1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001
3 Free Software Foundation, Inc.
5 Contributed by Motorola. Adapted from the C parser by Farooq Butt
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
47 #include "gdb_string.h"
48 #include "expression.h"
50 #include "parser-defs.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
58 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
59 as well as gratuitiously global symbol names, so we can have multiple
60 yacc generated parsers in gdb. Note that these are only the variables
61 produced by yacc. If other parser generators (bison, byacc, etc) produce
62 additional global names that conflict at link time, then those parser
63 generators need to be fixed instead of adding those names to this list. */
65 #define yymaxdepth f_maxdepth
66 #define yyparse f_parse
68 #define yyerror f_error
71 #define yydebug f_debug
80 #define yyerrflag f_errflag
81 #define yynerrs f_nerrs
86 #define yystate f_state
92 #define yyreds f_reds /* With YYDEBUG defined */
93 #define yytoks f_toks /* With YYDEBUG defined */
96 #define yydefred f_yydefred
97 #define yydgoto f_yydgoto
98 #define yysindex f_yysindex
99 #define yyrindex f_yyrindex
100 #define yygindex f_yygindex
101 #define yytable f_yytable
102 #define yycheck f_yycheck
105 #define YYDEBUG 1 /* Default to yydebug support */
108 #define YYFPRINTF parser_fprintf
112 static int yylex (void);
114 void yyerror (char *);
116 static void growbuf_by_size (int);
118 static int match_string_literal (void);
122 /* Although the yacc "value" of an expression is not used,
123 since the result is stored in the structure being created,
124 other node types do have values. */
138 struct symtoken ssym;
141 enum exp_opcode opcode;
142 struct internalvar *ivar;
149 /* YYSTYPE gets defined by %union */
150 static int parse_number (char *, int, int, YYSTYPE *);
153 %type <voidval> exp type_exp start variable
154 %type <tval> type typebase
155 %type <tvec> nonempty_typelist
156 /* %type <bval> block */
158 /* Fancy type parsing. */
159 %type <voidval> func_mod direct_abs_decl abs_decl
162 %token <typed_val> INT
165 /* Both NAME and TYPENAME tokens represent symbols in the input,
166 and both convey their data as strings.
167 But a TYPENAME is a string that happens to be defined as a typedef
168 or builtin type name (such as int or char)
169 and a NAME is any other symbol.
170 Contexts where this distinction is not important can use the
171 nonterminal "name", which matches either NAME or TYPENAME. */
173 %token <sval> STRING_LITERAL
174 %token <lval> BOOLEAN_LITERAL
176 %token <tsym> TYPENAME
178 %type <ssym> name_not_typename
179 %type <tsym> typename
181 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
182 but which would parse as a valid number in the current input radix.
183 E.g. "c" when input_radix==16. Depending on the parse, it will be
184 turned into a name or into a number. */
186 %token <ssym> NAME_OR_INT
191 /* Special type cases, put in to allow the parser to distinguish different
193 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
194 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
195 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
196 %token BOOL_AND BOOL_OR BOOL_NOT
197 %token <lval> CHARACTER
199 %token <voidval> VARIABLE
201 %token <opcode> ASSIGN_MODIFY
205 %right '=' ASSIGN_MODIFY
214 %left LESSTHAN GREATERTHAN LEQ GEQ
230 { write_exp_elt_opcode(OP_TYPE);
231 write_exp_elt_type($1);
232 write_exp_elt_opcode(OP_TYPE); }
239 /* Expressions, not including the comma operator. */
240 exp : '*' exp %prec UNARY
241 { write_exp_elt_opcode (UNOP_IND); }
243 exp : '&' exp %prec UNARY
244 { write_exp_elt_opcode (UNOP_ADDR); }
246 exp : '-' exp %prec UNARY
247 { write_exp_elt_opcode (UNOP_NEG); }
250 exp : BOOL_NOT exp %prec UNARY
251 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
254 exp : '~' exp %prec UNARY
255 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
258 exp : SIZEOF exp %prec UNARY
259 { write_exp_elt_opcode (UNOP_SIZEOF); }
262 /* No more explicit array operators, we treat everything in F77 as
263 a function call. The disambiguation as to whether we are
264 doing a subscript operation or a function call is done
268 { start_arglist (); }
270 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
271 write_exp_elt_longcst ((LONGEST) end_arglist ());
272 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
285 arglist : arglist ',' exp %prec ABOVE_COMMA
289 substring: exp ':' exp %prec ABOVE_COMMA
294 complexnum: exp ',' exp
298 exp : '(' complexnum ')'
299 { write_exp_elt_opcode(OP_COMPLEX); }
302 exp : '(' type ')' exp %prec UNARY
303 { write_exp_elt_opcode (UNOP_CAST);
304 write_exp_elt_type ($2);
305 write_exp_elt_opcode (UNOP_CAST); }
308 /* Binary operators in order of decreasing precedence. */
311 { write_exp_elt_opcode (BINOP_REPEAT); }
315 { write_exp_elt_opcode (BINOP_MUL); }
319 { write_exp_elt_opcode (BINOP_DIV); }
323 { write_exp_elt_opcode (BINOP_REM); }
327 { write_exp_elt_opcode (BINOP_ADD); }
331 { write_exp_elt_opcode (BINOP_SUB); }
335 { write_exp_elt_opcode (BINOP_LSH); }
339 { write_exp_elt_opcode (BINOP_RSH); }
343 { write_exp_elt_opcode (BINOP_EQUAL); }
346 exp : exp NOTEQUAL exp
347 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
351 { write_exp_elt_opcode (BINOP_LEQ); }
355 { write_exp_elt_opcode (BINOP_GEQ); }
358 exp : exp LESSTHAN exp
359 { write_exp_elt_opcode (BINOP_LESS); }
362 exp : exp GREATERTHAN exp
363 { write_exp_elt_opcode (BINOP_GTR); }
367 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
371 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
375 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
378 exp : exp BOOL_AND exp
379 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
383 exp : exp BOOL_OR exp
384 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
388 { write_exp_elt_opcode (BINOP_ASSIGN); }
391 exp : exp ASSIGN_MODIFY exp
392 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
393 write_exp_elt_opcode ($2);
394 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
398 { write_exp_elt_opcode (OP_LONG);
399 write_exp_elt_type ($1.type);
400 write_exp_elt_longcst ((LONGEST)($1.val));
401 write_exp_elt_opcode (OP_LONG); }
406 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
407 write_exp_elt_opcode (OP_LONG);
408 write_exp_elt_type (val.typed_val.type);
409 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
410 write_exp_elt_opcode (OP_LONG); }
414 { write_exp_elt_opcode (OP_DOUBLE);
415 write_exp_elt_type (builtin_type_f_real_s8);
416 write_exp_elt_dblcst ($1);
417 write_exp_elt_opcode (OP_DOUBLE); }
426 exp : SIZEOF '(' type ')' %prec UNARY
427 { write_exp_elt_opcode (OP_LONG);
428 write_exp_elt_type (builtin_type_f_integer);
430 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
431 write_exp_elt_opcode (OP_LONG); }
434 exp : BOOLEAN_LITERAL
435 { write_exp_elt_opcode (OP_BOOL);
436 write_exp_elt_longcst ((LONGEST) $1);
437 write_exp_elt_opcode (OP_BOOL);
443 write_exp_elt_opcode (OP_STRING);
444 write_exp_string ($1);
445 write_exp_elt_opcode (OP_STRING);
449 variable: name_not_typename
450 { struct symbol *sym = $1.sym;
454 if (symbol_read_needs_frame (sym))
456 if (innermost_block == 0 ||
457 contained_in (block_found,
459 innermost_block = block_found;
461 write_exp_elt_opcode (OP_VAR_VALUE);
462 /* We want to use the selected frame, not
463 another more inner frame which happens to
464 be in the same block. */
465 write_exp_elt_block (NULL);
466 write_exp_elt_sym (sym);
467 write_exp_elt_opcode (OP_VAR_VALUE);
472 struct minimal_symbol *msymbol;
473 register char *arg = copy_name ($1.stoken);
476 lookup_minimal_symbol (arg, NULL, NULL);
479 write_exp_msymbol (msymbol,
480 lookup_function_type (builtin_type_int),
483 else if (!have_full_symbols () && !have_partial_symbols ())
484 error ("No symbol table is loaded. Use the \"file\" command.");
486 error ("No symbol \"%s\" in current context.",
487 copy_name ($1.stoken));
499 /* This is where the interesting stuff happens. */
502 struct type *follow_type = $1;
503 struct type *range_type;
512 follow_type = lookup_pointer_type (follow_type);
515 follow_type = lookup_reference_type (follow_type);
518 array_size = pop_type_int ();
519 if (array_size != -1)
522 create_range_type ((struct type *) NULL,
523 builtin_type_f_integer, 0,
526 create_array_type ((struct type *) NULL,
527 follow_type, range_type);
530 follow_type = lookup_pointer_type (follow_type);
533 follow_type = lookup_function_type (follow_type);
541 { push_type (tp_pointer); $$ = 0; }
543 { push_type (tp_pointer); $$ = $2; }
545 { push_type (tp_reference); $$ = 0; }
547 { push_type (tp_reference); $$ = $2; }
551 direct_abs_decl: '(' abs_decl ')'
553 | direct_abs_decl func_mod
554 { push_type (tp_function); }
556 { push_type (tp_function); }
561 | '(' nonempty_typelist ')'
562 { free ((PTR)$2); $$ = 0; }
565 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
569 { $$ = builtin_type_f_integer; }
571 { $$ = builtin_type_f_integer_s2; }
573 { $$ = builtin_type_f_character; }
575 { $$ = builtin_type_f_logical;}
577 { $$ = builtin_type_f_logical_s2;}
579 { $$ = builtin_type_f_logical_s1;}
581 { $$ = builtin_type_f_real;}
583 { $$ = builtin_type_f_real_s8;}
585 { $$ = builtin_type_f_real_s16;}
587 { $$ = builtin_type_f_complex_s8;}
588 | COMPLEX_S16_KEYWORD
589 { $$ = builtin_type_f_complex_s16;}
590 | COMPLEX_S32_KEYWORD
591 { $$ = builtin_type_f_complex_s32;}
599 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
600 $<ivec>$[0] = 1; /* Number of types in vector */
603 | nonempty_typelist ',' type
604 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
605 $$ = (struct type **) realloc ((char *) $1, len);
606 $$[$<ivec>$[0]] = $3;
618 name_not_typename : NAME
619 /* These would be useful if name_not_typename was useful, but it is just
620 a fake for "variable", so these cause reduce/reduce conflicts because
621 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
622 =exp) or just an exp. If name_not_typename was ever used in an lvalue
623 context where only a name could occur, this might be useful.
630 /* Take care of parsing a number (anything that starts with a digit).
631 Set yylval and return the token type; update lexptr.
632 LEN is the number of characters in it. */
634 /*** Needs some error checking for the float case ***/
637 parse_number (p, len, parsed_float, putithere)
643 register LONGEST n = 0;
644 register LONGEST prevn = 0;
646 register int base = input_radix;
650 struct type *signed_type;
651 struct type *unsigned_type;
655 /* It's a float since it contains a point or an exponent. */
656 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
660 for (tmp2 = tmp; *tmp2; ++tmp2)
661 if (*tmp2 == 'd' || *tmp2 == 'D')
663 putithere->dval = atof (tmp);
668 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
704 if (len == 0 && c == 'l')
706 else if (len == 0 && c == 'u')
711 if (c >= '0' && c <= '9')
713 else if (c >= 'a' && c <= 'f')
716 return ERROR; /* Char not a digit */
718 return ERROR; /* Invalid digit in this base */
722 /* Portably test for overflow (only works for nonzero values, so make
723 a second check for zero). */
724 if ((prevn >= n) && n != 0)
725 unsigned_p=1; /* Try something unsigned */
726 /* If range checking enabled, portably test for unsigned overflow. */
727 if (RANGE_CHECK && n != 0)
729 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
730 range_error("Overflow on numeric constant.");
735 /* If the number is too big to be an int, or it's got an l suffix
736 then it's a long. Work out if this has to be a long by
737 shifting right and and seeing if anything remains, and the
738 target int size is different to the target long size.
740 In the expression below, we could have tested
741 (n >> TARGET_INT_BIT)
742 to see if it was zero,
743 but too many compilers warn about that, when ints and longs
744 are the same size. So we shift it twice, with fewer bits
745 each time, for the same result. */
747 if ((TARGET_INT_BIT != TARGET_LONG_BIT
748 && ((n >> 2) >> (TARGET_INT_BIT-2))) /* Avoid shift warning */
751 high_bit = ((ULONGEST)1) << (TARGET_LONG_BIT-1);
752 unsigned_type = builtin_type_unsigned_long;
753 signed_type = builtin_type_long;
757 high_bit = ((ULONGEST)1) << (TARGET_INT_BIT-1);
758 unsigned_type = builtin_type_unsigned_int;
759 signed_type = builtin_type_int;
762 putithere->typed_val.val = n;
764 /* If the high bit of the worked out type is set then this number
765 has to be unsigned. */
767 if (unsigned_p || (n & high_bit))
768 putithere->typed_val.type = unsigned_type;
770 putithere->typed_val.type = signed_type;
779 enum exp_opcode opcode;
782 static const struct token dot_ops[] =
784 { ".and.", BOOL_AND, BINOP_END },
785 { ".AND.", BOOL_AND, BINOP_END },
786 { ".or.", BOOL_OR, BINOP_END },
787 { ".OR.", BOOL_OR, BINOP_END },
788 { ".not.", BOOL_NOT, BINOP_END },
789 { ".NOT.", BOOL_NOT, BINOP_END },
790 { ".eq.", EQUAL, BINOP_END },
791 { ".EQ.", EQUAL, BINOP_END },
792 { ".eqv.", EQUAL, BINOP_END },
793 { ".NEQV.", NOTEQUAL, BINOP_END },
794 { ".neqv.", NOTEQUAL, BINOP_END },
795 { ".EQV.", EQUAL, BINOP_END },
796 { ".ne.", NOTEQUAL, BINOP_END },
797 { ".NE.", NOTEQUAL, BINOP_END },
798 { ".le.", LEQ, BINOP_END },
799 { ".LE.", LEQ, BINOP_END },
800 { ".ge.", GEQ, BINOP_END },
801 { ".GE.", GEQ, BINOP_END },
802 { ".gt.", GREATERTHAN, BINOP_END },
803 { ".GT.", GREATERTHAN, BINOP_END },
804 { ".lt.", LESSTHAN, BINOP_END },
805 { ".LT.", LESSTHAN, BINOP_END },
809 struct f77_boolean_val
815 static const struct f77_boolean_val boolean_values[] =
824 static const struct token f77_keywords[] =
826 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
827 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
828 { "character", CHARACTER, BINOP_END },
829 { "integer_2", INT_S2_KEYWORD, BINOP_END },
830 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
831 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
832 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
833 { "integer", INT_KEYWORD, BINOP_END },
834 { "logical", LOGICAL_KEYWORD, BINOP_END },
835 { "real_16", REAL_S16_KEYWORD, BINOP_END },
836 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
837 { "sizeof", SIZEOF, BINOP_END },
838 { "real_8", REAL_S8_KEYWORD, BINOP_END },
839 { "real", REAL_KEYWORD, BINOP_END },
843 /* Implementation of a dynamically expandable buffer for processing input
844 characters acquired through lexptr and building a value to return in
845 yylval. Ripped off from ch-exp.y */
847 static char *tempbuf; /* Current buffer contents */
848 static int tempbufsize; /* Size of allocated buffer */
849 static int tempbufindex; /* Current index into buffer */
851 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
853 #define CHECKBUF(size) \
855 if (tempbufindex + (size) >= tempbufsize) \
857 growbuf_by_size (size); \
862 /* Grow the static temp buffer if necessary, including allocating the first one
866 growbuf_by_size (count)
871 growby = max (count, GROWBY_MIN_SIZE);
872 tempbufsize += growby;
874 tempbuf = (char *) malloc (tempbufsize);
876 tempbuf = (char *) realloc (tempbuf, tempbufsize);
879 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
882 Recognize a string literal. A string literal is a nonzero sequence
883 of characters enclosed in matching single quotes, except that
884 a single character inside single quotes is a character literal, which
885 we reject as a string literal. To embed the terminator character inside
886 a string, it is simply doubled (I.E. 'this''is''one''string') */
889 match_string_literal ()
891 char *tokptr = lexptr;
893 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
896 if (*tokptr == *lexptr)
898 if (*(tokptr + 1) == *lexptr)
903 tempbuf[tempbufindex++] = *tokptr;
905 if (*tokptr == '\0' /* no terminator */
906 || tempbufindex == 0) /* no string */
910 tempbuf[tempbufindex] = '\0';
911 yylval.sval.ptr = tempbuf;
912 yylval.sval.length = tempbufindex;
914 return STRING_LITERAL;
918 /* Read one token, getting characters through lexptr. */
925 unsigned int i,token;
930 prev_lexptr = lexptr;
934 /* First of all, let us make sure we are not dealing with the
935 special tokens .true. and .false. which evaluate to 1 and 0. */
939 for (i = 0; boolean_values[i].name != NULL; i++)
941 if STREQN (tokstart, boolean_values[i].name,
942 strlen (boolean_values[i].name))
944 lexptr += strlen (boolean_values[i].name);
945 yylval.lval = boolean_values[i].value;
946 return BOOLEAN_LITERAL;
951 /* See if it is a special .foo. operator */
953 for (i = 0; dot_ops[i].operator != NULL; i++)
954 if (STREQN (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)))
956 lexptr += strlen (dot_ops[i].operator);
957 yylval.opcode = dot_ops[i].opcode;
958 return dot_ops[i].token;
961 switch (c = *tokstart)
973 token = match_string_literal ();
984 if (paren_depth == 0)
991 if (comma_terminates && paren_depth == 0)
997 /* Might be a floating point number. */
998 if (lexptr[1] < '0' || lexptr[1] > '9')
999 goto symbol; /* Nope, must be a symbol. */
1000 /* FALL THRU into number case. */
1013 /* It's a number. */
1014 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1015 register char *p = tokstart;
1016 int hex = input_radix > 10;
1018 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1023 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1031 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1032 got_dot = got_e = 1;
1033 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1034 got_dot = got_d = 1;
1035 else if (!hex && !got_dot && *p == '.')
1037 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1038 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1039 && (*p == '-' || *p == '+'))
1040 /* This is the sign of the exponent, not the end of the
1043 /* We will take any letters or digits. parse_number will
1044 complain if past the radix, or if L or U are not final. */
1045 else if ((*p < '0' || *p > '9')
1046 && ((*p < 'a' || *p > 'z')
1047 && (*p < 'A' || *p > 'Z')))
1050 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1052 if (toktype == ERROR)
1054 char *err_copy = (char *) alloca (p - tokstart + 1);
1056 memcpy (err_copy, tokstart, p - tokstart);
1057 err_copy[p - tokstart] = 0;
1058 error ("Invalid number \"%s\".", err_copy);
1089 if (!(c == '_' || c == '$'
1090 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1091 /* We must have come across a bad character (e.g. ';'). */
1092 error ("Invalid character '%c' in expression.", c);
1095 for (c = tokstart[namelen];
1096 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1097 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1098 c = tokstart[++namelen]);
1100 /* The token "if" terminates the expression and is NOT
1101 removed from the input stream. */
1103 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1108 /* Catch specific keywords. */
1110 for (i = 0; f77_keywords[i].operator != NULL; i++)
1111 if (STREQN(tokstart, f77_keywords[i].operator,
1112 strlen(f77_keywords[i].operator)))
1114 /* lexptr += strlen(f77_keywords[i].operator); */
1115 yylval.opcode = f77_keywords[i].opcode;
1116 return f77_keywords[i].token;
1119 yylval.sval.ptr = tokstart;
1120 yylval.sval.length = namelen;
1122 if (*tokstart == '$')
1124 write_dollar_variable (yylval.sval);
1128 /* Use token-type TYPENAME for symbols that happen to be defined
1129 currently as names of types; NAME for other symbols.
1130 The caller is not constrained to care about the distinction. */
1132 char *tmp = copy_name (yylval.sval);
1134 int is_a_field_of_this = 0;
1137 sym = lookup_symbol (tmp, expression_context_block,
1139 current_language->la_language == language_cplus
1140 ? &is_a_field_of_this : NULL,
1142 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1144 yylval.tsym.type = SYMBOL_TYPE (sym);
1147 if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
1150 /* Input names that aren't symbols but ARE valid hex numbers,
1151 when the input radix permits them, can be names or numbers
1152 depending on the parse. Note we support radixes > 16 here. */
1154 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1155 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1157 YYSTYPE newlval; /* Its value is ignored. */
1158 hextype = parse_number (tokstart, namelen, 0, &newlval);
1161 yylval.ssym.sym = sym;
1162 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1167 /* Any other kind of symbol */
1168 yylval.ssym.sym = sym;
1169 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1179 lexptr = prev_lexptr;
1181 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);