attr);
22796 /* For DW_FORM_data16 see attribute::form_is_constant. */
22797 complaint (_("Attribute value is not a constant (%s)"),
22798 dwarf_form_name (attr->form));
22799 return default_value;
22803 /* Follow reference or signature attribute ATTR of SRC_DIE.
22804 On entry *REF_CU is the CU of SRC_DIE.
22805 On exit *REF_CU is the CU of the result. */
22807 static struct die_info *
22808 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22809 struct dwarf2_cu **ref_cu)
22811 struct die_info *die;
22813 if (attr->form_is_ref ())
22814 die = follow_die_ref (src_die, attr, ref_cu);
22815 else if (attr->form == DW_FORM_ref_sig8)
22816 die = follow_die_sig (src_die, attr, ref_cu);
22819 dump_die_for_error (src_die);
22820 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22821 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22827 /* Follow reference OFFSET.
22828 On entry *REF_CU is the CU of the source die referencing OFFSET.
22829 On exit *REF_CU is the CU of the result.
22830 Returns NULL if OFFSET is invalid. */
22832 static struct die_info *
22833 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22834 struct dwarf2_cu **ref_cu)
22836 struct die_info temp_die;
22837 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22838 struct dwarf2_per_objfile *dwarf2_per_objfile
22839 = cu->per_cu->dwarf2_per_objfile;
22841 gdb_assert (cu->per_cu != NULL);
22845 if (cu->per_cu->is_debug_types)
22847 /* .debug_types CUs cannot reference anything outside their CU.
22848 If they need to, they have to reference a signatured type via
22849 DW_FORM_ref_sig8. */
22850 if (!offset_in_cu_p (&cu->header, sect_off))
22853 else if (offset_in_dwz != cu->per_cu->is_dwz
22854 || !offset_in_cu_p (&cu->header, sect_off))
22856 struct dwarf2_per_cu_data *per_cu;
22858 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22859 dwarf2_per_objfile);
22861 /* If necessary, add it to the queue and load its DIEs. */
22862 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22863 load_full_comp_unit (per_cu, false, cu->language);
22865 target_cu = per_cu->cu;
22867 else if (cu->dies == NULL)
22869 /* We're loading full DIEs during partial symbol reading. */
22870 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22871 load_full_comp_unit (cu->per_cu, false, language_minimal);
22874 *ref_cu = target_cu;
22875 temp_die.sect_off = sect_off;
22877 if (target_cu != cu)
22878 target_cu->ancestor = cu;
22880 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22882 to_underlying (sect_off));
22885 /* Follow reference attribute ATTR of SRC_DIE.
22886 On entry *REF_CU is the CU of SRC_DIE.
22887 On exit *REF_CU is the CU of the result. */
22889 static struct die_info *
22890 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22891 struct dwarf2_cu **ref_cu)
22893 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22894 struct dwarf2_cu *cu = *ref_cu;
22895 struct die_info *die;
22897 die = follow_die_offset (sect_off,
22898 (attr->form == DW_FORM_GNU_ref_alt
22899 || cu->per_cu->is_dwz),
22902 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22903 "at %s [in module %s]"),
22904 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22905 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22910 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
22911 Returned value is intended for DW_OP_call*. Returned
22912 dwarf2_locexpr_baton->data has lifetime of
22913 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
22915 struct dwarf2_locexpr_baton
22916 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22917 struct dwarf2_per_cu_data *per_cu,
22918 CORE_ADDR (*get_frame_pc) (void *baton),
22919 void *baton, bool resolve_abstract_p)
22921 struct dwarf2_cu *cu;
22922 struct die_info *die;
22923 struct attribute *attr;
22924 struct dwarf2_locexpr_baton retval;
22925 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22926 struct objfile *objfile = dwarf2_per_objfile->objfile;
22928 if (per_cu->cu == NULL)
22929 load_cu (per_cu, false);
22933 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22934 Instead just throw an error, not much else we can do. */
22935 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22936 sect_offset_str (sect_off), objfile_name (objfile));
22939 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22941 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22942 sect_offset_str (sect_off), objfile_name (objfile));
22944 attr = dwarf2_attr (die, DW_AT_location, cu);
22945 if (!attr && resolve_abstract_p
22946 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22947 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22949 CORE_ADDR pc = (*get_frame_pc) (baton);
22950 CORE_ADDR baseaddr = objfile->text_section_offset ();
22951 struct gdbarch *gdbarch = get_objfile_arch (objfile);
22953 for (const auto &cand_off
22954 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22956 struct dwarf2_cu *cand_cu = cu;
22957 struct die_info *cand
22958 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22961 || cand->parent->tag != DW_TAG_subprogram)
22964 CORE_ADDR pc_low, pc_high;
22965 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22966 if (pc_low == ((CORE_ADDR) -1))
22968 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22969 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22970 if (!(pc_low <= pc && pc < pc_high))
22974 attr = dwarf2_attr (die, DW_AT_location, cu);
22981 /* DWARF: "If there is no such attribute, then there is no effect.".
22982 DATA is ignored if SIZE is 0. */
22984 retval.data = NULL;
22987 else if (attr->form_is_section_offset ())
22989 struct dwarf2_loclist_baton loclist_baton;
22990 CORE_ADDR pc = (*get_frame_pc) (baton);
22993 fill_in_loclist_baton (cu, &loclist_baton, attr);
22995 retval.data = dwarf2_find_location_expression (&loclist_baton,
22997 retval.size = size;
23001 if (!attr->form_is_block ())
23002 error (_("Dwarf Error: DIE at %s referenced in module %s "
23003 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23004 sect_offset_str (sect_off), objfile_name (objfile));
23006 retval.data = DW_BLOCK (attr)->data;
23007 retval.size = DW_BLOCK (attr)->size;
23009 retval.per_cu = cu->per_cu;
23011 age_cached_comp_units (dwarf2_per_objfile);
23016 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23019 struct dwarf2_locexpr_baton
23020 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23021 struct dwarf2_per_cu_data *per_cu,
23022 CORE_ADDR (*get_frame_pc) (void *baton),
23025 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23027 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23030 /* Write a constant of a given type as target-ordered bytes into
23033 static const gdb_byte *
23034 write_constant_as_bytes (struct obstack *obstack,
23035 enum bfd_endian byte_order,
23042 *len = TYPE_LENGTH (type);
23043 result = (gdb_byte *) obstack_alloc (obstack, *len);
23044 store_unsigned_integer (result, *len, byte_order, value);
23049 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23050 pointer to the constant bytes and set LEN to the length of the
23051 data. If memory is needed, allocate it on OBSTACK. If the DIE
23052 does not have a DW_AT_const_value, return NULL. */
23055 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23056 struct dwarf2_per_cu_data *per_cu,
23057 struct obstack *obstack,
23060 struct dwarf2_cu *cu;
23061 struct die_info *die;
23062 struct attribute *attr;
23063 const gdb_byte *result = NULL;
23066 enum bfd_endian byte_order;
23067 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23069 if (per_cu->cu == NULL)
23070 load_cu (per_cu, false);
23074 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23075 Instead just throw an error, not much else we can do. */
23076 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23077 sect_offset_str (sect_off), objfile_name (objfile));
23080 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23082 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23083 sect_offset_str (sect_off), objfile_name (objfile));
23085 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23089 byte_order = (bfd_big_endian (objfile->obfd)
23090 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23092 switch (attr->form)
23095 case DW_FORM_addrx:
23096 case DW_FORM_GNU_addr_index:
23100 *len = cu->header.addr_size;
23101 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23102 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23106 case DW_FORM_string:
23109 case DW_FORM_GNU_str_index:
23110 case DW_FORM_GNU_strp_alt:
23111 /* DW_STRING is already allocated on the objfile obstack, point
23113 result = (const gdb_byte *) DW_STRING (attr);
23114 *len = strlen (DW_STRING (attr));
23116 case DW_FORM_block1:
23117 case DW_FORM_block2:
23118 case DW_FORM_block4:
23119 case DW_FORM_block:
23120 case DW_FORM_exprloc:
23121 case DW_FORM_data16:
23122 result = DW_BLOCK (attr)->data;
23123 *len = DW_BLOCK (attr)->size;
23126 /* The DW_AT_const_value attributes are supposed to carry the
23127 symbol's value "represented as it would be on the target
23128 architecture." By the time we get here, it's already been
23129 converted to host endianness, so we just need to sign- or
23130 zero-extend it as appropriate. */
23131 case DW_FORM_data1:
23132 type = die_type (die, cu);
23133 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23134 if (result == NULL)
23135 result = write_constant_as_bytes (obstack, byte_order,
23138 case DW_FORM_data2:
23139 type = die_type (die, cu);
23140 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23141 if (result == NULL)
23142 result = write_constant_as_bytes (obstack, byte_order,
23145 case DW_FORM_data4:
23146 type = die_type (die, cu);
23147 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23148 if (result == NULL)
23149 result = write_constant_as_bytes (obstack, byte_order,
23152 case DW_FORM_data8:
23153 type = die_type (die, cu);
23154 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23155 if (result == NULL)
23156 result = write_constant_as_bytes (obstack, byte_order,
23160 case DW_FORM_sdata:
23161 case DW_FORM_implicit_const:
23162 type = die_type (die, cu);
23163 result = write_constant_as_bytes (obstack, byte_order,
23164 type, DW_SND (attr), len);
23167 case DW_FORM_udata:
23168 type = die_type (die, cu);
23169 result = write_constant_as_bytes (obstack, byte_order,
23170 type, DW_UNSND (attr), len);
23174 complaint (_("unsupported const value attribute form: '%s'"),
23175 dwarf_form_name (attr->form));
23182 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23183 valid type for this die is found. */
23186 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23187 struct dwarf2_per_cu_data *per_cu)
23189 struct dwarf2_cu *cu;
23190 struct die_info *die;
23192 if (per_cu->cu == NULL)
23193 load_cu (per_cu, false);
23198 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23202 return die_type (die, cu);
23205 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23209 dwarf2_get_die_type (cu_offset die_offset,
23210 struct dwarf2_per_cu_data *per_cu)
23212 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23213 return get_die_type_at_offset (die_offset_sect, per_cu);
23216 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23217 On entry *REF_CU is the CU of SRC_DIE.
23218 On exit *REF_CU is the CU of the result.
23219 Returns NULL if the referenced DIE isn't found. */
23221 static struct die_info *
23222 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23223 struct dwarf2_cu **ref_cu)
23225 struct die_info temp_die;
23226 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23227 struct die_info *die;
23229 /* While it might be nice to assert sig_type->type == NULL here,
23230 we can get here for DW_AT_imported_declaration where we need
23231 the DIE not the type. */
23233 /* If necessary, add it to the queue and load its DIEs. */
23235 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23236 read_signatured_type (sig_type);
23238 sig_cu = sig_type->per_cu.cu;
23239 gdb_assert (sig_cu != NULL);
23240 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23241 temp_die.sect_off = sig_type->type_offset_in_section;
23242 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23243 to_underlying (temp_die.sect_off));
23246 struct dwarf2_per_objfile *dwarf2_per_objfile
23247 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23249 /* For .gdb_index version 7 keep track of included TUs.
23250 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23251 if (dwarf2_per_objfile->index_table != NULL
23252 && dwarf2_per_objfile->index_table->version <= 7)
23254 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23259 sig_cu->ancestor = cu;
23267 /* Follow signatured type referenced by ATTR in SRC_DIE.
23268 On entry *REF_CU is the CU of SRC_DIE.
23269 On exit *REF_CU is the CU of the result.
23270 The result is the DIE of the type.
23271 If the referenced type cannot be found an error is thrown. */
23273 static struct die_info *
23274 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23275 struct dwarf2_cu **ref_cu)
23277 ULONGEST signature = DW_SIGNATURE (attr);
23278 struct signatured_type *sig_type;
23279 struct die_info *die;
23281 gdb_assert (attr->form == DW_FORM_ref_sig8);
23283 sig_type = lookup_signatured_type (*ref_cu, signature);
23284 /* sig_type will be NULL if the signatured type is missing from
23286 if (sig_type == NULL)
23288 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23289 " from DIE at %s [in module %s]"),
23290 hex_string (signature), sect_offset_str (src_die->sect_off),
23291 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23294 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23297 dump_die_for_error (src_die);
23298 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23299 " from DIE at %s [in module %s]"),
23300 hex_string (signature), sect_offset_str (src_die->sect_off),
23301 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23307 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23308 reading in and processing the type unit if necessary. */
23310 static struct type *
23311 get_signatured_type (struct die_info *die, ULONGEST signature,
23312 struct dwarf2_cu *cu)
23314 struct dwarf2_per_objfile *dwarf2_per_objfile
23315 = cu->per_cu->dwarf2_per_objfile;
23316 struct signatured_type *sig_type;
23317 struct dwarf2_cu *type_cu;
23318 struct die_info *type_die;
23321 sig_type = lookup_signatured_type (cu, signature);
23322 /* sig_type will be NULL if the signatured type is missing from
23324 if (sig_type == NULL)
23326 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23327 " from DIE at %s [in module %s]"),
23328 hex_string (signature), sect_offset_str (die->sect_off),
23329 objfile_name (dwarf2_per_objfile->objfile));
23330 return build_error_marker_type (cu, die);
23333 /* If we already know the type we're done. */
23334 if (sig_type->type != NULL)
23335 return sig_type->type;
23338 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23339 if (type_die != NULL)
23341 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23342 is created. This is important, for example, because for c++ classes
23343 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23344 type = read_type_die (type_die, type_cu);
23347 complaint (_("Dwarf Error: Cannot build signatured type %s"
23348 " referenced from DIE at %s [in module %s]"),
23349 hex_string (signature), sect_offset_str (die->sect_off),
23350 objfile_name (dwarf2_per_objfile->objfile));
23351 type = build_error_marker_type (cu, die);
23356 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23357 " from DIE at %s [in module %s]"),
23358 hex_string (signature), sect_offset_str (die->sect_off),
23359 objfile_name (dwarf2_per_objfile->objfile));
23360 type = build_error_marker_type (cu, die);
23362 sig_type->type = type;
23367 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23368 reading in and processing the type unit if necessary. */
23370 static struct type *
23371 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23372 struct dwarf2_cu *cu) /* ARI: editCase function */
23374 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23375 if (attr->form_is_ref ())
23377 struct dwarf2_cu *type_cu = cu;
23378 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23380 return read_type_die (type_die, type_cu);
23382 else if (attr->form == DW_FORM_ref_sig8)
23384 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23388 struct dwarf2_per_objfile *dwarf2_per_objfile
23389 = cu->per_cu->dwarf2_per_objfile;
23391 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23392 " at %s [in module %s]"),
23393 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23394 objfile_name (dwarf2_per_objfile->objfile));
23395 return build_error_marker_type (cu, die);
23399 /* Load the DIEs associated with type unit PER_CU into memory. */
23402 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23404 struct signatured_type *sig_type;
23406 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23407 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23409 /* We have the per_cu, but we need the signatured_type.
23410 Fortunately this is an easy translation. */
23411 gdb_assert (per_cu->is_debug_types);
23412 sig_type = (struct signatured_type *) per_cu;
23414 gdb_assert (per_cu->cu == NULL);
23416 read_signatured_type (sig_type);
23418 gdb_assert (per_cu->cu != NULL);
23421 /* Read in a signatured type and build its CU and DIEs.
23422 If the type is a stub for the real type in a DWO file,
23423 read in the real type from the DWO file as well. */
23426 read_signatured_type (struct signatured_type *sig_type)
23428 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23430 gdb_assert (per_cu->is_debug_types);
23431 gdb_assert (per_cu->cu == NULL);
23433 cutu_reader reader (per_cu, NULL, 0, 1, false);
23435 if (!reader.dummy_p)
23437 struct dwarf2_cu *cu = reader.cu;
23438 const gdb_byte *info_ptr = reader.info_ptr;
23440 gdb_assert (cu->die_hash == NULL);
23442 htab_create_alloc_ex (cu->header.length / 12,
23446 &cu->comp_unit_obstack,
23447 hashtab_obstack_allocate,
23448 dummy_obstack_deallocate);
23450 if (reader.comp_unit_die->has_children)
23451 reader.comp_unit_die->child
23452 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23453 reader.comp_unit_die);
23454 cu->dies = reader.comp_unit_die;
23455 /* comp_unit_die is not stored in die_hash, no need. */
23457 /* We try not to read any attributes in this function, because
23458 not all CUs needed for references have been loaded yet, and
23459 symbol table processing isn't initialized. But we have to
23460 set the CU language, or we won't be able to build types
23461 correctly. Similarly, if we do not read the producer, we can
23462 not apply producer-specific interpretation. */
23463 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23466 sig_type->per_cu.tu_read = 1;
23469 /* Decode simple location descriptions.
23470 Given a pointer to a dwarf block that defines a location, compute
23471 the location and return the value.
23473 NOTE drow/2003-11-18: This function is called in two situations
23474 now: for the address of static or global variables (partial symbols
23475 only) and for offsets into structures which are expected to be
23476 (more or less) constant. The partial symbol case should go away,
23477 and only the constant case should remain. That will let this
23478 function complain more accurately. A few special modes are allowed
23479 without complaint for global variables (for instance, global
23480 register values and thread-local values).
23482 A location description containing no operations indicates that the
23483 object is optimized out. The return value is 0 for that case.
23484 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23485 callers will only want a very basic result and this can become a
23488 Note that stack[0] is unused except as a default error return. */
23491 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23493 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23495 size_t size = blk->size;
23496 const gdb_byte *data = blk->data;
23497 CORE_ADDR stack[64];
23499 unsigned int bytes_read, unsnd;
23505 stack[++stacki] = 0;
23544 stack[++stacki] = op - DW_OP_lit0;
23579 stack[++stacki] = op - DW_OP_reg0;
23581 dwarf2_complex_location_expr_complaint ();
23585 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23587 stack[++stacki] = unsnd;
23589 dwarf2_complex_location_expr_complaint ();
23593 stack[++stacki] = read_address (objfile->obfd, &data[i],
23598 case DW_OP_const1u:
23599 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23603 case DW_OP_const1s:
23604 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23608 case DW_OP_const2u:
23609 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23613 case DW_OP_const2s:
23614 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23618 case DW_OP_const4u:
23619 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23623 case DW_OP_const4s:
23624 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23628 case DW_OP_const8u:
23629 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23634 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23640 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23645 stack[stacki + 1] = stack[stacki];
23650 stack[stacki - 1] += stack[stacki];
23654 case DW_OP_plus_uconst:
23655 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23661 stack[stacki - 1] -= stack[stacki];
23666 /* If we're not the last op, then we definitely can't encode
23667 this using GDB's address_class enum. This is valid for partial
23668 global symbols, although the variable's address will be bogus
23671 dwarf2_complex_location_expr_complaint ();
23674 case DW_OP_GNU_push_tls_address:
23675 case DW_OP_form_tls_address:
23676 /* The top of the stack has the offset from the beginning
23677 of the thread control block at which the variable is located. */
23678 /* Nothing should follow this operator, so the top of stack would
23680 /* This is valid for partial global symbols, but the variable's
23681 address will be bogus in the psymtab. Make it always at least
23682 non-zero to not look as a variable garbage collected by linker
23683 which have DW_OP_addr 0. */
23685 dwarf2_complex_location_expr_complaint ();
23689 case DW_OP_GNU_uninit:
23693 case DW_OP_GNU_addr_index:
23694 case DW_OP_GNU_const_index:
23695 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23702 const char *name = get_DW_OP_name (op);
23705 complaint (_("unsupported stack op: '%s'"),
23708 complaint (_("unsupported stack op: '%02x'"),
23712 return (stack[stacki]);
23715 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23716 outside of the allocated space. Also enforce minimum>0. */
23717 if (stacki >= ARRAY_SIZE (stack) - 1)
23719 complaint (_("location description stack overflow"));
23725 complaint (_("location description stack underflow"));
23729 return (stack[stacki]);
23732 /* memory allocation interface */
23734 static struct dwarf_block *
23735 dwarf_alloc_block (struct dwarf2_cu *cu)
23737 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23740 static struct die_info *
23741 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23743 struct die_info *die;
23744 size_t size = sizeof (struct die_info);
23747 size += (num_attrs - 1) * sizeof (struct attribute);
23749 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23750 memset (die, 0, sizeof (struct die_info));
23755 /* Macro support. */
23758 line_header::file_file_name (int file)
23760 /* Is the file number a valid index into the line header's file name
23761 table? Remember that file numbers start with one, not zero. */
23762 if (is_valid_file_index (file))
23764 const file_entry *fe = file_name_at (file);
23766 if (!IS_ABSOLUTE_PATH (fe->name))
23768 const char *dir = fe->include_dir (this);
23770 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
23772 return xstrdup (fe->name);
23776 /* The compiler produced a bogus file number. We can at least
23777 record the macro definitions made in the file, even if we
23778 won't be able to find the file by name. */
23779 char fake_name[80];
23781 xsnprintf (fake_name, sizeof (fake_name),
23782 "<bad macro file number %d>", file);
23784 complaint (_("bad file number in macro information (%d)"),
23787 return xstrdup (fake_name);
23792 line_header::file_full_name (int file, const char *comp_dir)
23794 /* Is the file number a valid index into the line header's file name
23795 table? Remember that file numbers start with one, not zero. */
23796 if (is_valid_file_index (file))
23798 char *relative = file_file_name (file);
23800 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23802 return reconcat (relative, comp_dir, SLASH_STRING,
23803 relative, (char *) NULL);
23806 return file_file_name (file);
23810 static struct macro_source_file *
23811 macro_start_file (struct dwarf2_cu *cu,
23812 int file, int line,
23813 struct macro_source_file *current_file,
23814 struct line_header *lh)
23816 /* File name relative to the compilation directory of this source file. */
23817 char *file_name = lh->file_file_name (file);
23819 if (! current_file)
23821 /* Note: We don't create a macro table for this compilation unit
23822 at all until we actually get a filename. */
23823 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23825 /* If we have no current file, then this must be the start_file
23826 directive for the compilation unit's main source file. */
23827 current_file = macro_set_main (macro_table, file_name);
23828 macro_define_special (macro_table);
23831 current_file = macro_include (current_file, line, file_name);
23835 return current_file;
23838 static const char *
23839 consume_improper_spaces (const char *p, const char *body)
23843 complaint (_("macro definition contains spaces "
23844 "in formal argument list:\n`%s'"),
23856 parse_macro_definition (struct macro_source_file *file, int line,
23861 /* The body string takes one of two forms. For object-like macro
23862 definitions, it should be:
23864 <macro name> " " <definition>
23866 For function-like macro definitions, it should be:
23868 <macro name> "() " <definition>
23870 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
23872 Spaces may appear only where explicitly indicated, and in the
23875 The Dwarf 2 spec says that an object-like macro's name is always
23876 followed by a space, but versions of GCC around March 2002 omit
23877 the space when the macro's definition is the empty string.
23879 The Dwarf 2 spec says that there should be no spaces between the
23880 formal arguments in a function-like macro's formal argument list,
23881 but versions of GCC around March 2002 include spaces after the
23885 /* Find the extent of the macro name. The macro name is terminated
23886 by either a space or null character (for an object-like macro) or
23887 an opening paren (for a function-like macro). */
23888 for (p = body; *p; p++)
23889 if (*p == ' ' || *p == '(')
23892 if (*p == ' ' || *p == '\0')
23894 /* It's an object-like macro. */
23895 int name_len = p - body;
23896 std::string name (body, name_len);
23897 const char *replacement;
23900 replacement = body + name_len + 1;
23903 dwarf2_macro_malformed_definition_complaint (body);
23904 replacement = body + name_len;
23907 macro_define_object (file, line, name.c_str (), replacement);
23909 else if (*p == '(')
23911 /* It's a function-like macro. */
23912 std::string name (body, p - body);
23915 char **argv = XNEWVEC (char *, argv_size);
23919 p = consume_improper_spaces (p, body);
23921 /* Parse the formal argument list. */
23922 while (*p && *p != ')')
23924 /* Find the extent of the current argument name. */
23925 const char *arg_start = p;
23927 while (*p && *p != ',' && *p != ')' && *p != ' ')
23930 if (! *p || p == arg_start)
23931 dwarf2_macro_malformed_definition_complaint (body);
23934 /* Make sure argv has room for the new argument. */
23935 if (argc >= argv_size)
23938 argv = XRESIZEVEC (char *, argv, argv_size);
23941 argv[argc++] = savestring (arg_start, p - arg_start);
23944 p = consume_improper_spaces (p, body);
23946 /* Consume the comma, if present. */
23951 p = consume_improper_spaces (p, body);
23960 /* Perfectly formed definition, no complaints. */
23961 macro_define_function (file, line, name.c_str (),
23962 argc, (const char **) argv,
23964 else if (*p == '\0')
23966 /* Complain, but do define it. */
23967 dwarf2_macro_malformed_definition_complaint (body);
23968 macro_define_function (file, line, name.c_str (),
23969 argc, (const char **) argv,
23973 /* Just complain. */
23974 dwarf2_macro_malformed_definition_complaint (body);
23977 /* Just complain. */
23978 dwarf2_macro_malformed_definition_complaint (body);
23983 for (i = 0; i < argc; i++)
23989 dwarf2_macro_malformed_definition_complaint (body);
23992 /* Skip some bytes from BYTES according to the form given in FORM.
23993 Returns the new pointer. */
23995 static const gdb_byte *
23996 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
23997 enum dwarf_form form,
23998 unsigned int offset_size,
23999 struct dwarf2_section_info *section)
24001 unsigned int bytes_read;
24005 case DW_FORM_data1:
24010 case DW_FORM_data2:
24014 case DW_FORM_data4:
24018 case DW_FORM_data8:
24022 case DW_FORM_data16:
24026 case DW_FORM_string:
24027 read_direct_string (abfd, bytes, &bytes_read);
24028 bytes += bytes_read;
24031 case DW_FORM_sec_offset:
24033 case DW_FORM_GNU_strp_alt:
24034 bytes += offset_size;
24037 case DW_FORM_block:
24038 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24039 bytes += bytes_read;
24042 case DW_FORM_block1:
24043 bytes += 1 + read_1_byte (abfd, bytes);
24045 case DW_FORM_block2:
24046 bytes += 2 + read_2_bytes (abfd, bytes);
24048 case DW_FORM_block4:
24049 bytes += 4 + read_4_bytes (abfd, bytes);
24052 case DW_FORM_addrx:
24053 case DW_FORM_sdata:
24055 case DW_FORM_udata:
24056 case DW_FORM_GNU_addr_index:
24057 case DW_FORM_GNU_str_index:
24058 bytes = gdb_skip_leb128 (bytes, buffer_end);
24061 dwarf2_section_buffer_overflow_complaint (section);
24066 case DW_FORM_implicit_const:
24071 complaint (_("invalid form 0x%x in `%s'"),
24072 form, section->get_name ());
24080 /* A helper for dwarf_decode_macros that handles skipping an unknown
24081 opcode. Returns an updated pointer to the macro data buffer; or,
24082 on error, issues a complaint and returns NULL. */
24084 static const gdb_byte *
24085 skip_unknown_opcode (unsigned int opcode,
24086 const gdb_byte **opcode_definitions,
24087 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24089 unsigned int offset_size,
24090 struct dwarf2_section_info *section)
24092 unsigned int bytes_read, i;
24094 const gdb_byte *defn;
24096 if (opcode_definitions[opcode] == NULL)
24098 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24103 defn = opcode_definitions[opcode];
24104 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24105 defn += bytes_read;
24107 for (i = 0; i < arg; ++i)
24109 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24110 (enum dwarf_form) defn[i], offset_size,
24112 if (mac_ptr == NULL)
24114 /* skip_form_bytes already issued the complaint. */
24122 /* A helper function which parses the header of a macro section.
24123 If the macro section is the extended (for now called "GNU") type,
24124 then this updates *OFFSET_SIZE. Returns a pointer to just after
24125 the header, or issues a complaint and returns NULL on error. */
24127 static const gdb_byte *
24128 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24130 const gdb_byte *mac_ptr,
24131 unsigned int *offset_size,
24132 int section_is_gnu)
24134 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24136 if (section_is_gnu)
24138 unsigned int version, flags;
24140 version = read_2_bytes (abfd, mac_ptr);
24141 if (version != 4 && version != 5)
24143 complaint (_("unrecognized version `%d' in .debug_macro section"),
24149 flags = read_1_byte (abfd, mac_ptr);
24151 *offset_size = (flags & 1) ? 8 : 4;
24153 if ((flags & 2) != 0)
24154 /* We don't need the line table offset. */
24155 mac_ptr += *offset_size;
24157 /* Vendor opcode descriptions. */
24158 if ((flags & 4) != 0)
24160 unsigned int i, count;
24162 count = read_1_byte (abfd, mac_ptr);
24164 for (i = 0; i < count; ++i)
24166 unsigned int opcode, bytes_read;
24169 opcode = read_1_byte (abfd, mac_ptr);
24171 opcode_definitions[opcode] = mac_ptr;
24172 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24173 mac_ptr += bytes_read;
24182 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24183 including DW_MACRO_import. */
24186 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24188 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24189 struct macro_source_file *current_file,
24190 struct line_header *lh,
24191 struct dwarf2_section_info *section,
24192 int section_is_gnu, int section_is_dwz,
24193 unsigned int offset_size,
24194 htab_t include_hash)
24196 struct dwarf2_per_objfile *dwarf2_per_objfile
24197 = cu->per_cu->dwarf2_per_objfile;
24198 struct objfile *objfile = dwarf2_per_objfile->objfile;
24199 enum dwarf_macro_record_type macinfo_type;
24200 int at_commandline;
24201 const gdb_byte *opcode_definitions[256];
24203 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24204 &offset_size, section_is_gnu);
24205 if (mac_ptr == NULL)
24207 /* We already issued a complaint. */
24211 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24212 GDB is still reading the definitions from command line. First
24213 DW_MACINFO_start_file will need to be ignored as it was already executed
24214 to create CURRENT_FILE for the main source holding also the command line
24215 definitions. On first met DW_MACINFO_start_file this flag is reset to
24216 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24218 at_commandline = 1;
24222 /* Do we at least have room for a macinfo type byte? */
24223 if (mac_ptr >= mac_end)
24225 dwarf2_section_buffer_overflow_complaint (section);
24229 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24232 /* Note that we rely on the fact that the corresponding GNU and
24233 DWARF constants are the same. */
24235 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24236 switch (macinfo_type)
24238 /* A zero macinfo type indicates the end of the macro
24243 case DW_MACRO_define:
24244 case DW_MACRO_undef:
24245 case DW_MACRO_define_strp:
24246 case DW_MACRO_undef_strp:
24247 case DW_MACRO_define_sup:
24248 case DW_MACRO_undef_sup:
24250 unsigned int bytes_read;
24255 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24256 mac_ptr += bytes_read;
24258 if (macinfo_type == DW_MACRO_define
24259 || macinfo_type == DW_MACRO_undef)
24261 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24262 mac_ptr += bytes_read;
24266 LONGEST str_offset;
24268 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24269 mac_ptr += offset_size;
24271 if (macinfo_type == DW_MACRO_define_sup
24272 || macinfo_type == DW_MACRO_undef_sup
24275 struct dwz_file *dwz
24276 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24278 body = read_indirect_string_from_dwz (objfile,
24282 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24286 is_define = (macinfo_type == DW_MACRO_define
24287 || macinfo_type == DW_MACRO_define_strp
24288 || macinfo_type == DW_MACRO_define_sup);
24289 if (! current_file)
24291 /* DWARF violation as no main source is present. */
24292 complaint (_("debug info with no main source gives macro %s "
24294 is_define ? _("definition") : _("undefinition"),
24298 if ((line == 0 && !at_commandline)
24299 || (line != 0 && at_commandline))
24300 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24301 at_commandline ? _("command-line") : _("in-file"),
24302 is_define ? _("definition") : _("undefinition"),
24303 line == 0 ? _("zero") : _("non-zero"), line, body);
24307 /* Fedora's rpm-build's "debugedit" binary
24308 corrupted .debug_macro sections.
24311 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24312 complaint (_("debug info gives %s invalid macro %s "
24313 "without body (corrupted?) at line %d "
24315 at_commandline ? _("command-line") : _("in-file"),
24316 is_define ? _("definition") : _("undefinition"),
24317 line, current_file->filename);
24319 else if (is_define)
24320 parse_macro_definition (current_file, line, body);
24323 gdb_assert (macinfo_type == DW_MACRO_undef
24324 || macinfo_type == DW_MACRO_undef_strp
24325 || macinfo_type == DW_MACRO_undef_sup);
24326 macro_undef (current_file, line, body);
24331 case DW_MACRO_start_file:
24333 unsigned int bytes_read;
24336 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24337 mac_ptr += bytes_read;
24338 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24339 mac_ptr += bytes_read;
24341 if ((line == 0 && !at_commandline)
24342 || (line != 0 && at_commandline))
24343 complaint (_("debug info gives source %d included "
24344 "from %s at %s line %d"),
24345 file, at_commandline ? _("command-line") : _("file"),
24346 line == 0 ? _("zero") : _("non-zero"), line);
24348 if (at_commandline)
24350 /* This DW_MACRO_start_file was executed in the
24352 at_commandline = 0;
24355 current_file = macro_start_file (cu, file, line, current_file,
24360 case DW_MACRO_end_file:
24361 if (! current_file)
24362 complaint (_("macro debug info has an unmatched "
24363 "`close_file' directive"));
24366 current_file = current_file->included_by;
24367 if (! current_file)
24369 enum dwarf_macro_record_type next_type;
24371 /* GCC circa March 2002 doesn't produce the zero
24372 type byte marking the end of the compilation
24373 unit. Complain if it's not there, but exit no
24376 /* Do we at least have room for a macinfo type byte? */
24377 if (mac_ptr >= mac_end)
24379 dwarf2_section_buffer_overflow_complaint (section);
24383 /* We don't increment mac_ptr here, so this is just
24386 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24388 if (next_type != 0)
24389 complaint (_("no terminating 0-type entry for "
24390 "macros in `.debug_macinfo' section"));
24397 case DW_MACRO_import:
24398 case DW_MACRO_import_sup:
24402 bfd *include_bfd = abfd;
24403 struct dwarf2_section_info *include_section = section;
24404 const gdb_byte *include_mac_end = mac_end;
24405 int is_dwz = section_is_dwz;
24406 const gdb_byte *new_mac_ptr;
24408 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24409 mac_ptr += offset_size;
24411 if (macinfo_type == DW_MACRO_import_sup)
24413 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24415 dwz->macro.read (objfile);
24417 include_section = &dwz->macro;
24418 include_bfd = include_section->get_bfd_owner ();
24419 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24423 new_mac_ptr = include_section->buffer + offset;
24424 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24428 /* This has actually happened; see
24429 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24430 complaint (_("recursive DW_MACRO_import in "
24431 ".debug_macro section"));
24435 *slot = (void *) new_mac_ptr;
24437 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24438 include_mac_end, current_file, lh,
24439 section, section_is_gnu, is_dwz,
24440 offset_size, include_hash);
24442 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24447 case DW_MACINFO_vendor_ext:
24448 if (!section_is_gnu)
24450 unsigned int bytes_read;
24452 /* This reads the constant, but since we don't recognize
24453 any vendor extensions, we ignore it. */
24454 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24455 mac_ptr += bytes_read;
24456 read_direct_string (abfd, mac_ptr, &bytes_read);
24457 mac_ptr += bytes_read;
24459 /* We don't recognize any vendor extensions. */
24465 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24466 mac_ptr, mac_end, abfd, offset_size,
24468 if (mac_ptr == NULL)
24473 } while (macinfo_type != 0);
24477 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24478 int section_is_gnu)
24480 struct dwarf2_per_objfile *dwarf2_per_objfile
24481 = cu->per_cu->dwarf2_per_objfile;
24482 struct objfile *objfile = dwarf2_per_objfile->objfile;
24483 struct line_header *lh = cu->line_header;
24485 const gdb_byte *mac_ptr, *mac_end;
24486 struct macro_source_file *current_file = 0;
24487 enum dwarf_macro_record_type macinfo_type;
24488 unsigned int offset_size = cu->header.offset_size;
24489 const gdb_byte *opcode_definitions[256];
24491 struct dwarf2_section_info *section;
24492 const char *section_name;
24494 if (cu->dwo_unit != NULL)
24496 if (section_is_gnu)
24498 section = &cu->dwo_unit->dwo_file->sections.macro;
24499 section_name = ".debug_macro.dwo";
24503 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24504 section_name = ".debug_macinfo.dwo";
24509 if (section_is_gnu)
24511 section = &dwarf2_per_objfile->macro;
24512 section_name = ".debug_macro";
24516 section = &dwarf2_per_objfile->macinfo;
24517 section_name = ".debug_macinfo";
24521 section->read (objfile);
24522 if (section->buffer == NULL)
24524 complaint (_("missing %s section"), section_name);
24527 abfd = section->get_bfd_owner ();
24529 /* First pass: Find the name of the base filename.
24530 This filename is needed in order to process all macros whose definition
24531 (or undefinition) comes from the command line. These macros are defined
24532 before the first DW_MACINFO_start_file entry, and yet still need to be
24533 associated to the base file.
24535 To determine the base file name, we scan the macro definitions until we
24536 reach the first DW_MACINFO_start_file entry. We then initialize
24537 CURRENT_FILE accordingly so that any macro definition found before the
24538 first DW_MACINFO_start_file can still be associated to the base file. */
24540 mac_ptr = section->buffer + offset;
24541 mac_end = section->buffer + section->size;
24543 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24544 &offset_size, section_is_gnu);
24545 if (mac_ptr == NULL)
24547 /* We already issued a complaint. */
24553 /* Do we at least have room for a macinfo type byte? */
24554 if (mac_ptr >= mac_end)
24556 /* Complaint is printed during the second pass as GDB will probably
24557 stop the first pass earlier upon finding
24558 DW_MACINFO_start_file. */
24562 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24565 /* Note that we rely on the fact that the corresponding GNU and
24566 DWARF constants are the same. */
24568 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24569 switch (macinfo_type)
24571 /* A zero macinfo type indicates the end of the macro
24576 case DW_MACRO_define:
24577 case DW_MACRO_undef:
24578 /* Only skip the data by MAC_PTR. */
24580 unsigned int bytes_read;
24582 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24583 mac_ptr += bytes_read;
24584 read_direct_string (abfd, mac_ptr, &bytes_read);
24585 mac_ptr += bytes_read;
24589 case DW_MACRO_start_file:
24591 unsigned int bytes_read;
24594 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24595 mac_ptr += bytes_read;
24596 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24597 mac_ptr += bytes_read;
24599 current_file = macro_start_file (cu, file, line, current_file, lh);
24603 case DW_MACRO_end_file:
24604 /* No data to skip by MAC_PTR. */
24607 case DW_MACRO_define_strp:
24608 case DW_MACRO_undef_strp:
24609 case DW_MACRO_define_sup:
24610 case DW_MACRO_undef_sup:
24612 unsigned int bytes_read;
24614 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24615 mac_ptr += bytes_read;
24616 mac_ptr += offset_size;
24620 case DW_MACRO_import:
24621 case DW_MACRO_import_sup:
24622 /* Note that, according to the spec, a transparent include
24623 chain cannot call DW_MACRO_start_file. So, we can just
24624 skip this opcode. */
24625 mac_ptr += offset_size;
24628 case DW_MACINFO_vendor_ext:
24629 /* Only skip the data by MAC_PTR. */
24630 if (!section_is_gnu)
24632 unsigned int bytes_read;
24634 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24635 mac_ptr += bytes_read;
24636 read_direct_string (abfd, mac_ptr, &bytes_read);
24637 mac_ptr += bytes_read;
24642 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24643 mac_ptr, mac_end, abfd, offset_size,
24645 if (mac_ptr == NULL)
24650 } while (macinfo_type != 0 && current_file == NULL);
24652 /* Second pass: Process all entries.
24654 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24655 command-line macro definitions/undefinitions. This flag is unset when we
24656 reach the first DW_MACINFO_start_file entry. */
24658 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24660 NULL, xcalloc, xfree));
24661 mac_ptr = section->buffer + offset;
24662 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24663 *slot = (void *) mac_ptr;
24664 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24665 current_file, lh, section,
24666 section_is_gnu, 0, offset_size,
24667 include_hash.get ());
24670 /* Return the .debug_loc section to use for CU.
24671 For DWO files use .debug_loc.dwo. */
24673 static struct dwarf2_section_info *
24674 cu_debug_loc_section (struct dwarf2_cu *cu)
24676 struct dwarf2_per_objfile *dwarf2_per_objfile
24677 = cu->per_cu->dwarf2_per_objfile;
24681 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24683 return cu->header.version >= 5 ? §ions->loclists : §ions->loc;
24685 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24686 : &dwarf2_per_objfile->loc);
24689 /* A helper function that fills in a dwarf2_loclist_baton. */
24692 fill_in_loclist_baton (struct dwarf2_cu *cu,
24693 struct dwarf2_loclist_baton *baton,
24694 const struct attribute *attr)
24696 struct dwarf2_per_objfile *dwarf2_per_objfile
24697 = cu->per_cu->dwarf2_per_objfile;
24698 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24700 section->read (dwarf2_per_objfile->objfile);
24702 baton->per_cu = cu->per_cu;
24703 gdb_assert (baton->per_cu);
24704 /* We don't know how long the location list is, but make sure we
24705 don't run off the edge of the section. */
24706 baton->size = section->size - DW_UNSND (attr);
24707 baton->data = section->buffer + DW_UNSND (attr);
24708 baton->base_address = cu->base_address;
24709 baton->from_dwo = cu->dwo_unit != NULL;
24713 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24714 struct dwarf2_cu *cu, int is_block)
24716 struct dwarf2_per_objfile *dwarf2_per_objfile
24717 = cu->per_cu->dwarf2_per_objfile;
24718 struct objfile *objfile = dwarf2_per_objfile->objfile;
24719 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24721 if (attr->form_is_section_offset ()
24722 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24723 the section. If so, fall through to the complaint in the
24725 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24727 struct dwarf2_loclist_baton *baton;
24729 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24731 fill_in_loclist_baton (cu, baton, attr);
24733 if (cu->base_known == 0)
24734 complaint (_("Location list used without "
24735 "specifying the CU base address."));
24737 SYMBOL_ACLASS_INDEX (sym) = (is_block
24738 ? dwarf2_loclist_block_index
24739 : dwarf2_loclist_index);
24740 SYMBOL_LOCATION_BATON (sym) = baton;
24744 struct dwarf2_locexpr_baton *baton;
24746 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24747 baton->per_cu = cu->per_cu;
24748 gdb_assert (baton->per_cu);
24750 if (attr->form_is_block ())
24752 /* Note that we're just copying the block's data pointer
24753 here, not the actual data. We're still pointing into the
24754 info_buffer for SYM's objfile; right now we never release
24755 that buffer, but when we do clean up properly this may
24757 baton->size = DW_BLOCK (attr)->size;
24758 baton->data = DW_BLOCK (attr)->data;
24762 dwarf2_invalid_attrib_class_complaint ("location description",
24763 sym->natural_name ());
24767 SYMBOL_ACLASS_INDEX (sym) = (is_block
24768 ? dwarf2_locexpr_block_index
24769 : dwarf2_locexpr_index);
24770 SYMBOL_LOCATION_BATON (sym) = baton;
24774 /* Return the OBJFILE associated with the compilation unit CU. If CU
24775 came from a separate debuginfo file, then the master objfile is
24779 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
24781 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24783 /* Return the master objfile, so that we can report and look up the
24784 correct file containing this variable. */
24785 if (objfile->separate_debug_objfile_backlink)
24786 objfile = objfile->separate_debug_objfile_backlink;
24791 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
24792 (CU_HEADERP is unused in such case) or prepare a temporary copy at
24793 CU_HEADERP first. */
24795 static const struct comp_unit_head *
24796 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
24797 struct dwarf2_per_cu_data *per_cu)
24799 const gdb_byte *info_ptr;
24802 return &per_cu->cu->header;
24804 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
24806 memset (cu_headerp, 0, sizeof (*cu_headerp));
24807 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
24808 rcuh_kind::COMPILE);
24813 /* Return the address size given in the compilation unit header for CU. */
24816 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
24818 struct comp_unit_head cu_header_local;
24819 const struct comp_unit_head *cu_headerp;
24821 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24823 return cu_headerp->addr_size;
24826 /* Return the offset size given in the compilation unit header for CU. */
24829 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
24831 struct comp_unit_head cu_header_local;
24832 const struct comp_unit_head *cu_headerp;
24834 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24836 return cu_headerp->offset_size;
24839 /* See its dwarf2loc.h declaration. */
24842 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
24844 struct comp_unit_head cu_header_local;
24845 const struct comp_unit_head *cu_headerp;
24847 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
24849 if (cu_headerp->version == 2)
24850 return cu_headerp->addr_size;
24852 return cu_headerp->offset_size;
24855 /* Return the text offset of the CU. The returned offset comes from
24856 this CU's objfile. If this objfile came from a separate debuginfo
24857 file, then the offset may be different from the corresponding
24858 offset in the parent objfile. */
24861 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
24863 return per_cu->dwarf2_per_objfile->objfile->text_section_offset ();
24866 /* Return a type that is a generic pointer type, the size of which matches
24867 the address size given in the compilation unit header for PER_CU. */
24868 static struct type *
24869 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
24871 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
24872 struct type *void_type = objfile_type (objfile)->builtin_void;
24873 struct type *addr_type = lookup_pointer_type (void_type);
24874 int addr_size = dwarf2_per_cu_addr_size (per_cu);
24876 if (TYPE_LENGTH (addr_type) == addr_size)
24880 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
24884 /* Return DWARF version number of PER_CU. */
24887 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
24889 return per_cu->dwarf_version;
24892 /* Locate the .debug_info compilation unit from CU's objfile which contains
24893 the DIE at OFFSET. Raises an error on failure. */
24895 static struct dwarf2_per_cu_data *
24896 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24897 unsigned int offset_in_dwz,
24898 struct dwarf2_per_objfile *dwarf2_per_objfile)
24900 struct dwarf2_per_cu_data *this_cu;
24904 high = dwarf2_per_objfile->all_comp_units.size () - 1;
24907 struct dwarf2_per_cu_data *mid_cu;
24908 int mid = low + (high - low) / 2;
24910 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
24911 if (mid_cu->is_dwz > offset_in_dwz
24912 || (mid_cu->is_dwz == offset_in_dwz
24913 && mid_cu->sect_off + mid_cu->length >= sect_off))
24918 gdb_assert (low == high);
24919 this_cu = dwarf2_per_objfile->all_comp_units[low];
24920 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24922 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24923 error (_("Dwarf Error: could not find partial DIE containing "
24924 "offset %s [in module %s]"),
24925 sect_offset_str (sect_off),
24926 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
24928 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
24930 return dwarf2_per_objfile->all_comp_units[low-1];
24934 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
24935 && sect_off >= this_cu->sect_off + this_cu->length)
24936 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24937 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24942 /* Initialize dwarf2_cu CU, owned by PER_CU. */
24944 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
24945 : per_cu (per_cu_),
24947 has_loclist (false),
24948 checked_producer (false),
24949 producer_is_gxx_lt_4_6 (false),
24950 producer_is_gcc_lt_4_3 (false),
24951 producer_is_icc (false),
24952 producer_is_icc_lt_14 (false),
24953 producer_is_codewarrior (false),
24954 processing_has_namespace_info (false)
24959 /* Destroy a dwarf2_cu. */
24961 dwarf2_cu::~dwarf2_cu ()
24966 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24969 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24970 enum language pretend_language)
24972 struct attribute *attr;
24974 /* Set the language we're debugging. */
24975 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24976 if (attr != nullptr)
24977 set_cu_language (DW_UNSND (attr), cu);
24980 cu->language = pretend_language;
24981 cu->language_defn = language_def (cu->language);
24984 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24987 /* Increase the age counter on each cached compilation unit, and free
24988 any that are too old. */
24991 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
24993 struct dwarf2_per_cu_data *per_cu, **last_chain;
24995 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
24996 per_cu = dwarf2_per_objfile->read_in_chain;
24997 while (per_cu != NULL)
24999 per_cu->cu->last_used ++;
25000 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25001 dwarf2_mark (per_cu->cu);
25002 per_cu = per_cu->cu->read_in_chain;
25005 per_cu = dwarf2_per_objfile->read_in_chain;
25006 last_chain = &dwarf2_per_objfile->read_in_chain;
25007 while (per_cu != NULL)
25009 struct dwarf2_per_cu_data *next_cu;
25011 next_cu = per_cu->cu->read_in_chain;
25013 if (!per_cu->cu->mark)
25016 *last_chain = next_cu;
25019 last_chain = &per_cu->cu->read_in_chain;
25025 /* Remove a single compilation unit from the cache. */
25028 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25030 struct dwarf2_per_cu_data *per_cu, **last_chain;
25031 struct dwarf2_per_objfile *dwarf2_per_objfile
25032 = target_per_cu->dwarf2_per_objfile;
25034 per_cu = dwarf2_per_objfile->read_in_chain;
25035 last_chain = &dwarf2_per_objfile->read_in_chain;
25036 while (per_cu != NULL)
25038 struct dwarf2_per_cu_data *next_cu;
25040 next_cu = per_cu->cu->read_in_chain;
25042 if (per_cu == target_per_cu)
25046 *last_chain = next_cu;
25050 last_chain = &per_cu->cu->read_in_chain;
25056 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25057 We store these in a hash table separate from the DIEs, and preserve them
25058 when the DIEs are flushed out of cache.
25060 The CU "per_cu" pointer is needed because offset alone is not enough to
25061 uniquely identify the type. A file may have multiple .debug_types sections,
25062 or the type may come from a DWO file. Furthermore, while it's more logical
25063 to use per_cu->section+offset, with Fission the section with the data is in
25064 the DWO file but we don't know that section at the point we need it.
25065 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25066 because we can enter the lookup routine, get_die_type_at_offset, from
25067 outside this file, and thus won't necessarily have PER_CU->cu.
25068 Fortunately, PER_CU is stable for the life of the objfile. */
25070 struct dwarf2_per_cu_offset_and_type
25072 const struct dwarf2_per_cu_data *per_cu;
25073 sect_offset sect_off;
25077 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25080 per_cu_offset_and_type_hash (const void *item)
25082 const struct dwarf2_per_cu_offset_and_type *ofs
25083 = (const struct dwarf2_per_cu_offset_and_type *) item;
25085 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25088 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25091 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25093 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25094 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25095 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25096 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25098 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25099 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25102 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25103 table if necessary. For convenience, return TYPE.
25105 The DIEs reading must have careful ordering to:
25106 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25107 reading current DIE.
25108 * Not trying to dereference contents of still incompletely read in types
25109 while reading in other DIEs.
25110 * Enable referencing still incompletely read in types just by a pointer to
25111 the type without accessing its fields.
25113 Therefore caller should follow these rules:
25114 * Try to fetch any prerequisite types we may need to build this DIE type
25115 before building the type and calling set_die_type.
25116 * After building type call set_die_type for current DIE as soon as
25117 possible before fetching more types to complete the current type.
25118 * Make the type as complete as possible before fetching more types. */
25120 static struct type *
25121 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25123 struct dwarf2_per_objfile *dwarf2_per_objfile
25124 = cu->per_cu->dwarf2_per_objfile;
25125 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25126 struct objfile *objfile = dwarf2_per_objfile->objfile;
25127 struct attribute *attr;
25128 struct dynamic_prop prop;
25130 /* For Ada types, make sure that the gnat-specific data is always
25131 initialized (if not already set). There are a few types where
25132 we should not be doing so, because the type-specific area is
25133 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25134 where the type-specific area is used to store the floatformat).
25135 But this is not a problem, because the gnat-specific information
25136 is actually not needed for these types. */
25137 if (need_gnat_info (cu)
25138 && TYPE_CODE (type) != TYPE_CODE_FUNC
25139 && TYPE_CODE (type) != TYPE_CODE_FLT
25140 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25141 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25142 && TYPE_CODE (type) != TYPE_CODE_METHOD
25143 && !HAVE_GNAT_AUX_INFO (type))
25144 INIT_GNAT_SPECIFIC (type);
25146 /* Read DW_AT_allocated and set in type. */
25147 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25148 if (attr != NULL && attr->form_is_block ())
25150 struct type *prop_type
25151 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25152 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25153 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25155 else if (attr != NULL)
25157 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25158 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25159 sect_offset_str (die->sect_off));
25162 /* Read DW_AT_associated and set in type. */
25163 attr = dwarf2_attr (die, DW_AT_associated, cu);
25164 if (attr != NULL && attr->form_is_block ())
25166 struct type *prop_type
25167 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25168 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25169 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25171 else if (attr != NULL)
25173 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25174 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25175 sect_offset_str (die->sect_off));
25178 /* Read DW_AT_data_location and set in type. */
25179 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25180 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25181 dwarf2_per_cu_addr_type (cu->per_cu)))
25182 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25184 if (dwarf2_per_objfile->die_type_hash == NULL)
25185 dwarf2_per_objfile->die_type_hash
25186 = htab_up (htab_create_alloc (127,
25187 per_cu_offset_and_type_hash,
25188 per_cu_offset_and_type_eq,
25189 NULL, xcalloc, xfree));
25191 ofs.per_cu = cu->per_cu;
25192 ofs.sect_off = die->sect_off;
25194 slot = (struct dwarf2_per_cu_offset_and_type **)
25195 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
25197 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25198 sect_offset_str (die->sect_off));
25199 *slot = XOBNEW (&objfile->objfile_obstack,
25200 struct dwarf2_per_cu_offset_and_type);
25205 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25206 or return NULL if the die does not have a saved type. */
25208 static struct type *
25209 get_die_type_at_offset (sect_offset sect_off,
25210 struct dwarf2_per_cu_data *per_cu)
25212 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25213 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25215 if (dwarf2_per_objfile->die_type_hash == NULL)
25218 ofs.per_cu = per_cu;
25219 ofs.sect_off = sect_off;
25220 slot = ((struct dwarf2_per_cu_offset_and_type *)
25221 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
25228 /* Look up the type for DIE in CU in die_type_hash,
25229 or return NULL if DIE does not have a saved type. */
25231 static struct type *
25232 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25234 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25237 /* Add a dependence relationship from CU to REF_PER_CU. */
25240 dwarf2_add_dependence (struct dwarf2_cu *cu,
25241 struct dwarf2_per_cu_data *ref_per_cu)
25245 if (cu->dependencies == NULL)
25247 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25248 NULL, &cu->comp_unit_obstack,
25249 hashtab_obstack_allocate,
25250 dummy_obstack_deallocate);
25252 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25254 *slot = ref_per_cu;
25257 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25258 Set the mark field in every compilation unit in the
25259 cache that we must keep because we are keeping CU. */
25262 dwarf2_mark_helper (void **slot, void *data)
25264 struct dwarf2_per_cu_data *per_cu;
25266 per_cu = (struct dwarf2_per_cu_data *) *slot;
25268 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25269 reading of the chain. As such dependencies remain valid it is not much
25270 useful to track and undo them during QUIT cleanups. */
25271 if (per_cu->cu == NULL)
25274 if (per_cu->cu->mark)
25276 per_cu->cu->mark = true;
25278 if (per_cu->cu->dependencies != NULL)
25279 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25284 /* Set the mark field in CU and in every other compilation unit in the
25285 cache that we must keep because we are keeping CU. */
25288 dwarf2_mark (struct dwarf2_cu *cu)
25293 if (cu->dependencies != NULL)
25294 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25298 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25302 per_cu->cu->mark = false;
25303 per_cu = per_cu->cu->read_in_chain;
25307 /* Trivial hash function for partial_die_info: the hash value of a DIE
25308 is its offset in .debug_info for this objfile. */
25311 partial_die_hash (const void *item)
25313 const struct partial_die_info *part_die
25314 = (const struct partial_die_info *) item;
25316 return to_underlying (part_die->sect_off);
25319 /* Trivial comparison function for partial_die_info structures: two DIEs
25320 are equal if they have the same offset. */
25323 partial_die_eq (const void *item_lhs, const void *item_rhs)
25325 const struct partial_die_info *part_die_lhs
25326 = (const struct partial_die_info *) item_lhs;
25327 const struct partial_die_info *part_die_rhs
25328 = (const struct partial_die_info *) item_rhs;
25330 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25333 struct cmd_list_element *set_dwarf_cmdlist;
25334 struct cmd_list_element *show_dwarf_cmdlist;
25337 set_dwarf_cmd (const char *args, int from_tty)
25339 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25344 show_dwarf_cmd (const char *args, int from_tty)
25346 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25350 show_check_physname (struct ui_file *file, int from_tty,
25351 struct cmd_list_element *c, const char *value)
25353 fprintf_filtered (file,
25354 _("Whether to check \"physname\" is %s.\n"),
25358 void _initialize_dwarf2_read ();
25360 _initialize_dwarf2_read ()
25362 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25363 Set DWARF specific variables.\n\
25364 Configure DWARF variables such as the cache size."),
25365 &set_dwarf_cmdlist, "maintenance set dwarf ",
25366 0/*allow-unknown*/, &maintenance_set_cmdlist);
25368 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25369 Show DWARF specific variables.\n\
25370 Show DWARF variables such as the cache size."),
25371 &show_dwarf_cmdlist, "maintenance show dwarf ",
25372 0/*allow-unknown*/, &maintenance_show_cmdlist);
25374 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25375 &dwarf_max_cache_age, _("\
25376 Set the upper bound on the age of cached DWARF compilation units."), _("\
25377 Show the upper bound on the age of cached DWARF compilation units."), _("\
25378 A higher limit means that cached compilation units will be stored\n\
25379 in memory longer, and more total memory will be used. Zero disables\n\
25380 caching, which can slow down startup."),
25382 show_dwarf_max_cache_age,
25383 &set_dwarf_cmdlist,
25384 &show_dwarf_cmdlist);
25386 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25387 Set debugging of the DWARF reader."), _("\
25388 Show debugging of the DWARF reader."), _("\
25389 When enabled (non-zero), debugging messages are printed during DWARF\n\
25390 reading and symtab expansion. A value of 1 (one) provides basic\n\
25391 information. A value greater than 1 provides more verbose information."),
25394 &setdebuglist, &showdebuglist);
25396 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25397 Set debugging of the DWARF DIE reader."), _("\
25398 Show debugging of the DWARF DIE reader."), _("\
25399 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25400 The value is the maximum depth to print."),
25403 &setdebuglist, &showdebuglist);
25405 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25406 Set debugging of the dwarf line reader."), _("\
25407 Show debugging of the dwarf line reader."), _("\
25408 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25409 A value of 1 (one) provides basic information.\n\
25410 A value greater than 1 provides more verbose information."),
25413 &setdebuglist, &showdebuglist);
25415 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25416 Set cross-checking of \"physname\" code against demangler."), _("\
25417 Show cross-checking of \"physname\" code against demangler."), _("\
25418 When enabled, GDB's internal \"physname\" code is checked against\n\
25420 NULL, show_check_physname,
25421 &setdebuglist, &showdebuglist);
25423 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25424 no_class, &use_deprecated_index_sections, _("\
25425 Set whether to use deprecated gdb_index sections."), _("\
25426 Show whether to use deprecated gdb_index sections."), _("\
25427 When enabled, deprecated .gdb_index sections are used anyway.\n\
25428 Normally they are ignored either because of a missing feature or\n\
25429 performance issue.\n\
25430 Warning: This option must be enabled before gdb reads the file."),
25433 &setlist, &showlist);
25435 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25436 &dwarf2_locexpr_funcs);
25437 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25438 &dwarf2_loclist_funcs);
25440 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25441 &dwarf2_block_frame_base_locexpr_funcs);
25442 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25443 &dwarf2_block_frame_base_loclist_funcs);
25446 selftests::register_test ("dw2_expand_symtabs_matching",
25447 selftests::dw2_expand_symtabs_matching::run_test);