1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2022 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
40 /* This struct is used to pass information to routines called via
41 elf_link_hash_traverse which must return failure. */
43 struct elf_info_failed
45 struct bfd_link_info *info;
49 /* This structure is used to pass information to
50 _bfd_elf_link_find_version_dependencies. */
52 struct elf_find_verdep_info
54 /* General link information. */
55 struct bfd_link_info *info;
56 /* The number of dependencies. */
58 /* Whether we had a failure. */
62 static bool _bfd_elf_fix_symbol_flags
63 (struct elf_link_hash_entry *, struct elf_info_failed *);
66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
67 unsigned long r_symndx,
70 if (r_symndx >= cookie->locsymcount
71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
73 struct elf_link_hash_entry *h;
75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
77 while (h->root.type == bfd_link_hash_indirect
78 || h->root.type == bfd_link_hash_warning)
79 h = (struct elf_link_hash_entry *) h->root.u.i.link;
81 if ((h->root.type == bfd_link_hash_defined
82 || h->root.type == bfd_link_hash_defweak)
83 && discarded_section (h->root.u.def.section))
84 return h->root.u.def.section;
90 /* It's not a relocation against a global symbol,
91 but it could be a relocation against a local
92 symbol for a discarded section. */
94 Elf_Internal_Sym *isym;
96 /* Need to: get the symbol; get the section. */
97 isym = &cookie->locsyms[r_symndx];
98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
100 && discard ? discarded_section (isec) : 1)
106 /* Define a symbol in a dynamic linkage section. */
108 struct elf_link_hash_entry *
109 _bfd_elf_define_linkage_sym (bfd *abfd,
110 struct bfd_link_info *info,
114 struct elf_link_hash_entry *h;
115 struct bfd_link_hash_entry *bh;
116 const struct elf_backend_data *bed;
118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false);
121 /* Zap symbol defined in an as-needed lib that wasn't linked.
122 This is a symptom of a larger problem: Absolute symbols
123 defined in shared libraries can't be overridden, because we
124 lose the link to the bfd which is via the symbol section. */
125 h->root.type = bfd_link_hash_new;
131 bed = get_elf_backend_data (abfd);
132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
133 sec, 0, NULL, false, bed->collect,
136 h = (struct elf_link_hash_entry *) bh;
137 BFD_ASSERT (h != NULL);
140 h->root.linker_def = 1;
141 h->type = STT_OBJECT;
142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
145 (*bed->elf_backend_hide_symbol) (info, h, true);
150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
154 struct elf_link_hash_entry *h;
155 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
156 struct elf_link_hash_table *htab = elf_hash_table (info);
158 /* This function may be called more than once. */
159 if (htab->sgot != NULL)
162 flags = bed->dynamic_sec_flags;
164 s = bfd_make_section_anyway_with_flags (abfd,
165 (bed->rela_plts_and_copies_p
166 ? ".rela.got" : ".rel.got"),
167 (bed->dynamic_sec_flags
170 || !bfd_set_section_alignment (s, bed->s->log_file_align))
174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
176 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 if (bed->want_got_plt)
182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
184 || !bfd_set_section_alignment (s, bed->s->log_file_align))
189 /* The first bit of the global offset table is the header. */
190 s->size += bed->got_header_size;
192 if (bed->want_got_sym)
194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
195 (or .got.plt) section. We don't do this in the linker script
196 because we don't want to define the symbol if we are not creating
197 a global offset table. */
198 h = _bfd_elf_define_linkage_sym (abfd, info, s,
199 "_GLOBAL_OFFSET_TABLE_");
200 elf_hash_table (info)->hgot = h;
208 /* Create a strtab to hold the dynamic symbol names. */
210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
212 struct elf_link_hash_table *hash_table;
214 hash_table = elf_hash_table (info);
215 if (hash_table->dynobj == NULL)
217 /* We may not set dynobj, an input file holding linker created
218 dynamic sections to abfd, which may be a dynamic object with
219 its own dynamic sections. We need to find a normal input file
220 to hold linker created sections if possible. */
221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
230 && !((s = ibfd->sections) != NULL
231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
237 hash_table->dynobj = abfd;
240 if (hash_table->dynstr == NULL)
242 hash_table->dynstr = _bfd_elf_strtab_init ();
243 if (hash_table->dynstr == NULL)
249 /* Create some sections which will be filled in with dynamic linking
250 information. ABFD is an input file which requires dynamic sections
251 to be created. The dynamic sections take up virtual memory space
252 when the final executable is run, so we need to create them before
253 addresses are assigned to the output sections. We work out the
254 actual contents and size of these sections later. */
257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
261 const struct elf_backend_data *bed;
262 struct elf_link_hash_entry *h;
264 if (! is_elf_hash_table (info->hash))
267 if (elf_hash_table (info)->dynamic_sections_created)
270 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
273 abfd = elf_hash_table (info)->dynobj;
274 bed = get_elf_backend_data (abfd);
276 flags = bed->dynamic_sec_flags;
278 /* A dynamically linked executable has a .interp section, but a
279 shared library does not. */
280 if (bfd_link_executable (info) && !info->nointerp)
282 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
283 flags | SEC_READONLY);
288 /* Create sections to hold version informations. These are removed
289 if they are not needed. */
290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
291 flags | SEC_READONLY);
293 || !bfd_set_section_alignment (s, bed->s->log_file_align))
296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
297 flags | SEC_READONLY);
299 || !bfd_set_section_alignment (s, 1))
302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
303 flags | SEC_READONLY);
305 || !bfd_set_section_alignment (s, bed->s->log_file_align))
308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
309 flags | SEC_READONLY);
311 || !bfd_set_section_alignment (s, bed->s->log_file_align))
313 elf_hash_table (info)->dynsym = s;
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
316 flags | SEC_READONLY);
320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
322 || !bfd_set_section_alignment (s, bed->s->log_file_align))
325 /* The special symbol _DYNAMIC is always set to the start of the
326 .dynamic section. We could set _DYNAMIC in a linker script, but we
327 only want to define it if we are, in fact, creating a .dynamic
328 section. We don't want to define it if there is no .dynamic
329 section, since on some ELF platforms the start up code examines it
330 to decide how to initialize the process. */
331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
332 elf_hash_table (info)->hdynamic = h;
338 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
339 flags | SEC_READONLY);
341 || !bfd_set_section_alignment (s, bed->s->log_file_align))
343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
349 flags | SEC_READONLY);
351 || !bfd_set_section_alignment (s, bed->s->log_file_align))
353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
354 4 32-bit words followed by variable count of 64-bit words, then
355 variable count of 32-bit words. */
356 if (bed->s->arch_size == 64)
357 elf_section_data (s)->this_hdr.sh_entsize = 0;
359 elf_section_data (s)->this_hdr.sh_entsize = 4;
362 if (info->enable_dt_relr)
364 s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn",
365 (bed->dynamic_sec_flags
368 || !bfd_set_section_alignment (s, bed->s->log_file_align))
370 elf_hash_table (info)->srelrdyn = s;
373 /* Let the backend create the rest of the sections. This lets the
374 backend set the right flags. The backend will normally create
375 the .got and .plt sections. */
376 if (bed->elf_backend_create_dynamic_sections == NULL
377 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
380 elf_hash_table (info)->dynamic_sections_created = true;
385 /* Create dynamic sections when linking against a dynamic object. */
388 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
390 flagword flags, pltflags;
391 struct elf_link_hash_entry *h;
393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
394 struct elf_link_hash_table *htab = elf_hash_table (info);
396 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
397 .rel[a].bss sections. */
398 flags = bed->dynamic_sec_flags;
401 if (bed->plt_not_loaded)
402 /* We do not clear SEC_ALLOC here because we still want the OS to
403 allocate space for the section; it's just that there's nothing
404 to read in from the object file. */
405 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
407 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
408 if (bed->plt_readonly)
409 pltflags |= SEC_READONLY;
411 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
413 || !bfd_set_section_alignment (s, bed->plt_alignment))
417 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
419 if (bed->want_plt_sym)
421 h = _bfd_elf_define_linkage_sym (abfd, info, s,
422 "_PROCEDURE_LINKAGE_TABLE_");
423 elf_hash_table (info)->hplt = h;
428 s = bfd_make_section_anyway_with_flags (abfd,
429 (bed->rela_plts_and_copies_p
430 ? ".rela.plt" : ".rel.plt"),
431 flags | SEC_READONLY);
433 || !bfd_set_section_alignment (s, bed->s->log_file_align))
437 if (! _bfd_elf_create_got_section (abfd, info))
440 if (bed->want_dynbss)
442 /* The .dynbss section is a place to put symbols which are defined
443 by dynamic objects, are referenced by regular objects, and are
444 not functions. We must allocate space for them in the process
445 image and use a R_*_COPY reloc to tell the dynamic linker to
446 initialize them at run time. The linker script puts the .dynbss
447 section into the .bss section of the final image. */
448 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
449 SEC_ALLOC | SEC_LINKER_CREATED);
454 if (bed->want_dynrelro)
456 /* Similarly, but for symbols that were originally in read-only
457 sections. This section doesn't really need to have contents,
458 but make it like other .data.rel.ro sections. */
459 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
466 /* The .rel[a].bss section holds copy relocs. This section is not
467 normally needed. We need to create it here, though, so that the
468 linker will map it to an output section. We can't just create it
469 only if we need it, because we will not know whether we need it
470 until we have seen all the input files, and the first time the
471 main linker code calls BFD after examining all the input files
472 (size_dynamic_sections) the input sections have already been
473 mapped to the output sections. If the section turns out not to
474 be needed, we can discard it later. We will never need this
475 section when generating a shared object, since they do not use
477 if (bfd_link_executable (info))
479 s = bfd_make_section_anyway_with_flags (abfd,
480 (bed->rela_plts_and_copies_p
481 ? ".rela.bss" : ".rel.bss"),
482 flags | SEC_READONLY);
484 || !bfd_set_section_alignment (s, bed->s->log_file_align))
488 if (bed->want_dynrelro)
490 s = (bfd_make_section_anyway_with_flags
491 (abfd, (bed->rela_plts_and_copies_p
492 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
493 flags | SEC_READONLY));
495 || !bfd_set_section_alignment (s, bed->s->log_file_align))
497 htab->sreldynrelro = s;
505 /* Record a new dynamic symbol. We record the dynamic symbols as we
506 read the input files, since we need to have a list of all of them
507 before we can determine the final sizes of the output sections.
508 Note that we may actually call this function even though we are not
509 going to output any dynamic symbols; in some cases we know that a
510 symbol should be in the dynamic symbol table, but only if there is
514 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
515 struct elf_link_hash_entry *h)
517 if (h->dynindx == -1)
519 struct elf_strtab_hash *dynstr;
524 if (h->root.type == bfd_link_hash_defined
525 || h->root.type == bfd_link_hash_defweak)
527 /* An IR symbol should not be made dynamic. */
528 if (h->root.u.def.section != NULL
529 && h->root.u.def.section->owner != NULL
530 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)
534 /* XXX: The ABI draft says the linker must turn hidden and
535 internal symbols into STB_LOCAL symbols when producing the
536 DSO. However, if ld.so honors st_other in the dynamic table,
537 this would not be necessary. */
538 switch (ELF_ST_VISIBILITY (h->other))
542 if (h->root.type != bfd_link_hash_undefined
543 && h->root.type != bfd_link_hash_undefweak)
546 if (!elf_hash_table (info)->is_relocatable_executable
547 || ((h->root.type == bfd_link_hash_defined
548 || h->root.type == bfd_link_hash_defweak)
549 && h->root.u.def.section->owner != NULL
550 && h->root.u.def.section->owner->no_export)
551 || (h->root.type == bfd_link_hash_common
552 && h->root.u.c.p->section->owner != NULL
553 && h->root.u.c.p->section->owner->no_export))
561 h->dynindx = elf_hash_table (info)->dynsymcount;
562 ++elf_hash_table (info)->dynsymcount;
564 dynstr = elf_hash_table (info)->dynstr;
567 /* Create a strtab to hold the dynamic symbol names. */
568 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
573 /* We don't put any version information in the dynamic string
575 name = h->root.root.string;
576 p = strchr (name, ELF_VER_CHR);
578 /* We know that the p points into writable memory. In fact,
579 there are only a few symbols that have read-only names, being
580 those like _GLOBAL_OFFSET_TABLE_ that are created specially
581 by the backends. Most symbols will have names pointing into
582 an ELF string table read from a file, or to objalloc memory. */
585 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
590 if (indx == (size_t) -1)
592 h->dynstr_index = indx;
598 /* Mark a symbol dynamic. */
601 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
602 struct elf_link_hash_entry *h,
603 Elf_Internal_Sym *sym)
605 struct bfd_elf_dynamic_list *d = info->dynamic_list;
607 /* It may be called more than once on the same H. */
608 if(h->dynamic || bfd_link_relocatable (info))
611 if ((info->dynamic_data
612 && (h->type == STT_OBJECT
613 || h->type == STT_COMMON
615 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
616 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
619 && (*d->match) (&d->head, NULL, h->root.root.string)))
622 /* NB: If a symbol is made dynamic by --dynamic-list, it has
624 h->root.non_ir_ref_dynamic = 1;
628 /* Record an assignment to a symbol made by a linker script. We need
629 this in case some dynamic object refers to this symbol. */
632 bfd_elf_record_link_assignment (bfd *output_bfd,
633 struct bfd_link_info *info,
638 struct elf_link_hash_entry *h, *hv;
639 struct elf_link_hash_table *htab;
640 const struct elf_backend_data *bed;
642 if (!is_elf_hash_table (info->hash))
645 htab = elf_hash_table (info);
646 h = elf_link_hash_lookup (htab, name, !provide, true, false);
650 if (h->root.type == bfd_link_hash_warning)
651 h = (struct elf_link_hash_entry *) h->root.u.i.link;
653 if (h->versioned == unknown)
655 /* Set versioned if symbol version is unknown. */
656 char *version = strrchr (name, ELF_VER_CHR);
659 if (version > name && version[-1] != ELF_VER_CHR)
660 h->versioned = versioned_hidden;
662 h->versioned = versioned;
666 /* Symbols defined in a linker script but not referenced anywhere
667 else will have non_elf set. */
670 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
674 switch (h->root.type)
676 case bfd_link_hash_defined:
677 case bfd_link_hash_defweak:
678 case bfd_link_hash_common:
680 case bfd_link_hash_undefweak:
681 case bfd_link_hash_undefined:
682 /* Since we're defining the symbol, don't let it seem to have not
683 been defined. record_dynamic_symbol and size_dynamic_sections
684 may depend on this. */
685 h->root.type = bfd_link_hash_new;
686 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
687 bfd_link_repair_undef_list (&htab->root);
689 case bfd_link_hash_new:
691 case bfd_link_hash_indirect:
692 /* We had a versioned symbol in a dynamic library. We make the
693 the versioned symbol point to this one. */
694 bed = get_elf_backend_data (output_bfd);
696 while (hv->root.type == bfd_link_hash_indirect
697 || hv->root.type == bfd_link_hash_warning)
698 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
699 /* We don't need to update h->root.u since linker will set them
701 h->root.type = bfd_link_hash_undefined;
702 hv->root.type = bfd_link_hash_indirect;
703 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
704 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
711 /* If this symbol is being provided by the linker script, and it is
712 currently defined by a dynamic object, but not by a regular
713 object, then mark it as undefined so that the generic linker will
714 force the correct value. */
718 h->root.type = bfd_link_hash_undefined;
720 /* If this symbol is currently defined by a dynamic object, but not
721 by a regular object, then clear out any version information because
722 the symbol will not be associated with the dynamic object any
724 if (h->def_dynamic && !h->def_regular)
725 h->verinfo.verdef = NULL;
727 /* Make sure this symbol is not garbage collected. */
734 bed = get_elf_backend_data (output_bfd);
735 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
736 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
737 (*bed->elf_backend_hide_symbol) (info, h, true);
740 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
742 if (!bfd_link_relocatable (info)
744 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
745 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
750 || bfd_link_dll (info)
751 || elf_hash_table (info)->is_relocatable_executable)
755 if (! bfd_elf_link_record_dynamic_symbol (info, h))
758 /* If this is a weak defined symbol, and we know a corresponding
759 real symbol from the same dynamic object, make sure the real
760 symbol is also made into a dynamic symbol. */
763 struct elf_link_hash_entry *def = weakdef (h);
765 if (def->dynindx == -1
766 && !bfd_elf_link_record_dynamic_symbol (info, def))
774 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
775 success, and 2 on a failure caused by attempting to record a symbol
776 in a discarded section, eg. a discarded link-once section symbol. */
779 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
784 struct elf_link_local_dynamic_entry *entry;
785 struct elf_link_hash_table *eht;
786 struct elf_strtab_hash *dynstr;
789 Elf_External_Sym_Shndx eshndx;
790 char esym[sizeof (Elf64_External_Sym)];
792 if (! is_elf_hash_table (info->hash))
795 /* See if the entry exists already. */
796 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
797 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
800 amt = sizeof (*entry);
801 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
805 /* Go find the symbol, so that we can find it's name. */
806 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
807 1, input_indx, &entry->isym, esym, &eshndx))
809 bfd_release (input_bfd, entry);
813 if (entry->isym.st_shndx != SHN_UNDEF
814 && entry->isym.st_shndx < SHN_LORESERVE)
818 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
819 if (s == NULL || bfd_is_abs_section (s->output_section))
821 /* We can still bfd_release here as nothing has done another
822 bfd_alloc. We can't do this later in this function. */
823 bfd_release (input_bfd, entry);
828 name = (bfd_elf_string_from_elf_section
829 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
830 entry->isym.st_name));
832 dynstr = elf_hash_table (info)->dynstr;
835 /* Create a strtab to hold the dynamic symbol names. */
836 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
841 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false);
842 if (dynstr_index == (size_t) -1)
844 entry->isym.st_name = dynstr_index;
846 eht = elf_hash_table (info);
848 entry->next = eht->dynlocal;
849 eht->dynlocal = entry;
850 entry->input_bfd = input_bfd;
851 entry->input_indx = input_indx;
854 /* Whatever binding the symbol had before, it's now local. */
856 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
858 /* The dynindx will be set at the end of size_dynamic_sections. */
863 /* Return the dynindex of a local dynamic symbol. */
866 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
870 struct elf_link_local_dynamic_entry *e;
872 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
873 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
878 /* This function is used to renumber the dynamic symbols, if some of
879 them are removed because they are marked as local. This is called
880 via elf_link_hash_traverse. */
883 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
886 size_t *count = (size_t *) data;
891 if (h->dynindx != -1)
892 h->dynindx = ++(*count);
898 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
899 STB_LOCAL binding. */
902 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
905 size_t *count = (size_t *) data;
907 if (!h->forced_local)
910 if (h->dynindx != -1)
911 h->dynindx = ++(*count);
916 /* Return true if the dynamic symbol for a given section should be
917 omitted when creating a shared library. */
919 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info,
923 struct elf_link_hash_table *htab;
926 switch (elf_section_data (p)->this_hdr.sh_type)
930 /* If sh_type is yet undecided, assume it could be
931 SHT_PROGBITS/SHT_NOBITS. */
933 htab = elf_hash_table (info);
934 if (htab->text_index_section != NULL)
935 return p != htab->text_index_section && p != htab->data_index_section;
937 return (htab->dynobj != NULL
938 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
939 && ip->output_section == p);
941 /* There shouldn't be section relative relocations
942 against any other section. */
949 _bfd_elf_omit_section_dynsym_all
950 (bfd *output_bfd ATTRIBUTE_UNUSED,
951 struct bfd_link_info *info ATTRIBUTE_UNUSED,
952 asection *p ATTRIBUTE_UNUSED)
957 /* Assign dynsym indices. In a shared library we generate a section
958 symbol for each output section, which come first. Next come symbols
959 which have been forced to local binding. Then all of the back-end
960 allocated local dynamic syms, followed by the rest of the global
961 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
962 (This prevents the early call before elf_backend_init_index_section
963 and strip_excluded_output_sections setting dynindx for sections
964 that are stripped.) */
967 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
968 struct bfd_link_info *info,
969 unsigned long *section_sym_count)
971 unsigned long dynsymcount = 0;
972 bool do_sec = section_sym_count != NULL;
974 if (bfd_link_pic (info)
975 || elf_hash_table (info)->is_relocatable_executable)
977 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
979 for (p = output_bfd->sections; p ; p = p->next)
980 if ((p->flags & SEC_EXCLUDE) == 0
981 && (p->flags & SEC_ALLOC) != 0
982 && elf_hash_table (info)->dynamic_relocs
983 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
987 elf_section_data (p)->dynindx = dynsymcount;
990 elf_section_data (p)->dynindx = 0;
993 *section_sym_count = dynsymcount;
995 elf_link_hash_traverse (elf_hash_table (info),
996 elf_link_renumber_local_hash_table_dynsyms,
999 if (elf_hash_table (info)->dynlocal)
1001 struct elf_link_local_dynamic_entry *p;
1002 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
1003 p->dynindx = ++dynsymcount;
1005 elf_hash_table (info)->local_dynsymcount = dynsymcount;
1007 elf_link_hash_traverse (elf_hash_table (info),
1008 elf_link_renumber_hash_table_dynsyms,
1011 /* There is an unused NULL entry at the head of the table which we
1012 must account for in our count even if the table is empty since it
1013 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
1014 .dynamic section. */
1017 elf_hash_table (info)->dynsymcount = dynsymcount;
1021 /* Merge st_other field. */
1024 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
1025 unsigned int st_other, asection *sec,
1026 bool definition, bool dynamic)
1028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1030 /* If st_other has a processor-specific meaning, specific
1031 code might be needed here. */
1032 if (bed->elf_backend_merge_symbol_attribute)
1033 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition,
1038 unsigned symvis = ELF_ST_VISIBILITY (st_other);
1039 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1041 /* Keep the most constraining visibility. Leave the remainder
1042 of the st_other field to elf_backend_merge_symbol_attribute. */
1043 if (symvis - 1 < hvis - 1)
1044 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1047 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT
1048 && (sec->flags & SEC_READONLY) == 0)
1049 h->protected_def = 1;
1052 /* This function is called when we want to merge a new symbol with an
1053 existing symbol. It handles the various cases which arise when we
1054 find a definition in a dynamic object, or when there is already a
1055 definition in a dynamic object. The new symbol is described by
1056 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1057 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1058 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1059 of an old common symbol. We set OVERRIDE if the old symbol is
1060 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1061 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1062 to change. By OK to change, we mean that we shouldn't warn if the
1063 type or size does change. */
1066 _bfd_elf_merge_symbol (bfd *abfd,
1067 struct bfd_link_info *info,
1069 Elf_Internal_Sym *sym,
1072 struct elf_link_hash_entry **sym_hash,
1075 unsigned int *pold_alignment,
1078 bool *type_change_ok,
1079 bool *size_change_ok,
1082 asection *sec, *oldsec;
1083 struct elf_link_hash_entry *h;
1084 struct elf_link_hash_entry *hi;
1085 struct elf_link_hash_entry *flip;
1088 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1089 bool newweak, oldweak, newfunc, oldfunc;
1090 const struct elf_backend_data *bed;
1092 bool default_sym = *matched;
1093 struct elf_link_hash_table *htab;
1099 bind = ELF_ST_BIND (sym->st_info);
1101 if (! bfd_is_und_section (sec))
1102 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
1104 h = ((struct elf_link_hash_entry *)
1105 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
1110 bed = get_elf_backend_data (abfd);
1112 /* NEW_VERSION is the symbol version of the new symbol. */
1113 if (h->versioned != unversioned)
1115 /* Symbol version is unknown or versioned. */
1116 new_version = strrchr (name, ELF_VER_CHR);
1119 if (h->versioned == unknown)
1121 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1122 h->versioned = versioned_hidden;
1124 h->versioned = versioned;
1127 if (new_version[0] == '\0')
1131 h->versioned = unversioned;
1136 /* For merging, we only care about real symbols. But we need to make
1137 sure that indirect symbol dynamic flags are updated. */
1139 while (h->root.type == bfd_link_hash_indirect
1140 || h->root.type == bfd_link_hash_warning)
1141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1145 if (hi == h || h->root.type == bfd_link_hash_new)
1149 /* OLD_HIDDEN is true if the existing symbol is only visible
1150 to the symbol with the same symbol version. NEW_HIDDEN is
1151 true if the new symbol is only visible to the symbol with
1152 the same symbol version. */
1153 bool old_hidden = h->versioned == versioned_hidden;
1154 bool new_hidden = hi->versioned == versioned_hidden;
1155 if (!old_hidden && !new_hidden)
1156 /* The new symbol matches the existing symbol if both
1161 /* OLD_VERSION is the symbol version of the existing
1165 if (h->versioned >= versioned)
1166 old_version = strrchr (h->root.root.string,
1171 /* The new symbol matches the existing symbol if they
1172 have the same symbol version. */
1173 *matched = (old_version == new_version
1174 || (old_version != NULL
1175 && new_version != NULL
1176 && strcmp (old_version, new_version) == 0));
1181 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1186 switch (h->root.type)
1191 case bfd_link_hash_undefined:
1192 case bfd_link_hash_undefweak:
1193 oldbfd = h->root.u.undef.abfd;
1196 case bfd_link_hash_defined:
1197 case bfd_link_hash_defweak:
1198 oldbfd = h->root.u.def.section->owner;
1199 oldsec = h->root.u.def.section;
1202 case bfd_link_hash_common:
1203 oldbfd = h->root.u.c.p->section->owner;
1204 oldsec = h->root.u.c.p->section;
1206 *pold_alignment = h->root.u.c.p->alignment_power;
1209 if (poldbfd && *poldbfd == NULL)
1212 /* Differentiate strong and weak symbols. */
1213 newweak = bind == STB_WEAK;
1214 oldweak = (h->root.type == bfd_link_hash_defweak
1215 || h->root.type == bfd_link_hash_undefweak);
1217 *pold_weak = oldweak;
1219 /* We have to check it for every instance since the first few may be
1220 references and not all compilers emit symbol type for undefined
1222 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1224 htab = elf_hash_table (info);
1226 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1227 respectively, is from a dynamic object. */
1229 newdyn = (abfd->flags & DYNAMIC) != 0;
1231 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1232 syms and defined syms in dynamic libraries respectively.
1233 ref_dynamic on the other hand can be set for a symbol defined in
1234 a dynamic library, and def_dynamic may not be set; When the
1235 definition in a dynamic lib is overridden by a definition in the
1236 executable use of the symbol in the dynamic lib becomes a
1237 reference to the executable symbol. */
1240 if (bfd_is_und_section (sec))
1242 if (bind != STB_WEAK)
1244 h->ref_dynamic_nonweak = 1;
1245 hi->ref_dynamic_nonweak = 1;
1250 /* Update the existing symbol only if they match. */
1253 hi->dynamic_def = 1;
1257 /* If we just created the symbol, mark it as being an ELF symbol.
1258 Other than that, there is nothing to do--there is no merge issue
1259 with a newly defined symbol--so we just return. */
1261 if (h->root.type == bfd_link_hash_new)
1267 /* In cases involving weak versioned symbols, we may wind up trying
1268 to merge a symbol with itself. Catch that here, to avoid the
1269 confusion that results if we try to override a symbol with
1270 itself. The additional tests catch cases like
1271 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1272 dynamic object, which we do want to handle here. */
1274 && (newweak || oldweak)
1275 && ((abfd->flags & DYNAMIC) == 0
1276 || !h->def_regular))
1281 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1282 else if (oldsec != NULL)
1284 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1285 indices used by MIPS ELF. */
1286 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1289 /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */
1290 if (!htab->handling_dt_needed
1292 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN))
1294 if (newdyn != olddyn)
1296 /* Handle a case where plugin_notice won't be called and thus
1297 won't set the non_ir_ref flags on the first pass over
1299 h->root.non_ir_ref_dynamic = true;
1300 hi->root.non_ir_ref_dynamic = true;
1302 else if ((oldbfd->flags & BFD_PLUGIN) != 0
1303 && hi->root.type == bfd_link_hash_indirect)
1305 /* Change indirect symbol from IR to undefined. */
1306 hi->root.type = bfd_link_hash_undefined;
1307 hi->root.u.undef.abfd = oldbfd;
1311 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1312 respectively, appear to be a definition rather than reference. */
1314 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1316 olddef = (h->root.type != bfd_link_hash_undefined
1317 && h->root.type != bfd_link_hash_undefweak
1318 && h->root.type != bfd_link_hash_common);
1320 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1321 respectively, appear to be a function. */
1323 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1324 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1326 oldfunc = (h->type != STT_NOTYPE
1327 && bed->is_function_type (h->type));
1329 if (!(newfunc && oldfunc)
1330 && ELF_ST_TYPE (sym->st_info) != h->type
1331 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1332 && h->type != STT_NOTYPE
1333 && (newdef || bfd_is_com_section (sec))
1334 && (olddef || h->root.type == bfd_link_hash_common))
1336 /* If creating a default indirect symbol ("foo" or "foo@") from
1337 a dynamic versioned definition ("foo@@") skip doing so if
1338 there is an existing regular definition with a different
1339 type. We don't want, for example, a "time" variable in the
1340 executable overriding a "time" function in a shared library. */
1348 /* When adding a symbol from a regular object file after we have
1349 created indirect symbols, undo the indirection and any
1356 (*bed->elf_backend_hide_symbol) (info, h, true);
1357 h->forced_local = 0;
1361 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1363 h->root.type = bfd_link_hash_undefined;
1364 h->root.u.undef.abfd = abfd;
1368 h->root.type = bfd_link_hash_new;
1369 h->root.u.undef.abfd = NULL;
1375 /* Check TLS symbols. We don't check undefined symbols introduced
1376 by "ld -u" which have no type (and oldbfd NULL), and we don't
1377 check symbols from plugins because they also have no type. */
1379 && (oldbfd->flags & BFD_PLUGIN) == 0
1380 && (abfd->flags & BFD_PLUGIN) == 0
1381 && ELF_ST_TYPE (sym->st_info) != h->type
1382 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1386 asection *ntsec, *tsec;
1388 if (h->type == STT_TLS)
1409 /* xgettext:c-format */
1410 (_("%s: TLS definition in %pB section %pA "
1411 "mismatches non-TLS definition in %pB section %pA"),
1412 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1413 else if (!tdef && !ntdef)
1415 /* xgettext:c-format */
1416 (_("%s: TLS reference in %pB "
1417 "mismatches non-TLS reference in %pB"),
1418 h->root.root.string, tbfd, ntbfd);
1421 /* xgettext:c-format */
1422 (_("%s: TLS definition in %pB section %pA "
1423 "mismatches non-TLS reference in %pB"),
1424 h->root.root.string, tbfd, tsec, ntbfd);
1427 /* xgettext:c-format */
1428 (_("%s: TLS reference in %pB "
1429 "mismatches non-TLS definition in %pB section %pA"),
1430 h->root.root.string, tbfd, ntbfd, ntsec);
1432 bfd_set_error (bfd_error_bad_value);
1436 /* If the old symbol has non-default visibility, we ignore the new
1437 definition from a dynamic object. */
1439 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1440 && !bfd_is_und_section (sec))
1443 /* Make sure this symbol is dynamic. */
1445 hi->ref_dynamic = 1;
1446 /* A protected symbol has external availability. Make sure it is
1447 recorded as dynamic.
1449 FIXME: Should we check type and size for protected symbol? */
1450 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1451 return bfd_elf_link_record_dynamic_symbol (info, h);
1456 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1459 /* If the new symbol with non-default visibility comes from a
1460 relocatable file and the old definition comes from a dynamic
1461 object, we remove the old definition. */
1462 if (hi->root.type == bfd_link_hash_indirect)
1464 /* Handle the case where the old dynamic definition is
1465 default versioned. We need to copy the symbol info from
1466 the symbol with default version to the normal one if it
1467 was referenced before. */
1470 hi->root.type = h->root.type;
1471 h->root.type = bfd_link_hash_indirect;
1472 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1474 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1475 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1477 /* If the new symbol is hidden or internal, completely undo
1478 any dynamic link state. */
1479 (*bed->elf_backend_hide_symbol) (info, h, true);
1480 h->forced_local = 0;
1487 /* FIXME: Should we check type and size for protected symbol? */
1497 /* If the old symbol was undefined before, then it will still be
1498 on the undefs list. If the new symbol is undefined or
1499 common, we can't make it bfd_link_hash_new here, because new
1500 undefined or common symbols will be added to the undefs list
1501 by _bfd_generic_link_add_one_symbol. Symbols may not be
1502 added twice to the undefs list. Also, if the new symbol is
1503 undefweak then we don't want to lose the strong undef. */
1504 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1506 h->root.type = bfd_link_hash_undefined;
1507 h->root.u.undef.abfd = abfd;
1511 h->root.type = bfd_link_hash_new;
1512 h->root.u.undef.abfd = NULL;
1515 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1517 /* If the new symbol is hidden or internal, completely undo
1518 any dynamic link state. */
1519 (*bed->elf_backend_hide_symbol) (info, h, true);
1520 h->forced_local = 0;
1526 /* FIXME: Should we check type and size for protected symbol? */
1532 /* If a new weak symbol definition comes from a regular file and the
1533 old symbol comes from a dynamic library, we treat the new one as
1534 strong. Similarly, an old weak symbol definition from a regular
1535 file is treated as strong when the new symbol comes from a dynamic
1536 library. Further, an old weak symbol from a dynamic library is
1537 treated as strong if the new symbol is from a dynamic library.
1538 This reflects the way glibc's ld.so works.
1540 Also allow a weak symbol to override a linker script symbol
1541 defined by an early pass over the script. This is done so the
1542 linker knows the symbol is defined in an object file, for the
1543 DEFINED script function.
1545 Do this before setting *type_change_ok or *size_change_ok so that
1546 we warn properly when dynamic library symbols are overridden. */
1548 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1550 if (olddef && newdyn)
1553 /* Allow changes between different types of function symbol. */
1554 if (newfunc && oldfunc)
1555 *type_change_ok = true;
1557 /* It's OK to change the type if either the existing symbol or the
1558 new symbol is weak. A type change is also OK if the old symbol
1559 is undefined and the new symbol is defined. */
1564 && h->root.type == bfd_link_hash_undefined))
1565 *type_change_ok = true;
1567 /* It's OK to change the size if either the existing symbol or the
1568 new symbol is weak, or if the old symbol is undefined. */
1571 || h->root.type == bfd_link_hash_undefined)
1572 *size_change_ok = true;
1574 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1575 symbol, respectively, appears to be a common symbol in a dynamic
1576 object. If a symbol appears in an uninitialized section, and is
1577 not weak, and is not a function, then it may be a common symbol
1578 which was resolved when the dynamic object was created. We want
1579 to treat such symbols specially, because they raise special
1580 considerations when setting the symbol size: if the symbol
1581 appears as a common symbol in a regular object, and the size in
1582 the regular object is larger, we must make sure that we use the
1583 larger size. This problematic case can always be avoided in C,
1584 but it must be handled correctly when using Fortran shared
1587 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1588 likewise for OLDDYNCOMMON and OLDDEF.
1590 Note that this test is just a heuristic, and that it is quite
1591 possible to have an uninitialized symbol in a shared object which
1592 is really a definition, rather than a common symbol. This could
1593 lead to some minor confusion when the symbol really is a common
1594 symbol in some regular object. However, I think it will be
1600 && (sec->flags & SEC_ALLOC) != 0
1601 && (sec->flags & SEC_LOAD) == 0
1604 newdyncommon = true;
1606 newdyncommon = false;
1610 && h->root.type == bfd_link_hash_defined
1612 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1613 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1616 olddyncommon = true;
1618 olddyncommon = false;
1620 /* We now know everything about the old and new symbols. We ask the
1621 backend to check if we can merge them. */
1622 if (bed->merge_symbol != NULL)
1624 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1629 /* There are multiple definitions of a normal symbol. Skip the
1630 default symbol as well as definition from an IR object. */
1631 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1632 && !default_sym && h->def_regular
1634 && (oldbfd->flags & BFD_PLUGIN) != 0
1635 && (abfd->flags & BFD_PLUGIN) == 0))
1637 /* Handle a multiple definition. */
1638 (*info->callbacks->multiple_definition) (info, &h->root,
1639 abfd, sec, *pvalue);
1644 /* If both the old and the new symbols look like common symbols in a
1645 dynamic object, set the size of the symbol to the larger of the
1650 && sym->st_size != h->size)
1652 /* Since we think we have two common symbols, issue a multiple
1653 common warning if desired. Note that we only warn if the
1654 size is different. If the size is the same, we simply let
1655 the old symbol override the new one as normally happens with
1656 symbols defined in dynamic objects. */
1658 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1659 bfd_link_hash_common, sym->st_size);
1660 if (sym->st_size > h->size)
1661 h->size = sym->st_size;
1663 *size_change_ok = true;
1666 /* If we are looking at a dynamic object, and we have found a
1667 definition, we need to see if the symbol was already defined by
1668 some other object. If so, we want to use the existing
1669 definition, and we do not want to report a multiple symbol
1670 definition error; we do this by clobbering *PSEC to be
1671 bfd_und_section_ptr.
1673 We treat a common symbol as a definition if the symbol in the
1674 shared library is a function, since common symbols always
1675 represent variables; this can cause confusion in principle, but
1676 any such confusion would seem to indicate an erroneous program or
1677 shared library. We also permit a common symbol in a regular
1678 object to override a weak symbol in a shared object. */
1683 || (h->root.type == bfd_link_hash_common
1684 && (newweak || newfunc))))
1688 newdyncommon = false;
1690 *psec = sec = bfd_und_section_ptr;
1691 *size_change_ok = true;
1693 /* If we get here when the old symbol is a common symbol, then
1694 we are explicitly letting it override a weak symbol or
1695 function in a dynamic object, and we don't want to warn about
1696 a type change. If the old symbol is a defined symbol, a type
1697 change warning may still be appropriate. */
1699 if (h->root.type == bfd_link_hash_common)
1700 *type_change_ok = true;
1703 /* Handle the special case of an old common symbol merging with a
1704 new symbol which looks like a common symbol in a shared object.
1705 We change *PSEC and *PVALUE to make the new symbol look like a
1706 common symbol, and let _bfd_generic_link_add_one_symbol do the
1710 && h->root.type == bfd_link_hash_common)
1714 newdyncommon = false;
1715 *pvalue = sym->st_size;
1716 *psec = sec = bed->common_section (oldsec);
1717 *size_change_ok = true;
1720 /* Skip weak definitions of symbols that are already defined. */
1721 if (newdef && olddef && newweak)
1723 /* Don't skip new non-IR weak syms. */
1724 if (!(oldbfd != NULL
1725 && (oldbfd->flags & BFD_PLUGIN) != 0
1726 && (abfd->flags & BFD_PLUGIN) == 0))
1732 /* Merge st_other. If the symbol already has a dynamic index,
1733 but visibility says it should not be visible, turn it into a
1735 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn);
1736 if (h->dynindx != -1)
1737 switch (ELF_ST_VISIBILITY (h->other))
1741 (*bed->elf_backend_hide_symbol) (info, h, true);
1746 /* If the old symbol is from a dynamic object, and the new symbol is
1747 a definition which is not from a dynamic object, then the new
1748 symbol overrides the old symbol. Symbols from regular files
1749 always take precedence over symbols from dynamic objects, even if
1750 they are defined after the dynamic object in the link.
1752 As above, we again permit a common symbol in a regular object to
1753 override a definition in a shared object if the shared object
1754 symbol is a function or is weak. */
1759 || (bfd_is_com_section (sec)
1760 && (oldweak || oldfunc)))
1765 /* Change the hash table entry to undefined, and let
1766 _bfd_generic_link_add_one_symbol do the right thing with the
1769 h->root.type = bfd_link_hash_undefined;
1770 h->root.u.undef.abfd = h->root.u.def.section->owner;
1771 *size_change_ok = true;
1774 olddyncommon = false;
1776 /* We again permit a type change when a common symbol may be
1777 overriding a function. */
1779 if (bfd_is_com_section (sec))
1783 /* If a common symbol overrides a function, make sure
1784 that it isn't defined dynamically nor has type
1787 h->type = STT_NOTYPE;
1789 *type_change_ok = true;
1792 if (hi->root.type == bfd_link_hash_indirect)
1795 /* This union may have been set to be non-NULL when this symbol
1796 was seen in a dynamic object. We must force the union to be
1797 NULL, so that it is correct for a regular symbol. */
1798 h->verinfo.vertree = NULL;
1801 /* Handle the special case of a new common symbol merging with an
1802 old symbol that looks like it might be a common symbol defined in
1803 a shared object. Note that we have already handled the case in
1804 which a new common symbol should simply override the definition
1805 in the shared library. */
1808 && bfd_is_com_section (sec)
1811 /* It would be best if we could set the hash table entry to a
1812 common symbol, but we don't know what to use for the section
1813 or the alignment. */
1814 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1815 bfd_link_hash_common, sym->st_size);
1817 /* If the presumed common symbol in the dynamic object is
1818 larger, pretend that the new symbol has its size. */
1820 if (h->size > *pvalue)
1823 /* We need to remember the alignment required by the symbol
1824 in the dynamic object. */
1825 BFD_ASSERT (pold_alignment);
1826 *pold_alignment = h->root.u.def.section->alignment_power;
1829 olddyncommon = false;
1831 h->root.type = bfd_link_hash_undefined;
1832 h->root.u.undef.abfd = h->root.u.def.section->owner;
1834 *size_change_ok = true;
1835 *type_change_ok = true;
1837 if (hi->root.type == bfd_link_hash_indirect)
1840 h->verinfo.vertree = NULL;
1845 /* Handle the case where we had a versioned symbol in a dynamic
1846 library and now find a definition in a normal object. In this
1847 case, we make the versioned symbol point to the normal one. */
1848 flip->root.type = h->root.type;
1849 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1850 h->root.type = bfd_link_hash_indirect;
1851 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1852 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1856 flip->ref_dynamic = 1;
1863 /* This function is called to create an indirect symbol from the
1864 default for the symbol with the default version if needed. The
1865 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1866 set DYNSYM if the new indirect symbol is dynamic. */
1869 _bfd_elf_add_default_symbol (bfd *abfd,
1870 struct bfd_link_info *info,
1871 struct elf_link_hash_entry *h,
1873 Elf_Internal_Sym *sym,
1879 bool type_change_ok;
1880 bool size_change_ok;
1883 struct elf_link_hash_entry *hi;
1884 struct bfd_link_hash_entry *bh;
1885 const struct elf_backend_data *bed;
1890 size_t len, shortlen;
1894 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1897 /* If this symbol has a version, and it is the default version, we
1898 create an indirect symbol from the default name to the fully
1899 decorated name. This will cause external references which do not
1900 specify a version to be bound to this version of the symbol. */
1901 p = strchr (name, ELF_VER_CHR);
1902 if (h->versioned == unknown)
1906 h->versioned = unversioned;
1911 if (p[1] != ELF_VER_CHR)
1913 h->versioned = versioned_hidden;
1917 h->versioned = versioned;
1922 /* PR ld/19073: We may see an unversioned definition after the
1928 bed = get_elf_backend_data (abfd);
1929 collect = bed->collect;
1930 dynamic = (abfd->flags & DYNAMIC) != 0;
1932 shortlen = p - name;
1933 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1934 if (shortname == NULL)
1936 memcpy (shortname, name, shortlen);
1937 shortname[shortlen] = '\0';
1939 /* We are going to create a new symbol. Merge it with any existing
1940 symbol with this name. For the purposes of the merge, act as
1941 though we were defining the symbol we just defined, although we
1942 actually going to define an indirect symbol. */
1943 type_change_ok = false;
1944 size_change_ok = false;
1947 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1948 &hi, poldbfd, NULL, NULL, &skip, &override,
1949 &type_change_ok, &size_change_ok, &matched))
1955 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1957 /* If the undecorated symbol will have a version added by a
1958 script different to H, then don't indirect to/from the
1959 undecorated symbol. This isn't ideal because we may not yet
1960 have seen symbol versions, if given by a script on the
1961 command line rather than via --version-script. */
1962 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1967 = bfd_find_version_for_sym (info->version_info,
1968 hi->root.root.string, &hide);
1969 if (hi->verinfo.vertree != NULL && hide)
1971 (*bed->elf_backend_hide_symbol) (info, hi, true);
1975 if (hi->verinfo.vertree != NULL
1976 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1982 /* Add the default symbol if not performing a relocatable link. */
1983 if (! bfd_link_relocatable (info))
1986 if (bh->type == bfd_link_hash_defined
1987 && bh->u.def.section->owner != NULL
1988 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1990 /* Mark the previous definition from IR object as
1991 undefined so that the generic linker will override
1993 bh->type = bfd_link_hash_undefined;
1994 bh->u.undef.abfd = bh->u.def.section->owner;
1996 if (! (_bfd_generic_link_add_one_symbol
1997 (info, abfd, shortname, BSF_INDIRECT,
1998 bfd_ind_section_ptr,
1999 0, name, false, collect, &bh)))
2001 hi = (struct elf_link_hash_entry *) bh;
2006 /* In this case the symbol named SHORTNAME is overriding the
2007 indirect symbol we want to add. We were planning on making
2008 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
2009 is the name without a version. NAME is the fully versioned
2010 name, and it is the default version.
2012 Overriding means that we already saw a definition for the
2013 symbol SHORTNAME in a regular object, and it is overriding
2014 the symbol defined in the dynamic object.
2016 When this happens, we actually want to change NAME, the
2017 symbol we just added, to refer to SHORTNAME. This will cause
2018 references to NAME in the shared object to become references
2019 to SHORTNAME in the regular object. This is what we expect
2020 when we override a function in a shared object: that the
2021 references in the shared object will be mapped to the
2022 definition in the regular object. */
2024 while (hi->root.type == bfd_link_hash_indirect
2025 || hi->root.type == bfd_link_hash_warning)
2026 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2028 h->root.type = bfd_link_hash_indirect;
2029 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
2033 hi->ref_dynamic = 1;
2037 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
2042 /* Now set HI to H, so that the following code will set the
2043 other fields correctly. */
2047 /* Check if HI is a warning symbol. */
2048 if (hi->root.type == bfd_link_hash_warning)
2049 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2051 /* If there is a duplicate definition somewhere, then HI may not
2052 point to an indirect symbol. We will have reported an error to
2053 the user in that case. */
2055 if (hi->root.type == bfd_link_hash_indirect)
2057 struct elf_link_hash_entry *ht;
2059 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2060 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2062 /* If we first saw a reference to SHORTNAME with non-default
2063 visibility, merge that visibility to the @@VER symbol. */
2064 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic);
2066 /* A reference to the SHORTNAME symbol from a dynamic library
2067 will be satisfied by the versioned symbol at runtime. In
2068 effect, we have a reference to the versioned symbol. */
2069 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2070 hi->dynamic_def |= ht->dynamic_def;
2072 /* See if the new flags lead us to realize that the symbol must
2078 if (! bfd_link_executable (info)
2085 if (hi->ref_regular)
2091 /* We also need to define an indirection from the nondefault version
2095 len = strlen (name);
2096 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2097 if (shortname == NULL)
2099 memcpy (shortname, name, shortlen);
2100 memcpy (shortname + shortlen, p + 1, len - shortlen);
2102 /* Once again, merge with any existing symbol. */
2103 type_change_ok = false;
2104 size_change_ok = false;
2106 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2107 &hi, poldbfd, NULL, NULL, &skip, &override,
2108 &type_change_ok, &size_change_ok, &matched))
2114 && h->root.type == bfd_link_hash_defweak
2115 && hi->root.type == bfd_link_hash_defined)
2117 /* We are handling a weak sym@@ver and attempting to define
2118 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the
2119 new weak sym@ver because there is already a strong sym@ver.
2120 However, sym@ver and sym@@ver are really the same symbol.
2121 The existing strong sym@ver ought to override sym@@ver. */
2122 h->root.type = bfd_link_hash_defined;
2123 h->root.u.def.section = hi->root.u.def.section;
2124 h->root.u.def.value = hi->root.u.def.value;
2125 hi->root.type = bfd_link_hash_indirect;
2126 hi->root.u.i.link = &h->root;
2133 /* Here SHORTNAME is a versioned name, so we don't expect to see
2134 the type of override we do in the case above unless it is
2135 overridden by a versioned definition. */
2136 if (hi->root.type != bfd_link_hash_defined
2137 && hi->root.type != bfd_link_hash_defweak)
2139 /* xgettext:c-format */
2140 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2147 if (! (_bfd_generic_link_add_one_symbol
2148 (info, abfd, shortname, BSF_INDIRECT,
2149 bfd_ind_section_ptr, 0, name, false, collect, &bh)))
2151 hi = (struct elf_link_hash_entry *) bh;
2154 /* If there is a duplicate definition somewhere, then HI may not
2155 point to an indirect symbol. We will have reported an error
2156 to the user in that case. */
2157 if (hi->root.type == bfd_link_hash_indirect)
2159 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2160 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2161 hi->dynamic_def |= h->dynamic_def;
2163 /* If we first saw a reference to @VER symbol with
2164 non-default visibility, merge that visibility to the
2166 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic);
2168 /* See if the new flags lead us to realize that the symbol
2174 if (! bfd_link_executable (info)
2180 if (hi->ref_regular)
2189 /* This routine is used to export all defined symbols into the dynamic
2190 symbol table. It is called via elf_link_hash_traverse. */
2193 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2195 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2197 /* Ignore indirect symbols. These are added by the versioning code. */
2198 if (h->root.type == bfd_link_hash_indirect)
2201 /* Ignore this if we won't export it. */
2202 if (!eif->info->export_dynamic && !h->dynamic)
2205 if (h->dynindx == -1
2206 && (h->def_regular || h->ref_regular)
2207 && ! bfd_hide_sym_by_version (eif->info->version_info,
2208 h->root.root.string))
2210 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2220 /* Return true if GLIBC_ABI_DT_RELR is added to the list of version
2221 dependencies successfully. GLIBC_ABI_DT_RELR will be put into the
2222 .gnu.version_r section. */
2225 elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo)
2227 bfd *glibc_bfd = NULL;
2228 Elf_Internal_Verneed *t;
2229 Elf_Internal_Vernaux *a;
2231 const char *relr = "GLIBC_ABI_DT_RELR";
2233 /* See if we already know about GLIBC_PRIVATE_DT_RELR. */
2234 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2238 const char *soname = bfd_elf_get_dt_soname (t->vn_bfd);
2239 /* Skip the shared library if it isn't libc.so. */
2240 if (!soname || !startswith (soname, "libc.so."))
2243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2245 /* Return if GLIBC_PRIVATE_DT_RELR dependency has been
2247 if (a->vna_nodename == relr
2248 || strcmp (a->vna_nodename, relr) == 0)
2251 /* Check if libc.so provides GLIBC_2.XX version. */
2252 if (!glibc_bfd && startswith (a->vna_nodename, "GLIBC_2."))
2253 glibc_bfd = t->vn_bfd;
2259 /* Skip if it isn't linked against glibc. */
2260 if (glibc_bfd == NULL)
2263 /* This is a new version. Add it to tree we are building. */
2267 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd,
2271 rinfo->failed = true;
2275 t->vn_bfd = glibc_bfd;
2276 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2277 elf_tdata (rinfo->info->output_bfd)->verref = t;
2281 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2284 rinfo->failed = true;
2288 a->vna_nodename = relr;
2290 a->vna_nextptr = t->vn_auxptr;
2291 a->vna_other = rinfo->vers + 1;
2299 /* Look through the symbols which are defined in other shared
2300 libraries and referenced here. Update the list of version
2301 dependencies. This will be put into the .gnu.version_r section.
2302 This function is called via elf_link_hash_traverse. */
2305 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2308 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2309 Elf_Internal_Verneed *t;
2310 Elf_Internal_Vernaux *a;
2313 /* We only care about symbols defined in shared objects with version
2318 || h->verinfo.verdef == NULL
2319 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2320 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2323 /* See if we already know about this version. */
2324 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2328 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2332 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2338 /* This is a new version. Add it to tree we are building. */
2343 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2346 rinfo->failed = true;
2350 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2351 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2352 elf_tdata (rinfo->info->output_bfd)->verref = t;
2356 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2359 rinfo->failed = true;
2363 /* Note that we are copying a string pointer here, and testing it
2364 above. If bfd_elf_string_from_elf_section is ever changed to
2365 discard the string data when low in memory, this will have to be
2367 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2369 a->vna_flags = h->verinfo.verdef->vd_flags;
2370 a->vna_nextptr = t->vn_auxptr;
2372 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2375 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2382 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2383 hidden. Set *T_P to NULL if there is no match. */
2386 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2387 struct elf_link_hash_entry *h,
2388 const char *version_p,
2389 struct bfd_elf_version_tree **t_p,
2392 struct bfd_elf_version_tree *t;
2394 /* Look for the version. If we find it, it is no longer weak. */
2395 for (t = info->version_info; t != NULL; t = t->next)
2397 if (strcmp (t->name, version_p) == 0)
2401 struct bfd_elf_version_expr *d;
2403 len = version_p - h->root.root.string;
2404 alc = (char *) bfd_malloc (len);
2407 memcpy (alc, h->root.root.string, len - 1);
2408 alc[len - 1] = '\0';
2409 if (alc[len - 2] == ELF_VER_CHR)
2410 alc[len - 2] = '\0';
2412 h->verinfo.vertree = t;
2416 if (t->globals.list != NULL)
2417 d = (*t->match) (&t->globals, NULL, alc);
2419 /* See if there is anything to force this symbol to
2421 if (d == NULL && t->locals.list != NULL)
2423 d = (*t->match) (&t->locals, NULL, alc);
2426 && ! info->export_dynamic)
2440 /* Return TRUE if the symbol H is hidden by version script. */
2443 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2444 struct elf_link_hash_entry *h)
2448 const struct elf_backend_data *bed
2449 = get_elf_backend_data (info->output_bfd);
2451 /* Version script only hides symbols defined in regular objects. */
2452 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2455 p = strchr (h->root.root.string, ELF_VER_CHR);
2456 if (p != NULL && h->verinfo.vertree == NULL)
2458 struct bfd_elf_version_tree *t;
2461 if (*p == ELF_VER_CHR)
2465 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2469 (*bed->elf_backend_hide_symbol) (info, h, true);
2474 /* If we don't have a version for this symbol, see if we can find
2476 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2479 = bfd_find_version_for_sym (info->version_info,
2480 h->root.root.string, &hide);
2481 if (h->verinfo.vertree != NULL && hide)
2483 (*bed->elf_backend_hide_symbol) (info, h, true);
2491 /* Figure out appropriate versions for all the symbols. We may not
2492 have the version number script until we have read all of the input
2493 files, so until that point we don't know which symbols should be
2494 local. This function is called via elf_link_hash_traverse. */
2497 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2499 struct elf_info_failed *sinfo;
2500 struct bfd_link_info *info;
2501 const struct elf_backend_data *bed;
2502 struct elf_info_failed eif;
2506 sinfo = (struct elf_info_failed *) data;
2509 /* Fix the symbol flags. */
2512 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2515 sinfo->failed = true;
2519 bed = get_elf_backend_data (info->output_bfd);
2521 /* We only need version numbers for symbols defined in regular
2523 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2525 /* Hide symbols defined in discarded input sections. */
2526 if ((h->root.type == bfd_link_hash_defined
2527 || h->root.type == bfd_link_hash_defweak)
2528 && discarded_section (h->root.u.def.section))
2529 (*bed->elf_backend_hide_symbol) (info, h, true);
2534 p = strchr (h->root.root.string, ELF_VER_CHR);
2535 if (p != NULL && h->verinfo.vertree == NULL)
2537 struct bfd_elf_version_tree *t;
2540 if (*p == ELF_VER_CHR)
2543 /* If there is no version string, we can just return out. */
2547 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2549 sinfo->failed = true;
2554 (*bed->elf_backend_hide_symbol) (info, h, true);
2556 /* If we are building an application, we need to create a
2557 version node for this version. */
2558 if (t == NULL && bfd_link_executable (info))
2560 struct bfd_elf_version_tree **pp;
2563 /* If we aren't going to export this symbol, we don't need
2564 to worry about it. */
2565 if (h->dynindx == -1)
2568 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2572 sinfo->failed = true;
2577 t->name_indx = (unsigned int) -1;
2581 /* Don't count anonymous version tag. */
2582 if (sinfo->info->version_info != NULL
2583 && sinfo->info->version_info->vernum == 0)
2585 for (pp = &sinfo->info->version_info;
2589 t->vernum = version_index;
2593 h->verinfo.vertree = t;
2597 /* We could not find the version for a symbol when
2598 generating a shared archive. Return an error. */
2600 /* xgettext:c-format */
2601 (_("%pB: version node not found for symbol %s"),
2602 info->output_bfd, h->root.root.string);
2603 bfd_set_error (bfd_error_bad_value);
2604 sinfo->failed = true;
2609 /* If we don't have a version for this symbol, see if we can find
2612 && h->verinfo.vertree == NULL
2613 && sinfo->info->version_info != NULL)
2616 = bfd_find_version_for_sym (sinfo->info->version_info,
2617 h->root.root.string, &hide);
2618 if (h->verinfo.vertree != NULL && hide)
2619 (*bed->elf_backend_hide_symbol) (info, h, true);
2625 /* Read and swap the relocs from the section indicated by SHDR. This
2626 may be either a REL or a RELA section. The relocations are
2627 translated into RELA relocations and stored in INTERNAL_RELOCS,
2628 which should have already been allocated to contain enough space.
2629 The EXTERNAL_RELOCS are a buffer where the external form of the
2630 relocations should be stored.
2632 Returns FALSE if something goes wrong. */
2635 elf_link_read_relocs_from_section (bfd *abfd,
2637 Elf_Internal_Shdr *shdr,
2638 void *external_relocs,
2639 Elf_Internal_Rela *internal_relocs)
2641 const struct elf_backend_data *bed;
2642 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2643 const bfd_byte *erela;
2644 const bfd_byte *erelaend;
2645 Elf_Internal_Rela *irela;
2646 Elf_Internal_Shdr *symtab_hdr;
2649 /* Position ourselves at the start of the section. */
2650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2653 /* Read the relocations. */
2654 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2657 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2658 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2660 bed = get_elf_backend_data (abfd);
2662 /* Convert the external relocations to the internal format. */
2663 if (shdr->sh_entsize == bed->s->sizeof_rel)
2664 swap_in = bed->s->swap_reloc_in;
2665 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2666 swap_in = bed->s->swap_reloca_in;
2669 bfd_set_error (bfd_error_wrong_format);
2673 erela = (const bfd_byte *) external_relocs;
2674 /* Setting erelaend like this and comparing with <= handles case of
2675 a fuzzed object with sh_size not a multiple of sh_entsize. */
2676 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2677 irela = internal_relocs;
2678 while (erela <= erelaend)
2682 (*swap_in) (abfd, erela, irela);
2683 r_symndx = ELF32_R_SYM (irela->r_info);
2684 if (bed->s->arch_size == 64)
2688 if ((size_t) r_symndx >= nsyms)
2691 /* xgettext:c-format */
2692 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2693 " for offset %#" PRIx64 " in section `%pA'"),
2694 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2695 (uint64_t) irela->r_offset, sec);
2696 bfd_set_error (bfd_error_bad_value);
2700 else if (r_symndx != STN_UNDEF)
2703 /* xgettext:c-format */
2704 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2705 " for offset %#" PRIx64 " in section `%pA'"
2706 " when the object file has no symbol table"),
2707 abfd, (uint64_t) r_symndx,
2708 (uint64_t) irela->r_offset, sec);
2709 bfd_set_error (bfd_error_bad_value);
2712 irela += bed->s->int_rels_per_ext_rel;
2713 erela += shdr->sh_entsize;
2719 /* Read and swap the relocs for a section O. They may have been
2720 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2721 not NULL, they are used as buffers to read into. They are known to
2722 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2723 the return value is allocated using either malloc or bfd_alloc,
2724 according to the KEEP_MEMORY argument. If O has two relocation
2725 sections (both REL and RELA relocations), then the REL_HDR
2726 relocations will appear first in INTERNAL_RELOCS, followed by the
2727 RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true,
2728 update cache_size. */
2731 _bfd_elf_link_info_read_relocs (bfd *abfd,
2732 struct bfd_link_info *info,
2734 void *external_relocs,
2735 Elf_Internal_Rela *internal_relocs,
2738 void *alloc1 = NULL;
2739 Elf_Internal_Rela *alloc2 = NULL;
2740 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2741 struct bfd_elf_section_data *esdo = elf_section_data (o);
2742 Elf_Internal_Rela *internal_rela_relocs;
2744 if (esdo->relocs != NULL)
2745 return esdo->relocs;
2747 if (o->reloc_count == 0)
2750 if (internal_relocs == NULL)
2754 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2757 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2759 info->cache_size += size;
2762 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2763 if (internal_relocs == NULL)
2767 if (external_relocs == NULL)
2769 bfd_size_type size = 0;
2772 size += esdo->rel.hdr->sh_size;
2774 size += esdo->rela.hdr->sh_size;
2776 alloc1 = bfd_malloc (size);
2779 external_relocs = alloc1;
2782 internal_rela_relocs = internal_relocs;
2785 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2789 external_relocs = (((bfd_byte *) external_relocs)
2790 + esdo->rel.hdr->sh_size);
2791 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2792 * bed->s->int_rels_per_ext_rel);
2796 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2798 internal_rela_relocs)))
2801 /* Cache the results for next time, if we can. */
2803 esdo->relocs = internal_relocs;
2807 /* Don't free alloc2, since if it was allocated we are passing it
2808 back (under the name of internal_relocs). */
2810 return internal_relocs;
2817 bfd_release (abfd, alloc2);
2824 /* This is similar to _bfd_elf_link_info_read_relocs, except for that
2825 NULL is passed to _bfd_elf_link_info_read_relocs for pointer to
2826 struct bfd_link_info. */
2829 _bfd_elf_link_read_relocs (bfd *abfd,
2831 void *external_relocs,
2832 Elf_Internal_Rela *internal_relocs,
2835 return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs,
2836 internal_relocs, keep_memory);
2840 /* Compute the size of, and allocate space for, REL_HDR which is the
2841 section header for a section containing relocations for O. */
2844 _bfd_elf_link_size_reloc_section (bfd *abfd,
2845 struct bfd_elf_section_reloc_data *reldata)
2847 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2849 /* That allows us to calculate the size of the section. */
2850 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2852 /* The contents field must last into write_object_contents, so we
2853 allocate it with bfd_alloc rather than malloc. Also since we
2854 cannot be sure that the contents will actually be filled in,
2855 we zero the allocated space. */
2856 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2857 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2860 if (reldata->hashes == NULL && reldata->count)
2862 struct elf_link_hash_entry **p;
2864 p = ((struct elf_link_hash_entry **)
2865 bfd_zmalloc (reldata->count * sizeof (*p)));
2869 reldata->hashes = p;
2875 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2876 originated from the section given by INPUT_REL_HDR) to the
2880 _bfd_elf_link_output_relocs (bfd *output_bfd,
2881 asection *input_section,
2882 Elf_Internal_Shdr *input_rel_hdr,
2883 Elf_Internal_Rela *internal_relocs,
2884 struct elf_link_hash_entry **rel_hash
2887 Elf_Internal_Rela *irela;
2888 Elf_Internal_Rela *irelaend;
2890 struct bfd_elf_section_reloc_data *output_reldata;
2891 asection *output_section;
2892 const struct elf_backend_data *bed;
2893 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2894 struct bfd_elf_section_data *esdo;
2896 output_section = input_section->output_section;
2898 bed = get_elf_backend_data (output_bfd);
2899 esdo = elf_section_data (output_section);
2900 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2902 output_reldata = &esdo->rel;
2903 swap_out = bed->s->swap_reloc_out;
2905 else if (esdo->rela.hdr
2906 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2908 output_reldata = &esdo->rela;
2909 swap_out = bed->s->swap_reloca_out;
2914 /* xgettext:c-format */
2915 (_("%pB: relocation size mismatch in %pB section %pA"),
2916 output_bfd, input_section->owner, input_section);
2917 bfd_set_error (bfd_error_wrong_format);
2921 erel = output_reldata->hdr->contents;
2922 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2923 irela = internal_relocs;
2924 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2925 * bed->s->int_rels_per_ext_rel);
2926 while (irela < irelaend)
2928 (*swap_out) (output_bfd, irela, erel);
2929 irela += bed->s->int_rels_per_ext_rel;
2930 erel += input_rel_hdr->sh_entsize;
2933 /* Bump the counter, so that we know where to add the next set of
2935 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2940 /* Make weak undefined symbols in PIE dynamic. */
2943 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2944 struct elf_link_hash_entry *h)
2946 if (bfd_link_pie (info)
2948 && h->root.type == bfd_link_hash_undefweak)
2949 return bfd_elf_link_record_dynamic_symbol (info, h);
2954 /* Fix up the flags for a symbol. This handles various cases which
2955 can only be fixed after all the input files are seen. This is
2956 currently called by both adjust_dynamic_symbol and
2957 assign_sym_version, which is unnecessary but perhaps more robust in
2958 the face of future changes. */
2961 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2962 struct elf_info_failed *eif)
2964 const struct elf_backend_data *bed;
2966 /* If this symbol was mentioned in a non-ELF file, try to set
2967 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2968 permit a non-ELF file to correctly refer to a symbol defined in
2969 an ELF dynamic object. */
2972 while (h->root.type == bfd_link_hash_indirect)
2973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2975 if (h->root.type != bfd_link_hash_defined
2976 && h->root.type != bfd_link_hash_defweak)
2979 h->ref_regular_nonweak = 1;
2983 if (h->root.u.def.section->owner != NULL
2984 && (bfd_get_flavour (h->root.u.def.section->owner)
2985 == bfd_target_elf_flavour))
2988 h->ref_regular_nonweak = 1;
2994 if (h->dynindx == -1
2998 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
3007 /* Unfortunately, NON_ELF is only correct if the symbol
3008 was first seen in a non-ELF file. Fortunately, if the symbol
3009 was first seen in an ELF file, we're probably OK unless the
3010 symbol was defined in a non-ELF file. Catch that case here.
3011 FIXME: We're still in trouble if the symbol was first seen in
3012 a dynamic object, and then later in a non-ELF regular object. */
3013 if ((h->root.type == bfd_link_hash_defined
3014 || h->root.type == bfd_link_hash_defweak)
3016 && (h->root.u.def.section->owner != NULL
3017 ? (bfd_get_flavour (h->root.u.def.section->owner)
3018 != bfd_target_elf_flavour)
3019 : (bfd_is_abs_section (h->root.u.def.section)
3020 && !h->def_dynamic)))
3024 /* Backend specific symbol fixup. */
3025 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
3026 if (bed->elf_backend_fixup_symbol
3027 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
3030 /* If this is a final link, and the symbol was defined as a common
3031 symbol in a regular object file, and there was no definition in
3032 any dynamic object, then the linker will have allocated space for
3033 the symbol in a common section but the DEF_REGULAR
3034 flag will not have been set. */
3035 if (h->root.type == bfd_link_hash_defined
3039 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
3042 /* Symbols defined in discarded sections shouldn't be dynamic. */
3043 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
3044 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3046 /* If a weak undefined symbol has non-default visibility, we also
3047 hide it from the dynamic linker. */
3048 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3049 && h->root.type == bfd_link_hash_undefweak)
3050 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3052 /* A hidden versioned symbol in executable should be forced local if
3053 it is is locally defined, not referenced by shared library and not
3055 else if (bfd_link_executable (eif->info)
3056 && h->versioned == versioned_hidden
3057 && !eif->info->export_dynamic
3061 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3063 /* If -Bsymbolic was used (which means to bind references to global
3064 symbols to the definition within the shared object), and this
3065 symbol was defined in a regular object, then it actually doesn't
3066 need a PLT entry. Likewise, if the symbol has non-default
3067 visibility. If the symbol has hidden or internal visibility, we
3068 will force it local. */
3069 else if (h->needs_plt
3070 && bfd_link_pic (eif->info)
3071 && is_elf_hash_table (eif->info->hash)
3072 && (SYMBOLIC_BIND (eif->info, h)
3073 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
3078 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
3079 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
3080 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
3083 /* If this is a weak defined symbol in a dynamic object, and we know
3084 the real definition in the dynamic object, copy interesting flags
3085 over to the real definition. */
3086 if (h->is_weakalias)
3088 struct elf_link_hash_entry *def = weakdef (h);
3090 /* If the real definition is defined by a regular object file,
3091 don't do anything special. See the longer description in
3092 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
3093 bfd_link_hash_defined as it was when put on the alias list
3094 then it must have originally been a versioned symbol (for
3095 which a non-versioned indirect symbol is created) and later
3096 a definition for the non-versioned symbol is found. In that
3097 case the indirection is flipped with the versioned symbol
3098 becoming an indirect pointing at the non-versioned symbol.
3099 Thus, not an alias any more. */
3100 if (def->def_regular
3101 || def->root.type != bfd_link_hash_defined)
3104 while ((h = h->u.alias) != def)
3105 h->is_weakalias = 0;
3109 while (h->root.type == bfd_link_hash_indirect)
3110 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3111 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3112 || h->root.type == bfd_link_hash_defweak);
3113 BFD_ASSERT (def->def_dynamic);
3114 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
3121 /* Make the backend pick a good value for a dynamic symbol. This is
3122 called via elf_link_hash_traverse, and also calls itself
3126 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
3128 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3129 struct elf_link_hash_table *htab;
3130 const struct elf_backend_data *bed;
3132 if (! is_elf_hash_table (eif->info->hash))
3135 /* Ignore indirect symbols. These are added by the versioning code. */
3136 if (h->root.type == bfd_link_hash_indirect)
3139 /* Fix the symbol flags. */
3140 if (! _bfd_elf_fix_symbol_flags (h, eif))
3143 htab = elf_hash_table (eif->info);
3144 bed = get_elf_backend_data (htab->dynobj);
3146 if (h->root.type == bfd_link_hash_undefweak)
3148 if (eif->info->dynamic_undefined_weak == 0)
3149 (*bed->elf_backend_hide_symbol) (eif->info, h, true);
3150 else if (eif->info->dynamic_undefined_weak > 0
3152 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3153 && !bfd_hide_sym_by_version (eif->info->version_info,
3154 h->root.root.string))
3156 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
3164 /* If this symbol does not require a PLT entry, and it is not
3165 defined by a dynamic object, or is not referenced by a regular
3166 object, ignore it. We do have to handle a weak defined symbol,
3167 even if no regular object refers to it, if we decided to add it
3168 to the dynamic symbol table. FIXME: Do we normally need to worry
3169 about symbols which are defined by one dynamic object and
3170 referenced by another one? */
3172 && h->type != STT_GNU_IFUNC
3176 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3178 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3182 /* If we've already adjusted this symbol, don't do it again. This
3183 can happen via a recursive call. */
3184 if (h->dynamic_adjusted)
3187 /* Don't look at this symbol again. Note that we must set this
3188 after checking the above conditions, because we may look at a
3189 symbol once, decide not to do anything, and then get called
3190 recursively later after REF_REGULAR is set below. */
3191 h->dynamic_adjusted = 1;
3193 /* If this is a weak definition, and we know a real definition, and
3194 the real symbol is not itself defined by a regular object file,
3195 then get a good value for the real definition. We handle the
3196 real symbol first, for the convenience of the backend routine.
3198 Note that there is a confusing case here. If the real definition
3199 is defined by a regular object file, we don't get the real symbol
3200 from the dynamic object, but we do get the weak symbol. If the
3201 processor backend uses a COPY reloc, then if some routine in the
3202 dynamic object changes the real symbol, we will not see that
3203 change in the corresponding weak symbol. This is the way other
3204 ELF linkers work as well, and seems to be a result of the shared
3207 I will clarify this issue. Most SVR4 shared libraries define the
3208 variable _timezone and define timezone as a weak synonym. The
3209 tzset call changes _timezone. If you write
3210 extern int timezone;
3212 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3213 you might expect that, since timezone is a synonym for _timezone,
3214 the same number will print both times. However, if the processor
3215 backend uses a COPY reloc, then actually timezone will be copied
3216 into your process image, and, since you define _timezone
3217 yourself, _timezone will not. Thus timezone and _timezone will
3218 wind up at different memory locations. The tzset call will set
3219 _timezone, leaving timezone unchanged. */
3221 if (h->is_weakalias)
3223 struct elf_link_hash_entry *def = weakdef (h);
3225 /* If we get to this point, there is an implicit reference to
3226 the alias by a regular object file via the weak symbol H. */
3227 def->ref_regular = 1;
3229 /* Ensure that the backend adjust_dynamic_symbol function sees
3230 the strong alias before H by recursively calling ourselves. */
3231 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3235 /* If a symbol has no type and no size and does not require a PLT
3236 entry, then we are probably about to do the wrong thing here: we
3237 are probably going to create a COPY reloc for an empty object.
3238 This case can arise when a shared object is built with assembly
3239 code, and the assembly code fails to set the symbol type. */
3241 && h->type == STT_NOTYPE
3244 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3245 h->root.root.string);
3247 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3256 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3260 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3261 struct elf_link_hash_entry *h,
3264 unsigned int power_of_two;
3266 asection *sec = h->root.u.def.section;
3268 /* The section alignment of the definition is the maximum alignment
3269 requirement of symbols defined in the section. Since we don't
3270 know the symbol alignment requirement, we start with the
3271 maximum alignment and check low bits of the symbol address
3272 for the minimum alignment. */
3273 power_of_two = bfd_section_alignment (sec);
3274 mask = ((bfd_vma) 1 << power_of_two) - 1;
3275 while ((h->root.u.def.value & mask) != 0)
3281 if (power_of_two > bfd_section_alignment (dynbss))
3283 /* Adjust the section alignment if needed. */
3284 if (!bfd_set_section_alignment (dynbss, power_of_two))
3288 /* We make sure that the symbol will be aligned properly. */
3289 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3291 /* Define the symbol as being at this point in DYNBSS. */
3292 h->root.u.def.section = dynbss;
3293 h->root.u.def.value = dynbss->size;
3295 /* Increment the size of DYNBSS to make room for the symbol. */
3296 dynbss->size += h->size;
3298 /* No error if extern_protected_data is true. */
3299 if (h->protected_def
3300 && (!info->extern_protected_data
3301 || (info->extern_protected_data < 0
3302 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3303 info->callbacks->einfo
3304 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3305 h->root.root.string);
3310 /* Adjust all external symbols pointing into SEC_MERGE sections
3311 to reflect the object merging within the sections. */
3314 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3318 if ((h->root.type == bfd_link_hash_defined
3319 || h->root.type == bfd_link_hash_defweak)
3320 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3321 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3323 bfd *output_bfd = (bfd *) data;
3325 h->root.u.def.value =
3326 _bfd_merged_section_offset (output_bfd,
3327 &h->root.u.def.section,
3328 elf_section_data (sec)->sec_info,
3329 h->root.u.def.value);
3335 /* Returns false if the symbol referred to by H should be considered
3336 to resolve local to the current module, and true if it should be
3337 considered to bind dynamically. */
3340 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3341 struct bfd_link_info *info,
3342 bool not_local_protected)
3344 bool binding_stays_local_p;
3345 const struct elf_backend_data *bed;
3346 struct elf_link_hash_table *hash_table;
3351 while (h->root.type == bfd_link_hash_indirect
3352 || h->root.type == bfd_link_hash_warning)
3353 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3355 /* If it was forced local, then clearly it's not dynamic. */
3356 if (h->dynindx == -1)
3358 if (h->forced_local)
3361 /* Identify the cases where name binding rules say that a
3362 visible symbol resolves locally. */
3363 binding_stays_local_p = (bfd_link_executable (info)
3364 || SYMBOLIC_BIND (info, h));
3366 switch (ELF_ST_VISIBILITY (h->other))
3373 hash_table = elf_hash_table (info);
3374 if (!is_elf_hash_table (&hash_table->root))
3377 bed = get_elf_backend_data (hash_table->dynobj);
3379 /* Proper resolution for function pointer equality may require
3380 that these symbols perhaps be resolved dynamically, even though
3381 we should be resolving them to the current module. */
3382 if (!not_local_protected || !bed->is_function_type (h->type))
3383 binding_stays_local_p = true;
3390 /* If it isn't defined locally, then clearly it's dynamic. */
3391 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3394 /* Otherwise, the symbol is dynamic if binding rules don't tell
3395 us that it remains local. */
3396 return !binding_stays_local_p;
3399 /* Return true if the symbol referred to by H should be considered
3400 to resolve local to the current module, and false otherwise. Differs
3401 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3402 undefined symbols. The two functions are virtually identical except
3403 for the place where dynindx == -1 is tested. If that test is true,
3404 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3405 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3407 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3408 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3409 treatment of undefined weak symbols. For those that do not make
3410 undefined weak symbols dynamic, both functions may return false. */
3413 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3414 struct bfd_link_info *info,
3415 bool local_protected)
3417 const struct elf_backend_data *bed;
3418 struct elf_link_hash_table *hash_table;
3420 /* If it's a local sym, of course we resolve locally. */
3424 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3425 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3426 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3429 /* Forced local symbols resolve locally. */
3430 if (h->forced_local)
3433 /* Common symbols that become definitions don't get the DEF_REGULAR
3434 flag set, so test it first, and don't bail out. */
3435 if (ELF_COMMON_DEF_P (h))
3437 /* If we don't have a definition in a regular file, then we can't
3438 resolve locally. The sym is either undefined or dynamic. */
3439 else if (!h->def_regular)
3442 /* Non-dynamic symbols resolve locally. */
3443 if (h->dynindx == -1)
3446 /* At this point, we know the symbol is defined and dynamic. In an
3447 executable it must resolve locally, likewise when building symbolic
3448 shared libraries. */
3449 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3452 /* Now deal with defined dynamic symbols in shared libraries. Ones
3453 with default visibility might not resolve locally. */
3454 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3457 hash_table = elf_hash_table (info);
3458 if (!is_elf_hash_table (&hash_table->root))
3461 /* STV_PROTECTED symbols with indirect external access are local. */
3462 if (info->indirect_extern_access > 0)
3465 bed = get_elf_backend_data (hash_table->dynobj);
3467 /* If extern_protected_data is false, STV_PROTECTED non-function
3468 symbols are local. */
3469 if ((!info->extern_protected_data
3470 || (info->extern_protected_data < 0
3471 && !bed->extern_protected_data))
3472 && !bed->is_function_type (h->type))
3475 /* Function pointer equality tests may require that STV_PROTECTED
3476 symbols be treated as dynamic symbols. If the address of a
3477 function not defined in an executable is set to that function's
3478 plt entry in the executable, then the address of the function in
3479 a shared library must also be the plt entry in the executable. */
3480 return local_protected;
3483 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3484 aligned. Returns the first TLS output section. */
3486 struct bfd_section *
3487 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3489 struct bfd_section *sec, *tls;
3490 unsigned int align = 0;
3492 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3493 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3497 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3498 if (sec->alignment_power > align)
3499 align = sec->alignment_power;
3501 elf_hash_table (info)->tls_sec = tls;
3503 /* Ensure the alignment of the first section (usually .tdata) is the largest
3504 alignment, so that the tls segment starts aligned. */
3506 tls->alignment_power = align;
3511 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3513 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3514 Elf_Internal_Sym *sym)
3516 const struct elf_backend_data *bed;
3518 /* Local symbols do not count, but target specific ones might. */
3519 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3520 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3523 bed = get_elf_backend_data (abfd);
3524 /* Function symbols do not count. */
3525 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3528 /* If the section is undefined, then so is the symbol. */
3529 if (sym->st_shndx == SHN_UNDEF)
3532 /* If the symbol is defined in the common section, then
3533 it is a common definition and so does not count. */
3534 if (bed->common_definition (sym))
3537 /* If the symbol is in a target specific section then we
3538 must rely upon the backend to tell us what it is. */
3539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3540 /* FIXME - this function is not coded yet:
3542 return _bfd_is_global_symbol_definition (abfd, sym);
3544 Instead for now assume that the definition is not global,
3545 Even if this is wrong, at least the linker will behave
3546 in the same way that it used to do. */
3552 /* Search the symbol table of the archive element of the archive ABFD
3553 whose archive map contains a mention of SYMDEF, and determine if
3554 the symbol is defined in this element. */
3556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3558 Elf_Internal_Shdr * hdr;
3562 Elf_Internal_Sym *isymbuf;
3563 Elf_Internal_Sym *isym;
3564 Elf_Internal_Sym *isymend;
3567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL);
3571 if (! bfd_check_format (abfd, bfd_object))
3574 /* Select the appropriate symbol table. If we don't know if the
3575 object file is an IR object, give linker LTO plugin a chance to
3576 get the correct symbol table. */
3577 if (abfd->plugin_format == bfd_plugin_yes
3578 #if BFD_SUPPORTS_PLUGINS
3579 || (abfd->plugin_format == bfd_plugin_unknown
3580 && bfd_link_plugin_object_p (abfd))
3584 /* Use the IR symbol table if the object has been claimed by
3586 abfd = abfd->plugin_dummy_bfd;
3587 hdr = &elf_tdata (abfd)->symtab_hdr;
3589 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3590 hdr = &elf_tdata (abfd)->symtab_hdr;
3592 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3596 /* The sh_info field of the symtab header tells us where the
3597 external symbols start. We don't care about the local symbols. */
3598 if (elf_bad_symtab (abfd))
3600 extsymcount = symcount;
3605 extsymcount = symcount - hdr->sh_info;
3606 extsymoff = hdr->sh_info;
3609 if (extsymcount == 0)
3612 /* Read in the symbol table. */
3613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3615 if (isymbuf == NULL)
3618 /* Scan the symbol table looking for SYMDEF. */
3620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3629 if (strcmp (name, symdef->name) == 0)
3631 result = is_global_data_symbol_definition (abfd, isym);
3641 /* Add an entry to the .dynamic table. */
3644 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3648 struct elf_link_hash_table *hash_table;
3649 const struct elf_backend_data *bed;
3651 bfd_size_type newsize;
3652 bfd_byte *newcontents;
3653 Elf_Internal_Dyn dyn;
3655 hash_table = elf_hash_table (info);
3656 if (! is_elf_hash_table (&hash_table->root))
3659 if (tag == DT_RELA || tag == DT_REL)
3660 hash_table->dynamic_relocs = true;
3662 bed = get_elf_backend_data (hash_table->dynobj);
3663 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3664 BFD_ASSERT (s != NULL);
3666 newsize = s->size + bed->s->sizeof_dyn;
3667 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3668 if (newcontents == NULL)
3672 dyn.d_un.d_val = val;
3673 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3676 s->contents = newcontents;
3681 /* Strip zero-sized dynamic sections. */
3684 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3686 struct elf_link_hash_table *hash_table;
3687 const struct elf_backend_data *bed;
3688 asection *s, *sdynamic, **pp;
3689 asection *rela_dyn, *rel_dyn;
3690 Elf_Internal_Dyn dyn;
3691 bfd_byte *extdyn, *next;
3692 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3693 bool strip_zero_sized;
3694 bool strip_zero_sized_plt;
3696 if (bfd_link_relocatable (info))
3699 hash_table = elf_hash_table (info);
3700 if (!is_elf_hash_table (&hash_table->root))
3703 if (!hash_table->dynobj)
3706 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3710 bed = get_elf_backend_data (hash_table->dynobj);
3711 swap_dyn_in = bed->s->swap_dyn_in;
3713 strip_zero_sized = false;
3714 strip_zero_sized_plt = false;
3716 /* Strip zero-sized dynamic sections. */
3717 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3718 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3719 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3723 || s == hash_table->srelplt->output_section
3724 || s == hash_table->splt->output_section))
3727 info->output_bfd->section_count--;
3728 strip_zero_sized = true;
3733 else if (s == hash_table->splt->output_section)
3735 s = hash_table->splt;
3736 strip_zero_sized_plt = true;
3739 s = hash_table->srelplt;
3740 s->flags |= SEC_EXCLUDE;
3741 s->output_section = bfd_abs_section_ptr;
3746 if (strip_zero_sized_plt && sdynamic->size != 0)
3747 for (extdyn = sdynamic->contents;
3748 extdyn < sdynamic->contents + sdynamic->size;
3751 next = extdyn + bed->s->sizeof_dyn;
3752 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3760 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3761 the procedure linkage table (the .plt section) has been
3763 memmove (extdyn, next,
3764 sdynamic->size - (next - sdynamic->contents));
3769 if (strip_zero_sized)
3771 /* Regenerate program headers. */
3772 elf_seg_map (info->output_bfd) = NULL;
3773 return _bfd_elf_map_sections_to_segments (info->output_bfd, info,
3780 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3781 1 if a DT_NEEDED tag already exists, and 0 on success. */
3784 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3786 struct elf_link_hash_table *hash_table;
3790 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3793 hash_table = elf_hash_table (info);
3794 soname = elf_dt_name (abfd);
3795 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false);
3796 if (strindex == (size_t) -1)
3799 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3802 const struct elf_backend_data *bed;
3805 bed = get_elf_backend_data (hash_table->dynobj);
3806 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3807 if (sdyn != NULL && sdyn->size != 0)
3808 for (extdyn = sdyn->contents;
3809 extdyn < sdyn->contents + sdyn->size;
3810 extdyn += bed->s->sizeof_dyn)
3812 Elf_Internal_Dyn dyn;
3814 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3815 if (dyn.d_tag == DT_NEEDED
3816 && dyn.d_un.d_val == strindex)
3818 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3824 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3827 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3833 /* Return true if SONAME is on the needed list between NEEDED and STOP
3834 (or the end of list if STOP is NULL), and needed by a library that
3838 on_needed_list (const char *soname,
3839 struct bfd_link_needed_list *needed,
3840 struct bfd_link_needed_list *stop)
3842 struct bfd_link_needed_list *look;
3843 for (look = needed; look != stop; look = look->next)
3844 if (strcmp (soname, look->name) == 0
3845 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3846 /* If needed by a library that itself is not directly
3847 needed, recursively check whether that library is
3848 indirectly needed. Since we add DT_NEEDED entries to
3849 the end of the list, library dependencies appear after
3850 the library. Therefore search prior to the current
3851 LOOK, preventing possible infinite recursion. */
3852 || on_needed_list (elf_dt_name (look->by), needed, look)))
3858 /* Sort symbol by value, section, size, and type. */
3860 elf_sort_symbol (const void *arg1, const void *arg2)
3862 const struct elf_link_hash_entry *h1;
3863 const struct elf_link_hash_entry *h2;
3864 bfd_signed_vma vdiff;
3869 h1 = *(const struct elf_link_hash_entry **) arg1;
3870 h2 = *(const struct elf_link_hash_entry **) arg2;
3871 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3873 return vdiff > 0 ? 1 : -1;
3875 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3879 /* Sort so that sized symbols are selected over zero size symbols. */
3880 vdiff = h1->size - h2->size;
3882 return vdiff > 0 ? 1 : -1;
3884 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3885 if (h1->type != h2->type)
3886 return h1->type - h2->type;
3888 /* If symbols are properly sized and typed, and multiple strong
3889 aliases are not defined in a shared library by the user we
3890 shouldn't get here. Unfortunately linker script symbols like
3891 __bss_start sometimes match a user symbol defined at the start of
3892 .bss without proper size and type. We'd like to preference the
3893 user symbol over reserved system symbols. Sort on leading
3895 n1 = h1->root.root.string;
3896 n2 = h2->root.root.string;
3909 /* Final sort on name selects user symbols like '_u' over reserved
3910 system symbols like '_Z' and also will avoid qsort instability. */
3914 /* This function is used to adjust offsets into .dynstr for
3915 dynamic symbols. This is called via elf_link_hash_traverse. */
3918 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3920 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3922 if (h->dynindx != -1)
3923 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3927 /* Assign string offsets in .dynstr, update all structures referencing
3931 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3933 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3934 struct elf_link_local_dynamic_entry *entry;
3935 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3936 bfd *dynobj = hash_table->dynobj;
3939 const struct elf_backend_data *bed;
3942 _bfd_elf_strtab_finalize (dynstr);
3943 size = _bfd_elf_strtab_size (dynstr);
3945 /* Allow the linker to examine the dynsymtab now it's fully populated. */
3947 if (info->callbacks->examine_strtab)
3948 info->callbacks->examine_strtab (dynstr);
3950 bed = get_elf_backend_data (dynobj);
3951 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3952 BFD_ASSERT (sdyn != NULL);
3954 /* Update all .dynamic entries referencing .dynstr strings. */
3955 for (extdyn = sdyn->contents;
3956 extdyn < PTR_ADD (sdyn->contents, sdyn->size);
3957 extdyn += bed->s->sizeof_dyn)
3959 Elf_Internal_Dyn dyn;
3961 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3965 dyn.d_un.d_val = size;
3975 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3980 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3983 /* Now update local dynamic symbols. */
3984 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3985 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3986 entry->isym.st_name);
3988 /* And the rest of dynamic symbols. */
3989 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3991 /* Adjust version definitions. */
3992 if (elf_tdata (output_bfd)->cverdefs)
3997 Elf_Internal_Verdef def;
3998 Elf_Internal_Verdaux defaux;
4000 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
4004 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
4006 p += sizeof (Elf_External_Verdef);
4007 if (def.vd_aux != sizeof (Elf_External_Verdef))
4009 for (i = 0; i < def.vd_cnt; ++i)
4011 _bfd_elf_swap_verdaux_in (output_bfd,
4012 (Elf_External_Verdaux *) p, &defaux);
4013 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
4015 _bfd_elf_swap_verdaux_out (output_bfd,
4016 &defaux, (Elf_External_Verdaux *) p);
4017 p += sizeof (Elf_External_Verdaux);
4020 while (def.vd_next);
4023 /* Adjust version references. */
4024 if (elf_tdata (output_bfd)->verref)
4029 Elf_Internal_Verneed need;
4030 Elf_Internal_Vernaux needaux;
4032 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
4036 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
4038 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
4039 _bfd_elf_swap_verneed_out (output_bfd, &need,
4040 (Elf_External_Verneed *) p);
4041 p += sizeof (Elf_External_Verneed);
4042 for (i = 0; i < need.vn_cnt; ++i)
4044 _bfd_elf_swap_vernaux_in (output_bfd,
4045 (Elf_External_Vernaux *) p, &needaux);
4046 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
4048 _bfd_elf_swap_vernaux_out (output_bfd,
4050 (Elf_External_Vernaux *) p);
4051 p += sizeof (Elf_External_Vernaux);
4054 while (need.vn_next);
4060 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4061 The default is to only match when the INPUT and OUTPUT are exactly
4065 _bfd_elf_default_relocs_compatible (const bfd_target *input,
4066 const bfd_target *output)
4068 return input == output;
4071 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
4072 This version is used when different targets for the same architecture
4073 are virtually identical. */
4076 _bfd_elf_relocs_compatible (const bfd_target *input,
4077 const bfd_target *output)
4079 const struct elf_backend_data *obed, *ibed;
4081 if (input == output)
4084 ibed = xvec_get_elf_backend_data (input);
4085 obed = xvec_get_elf_backend_data (output);
4087 if (ibed->arch != obed->arch)
4090 /* If both backends are using this function, deem them compatible. */
4091 return ibed->relocs_compatible == obed->relocs_compatible;
4094 /* Make a special call to the linker "notice" function to tell it that
4095 we are about to handle an as-needed lib, or have finished
4096 processing the lib. */
4099 _bfd_elf_notice_as_needed (bfd *ibfd,
4100 struct bfd_link_info *info,
4101 enum notice_asneeded_action act)
4103 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
4106 /* Call ACTION on each relocation in an ELF object file. */
4109 _bfd_elf_link_iterate_on_relocs
4110 (bfd *abfd, struct bfd_link_info *info,
4111 bool (*action) (bfd *, struct bfd_link_info *, asection *,
4112 const Elf_Internal_Rela *))
4114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4115 struct elf_link_hash_table *htab = elf_hash_table (info);
4117 /* If this object is the same format as the output object, and it is
4118 not a shared library, then let the backend look through the
4121 This is required to build global offset table entries and to
4122 arrange for dynamic relocs. It is not required for the
4123 particular common case of linking non PIC code, even when linking
4124 against shared libraries, but unfortunately there is no way of
4125 knowing whether an object file has been compiled PIC or not.
4126 Looking through the relocs is not particularly time consuming.
4127 The problem is that we must either (1) keep the relocs in memory,
4128 which causes the linker to require additional runtime memory or
4129 (2) read the relocs twice from the input file, which wastes time.
4130 This would be a good case for using mmap.
4132 I have no idea how to handle linking PIC code into a file of a
4133 different format. It probably can't be done. */
4134 if ((abfd->flags & DYNAMIC) == 0
4135 && is_elf_hash_table (&htab->root)
4136 && elf_object_id (abfd) == elf_hash_table_id (htab)
4137 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4141 for (o = abfd->sections; o != NULL; o = o->next)
4143 Elf_Internal_Rela *internal_relocs;
4146 /* Don't check relocations in excluded sections. Don't do
4147 anything special with non-loaded, non-alloced sections.
4148 In particular, any relocs in such sections should not
4149 affect GOT and PLT reference counting (ie. we don't
4150 allow them to create GOT or PLT entries), there's no
4151 possibility or desire to optimize TLS relocs, and
4152 there's not much point in propagating relocs to shared
4153 libs that the dynamic linker won't relocate. */
4154 if ((o->flags & SEC_ALLOC) == 0
4155 || (o->flags & SEC_RELOC) == 0
4156 || (o->flags & SEC_EXCLUDE) != 0
4157 || o->reloc_count == 0
4158 || ((info->strip == strip_all || info->strip == strip_debugger)
4159 && (o->flags & SEC_DEBUGGING) != 0)
4160 || bfd_is_abs_section (o->output_section))
4163 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
4166 _bfd_link_keep_memory (info));
4167 if (internal_relocs == NULL)
4170 ok = action (abfd, info, o, internal_relocs);
4172 if (elf_section_data (o)->relocs != internal_relocs)
4173 free (internal_relocs);
4183 /* Check relocations in an ELF object file. This is called after
4184 all input files have been opened. */
4187 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
4189 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4190 if (bed->check_relocs != NULL)
4191 return _bfd_elf_link_iterate_on_relocs (abfd, info,
4196 /* Add symbols from an ELF object file to the linker hash table. */
4199 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
4201 Elf_Internal_Ehdr *ehdr;
4202 Elf_Internal_Shdr *hdr;
4206 struct elf_link_hash_entry **sym_hash;
4208 Elf_External_Versym *extversym = NULL;
4209 Elf_External_Versym *extversym_end = NULL;
4210 Elf_External_Versym *ever;
4211 struct elf_link_hash_entry *weaks;
4212 struct elf_link_hash_entry **nondeflt_vers = NULL;
4213 size_t nondeflt_vers_cnt = 0;
4214 Elf_Internal_Sym *isymbuf = NULL;
4215 Elf_Internal_Sym *isym;
4216 Elf_Internal_Sym *isymend;
4217 const struct elf_backend_data *bed;
4219 struct elf_link_hash_table *htab;
4220 void *alloc_mark = NULL;
4221 struct bfd_hash_entry **old_table = NULL;
4222 unsigned int old_size = 0;
4223 unsigned int old_count = 0;
4224 void *old_tab = NULL;
4226 struct bfd_link_hash_entry *old_undefs = NULL;
4227 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4228 void *old_strtab = NULL;
4233 htab = elf_hash_table (info);
4234 bed = get_elf_backend_data (abfd);
4236 if ((abfd->flags & DYNAMIC) == 0)
4242 /* You can't use -r against a dynamic object. Also, there's no
4243 hope of using a dynamic object which does not exactly match
4244 the format of the output file. */
4245 if (bfd_link_relocatable (info)
4246 || !is_elf_hash_table (&htab->root)
4247 || info->output_bfd->xvec != abfd->xvec)
4249 if (bfd_link_relocatable (info))
4250 bfd_set_error (bfd_error_invalid_operation);
4252 bfd_set_error (bfd_error_wrong_format);
4257 ehdr = elf_elfheader (abfd);
4258 if (info->warn_alternate_em
4259 && bed->elf_machine_code != ehdr->e_machine
4260 && ((bed->elf_machine_alt1 != 0
4261 && ehdr->e_machine == bed->elf_machine_alt1)
4262 || (bed->elf_machine_alt2 != 0
4263 && ehdr->e_machine == bed->elf_machine_alt2)))
4265 /* xgettext:c-format */
4266 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4267 ehdr->e_machine, abfd, bed->elf_machine_code);
4269 /* As a GNU extension, any input sections which are named
4270 .gnu.warning.SYMBOL are treated as warning symbols for the given
4271 symbol. This differs from .gnu.warning sections, which generate
4272 warnings when they are included in an output file. */
4273 /* PR 12761: Also generate this warning when building shared libraries. */
4274 for (s = abfd->sections; s != NULL; s = s->next)
4278 name = bfd_section_name (s);
4279 if (startswith (name, ".gnu.warning."))
4284 name += sizeof ".gnu.warning." - 1;
4286 /* If this is a shared object, then look up the symbol
4287 in the hash table. If it is there, and it is already
4288 been defined, then we will not be using the entry
4289 from this shared object, so we don't need to warn.
4290 FIXME: If we see the definition in a regular object
4291 later on, we will warn, but we shouldn't. The only
4292 fix is to keep track of what warnings we are supposed
4293 to emit, and then handle them all at the end of the
4297 struct elf_link_hash_entry *h;
4299 h = elf_link_hash_lookup (htab, name, false, false, true);
4301 /* FIXME: What about bfd_link_hash_common? */
4303 && (h->root.type == bfd_link_hash_defined
4304 || h->root.type == bfd_link_hash_defweak))
4309 msg = (char *) bfd_alloc (abfd, sz + 1);
4313 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4318 if (! (_bfd_generic_link_add_one_symbol
4319 (info, abfd, name, BSF_WARNING, s, 0, msg,
4320 false, bed->collect, NULL)))
4323 if (bfd_link_executable (info))
4325 /* Clobber the section size so that the warning does
4326 not get copied into the output file. */
4329 /* Also set SEC_EXCLUDE, so that symbols defined in
4330 the warning section don't get copied to the output. */
4331 s->flags |= SEC_EXCLUDE;
4336 just_syms = ((s = abfd->sections) != NULL
4337 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4342 /* If we are creating a shared library, create all the dynamic
4343 sections immediately. We need to attach them to something,
4344 so we attach them to this BFD, provided it is the right
4345 format and is not from ld --just-symbols. Always create the
4346 dynamic sections for -E/--dynamic-list. FIXME: If there
4347 are no input BFD's of the same format as the output, we can't
4348 make a shared library. */
4350 && (bfd_link_pic (info)
4351 || (!bfd_link_relocatable (info)
4353 && (info->export_dynamic || info->dynamic)))
4354 && is_elf_hash_table (&htab->root)
4355 && info->output_bfd->xvec == abfd->xvec
4356 && !htab->dynamic_sections_created)
4358 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4362 else if (!is_elf_hash_table (&htab->root))
4366 const char *soname = NULL;
4368 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4369 const Elf_Internal_Phdr *phdr;
4370 struct elf_link_loaded_list *loaded_lib;
4372 /* ld --just-symbols and dynamic objects don't mix very well.
4373 ld shouldn't allow it. */
4377 /* If this dynamic lib was specified on the command line with
4378 --as-needed in effect, then we don't want to add a DT_NEEDED
4379 tag unless the lib is actually used. Similary for libs brought
4380 in by another lib's DT_NEEDED. When --no-add-needed is used
4381 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4382 any dynamic library in DT_NEEDED tags in the dynamic lib at
4384 add_needed = (elf_dyn_lib_class (abfd)
4385 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4386 | DYN_NO_NEEDED)) == 0;
4388 s = bfd_get_section_by_name (abfd, ".dynamic");
4389 if (s != NULL && s->size != 0)
4393 unsigned int elfsec;
4394 unsigned long shlink;
4396 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4403 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4404 if (elfsec == SHN_BAD)
4405 goto error_free_dyn;
4406 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4408 for (extdyn = dynbuf;
4409 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4410 extdyn += bed->s->sizeof_dyn)
4412 Elf_Internal_Dyn dyn;
4414 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4415 if (dyn.d_tag == DT_SONAME)
4417 unsigned int tagv = dyn.d_un.d_val;
4418 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4420 goto error_free_dyn;
4422 if (dyn.d_tag == DT_NEEDED)
4424 struct bfd_link_needed_list *n, **pn;
4426 unsigned int tagv = dyn.d_un.d_val;
4427 size_t amt = sizeof (struct bfd_link_needed_list);
4429 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4430 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4431 if (n == NULL || fnm == NULL)
4432 goto error_free_dyn;
4433 amt = strlen (fnm) + 1;
4434 anm = (char *) bfd_alloc (abfd, amt);
4436 goto error_free_dyn;
4437 memcpy (anm, fnm, amt);
4441 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4445 if (dyn.d_tag == DT_RUNPATH)
4447 struct bfd_link_needed_list *n, **pn;
4449 unsigned int tagv = dyn.d_un.d_val;
4450 size_t amt = sizeof (struct bfd_link_needed_list);
4452 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4453 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4454 if (n == NULL || fnm == NULL)
4455 goto error_free_dyn;
4456 amt = strlen (fnm) + 1;
4457 anm = (char *) bfd_alloc (abfd, amt);
4459 goto error_free_dyn;
4460 memcpy (anm, fnm, amt);
4464 for (pn = & runpath;
4470 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4471 if (!runpath && dyn.d_tag == DT_RPATH)
4473 struct bfd_link_needed_list *n, **pn;
4475 unsigned int tagv = dyn.d_un.d_val;
4476 size_t amt = sizeof (struct bfd_link_needed_list);
4478 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4479 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4480 if (n == NULL || fnm == NULL)
4481 goto error_free_dyn;
4482 amt = strlen (fnm) + 1;
4483 anm = (char *) bfd_alloc (abfd, amt);
4485 goto error_free_dyn;
4486 memcpy (anm, fnm, amt);
4496 if (dyn.d_tag == DT_AUDIT)
4498 unsigned int tagv = dyn.d_un.d_val;
4499 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4501 if (dyn.d_tag == DT_FLAGS_1)
4502 elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0;
4508 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4509 frees all more recently bfd_alloc'd blocks as well. */
4515 struct bfd_link_needed_list **pn;
4516 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4521 /* If we have a PT_GNU_RELRO program header, mark as read-only
4522 all sections contained fully therein. This makes relro
4523 shared library sections appear as they will at run-time. */
4524 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4525 while (phdr-- > elf_tdata (abfd)->phdr)
4526 if (phdr->p_type == PT_GNU_RELRO)
4528 for (s = abfd->sections; s != NULL; s = s->next)
4530 unsigned int opb = bfd_octets_per_byte (abfd, s);
4532 if ((s->flags & SEC_ALLOC) != 0
4533 && s->vma * opb >= phdr->p_vaddr
4534 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4535 s->flags |= SEC_READONLY;
4540 /* We do not want to include any of the sections in a dynamic
4541 object in the output file. We hack by simply clobbering the
4542 list of sections in the BFD. This could be handled more
4543 cleanly by, say, a new section flag; the existing
4544 SEC_NEVER_LOAD flag is not the one we want, because that one
4545 still implies that the section takes up space in the output
4547 bfd_section_list_clear (abfd);
4549 /* Find the name to use in a DT_NEEDED entry that refers to this
4550 object. If the object has a DT_SONAME entry, we use it.
4551 Otherwise, if the generic linker stuck something in
4552 elf_dt_name, we use that. Otherwise, we just use the file
4554 if (soname == NULL || *soname == '\0')
4556 soname = elf_dt_name (abfd);
4557 if (soname == NULL || *soname == '\0')
4558 soname = bfd_get_filename (abfd);
4561 /* Save the SONAME because sometimes the linker emulation code
4562 will need to know it. */
4563 elf_dt_name (abfd) = soname;
4565 /* If we have already included this dynamic object in the
4566 link, just ignore it. There is no reason to include a
4567 particular dynamic object more than once. */
4568 for (loaded_lib = htab->dyn_loaded;
4570 loaded_lib = loaded_lib->next)
4572 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4576 /* Create dynamic sections for backends that require that be done
4577 before setup_gnu_properties. */
4579 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4582 /* Save the DT_AUDIT entry for the linker emulation code. */
4583 elf_dt_audit (abfd) = audit;
4586 /* If this is a dynamic object, we always link against the .dynsym
4587 symbol table, not the .symtab symbol table. The dynamic linker
4588 will only see the .dynsym symbol table, so there is no reason to
4589 look at .symtab for a dynamic object. */
4591 if (! dynamic || elf_dynsymtab (abfd) == 0)
4592 hdr = &elf_tdata (abfd)->symtab_hdr;
4594 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4596 symcount = hdr->sh_size / bed->s->sizeof_sym;
4598 /* The sh_info field of the symtab header tells us where the
4599 external symbols start. We don't care about the local symbols at
4601 if (elf_bad_symtab (abfd))
4603 extsymcount = symcount;
4608 extsymcount = symcount - hdr->sh_info;
4609 extsymoff = hdr->sh_info;
4612 sym_hash = elf_sym_hashes (abfd);
4613 if (extsymcount != 0)
4615 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4617 if (isymbuf == NULL)
4620 if (sym_hash == NULL)
4622 /* We store a pointer to the hash table entry for each
4624 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4625 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4626 if (sym_hash == NULL)
4627 goto error_free_sym;
4628 elf_sym_hashes (abfd) = sym_hash;
4634 /* Read in any version definitions. */
4635 if (!_bfd_elf_slurp_version_tables (abfd,
4636 info->default_imported_symver))
4637 goto error_free_sym;
4639 /* Read in the symbol versions, but don't bother to convert them
4640 to internal format. */
4641 if (elf_dynversym (abfd) != 0)
4643 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4644 bfd_size_type amt = versymhdr->sh_size;
4646 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4647 goto error_free_sym;
4648 extversym = (Elf_External_Versym *)
4649 _bfd_malloc_and_read (abfd, amt, amt);
4650 if (extversym == NULL)
4651 goto error_free_sym;
4652 extversym_end = extversym + amt / sizeof (*extversym);
4656 /* If we are loading an as-needed shared lib, save the symbol table
4657 state before we start adding symbols. If the lib turns out
4658 to be unneeded, restore the state. */
4659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4664 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4666 struct bfd_hash_entry *p;
4667 struct elf_link_hash_entry *h;
4669 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4671 h = (struct elf_link_hash_entry *) p;
4672 entsize += htab->root.table.entsize;
4673 if (h->root.type == bfd_link_hash_warning)
4675 entsize += htab->root.table.entsize;
4676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4678 if (h->root.type == bfd_link_hash_common)
4679 entsize += sizeof (*h->root.u.c.p);
4683 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4684 old_tab = bfd_malloc (tabsize + entsize);
4685 if (old_tab == NULL)
4686 goto error_free_vers;
4688 /* Remember the current objalloc pointer, so that all mem for
4689 symbols added can later be reclaimed. */
4690 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4691 if (alloc_mark == NULL)
4692 goto error_free_vers;
4694 /* Make a special call to the linker "notice" function to
4695 tell it that we are about to handle an as-needed lib. */
4696 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4697 goto error_free_vers;
4699 /* Clone the symbol table. Remember some pointers into the
4700 symbol table, and dynamic symbol count. */
4701 old_ent = (char *) old_tab + tabsize;
4702 memcpy (old_tab, htab->root.table.table, tabsize);
4703 old_undefs = htab->root.undefs;
4704 old_undefs_tail = htab->root.undefs_tail;
4705 old_table = htab->root.table.table;
4706 old_size = htab->root.table.size;
4707 old_count = htab->root.table.count;
4709 if (htab->dynstr != NULL)
4711 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4712 if (old_strtab == NULL)
4713 goto error_free_vers;
4716 for (i = 0; i < htab->root.table.size; i++)
4718 struct bfd_hash_entry *p;
4719 struct elf_link_hash_entry *h;
4721 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4723 h = (struct elf_link_hash_entry *) p;
4724 memcpy (old_ent, h, htab->root.table.entsize);
4725 old_ent = (char *) old_ent + htab->root.table.entsize;
4726 if (h->root.type == bfd_link_hash_warning)
4728 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4729 memcpy (old_ent, h, htab->root.table.entsize);
4730 old_ent = (char *) old_ent + htab->root.table.entsize;
4732 if (h->root.type == bfd_link_hash_common)
4734 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p));
4735 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
4742 if (extversym == NULL)
4744 else if (extversym + extsymoff < extversym_end)
4745 ever = extversym + extsymoff;
4748 /* xgettext:c-format */
4749 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4750 abfd, (long) extsymoff,
4751 (long) (extversym_end - extversym) / sizeof (* extversym));
4752 bfd_set_error (bfd_error_bad_value);
4753 goto error_free_vers;
4756 if (!bfd_link_relocatable (info)
4757 && abfd->lto_slim_object)
4760 (_("%pB: plugin needed to handle lto object"), abfd);
4763 for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount);
4765 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4769 asection *sec, *new_sec;
4772 struct elf_link_hash_entry *h;
4773 struct elf_link_hash_entry *hi;
4775 bool size_change_ok;
4776 bool type_change_ok;
4782 unsigned int old_alignment;
4783 unsigned int shindex;
4789 flags = BSF_NO_FLAGS;
4791 value = isym->st_value;
4792 common = bed->common_definition (isym);
4793 if (common && info->inhibit_common_definition)
4795 /* Treat common symbol as undefined for --no-define-common. */
4796 isym->st_shndx = SHN_UNDEF;
4801 bind = ELF_ST_BIND (isym->st_info);
4805 /* This should be impossible, since ELF requires that all
4806 global symbols follow all local symbols, and that sh_info
4807 point to the first global symbol. Unfortunately, Irix 5
4809 if (elf_bad_symtab (abfd))
4812 /* If we aren't prepared to handle locals within the globals
4813 then we'll likely segfault on a NULL symbol hash if the
4814 symbol is ever referenced in relocations. */
4815 shindex = elf_elfheader (abfd)->e_shstrndx;
4816 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4817 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4818 " (>= sh_info of %lu)"),
4819 abfd, name, (long) (isym - isymbuf + extsymoff),
4822 /* Dynamic object relocations are not processed by ld, so
4823 ld won't run into the problem mentioned above. */
4826 bfd_set_error (bfd_error_bad_value);
4827 goto error_free_vers;
4830 if (isym->st_shndx != SHN_UNDEF && !common)
4838 case STB_GNU_UNIQUE:
4839 flags = BSF_GNU_UNIQUE;
4843 /* Leave it up to the processor backend. */
4847 if (isym->st_shndx == SHN_UNDEF)
4848 sec = bfd_und_section_ptr;
4849 else if (isym->st_shndx == SHN_ABS)
4850 sec = bfd_abs_section_ptr;
4851 else if (isym->st_shndx == SHN_COMMON)
4853 sec = bfd_com_section_ptr;
4854 /* What ELF calls the size we call the value. What ELF
4855 calls the value we call the alignment. */
4856 value = isym->st_size;
4860 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4862 sec = bfd_abs_section_ptr;
4863 else if (discarded_section (sec))
4865 /* Symbols from discarded section are undefined. We keep
4867 sec = bfd_und_section_ptr;
4869 isym->st_shndx = SHN_UNDEF;
4871 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4875 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4878 goto error_free_vers;
4880 if (isym->st_shndx == SHN_COMMON
4881 && (abfd->flags & BFD_PLUGIN) != 0)
4883 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4887 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4889 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4891 goto error_free_vers;
4895 else if (isym->st_shndx == SHN_COMMON
4896 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4897 && !bfd_link_relocatable (info))
4899 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4903 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4904 | SEC_LINKER_CREATED);
4905 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4907 goto error_free_vers;
4911 else if (bed->elf_add_symbol_hook)
4913 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4915 goto error_free_vers;
4917 /* The hook function sets the name to NULL if this symbol
4918 should be skipped for some reason. */
4923 /* Sanity check that all possibilities were handled. */
4927 /* Silently discard TLS symbols from --just-syms. There's
4928 no way to combine a static TLS block with a new TLS block
4929 for this executable. */
4930 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4931 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4934 if (bfd_is_und_section (sec)
4935 || bfd_is_com_section (sec))
4940 size_change_ok = false;
4941 type_change_ok = bed->type_change_ok;
4948 if (is_elf_hash_table (&htab->root))
4950 Elf_Internal_Versym iver;
4951 unsigned int vernum = 0;
4956 if (info->default_imported_symver)
4957 /* Use the default symbol version created earlier. */
4958 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4962 else if (ever >= extversym_end)
4964 /* xgettext:c-format */
4965 _bfd_error_handler (_("%pB: not enough version information"),
4967 bfd_set_error (bfd_error_bad_value);
4968 goto error_free_vers;
4971 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4973 vernum = iver.vs_vers & VERSYM_VERSION;
4975 /* If this is a hidden symbol, or if it is not version
4976 1, we append the version name to the symbol name.
4977 However, we do not modify a non-hidden absolute symbol
4978 if it is not a function, because it might be the version
4979 symbol itself. FIXME: What if it isn't? */
4980 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4982 && (!bfd_is_abs_section (sec)
4983 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4986 size_t namelen, verlen, newlen;
4989 if (isym->st_shndx != SHN_UNDEF)
4991 if (vernum > elf_tdata (abfd)->cverdefs)
4993 else if (vernum > 1)
4995 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
5002 /* xgettext:c-format */
5003 (_("%pB: %s: invalid version %u (max %d)"),
5005 elf_tdata (abfd)->cverdefs);
5006 bfd_set_error (bfd_error_bad_value);
5007 goto error_free_vers;
5012 /* We cannot simply test for the number of
5013 entries in the VERNEED section since the
5014 numbers for the needed versions do not start
5016 Elf_Internal_Verneed *t;
5019 for (t = elf_tdata (abfd)->verref;
5023 Elf_Internal_Vernaux *a;
5025 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
5027 if (a->vna_other == vernum)
5029 verstr = a->vna_nodename;
5039 /* xgettext:c-format */
5040 (_("%pB: %s: invalid needed version %d"),
5041 abfd, name, vernum);
5042 bfd_set_error (bfd_error_bad_value);
5043 goto error_free_vers;
5047 namelen = strlen (name);
5048 verlen = strlen (verstr);
5049 newlen = namelen + verlen + 2;
5050 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5051 && isym->st_shndx != SHN_UNDEF)
5054 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
5055 if (newname == NULL)
5056 goto error_free_vers;
5057 memcpy (newname, name, namelen);
5058 p = newname + namelen;
5060 /* If this is a defined non-hidden version symbol,
5061 we add another @ to the name. This indicates the
5062 default version of the symbol. */
5063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
5064 && isym->st_shndx != SHN_UNDEF)
5066 memcpy (p, verstr, verlen + 1);
5071 /* If this symbol has default visibility and the user has
5072 requested we not re-export it, then mark it as hidden. */
5073 if (!bfd_is_und_section (sec)
5076 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
5077 isym->st_other = (STV_HIDDEN
5078 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
5080 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
5081 sym_hash, &old_bfd, &old_weak,
5082 &old_alignment, &skip, &override,
5083 &type_change_ok, &size_change_ok,
5085 goto error_free_vers;
5090 /* Override a definition only if the new symbol matches the
5092 if (override && matched)
5096 while (h->root.type == bfd_link_hash_indirect
5097 || h->root.type == bfd_link_hash_warning)
5098 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5100 if (h->versioned != unversioned
5101 && elf_tdata (abfd)->verdef != NULL
5104 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
5107 if (! (_bfd_generic_link_add_one_symbol
5108 (info, override ? override : abfd, name, flags, sec, value,
5109 NULL, false, bed->collect,
5110 (struct bfd_link_hash_entry **) sym_hash)))
5111 goto error_free_vers;
5114 /* We need to make sure that indirect symbol dynamic flags are
5117 while (h->root.type == bfd_link_hash_indirect
5118 || h->root.type == bfd_link_hash_warning)
5119 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5123 /* Setting the index to -3 tells elf_link_output_extsym that
5124 this symbol is defined in a discarded section. */
5125 if (discarded && is_elf_hash_table (&htab->root))
5128 new_weak = (flags & BSF_WEAK) != 0;
5132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
5133 && is_elf_hash_table (&htab->root)
5134 && h->u.alias == NULL)
5136 /* Keep a list of all weak defined non function symbols from
5137 a dynamic object, using the alias field. Later in this
5138 function we will set the alias field to the correct
5139 value. We only put non-function symbols from dynamic
5140 objects on this list, because that happens to be the only
5141 time we need to know the normal symbol corresponding to a
5142 weak symbol, and the information is time consuming to
5143 figure out. If the alias field is not already NULL,
5144 then this symbol was already defined by some previous
5145 dynamic object, and we will be using that previous
5146 definition anyhow. */
5152 /* Set the alignment of a common symbol. */
5153 if ((common || bfd_is_com_section (sec))
5154 && h->root.type == bfd_link_hash_common)
5159 align = bfd_log2 (isym->st_value);
5162 /* The new symbol is a common symbol in a shared object.
5163 We need to get the alignment from the section. */
5164 align = new_sec->alignment_power;
5166 if (align > old_alignment)
5167 h->root.u.c.p->alignment_power = align;
5169 h->root.u.c.p->alignment_power = old_alignment;
5172 if (is_elf_hash_table (&htab->root))
5174 /* Set a flag in the hash table entry indicating the type of
5175 reference or definition we just found. A dynamic symbol
5176 is one which is referenced or defined by both a regular
5177 object and a shared object. */
5178 bool dynsym = false;
5180 /* Plugin symbols aren't normal. Don't set def/ref flags. */
5181 if ((abfd->flags & BFD_PLUGIN) != 0)
5183 /* Except for this flag to track nonweak references. */
5185 && bind != STB_WEAK)
5186 h->ref_ir_nonweak = 1;
5193 if (bind != STB_WEAK)
5194 h->ref_regular_nonweak = 1;
5211 hi->ref_dynamic = 1;
5216 hi->def_dynamic = 1;
5220 /* If an indirect symbol has been forced local, don't
5221 make the real symbol dynamic. */
5222 if (h != hi && hi->forced_local)
5226 if (bfd_link_dll (info)
5236 && weakdef (h)->dynindx != -1))
5240 /* Check to see if we need to add an indirect symbol for
5241 the default name. */
5243 || (!override && h->root.type == bfd_link_hash_common))
5245 && hi->versioned == versioned_hidden))
5246 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5247 sec, value, &old_bfd, &dynsym))
5248 goto error_free_vers;
5250 /* Check the alignment when a common symbol is involved. This
5251 can change when a common symbol is overridden by a normal
5252 definition or a common symbol is ignored due to the old
5253 normal definition. We need to make sure the maximum
5254 alignment is maintained. */
5255 if ((old_alignment || common)
5256 && h->root.type != bfd_link_hash_common)
5258 unsigned int common_align;
5259 unsigned int normal_align;
5260 unsigned int symbol_align;
5264 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5265 || h->root.type == bfd_link_hash_defweak);
5267 symbol_align = ffs (h->root.u.def.value) - 1;
5268 if (h->root.u.def.section->owner != NULL
5269 && (h->root.u.def.section->owner->flags
5270 & (DYNAMIC | BFD_PLUGIN)) == 0)
5272 normal_align = h->root.u.def.section->alignment_power;
5273 if (normal_align > symbol_align)
5274 normal_align = symbol_align;
5277 normal_align = symbol_align;
5281 common_align = old_alignment;
5282 common_bfd = old_bfd;
5287 common_align = bfd_log2 (isym->st_value);
5289 normal_bfd = old_bfd;
5292 if (normal_align < common_align)
5294 /* PR binutils/2735 */
5295 if (normal_bfd == NULL)
5297 /* xgettext:c-format */
5298 (_("warning: alignment %u of common symbol `%s' in %pB is"
5299 " greater than the alignment (%u) of its section %pA"),
5300 1 << common_align, name, common_bfd,
5301 1 << normal_align, h->root.u.def.section);
5304 /* xgettext:c-format */
5305 (_("warning: alignment %u of symbol `%s' in %pB"
5306 " is smaller than %u in %pB"),
5307 1 << normal_align, name, normal_bfd,
5308 1 << common_align, common_bfd);
5312 /* Remember the symbol size if it isn't undefined. */
5313 if (isym->st_size != 0
5314 && isym->st_shndx != SHN_UNDEF
5315 && (definition || h->size == 0))
5318 && h->size != isym->st_size
5319 && ! size_change_ok)
5321 /* xgettext:c-format */
5322 (_("warning: size of symbol `%s' changed"
5323 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5324 name, (uint64_t) h->size, old_bfd,
5325 (uint64_t) isym->st_size, abfd);
5327 h->size = isym->st_size;
5330 /* If this is a common symbol, then we always want H->SIZE
5331 to be the size of the common symbol. The code just above
5332 won't fix the size if a common symbol becomes larger. We
5333 don't warn about a size change here, because that is
5334 covered by --warn-common. Allow changes between different
5336 if (h->root.type == bfd_link_hash_common)
5337 h->size = h->root.u.c.size;
5339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5340 && ((definition && !new_weak)
5341 || (old_weak && h->root.type == bfd_link_hash_common)
5342 || h->type == STT_NOTYPE))
5344 unsigned int type = ELF_ST_TYPE (isym->st_info);
5346 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5348 if (type == STT_GNU_IFUNC
5349 && (abfd->flags & DYNAMIC) != 0)
5352 if (h->type != type)
5354 if (h->type != STT_NOTYPE && ! type_change_ok)
5355 /* xgettext:c-format */
5357 (_("warning: type of symbol `%s' changed"
5358 " from %d to %d in %pB"),
5359 name, h->type, type, abfd);
5365 /* Merge st_other field. */
5366 elf_merge_st_other (abfd, h, isym->st_other, sec,
5367 definition, dynamic);
5369 /* We don't want to make debug symbol dynamic. */
5371 && (sec->flags & SEC_DEBUGGING)
5372 && !bfd_link_relocatable (info))
5375 /* Nor should we make plugin symbols dynamic. */
5376 if ((abfd->flags & BFD_PLUGIN) != 0)
5381 h->target_internal = isym->st_target_internal;
5382 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5385 if (definition && !dynamic)
5387 char *p = strchr (name, ELF_VER_CHR);
5388 if (p != NULL && p[1] != ELF_VER_CHR)
5390 /* Queue non-default versions so that .symver x, x@FOO
5391 aliases can be checked. */
5394 size_t amt = ((isymend - isym + 1)
5395 * sizeof (struct elf_link_hash_entry *));
5397 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5399 goto error_free_vers;
5401 nondeflt_vers[nondeflt_vers_cnt++] = h;
5405 if (dynsym && h->dynindx == -1)
5407 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5408 goto error_free_vers;
5410 && weakdef (h)->dynindx == -1)
5412 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5413 goto error_free_vers;
5416 else if (h->dynindx != -1)
5417 /* If the symbol already has a dynamic index, but
5418 visibility says it should not be visible, turn it into
5420 switch (ELF_ST_VISIBILITY (h->other))
5424 (*bed->elf_backend_hide_symbol) (info, h, true);
5432 && h->root.type != bfd_link_hash_indirect
5434 && h->ref_regular_nonweak)
5436 && (old_bfd->flags & BFD_PLUGIN) != 0
5437 && h->ref_ir_nonweak
5438 && !info->lto_all_symbols_read)
5439 || (h->ref_dynamic_nonweak
5440 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5441 && !on_needed_list (elf_dt_name (abfd),
5442 htab->needed, NULL))))
5444 const char *soname = elf_dt_name (abfd);
5446 info->callbacks->minfo ("%!", soname, old_bfd,
5447 h->root.root.string);
5449 /* A symbol from a library loaded via DT_NEEDED of some
5450 other library is referenced by a regular object.
5451 Add a DT_NEEDED entry for it. Issue an error if
5452 --no-add-needed is used and the reference was not
5455 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5458 /* xgettext:c-format */
5459 (_("%pB: undefined reference to symbol '%s'"),
5461 bfd_set_error (bfd_error_missing_dso);
5462 goto error_free_vers;
5465 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5466 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5468 /* Create dynamic sections for backends that require
5469 that be done before setup_gnu_properties. */
5470 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5477 if (info->lto_plugin_active
5478 && !bfd_link_relocatable (info)
5479 && (abfd->flags & BFD_PLUGIN) == 0
5485 if (bed->s->arch_size == 32)
5490 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5491 referenced in regular objects so that linker plugin will get
5492 the correct symbol resolution. */
5494 sym_hash = elf_sym_hashes (abfd);
5495 for (s = abfd->sections; s != NULL; s = s->next)
5497 Elf_Internal_Rela *internal_relocs;
5498 Elf_Internal_Rela *rel, *relend;
5500 /* Don't check relocations in excluded sections. */
5501 if ((s->flags & SEC_RELOC) == 0
5502 || s->reloc_count == 0
5503 || (s->flags & SEC_EXCLUDE) != 0
5504 || ((info->strip == strip_all
5505 || info->strip == strip_debugger)
5506 && (s->flags & SEC_DEBUGGING) != 0))
5509 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info,
5512 _bfd_link_keep_memory (info));
5513 if (internal_relocs == NULL)
5514 goto error_free_vers;
5516 rel = internal_relocs;
5517 relend = rel + s->reloc_count;
5518 for ( ; rel < relend; rel++)
5520 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5521 struct elf_link_hash_entry *h;
5523 /* Skip local symbols. */
5524 if (r_symndx < extsymoff)
5527 h = sym_hash[r_symndx - extsymoff];
5529 h->root.non_ir_ref_regular = 1;
5532 if (elf_section_data (s)->relocs != internal_relocs)
5533 free (internal_relocs);
5542 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5546 /* Restore the symbol table. */
5547 old_ent = (char *) old_tab + tabsize;
5548 memset (elf_sym_hashes (abfd), 0,
5549 extsymcount * sizeof (struct elf_link_hash_entry *));
5550 htab->root.table.table = old_table;
5551 htab->root.table.size = old_size;
5552 htab->root.table.count = old_count;
5553 memcpy (htab->root.table.table, old_tab, tabsize);
5554 htab->root.undefs = old_undefs;
5555 htab->root.undefs_tail = old_undefs_tail;
5556 if (htab->dynstr != NULL)
5557 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5560 for (i = 0; i < htab->root.table.size; i++)
5562 struct bfd_hash_entry *p;
5563 struct elf_link_hash_entry *h;
5564 unsigned int non_ir_ref_dynamic;
5566 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5568 /* Preserve non_ir_ref_dynamic so that this symbol
5569 will be exported when the dynamic lib becomes needed
5570 in the second pass. */
5571 h = (struct elf_link_hash_entry *) p;
5572 if (h->root.type == bfd_link_hash_warning)
5573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5574 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5576 h = (struct elf_link_hash_entry *) p;
5577 memcpy (h, old_ent, htab->root.table.entsize);
5578 old_ent = (char *) old_ent + htab->root.table.entsize;
5579 if (h->root.type == bfd_link_hash_warning)
5581 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5582 memcpy (h, old_ent, htab->root.table.entsize);
5583 old_ent = (char *) old_ent + htab->root.table.entsize;
5585 if (h->root.type == bfd_link_hash_common)
5587 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p));
5588 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p);
5590 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5594 /* Make a special call to the linker "notice" function to
5595 tell it that symbols added for crefs may need to be removed. */
5596 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5597 goto error_free_vers;
5600 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5602 free (nondeflt_vers);
5606 if (old_tab != NULL)
5608 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5609 goto error_free_vers;
5614 /* Now that all the symbols from this input file are created, if
5615 not performing a relocatable link, handle .symver foo, foo@BAR
5616 such that any relocs against foo become foo@BAR. */
5617 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5621 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5623 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5624 char *shortname, *p;
5627 p = strchr (h->root.root.string, ELF_VER_CHR);
5629 || (h->root.type != bfd_link_hash_defined
5630 && h->root.type != bfd_link_hash_defweak))
5633 amt = p - h->root.root.string;
5634 shortname = (char *) bfd_malloc (amt + 1);
5636 goto error_free_vers;
5637 memcpy (shortname, h->root.root.string, amt);
5638 shortname[amt] = '\0';
5640 hi = (struct elf_link_hash_entry *)
5641 bfd_link_hash_lookup (&htab->root, shortname,
5642 false, false, false);
5644 && hi->root.type == h->root.type
5645 && hi->root.u.def.value == h->root.u.def.value
5646 && hi->root.u.def.section == h->root.u.def.section)
5648 (*bed->elf_backend_hide_symbol) (info, hi, true);
5649 hi->root.type = bfd_link_hash_indirect;
5650 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5651 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5652 sym_hash = elf_sym_hashes (abfd);
5654 for (symidx = 0; symidx < extsymcount; ++symidx)
5655 if (sym_hash[symidx] == hi)
5657 sym_hash[symidx] = h;
5663 free (nondeflt_vers);
5664 nondeflt_vers = NULL;
5667 /* Now set the alias field correctly for all the weak defined
5668 symbols we found. The only way to do this is to search all the
5669 symbols. Since we only need the information for non functions in
5670 dynamic objects, that's the only time we actually put anything on
5671 the list WEAKS. We need this information so that if a regular
5672 object refers to a symbol defined weakly in a dynamic object, the
5673 real symbol in the dynamic object is also put in the dynamic
5674 symbols; we also must arrange for both symbols to point to the
5675 same memory location. We could handle the general case of symbol
5676 aliasing, but a general symbol alias can only be generated in
5677 assembler code, handling it correctly would be very time
5678 consuming, and other ELF linkers don't handle general aliasing
5682 struct elf_link_hash_entry **hpp;
5683 struct elf_link_hash_entry **hppend;
5684 struct elf_link_hash_entry **sorted_sym_hash;
5685 struct elf_link_hash_entry *h;
5686 size_t sym_count, amt;
5688 /* Since we have to search the whole symbol list for each weak
5689 defined symbol, search time for N weak defined symbols will be
5690 O(N^2). Binary search will cut it down to O(NlogN). */
5691 amt = extsymcount * sizeof (*sorted_sym_hash);
5692 sorted_sym_hash = bfd_malloc (amt);
5693 if (sorted_sym_hash == NULL)
5695 sym_hash = sorted_sym_hash;
5696 hpp = elf_sym_hashes (abfd);
5697 hppend = hpp + extsymcount;
5699 for (; hpp < hppend; hpp++)
5703 && h->root.type == bfd_link_hash_defined
5704 && !bed->is_function_type (h->type))
5712 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5715 while (weaks != NULL)
5717 struct elf_link_hash_entry *hlook;
5720 size_t i, j, idx = 0;
5723 weaks = hlook->u.alias;
5724 hlook->u.alias = NULL;
5726 if (hlook->root.type != bfd_link_hash_defined
5727 && hlook->root.type != bfd_link_hash_defweak)
5730 slook = hlook->root.u.def.section;
5731 vlook = hlook->root.u.def.value;
5737 bfd_signed_vma vdiff;
5739 h = sorted_sym_hash[idx];
5740 vdiff = vlook - h->root.u.def.value;
5747 int sdiff = slook->id - h->root.u.def.section->id;
5757 /* We didn't find a value/section match. */
5761 /* With multiple aliases, or when the weak symbol is already
5762 strongly defined, we have multiple matching symbols and
5763 the binary search above may land on any of them. Step
5764 one past the matching symbol(s). */
5767 h = sorted_sym_hash[idx];
5768 if (h->root.u.def.section != slook
5769 || h->root.u.def.value != vlook)
5773 /* Now look back over the aliases. Since we sorted by size
5774 as well as value and section, we'll choose the one with
5775 the largest size. */
5778 h = sorted_sym_hash[idx];
5780 /* Stop if value or section doesn't match. */
5781 if (h->root.u.def.section != slook
5782 || h->root.u.def.value != vlook)
5784 else if (h != hlook)
5786 struct elf_link_hash_entry *t;
5789 hlook->is_weakalias = 1;
5791 if (t->u.alias != NULL)
5792 while (t->u.alias != h)
5796 /* If the weak definition is in the list of dynamic
5797 symbols, make sure the real definition is put
5799 if (hlook->dynindx != -1 && h->dynindx == -1)
5801 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5804 free (sorted_sym_hash);
5809 /* If the real definition is in the list of dynamic
5810 symbols, make sure the weak definition is put
5811 there as well. If we don't do this, then the
5812 dynamic loader might not merge the entries for the
5813 real definition and the weak definition. */
5814 if (h->dynindx != -1 && hlook->dynindx == -1)
5816 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5817 goto err_free_sym_hash;
5824 free (sorted_sym_hash);
5827 if (bed->check_directives
5828 && !(*bed->check_directives) (abfd, info))
5831 /* If this is a non-traditional link, try to optimize the handling
5832 of the .stab/.stabstr sections. */
5834 && ! info->traditional_format
5835 && is_elf_hash_table (&htab->root)
5836 && (info->strip != strip_all && info->strip != strip_debugger))
5840 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5841 if (stabstr != NULL)
5843 bfd_size_type string_offset = 0;
5846 for (stab = abfd->sections; stab; stab = stab->next)
5847 if (startswith (stab->name, ".stab")
5848 && (!stab->name[5] ||
5849 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5850 && (stab->flags & SEC_MERGE) == 0
5851 && !bfd_is_abs_section (stab->output_section))
5853 struct bfd_elf_section_data *secdata;
5855 secdata = elf_section_data (stab);
5856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5857 stabstr, &secdata->sec_info,
5860 if (secdata->sec_info)
5861 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5866 if (dynamic && add_needed)
5868 /* Add this bfd to the loaded list. */
5869 struct elf_link_loaded_list *n;
5871 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5875 n->next = htab->dyn_loaded;
5876 htab->dyn_loaded = n;
5878 if (dynamic && !add_needed
5879 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5880 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5887 free (nondeflt_vers);
5895 /* Return the linker hash table entry of a symbol that might be
5896 satisfied by an archive symbol. Return -1 on error. */
5898 struct bfd_link_hash_entry *
5899 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5900 struct bfd_link_info *info,
5903 struct bfd_link_hash_entry *h;
5907 h = bfd_link_hash_lookup (info->hash, name, false, false, true);
5911 /* If this is a default version (the name contains @@), look up the
5912 symbol again with only one `@' as well as without the version.
5913 The effect is that references to the symbol with and without the
5914 version will be matched by the default symbol in the archive. */
5916 p = strchr (name, ELF_VER_CHR);
5917 if (p == NULL || p[1] != ELF_VER_CHR)
5920 /* First check with only one `@'. */
5921 len = strlen (name);
5922 copy = (char *) bfd_alloc (abfd, len);
5924 return (struct bfd_link_hash_entry *) -1;
5926 first = p - name + 1;
5927 memcpy (copy, name, first);
5928 memcpy (copy + first, name + first + 1, len - first);
5930 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5933 /* We also need to check references to the symbol without the
5935 copy[first - 1] = '\0';
5936 h = bfd_link_hash_lookup (info->hash, copy, false, false, true);
5939 bfd_release (abfd, copy);
5943 /* Add symbols from an ELF archive file to the linker hash table. We
5944 don't use _bfd_generic_link_add_archive_symbols because we need to
5945 handle versioned symbols.
5947 Fortunately, ELF archive handling is simpler than that done by
5948 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5949 oddities. In ELF, if we find a symbol in the archive map, and the
5950 symbol is currently undefined, we know that we must pull in that
5953 Unfortunately, we do have to make multiple passes over the symbol
5954 table until nothing further is resolved. */
5957 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5960 unsigned char *included = NULL;
5964 const struct elf_backend_data *bed;
5965 struct bfd_link_hash_entry * (*archive_symbol_lookup)
5966 (bfd *, struct bfd_link_info *, const char *);
5968 if (! bfd_has_map (abfd))
5970 /* An empty archive is a special case. */
5971 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5973 bfd_set_error (bfd_error_no_armap);
5977 /* Keep track of all symbols we know to be already defined, and all
5978 files we know to be already included. This is to speed up the
5979 second and subsequent passes. */
5980 c = bfd_ardata (abfd)->symdef_count;
5983 amt = c * sizeof (*included);
5984 included = (unsigned char *) bfd_zmalloc (amt);
5985 if (included == NULL)
5988 symdefs = bfd_ardata (abfd)->symdefs;
5989 bed = get_elf_backend_data (abfd);
5990 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
6003 symdefend = symdef + c;
6004 for (i = 0; symdef < symdefend; symdef++, i++)
6006 struct bfd_link_hash_entry *h;
6008 struct bfd_link_hash_entry *undefs_tail;
6013 if (symdef->file_offset == last)
6019 h = archive_symbol_lookup (abfd, info, symdef->name);
6020 if (h == (struct bfd_link_hash_entry *) -1)
6026 if (h->type == bfd_link_hash_undefined)
6028 /* If the archive element has already been loaded then one
6029 of the symbols defined by that element might have been
6030 made undefined due to being in a discarded section. */
6031 if (is_elf_hash_table (info->hash)
6032 && ((struct elf_link_hash_entry *) h)->indx == -3)
6035 else if (h->type == bfd_link_hash_common)
6037 /* We currently have a common symbol. The archive map contains
6038 a reference to this symbol, so we may want to include it. We
6039 only want to include it however, if this archive element
6040 contains a definition of the symbol, not just another common
6043 Unfortunately some archivers (including GNU ar) will put
6044 declarations of common symbols into their archive maps, as
6045 well as real definitions, so we cannot just go by the archive
6046 map alone. Instead we must read in the element's symbol
6047 table and check that to see what kind of symbol definition
6049 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
6054 if (h->type != bfd_link_hash_undefweak)
6055 /* Symbol must be defined. Don't check it again. */
6060 /* We need to include this archive member. */
6061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset,
6063 if (element == NULL)
6066 if (! bfd_check_format (element, bfd_object))
6069 undefs_tail = info->hash->undefs_tail;
6071 if (!(*info->callbacks
6072 ->add_archive_element) (info, element, symdef->name, &element))
6074 if (!bfd_link_add_symbols (element, info))
6077 /* If there are any new undefined symbols, we need to make
6078 another pass through the archive in order to see whether
6079 they can be defined. FIXME: This isn't perfect, because
6080 common symbols wind up on undefs_tail and because an
6081 undefined symbol which is defined later on in this pass
6082 does not require another pass. This isn't a bug, but it
6083 does make the code less efficient than it could be. */
6084 if (undefs_tail != info->hash->undefs_tail)
6087 /* Look backward to mark all symbols from this object file
6088 which we have already seen in this pass. */
6092 included[mark] = true;
6097 while (symdefs[mark].file_offset == symdef->file_offset);
6099 /* We mark subsequent symbols from this object file as we go
6100 on through the loop. */
6101 last = symdef->file_offset;
6114 /* Given an ELF BFD, add symbols to the global hash table as
6118 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
6120 switch (bfd_get_format (abfd))
6123 return elf_link_add_object_symbols (abfd, info);
6125 return elf_link_add_archive_symbols (abfd, info);
6127 bfd_set_error (bfd_error_wrong_format);
6132 struct hash_codes_info
6134 unsigned long *hashcodes;
6138 /* This function will be called though elf_link_hash_traverse to store
6139 all hash value of the exported symbols in an array. */
6142 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
6144 struct hash_codes_info *inf = (struct hash_codes_info *) data;
6149 /* Ignore indirect symbols. These are added by the versioning code. */
6150 if (h->dynindx == -1)
6153 name = h->root.root.string;
6154 if (h->versioned >= versioned)
6156 char *p = strchr (name, ELF_VER_CHR);
6159 alc = (char *) bfd_malloc (p - name + 1);
6165 memcpy (alc, name, p - name);
6166 alc[p - name] = '\0';
6171 /* Compute the hash value. */
6172 ha = bfd_elf_hash (name);
6174 /* Store the found hash value in the array given as the argument. */
6175 *(inf->hashcodes)++ = ha;
6177 /* And store it in the struct so that we can put it in the hash table
6179 h->u.elf_hash_value = ha;
6185 struct collect_gnu_hash_codes
6188 const struct elf_backend_data *bed;
6189 unsigned long int nsyms;
6190 unsigned long int maskbits;
6191 unsigned long int *hashcodes;
6192 unsigned long int *hashval;
6193 unsigned long int *indx;
6194 unsigned long int *counts;
6198 long int min_dynindx;
6199 unsigned long int bucketcount;
6200 unsigned long int symindx;
6201 long int local_indx;
6202 long int shift1, shift2;
6203 unsigned long int mask;
6207 /* This function will be called though elf_link_hash_traverse to store
6208 all hash value of the exported symbols in an array. */
6211 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6213 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6218 /* Ignore indirect symbols. These are added by the versioning code. */
6219 if (h->dynindx == -1)
6222 /* Ignore also local symbols and undefined symbols. */
6223 if (! (*s->bed->elf_hash_symbol) (h))
6226 name = h->root.root.string;
6227 if (h->versioned >= versioned)
6229 char *p = strchr (name, ELF_VER_CHR);
6232 alc = (char *) bfd_malloc (p - name + 1);
6238 memcpy (alc, name, p - name);
6239 alc[p - name] = '\0';
6244 /* Compute the hash value. */
6245 ha = bfd_elf_gnu_hash (name);
6247 /* Store the found hash value in the array for compute_bucket_count,
6248 and also for .dynsym reordering purposes. */
6249 s->hashcodes[s->nsyms] = ha;
6250 s->hashval[h->dynindx] = ha;
6252 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6253 s->min_dynindx = h->dynindx;
6259 /* This function will be called though elf_link_hash_traverse to do
6260 final dynamic symbol renumbering in case of .gnu.hash.
6261 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6262 to the translation table. */
6265 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6267 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6268 unsigned long int bucket;
6269 unsigned long int val;
6271 /* Ignore indirect symbols. */
6272 if (h->dynindx == -1)
6275 /* Ignore also local symbols and undefined symbols. */
6276 if (! (*s->bed->elf_hash_symbol) (h))
6278 if (h->dynindx >= s->min_dynindx)
6280 if (s->bed->record_xhash_symbol != NULL)
6282 (*s->bed->record_xhash_symbol) (h, 0);
6286 h->dynindx = s->local_indx++;
6291 bucket = s->hashval[h->dynindx] % s->bucketcount;
6292 val = (s->hashval[h->dynindx] >> s->shift1)
6293 & ((s->maskbits >> s->shift1) - 1);
6294 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6296 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6297 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6298 if (s->counts[bucket] == 1)
6299 /* Last element terminates the chain. */
6301 bfd_put_32 (s->output_bfd, val,
6302 s->contents + (s->indx[bucket] - s->symindx) * 4);
6303 --s->counts[bucket];
6304 if (s->bed->record_xhash_symbol != NULL)
6306 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6308 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6311 h->dynindx = s->indx[bucket]++;
6315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6318 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6320 return !(h->forced_local
6321 || h->root.type == bfd_link_hash_undefined
6322 || h->root.type == bfd_link_hash_undefweak
6323 || ((h->root.type == bfd_link_hash_defined
6324 || h->root.type == bfd_link_hash_defweak)
6325 && h->root.u.def.section->output_section == NULL));
6328 /* Array used to determine the number of hash table buckets to use
6329 based on the number of symbols there are. If there are fewer than
6330 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6331 fewer than 37 we use 17 buckets, and so forth. We never use more
6332 than 32771 buckets. */
6334 static const size_t elf_buckets[] =
6336 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6340 /* Compute bucket count for hashing table. We do not use a static set
6341 of possible tables sizes anymore. Instead we determine for all
6342 possible reasonable sizes of the table the outcome (i.e., the
6343 number of collisions etc) and choose the best solution. The
6344 weighting functions are not too simple to allow the table to grow
6345 without bounds. Instead one of the weighting factors is the size.
6346 Therefore the result is always a good payoff between few collisions
6347 (= short chain lengths) and table size. */
6349 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6350 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6351 unsigned long int nsyms,
6354 size_t best_size = 0;
6355 unsigned long int i;
6357 /* We have a problem here. The following code to optimize the table
6358 size requires an integer type with more the 32 bits. If
6359 BFD_HOST_U_64_BIT is set we know about such a type. */
6360 #ifdef BFD_HOST_U_64_BIT
6365 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6366 bfd *dynobj = elf_hash_table (info)->dynobj;
6367 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6368 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6369 unsigned long int *counts;
6371 unsigned int no_improvement_count = 0;
6373 /* Possible optimization parameters: if we have NSYMS symbols we say
6374 that the hashing table must at least have NSYMS/4 and at most
6376 minsize = nsyms / 4;
6379 best_size = maxsize = nsyms * 2;
6384 if ((best_size & 31) == 0)
6388 /* Create array where we count the collisions in. We must use bfd_malloc
6389 since the size could be large. */
6391 amt *= sizeof (unsigned long int);
6392 counts = (unsigned long int *) bfd_malloc (amt);
6396 /* Compute the "optimal" size for the hash table. The criteria is a
6397 minimal chain length. The minor criteria is (of course) the size
6399 for (i = minsize; i < maxsize; ++i)
6401 /* Walk through the array of hashcodes and count the collisions. */
6402 BFD_HOST_U_64_BIT max;
6403 unsigned long int j;
6404 unsigned long int fact;
6406 if (gnu_hash && (i & 31) == 0)
6409 memset (counts, '\0', i * sizeof (unsigned long int));
6411 /* Determine how often each hash bucket is used. */
6412 for (j = 0; j < nsyms; ++j)
6413 ++counts[hashcodes[j] % i];
6415 /* For the weight function we need some information about the
6416 pagesize on the target. This is information need not be 100%
6417 accurate. Since this information is not available (so far) we
6418 define it here to a reasonable default value. If it is crucial
6419 to have a better value some day simply define this value. */
6420 # ifndef BFD_TARGET_PAGESIZE
6421 # define BFD_TARGET_PAGESIZE (4096)
6424 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6426 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6429 /* Variant 1: optimize for short chains. We add the squares
6430 of all the chain lengths (which favors many small chain
6431 over a few long chains). */
6432 for (j = 0; j < i; ++j)
6433 max += counts[j] * counts[j];
6435 /* This adds penalties for the overall size of the table. */
6436 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6439 /* Variant 2: Optimize a lot more for small table. Here we
6440 also add squares of the size but we also add penalties for
6441 empty slots (the +1 term). */
6442 for (j = 0; j < i; ++j)
6443 max += (1 + counts[j]) * (1 + counts[j]);
6445 /* The overall size of the table is considered, but not as
6446 strong as in variant 1, where it is squared. */
6447 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6451 /* Compare with current best results. */
6452 if (max < best_chlen)
6456 no_improvement_count = 0;
6458 /* PR 11843: Avoid futile long searches for the best bucket size
6459 when there are a large number of symbols. */
6460 else if (++no_improvement_count == 100)
6467 #endif /* defined (BFD_HOST_U_64_BIT) */
6469 /* This is the fallback solution if no 64bit type is available or if we
6470 are not supposed to spend much time on optimizations. We select the
6471 bucket count using a fixed set of numbers. */
6472 for (i = 0; elf_buckets[i] != 0; i++)
6474 best_size = elf_buckets[i];
6475 if (nsyms < elf_buckets[i + 1])
6478 if (gnu_hash && best_size < 2)
6485 /* Size any SHT_GROUP section for ld -r. */
6488 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6494 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6495 && (s = ibfd->sections) != NULL
6496 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6497 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6502 /* Set a default stack segment size. The value in INFO wins. If it
6503 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6504 undefined it is initialized. */
6507 bfd_elf_stack_segment_size (bfd *output_bfd,
6508 struct bfd_link_info *info,
6509 const char *legacy_symbol,
6510 bfd_vma default_size)
6512 struct elf_link_hash_entry *h = NULL;
6514 /* Look for legacy symbol. */
6516 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6517 false, false, false);
6518 if (h && (h->root.type == bfd_link_hash_defined
6519 || h->root.type == bfd_link_hash_defweak)
6521 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6523 /* The symbol has no type if specified on the command line. */
6524 h->type = STT_OBJECT;
6525 if (info->stacksize)
6526 /* xgettext:c-format */
6527 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6528 output_bfd, legacy_symbol);
6529 else if (h->root.u.def.section != bfd_abs_section_ptr)
6530 /* xgettext:c-format */
6531 _bfd_error_handler (_("%pB: %s not absolute"),
6532 output_bfd, legacy_symbol);
6534 info->stacksize = h->root.u.def.value;
6537 if (!info->stacksize)
6538 /* If the user didn't set a size, or explicitly inhibit the
6539 size, set it now. */
6540 info->stacksize = default_size;
6542 /* Provide the legacy symbol, if it is referenced. */
6543 if (h && (h->root.type == bfd_link_hash_undefined
6544 || h->root.type == bfd_link_hash_undefweak))
6546 struct bfd_link_hash_entry *bh = NULL;
6548 if (!(_bfd_generic_link_add_one_symbol
6549 (info, output_bfd, legacy_symbol,
6550 BSF_GLOBAL, bfd_abs_section_ptr,
6551 info->stacksize >= 0 ? info->stacksize : 0,
6552 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh)))
6555 h = (struct elf_link_hash_entry *) bh;
6557 h->type = STT_OBJECT;
6563 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6565 struct elf_gc_sweep_symbol_info
6567 struct bfd_link_info *info;
6568 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6573 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6576 && (((h->root.type == bfd_link_hash_defined
6577 || h->root.type == bfd_link_hash_defweak)
6578 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6579 && h->root.u.def.section->gc_mark))
6580 || h->root.type == bfd_link_hash_undefined
6581 || h->root.type == bfd_link_hash_undefweak))
6583 struct elf_gc_sweep_symbol_info *inf;
6585 inf = (struct elf_gc_sweep_symbol_info *) data;
6586 (*inf->hide_symbol) (inf->info, h, true);
6589 h->ref_regular_nonweak = 0;
6595 /* Set up the sizes and contents of the ELF dynamic sections. This is
6596 called by the ELF linker emulation before_allocation routine. We
6597 must set the sizes of the sections before the linker sets the
6598 addresses of the various sections. */
6601 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6604 const char *filter_shlib,
6606 const char *depaudit,
6607 const char * const *auxiliary_filters,
6608 struct bfd_link_info *info,
6609 asection **sinterpptr)
6612 const struct elf_backend_data *bed;
6616 if (!is_elf_hash_table (info->hash))
6619 /* Any syms created from now on start with -1 in
6620 got.refcount/offset and plt.refcount/offset. */
6621 elf_hash_table (info)->init_got_refcount
6622 = elf_hash_table (info)->init_got_offset;
6623 elf_hash_table (info)->init_plt_refcount
6624 = elf_hash_table (info)->init_plt_offset;
6626 bed = get_elf_backend_data (output_bfd);
6628 /* The backend may have to create some sections regardless of whether
6629 we're dynamic or not. */
6630 if (bed->elf_backend_always_size_sections
6631 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6634 dynobj = elf_hash_table (info)->dynobj;
6636 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6638 struct bfd_elf_version_tree *verdefs;
6639 struct elf_info_failed asvinfo;
6640 struct bfd_elf_version_tree *t;
6641 struct bfd_elf_version_expr *d;
6645 /* If we are supposed to export all symbols into the dynamic symbol
6646 table (this is not the normal case), then do so. */
6647 if (info->export_dynamic
6648 || (bfd_link_executable (info) && info->dynamic))
6650 struct elf_info_failed eif;
6654 elf_link_hash_traverse (elf_hash_table (info),
6655 _bfd_elf_export_symbol,
6663 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6665 if (soname_indx == (size_t) -1
6666 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6670 soname_indx = (size_t) -1;
6672 /* Make all global versions with definition. */
6673 for (t = info->version_info; t != NULL; t = t->next)
6674 for (d = t->globals.list; d != NULL; d = d->next)
6675 if (!d->symver && d->literal)
6677 const char *verstr, *name;
6678 size_t namelen, verlen, newlen;
6679 char *newname, *p, leading_char;
6680 struct elf_link_hash_entry *newh;
6682 leading_char = bfd_get_symbol_leading_char (output_bfd);
6684 namelen = strlen (name) + (leading_char != '\0');
6686 verlen = strlen (verstr);
6687 newlen = namelen + verlen + 3;
6689 newname = (char *) bfd_malloc (newlen);
6690 if (newname == NULL)
6692 newname[0] = leading_char;
6693 memcpy (newname + (leading_char != '\0'), name, namelen);
6695 /* Check the hidden versioned definition. */
6696 p = newname + namelen;
6698 memcpy (p, verstr, verlen + 1);
6699 newh = elf_link_hash_lookup (elf_hash_table (info),
6700 newname, false, false,
6703 || (newh->root.type != bfd_link_hash_defined
6704 && newh->root.type != bfd_link_hash_defweak))
6706 /* Check the default versioned definition. */
6708 memcpy (p, verstr, verlen + 1);
6709 newh = elf_link_hash_lookup (elf_hash_table (info),
6710 newname, false, false,
6715 /* Mark this version if there is a definition and it is
6716 not defined in a shared object. */
6718 && !newh->def_dynamic
6719 && (newh->root.type == bfd_link_hash_defined
6720 || newh->root.type == bfd_link_hash_defweak))
6724 /* Attach all the symbols to their version information. */
6725 asvinfo.info = info;
6726 asvinfo.failed = false;
6728 elf_link_hash_traverse (elf_hash_table (info),
6729 _bfd_elf_link_assign_sym_version,
6734 if (!info->allow_undefined_version)
6736 /* Check if all global versions have a definition. */
6737 bool all_defined = true;
6738 for (t = info->version_info; t != NULL; t = t->next)
6739 for (d = t->globals.list; d != NULL; d = d->next)
6740 if (d->literal && !d->symver && !d->script)
6743 (_("%s: undefined version: %s"),
6744 d->pattern, t->name);
6745 all_defined = false;
6750 bfd_set_error (bfd_error_bad_value);
6755 /* Set up the version definition section. */
6756 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6757 BFD_ASSERT (s != NULL);
6759 /* We may have created additional version definitions if we are
6760 just linking a regular application. */
6761 verdefs = info->version_info;
6763 /* Skip anonymous version tag. */
6764 if (verdefs != NULL && verdefs->vernum == 0)
6765 verdefs = verdefs->next;
6767 if (verdefs == NULL && !info->create_default_symver)
6768 s->flags |= SEC_EXCLUDE;
6774 Elf_Internal_Verdef def;
6775 Elf_Internal_Verdaux defaux;
6776 struct bfd_link_hash_entry *bh;
6777 struct elf_link_hash_entry *h;
6783 /* Make space for the base version. */
6784 size += sizeof (Elf_External_Verdef);
6785 size += sizeof (Elf_External_Verdaux);
6788 /* Make space for the default version. */
6789 if (info->create_default_symver)
6791 size += sizeof (Elf_External_Verdef);
6795 for (t = verdefs; t != NULL; t = t->next)
6797 struct bfd_elf_version_deps *n;
6799 /* Don't emit base version twice. */
6803 size += sizeof (Elf_External_Verdef);
6804 size += sizeof (Elf_External_Verdaux);
6807 for (n = t->deps; n != NULL; n = n->next)
6808 size += sizeof (Elf_External_Verdaux);
6812 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6813 if (s->contents == NULL && s->size != 0)
6816 /* Fill in the version definition section. */
6820 def.vd_version = VER_DEF_CURRENT;
6821 def.vd_flags = VER_FLG_BASE;
6824 if (info->create_default_symver)
6826 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6827 def.vd_next = sizeof (Elf_External_Verdef);
6831 def.vd_aux = sizeof (Elf_External_Verdef);
6832 def.vd_next = (sizeof (Elf_External_Verdef)
6833 + sizeof (Elf_External_Verdaux));
6836 if (soname_indx != (size_t) -1)
6838 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6840 def.vd_hash = bfd_elf_hash (soname);
6841 defaux.vda_name = soname_indx;
6848 name = lbasename (bfd_get_filename (output_bfd));
6849 def.vd_hash = bfd_elf_hash (name);
6850 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6852 if (indx == (size_t) -1)
6854 defaux.vda_name = indx;
6856 defaux.vda_next = 0;
6858 _bfd_elf_swap_verdef_out (output_bfd, &def,
6859 (Elf_External_Verdef *) p);
6860 p += sizeof (Elf_External_Verdef);
6861 if (info->create_default_symver)
6863 /* Add a symbol representing this version. */
6865 if (! (_bfd_generic_link_add_one_symbol
6866 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6868 get_elf_backend_data (dynobj)->collect, &bh)))
6870 h = (struct elf_link_hash_entry *) bh;
6873 h->type = STT_OBJECT;
6874 h->verinfo.vertree = NULL;
6876 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6879 /* Create a duplicate of the base version with the same
6880 aux block, but different flags. */
6883 def.vd_aux = sizeof (Elf_External_Verdef);
6885 def.vd_next = (sizeof (Elf_External_Verdef)
6886 + sizeof (Elf_External_Verdaux));
6889 _bfd_elf_swap_verdef_out (output_bfd, &def,
6890 (Elf_External_Verdef *) p);
6891 p += sizeof (Elf_External_Verdef);
6893 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6894 (Elf_External_Verdaux *) p);
6895 p += sizeof (Elf_External_Verdaux);
6897 for (t = verdefs; t != NULL; t = t->next)
6900 struct bfd_elf_version_deps *n;
6902 /* Don't emit the base version twice. */
6907 for (n = t->deps; n != NULL; n = n->next)
6910 /* Add a symbol representing this version. */
6912 if (! (_bfd_generic_link_add_one_symbol
6913 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6915 get_elf_backend_data (dynobj)->collect, &bh)))
6917 h = (struct elf_link_hash_entry *) bh;
6920 h->type = STT_OBJECT;
6921 h->verinfo.vertree = t;
6923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6926 def.vd_version = VER_DEF_CURRENT;
6928 if (t->globals.list == NULL
6929 && t->locals.list == NULL
6931 def.vd_flags |= VER_FLG_WEAK;
6932 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6933 def.vd_cnt = cdeps + 1;
6934 def.vd_hash = bfd_elf_hash (t->name);
6935 def.vd_aux = sizeof (Elf_External_Verdef);
6938 /* If a basever node is next, it *must* be the last node in
6939 the chain, otherwise Verdef construction breaks. */
6940 if (t->next != NULL && t->next->vernum == 0)
6941 BFD_ASSERT (t->next->next == NULL);
6943 if (t->next != NULL && t->next->vernum != 0)
6944 def.vd_next = (sizeof (Elf_External_Verdef)
6945 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6947 _bfd_elf_swap_verdef_out (output_bfd, &def,
6948 (Elf_External_Verdef *) p);
6949 p += sizeof (Elf_External_Verdef);
6951 defaux.vda_name = h->dynstr_index;
6952 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6954 defaux.vda_next = 0;
6955 if (t->deps != NULL)
6956 defaux.vda_next = sizeof (Elf_External_Verdaux);
6957 t->name_indx = defaux.vda_name;
6959 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6960 (Elf_External_Verdaux *) p);
6961 p += sizeof (Elf_External_Verdaux);
6963 for (n = t->deps; n != NULL; n = n->next)
6965 if (n->version_needed == NULL)
6967 /* This can happen if there was an error in the
6969 defaux.vda_name = 0;
6973 defaux.vda_name = n->version_needed->name_indx;
6974 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6977 if (n->next == NULL)
6978 defaux.vda_next = 0;
6980 defaux.vda_next = sizeof (Elf_External_Verdaux);
6982 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6983 (Elf_External_Verdaux *) p);
6984 p += sizeof (Elf_External_Verdaux);
6988 elf_tdata (output_bfd)->cverdefs = cdefs;
6992 if (info->gc_sections && bed->can_gc_sections)
6994 struct elf_gc_sweep_symbol_info sweep_info;
6996 /* Remove the symbols that were in the swept sections from the
6997 dynamic symbol table. */
6998 sweep_info.info = info;
6999 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
7000 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
7004 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7007 struct elf_find_verdep_info sinfo;
7009 /* Work out the size of the version reference section. */
7011 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
7012 BFD_ASSERT (s != NULL);
7015 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
7016 if (sinfo.vers == 0)
7018 sinfo.failed = false;
7020 elf_link_hash_traverse (elf_hash_table (info),
7021 _bfd_elf_link_find_version_dependencies,
7026 if (info->enable_dt_relr)
7028 elf_link_add_dt_relr_dependency (&sinfo);
7033 if (elf_tdata (output_bfd)->verref == NULL)
7034 s->flags |= SEC_EXCLUDE;
7037 Elf_Internal_Verneed *vn;
7042 /* Build the version dependency section. */
7045 for (vn = elf_tdata (output_bfd)->verref;
7047 vn = vn->vn_nextref)
7049 Elf_Internal_Vernaux *a;
7051 size += sizeof (Elf_External_Verneed);
7053 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7054 size += sizeof (Elf_External_Vernaux);
7058 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7059 if (s->contents == NULL)
7063 for (vn = elf_tdata (output_bfd)->verref;
7065 vn = vn->vn_nextref)
7068 Elf_Internal_Vernaux *a;
7072 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7075 vn->vn_version = VER_NEED_CURRENT;
7077 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7078 elf_dt_name (vn->vn_bfd) != NULL
7079 ? elf_dt_name (vn->vn_bfd)
7080 : lbasename (bfd_get_filename
7083 if (indx == (size_t) -1)
7086 vn->vn_aux = sizeof (Elf_External_Verneed);
7087 if (vn->vn_nextref == NULL)
7090 vn->vn_next = (sizeof (Elf_External_Verneed)
7091 + caux * sizeof (Elf_External_Vernaux));
7093 _bfd_elf_swap_verneed_out (output_bfd, vn,
7094 (Elf_External_Verneed *) p);
7095 p += sizeof (Elf_External_Verneed);
7097 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
7099 a->vna_hash = bfd_elf_hash (a->vna_nodename);
7100 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7101 a->vna_nodename, false);
7102 if (indx == (size_t) -1)
7105 if (a->vna_nextptr == NULL)
7108 a->vna_next = sizeof (Elf_External_Vernaux);
7110 _bfd_elf_swap_vernaux_out (output_bfd, a,
7111 (Elf_External_Vernaux *) p);
7112 p += sizeof (Elf_External_Vernaux);
7116 elf_tdata (output_bfd)->cverrefs = crefs;
7120 if (bfd_link_relocatable (info)
7121 && !_bfd_elf_size_group_sections (info))
7124 /* Determine any GNU_STACK segment requirements, after the backend
7125 has had a chance to set a default segment size. */
7126 if (info->execstack)
7128 /* If the user has explicitly requested warnings, then generate one even
7129 though the choice is the result of another command line option. */
7130 if (info->warn_execstack == 1)
7133 warning: enabling an executable stack because of -z execstack command line option"));
7134 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
7136 else if (info->noexecstack)
7137 elf_stack_flags (output_bfd) = PF_R | PF_W;
7141 asection *notesec = NULL;
7142 bfd *noteobj = NULL;
7143 bfd *emptyobj = NULL;
7146 for (inputobj = info->input_bfds;
7148 inputobj = inputobj->link.next)
7153 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
7155 s = inputobj->sections;
7156 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7159 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
7163 if (s->flags & SEC_CODE)
7167 /* There is no point in scanning the remaining bfds. */
7171 else if (bed->default_execstack && info->default_execstack)
7174 emptyobj = inputobj;
7178 if (notesec || info->stacksize > 0)
7182 if (info->warn_execstack != 2)
7184 /* PR 29072: Because an executable stack is a serious
7185 security risk, make sure that the user knows that it is
7186 being enabled despite the fact that it was not requested
7187 on the command line. */
7189 _bfd_error_handler (_("\
7190 warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"),
7191 bfd_get_filename (noteobj));
7194 _bfd_error_handler (_("\
7195 warning: %s: missing .note.GNU-stack section implies executable stack"),
7196 bfd_get_filename (emptyobj));
7197 _bfd_error_handler (_("\
7198 NOTE: This behaviour is deprecated and will be removed in a future version of the linker"));
7202 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
7205 if (notesec && exec && bfd_link_relocatable (info)
7206 && notesec->output_section != bfd_abs_section_ptr)
7207 notesec->output_section->flags |= SEC_CODE;
7210 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7212 struct elf_info_failed eif;
7213 struct elf_link_hash_entry *h;
7217 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
7218 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
7222 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
7224 info->flags |= DF_SYMBOLIC;
7232 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
7234 if (indx == (size_t) -1)
7237 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
7238 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
7242 if (filter_shlib != NULL)
7246 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7247 filter_shlib, true);
7248 if (indx == (size_t) -1
7249 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
7253 if (auxiliary_filters != NULL)
7255 const char * const *p;
7257 for (p = auxiliary_filters; *p != NULL; p++)
7261 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7263 if (indx == (size_t) -1
7264 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7273 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7275 if (indx == (size_t) -1
7276 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7280 if (depaudit != NULL)
7284 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7286 if (indx == (size_t) -1
7287 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7294 /* Find all symbols which were defined in a dynamic object and make
7295 the backend pick a reasonable value for them. */
7296 elf_link_hash_traverse (elf_hash_table (info),
7297 _bfd_elf_adjust_dynamic_symbol,
7302 /* Add some entries to the .dynamic section. We fill in some of the
7303 values later, in bfd_elf_final_link, but we must add the entries
7304 now so that we know the final size of the .dynamic section. */
7306 /* If there are initialization and/or finalization functions to
7307 call then add the corresponding DT_INIT/DT_FINI entries. */
7308 h = (info->init_function
7309 ? elf_link_hash_lookup (elf_hash_table (info),
7310 info->init_function, false,
7317 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7320 h = (info->fini_function
7321 ? elf_link_hash_lookup (elf_hash_table (info),
7322 info->fini_function, false,
7329 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7333 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7334 if (s != NULL && s->linker_has_input)
7336 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7337 if (! bfd_link_executable (info))
7342 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7343 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7344 && (o = sub->sections) != NULL
7345 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7346 for (o = sub->sections; o != NULL; o = o->next)
7347 if (elf_section_data (o)->this_hdr.sh_type
7348 == SHT_PREINIT_ARRAY)
7351 (_("%pB: .preinit_array section is not allowed in DSO"),
7356 bfd_set_error (bfd_error_nonrepresentable_section);
7360 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7361 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7364 s = bfd_get_section_by_name (output_bfd, ".init_array");
7365 if (s != NULL && s->linker_has_input)
7367 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7368 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7371 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7372 if (s != NULL && s->linker_has_input)
7374 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7375 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7379 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7380 /* If .dynstr is excluded from the link, we don't want any of
7381 these tags. Strictly, we should be checking each section
7382 individually; This quick check covers for the case where
7383 someone does a /DISCARD/ : { *(*) }. */
7384 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7386 bfd_size_type strsize;
7388 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7389 if ((info->emit_hash
7390 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7391 || (info->emit_gnu_hash
7392 && (bed->record_xhash_symbol == NULL
7393 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7394 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7395 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7396 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7397 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7399 || (info->gnu_flags_1
7400 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1,
7401 info->gnu_flags_1)))
7406 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7409 /* The backend must work out the sizes of all the other dynamic
7412 && bed->elf_backend_size_dynamic_sections != NULL
7413 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7416 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7418 if (elf_tdata (output_bfd)->cverdefs)
7420 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7422 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7423 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7427 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7429 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7432 else if (info->flags & DF_BIND_NOW)
7434 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7440 if (bfd_link_executable (info))
7441 info->flags_1 &= ~ (DF_1_INITFIRST
7444 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7448 if (elf_tdata (output_bfd)->cverrefs)
7450 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7452 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7453 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7457 if ((elf_tdata (output_bfd)->cverrefs == 0
7458 && elf_tdata (output_bfd)->cverdefs == 0)
7459 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7463 s = bfd_get_linker_section (dynobj, ".gnu.version");
7464 s->flags |= SEC_EXCLUDE;
7470 /* Find the first non-excluded output section. We'll use its
7471 section symbol for some emitted relocs. */
7473 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7476 asection *found = NULL;
7478 for (s = output_bfd->sections; s != NULL; s = s->next)
7479 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7480 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7483 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7486 elf_hash_table (info)->text_index_section = found;
7489 /* Find two non-excluded output sections, one for code, one for data.
7490 We'll use their section symbols for some emitted relocs. */
7492 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7495 asection *found = NULL;
7497 /* Data first, since setting text_index_section changes
7498 _bfd_elf_omit_section_dynsym_default. */
7499 for (s = output_bfd->sections; s != NULL; s = s->next)
7500 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7501 && !(s->flags & SEC_READONLY)
7502 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7505 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7508 elf_hash_table (info)->data_index_section = found;
7510 for (s = output_bfd->sections; s != NULL; s = s->next)
7511 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7512 && (s->flags & SEC_READONLY)
7513 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7518 elf_hash_table (info)->text_index_section = found;
7521 #define GNU_HASH_SECTION_NAME(bed) \
7522 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7525 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7527 const struct elf_backend_data *bed;
7528 unsigned long section_sym_count;
7529 bfd_size_type dynsymcount = 0;
7531 if (!is_elf_hash_table (info->hash))
7534 bed = get_elf_backend_data (output_bfd);
7535 (*bed->elf_backend_init_index_section) (output_bfd, info);
7537 /* Assign dynsym indices. In a shared library we generate a section
7538 symbol for each output section, which come first. Next come all
7539 of the back-end allocated local dynamic syms, followed by the rest
7540 of the global symbols.
7542 This is usually not needed for static binaries, however backends
7543 can request to always do it, e.g. the MIPS backend uses dynamic
7544 symbol counts to lay out GOT, which will be produced in the
7545 presence of GOT relocations even in static binaries (holding fixed
7546 data in that case, to satisfy those relocations). */
7548 if (elf_hash_table (info)->dynamic_sections_created
7549 || bed->always_renumber_dynsyms)
7550 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7551 §ion_sym_count);
7553 if (elf_hash_table (info)->dynamic_sections_created)
7557 unsigned int dtagcount;
7559 dynobj = elf_hash_table (info)->dynobj;
7561 /* Work out the size of the symbol version section. */
7562 s = bfd_get_linker_section (dynobj, ".gnu.version");
7563 BFD_ASSERT (s != NULL);
7564 if ((s->flags & SEC_EXCLUDE) == 0)
7566 s->size = dynsymcount * sizeof (Elf_External_Versym);
7567 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7568 if (s->contents == NULL)
7571 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7575 /* Set the size of the .dynsym and .hash sections. We counted
7576 the number of dynamic symbols in elf_link_add_object_symbols.
7577 We will build the contents of .dynsym and .hash when we build
7578 the final symbol table, because until then we do not know the
7579 correct value to give the symbols. We built the .dynstr
7580 section as we went along in elf_link_add_object_symbols. */
7581 s = elf_hash_table (info)->dynsym;
7582 BFD_ASSERT (s != NULL);
7583 s->size = dynsymcount * bed->s->sizeof_sym;
7585 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7586 if (s->contents == NULL)
7589 /* The first entry in .dynsym is a dummy symbol. Clear all the
7590 section syms, in case we don't output them all. */
7591 ++section_sym_count;
7592 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7594 elf_hash_table (info)->bucketcount = 0;
7596 /* Compute the size of the hashing table. As a side effect this
7597 computes the hash values for all the names we export. */
7598 if (info->emit_hash)
7600 unsigned long int *hashcodes;
7601 struct hash_codes_info hashinf;
7603 unsigned long int nsyms;
7605 size_t hash_entry_size;
7607 /* Compute the hash values for all exported symbols. At the same
7608 time store the values in an array so that we could use them for
7610 amt = dynsymcount * sizeof (unsigned long int);
7611 hashcodes = (unsigned long int *) bfd_malloc (amt);
7612 if (hashcodes == NULL)
7614 hashinf.hashcodes = hashcodes;
7615 hashinf.error = false;
7617 /* Put all hash values in HASHCODES. */
7618 elf_link_hash_traverse (elf_hash_table (info),
7619 elf_collect_hash_codes, &hashinf);
7626 nsyms = hashinf.hashcodes - hashcodes;
7628 = compute_bucket_count (info, hashcodes, nsyms, 0);
7631 if (bucketcount == 0 && nsyms > 0)
7634 elf_hash_table (info)->bucketcount = bucketcount;
7636 s = bfd_get_linker_section (dynobj, ".hash");
7637 BFD_ASSERT (s != NULL);
7638 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7639 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7640 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7641 if (s->contents == NULL)
7644 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7645 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7646 s->contents + hash_entry_size);
7649 if (info->emit_gnu_hash)
7652 unsigned char *contents;
7653 struct collect_gnu_hash_codes cinfo;
7657 memset (&cinfo, 0, sizeof (cinfo));
7659 /* Compute the hash values for all exported symbols. At the same
7660 time store the values in an array so that we could use them for
7662 amt = dynsymcount * 2 * sizeof (unsigned long int);
7663 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7664 if (cinfo.hashcodes == NULL)
7667 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7668 cinfo.min_dynindx = -1;
7669 cinfo.output_bfd = output_bfd;
7672 /* Put all hash values in HASHCODES. */
7673 elf_link_hash_traverse (elf_hash_table (info),
7674 elf_collect_gnu_hash_codes, &cinfo);
7677 free (cinfo.hashcodes);
7682 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7684 if (bucketcount == 0)
7686 free (cinfo.hashcodes);
7690 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7691 BFD_ASSERT (s != NULL);
7693 if (cinfo.nsyms == 0)
7695 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7696 BFD_ASSERT (cinfo.min_dynindx == -1);
7697 free (cinfo.hashcodes);
7698 s->size = 5 * 4 + bed->s->arch_size / 8;
7699 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7700 if (contents == NULL)
7702 s->contents = contents;
7703 /* 1 empty bucket. */
7704 bfd_put_32 (output_bfd, 1, contents);
7705 /* SYMIDX above the special symbol 0. */
7706 bfd_put_32 (output_bfd, 1, contents + 4);
7707 /* Just one word for bitmask. */
7708 bfd_put_32 (output_bfd, 1, contents + 8);
7709 /* Only hash fn bloom filter. */
7710 bfd_put_32 (output_bfd, 0, contents + 12);
7711 /* No hashes are valid - empty bitmask. */
7712 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7713 /* No hashes in the only bucket. */
7714 bfd_put_32 (output_bfd, 0,
7715 contents + 16 + bed->s->arch_size / 8);
7719 unsigned long int maskwords, maskbitslog2, x;
7720 BFD_ASSERT (cinfo.min_dynindx != -1);
7724 while ((x >>= 1) != 0)
7726 if (maskbitslog2 < 3)
7728 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7729 maskbitslog2 = maskbitslog2 + 3;
7731 maskbitslog2 = maskbitslog2 + 2;
7732 if (bed->s->arch_size == 64)
7734 if (maskbitslog2 == 5)
7740 cinfo.mask = (1 << cinfo.shift1) - 1;
7741 cinfo.shift2 = maskbitslog2;
7742 cinfo.maskbits = 1 << maskbitslog2;
7743 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7744 amt = bucketcount * sizeof (unsigned long int) * 2;
7745 amt += maskwords * sizeof (bfd_vma);
7746 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7747 if (cinfo.bitmask == NULL)
7749 free (cinfo.hashcodes);
7753 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7754 cinfo.indx = cinfo.counts + bucketcount;
7755 cinfo.symindx = dynsymcount - cinfo.nsyms;
7756 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7758 /* Determine how often each hash bucket is used. */
7759 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7760 for (i = 0; i < cinfo.nsyms; ++i)
7761 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7763 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7764 if (cinfo.counts[i] != 0)
7766 cinfo.indx[i] = cnt;
7767 cnt += cinfo.counts[i];
7769 BFD_ASSERT (cnt == dynsymcount);
7770 cinfo.bucketcount = bucketcount;
7771 cinfo.local_indx = cinfo.min_dynindx;
7773 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7774 s->size += cinfo.maskbits / 8;
7775 if (bed->record_xhash_symbol != NULL)
7776 s->size += cinfo.nsyms * 4;
7777 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7778 if (contents == NULL)
7780 free (cinfo.bitmask);
7781 free (cinfo.hashcodes);
7785 s->contents = contents;
7786 bfd_put_32 (output_bfd, bucketcount, contents);
7787 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7788 bfd_put_32 (output_bfd, maskwords, contents + 8);
7789 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7790 contents += 16 + cinfo.maskbits / 8;
7792 for (i = 0; i < bucketcount; ++i)
7794 if (cinfo.counts[i] == 0)
7795 bfd_put_32 (output_bfd, 0, contents);
7797 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7801 cinfo.contents = contents;
7803 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7804 /* Renumber dynamic symbols, if populating .gnu.hash section.
7805 If using .MIPS.xhash, populate the translation table. */
7806 elf_link_hash_traverse (elf_hash_table (info),
7807 elf_gnu_hash_process_symidx, &cinfo);
7809 contents = s->contents + 16;
7810 for (i = 0; i < maskwords; ++i)
7812 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7814 contents += bed->s->arch_size / 8;
7817 free (cinfo.bitmask);
7818 free (cinfo.hashcodes);
7822 s = bfd_get_linker_section (dynobj, ".dynstr");
7823 BFD_ASSERT (s != NULL);
7825 elf_finalize_dynstr (output_bfd, info);
7827 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7829 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7830 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7837 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7840 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7843 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7844 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7847 /* Finish SHF_MERGE section merging. */
7850 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7855 if (!is_elf_hash_table (info->hash))
7858 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7859 if ((ibfd->flags & DYNAMIC) == 0
7860 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7861 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7862 == get_elf_backend_data (obfd)->s->elfclass))
7863 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7864 if ((sec->flags & SEC_MERGE) != 0
7865 && !bfd_is_abs_section (sec->output_section))
7867 struct bfd_elf_section_data *secdata;
7869 secdata = elf_section_data (sec);
7870 if (! _bfd_add_merge_section (obfd,
7871 &elf_hash_table (info)->merge_info,
7872 sec, &secdata->sec_info))
7874 else if (secdata->sec_info)
7875 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7878 if (elf_hash_table (info)->merge_info != NULL)
7879 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7880 merge_sections_remove_hook);
7884 /* Create an entry in an ELF linker hash table. */
7886 struct bfd_hash_entry *
7887 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7888 struct bfd_hash_table *table,
7891 /* Allocate the structure if it has not already been allocated by a
7895 entry = (struct bfd_hash_entry *)
7896 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7901 /* Call the allocation method of the superclass. */
7902 entry = _bfd_link_hash_newfunc (entry, table, string);
7905 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7906 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7908 /* Set local fields. */
7911 ret->got = htab->init_got_refcount;
7912 ret->plt = htab->init_plt_refcount;
7913 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7914 - offsetof (struct elf_link_hash_entry, size)));
7915 /* Assume that we have been called by a non-ELF symbol reader.
7916 This flag is then reset by the code which reads an ELF input
7917 file. This ensures that a symbol created by a non-ELF symbol
7918 reader will have the flag set correctly. */
7925 /* Copy data from an indirect symbol to its direct symbol, hiding the
7926 old indirect symbol. Also used for copying flags to a weakdef. */
7929 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7930 struct elf_link_hash_entry *dir,
7931 struct elf_link_hash_entry *ind)
7933 struct elf_link_hash_table *htab;
7935 if (ind->dyn_relocs != NULL)
7937 if (dir->dyn_relocs != NULL)
7939 struct elf_dyn_relocs **pp;
7940 struct elf_dyn_relocs *p;
7942 /* Add reloc counts against the indirect sym to the direct sym
7943 list. Merge any entries against the same section. */
7944 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; )
7946 struct elf_dyn_relocs *q;
7948 for (q = dir->dyn_relocs; q != NULL; q = q->next)
7949 if (q->sec == p->sec)
7951 q->pc_count += p->pc_count;
7952 q->count += p->count;
7959 *pp = dir->dyn_relocs;
7962 dir->dyn_relocs = ind->dyn_relocs;
7963 ind->dyn_relocs = NULL;
7966 /* Copy down any references that we may have already seen to the
7967 symbol which just became indirect. */
7969 if (dir->versioned != versioned_hidden)
7970 dir->ref_dynamic |= ind->ref_dynamic;
7971 dir->ref_regular |= ind->ref_regular;
7972 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7973 dir->non_got_ref |= ind->non_got_ref;
7974 dir->needs_plt |= ind->needs_plt;
7975 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7977 if (ind->root.type != bfd_link_hash_indirect)
7980 /* Copy over the global and procedure linkage table refcount entries.
7981 These may have been already set up by a check_relocs routine. */
7982 htab = elf_hash_table (info);
7983 if (ind->got.refcount > htab->init_got_refcount.refcount)
7985 if (dir->got.refcount < 0)
7986 dir->got.refcount = 0;
7987 dir->got.refcount += ind->got.refcount;
7988 ind->got.refcount = htab->init_got_refcount.refcount;
7991 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7993 if (dir->plt.refcount < 0)
7994 dir->plt.refcount = 0;
7995 dir->plt.refcount += ind->plt.refcount;
7996 ind->plt.refcount = htab->init_plt_refcount.refcount;
7999 if (ind->dynindx != -1)
8001 if (dir->dynindx != -1)
8002 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
8003 dir->dynindx = ind->dynindx;
8004 dir->dynstr_index = ind->dynstr_index;
8006 ind->dynstr_index = 0;
8011 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
8012 struct elf_link_hash_entry *h,
8015 /* STT_GNU_IFUNC symbol must go through PLT. */
8016 if (h->type != STT_GNU_IFUNC)
8018 h->plt = elf_hash_table (info)->init_plt_offset;
8023 h->forced_local = 1;
8024 if (h->dynindx != -1)
8026 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
8029 h->dynstr_index = 0;
8034 /* Hide a symbol. */
8037 _bfd_elf_link_hide_symbol (bfd *output_bfd,
8038 struct bfd_link_info *info,
8039 struct bfd_link_hash_entry *h)
8041 if (is_elf_hash_table (info->hash))
8043 const struct elf_backend_data *bed
8044 = get_elf_backend_data (output_bfd);
8045 struct elf_link_hash_entry *eh
8046 = (struct elf_link_hash_entry *) h;
8047 bed->elf_backend_hide_symbol (info, eh, true);
8048 eh->def_dynamic = 0;
8049 eh->ref_dynamic = 0;
8050 eh->dynamic_def = 0;
8054 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
8058 _bfd_elf_link_hash_table_init
8059 (struct elf_link_hash_table *table,
8061 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
8062 struct bfd_hash_table *,
8064 unsigned int entsize,
8065 enum elf_target_id target_id)
8068 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
8070 table->init_got_refcount.refcount = can_refcount - 1;
8071 table->init_plt_refcount.refcount = can_refcount - 1;
8072 table->init_got_offset.offset = -(bfd_vma) 1;
8073 table->init_plt_offset.offset = -(bfd_vma) 1;
8074 /* The first dynamic symbol is a dummy. */
8075 table->dynsymcount = 1;
8077 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
8079 table->root.type = bfd_link_elf_hash_table;
8080 table->hash_table_id = target_id;
8081 table->target_os = get_elf_backend_data (abfd)->target_os;
8086 /* Create an ELF linker hash table. */
8088 struct bfd_link_hash_table *
8089 _bfd_elf_link_hash_table_create (bfd *abfd)
8091 struct elf_link_hash_table *ret;
8092 size_t amt = sizeof (struct elf_link_hash_table);
8094 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
8098 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
8099 sizeof (struct elf_link_hash_entry),
8105 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
8110 /* Destroy an ELF linker hash table. */
8113 _bfd_elf_link_hash_table_free (bfd *obfd)
8115 struct elf_link_hash_table *htab;
8117 htab = (struct elf_link_hash_table *) obfd->link.hash;
8118 if (htab->dynstr != NULL)
8119 _bfd_elf_strtab_free (htab->dynstr);
8120 _bfd_merge_sections_free (htab->merge_info);
8121 _bfd_generic_link_hash_table_free (obfd);
8124 /* This is a hook for the ELF emulation code in the generic linker to
8125 tell the backend linker what file name to use for the DT_NEEDED
8126 entry for a dynamic object. */
8129 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
8131 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8132 && bfd_get_format (abfd) == bfd_object)
8133 elf_dt_name (abfd) = name;
8137 bfd_elf_get_dyn_lib_class (bfd *abfd)
8140 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8141 && bfd_get_format (abfd) == bfd_object)
8142 lib_class = elf_dyn_lib_class (abfd);
8149 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
8151 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8152 && bfd_get_format (abfd) == bfd_object)
8153 elf_dyn_lib_class (abfd) = lib_class;
8156 /* Get the list of DT_NEEDED entries for a link. This is a hook for
8157 the linker ELF emulation code. */
8159 struct bfd_link_needed_list *
8160 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
8161 struct bfd_link_info *info)
8163 if (! is_elf_hash_table (info->hash))
8165 return elf_hash_table (info)->needed;
8168 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
8169 hook for the linker ELF emulation code. */
8171 struct bfd_link_needed_list *
8172 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
8173 struct bfd_link_info *info)
8175 if (! is_elf_hash_table (info->hash))
8177 return elf_hash_table (info)->runpath;
8180 /* Get the name actually used for a dynamic object for a link. This
8181 is the SONAME entry if there is one. Otherwise, it is the string
8182 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
8185 bfd_elf_get_dt_soname (bfd *abfd)
8187 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
8188 && bfd_get_format (abfd) == bfd_object)
8189 return elf_dt_name (abfd);
8193 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
8194 the ELF linker emulation code. */
8197 bfd_elf_get_bfd_needed_list (bfd *abfd,
8198 struct bfd_link_needed_list **pneeded)
8201 bfd_byte *dynbuf = NULL;
8202 unsigned int elfsec;
8203 unsigned long shlink;
8204 bfd_byte *extdyn, *extdynend;
8206 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
8210 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
8211 || bfd_get_format (abfd) != bfd_object)
8214 s = bfd_get_section_by_name (abfd, ".dynamic");
8215 if (s == NULL || s->size == 0)
8218 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
8221 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
8222 if (elfsec == SHN_BAD)
8225 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
8227 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
8228 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
8231 extdynend = extdyn + s->size;
8232 for (; extdyn < extdynend; extdyn += extdynsize)
8234 Elf_Internal_Dyn dyn;
8236 (*swap_dyn_in) (abfd, extdyn, &dyn);
8238 if (dyn.d_tag == DT_NULL)
8241 if (dyn.d_tag == DT_NEEDED)
8244 struct bfd_link_needed_list *l;
8245 unsigned int tagv = dyn.d_un.d_val;
8248 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
8253 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
8273 struct elf_symbuf_symbol
8275 unsigned long st_name; /* Symbol name, index in string tbl */
8276 unsigned char st_info; /* Type and binding attributes */
8277 unsigned char st_other; /* Visibilty, and target specific */
8280 struct elf_symbuf_head
8282 struct elf_symbuf_symbol *ssym;
8284 unsigned int st_shndx;
8291 Elf_Internal_Sym *isym;
8292 struct elf_symbuf_symbol *ssym;
8298 /* Sort references to symbols by ascending section number. */
8301 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8303 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8304 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8306 if (s1->st_shndx != s2->st_shndx)
8307 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8308 /* Final sort by the address of the sym in the symbuf ensures
8311 return s1 > s2 ? 1 : -1;
8316 elf_sym_name_compare (const void *arg1, const void *arg2)
8318 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8319 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8320 int ret = strcmp (s1->name, s2->name);
8323 if (s1->u.p != s2->u.p)
8324 return s1->u.p > s2->u.p ? 1 : -1;
8328 static struct elf_symbuf_head *
8329 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8331 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8332 struct elf_symbuf_symbol *ssym;
8333 struct elf_symbuf_head *ssymbuf, *ssymhead;
8334 size_t i, shndx_count, total_size, amt;
8336 amt = symcount * sizeof (*indbuf);
8337 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8341 for (ind = indbuf, i = 0; i < symcount; i++)
8342 if (isymbuf[i].st_shndx != SHN_UNDEF)
8343 *ind++ = &isymbuf[i];
8346 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8347 elf_sort_elf_symbol);
8350 if (indbufend > indbuf)
8351 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8352 if (ind[0]->st_shndx != ind[1]->st_shndx)
8355 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8356 + (indbufend - indbuf) * sizeof (*ssym));
8357 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8358 if (ssymbuf == NULL)
8364 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8365 ssymbuf->ssym = NULL;
8366 ssymbuf->count = shndx_count;
8367 ssymbuf->st_shndx = 0;
8368 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8370 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8373 ssymhead->ssym = ssym;
8374 ssymhead->count = 0;
8375 ssymhead->st_shndx = (*ind)->st_shndx;
8377 ssym->st_name = (*ind)->st_name;
8378 ssym->st_info = (*ind)->st_info;
8379 ssym->st_other = (*ind)->st_other;
8382 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8383 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8390 /* Check if 2 sections define the same set of local and global
8394 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8395 struct bfd_link_info *info)
8398 const struct elf_backend_data *bed1, *bed2;
8399 Elf_Internal_Shdr *hdr1, *hdr2;
8400 size_t symcount1, symcount2;
8401 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8402 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8403 Elf_Internal_Sym *isym, *isymend;
8404 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8405 size_t count1, count2, sec_count1, sec_count2, i;
8406 unsigned int shndx1, shndx2;
8408 bool ignore_section_symbol_p;
8413 /* Both sections have to be in ELF. */
8414 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8415 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8418 if (elf_section_type (sec1) != elf_section_type (sec2))
8421 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8422 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8423 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8426 bed1 = get_elf_backend_data (bfd1);
8427 bed2 = get_elf_backend_data (bfd2);
8428 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8429 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8430 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8431 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8433 if (symcount1 == 0 || symcount2 == 0)
8439 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8440 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8442 /* Ignore section symbols only when matching non-debugging sections
8443 or linkonce section with comdat section. */
8444 ignore_section_symbol_p
8445 = ((sec1->flags & SEC_DEBUGGING) == 0
8446 || ((elf_section_flags (sec1) & SHF_GROUP)
8447 != (elf_section_flags (sec2) & SHF_GROUP)));
8449 if (ssymbuf1 == NULL)
8451 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8453 if (isymbuf1 == NULL)
8456 if (info != NULL && !info->reduce_memory_overheads)
8458 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8459 elf_tdata (bfd1)->symbuf = ssymbuf1;
8463 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8465 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8467 if (isymbuf2 == NULL)
8470 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads)
8472 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8473 elf_tdata (bfd2)->symbuf = ssymbuf2;
8477 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8479 /* Optimized faster version. */
8481 struct elf_symbol *symp;
8482 struct elf_symbuf_symbol *ssym, *ssymend;
8485 hi = ssymbuf1->count;
8491 mid = (lo + hi) / 2;
8492 if (shndx1 < ssymbuf1[mid].st_shndx)
8494 else if (shndx1 > ssymbuf1[mid].st_shndx)
8498 count1 = ssymbuf1[mid].count;
8503 if (ignore_section_symbol_p)
8505 for (i = 0; i < count1; i++)
8506 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION)
8508 count1 -= sec_count1;
8512 hi = ssymbuf2->count;
8518 mid = (lo + hi) / 2;
8519 if (shndx2 < ssymbuf2[mid].st_shndx)
8521 else if (shndx2 > ssymbuf2[mid].st_shndx)
8525 count2 = ssymbuf2[mid].count;
8530 if (ignore_section_symbol_p)
8532 for (i = 0; i < count2; i++)
8533 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION)
8535 count2 -= sec_count2;
8538 if (count1 == 0 || count2 == 0 || count1 != count2)
8542 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8544 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8545 if (symtable1 == NULL || symtable2 == NULL)
8549 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1;
8550 ssym < ssymend; ssym++)
8552 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8554 symp->u.ssym = ssym;
8555 symp->name = bfd_elf_string_from_elf_section (bfd1,
8562 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2;
8563 ssym < ssymend; ssym++)
8565 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION)
8567 symp->u.ssym = ssym;
8568 symp->name = bfd_elf_string_from_elf_section (bfd2,
8574 /* Sort symbol by name. */
8575 qsort (symtable1, count1, sizeof (struct elf_symbol),
8576 elf_sym_name_compare);
8577 qsort (symtable2, count1, sizeof (struct elf_symbol),
8578 elf_sym_name_compare);
8580 for (i = 0; i < count1; i++)
8581 /* Two symbols must have the same binding, type and name. */
8582 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8583 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8584 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8591 symtable1 = (struct elf_symbol *)
8592 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8593 symtable2 = (struct elf_symbol *)
8594 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8595 if (symtable1 == NULL || symtable2 == NULL)
8598 /* Count definitions in the section. */
8600 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8601 if (isym->st_shndx == shndx1
8602 && (!ignore_section_symbol_p
8603 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8604 symtable1[count1++].u.isym = isym;
8607 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8608 if (isym->st_shndx == shndx2
8609 && (!ignore_section_symbol_p
8610 || ELF_ST_TYPE (isym->st_info) != STT_SECTION))
8611 symtable2[count2++].u.isym = isym;
8613 if (count1 == 0 || count2 == 0 || count1 != count2)
8616 for (i = 0; i < count1; i++)
8618 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8619 symtable1[i].u.isym->st_name);
8621 for (i = 0; i < count2; i++)
8623 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8624 symtable2[i].u.isym->st_name);
8626 /* Sort symbol by name. */
8627 qsort (symtable1, count1, sizeof (struct elf_symbol),
8628 elf_sym_name_compare);
8629 qsort (symtable2, count1, sizeof (struct elf_symbol),
8630 elf_sym_name_compare);
8632 for (i = 0; i < count1; i++)
8633 /* Two symbols must have the same binding, type and name. */
8634 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8635 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8636 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8650 /* Return TRUE if 2 section types are compatible. */
8653 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8654 bfd *bbfd, const asection *bsec)
8658 || abfd->xvec->flavour != bfd_target_elf_flavour
8659 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8662 return elf_section_type (asec) == elf_section_type (bsec);
8665 /* Final phase of ELF linker. */
8667 /* A structure we use to avoid passing large numbers of arguments. */
8669 struct elf_final_link_info
8671 /* General link information. */
8672 struct bfd_link_info *info;
8675 /* Symbol string table. */
8676 struct elf_strtab_hash *symstrtab;
8677 /* .hash section. */
8679 /* symbol version section (.gnu.version). */
8680 asection *symver_sec;
8681 /* Buffer large enough to hold contents of any section. */
8683 /* Buffer large enough to hold external relocs of any section. */
8684 void *external_relocs;
8685 /* Buffer large enough to hold internal relocs of any section. */
8686 Elf_Internal_Rela *internal_relocs;
8687 /* Buffer large enough to hold external local symbols of any input
8689 bfd_byte *external_syms;
8690 /* And a buffer for symbol section indices. */
8691 Elf_External_Sym_Shndx *locsym_shndx;
8692 /* Buffer large enough to hold internal local symbols of any input
8694 Elf_Internal_Sym *internal_syms;
8695 /* Array large enough to hold a symbol index for each local symbol
8696 of any input BFD. */
8698 /* Array large enough to hold a section pointer for each local
8699 symbol of any input BFD. */
8700 asection **sections;
8701 /* Buffer for SHT_SYMTAB_SHNDX section. */
8702 Elf_External_Sym_Shndx *symshndxbuf;
8703 /* Number of STT_FILE syms seen. */
8704 size_t filesym_count;
8705 /* Local symbol hash table. */
8706 struct bfd_hash_table local_hash_table;
8709 struct local_hash_entry
8711 /* Base hash table entry structure. */
8712 struct bfd_hash_entry root;
8713 /* Size of the local symbol name. */
8715 /* Number of the duplicated local symbol names. */
8719 /* Create an entry in the local symbol hash table. */
8721 static struct bfd_hash_entry *
8722 local_hash_newfunc (struct bfd_hash_entry *entry,
8723 struct bfd_hash_table *table,
8727 /* Allocate the structure if it has not already been allocated by a
8731 entry = bfd_hash_allocate (table,
8732 sizeof (struct local_hash_entry));
8737 /* Call the allocation method of the superclass. */
8738 entry = bfd_hash_newfunc (entry, table, string);
8741 ((struct local_hash_entry *) entry)->count = 0;
8742 ((struct local_hash_entry *) entry)->size = 0;
8748 /* This struct is used to pass information to elf_link_output_extsym. */
8750 struct elf_outext_info
8755 struct elf_final_link_info *flinfo;
8759 /* Support for evaluating a complex relocation.
8761 Complex relocations are generalized, self-describing relocations. The
8762 implementation of them consists of two parts: complex symbols, and the
8763 relocations themselves.
8765 The relocations use a reserved elf-wide relocation type code (R_RELC
8766 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8767 information (start bit, end bit, word width, etc) into the addend. This
8768 information is extracted from CGEN-generated operand tables within gas.
8770 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC
8771 internal) representing prefix-notation expressions, including but not
8772 limited to those sorts of expressions normally encoded as addends in the
8773 addend field. The symbol mangling format is:
8776 | <unary-operator> ':' <node>
8777 | <binary-operator> ':' <node> ':' <node>
8780 <literal> := 's' <digits=N> ':' <N character symbol name>
8781 | 'S' <digits=N> ':' <N character section name>
8785 <binary-operator> := as in C
8786 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8789 set_symbol_value (bfd *bfd_with_globals,
8790 Elf_Internal_Sym *isymbuf,
8795 struct elf_link_hash_entry **sym_hashes;
8796 struct elf_link_hash_entry *h;
8797 size_t extsymoff = locsymcount;
8799 if (symidx < locsymcount)
8801 Elf_Internal_Sym *sym;
8803 sym = isymbuf + symidx;
8804 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8806 /* It is a local symbol: move it to the
8807 "absolute" section and give it a value. */
8808 sym->st_shndx = SHN_ABS;
8809 sym->st_value = val;
8812 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8816 /* It is a global symbol: set its link type
8817 to "defined" and give it a value. */
8819 sym_hashes = elf_sym_hashes (bfd_with_globals);
8820 h = sym_hashes [symidx - extsymoff];
8821 while (h->root.type == bfd_link_hash_indirect
8822 || h->root.type == bfd_link_hash_warning)
8823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8824 h->root.type = bfd_link_hash_defined;
8825 h->root.u.def.value = val;
8826 h->root.u.def.section = bfd_abs_section_ptr;
8830 resolve_symbol (const char *name,
8832 struct elf_final_link_info *flinfo,
8834 Elf_Internal_Sym *isymbuf,
8837 Elf_Internal_Sym *sym;
8838 struct bfd_link_hash_entry *global_entry;
8839 const char *candidate = NULL;
8840 Elf_Internal_Shdr *symtab_hdr;
8843 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8845 for (i = 0; i < locsymcount; ++ i)
8849 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8852 candidate = bfd_elf_string_from_elf_section (input_bfd,
8853 symtab_hdr->sh_link,
8856 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8857 name, candidate, (unsigned long) sym->st_value);
8859 if (candidate && strcmp (candidate, name) == 0)
8861 asection *sec = flinfo->sections [i];
8863 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8864 *result += sec->output_offset + sec->output_section->vma;
8866 printf ("Found symbol with value %8.8lx\n",
8867 (unsigned long) *result);
8873 /* Hmm, haven't found it yet. perhaps it is a global. */
8874 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8875 false, false, true);
8879 if (global_entry->type == bfd_link_hash_defined
8880 || global_entry->type == bfd_link_hash_defweak)
8882 *result = (global_entry->u.def.value
8883 + global_entry->u.def.section->output_section->vma
8884 + global_entry->u.def.section->output_offset);
8886 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8887 global_entry->root.string, (unsigned long) *result);
8895 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8896 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8897 names like "foo.end" which is the end address of section "foo". */
8900 resolve_section (const char *name,
8908 for (curr = sections; curr; curr = curr->next)
8909 if (strcmp (curr->name, name) == 0)
8911 *result = curr->vma;
8915 /* Hmm. still haven't found it. try pseudo-section names. */
8916 /* FIXME: This could be coded more efficiently... */
8917 for (curr = sections; curr; curr = curr->next)
8919 len = strlen (curr->name);
8920 if (len > strlen (name))
8923 if (strncmp (curr->name, name, len) == 0)
8925 if (startswith (name + len, ".end"))
8927 *result = (curr->vma
8928 + curr->size / bfd_octets_per_byte (abfd, curr));
8932 /* Insert more pseudo-section names here, if you like. */
8940 undefined_reference (const char *reftype, const char *name)
8942 /* xgettext:c-format */
8943 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8945 bfd_set_error (bfd_error_bad_value);
8949 eval_symbol (bfd_vma *result,
8952 struct elf_final_link_info *flinfo,
8954 Elf_Internal_Sym *isymbuf,
8963 const char *sym = *symp;
8965 bool symbol_is_section = false;
8970 if (len < 1 || len > sizeof (symbuf))
8972 bfd_set_error (bfd_error_invalid_operation);
8985 *result = strtoul (sym, (char **) symp, 16);
8989 symbol_is_section = true;
8993 symlen = strtol (sym, (char **) symp, 10);
8994 sym = *symp + 1; /* Skip the trailing ':'. */
8996 if (symend < sym || symlen + 1 > sizeof (symbuf))
8998 bfd_set_error (bfd_error_invalid_operation);
9002 memcpy (symbuf, sym, symlen);
9003 symbuf[symlen] = '\0';
9004 *symp = sym + symlen;
9006 /* Is it always possible, with complex symbols, that gas "mis-guessed"
9007 the symbol as a section, or vice-versa. so we're pretty liberal in our
9008 interpretation here; section means "try section first", not "must be a
9009 section", and likewise with symbol. */
9011 if (symbol_is_section)
9013 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
9014 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
9015 isymbuf, locsymcount))
9017 undefined_reference ("section", symbuf);
9023 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
9024 isymbuf, locsymcount)
9025 && !resolve_section (symbuf, flinfo->output_bfd->sections,
9028 undefined_reference ("symbol", symbuf);
9035 /* All that remains are operators. */
9037 #define UNARY_OP(op) \
9038 if (startswith (sym, #op)) \
9040 sym += strlen (#op); \
9044 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9045 isymbuf, locsymcount, signed_p)) \
9048 *result = op ((bfd_signed_vma) a); \
9054 #define BINARY_OP_HEAD(op) \
9055 if (startswith (sym, #op)) \
9057 sym += strlen (#op); \
9061 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
9062 isymbuf, locsymcount, signed_p)) \
9065 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
9066 isymbuf, locsymcount, signed_p)) \
9068 #define BINARY_OP_TAIL(op) \
9070 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
9075 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op)
9079 BINARY_OP_HEAD (<<);
9080 if (b >= sizeof (a) * CHAR_BIT)
9086 BINARY_OP_TAIL (<<);
9087 BINARY_OP_HEAD (>>);
9088 if (b >= sizeof (a) * CHAR_BIT)
9090 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0;
9093 BINARY_OP_TAIL (>>);
9106 _bfd_error_handler (_("division by zero"));
9107 bfd_set_error (bfd_error_bad_value);
9114 _bfd_error_handler (_("division by zero"));
9115 bfd_set_error (bfd_error_bad_value);
9128 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
9129 bfd_set_error (bfd_error_invalid_operation);
9135 put_value (bfd_vma size,
9136 unsigned long chunksz,
9141 location += (size - chunksz);
9143 for (; size; size -= chunksz, location -= chunksz)
9148 bfd_put_8 (input_bfd, x, location);
9152 bfd_put_16 (input_bfd, x, location);
9156 bfd_put_32 (input_bfd, x, location);
9157 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
9163 bfd_put_64 (input_bfd, x, location);
9164 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
9177 get_value (bfd_vma size,
9178 unsigned long chunksz,
9185 /* Sanity checks. */
9186 BFD_ASSERT (chunksz <= sizeof (x)
9189 && (size % chunksz) == 0
9190 && input_bfd != NULL
9191 && location != NULL);
9193 if (chunksz == sizeof (x))
9195 BFD_ASSERT (size == chunksz);
9197 /* Make sure that we do not perform an undefined shift operation.
9198 We know that size == chunksz so there will only be one iteration
9199 of the loop below. */
9203 shift = 8 * chunksz;
9205 for (; size; size -= chunksz, location += chunksz)
9210 x = (x << shift) | bfd_get_8 (input_bfd, location);
9213 x = (x << shift) | bfd_get_16 (input_bfd, location);
9216 x = (x << shift) | bfd_get_32 (input_bfd, location);
9220 x = (x << shift) | bfd_get_64 (input_bfd, location);
9231 decode_complex_addend (unsigned long *start, /* in bits */
9232 unsigned long *oplen, /* in bits */
9233 unsigned long *len, /* in bits */
9234 unsigned long *wordsz, /* in bytes */
9235 unsigned long *chunksz, /* in bytes */
9236 unsigned long *lsb0_p,
9237 unsigned long *signed_p,
9238 unsigned long *trunc_p,
9239 unsigned long encoded)
9241 * start = encoded & 0x3F;
9242 * len = (encoded >> 6) & 0x3F;
9243 * oplen = (encoded >> 12) & 0x3F;
9244 * wordsz = (encoded >> 18) & 0xF;
9245 * chunksz = (encoded >> 22) & 0xF;
9246 * lsb0_p = (encoded >> 27) & 1;
9247 * signed_p = (encoded >> 28) & 1;
9248 * trunc_p = (encoded >> 29) & 1;
9251 bfd_reloc_status_type
9252 bfd_elf_perform_complex_relocation (bfd *input_bfd,
9253 asection *input_section,
9255 Elf_Internal_Rela *rel,
9258 bfd_vma shift, x, mask;
9259 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
9260 bfd_reloc_status_type r;
9261 bfd_size_type octets;
9263 /* Perform this reloc, since it is complex.
9264 (this is not to say that it necessarily refers to a complex
9265 symbol; merely that it is a self-describing CGEN based reloc.
9266 i.e. the addend has the complete reloc information (bit start, end,
9267 word size, etc) encoded within it.). */
9269 decode_complex_addend (&start, &oplen, &len, &wordsz,
9270 &chunksz, &lsb0_p, &signed_p,
9271 &trunc_p, rel->r_addend);
9273 mask = (((1L << (len - 1)) - 1) << 1) | 1;
9276 shift = (start + 1) - len;
9278 shift = (8 * wordsz) - (start + len);
9280 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
9281 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
9284 printf ("Doing complex reloc: "
9285 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
9286 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
9287 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
9288 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
9289 oplen, (unsigned long) x, (unsigned long) mask,
9290 (unsigned long) relocation);
9295 /* Now do an overflow check. */
9296 r = bfd_check_overflow ((signed_p
9297 ? complain_overflow_signed
9298 : complain_overflow_unsigned),
9299 len, 0, (8 * wordsz),
9303 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
9306 printf (" relocation: %8.8lx\n"
9307 " shifted mask: %8.8lx\n"
9308 " shifted/masked reloc: %8.8lx\n"
9309 " result: %8.8lx\n",
9310 (unsigned long) relocation, (unsigned long) (mask << shift),
9311 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
9313 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
9317 /* Functions to read r_offset from external (target order) reloc
9318 entry. Faster than bfd_getl32 et al, because we let the compiler
9319 know the value is aligned. */
9322 ext32l_r_offset (const void *p)
9329 const union aligned32 *a
9330 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9332 uint32_t aval = ( (uint32_t) a->c[0]
9333 | (uint32_t) a->c[1] << 8
9334 | (uint32_t) a->c[2] << 16
9335 | (uint32_t) a->c[3] << 24);
9340 ext32b_r_offset (const void *p)
9347 const union aligned32 *a
9348 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
9350 uint32_t aval = ( (uint32_t) a->c[0] << 24
9351 | (uint32_t) a->c[1] << 16
9352 | (uint32_t) a->c[2] << 8
9353 | (uint32_t) a->c[3]);
9357 #ifdef BFD_HOST_64_BIT
9359 ext64l_r_offset (const void *p)
9366 const union aligned64 *a
9367 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9369 uint64_t aval = ( (uint64_t) a->c[0]
9370 | (uint64_t) a->c[1] << 8
9371 | (uint64_t) a->c[2] << 16
9372 | (uint64_t) a->c[3] << 24
9373 | (uint64_t) a->c[4] << 32
9374 | (uint64_t) a->c[5] << 40
9375 | (uint64_t) a->c[6] << 48
9376 | (uint64_t) a->c[7] << 56);
9381 ext64b_r_offset (const void *p)
9388 const union aligned64 *a
9389 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
9391 uint64_t aval = ( (uint64_t) a->c[0] << 56
9392 | (uint64_t) a->c[1] << 48
9393 | (uint64_t) a->c[2] << 40
9394 | (uint64_t) a->c[3] << 32
9395 | (uint64_t) a->c[4] << 24
9396 | (uint64_t) a->c[5] << 16
9397 | (uint64_t) a->c[6] << 8
9398 | (uint64_t) a->c[7]);
9403 /* When performing a relocatable link, the input relocations are
9404 preserved. But, if they reference global symbols, the indices
9405 referenced must be updated. Update all the relocations found in
9409 elf_link_adjust_relocs (bfd *abfd,
9411 struct bfd_elf_section_reloc_data *reldata,
9413 struct bfd_link_info *info)
9416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9418 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9419 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9420 bfd_vma r_type_mask;
9422 unsigned int count = reldata->count;
9423 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9425 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9427 swap_in = bed->s->swap_reloc_in;
9428 swap_out = bed->s->swap_reloc_out;
9430 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9432 swap_in = bed->s->swap_reloca_in;
9433 swap_out = bed->s->swap_reloca_out;
9438 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9441 if (bed->s->arch_size == 32)
9448 r_type_mask = 0xffffffff;
9452 erela = reldata->hdr->contents;
9453 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9455 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9458 if (*rel_hash == NULL)
9461 if ((*rel_hash)->indx == -2
9462 && info->gc_sections
9463 && ! info->gc_keep_exported)
9465 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9466 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9468 (*rel_hash)->root.root.string);
9469 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9471 bfd_set_error (bfd_error_invalid_operation);
9474 BFD_ASSERT ((*rel_hash)->indx >= 0);
9476 (*swap_in) (abfd, erela, irela);
9477 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9478 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9479 | (irela[j].r_info & r_type_mask));
9480 (*swap_out) (abfd, irela, erela);
9483 if (bed->elf_backend_update_relocs)
9484 (*bed->elf_backend_update_relocs) (sec, reldata);
9486 if (sort && count != 0)
9488 bfd_vma (*ext_r_off) (const void *);
9491 bfd_byte *base, *end, *p, *loc;
9492 bfd_byte *buf = NULL;
9494 if (bed->s->arch_size == 32)
9496 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9497 ext_r_off = ext32l_r_offset;
9498 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9499 ext_r_off = ext32b_r_offset;
9505 #ifdef BFD_HOST_64_BIT
9506 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9507 ext_r_off = ext64l_r_offset;
9508 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9509 ext_r_off = ext64b_r_offset;
9515 /* Must use a stable sort here. A modified insertion sort,
9516 since the relocs are mostly sorted already. */
9517 elt_size = reldata->hdr->sh_entsize;
9518 base = reldata->hdr->contents;
9519 end = base + count * elt_size;
9520 if (elt_size > sizeof (Elf64_External_Rela))
9523 /* Ensure the first element is lowest. This acts as a sentinel,
9524 speeding the main loop below. */
9525 r_off = (*ext_r_off) (base);
9526 for (p = loc = base; (p += elt_size) < end; )
9528 bfd_vma r_off2 = (*ext_r_off) (p);
9537 /* Don't just swap *base and *loc as that changes the order
9538 of the original base[0] and base[1] if they happen to
9539 have the same r_offset. */
9540 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9541 memcpy (onebuf, loc, elt_size);
9542 memmove (base + elt_size, base, loc - base);
9543 memcpy (base, onebuf, elt_size);
9546 for (p = base + elt_size; (p += elt_size) < end; )
9548 /* base to p is sorted, *p is next to insert. */
9549 r_off = (*ext_r_off) (p);
9550 /* Search the sorted region for location to insert. */
9552 while (r_off < (*ext_r_off) (loc))
9557 /* Chances are there is a run of relocs to insert here,
9558 from one of more input files. Files are not always
9559 linked in order due to the way elf_link_input_bfd is
9560 called. See pr17666. */
9561 size_t sortlen = p - loc;
9562 bfd_vma r_off2 = (*ext_r_off) (loc);
9563 size_t runlen = elt_size;
9564 size_t buf_size = 96 * 1024;
9565 while (p + runlen < end
9566 && (sortlen <= buf_size
9567 || runlen + elt_size <= buf_size)
9568 && r_off2 > (*ext_r_off) (p + runlen))
9572 buf = bfd_malloc (buf_size);
9576 if (runlen < sortlen)
9578 memcpy (buf, p, runlen);
9579 memmove (loc + runlen, loc, sortlen);
9580 memcpy (loc, buf, runlen);
9584 memcpy (buf, loc, sortlen);
9585 memmove (loc, p, runlen);
9586 memcpy (loc + runlen, buf, sortlen);
9588 p += runlen - elt_size;
9591 /* Hashes are no longer valid. */
9592 free (reldata->hashes);
9593 reldata->hashes = NULL;
9599 struct elf_link_sort_rela
9605 enum elf_reloc_type_class type;
9606 /* We use this as an array of size int_rels_per_ext_rel. */
9607 Elf_Internal_Rela rela[1];
9610 /* qsort stability here and for cmp2 is only an issue if multiple
9611 dynamic relocations are emitted at the same address. But targets
9612 that apply a series of dynamic relocations each operating on the
9613 result of the prior relocation can't use -z combreloc as
9614 implemented anyway. Such schemes tend to be broken by sorting on
9615 symbol index. That leaves dynamic NONE relocs as the only other
9616 case where ld might emit multiple relocs at the same address, and
9617 those are only emitted due to target bugs. */
9620 elf_link_sort_cmp1 (const void *A, const void *B)
9622 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9623 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9624 int relativea, relativeb;
9626 relativea = a->type == reloc_class_relative;
9627 relativeb = b->type == reloc_class_relative;
9629 if (relativea < relativeb)
9631 if (relativea > relativeb)
9633 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9635 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9637 if (a->rela->r_offset < b->rela->r_offset)
9639 if (a->rela->r_offset > b->rela->r_offset)
9645 elf_link_sort_cmp2 (const void *A, const void *B)
9647 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9648 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9650 if (a->type < b->type)
9652 if (a->type > b->type)
9654 if (a->u.offset < b->u.offset)
9656 if (a->u.offset > b->u.offset)
9658 if (a->rela->r_offset < b->rela->r_offset)
9660 if (a->rela->r_offset > b->rela->r_offset)
9666 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9668 asection *dynamic_relocs;
9671 bfd_size_type count, size;
9672 size_t i, ret, sort_elt, ext_size;
9673 bfd_byte *sort, *s_non_relative, *p;
9674 struct elf_link_sort_rela *sq;
9675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9676 int i2e = bed->s->int_rels_per_ext_rel;
9677 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9678 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9679 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9680 struct bfd_link_order *lo;
9684 /* Find a dynamic reloc section. */
9685 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9686 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9687 if (rela_dyn != NULL && rela_dyn->size > 0
9688 && rel_dyn != NULL && rel_dyn->size > 0)
9690 bool use_rela_initialised = false;
9692 /* This is just here to stop gcc from complaining.
9693 Its initialization checking code is not perfect. */
9696 /* Both sections are present. Examine the sizes
9697 of the indirect sections to help us choose. */
9698 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9699 if (lo->type == bfd_indirect_link_order)
9701 asection *o = lo->u.indirect.section;
9703 if ((o->size % bed->s->sizeof_rela) == 0)
9705 if ((o->size % bed->s->sizeof_rel) == 0)
9706 /* Section size is divisible by both rel and rela sizes.
9707 It is of no help to us. */
9711 /* Section size is only divisible by rela. */
9712 if (use_rela_initialised && !use_rela)
9714 _bfd_error_handler (_("%pB: unable to sort relocs - "
9715 "they are in more than one size"),
9717 bfd_set_error (bfd_error_invalid_operation);
9723 use_rela_initialised = true;
9727 else if ((o->size % bed->s->sizeof_rel) == 0)
9729 /* Section size is only divisible by rel. */
9730 if (use_rela_initialised && use_rela)
9732 _bfd_error_handler (_("%pB: unable to sort relocs - "
9733 "they are in more than one size"),
9735 bfd_set_error (bfd_error_invalid_operation);
9741 use_rela_initialised = true;
9746 /* The section size is not divisible by either -
9747 something is wrong. */
9748 _bfd_error_handler (_("%pB: unable to sort relocs - "
9749 "they are of an unknown size"), abfd);
9750 bfd_set_error (bfd_error_invalid_operation);
9755 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9756 if (lo->type == bfd_indirect_link_order)
9758 asection *o = lo->u.indirect.section;
9760 if ((o->size % bed->s->sizeof_rela) == 0)
9762 if ((o->size % bed->s->sizeof_rel) == 0)
9763 /* Section size is divisible by both rel and rela sizes.
9764 It is of no help to us. */
9768 /* Section size is only divisible by rela. */
9769 if (use_rela_initialised && !use_rela)
9771 _bfd_error_handler (_("%pB: unable to sort relocs - "
9772 "they are in more than one size"),
9774 bfd_set_error (bfd_error_invalid_operation);
9780 use_rela_initialised = true;
9784 else if ((o->size % bed->s->sizeof_rel) == 0)
9786 /* Section size is only divisible by rel. */
9787 if (use_rela_initialised && use_rela)
9789 _bfd_error_handler (_("%pB: unable to sort relocs - "
9790 "they are in more than one size"),
9792 bfd_set_error (bfd_error_invalid_operation);
9798 use_rela_initialised = true;
9803 /* The section size is not divisible by either -
9804 something is wrong. */
9805 _bfd_error_handler (_("%pB: unable to sort relocs - "
9806 "they are of an unknown size"), abfd);
9807 bfd_set_error (bfd_error_invalid_operation);
9812 if (! use_rela_initialised)
9816 else if (rela_dyn != NULL && rela_dyn->size > 0)
9818 else if (rel_dyn != NULL && rel_dyn->size > 0)
9825 dynamic_relocs = rela_dyn;
9826 ext_size = bed->s->sizeof_rela;
9827 swap_in = bed->s->swap_reloca_in;
9828 swap_out = bed->s->swap_reloca_out;
9832 dynamic_relocs = rel_dyn;
9833 ext_size = bed->s->sizeof_rel;
9834 swap_in = bed->s->swap_reloc_in;
9835 swap_out = bed->s->swap_reloc_out;
9839 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9840 if (lo->type == bfd_indirect_link_order)
9841 size += lo->u.indirect.section->size;
9843 if (size != dynamic_relocs->size)
9846 sort_elt = (sizeof (struct elf_link_sort_rela)
9847 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9849 count = dynamic_relocs->size / ext_size;
9852 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9856 (*info->callbacks->warning)
9857 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9861 if (bed->s->arch_size == 32)
9862 r_sym_mask = ~(bfd_vma) 0xff;
9864 r_sym_mask = ~(bfd_vma) 0xffffffff;
9866 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9867 if (lo->type == bfd_indirect_link_order)
9869 bfd_byte *erel, *erelend;
9870 asection *o = lo->u.indirect.section;
9872 if (o->contents == NULL && o->size != 0)
9874 /* This is a reloc section that is being handled as a normal
9875 section. See bfd_section_from_shdr. We can't combine
9876 relocs in this case. */
9881 erelend = o->contents + o->size;
9882 p = sort + o->output_offset * opb / ext_size * sort_elt;
9884 while (erel < erelend)
9886 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9888 (*swap_in) (abfd, erel, s->rela);
9889 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9890 s->u.sym_mask = r_sym_mask;
9896 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9898 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9900 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9901 if (s->type != reloc_class_relative)
9907 sq = (struct elf_link_sort_rela *) s_non_relative;
9908 for (; i < count; i++, p += sort_elt)
9910 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9911 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9913 sp->u.offset = sq->rela->r_offset;
9916 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9918 struct elf_link_hash_table *htab = elf_hash_table (info);
9919 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9921 /* We have plt relocs in .rela.dyn. */
9922 sq = (struct elf_link_sort_rela *) sort;
9923 for (i = 0; i < count; i++)
9924 if (sq[count - i - 1].type != reloc_class_plt)
9926 if (i != 0 && htab->srelplt->size == i * ext_size)
9928 struct bfd_link_order **plo;
9929 /* Put srelplt link_order last. This is so the output_offset
9930 set in the next loop is correct for DT_JMPREL. */
9931 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9932 if ((*plo)->type == bfd_indirect_link_order
9933 && (*plo)->u.indirect.section == htab->srelplt)
9939 plo = &(*plo)->next;
9942 dynamic_relocs->map_tail.link_order = lo;
9947 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9948 if (lo->type == bfd_indirect_link_order)
9950 bfd_byte *erel, *erelend;
9951 asection *o = lo->u.indirect.section;
9954 erelend = o->contents + o->size;
9955 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9956 while (erel < erelend)
9958 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9959 (*swap_out) (abfd, s->rela, erel);
9966 *psec = dynamic_relocs;
9970 /* Add a symbol to the output symbol string table. */
9973 elf_link_output_symstrtab (void *finf,
9975 Elf_Internal_Sym *elfsym,
9976 asection *input_sec,
9977 struct elf_link_hash_entry *h)
9979 struct elf_final_link_info *flinfo = finf;
9980 int (*output_symbol_hook)
9981 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9982 struct elf_link_hash_entry *);
9983 struct elf_link_hash_table *hash_table;
9984 const struct elf_backend_data *bed;
9985 bfd_size_type strtabsize;
9987 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9989 bed = get_elf_backend_data (flinfo->output_bfd);
9990 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9991 if (output_symbol_hook != NULL)
9993 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9998 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9999 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
10000 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
10001 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
10005 || (input_sec->flags & SEC_EXCLUDE))
10006 elfsym->st_name = (unsigned long) -1;
10009 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
10010 to get the final offset for st_name. */
10011 char *versioned_name = (char *) name;
10014 if (h->versioned == versioned && h->def_dynamic)
10016 /* Keep only one '@' for versioned symbols defined in
10018 char *version = strrchr (name, ELF_VER_CHR);
10019 char *base_end = strchr (name, ELF_VER_CHR);
10020 if (version != base_end)
10023 size_t len = strlen (name);
10024 versioned_name = bfd_alloc (flinfo->output_bfd, len);
10025 if (versioned_name == NULL)
10027 base_len = base_end - name;
10028 memcpy (versioned_name, name, base_len);
10029 memcpy (versioned_name + base_len, version,
10034 else if (flinfo->info->unique_symbol
10035 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL)
10037 struct local_hash_entry *lh;
10041 switch (ELF_ST_TYPE (elfsym->st_info))
10047 lh = (struct local_hash_entry *) bfd_hash_lookup
10048 (&flinfo->local_hash_table, name, true, false);
10051 /* Always append ".COUNT" to local symbols to avoid
10052 potential conflicts with local symbol "XXX.COUNT". */
10053 sprintf (buf, "%lx", lh->count);
10054 base_len = lh->size;
10057 base_len = strlen (name);
10058 lh->size = base_len;
10060 count_len = strlen (buf);
10061 versioned_name = bfd_alloc (flinfo->output_bfd,
10062 base_len + count_len + 2);
10063 if (versioned_name == NULL)
10065 memcpy (versioned_name, name, base_len);
10066 versioned_name[base_len] = '.';
10067 memcpy (versioned_name + base_len + 1, buf,
10074 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
10075 versioned_name, false);
10076 if (elfsym->st_name == (unsigned long) -1)
10080 hash_table = elf_hash_table (flinfo->info);
10081 strtabsize = hash_table->strtabsize;
10082 if (strtabsize <= flinfo->output_bfd->symcount)
10084 strtabsize += strtabsize;
10085 hash_table->strtabsize = strtabsize;
10086 strtabsize *= sizeof (*hash_table->strtab);
10088 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
10090 if (hash_table->strtab == NULL)
10093 hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym;
10094 hash_table->strtab[flinfo->output_bfd->symcount].dest_index
10095 = flinfo->output_bfd->symcount;
10096 flinfo->output_bfd->symcount += 1;
10101 /* Swap symbols out to the symbol table and flush the output symbols to
10105 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
10107 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
10110 const struct elf_backend_data *bed;
10112 Elf_Internal_Shdr *hdr;
10116 if (flinfo->output_bfd->symcount == 0)
10119 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
10121 bed = get_elf_backend_data (flinfo->output_bfd);
10123 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10124 symbuf = (bfd_byte *) bfd_malloc (amt);
10125 if (symbuf == NULL)
10128 if (flinfo->symshndxbuf)
10130 amt = sizeof (Elf_External_Sym_Shndx);
10131 amt *= bfd_get_symcount (flinfo->output_bfd);
10132 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10133 if (flinfo->symshndxbuf == NULL)
10140 /* Now swap out the symbols. */
10141 for (i = 0; i < flinfo->output_bfd->symcount; i++)
10143 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
10144 if (elfsym->sym.st_name == (unsigned long) -1)
10145 elfsym->sym.st_name = 0;
10147 elfsym->sym.st_name
10148 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
10149 elfsym->sym.st_name);
10151 /* Inform the linker of the addition of this symbol. */
10153 if (flinfo->info->callbacks->ctf_new_symbol)
10154 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index,
10157 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
10158 ((bfd_byte *) symbuf
10159 + (elfsym->dest_index
10160 * bed->s->sizeof_sym)),
10161 NPTR_ADD (flinfo->symshndxbuf,
10162 elfsym->dest_index));
10165 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
10166 pos = hdr->sh_offset + hdr->sh_size;
10167 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount;
10168 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
10169 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
10171 hdr->sh_size += amt;
10179 free (hash_table->strtab);
10180 hash_table->strtab = NULL;
10185 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
10188 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
10190 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
10191 && sym->st_shndx < SHN_LORESERVE)
10193 /* The gABI doesn't support dynamic symbols in output sections
10196 /* xgettext:c-format */
10197 (_("%pB: too many sections: %d (>= %d)"),
10198 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
10199 bfd_set_error (bfd_error_nonrepresentable_section);
10205 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
10206 allowing an unsatisfied unversioned symbol in the DSO to match a
10207 versioned symbol that would normally require an explicit version.
10208 We also handle the case that a DSO references a hidden symbol
10209 which may be satisfied by a versioned symbol in another DSO. */
10212 elf_link_check_versioned_symbol (struct bfd_link_info *info,
10213 const struct elf_backend_data *bed,
10214 struct elf_link_hash_entry *h)
10217 struct elf_link_loaded_list *loaded;
10219 if (!is_elf_hash_table (info->hash))
10222 /* Check indirect symbol. */
10223 while (h->root.type == bfd_link_hash_indirect)
10224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10226 switch (h->root.type)
10232 case bfd_link_hash_undefined:
10233 case bfd_link_hash_undefweak:
10234 abfd = h->root.u.undef.abfd;
10236 || (abfd->flags & DYNAMIC) == 0
10237 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
10241 case bfd_link_hash_defined:
10242 case bfd_link_hash_defweak:
10243 abfd = h->root.u.def.section->owner;
10246 case bfd_link_hash_common:
10247 abfd = h->root.u.c.p->section->owner;
10250 BFD_ASSERT (abfd != NULL);
10252 for (loaded = elf_hash_table (info)->dyn_loaded;
10254 loaded = loaded->next)
10257 Elf_Internal_Shdr *hdr;
10259 size_t extsymcount;
10261 Elf_Internal_Shdr *versymhdr;
10262 Elf_Internal_Sym *isym;
10263 Elf_Internal_Sym *isymend;
10264 Elf_Internal_Sym *isymbuf;
10265 Elf_External_Versym *ever;
10266 Elf_External_Versym *extversym;
10268 input = loaded->abfd;
10270 /* We check each DSO for a possible hidden versioned definition. */
10272 || elf_dynversym (input) == 0)
10275 hdr = &elf_tdata (input)->dynsymtab_hdr;
10277 symcount = hdr->sh_size / bed->s->sizeof_sym;
10278 if (elf_bad_symtab (input))
10280 extsymcount = symcount;
10285 extsymcount = symcount - hdr->sh_info;
10286 extsymoff = hdr->sh_info;
10289 if (extsymcount == 0)
10292 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
10294 if (isymbuf == NULL)
10297 /* Read in any version definitions. */
10298 versymhdr = &elf_tdata (input)->dynversym_hdr;
10299 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
10300 || (extversym = (Elf_External_Versym *)
10301 _bfd_malloc_and_read (input, versymhdr->sh_size,
10302 versymhdr->sh_size)) == NULL)
10308 ever = extversym + extsymoff;
10309 isymend = isymbuf + extsymcount;
10310 for (isym = isymbuf; isym < isymend; isym++, ever++)
10313 Elf_Internal_Versym iver;
10314 unsigned short version_index;
10316 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
10317 || isym->st_shndx == SHN_UNDEF)
10320 name = bfd_elf_string_from_elf_section (input,
10323 if (strcmp (name, h->root.root.string) != 0)
10326 _bfd_elf_swap_versym_in (input, ever, &iver);
10328 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
10329 && !(h->def_regular
10330 && h->forced_local))
10332 /* If we have a non-hidden versioned sym, then it should
10333 have provided a definition for the undefined sym unless
10334 it is defined in a non-shared object and forced local.
10339 version_index = iver.vs_vers & VERSYM_VERSION;
10340 if (version_index == 1 || version_index == 2)
10342 /* This is the base or first version. We can use it. */
10356 /* Convert ELF common symbol TYPE. */
10359 elf_link_convert_common_type (struct bfd_link_info *info, int type)
10361 /* Commom symbol can only appear in relocatable link. */
10362 if (!bfd_link_relocatable (info))
10364 switch (info->elf_stt_common)
10368 case elf_stt_common:
10371 case no_elf_stt_common:
10378 /* Add an external symbol to the symbol table. This is called from
10379 the hash table traversal routine. When generating a shared object,
10380 we go through the symbol table twice. The first time we output
10381 anything that might have been forced to local scope in a version
10382 script. The second time we output the symbols that are still
10386 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
10388 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
10389 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
10390 struct elf_final_link_info *flinfo = eoinfo->flinfo;
10392 Elf_Internal_Sym sym;
10393 asection *input_sec;
10394 const struct elf_backend_data *bed;
10399 if (h->root.type == bfd_link_hash_warning)
10401 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10402 if (h->root.type == bfd_link_hash_new)
10406 /* Decide whether to output this symbol in this pass. */
10407 if (eoinfo->localsyms)
10409 if (!h->forced_local)
10414 if (h->forced_local)
10418 bed = get_elf_backend_data (flinfo->output_bfd);
10420 if (h->root.type == bfd_link_hash_undefined)
10422 /* If we have an undefined symbol reference here then it must have
10423 come from a shared library that is being linked in. (Undefined
10424 references in regular files have already been handled unless
10425 they are in unreferenced sections which are removed by garbage
10427 bool ignore_undef = false;
10429 /* Some symbols may be special in that the fact that they're
10430 undefined can be safely ignored - let backend determine that. */
10431 if (bed->elf_backend_ignore_undef_symbol)
10432 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
10434 /* If we are reporting errors for this situation then do so now. */
10436 && h->ref_dynamic_nonweak
10437 && (!h->ref_regular || flinfo->info->gc_sections)
10438 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
10439 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
10441 flinfo->info->callbacks->undefined_symbol
10442 (flinfo->info, h->root.root.string,
10443 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
10444 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
10445 && !flinfo->info->warn_unresolved_syms);
10448 /* Strip a global symbol defined in a discarded section. */
10453 /* We should also warn if a forced local symbol is referenced from
10454 shared libraries. */
10455 if (bfd_link_executable (flinfo->info)
10460 && h->ref_dynamic_nonweak
10461 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10465 struct elf_link_hash_entry *hi = h;
10467 /* Check indirect symbol. */
10468 while (hi->root.type == bfd_link_hash_indirect)
10469 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10471 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10472 /* xgettext:c-format */
10473 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10474 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10475 /* xgettext:c-format */
10476 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10478 /* xgettext:c-format */
10479 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10480 def_bfd = flinfo->output_bfd;
10481 if (hi->root.u.def.section != bfd_abs_section_ptr)
10482 def_bfd = hi->root.u.def.section->owner;
10483 _bfd_error_handler (msg, flinfo->output_bfd,
10484 h->root.root.string, def_bfd);
10485 bfd_set_error (bfd_error_bad_value);
10486 eoinfo->failed = true;
10490 /* We don't want to output symbols that have never been mentioned by
10491 a regular file, or that we have been told to strip. However, if
10492 h->indx is set to -2, the symbol is used by a reloc and we must
10497 else if ((h->def_dynamic
10499 || h->root.type == bfd_link_hash_new)
10501 && !h->ref_regular)
10503 else if (flinfo->info->strip == strip_all)
10505 else if (flinfo->info->strip == strip_some
10506 && bfd_hash_lookup (flinfo->info->keep_hash,
10507 h->root.root.string, false, false) == NULL)
10509 else if ((h->root.type == bfd_link_hash_defined
10510 || h->root.type == bfd_link_hash_defweak)
10511 && ((flinfo->info->strip_discarded
10512 && discarded_section (h->root.u.def.section))
10513 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10514 && h->root.u.def.section->owner != NULL
10515 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10517 else if ((h->root.type == bfd_link_hash_undefined
10518 || h->root.type == bfd_link_hash_undefweak)
10519 && h->root.u.undef.abfd != NULL
10520 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10525 /* If we're stripping it, and it's not a dynamic symbol, there's
10526 nothing else to do. However, if it is a forced local symbol or
10527 an ifunc symbol we need to give the backend finish_dynamic_symbol
10528 function a chance to make it dynamic. */
10530 && h->dynindx == -1
10531 && type != STT_GNU_IFUNC
10532 && !h->forced_local)
10536 sym.st_size = h->size;
10537 sym.st_other = h->other;
10538 switch (h->root.type)
10541 case bfd_link_hash_new:
10542 case bfd_link_hash_warning:
10546 case bfd_link_hash_undefined:
10547 case bfd_link_hash_undefweak:
10548 input_sec = bfd_und_section_ptr;
10549 sym.st_shndx = SHN_UNDEF;
10552 case bfd_link_hash_defined:
10553 case bfd_link_hash_defweak:
10555 input_sec = h->root.u.def.section;
10556 if (input_sec->output_section != NULL)
10559 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10560 input_sec->output_section);
10561 if (sym.st_shndx == SHN_BAD)
10564 /* xgettext:c-format */
10565 (_("%pB: could not find output section %pA for input section %pA"),
10566 flinfo->output_bfd, input_sec->output_section, input_sec);
10567 bfd_set_error (bfd_error_nonrepresentable_section);
10568 eoinfo->failed = true;
10572 /* ELF symbols in relocatable files are section relative,
10573 but in nonrelocatable files they are virtual
10575 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10576 if (!bfd_link_relocatable (flinfo->info))
10578 sym.st_value += input_sec->output_section->vma;
10579 if (h->type == STT_TLS)
10581 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10582 if (tls_sec != NULL)
10583 sym.st_value -= tls_sec->vma;
10589 BFD_ASSERT (input_sec->owner == NULL
10590 || (input_sec->owner->flags & DYNAMIC) != 0);
10591 sym.st_shndx = SHN_UNDEF;
10592 input_sec = bfd_und_section_ptr;
10597 case bfd_link_hash_common:
10598 input_sec = h->root.u.c.p->section;
10599 sym.st_shndx = bed->common_section_index (input_sec);
10600 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10603 case bfd_link_hash_indirect:
10604 /* These symbols are created by symbol versioning. They point
10605 to the decorated version of the name. For example, if the
10606 symbol foo@@GNU_1.2 is the default, which should be used when
10607 foo is used with no version, then we add an indirect symbol
10608 foo which points to foo@@GNU_1.2. We ignore these symbols,
10609 since the indirected symbol is already in the hash table. */
10613 if (type == STT_COMMON || type == STT_OBJECT)
10614 switch (h->root.type)
10616 case bfd_link_hash_common:
10617 type = elf_link_convert_common_type (flinfo->info, type);
10619 case bfd_link_hash_defined:
10620 case bfd_link_hash_defweak:
10621 if (bed->common_definition (&sym))
10622 type = elf_link_convert_common_type (flinfo->info, type);
10626 case bfd_link_hash_undefined:
10627 case bfd_link_hash_undefweak:
10633 if (h->forced_local)
10635 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10636 /* Turn off visibility on local symbol. */
10637 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10639 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10640 else if (h->unique_global && h->def_regular)
10641 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10642 else if (h->root.type == bfd_link_hash_undefweak
10643 || h->root.type == bfd_link_hash_defweak)
10644 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10646 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10647 sym.st_target_internal = h->target_internal;
10649 /* Give the processor backend a chance to tweak the symbol value,
10650 and also to finish up anything that needs to be done for this
10651 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10652 forced local syms when non-shared is due to a historical quirk.
10653 STT_GNU_IFUNC symbol must go through PLT. */
10654 if ((h->type == STT_GNU_IFUNC
10656 && !bfd_link_relocatable (flinfo->info))
10657 || ((h->dynindx != -1
10658 || h->forced_local)
10659 && ((bfd_link_pic (flinfo->info)
10660 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10661 || h->root.type != bfd_link_hash_undefweak))
10662 || !h->forced_local)
10663 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10665 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10666 (flinfo->output_bfd, flinfo->info, h, &sym)))
10668 eoinfo->failed = true;
10673 /* If we are marking the symbol as undefined, and there are no
10674 non-weak references to this symbol from a regular object, then
10675 mark the symbol as weak undefined; if there are non-weak
10676 references, mark the symbol as strong. We can't do this earlier,
10677 because it might not be marked as undefined until the
10678 finish_dynamic_symbol routine gets through with it. */
10679 if (sym.st_shndx == SHN_UNDEF
10681 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10682 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10685 type = ELF_ST_TYPE (sym.st_info);
10687 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10688 if (type == STT_GNU_IFUNC)
10691 if (h->ref_regular_nonweak)
10692 bindtype = STB_GLOBAL;
10694 bindtype = STB_WEAK;
10695 sym.st_info = ELF_ST_INFO (bindtype, type);
10698 /* If this is a symbol defined in a dynamic library, don't use the
10699 symbol size from the dynamic library. Relinking an executable
10700 against a new library may introduce gratuitous changes in the
10701 executable's symbols if we keep the size. */
10702 if (sym.st_shndx == SHN_UNDEF
10707 /* If a non-weak symbol with non-default visibility is not defined
10708 locally, it is a fatal error. */
10709 if (!bfd_link_relocatable (flinfo->info)
10710 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10711 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10712 && h->root.type == bfd_link_hash_undefined
10713 && !h->def_regular)
10717 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10718 /* xgettext:c-format */
10719 msg = _("%pB: protected symbol `%s' isn't defined");
10720 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10721 /* xgettext:c-format */
10722 msg = _("%pB: internal symbol `%s' isn't defined");
10724 /* xgettext:c-format */
10725 msg = _("%pB: hidden symbol `%s' isn't defined");
10726 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10727 bfd_set_error (bfd_error_bad_value);
10728 eoinfo->failed = true;
10732 /* If this symbol should be put in the .dynsym section, then put it
10733 there now. We already know the symbol index. We also fill in
10734 the entry in the .hash section. */
10735 if (h->dynindx != -1
10736 && elf_hash_table (flinfo->info)->dynamic_sections_created
10737 && elf_hash_table (flinfo->info)->dynsym != NULL
10738 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10742 /* Since there is no version information in the dynamic string,
10743 if there is no version info in symbol version section, we will
10744 have a run-time problem if not linking executable, referenced
10745 by shared library, or not bound locally. */
10746 if (h->verinfo.verdef == NULL
10747 && (!bfd_link_executable (flinfo->info)
10749 || !h->def_regular))
10751 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10753 if (p && p [1] != '\0')
10756 /* xgettext:c-format */
10757 (_("%pB: no symbol version section for versioned symbol `%s'"),
10758 flinfo->output_bfd, h->root.root.string);
10759 eoinfo->failed = true;
10764 sym.st_name = h->dynstr_index;
10765 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10766 + h->dynindx * bed->s->sizeof_sym);
10767 if (!check_dynsym (flinfo->output_bfd, &sym))
10769 eoinfo->failed = true;
10773 /* Inform the linker of the addition of this symbol. */
10775 if (flinfo->info->callbacks->ctf_new_dynsym)
10776 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym);
10778 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10780 if (flinfo->hash_sec != NULL)
10782 size_t hash_entry_size;
10783 bfd_byte *bucketpos;
10785 size_t bucketcount;
10788 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10789 bucket = h->u.elf_hash_value % bucketcount;
10792 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10793 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10794 + (bucket + 2) * hash_entry_size);
10795 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10796 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10798 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10799 ((bfd_byte *) flinfo->hash_sec->contents
10800 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10803 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10805 Elf_Internal_Versym iversym;
10806 Elf_External_Versym *eversym;
10808 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10810 if (h->verinfo.verdef == NULL
10811 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10812 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10813 iversym.vs_vers = 1;
10815 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10819 if (h->verinfo.vertree == NULL)
10820 iversym.vs_vers = 1;
10822 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10823 if (flinfo->info->create_default_symver)
10827 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10828 defined locally. */
10829 if (h->versioned == versioned_hidden && h->def_regular)
10830 iversym.vs_vers |= VERSYM_HIDDEN;
10832 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10833 eversym += h->dynindx;
10834 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10838 /* If the symbol is undefined, and we didn't output it to .dynsym,
10839 strip it from .symtab too. Obviously we can't do this for
10840 relocatable output or when needed for --emit-relocs. */
10841 else if (input_sec == bfd_und_section_ptr
10843 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10844 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10845 && !bfd_link_relocatable (flinfo->info))
10848 /* Also strip others that we couldn't earlier due to dynamic symbol
10852 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10855 /* Output a FILE symbol so that following locals are not associated
10856 with the wrong input file. We need one for forced local symbols
10857 if we've seen more than one FILE symbol or when we have exactly
10858 one FILE symbol but global symbols are present in a file other
10859 than the one with the FILE symbol. We also need one if linker
10860 defined symbols are present. In practice these conditions are
10861 always met, so just emit the FILE symbol unconditionally. */
10862 if (eoinfo->localsyms
10863 && !eoinfo->file_sym_done
10864 && eoinfo->flinfo->filesym_count != 0)
10866 Elf_Internal_Sym fsym;
10868 memset (&fsym, 0, sizeof (fsym));
10869 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10870 fsym.st_shndx = SHN_ABS;
10871 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10872 bfd_und_section_ptr, NULL))
10875 eoinfo->file_sym_done = true;
10878 indx = bfd_get_symcount (flinfo->output_bfd);
10879 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10883 eoinfo->failed = true;
10888 else if (h->indx == -2)
10894 /* Return TRUE if special handling is done for relocs in SEC against
10895 symbols defined in discarded sections. */
10898 elf_section_ignore_discarded_relocs (asection *sec)
10900 const struct elf_backend_data *bed;
10902 switch (sec->sec_info_type)
10904 case SEC_INFO_TYPE_STABS:
10905 case SEC_INFO_TYPE_EH_FRAME:
10906 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10912 bed = get_elf_backend_data (sec->owner);
10913 if (bed->elf_backend_ignore_discarded_relocs != NULL
10914 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10920 /* Return a mask saying how ld should treat relocations in SEC against
10921 symbols defined in discarded sections. If this function returns
10922 COMPLAIN set, ld will issue a warning message. If this function
10923 returns PRETEND set, and the discarded section was link-once and the
10924 same size as the kept link-once section, ld will pretend that the
10925 symbol was actually defined in the kept section. Otherwise ld will
10926 zero the reloc (at least that is the intent, but some cooperation by
10927 the target dependent code is needed, particularly for REL targets). */
10930 _bfd_elf_default_action_discarded (asection *sec)
10932 if (sec->flags & SEC_DEBUGGING)
10935 if (strcmp (".eh_frame", sec->name) == 0)
10938 if (strcmp (".gcc_except_table", sec->name) == 0)
10941 return COMPLAIN | PRETEND;
10944 /* Find a match between a section and a member of a section group. */
10947 match_group_member (asection *sec, asection *group,
10948 struct bfd_link_info *info)
10950 asection *first = elf_next_in_group (group);
10951 asection *s = first;
10955 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10958 s = elf_next_in_group (s);
10966 /* Check if the kept section of a discarded section SEC can be used
10967 to replace it. Return the replacement if it is OK. Otherwise return
10971 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10975 kept = sec->kept_section;
10978 if ((kept->flags & SEC_GROUP) != 0)
10979 kept = match_group_member (sec, kept, info);
10982 if ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10983 != (kept->rawsize != 0 ? kept->rawsize : kept->size))
10987 /* Get the real kept section. */
10989 for (next = kept->kept_section;
10991 next = next->kept_section)
10995 sec->kept_section = kept;
11000 /* Link an input file into the linker output file. This function
11001 handles all the sections and relocations of the input file at once.
11002 This is so that we only have to read the local symbols once, and
11003 don't have to keep them in memory. */
11006 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
11008 int (*relocate_section)
11009 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
11010 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
11012 Elf_Internal_Shdr *symtab_hdr;
11013 size_t locsymcount;
11015 Elf_Internal_Sym *isymbuf;
11016 Elf_Internal_Sym *isym;
11017 Elf_Internal_Sym *isymend;
11019 asection **ppsection;
11021 const struct elf_backend_data *bed;
11022 struct elf_link_hash_entry **sym_hashes;
11023 bfd_size_type address_size;
11024 bfd_vma r_type_mask;
11026 bool have_file_sym = false;
11028 output_bfd = flinfo->output_bfd;
11029 bed = get_elf_backend_data (output_bfd);
11030 relocate_section = bed->elf_backend_relocate_section;
11032 /* If this is a dynamic object, we don't want to do anything here:
11033 we don't want the local symbols, and we don't want the section
11035 if ((input_bfd->flags & DYNAMIC) != 0)
11038 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
11039 if (elf_bad_symtab (input_bfd))
11041 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11046 locsymcount = symtab_hdr->sh_info;
11047 extsymoff = symtab_hdr->sh_info;
11050 /* Enable GNU OSABI features in the output BFD that are used in the input
11052 if (bed->elf_osabi == ELFOSABI_NONE
11053 || bed->elf_osabi == ELFOSABI_GNU
11054 || bed->elf_osabi == ELFOSABI_FREEBSD)
11055 elf_tdata (output_bfd)->has_gnu_osabi
11056 |= (elf_tdata (input_bfd)->has_gnu_osabi
11057 & (bfd_link_relocatable (flinfo->info)
11058 ? -1 : ~elf_gnu_osabi_retain));
11060 /* Read the local symbols. */
11061 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
11062 if (isymbuf == NULL && locsymcount != 0)
11064 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
11065 flinfo->internal_syms,
11066 flinfo->external_syms,
11067 flinfo->locsym_shndx);
11068 if (isymbuf == NULL)
11072 /* Find local symbol sections and adjust values of symbols in
11073 SEC_MERGE sections. Write out those local symbols we know are
11074 going into the output file. */
11075 isymend = PTR_ADD (isymbuf, locsymcount);
11076 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
11078 isym++, pindex++, ppsection++)
11082 Elf_Internal_Sym osym;
11088 if (elf_bad_symtab (input_bfd))
11090 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
11097 if (isym->st_shndx == SHN_UNDEF)
11098 isec = bfd_und_section_ptr;
11099 else if (isym->st_shndx == SHN_ABS)
11100 isec = bfd_abs_section_ptr;
11101 else if (isym->st_shndx == SHN_COMMON)
11102 isec = bfd_com_section_ptr;
11105 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
11108 /* Don't attempt to output symbols with st_shnx in the
11109 reserved range other than SHN_ABS and SHN_COMMON. */
11110 isec = bfd_und_section_ptr;
11112 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
11113 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
11115 _bfd_merged_section_offset (output_bfd, &isec,
11116 elf_section_data (isec)->sec_info,
11122 /* Don't output the first, undefined, symbol. In fact, don't
11123 output any undefined local symbol. */
11124 if (isec == bfd_und_section_ptr)
11127 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
11129 /* We never output section symbols. Instead, we use the
11130 section symbol of the corresponding section in the output
11135 /* If we are stripping all symbols, we don't want to output this
11137 if (flinfo->info->strip == strip_all)
11140 /* If we are discarding all local symbols, we don't want to
11141 output this one. If we are generating a relocatable output
11142 file, then some of the local symbols may be required by
11143 relocs; we output them below as we discover that they are
11145 if (flinfo->info->discard == discard_all)
11148 /* If this symbol is defined in a section which we are
11149 discarding, we don't need to keep it. */
11150 if (isym->st_shndx != SHN_UNDEF
11151 && isym->st_shndx < SHN_LORESERVE
11152 && isec->output_section == NULL
11153 && flinfo->info->non_contiguous_regions
11154 && flinfo->info->non_contiguous_regions_warnings)
11156 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
11157 "discards section `%s' from '%s'\n"),
11158 isec->name, bfd_get_filename (isec->owner));
11162 if (isym->st_shndx != SHN_UNDEF
11163 && isym->st_shndx < SHN_LORESERVE
11164 && bfd_section_removed_from_list (output_bfd,
11165 isec->output_section))
11168 /* Get the name of the symbol. */
11169 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
11174 /* See if we are discarding symbols with this name. */
11175 if ((flinfo->info->strip == strip_some
11176 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false)
11178 || (((flinfo->info->discard == discard_sec_merge
11179 && (isec->flags & SEC_MERGE)
11180 && !bfd_link_relocatable (flinfo->info))
11181 || flinfo->info->discard == discard_l)
11182 && bfd_is_local_label_name (input_bfd, name)))
11185 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
11187 if (input_bfd->lto_output)
11188 /* -flto puts a temp file name here. This means builds
11189 are not reproducible. Discard the symbol. */
11191 have_file_sym = true;
11192 flinfo->filesym_count += 1;
11194 if (!have_file_sym)
11196 /* In the absence of debug info, bfd_find_nearest_line uses
11197 FILE symbols to determine the source file for local
11198 function symbols. Provide a FILE symbol here if input
11199 files lack such, so that their symbols won't be
11200 associated with a previous input file. It's not the
11201 source file, but the best we can do. */
11202 const char *filename;
11203 have_file_sym = true;
11204 flinfo->filesym_count += 1;
11205 memset (&osym, 0, sizeof (osym));
11206 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
11207 osym.st_shndx = SHN_ABS;
11208 if (input_bfd->lto_output)
11211 filename = lbasename (bfd_get_filename (input_bfd));
11212 if (!elf_link_output_symstrtab (flinfo, filename, &osym,
11213 bfd_abs_section_ptr, NULL))
11219 /* Adjust the section index for the output file. */
11220 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11221 isec->output_section);
11222 if (osym.st_shndx == SHN_BAD)
11225 /* ELF symbols in relocatable files are section relative, but
11226 in executable files they are virtual addresses. Note that
11227 this code assumes that all ELF sections have an associated
11228 BFD section with a reasonable value for output_offset; below
11229 we assume that they also have a reasonable value for
11230 output_section. Any special sections must be set up to meet
11231 these requirements. */
11232 osym.st_value += isec->output_offset;
11233 if (!bfd_link_relocatable (flinfo->info))
11235 osym.st_value += isec->output_section->vma;
11236 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
11238 /* STT_TLS symbols are relative to PT_TLS segment base. */
11239 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
11240 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
11242 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
11247 indx = bfd_get_symcount (output_bfd);
11248 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
11255 if (bed->s->arch_size == 32)
11257 r_type_mask = 0xff;
11263 r_type_mask = 0xffffffff;
11268 /* Relocate the contents of each section. */
11269 sym_hashes = elf_sym_hashes (input_bfd);
11270 for (o = input_bfd->sections; o != NULL; o = o->next)
11272 bfd_byte *contents;
11274 if (! o->linker_mark)
11276 /* This section was omitted from the link. */
11280 if (!flinfo->info->resolve_section_groups
11281 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
11283 /* Deal with the group signature symbol. */
11284 struct bfd_elf_section_data *sec_data = elf_section_data (o);
11285 unsigned long symndx = sec_data->this_hdr.sh_info;
11286 asection *osec = o->output_section;
11288 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
11289 if (symndx >= locsymcount
11290 || (elf_bad_symtab (input_bfd)
11291 && flinfo->sections[symndx] == NULL))
11293 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
11294 while (h->root.type == bfd_link_hash_indirect
11295 || h->root.type == bfd_link_hash_warning)
11296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11297 /* Arrange for symbol to be output. */
11299 elf_section_data (osec)->this_hdr.sh_info = -2;
11301 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
11303 /* We'll use the output section target_index. */
11304 asection *sec = flinfo->sections[symndx]->output_section;
11305 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
11309 if (flinfo->indices[symndx] == -1)
11311 /* Otherwise output the local symbol now. */
11312 Elf_Internal_Sym sym = isymbuf[symndx];
11313 asection *sec = flinfo->sections[symndx]->output_section;
11318 name = bfd_elf_string_from_elf_section (input_bfd,
11319 symtab_hdr->sh_link,
11324 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11326 if (sym.st_shndx == SHN_BAD)
11329 sym.st_value += o->output_offset;
11331 indx = bfd_get_symcount (output_bfd);
11332 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
11337 flinfo->indices[symndx] = indx;
11341 elf_section_data (osec)->this_hdr.sh_info
11342 = flinfo->indices[symndx];
11346 if ((o->flags & SEC_HAS_CONTENTS) == 0
11347 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
11350 if ((o->flags & SEC_LINKER_CREATED) != 0)
11352 /* Section was created by _bfd_elf_link_create_dynamic_sections
11357 /* Get the contents of the section. They have been cached by a
11358 relaxation routine. Note that o is a section in an input
11359 file, so the contents field will not have been set by any of
11360 the routines which work on output files. */
11361 if (elf_section_data (o)->this_hdr.contents != NULL)
11363 contents = elf_section_data (o)->this_hdr.contents;
11364 if (bed->caches_rawsize
11366 && o->rawsize < o->size)
11368 memcpy (flinfo->contents, contents, o->rawsize);
11369 contents = flinfo->contents;
11374 contents = flinfo->contents;
11375 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
11379 if ((o->flags & SEC_RELOC) != 0)
11381 Elf_Internal_Rela *internal_relocs;
11382 Elf_Internal_Rela *rel, *relend;
11383 int action_discarded;
11386 /* Get the swapped relocs. */
11388 = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o,
11389 flinfo->external_relocs,
11390 flinfo->internal_relocs,
11392 if (internal_relocs == NULL
11393 && o->reloc_count > 0)
11396 action_discarded = -1;
11397 if (!elf_section_ignore_discarded_relocs (o))
11398 action_discarded = (*bed->action_discarded) (o);
11400 /* Run through the relocs evaluating complex reloc symbols and
11401 looking for relocs against symbols from discarded sections
11402 or section symbols from removed link-once sections.
11403 Complain about relocs against discarded sections. Zero
11404 relocs against removed link-once sections. */
11406 rel = internal_relocs;
11407 relend = rel + o->reloc_count;
11408 for ( ; rel < relend; rel++)
11410 unsigned long r_symndx = rel->r_info >> r_sym_shift;
11411 unsigned int s_type;
11412 asection **ps, *sec;
11413 struct elf_link_hash_entry *h = NULL;
11414 const char *sym_name;
11416 if (r_symndx == STN_UNDEF)
11419 if (r_symndx >= locsymcount
11420 || (elf_bad_symtab (input_bfd)
11421 && flinfo->sections[r_symndx] == NULL))
11423 h = sym_hashes[r_symndx - extsymoff];
11425 /* Badly formatted input files can contain relocs that
11426 reference non-existant symbols. Check here so that
11427 we do not seg fault. */
11431 /* xgettext:c-format */
11432 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
11433 "that references a non-existent global symbol"),
11434 input_bfd, (uint64_t) rel->r_info, o);
11435 bfd_set_error (bfd_error_bad_value);
11439 while (h->root.type == bfd_link_hash_indirect
11440 || h->root.type == bfd_link_hash_warning)
11441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11445 /* If a plugin symbol is referenced from a non-IR file,
11446 mark the symbol as undefined. Note that the
11447 linker may attach linker created dynamic sections
11448 to the plugin bfd. Symbols defined in linker
11449 created sections are not plugin symbols. */
11450 if ((h->root.non_ir_ref_regular
11451 || h->root.non_ir_ref_dynamic)
11452 && (h->root.type == bfd_link_hash_defined
11453 || h->root.type == bfd_link_hash_defweak)
11454 && (h->root.u.def.section->flags
11455 & SEC_LINKER_CREATED) == 0
11456 && h->root.u.def.section->owner != NULL
11457 && (h->root.u.def.section->owner->flags
11458 & BFD_PLUGIN) != 0)
11460 h->root.type = bfd_link_hash_undefined;
11461 h->root.u.undef.abfd = h->root.u.def.section->owner;
11465 if (h->root.type == bfd_link_hash_defined
11466 || h->root.type == bfd_link_hash_defweak)
11467 ps = &h->root.u.def.section;
11469 sym_name = h->root.root.string;
11473 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11475 s_type = ELF_ST_TYPE (sym->st_info);
11476 ps = &flinfo->sections[r_symndx];
11477 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11481 if ((s_type == STT_RELC || s_type == STT_SRELC)
11482 && !bfd_link_relocatable (flinfo->info))
11485 bfd_vma dot = (rel->r_offset
11486 + o->output_offset + o->output_section->vma);
11488 printf ("Encountered a complex symbol!");
11489 printf (" (input_bfd %s, section %s, reloc %ld\n",
11490 bfd_get_filename (input_bfd), o->name,
11491 (long) (rel - internal_relocs));
11492 printf (" symbol: idx %8.8lx, name %s\n",
11493 r_symndx, sym_name);
11494 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11495 (unsigned long) rel->r_info,
11496 (unsigned long) rel->r_offset);
11498 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11499 isymbuf, locsymcount, s_type == STT_SRELC))
11502 /* Symbol evaluated OK. Update to absolute value. */
11503 set_symbol_value (input_bfd, isymbuf, locsymcount,
11508 if (action_discarded != -1 && ps != NULL)
11510 /* Complain if the definition comes from a
11511 discarded section. */
11512 if ((sec = *ps) != NULL && discarded_section (sec))
11514 BFD_ASSERT (r_symndx != STN_UNDEF);
11515 if (action_discarded & COMPLAIN)
11516 (*flinfo->info->callbacks->einfo)
11517 /* xgettext:c-format */
11518 (_("%X`%s' referenced in section `%pA' of %pB: "
11519 "defined in discarded section `%pA' of %pB\n"),
11520 sym_name, o, input_bfd, sec, sec->owner);
11522 /* Try to do the best we can to support buggy old
11523 versions of gcc. Pretend that the symbol is
11524 really defined in the kept linkonce section.
11525 FIXME: This is quite broken. Modifying the
11526 symbol here means we will be changing all later
11527 uses of the symbol, not just in this section. */
11528 if (action_discarded & PRETEND)
11532 kept = _bfd_elf_check_kept_section (sec,
11544 /* Relocate the section by invoking a back end routine.
11546 The back end routine is responsible for adjusting the
11547 section contents as necessary, and (if using Rela relocs
11548 and generating a relocatable output file) adjusting the
11549 reloc addend as necessary.
11551 The back end routine does not have to worry about setting
11552 the reloc address or the reloc symbol index.
11554 The back end routine is given a pointer to the swapped in
11555 internal symbols, and can access the hash table entries
11556 for the external symbols via elf_sym_hashes (input_bfd).
11558 When generating relocatable output, the back end routine
11559 must handle STB_LOCAL/STT_SECTION symbols specially. The
11560 output symbol is going to be a section symbol
11561 corresponding to the output section, which will require
11562 the addend to be adjusted. */
11564 ret = (*relocate_section) (output_bfd, flinfo->info,
11565 input_bfd, o, contents,
11573 || bfd_link_relocatable (flinfo->info)
11574 || flinfo->info->emitrelocations)
11576 Elf_Internal_Rela *irela;
11577 Elf_Internal_Rela *irelaend, *irelamid;
11578 bfd_vma last_offset;
11579 struct elf_link_hash_entry **rel_hash;
11580 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11581 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11582 unsigned int next_erel;
11584 struct bfd_elf_section_data *esdi, *esdo;
11586 esdi = elf_section_data (o);
11587 esdo = elf_section_data (o->output_section);
11588 rela_normal = false;
11590 /* Adjust the reloc addresses and symbol indices. */
11592 irela = internal_relocs;
11593 irelaend = irela + o->reloc_count;
11594 rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count);
11595 /* We start processing the REL relocs, if any. When we reach
11596 IRELAMID in the loop, we switch to the RELA relocs. */
11598 if (esdi->rel.hdr != NULL)
11599 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11600 * bed->s->int_rels_per_ext_rel);
11601 rel_hash_list = rel_hash;
11602 rela_hash_list = NULL;
11603 last_offset = o->output_offset;
11604 if (!bfd_link_relocatable (flinfo->info))
11605 last_offset += o->output_section->vma;
11606 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11608 unsigned long r_symndx;
11610 Elf_Internal_Sym sym;
11612 if (next_erel == bed->s->int_rels_per_ext_rel)
11618 if (irela == irelamid)
11620 rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count);
11621 rela_hash_list = rel_hash;
11622 rela_normal = bed->rela_normal;
11625 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11628 if (irela->r_offset >= (bfd_vma) -2)
11630 /* This is a reloc for a deleted entry or somesuch.
11631 Turn it into an R_*_NONE reloc, at the same
11632 offset as the last reloc. elf_eh_frame.c and
11633 bfd_elf_discard_info rely on reloc offsets
11635 irela->r_offset = last_offset;
11637 irela->r_addend = 0;
11641 irela->r_offset += o->output_offset;
11643 /* Relocs in an executable have to be virtual addresses. */
11644 if (!bfd_link_relocatable (flinfo->info))
11645 irela->r_offset += o->output_section->vma;
11647 last_offset = irela->r_offset;
11649 r_symndx = irela->r_info >> r_sym_shift;
11650 if (r_symndx == STN_UNDEF)
11653 if (r_symndx >= locsymcount
11654 || (elf_bad_symtab (input_bfd)
11655 && flinfo->sections[r_symndx] == NULL))
11657 struct elf_link_hash_entry *rh;
11658 unsigned long indx;
11660 /* This is a reloc against a global symbol. We
11661 have not yet output all the local symbols, so
11662 we do not know the symbol index of any global
11663 symbol. We set the rel_hash entry for this
11664 reloc to point to the global hash table entry
11665 for this symbol. The symbol index is then
11666 set at the end of bfd_elf_final_link. */
11667 indx = r_symndx - extsymoff;
11668 rh = elf_sym_hashes (input_bfd)[indx];
11669 while (rh->root.type == bfd_link_hash_indirect
11670 || rh->root.type == bfd_link_hash_warning)
11671 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11673 /* Setting the index to -2 tells
11674 elf_link_output_extsym that this symbol is
11675 used by a reloc. */
11676 BFD_ASSERT (rh->indx < 0);
11683 /* This is a reloc against a local symbol. */
11686 sym = isymbuf[r_symndx];
11687 sec = flinfo->sections[r_symndx];
11688 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11690 /* I suppose the backend ought to fill in the
11691 section of any STT_SECTION symbol against a
11692 processor specific section. */
11693 r_symndx = STN_UNDEF;
11694 if (bfd_is_abs_section (sec))
11696 else if (sec == NULL || sec->owner == NULL)
11698 bfd_set_error (bfd_error_bad_value);
11703 asection *osec = sec->output_section;
11705 /* If we have discarded a section, the output
11706 section will be the absolute section. In
11707 case of discarded SEC_MERGE sections, use
11708 the kept section. relocate_section should
11709 have already handled discarded linkonce
11711 if (bfd_is_abs_section (osec)
11712 && sec->kept_section != NULL
11713 && sec->kept_section->output_section != NULL)
11715 osec = sec->kept_section->output_section;
11716 irela->r_addend -= osec->vma;
11719 if (!bfd_is_abs_section (osec))
11721 r_symndx = osec->target_index;
11722 if (r_symndx == STN_UNDEF)
11724 irela->r_addend += osec->vma;
11725 osec = _bfd_nearby_section (output_bfd, osec,
11727 irela->r_addend -= osec->vma;
11728 r_symndx = osec->target_index;
11733 /* Adjust the addend according to where the
11734 section winds up in the output section. */
11736 irela->r_addend += sec->output_offset;
11740 if (flinfo->indices[r_symndx] == -1)
11742 unsigned long shlink;
11747 if (flinfo->info->strip == strip_all)
11749 /* You can't do ld -r -s. */
11750 bfd_set_error (bfd_error_invalid_operation);
11754 /* This symbol was skipped earlier, but
11755 since it is needed by a reloc, we
11756 must output it now. */
11757 shlink = symtab_hdr->sh_link;
11758 name = (bfd_elf_string_from_elf_section
11759 (input_bfd, shlink, sym.st_name));
11763 osec = sec->output_section;
11765 _bfd_elf_section_from_bfd_section (output_bfd,
11767 if (sym.st_shndx == SHN_BAD)
11770 sym.st_value += sec->output_offset;
11771 if (!bfd_link_relocatable (flinfo->info))
11773 sym.st_value += osec->vma;
11774 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11776 struct elf_link_hash_table *htab
11777 = elf_hash_table (flinfo->info);
11779 /* STT_TLS symbols are relative to PT_TLS
11781 if (htab->tls_sec != NULL)
11782 sym.st_value -= htab->tls_sec->vma;
11785 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11790 indx = bfd_get_symcount (output_bfd);
11791 ret = elf_link_output_symstrtab (flinfo, name,
11797 flinfo->indices[r_symndx] = indx;
11802 r_symndx = flinfo->indices[r_symndx];
11805 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11806 | (irela->r_info & r_type_mask));
11809 /* Swap out the relocs. */
11810 input_rel_hdr = esdi->rel.hdr;
11811 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11813 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11818 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11819 * bed->s->int_rels_per_ext_rel);
11820 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11823 input_rela_hdr = esdi->rela.hdr;
11824 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11826 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11835 /* Write out the modified section contents. */
11836 if (bed->elf_backend_write_section
11837 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11840 /* Section written out. */
11842 else switch (o->sec_info_type)
11844 case SEC_INFO_TYPE_STABS:
11845 if (! (_bfd_write_section_stabs
11847 &elf_hash_table (flinfo->info)->stab_info,
11848 o, &elf_section_data (o)->sec_info, contents)))
11851 case SEC_INFO_TYPE_MERGE:
11852 if (! _bfd_write_merged_section (output_bfd, o,
11853 elf_section_data (o)->sec_info))
11856 case SEC_INFO_TYPE_EH_FRAME:
11858 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11863 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11865 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11873 if (! (o->flags & SEC_EXCLUDE))
11875 file_ptr offset = (file_ptr) o->output_offset;
11876 bfd_size_type todo = o->size;
11878 offset *= bfd_octets_per_byte (output_bfd, o);
11880 if ((o->flags & SEC_ELF_REVERSE_COPY)
11881 && o->size > address_size)
11883 /* Reverse-copy input section to output. */
11885 if ((o->size & (address_size - 1)) != 0
11886 || (o->reloc_count != 0
11887 && (o->size * bed->s->int_rels_per_ext_rel
11888 != o->reloc_count * address_size)))
11891 /* xgettext:c-format */
11892 (_("error: %pB: size of section %pA is not "
11893 "multiple of address size"),
11895 bfd_set_error (bfd_error_bad_value);
11901 todo -= address_size;
11902 if (! bfd_set_section_contents (output_bfd,
11910 offset += address_size;
11914 else if (! bfd_set_section_contents (output_bfd,
11928 /* Generate a reloc when linking an ELF file. This is a reloc
11929 requested by the linker, and does not come from any input file. This
11930 is used to build constructor and destructor tables when linking
11934 elf_reloc_link_order (bfd *output_bfd,
11935 struct bfd_link_info *info,
11936 asection *output_section,
11937 struct bfd_link_order *link_order)
11939 reloc_howto_type *howto;
11943 struct bfd_elf_section_reloc_data *reldata;
11944 struct elf_link_hash_entry **rel_hash_ptr;
11945 Elf_Internal_Shdr *rel_hdr;
11946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11947 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11950 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11952 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11955 bfd_set_error (bfd_error_bad_value);
11959 addend = link_order->u.reloc.p->addend;
11962 reldata = &esdo->rel;
11963 else if (esdo->rela.hdr)
11964 reldata = &esdo->rela;
11971 /* Figure out the symbol index. */
11972 rel_hash_ptr = reldata->hashes + reldata->count;
11973 if (link_order->type == bfd_section_reloc_link_order)
11975 indx = link_order->u.reloc.p->u.section->target_index;
11976 BFD_ASSERT (indx != 0);
11977 *rel_hash_ptr = NULL;
11981 struct elf_link_hash_entry *h;
11983 /* Treat a reloc against a defined symbol as though it were
11984 actually against the section. */
11985 h = ((struct elf_link_hash_entry *)
11986 bfd_wrapped_link_hash_lookup (output_bfd, info,
11987 link_order->u.reloc.p->u.name,
11988 false, false, true));
11990 && (h->root.type == bfd_link_hash_defined
11991 || h->root.type == bfd_link_hash_defweak))
11995 section = h->root.u.def.section;
11996 indx = section->output_section->target_index;
11997 *rel_hash_ptr = NULL;
11998 /* It seems that we ought to add the symbol value to the
11999 addend here, but in practice it has already been added
12000 because it was passed to constructor_callback. */
12001 addend += section->output_section->vma + section->output_offset;
12003 else if (h != NULL)
12005 /* Setting the index to -2 tells elf_link_output_extsym that
12006 this symbol is used by a reloc. */
12013 (*info->callbacks->unattached_reloc)
12014 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
12019 /* If this is an inplace reloc, we must write the addend into the
12021 if (howto->partial_inplace && addend != 0)
12023 bfd_size_type size;
12024 bfd_reloc_status_type rstat;
12027 const char *sym_name;
12028 bfd_size_type octets;
12030 size = (bfd_size_type) bfd_get_reloc_size (howto);
12031 buf = (bfd_byte *) bfd_zmalloc (size);
12032 if (buf == NULL && size != 0)
12034 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
12041 case bfd_reloc_outofrange:
12044 case bfd_reloc_overflow:
12045 if (link_order->type == bfd_section_reloc_link_order)
12046 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
12048 sym_name = link_order->u.reloc.p->u.name;
12049 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
12050 howto->name, addend, NULL, NULL,
12055 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
12057 ok = bfd_set_section_contents (output_bfd, output_section, buf,
12064 /* The address of a reloc is relative to the section in a
12065 relocatable file, and is a virtual address in an executable
12067 offset = link_order->offset;
12068 if (! bfd_link_relocatable (info))
12069 offset += output_section->vma;
12071 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
12073 irel[i].r_offset = offset;
12074 irel[i].r_info = 0;
12075 irel[i].r_addend = 0;
12077 if (bed->s->arch_size == 32)
12078 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
12080 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
12082 rel_hdr = reldata->hdr;
12083 erel = rel_hdr->contents;
12084 if (rel_hdr->sh_type == SHT_REL)
12086 erel += reldata->count * bed->s->sizeof_rel;
12087 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
12091 irel[0].r_addend = addend;
12092 erel += reldata->count * bed->s->sizeof_rela;
12093 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
12101 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
12102 Returns TRUE upon success, FALSE otherwise. */
12105 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
12109 const struct elf_backend_data *bed;
12111 enum bfd_architecture arch;
12113 asymbol **sympp = NULL;
12117 elf_symbol_type *osymbuf;
12120 implib_bfd = info->out_implib_bfd;
12121 bed = get_elf_backend_data (abfd);
12123 if (!bfd_set_format (implib_bfd, bfd_object))
12126 /* Use flag from executable but make it a relocatable object. */
12127 flags = bfd_get_file_flags (abfd);
12128 flags &= ~HAS_RELOC;
12129 if (!bfd_set_start_address (implib_bfd, 0)
12130 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
12133 /* Copy architecture of output file to import library file. */
12134 arch = bfd_get_arch (abfd);
12135 mach = bfd_get_mach (abfd);
12136 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
12137 && (abfd->target_defaulted
12138 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
12141 /* Get symbol table size. */
12142 symsize = bfd_get_symtab_upper_bound (abfd);
12146 /* Read in the symbol table. */
12147 sympp = (asymbol **) bfd_malloc (symsize);
12151 symcount = bfd_canonicalize_symtab (abfd, sympp);
12155 /* Allow the BFD backend to copy any private header data it
12156 understands from the output BFD to the import library BFD. */
12157 if (! bfd_copy_private_header_data (abfd, implib_bfd))
12160 /* Filter symbols to appear in the import library. */
12161 if (bed->elf_backend_filter_implib_symbols)
12162 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
12165 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
12168 bfd_set_error (bfd_error_no_symbols);
12169 _bfd_error_handler (_("%pB: no symbol found for import library"),
12175 /* Make symbols absolute. */
12176 amt = symcount * sizeof (*osymbuf);
12177 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
12178 if (osymbuf == NULL)
12181 for (src_count = 0; src_count < symcount; src_count++)
12183 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
12184 sizeof (*osymbuf));
12185 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
12186 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
12187 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
12188 osymbuf[src_count].internal_elf_sym.st_value =
12189 osymbuf[src_count].symbol.value;
12190 sympp[src_count] = &osymbuf[src_count].symbol;
12193 bfd_set_symtab (implib_bfd, sympp, symcount);
12195 /* Allow the BFD backend to copy any private data it understands
12196 from the output BFD to the import library BFD. This is done last
12197 to permit the routine to look at the filtered symbol table. */
12198 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
12201 if (!bfd_close (implib_bfd))
12212 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
12216 if (flinfo->symstrtab != NULL)
12217 _bfd_elf_strtab_free (flinfo->symstrtab);
12218 free (flinfo->contents);
12219 free (flinfo->external_relocs);
12220 free (flinfo->internal_relocs);
12221 free (flinfo->external_syms);
12222 free (flinfo->locsym_shndx);
12223 free (flinfo->internal_syms);
12224 free (flinfo->indices);
12225 free (flinfo->sections);
12226 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
12227 free (flinfo->symshndxbuf);
12228 for (o = obfd->sections; o != NULL; o = o->next)
12230 struct bfd_elf_section_data *esdo = elf_section_data (o);
12231 free (esdo->rel.hashes);
12232 free (esdo->rela.hashes);
12236 /* Do the final step of an ELF link. */
12239 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12244 struct elf_final_link_info flinfo;
12246 struct bfd_link_order *p;
12248 bfd_size_type max_contents_size;
12249 bfd_size_type max_external_reloc_size;
12250 bfd_size_type max_internal_reloc_count;
12251 bfd_size_type max_sym_count;
12252 bfd_size_type max_sym_shndx_count;
12253 Elf_Internal_Sym elfsym;
12255 Elf_Internal_Shdr *symtab_hdr;
12256 Elf_Internal_Shdr *symtab_shndx_hdr;
12257 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12258 struct elf_outext_info eoinfo;
12260 size_t relativecount;
12261 size_t relr_entsize;
12262 asection *reldyn = 0;
12264 asection *attr_section = NULL;
12265 bfd_vma attr_size = 0;
12266 const char *std_attrs_section;
12267 struct elf_link_hash_table *htab = elf_hash_table (info);
12268 bool sections_removed;
12271 if (!is_elf_hash_table (&htab->root))
12274 if (bfd_link_pic (info))
12275 abfd->flags |= DYNAMIC;
12277 dynamic = htab->dynamic_sections_created;
12278 dynobj = htab->dynobj;
12280 emit_relocs = (bfd_link_relocatable (info)
12281 || info->emitrelocations);
12283 memset (&flinfo, 0, sizeof (flinfo));
12284 flinfo.info = info;
12285 flinfo.output_bfd = abfd;
12286 flinfo.symstrtab = _bfd_elf_strtab_init ();
12287 if (flinfo.symstrtab == NULL)
12292 flinfo.hash_sec = NULL;
12293 flinfo.symver_sec = NULL;
12297 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
12298 /* Note that dynsym_sec can be NULL (on VMS). */
12299 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
12300 /* Note that it is OK if symver_sec is NULL. */
12303 if (info->unique_symbol
12304 && !bfd_hash_table_init (&flinfo.local_hash_table,
12305 local_hash_newfunc,
12306 sizeof (struct local_hash_entry)))
12309 /* The object attributes have been merged. Remove the input
12310 sections from the link, and set the contents of the output
12312 sections_removed = false;
12313 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
12314 for (o = abfd->sections; o != NULL; o = o->next)
12316 bool remove_section = false;
12318 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
12319 || strcmp (o->name, ".gnu.attributes") == 0)
12321 for (p = o->map_head.link_order; p != NULL; p = p->next)
12323 asection *input_section;
12325 if (p->type != bfd_indirect_link_order)
12327 input_section = p->u.indirect.section;
12328 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12329 elf_link_input_bfd ignores this section. */
12330 input_section->flags &= ~SEC_HAS_CONTENTS;
12333 attr_size = bfd_elf_obj_attr_size (abfd);
12334 bfd_set_section_size (o, attr_size);
12335 /* Skip this section later on. */
12336 o->map_head.link_order = NULL;
12340 remove_section = true;
12342 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12344 /* Remove empty group section from linker output. */
12345 remove_section = true;
12347 if (remove_section)
12349 o->flags |= SEC_EXCLUDE;
12350 bfd_section_list_remove (abfd, o);
12351 abfd->section_count--;
12352 sections_removed = true;
12355 if (sections_removed)
12356 _bfd_fix_excluded_sec_syms (abfd, info);
12358 /* Count up the number of relocations we will output for each output
12359 section, so that we know the sizes of the reloc sections. We
12360 also figure out some maximum sizes. */
12361 max_contents_size = 0;
12362 max_external_reloc_size = 0;
12363 max_internal_reloc_count = 0;
12365 max_sym_shndx_count = 0;
12367 for (o = abfd->sections; o != NULL; o = o->next)
12369 struct bfd_elf_section_data *esdo = elf_section_data (o);
12370 o->reloc_count = 0;
12372 for (p = o->map_head.link_order; p != NULL; p = p->next)
12374 unsigned int reloc_count = 0;
12375 unsigned int additional_reloc_count = 0;
12376 struct bfd_elf_section_data *esdi = NULL;
12378 if (p->type == bfd_section_reloc_link_order
12379 || p->type == bfd_symbol_reloc_link_order)
12381 else if (p->type == bfd_indirect_link_order)
12385 sec = p->u.indirect.section;
12387 /* Mark all sections which are to be included in the
12388 link. This will normally be every section. We need
12389 to do this so that we can identify any sections which
12390 the linker has decided to not include. */
12391 sec->linker_mark = true;
12393 if (sec->flags & SEC_MERGE)
12396 if (sec->rawsize > max_contents_size)
12397 max_contents_size = sec->rawsize;
12398 if (sec->size > max_contents_size)
12399 max_contents_size = sec->size;
12401 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12402 && (sec->owner->flags & DYNAMIC) == 0)
12406 /* We are interested in just local symbols, not all
12408 if (elf_bad_symtab (sec->owner))
12409 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12410 / bed->s->sizeof_sym);
12412 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12414 if (sym_count > max_sym_count)
12415 max_sym_count = sym_count;
12417 if (sym_count > max_sym_shndx_count
12418 && elf_symtab_shndx_list (sec->owner) != NULL)
12419 max_sym_shndx_count = sym_count;
12421 if (esdo->this_hdr.sh_type == SHT_REL
12422 || esdo->this_hdr.sh_type == SHT_RELA)
12423 /* Some backends use reloc_count in relocation sections
12424 to count particular types of relocs. Of course,
12425 reloc sections themselves can't have relocations. */
12427 else if (emit_relocs)
12429 reloc_count = sec->reloc_count;
12430 if (bed->elf_backend_count_additional_relocs)
12433 c = (*bed->elf_backend_count_additional_relocs) (sec);
12434 additional_reloc_count += c;
12437 else if (bed->elf_backend_count_relocs)
12438 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12440 esdi = elf_section_data (sec);
12442 if ((sec->flags & SEC_RELOC) != 0)
12444 size_t ext_size = 0;
12446 if (esdi->rel.hdr != NULL)
12447 ext_size = esdi->rel.hdr->sh_size;
12448 if (esdi->rela.hdr != NULL)
12449 ext_size += esdi->rela.hdr->sh_size;
12451 if (ext_size > max_external_reloc_size)
12452 max_external_reloc_size = ext_size;
12453 if (sec->reloc_count > max_internal_reloc_count)
12454 max_internal_reloc_count = sec->reloc_count;
12459 if (reloc_count == 0)
12462 reloc_count += additional_reloc_count;
12463 o->reloc_count += reloc_count;
12465 if (p->type == bfd_indirect_link_order && emit_relocs)
12469 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12470 esdo->rel.count += additional_reloc_count;
12472 if (esdi->rela.hdr)
12474 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12475 esdo->rela.count += additional_reloc_count;
12481 esdo->rela.count += reloc_count;
12483 esdo->rel.count += reloc_count;
12487 if (o->reloc_count > 0)
12488 o->flags |= SEC_RELOC;
12491 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12492 set it (this is probably a bug) and if it is set
12493 assign_section_numbers will create a reloc section. */
12494 o->flags &=~ SEC_RELOC;
12497 /* If the SEC_ALLOC flag is not set, force the section VMA to
12498 zero. This is done in elf_fake_sections as well, but forcing
12499 the VMA to 0 here will ensure that relocs against these
12500 sections are handled correctly. */
12501 if ((o->flags & SEC_ALLOC) == 0
12502 && ! o->user_set_vma)
12506 if (! bfd_link_relocatable (info) && merged)
12507 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12509 /* Figure out the file positions for everything but the symbol table
12510 and the relocs. We set symcount to force assign_section_numbers
12511 to create a symbol table. */
12512 abfd->symcount = info->strip != strip_all || emit_relocs;
12513 BFD_ASSERT (! abfd->output_has_begun);
12514 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12517 /* Set sizes, and assign file positions for reloc sections. */
12518 for (o = abfd->sections; o != NULL; o = o->next)
12520 struct bfd_elf_section_data *esdo = elf_section_data (o);
12521 if ((o->flags & SEC_RELOC) != 0)
12524 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12528 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12532 /* _bfd_elf_compute_section_file_positions makes temporary use
12533 of target_index. Reset it. */
12534 o->target_index = 0;
12536 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12537 to count upwards while actually outputting the relocations. */
12538 esdo->rel.count = 0;
12539 esdo->rela.count = 0;
12541 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12542 && !bfd_section_is_ctf (o))
12544 /* Cache the section contents so that they can be compressed
12545 later. Use bfd_malloc since it will be freed by
12546 bfd_compress_section_contents. */
12547 unsigned char *contents = esdo->this_hdr.contents;
12548 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12551 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12552 if (contents == NULL)
12554 esdo->this_hdr.contents = contents;
12558 /* We have now assigned file positions for all the sections except .symtab,
12559 .strtab, and non-loaded reloc and compressed debugging sections. We start
12560 the .symtab section at the current file position, and write directly to it.
12561 We build the .strtab section in memory. */
12562 abfd->symcount = 0;
12563 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12564 /* sh_name is set in prep_headers. */
12565 symtab_hdr->sh_type = SHT_SYMTAB;
12566 /* sh_flags, sh_addr and sh_size all start off zero. */
12567 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12568 /* sh_link is set in assign_section_numbers. */
12569 /* sh_info is set below. */
12570 /* sh_offset is set just below. */
12571 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12573 if (max_sym_count < 20)
12574 max_sym_count = 20;
12575 htab->strtabsize = max_sym_count;
12576 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12577 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12578 if (htab->strtab == NULL)
12580 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12582 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12583 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12585 if (info->strip != strip_all || emit_relocs)
12587 file_ptr off = elf_next_file_pos (abfd);
12589 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
12591 /* Note that at this point elf_next_file_pos (abfd) is
12592 incorrect. We do not yet know the size of the .symtab section.
12593 We correct next_file_pos below, after we do know the size. */
12595 /* Start writing out the symbol table. The first symbol is always a
12597 elfsym.st_value = 0;
12598 elfsym.st_size = 0;
12599 elfsym.st_info = 0;
12600 elfsym.st_other = 0;
12601 elfsym.st_shndx = SHN_UNDEF;
12602 elfsym.st_target_internal = 0;
12603 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12604 bfd_und_section_ptr, NULL) != 1)
12607 /* Output a symbol for each section if asked or they are used for
12608 relocs. These symbols usually have no names. We store the
12609 index of each one in the index field of the section, so that
12610 we can find it again when outputting relocs. */
12612 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs)
12614 bool name_local_sections
12615 = (bed->elf_backend_name_local_section_symbols
12616 && bed->elf_backend_name_local_section_symbols (abfd));
12617 const char *name = NULL;
12619 elfsym.st_size = 0;
12620 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12621 elfsym.st_other = 0;
12622 elfsym.st_value = 0;
12623 elfsym.st_target_internal = 0;
12624 for (i = 1; i < elf_numsections (abfd); i++)
12626 o = bfd_section_from_elf_index (abfd, i);
12629 o->target_index = bfd_get_symcount (abfd);
12630 elfsym.st_shndx = i;
12631 if (!bfd_link_relocatable (info))
12632 elfsym.st_value = o->vma;
12633 if (name_local_sections)
12635 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o,
12643 /* On some targets like Irix 5 the symbol split between local and global
12644 ones recorded in the sh_info field needs to be done between section
12645 and all other symbols. */
12646 if (bed->elf_backend_elfsym_local_is_section
12647 && bed->elf_backend_elfsym_local_is_section (abfd))
12648 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12650 /* Allocate some memory to hold information read in from the input
12652 if (max_contents_size != 0)
12654 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12655 if (flinfo.contents == NULL)
12659 if (max_external_reloc_size != 0)
12661 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12662 if (flinfo.external_relocs == NULL)
12666 if (max_internal_reloc_count != 0)
12668 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12669 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12670 if (flinfo.internal_relocs == NULL)
12674 if (max_sym_count != 0)
12676 amt = max_sym_count * bed->s->sizeof_sym;
12677 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12678 if (flinfo.external_syms == NULL)
12681 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12682 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12683 if (flinfo.internal_syms == NULL)
12686 amt = max_sym_count * sizeof (long);
12687 flinfo.indices = (long int *) bfd_malloc (amt);
12688 if (flinfo.indices == NULL)
12691 amt = max_sym_count * sizeof (asection *);
12692 flinfo.sections = (asection **) bfd_malloc (amt);
12693 if (flinfo.sections == NULL)
12697 if (max_sym_shndx_count != 0)
12699 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12700 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12701 if (flinfo.locsym_shndx == NULL)
12707 bfd_vma base, end = 0; /* Both bytes. */
12710 for (sec = htab->tls_sec;
12711 sec && (sec->flags & SEC_THREAD_LOCAL);
12714 bfd_size_type size = sec->size;
12715 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12718 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12720 struct bfd_link_order *ord = sec->map_tail.link_order;
12723 size = ord->offset * opb + ord->size;
12725 end = sec->vma + size / opb;
12727 base = htab->tls_sec->vma;
12728 /* Only align end of TLS section if static TLS doesn't have special
12729 alignment requirements. */
12730 if (bed->static_tls_alignment == 1)
12731 end = align_power (end, htab->tls_sec->alignment_power);
12732 htab->tls_size = end - base;
12735 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12738 /* Finish relative relocations here after regular symbol processing
12739 is finished if DT_RELR is enabled. */
12740 if (info->enable_dt_relr
12741 && bed->finish_relative_relocs
12742 && !bed->finish_relative_relocs (info))
12743 info->callbacks->einfo
12744 (_("%F%P: %pB: failed to finish relative relocations\n"), abfd);
12746 /* Since ELF permits relocations to be against local symbols, we
12747 must have the local symbols available when we do the relocations.
12748 Since we would rather only read the local symbols once, and we
12749 would rather not keep them in memory, we handle all the
12750 relocations for a single input file at the same time.
12752 Unfortunately, there is no way to know the total number of local
12753 symbols until we have seen all of them, and the local symbol
12754 indices precede the global symbol indices. This means that when
12755 we are generating relocatable output, and we see a reloc against
12756 a global symbol, we can not know the symbol index until we have
12757 finished examining all the local symbols to see which ones we are
12758 going to output. To deal with this, we keep the relocations in
12759 memory, and don't output them until the end of the link. This is
12760 an unfortunate waste of memory, but I don't see a good way around
12761 it. Fortunately, it only happens when performing a relocatable
12762 link, which is not the common case. FIXME: If keep_memory is set
12763 we could write the relocs out and then read them again; I don't
12764 know how bad the memory loss will be. */
12766 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12767 sub->output_has_begun = false;
12768 for (o = abfd->sections; o != NULL; o = o->next)
12770 for (p = o->map_head.link_order; p != NULL; p = p->next)
12772 if (p->type == bfd_indirect_link_order
12773 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12774 == bfd_target_elf_flavour)
12775 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12777 if (! sub->output_has_begun)
12779 if (! elf_link_input_bfd (&flinfo, sub))
12781 sub->output_has_begun = true;
12784 else if (p->type == bfd_section_reloc_link_order
12785 || p->type == bfd_symbol_reloc_link_order)
12787 if (! elf_reloc_link_order (abfd, info, o, p))
12792 if (! _bfd_default_link_order (abfd, info, o, p))
12794 if (p->type == bfd_indirect_link_order
12795 && (bfd_get_flavour (sub)
12796 == bfd_target_elf_flavour)
12797 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12798 != bed->s->elfclass))
12800 const char *iclass, *oclass;
12802 switch (bed->s->elfclass)
12804 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12805 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12806 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12810 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12812 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12813 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12814 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12818 bfd_set_error (bfd_error_wrong_format);
12820 /* xgettext:c-format */
12821 (_("%pB: file class %s incompatible with %s"),
12822 sub, iclass, oclass);
12831 /* Free symbol buffer if needed. */
12832 if (!info->reduce_memory_overheads)
12834 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12835 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
12837 free (elf_tdata (sub)->symbuf);
12838 elf_tdata (sub)->symbuf = NULL;
12844 /* Output any global symbols that got converted to local in a
12845 version script or due to symbol visibility. We do this in a
12846 separate step since ELF requires all local symbols to appear
12847 prior to any global symbols. FIXME: We should only do this if
12848 some global symbols were, in fact, converted to become local.
12849 FIXME: Will this work correctly with the Irix 5 linker? */
12850 eoinfo.failed = false;
12851 eoinfo.flinfo = &flinfo;
12852 eoinfo.localsyms = true;
12853 eoinfo.file_sym_done = false;
12854 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12858 goto return_local_hash_table;
12861 /* If backend needs to output some local symbols not present in the hash
12862 table, do it now. */
12863 if (bed->elf_backend_output_arch_local_syms
12864 && (info->strip != strip_all || emit_relocs))
12866 if (! ((*bed->elf_backend_output_arch_local_syms)
12867 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12870 goto return_local_hash_table;
12874 /* That wrote out all the local symbols. Finish up the symbol table
12875 with the global symbols. Even if we want to strip everything we
12876 can, we still need to deal with those global symbols that got
12877 converted to local in a version script. */
12879 /* The sh_info field records the index of the first non local symbol. */
12880 if (!symtab_hdr->sh_info)
12881 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12884 && htab->dynsym != NULL
12885 && htab->dynsym->output_section != bfd_abs_section_ptr)
12887 Elf_Internal_Sym sym;
12888 bfd_byte *dynsym = htab->dynsym->contents;
12890 o = htab->dynsym->output_section;
12891 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12893 /* Write out the section symbols for the output sections. */
12894 if (bfd_link_pic (info)
12895 || htab->is_relocatable_executable)
12901 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12903 sym.st_target_internal = 0;
12905 for (s = abfd->sections; s != NULL; s = s->next)
12911 dynindx = elf_section_data (s)->dynindx;
12914 indx = elf_section_data (s)->this_idx;
12915 BFD_ASSERT (indx > 0);
12916 sym.st_shndx = indx;
12917 if (! check_dynsym (abfd, &sym))
12920 goto return_local_hash_table;
12922 sym.st_value = s->vma;
12923 dest = dynsym + dynindx * bed->s->sizeof_sym;
12925 /* Inform the linker of the addition of this symbol. */
12927 if (info->callbacks->ctf_new_dynsym)
12928 info->callbacks->ctf_new_dynsym (dynindx, &sym);
12930 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12934 /* Write out the local dynsyms. */
12935 if (htab->dynlocal)
12937 struct elf_link_local_dynamic_entry *e;
12938 for (e = htab->dynlocal; e ; e = e->next)
12943 /* Copy the internal symbol and turn off visibility.
12944 Note that we saved a word of storage and overwrote
12945 the original st_name with the dynstr_index. */
12947 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12948 sym.st_shndx = SHN_UNDEF;
12950 s = bfd_section_from_elf_index (e->input_bfd,
12953 && s->output_section != NULL
12954 && elf_section_data (s->output_section) != NULL)
12957 elf_section_data (s->output_section)->this_idx;
12958 if (! check_dynsym (abfd, &sym))
12961 goto return_local_hash_table;
12963 sym.st_value = (s->output_section->vma
12965 + e->isym.st_value);
12968 /* Inform the linker of the addition of this symbol. */
12970 if (info->callbacks->ctf_new_dynsym)
12971 info->callbacks->ctf_new_dynsym (e->dynindx, &sym);
12973 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12974 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12979 /* We get the global symbols from the hash table. */
12980 eoinfo.failed = false;
12981 eoinfo.localsyms = false;
12982 eoinfo.flinfo = &flinfo;
12983 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12987 goto return_local_hash_table;
12990 /* If backend needs to output some symbols not present in the hash
12991 table, do it now. */
12992 if (bed->elf_backend_output_arch_syms
12993 && (info->strip != strip_all || emit_relocs))
12995 if (! ((*bed->elf_backend_output_arch_syms)
12996 (abfd, info, &flinfo, elf_link_output_symstrtab)))
12999 goto return_local_hash_table;
13003 /* Finalize the .strtab section. */
13004 _bfd_elf_strtab_finalize (flinfo.symstrtab);
13006 /* Swap out the .strtab section. */
13007 if (!elf_link_swap_symbols_out (&flinfo))
13010 goto return_local_hash_table;
13013 /* Now we know the size of the symtab section. */
13014 if (bfd_get_symcount (abfd) > 0)
13016 /* Finish up and write out the symbol string table (.strtab)
13018 Elf_Internal_Shdr *symstrtab_hdr = NULL;
13019 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
13021 if (elf_symtab_shndx_list (abfd))
13023 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
13025 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
13027 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
13028 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
13029 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
13030 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
13031 symtab_shndx_hdr->sh_size = amt;
13033 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
13036 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
13037 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
13040 goto return_local_hash_table;
13045 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
13046 /* sh_name was set in prep_headers. */
13047 symstrtab_hdr->sh_type = SHT_STRTAB;
13048 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
13049 symstrtab_hdr->sh_addr = 0;
13050 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
13051 symstrtab_hdr->sh_entsize = 0;
13052 symstrtab_hdr->sh_link = 0;
13053 symstrtab_hdr->sh_info = 0;
13054 /* sh_offset is set just below. */
13055 symstrtab_hdr->sh_addralign = 1;
13057 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
13059 elf_next_file_pos (abfd) = off;
13061 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
13062 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
13065 goto return_local_hash_table;
13069 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
13071 _bfd_error_handler (_("%pB: failed to generate import library"),
13072 info->out_implib_bfd);
13074 goto return_local_hash_table;
13077 /* Adjust the relocs to have the correct symbol indices. */
13078 for (o = abfd->sections; o != NULL; o = o->next)
13080 struct bfd_elf_section_data *esdo = elf_section_data (o);
13083 if ((o->flags & SEC_RELOC) == 0)
13086 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
13087 if (esdo->rel.hdr != NULL
13088 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
13091 goto return_local_hash_table;
13093 if (esdo->rela.hdr != NULL
13094 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
13097 goto return_local_hash_table;
13100 /* Set the reloc_count field to 0 to prevent write_relocs from
13101 trying to swap the relocs out itself. */
13102 o->reloc_count = 0;
13106 if (dynamic && info->combreloc && dynobj != NULL)
13107 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
13110 if (htab->srelrdyn != NULL
13111 && htab->srelrdyn->output_section != NULL
13112 && htab->srelrdyn->size != 0)
13114 asection *s = htab->srelrdyn->output_section;
13115 relr_entsize = elf_section_data (s)->this_hdr.sh_entsize;
13116 if (relr_entsize == 0)
13118 relr_entsize = bed->s->arch_size / 8;
13119 elf_section_data (s)->this_hdr.sh_entsize = relr_entsize;
13123 /* If we are linking against a dynamic object, or generating a
13124 shared library, finish up the dynamic linking information. */
13127 bfd_byte *dyncon, *dynconend;
13129 /* Fix up .dynamic entries. */
13130 o = bfd_get_linker_section (dynobj, ".dynamic");
13131 BFD_ASSERT (o != NULL);
13133 dyncon = o->contents;
13134 dynconend = PTR_ADD (o->contents, o->size);
13135 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13137 Elf_Internal_Dyn dyn;
13140 bfd_size_type sh_size;
13143 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13150 if (relativecount != 0)
13152 switch (elf_section_data (reldyn)->this_hdr.sh_type)
13154 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
13155 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
13157 if (dyn.d_tag != DT_NULL
13158 && dynconend - dyncon >= bed->s->sizeof_dyn)
13160 dyn.d_un.d_val = relativecount;
13166 if (relr_entsize != 0)
13168 if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn)
13170 asection *s = htab->srelrdyn;
13171 dyn.d_tag = DT_RELR;
13173 = s->output_section->vma + s->output_offset;
13174 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13175 dyncon += bed->s->sizeof_dyn;
13177 dyn.d_tag = DT_RELRSZ;
13178 dyn.d_un.d_val = s->size;
13179 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13180 dyncon += bed->s->sizeof_dyn;
13182 dyn.d_tag = DT_RELRENT;
13183 dyn.d_un.d_val = relr_entsize;
13192 name = info->init_function;
13195 name = info->fini_function;
13198 struct elf_link_hash_entry *h;
13200 h = elf_link_hash_lookup (htab, name, false, false, true);
13202 && (h->root.type == bfd_link_hash_defined
13203 || h->root.type == bfd_link_hash_defweak))
13205 dyn.d_un.d_ptr = h->root.u.def.value;
13206 o = h->root.u.def.section;
13207 if (o->output_section != NULL)
13208 dyn.d_un.d_ptr += (o->output_section->vma
13209 + o->output_offset);
13212 /* The symbol is imported from another shared
13213 library and does not apply to this one. */
13214 dyn.d_un.d_ptr = 0;
13221 case DT_PREINIT_ARRAYSZ:
13222 name = ".preinit_array";
13224 case DT_INIT_ARRAYSZ:
13225 name = ".init_array";
13227 case DT_FINI_ARRAYSZ:
13228 name = ".fini_array";
13230 o = bfd_get_section_by_name (abfd, name);
13234 (_("could not find section %s"), name);
13239 (_("warning: %s section has zero size"), name);
13240 dyn.d_un.d_val = o->size;
13243 case DT_PREINIT_ARRAY:
13244 name = ".preinit_array";
13246 case DT_INIT_ARRAY:
13247 name = ".init_array";
13249 case DT_FINI_ARRAY:
13250 name = ".fini_array";
13252 o = bfd_get_section_by_name (abfd, name);
13259 name = ".gnu.hash";
13268 name = ".gnu.version_d";
13271 name = ".gnu.version_r";
13274 name = ".gnu.version";
13276 o = bfd_get_linker_section (dynobj, name);
13278 if (o == NULL || bfd_is_abs_section (o->output_section))
13281 (_("could not find section %s"), name);
13284 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
13287 (_("warning: section '%s' is being made into a note"), name);
13288 bfd_set_error (bfd_error_nonrepresentable_section);
13291 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
13298 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13304 for (i = 1; i < elf_numsections (abfd); i++)
13306 Elf_Internal_Shdr *hdr;
13308 hdr = elf_elfsections (abfd)[i];
13309 if (hdr->sh_type == type
13310 && (hdr->sh_flags & SHF_ALLOC) != 0)
13312 sh_size += hdr->sh_size;
13314 || sh_addr > hdr->sh_addr)
13315 sh_addr = hdr->sh_addr;
13319 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
13321 unsigned int opb = bfd_octets_per_byte (abfd, o);
13323 /* Don't count procedure linkage table relocs in the
13324 overall reloc count. */
13325 sh_size -= htab->srelplt->size;
13327 /* If the size is zero, make the address zero too.
13328 This is to avoid a glibc bug. If the backend
13329 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
13330 zero, then we'll put DT_RELA at the end of
13331 DT_JMPREL. glibc will interpret the end of
13332 DT_RELA matching the end of DT_JMPREL as the
13333 case where DT_RELA includes DT_JMPREL, and for
13334 LD_BIND_NOW will decide that processing DT_RELA
13335 will process the PLT relocs too. Net result:
13336 No PLT relocs applied. */
13339 /* If .rela.plt is the first .rela section, exclude
13340 it from DT_RELA. */
13341 else if (sh_addr == (htab->srelplt->output_section->vma
13342 + htab->srelplt->output_offset) * opb)
13343 sh_addr += htab->srelplt->size;
13346 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
13347 dyn.d_un.d_val = sh_size;
13349 dyn.d_un.d_ptr = sh_addr;
13352 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
13356 /* If we have created any dynamic sections, then output them. */
13357 if (dynobj != NULL)
13359 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
13362 /* Check for DT_TEXTREL (late, in case the backend removes it). */
13363 if (bfd_link_textrel_check (info)
13364 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL
13367 bfd_byte *dyncon, *dynconend;
13369 dyncon = o->contents;
13370 dynconend = o->contents + o->size;
13371 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
13373 Elf_Internal_Dyn dyn;
13375 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
13377 if (dyn.d_tag == DT_TEXTREL)
13379 if (info->textrel_check == textrel_check_error)
13380 info->callbacks->einfo
13381 (_("%P%X: read-only segment has dynamic relocations\n"));
13382 else if (bfd_link_dll (info))
13383 info->callbacks->einfo
13384 (_("%P: warning: creating DT_TEXTREL in a shared object\n"));
13385 else if (bfd_link_pde (info))
13386 info->callbacks->einfo
13387 (_("%P: warning: creating DT_TEXTREL in a PDE\n"));
13389 info->callbacks->einfo
13390 (_("%P: warning: creating DT_TEXTREL in a PIE\n"));
13396 for (o = dynobj->sections; o != NULL; o = o->next)
13398 if ((o->flags & SEC_HAS_CONTENTS) == 0
13400 || o->output_section == bfd_abs_section_ptr)
13402 if ((o->flags & SEC_LINKER_CREATED) == 0)
13404 /* At this point, we are only interested in sections
13405 created by _bfd_elf_link_create_dynamic_sections. */
13408 if (htab->stab_info.stabstr == o)
13410 if (htab->eh_info.hdr_sec == o)
13412 if (strcmp (o->name, ".dynstr") != 0)
13414 bfd_size_type octets = ((file_ptr) o->output_offset
13415 * bfd_octets_per_byte (abfd, o));
13416 if (!bfd_set_section_contents (abfd, o->output_section,
13417 o->contents, octets, o->size))
13422 /* The contents of the .dynstr section are actually in a
13426 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
13427 if (bfd_seek (abfd, off, SEEK_SET) != 0
13428 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
13434 if (!info->resolve_section_groups)
13436 bool failed = false;
13438 BFD_ASSERT (bfd_link_relocatable (info));
13439 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13444 /* If we have optimized stabs strings, output them. */
13445 if (htab->stab_info.stabstr != NULL)
13447 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13451 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13454 if (info->callbacks->emit_ctf)
13455 info->callbacks->emit_ctf ();
13457 elf_final_link_free (abfd, &flinfo);
13461 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13462 if (contents == NULL)
13464 /* Bail out and fail. */
13466 goto return_local_hash_table;
13468 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13469 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13473 return_local_hash_table:
13474 if (info->unique_symbol)
13475 bfd_hash_table_free (&flinfo.local_hash_table);
13479 elf_final_link_free (abfd, &flinfo);
13481 goto return_local_hash_table;
13484 /* Initialize COOKIE for input bfd ABFD. */
13487 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13488 struct bfd_link_info *info, bfd *abfd)
13490 Elf_Internal_Shdr *symtab_hdr;
13491 const struct elf_backend_data *bed;
13493 bed = get_elf_backend_data (abfd);
13494 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13496 cookie->abfd = abfd;
13497 cookie->sym_hashes = elf_sym_hashes (abfd);
13498 cookie->bad_symtab = elf_bad_symtab (abfd);
13499 if (cookie->bad_symtab)
13501 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13502 cookie->extsymoff = 0;
13506 cookie->locsymcount = symtab_hdr->sh_info;
13507 cookie->extsymoff = symtab_hdr->sh_info;
13510 if (bed->s->arch_size == 32)
13511 cookie->r_sym_shift = 8;
13513 cookie->r_sym_shift = 32;
13515 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13516 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13518 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13519 cookie->locsymcount, 0,
13521 if (cookie->locsyms == NULL)
13523 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13526 if (_bfd_link_keep_memory (info) )
13528 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13529 info->cache_size += (cookie->locsymcount
13530 * sizeof (Elf_External_Sym_Shndx));
13536 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13539 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13541 Elf_Internal_Shdr *symtab_hdr;
13543 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13544 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13545 free (cookie->locsyms);
13548 /* Initialize the relocation information in COOKIE for input section SEC
13549 of input bfd ABFD. */
13552 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13553 struct bfd_link_info *info, bfd *abfd,
13556 if (sec->reloc_count == 0)
13558 cookie->rels = NULL;
13559 cookie->relend = NULL;
13563 cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec,
13565 _bfd_link_keep_memory (info));
13566 if (cookie->rels == NULL)
13568 cookie->rel = cookie->rels;
13569 cookie->relend = cookie->rels + sec->reloc_count;
13571 cookie->rel = cookie->rels;
13575 /* Free the memory allocated by init_reloc_cookie_rels,
13579 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13582 if (elf_section_data (sec)->relocs != cookie->rels)
13583 free (cookie->rels);
13586 /* Initialize the whole of COOKIE for input section SEC. */
13589 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13590 struct bfd_link_info *info,
13593 if (!init_reloc_cookie (cookie, info, sec->owner))
13595 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13600 fini_reloc_cookie (cookie, sec->owner);
13605 /* Free the memory allocated by init_reloc_cookie_for_section,
13609 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13612 fini_reloc_cookie_rels (cookie, sec);
13613 fini_reloc_cookie (cookie, sec->owner);
13616 /* Garbage collect unused sections. */
13618 /* Default gc_mark_hook. */
13621 _bfd_elf_gc_mark_hook (asection *sec,
13622 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13623 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13624 struct elf_link_hash_entry *h,
13625 Elf_Internal_Sym *sym)
13629 switch (h->root.type)
13631 case bfd_link_hash_defined:
13632 case bfd_link_hash_defweak:
13633 return h->root.u.def.section;
13635 case bfd_link_hash_common:
13636 return h->root.u.c.p->section;
13643 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13648 /* Return the debug definition section. */
13651 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13652 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13653 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13654 struct elf_link_hash_entry *h,
13655 Elf_Internal_Sym *sym)
13659 /* Return the global debug definition section. */
13660 if ((h->root.type == bfd_link_hash_defined
13661 || h->root.type == bfd_link_hash_defweak)
13662 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13663 return h->root.u.def.section;
13667 /* Return the local debug definition section. */
13668 asection *isec = bfd_section_from_elf_index (sec->owner,
13670 if ((isec->flags & SEC_DEBUGGING) != 0)
13677 /* COOKIE->rel describes a relocation against section SEC, which is
13678 a section we've decided to keep. Return the section that contains
13679 the relocation symbol, or NULL if no section contains it. */
13682 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13683 elf_gc_mark_hook_fn gc_mark_hook,
13684 struct elf_reloc_cookie *cookie,
13687 unsigned long r_symndx;
13688 struct elf_link_hash_entry *h, *hw;
13690 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13691 if (r_symndx == STN_UNDEF)
13694 if (r_symndx >= cookie->locsymcount
13695 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13699 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13702 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13706 while (h->root.type == bfd_link_hash_indirect
13707 || h->root.type == bfd_link_hash_warning)
13708 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13710 was_marked = h->mark;
13712 /* Keep all aliases of the symbol too. If an object symbol
13713 needs to be copied into .dynbss then all of its aliases
13714 should be present as dynamic symbols, not just the one used
13715 on the copy relocation. */
13717 while (hw->is_weakalias)
13723 if (!was_marked && h->start_stop && !h->root.ldscript_def)
13725 if (info->start_stop_gc)
13728 /* To work around a glibc bug, mark XXX input sections
13729 when there is a reference to __start_XXX or __stop_XXX
13731 else if (start_stop != NULL)
13733 asection *s = h->u2.start_stop_section;
13734 *start_stop = true;
13739 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13742 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13743 &cookie->locsyms[r_symndx]);
13746 /* COOKIE->rel describes a relocation against section SEC, which is
13747 a section we've decided to keep. Mark the section that contains
13748 the relocation symbol. */
13751 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13753 elf_gc_mark_hook_fn gc_mark_hook,
13754 struct elf_reloc_cookie *cookie)
13757 bool start_stop = false;
13759 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13760 while (rsec != NULL)
13762 if (!rsec->gc_mark)
13764 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13765 || (rsec->owner->flags & DYNAMIC) != 0)
13767 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13772 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13777 /* The mark phase of garbage collection. For a given section, mark
13778 it and any sections in this section's group, and all the sections
13779 which define symbols to which it refers. */
13782 _bfd_elf_gc_mark (struct bfd_link_info *info,
13784 elf_gc_mark_hook_fn gc_mark_hook)
13787 asection *group_sec, *eh_frame;
13791 /* Mark all the sections in the group. */
13792 group_sec = elf_section_data (sec)->next_in_group;
13793 if (group_sec && !group_sec->gc_mark)
13794 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13797 /* Look through the section relocs. */
13799 eh_frame = elf_eh_frame_section (sec->owner);
13800 if ((sec->flags & SEC_RELOC) != 0
13801 && sec->reloc_count > 0
13802 && sec != eh_frame)
13804 struct elf_reloc_cookie cookie;
13806 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13810 for (; cookie.rel < cookie.relend; cookie.rel++)
13811 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13816 fini_reloc_cookie_for_section (&cookie, sec);
13820 if (ret && eh_frame && elf_fde_list (sec))
13822 struct elf_reloc_cookie cookie;
13824 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13828 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13829 gc_mark_hook, &cookie))
13831 fini_reloc_cookie_for_section (&cookie, eh_frame);
13835 eh_frame = elf_section_eh_frame_entry (sec);
13836 if (ret && eh_frame && !eh_frame->gc_mark)
13837 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13843 /* Scan and mark sections in a special or debug section group. */
13846 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13848 /* Point to first section of section group. */
13850 /* Used to iterate the section group. */
13853 bool is_special_grp = true;
13854 bool is_debug_grp = true;
13856 /* First scan to see if group contains any section other than debug
13857 and special section. */
13858 ssec = msec = elf_next_in_group (grp);
13861 if ((msec->flags & SEC_DEBUGGING) == 0)
13862 is_debug_grp = false;
13864 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13865 is_special_grp = false;
13867 msec = elf_next_in_group (msec);
13869 while (msec != ssec);
13871 /* If this is a pure debug section group or pure special section group,
13872 keep all sections in this group. */
13873 if (is_debug_grp || is_special_grp)
13878 msec = elf_next_in_group (msec);
13880 while (msec != ssec);
13884 /* Keep debug and special sections. */
13887 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13888 elf_gc_mark_hook_fn mark_hook)
13892 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13896 bool debug_frag_seen;
13897 bool has_kept_debug_info;
13899 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13901 isec = ibfd->sections;
13902 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13905 /* Ensure all linker created sections are kept,
13906 see if any other section is already marked,
13907 and note if we have any fragmented debug sections. */
13908 debug_frag_seen = some_kept = has_kept_debug_info = false;
13909 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13911 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13913 else if (isec->gc_mark
13914 && (isec->flags & SEC_ALLOC) != 0
13915 && elf_section_type (isec) != SHT_NOTE)
13919 /* Since all sections, except for backend specific ones,
13920 have been garbage collected, call mark_hook on this
13921 section if any of its linked-to sections is marked. */
13922 asection *linked_to_sec;
13923 for (linked_to_sec = elf_linked_to_section (isec);
13924 linked_to_sec != NULL && !linked_to_sec->linker_mark;
13925 linked_to_sec = elf_linked_to_section (linked_to_sec))
13927 if (linked_to_sec->gc_mark)
13929 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13933 linked_to_sec->linker_mark = 1;
13935 for (linked_to_sec = elf_linked_to_section (isec);
13936 linked_to_sec != NULL && linked_to_sec->linker_mark;
13937 linked_to_sec = elf_linked_to_section (linked_to_sec))
13938 linked_to_sec->linker_mark = 0;
13941 if (!debug_frag_seen
13942 && (isec->flags & SEC_DEBUGGING)
13943 && startswith (isec->name, ".debug_line."))
13944 debug_frag_seen = true;
13945 else if (strcmp (bfd_section_name (isec),
13946 "__patchable_function_entries") == 0
13947 && elf_linked_to_section (isec) == NULL)
13948 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13949 "need linked-to section "
13950 "for --gc-sections\n"),
13951 isec->owner, isec);
13954 /* If no non-note alloc section in this file will be kept, then
13955 we can toss out the debug and special sections. */
13959 /* Keep debug and special sections like .comment when they are
13960 not part of a group. Also keep section groups that contain
13961 just debug sections or special sections. NB: Sections with
13962 linked-to section has been handled above. */
13963 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13965 if ((isec->flags & SEC_GROUP) != 0)
13966 _bfd_elf_gc_mark_debug_special_section_group (isec);
13967 else if (((isec->flags & SEC_DEBUGGING) != 0
13968 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13969 && elf_next_in_group (isec) == NULL
13970 && elf_linked_to_section (isec) == NULL)
13972 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13973 has_kept_debug_info = true;
13976 /* Look for CODE sections which are going to be discarded,
13977 and find and discard any fragmented debug sections which
13978 are associated with that code section. */
13979 if (debug_frag_seen)
13980 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13981 if ((isec->flags & SEC_CODE) != 0
13982 && isec->gc_mark == 0)
13987 ilen = strlen (isec->name);
13989 /* Association is determined by the name of the debug
13990 section containing the name of the code section as
13991 a suffix. For example .debug_line.text.foo is a
13992 debug section associated with .text.foo. */
13993 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13997 if (dsec->gc_mark == 0
13998 || (dsec->flags & SEC_DEBUGGING) == 0)
14001 dlen = strlen (dsec->name);
14004 && strncmp (dsec->name + (dlen - ilen),
14005 isec->name, ilen) == 0)
14010 /* Mark debug sections referenced by kept debug sections. */
14011 if (has_kept_debug_info)
14012 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
14014 && (isec->flags & SEC_DEBUGGING) != 0)
14015 if (!_bfd_elf_gc_mark (info, isec,
14016 elf_gc_mark_debug_section))
14023 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
14026 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14028 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14032 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14033 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
14034 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14037 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14040 for (o = sub->sections; o != NULL; o = o->next)
14042 /* When any section in a section group is kept, we keep all
14043 sections in the section group. If the first member of
14044 the section group is excluded, we will also exclude the
14046 if (o->flags & SEC_GROUP)
14048 asection *first = elf_next_in_group (o);
14049 o->gc_mark = first->gc_mark;
14055 /* Skip sweeping sections already excluded. */
14056 if (o->flags & SEC_EXCLUDE)
14059 /* Since this is early in the link process, it is simple
14060 to remove a section from the output. */
14061 o->flags |= SEC_EXCLUDE;
14063 if (info->print_gc_sections && o->size != 0)
14064 /* xgettext:c-format */
14065 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
14073 /* Propagate collected vtable information. This is called through
14074 elf_link_hash_traverse. */
14077 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
14079 /* Those that are not vtables. */
14081 || h->u2.vtable == NULL
14082 || h->u2.vtable->parent == NULL)
14085 /* Those vtables that do not have parents, we cannot merge. */
14086 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
14089 /* If we've already been done, exit. */
14090 if (h->u2.vtable->used && h->u2.vtable->used[-1])
14093 /* Make sure the parent's table is up to date. */
14094 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
14096 if (h->u2.vtable->used == NULL)
14098 /* None of this table's entries were referenced. Re-use the
14100 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
14101 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
14108 /* Or the parent's entries into ours. */
14109 cu = h->u2.vtable->used;
14111 pu = h->u2.vtable->parent->u2.vtable->used;
14114 const struct elf_backend_data *bed;
14115 unsigned int log_file_align;
14117 bed = get_elf_backend_data (h->root.u.def.section->owner);
14118 log_file_align = bed->s->log_file_align;
14119 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
14133 struct link_info_ok
14135 struct bfd_link_info *info;
14140 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h,
14144 bfd_vma hstart, hend;
14145 Elf_Internal_Rela *relstart, *relend, *rel;
14146 const struct elf_backend_data *bed;
14147 unsigned int log_file_align;
14148 struct link_info_ok *info = (struct link_info_ok *) ptr;
14150 /* Take care of both those symbols that do not describe vtables as
14151 well as those that are not loaded. */
14153 || h->u2.vtable == NULL
14154 || h->u2.vtable->parent == NULL)
14157 BFD_ASSERT (h->root.type == bfd_link_hash_defined
14158 || h->root.type == bfd_link_hash_defweak);
14160 sec = h->root.u.def.section;
14161 hstart = h->root.u.def.value;
14162 hend = hstart + h->size;
14164 relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info,
14165 sec, NULL, NULL, true);
14167 return info->ok = false;
14168 bed = get_elf_backend_data (sec->owner);
14169 log_file_align = bed->s->log_file_align;
14171 relend = relstart + sec->reloc_count;
14173 for (rel = relstart; rel < relend; ++rel)
14174 if (rel->r_offset >= hstart && rel->r_offset < hend)
14176 /* If the entry is in use, do nothing. */
14177 if (h->u2.vtable->used
14178 && (rel->r_offset - hstart) < h->u2.vtable->size)
14180 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
14181 if (h->u2.vtable->used[entry])
14184 /* Otherwise, kill it. */
14185 rel->r_offset = rel->r_info = rel->r_addend = 0;
14191 /* Mark sections containing dynamically referenced symbols. When
14192 building shared libraries, we must assume that any visible symbol is
14196 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
14198 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14199 struct bfd_elf_dynamic_list *d = info->dynamic_list;
14201 if ((h->root.type == bfd_link_hash_defined
14202 || h->root.type == bfd_link_hash_defweak)
14204 || h->root.ldscript_def
14205 || !info->start_stop_gc)
14206 && ((h->ref_dynamic && !h->forced_local)
14207 || ((h->def_regular || ELF_COMMON_DEF_P (h))
14208 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
14209 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
14210 && (!bfd_link_executable (info)
14211 || info->gc_keep_exported
14212 || info->export_dynamic
14215 && (*d->match) (&d->head, NULL, h->root.root.string)))
14216 && (h->versioned >= versioned
14217 || !bfd_hide_sym_by_version (info->version_info,
14218 h->root.root.string)))))
14219 h->root.u.def.section->flags |= SEC_KEEP;
14224 /* Keep all sections containing symbols undefined on the command-line,
14225 and the section containing the entry symbol. */
14228 _bfd_elf_gc_keep (struct bfd_link_info *info)
14230 struct bfd_sym_chain *sym;
14232 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
14234 struct elf_link_hash_entry *h;
14236 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
14237 false, false, false);
14240 && (h->root.type == bfd_link_hash_defined
14241 || h->root.type == bfd_link_hash_defweak)
14242 && !bfd_is_const_section (h->root.u.def.section))
14243 h->root.u.def.section->flags |= SEC_KEEP;
14248 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
14249 struct bfd_link_info *info)
14251 bfd *ibfd = info->input_bfds;
14253 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14256 struct elf_reloc_cookie cookie;
14258 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
14260 sec = ibfd->sections;
14261 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14264 if (!init_reloc_cookie (&cookie, info, ibfd))
14267 for (sec = ibfd->sections; sec; sec = sec->next)
14269 if (startswith (bfd_section_name (sec), ".eh_frame_entry")
14270 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
14272 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
14273 fini_reloc_cookie_rels (&cookie, sec);
14280 /* Do mark and sweep of unused sections. */
14283 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
14287 elf_gc_mark_hook_fn gc_mark_hook;
14288 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14289 struct elf_link_hash_table *htab;
14290 struct link_info_ok info_ok;
14292 if (!bed->can_gc_sections
14293 || !is_elf_hash_table (info->hash))
14295 _bfd_error_handler(_("warning: gc-sections option ignored"));
14299 bed->gc_keep (info);
14300 htab = elf_hash_table (info);
14302 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
14303 at the .eh_frame section if we can mark the FDEs individually. */
14304 for (sub = info->input_bfds;
14305 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
14306 sub = sub->link.next)
14309 struct elf_reloc_cookie cookie;
14311 sec = sub->sections;
14312 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14314 sec = bfd_get_section_by_name (sub, ".eh_frame");
14315 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
14317 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
14318 if (elf_section_data (sec)->sec_info
14319 && (sec->flags & SEC_LINKER_CREATED) == 0)
14320 elf_eh_frame_section (sub) = sec;
14321 fini_reloc_cookie_for_section (&cookie, sec);
14322 sec = bfd_get_next_section_by_name (NULL, sec);
14326 /* Apply transitive closure to the vtable entry usage info. */
14327 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
14331 /* Kill the vtable relocations that were not used. */
14332 info_ok.info = info;
14334 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok);
14338 /* Mark dynamically referenced symbols. */
14339 if (htab->dynamic_sections_created || info->gc_keep_exported)
14340 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
14342 /* Grovel through relocs to find out who stays ... */
14343 gc_mark_hook = bed->gc_mark_hook;
14344 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
14348 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
14349 || elf_object_id (sub) != elf_hash_table_id (htab)
14350 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
14354 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14357 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
14358 Also treat note sections as a root, if the section is not part
14359 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
14360 well as FINI_ARRAY sections for ld -r. */
14361 for (o = sub->sections; o != NULL; o = o->next)
14363 && (o->flags & SEC_EXCLUDE) == 0
14364 && ((o->flags & SEC_KEEP) != 0
14365 || (bfd_link_relocatable (info)
14366 && ((elf_section_data (o)->this_hdr.sh_type
14367 == SHT_PREINIT_ARRAY)
14368 || (elf_section_data (o)->this_hdr.sh_type
14370 || (elf_section_data (o)->this_hdr.sh_type
14371 == SHT_FINI_ARRAY)))
14372 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
14373 && elf_next_in_group (o) == NULL
14374 && elf_linked_to_section (o) == NULL)
14375 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain)
14376 && (elf_section_flags (o) & SHF_GNU_RETAIN))))
14378 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
14383 /* Allow the backend to mark additional target specific sections. */
14384 bed->gc_mark_extra_sections (info, gc_mark_hook);
14386 /* ... and mark SEC_EXCLUDE for those that go. */
14387 return elf_gc_sweep (abfd, info);
14390 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
14393 bfd_elf_gc_record_vtinherit (bfd *abfd,
14395 struct elf_link_hash_entry *h,
14398 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
14399 struct elf_link_hash_entry **search, *child;
14400 size_t extsymcount;
14401 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14403 /* The sh_info field of the symtab header tells us where the
14404 external symbols start. We don't care about the local symbols at
14406 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
14407 if (!elf_bad_symtab (abfd))
14408 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
14410 sym_hashes = elf_sym_hashes (abfd);
14411 sym_hashes_end = PTR_ADD (sym_hashes, extsymcount);
14413 /* Hunt down the child symbol, which is in this section at the same
14414 offset as the relocation. */
14415 for (search = sym_hashes; search != sym_hashes_end; ++search)
14417 if ((child = *search) != NULL
14418 && (child->root.type == bfd_link_hash_defined
14419 || child->root.type == bfd_link_hash_defweak)
14420 && child->root.u.def.section == sec
14421 && child->root.u.def.value == offset)
14425 /* xgettext:c-format */
14426 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
14427 abfd, sec, (uint64_t) offset);
14428 bfd_set_error (bfd_error_invalid_operation);
14432 if (!child->u2.vtable)
14434 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
14435 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
14436 if (!child->u2.vtable)
14441 /* This *should* only be the absolute section. It could potentially
14442 be that someone has defined a non-global vtable though, which
14443 would be bad. It isn't worth paging in the local symbols to be
14444 sure though; that case should simply be handled by the assembler. */
14446 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
14449 child->u2.vtable->parent = h;
14454 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
14457 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
14458 struct elf_link_hash_entry *h,
14461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14462 unsigned int log_file_align = bed->s->log_file_align;
14466 /* xgettext:c-format */
14467 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
14469 bfd_set_error (bfd_error_bad_value);
14475 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14476 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14481 if (addend >= h->u2.vtable->size)
14483 size_t size, bytes, file_align;
14484 bool *ptr = h->u2.vtable->used;
14486 /* While the symbol is undefined, we have to be prepared to handle
14488 file_align = 1 << log_file_align;
14489 if (h->root.type == bfd_link_hash_undefined)
14490 size = addend + file_align;
14494 if (addend >= size)
14496 /* Oops! We've got a reference past the defined end of
14497 the table. This is probably a bug -- shall we warn? */
14498 size = addend + file_align;
14501 size = (size + file_align - 1) & -file_align;
14503 /* Allocate one extra entry for use as a "done" flag for the
14504 consolidation pass. */
14505 bytes = ((size >> log_file_align) + 1) * sizeof (bool);
14509 ptr = (bool *) bfd_realloc (ptr - 1, bytes);
14515 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14517 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14521 ptr = (bool *) bfd_zmalloc (bytes);
14526 /* And arrange for that done flag to be at index -1. */
14527 h->u2.vtable->used = ptr + 1;
14528 h->u2.vtable->size = size;
14531 h->u2.vtable->used[addend >> log_file_align] = true;
14536 /* Map an ELF section header flag to its corresponding string. */
14540 flagword flag_value;
14541 } elf_flags_to_name_table;
14543 static const elf_flags_to_name_table elf_flags_to_names [] =
14545 { "SHF_WRITE", SHF_WRITE },
14546 { "SHF_ALLOC", SHF_ALLOC },
14547 { "SHF_EXECINSTR", SHF_EXECINSTR },
14548 { "SHF_MERGE", SHF_MERGE },
14549 { "SHF_STRINGS", SHF_STRINGS },
14550 { "SHF_INFO_LINK", SHF_INFO_LINK},
14551 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14552 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14553 { "SHF_GROUP", SHF_GROUP },
14554 { "SHF_TLS", SHF_TLS },
14555 { "SHF_MASKOS", SHF_MASKOS },
14556 { "SHF_EXCLUDE", SHF_EXCLUDE },
14559 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14561 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14562 struct flag_info *flaginfo,
14565 const bfd_vma sh_flags = elf_section_flags (section);
14567 if (!flaginfo->flags_initialized)
14569 bfd *obfd = info->output_bfd;
14570 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14571 struct flag_info_list *tf = flaginfo->flag_list;
14573 int without_hex = 0;
14575 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14578 flagword (*lookup) (char *);
14580 lookup = bed->elf_backend_lookup_section_flags_hook;
14581 if (lookup != NULL)
14583 flagword hexval = (*lookup) ((char *) tf->name);
14587 if (tf->with == with_flags)
14588 with_hex |= hexval;
14589 else if (tf->with == without_flags)
14590 without_hex |= hexval;
14595 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14597 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14599 if (tf->with == with_flags)
14600 with_hex |= elf_flags_to_names[i].flag_value;
14601 else if (tf->with == without_flags)
14602 without_hex |= elf_flags_to_names[i].flag_value;
14609 info->callbacks->einfo
14610 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14614 flaginfo->flags_initialized = true;
14615 flaginfo->only_with_flags |= with_hex;
14616 flaginfo->not_with_flags |= without_hex;
14619 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14622 if ((flaginfo->not_with_flags & sh_flags) != 0)
14628 struct alloc_got_off_arg {
14630 struct bfd_link_info *info;
14633 /* We need a special top-level link routine to convert got reference counts
14634 to real got offsets. */
14637 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14639 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14640 bfd *obfd = gofarg->info->output_bfd;
14641 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14643 if (h->got.refcount > 0)
14645 h->got.offset = gofarg->gotoff;
14646 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14649 h->got.offset = (bfd_vma) -1;
14654 /* And an accompanying bit to work out final got entry offsets once
14655 we're done. Should be called from final_link. */
14658 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14659 struct bfd_link_info *info)
14662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14664 struct alloc_got_off_arg gofarg;
14666 BFD_ASSERT (abfd == info->output_bfd);
14668 if (! is_elf_hash_table (info->hash))
14671 /* The GOT offset is relative to the .got section, but the GOT header is
14672 put into the .got.plt section, if the backend uses it. */
14673 if (bed->want_got_plt)
14676 gotoff = bed->got_header_size;
14678 /* Do the local .got entries first. */
14679 for (i = info->input_bfds; i; i = i->link.next)
14681 bfd_signed_vma *local_got;
14682 size_t j, locsymcount;
14683 Elf_Internal_Shdr *symtab_hdr;
14685 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14688 local_got = elf_local_got_refcounts (i);
14692 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14693 if (elf_bad_symtab (i))
14694 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14696 locsymcount = symtab_hdr->sh_info;
14698 for (j = 0; j < locsymcount; ++j)
14700 if (local_got[j] > 0)
14702 local_got[j] = gotoff;
14703 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14706 local_got[j] = (bfd_vma) -1;
14710 /* Then the global .got entries. .plt refcounts are handled by
14711 adjust_dynamic_symbol */
14712 gofarg.gotoff = gotoff;
14713 gofarg.info = info;
14714 elf_link_hash_traverse (elf_hash_table (info),
14715 elf_gc_allocate_got_offsets,
14720 /* Many folk need no more in the way of final link than this, once
14721 got entry reference counting is enabled. */
14724 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14726 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14729 /* Invoke the regular ELF backend linker to do all the work. */
14730 return bfd_elf_final_link (abfd, info);
14734 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14736 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14738 if (rcookie->bad_symtab)
14739 rcookie->rel = rcookie->rels;
14741 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14743 unsigned long r_symndx;
14745 if (! rcookie->bad_symtab)
14746 if (rcookie->rel->r_offset > offset)
14748 if (rcookie->rel->r_offset != offset)
14751 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14752 if (r_symndx == STN_UNDEF)
14755 if (r_symndx >= rcookie->locsymcount
14756 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14758 struct elf_link_hash_entry *h;
14760 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14762 while (h->root.type == bfd_link_hash_indirect
14763 || h->root.type == bfd_link_hash_warning)
14764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14766 if ((h->root.type == bfd_link_hash_defined
14767 || h->root.type == bfd_link_hash_defweak)
14768 && (h->root.u.def.section->owner != rcookie->abfd
14769 || h->root.u.def.section->kept_section != NULL
14770 || discarded_section (h->root.u.def.section)))
14775 /* It's not a relocation against a global symbol,
14776 but it could be a relocation against a local
14777 symbol for a discarded section. */
14779 Elf_Internal_Sym *isym;
14781 /* Need to: get the symbol; get the section. */
14782 isym = &rcookie->locsyms[r_symndx];
14783 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14785 && (isec->kept_section != NULL
14786 || discarded_section (isec)))
14794 /* Discard unneeded references to discarded sections.
14795 Returns -1 on error, 1 if any section's size was changed, 0 if
14796 nothing changed. This function assumes that the relocations are in
14797 sorted order, which is true for all known assemblers. */
14800 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14802 struct elf_reloc_cookie cookie;
14807 if (info->traditional_format
14808 || !is_elf_hash_table (info->hash))
14811 o = bfd_get_section_by_name (output_bfd, ".stab");
14816 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14819 || i->reloc_count == 0
14820 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14824 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14827 if (!init_reloc_cookie_for_section (&cookie, info, i))
14830 if (_bfd_discard_section_stabs (abfd, i,
14831 elf_section_data (i)->sec_info,
14832 bfd_elf_reloc_symbol_deleted_p,
14836 fini_reloc_cookie_for_section (&cookie, i);
14841 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14842 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14846 int eh_changed = 0;
14847 unsigned int eh_alignment; /* Octets. */
14849 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14855 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14858 if (!init_reloc_cookie_for_section (&cookie, info, i))
14861 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14862 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14863 bfd_elf_reloc_symbol_deleted_p,
14867 if (i->size != i->rawsize)
14871 fini_reloc_cookie_for_section (&cookie, i);
14874 eh_alignment = ((1 << o->alignment_power)
14875 * bfd_octets_per_byte (output_bfd, o));
14876 /* Skip over zero terminator, and prevent empty sections from
14877 adding alignment padding at the end. */
14878 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14880 i->flags |= SEC_EXCLUDE;
14881 else if (i->size > 4)
14883 /* The last non-empty eh_frame section doesn't need padding. */
14886 /* Any prior sections must pad the last FDE out to the output
14887 section alignment. Otherwise we might have zero padding
14888 between sections, which would be seen as a terminator. */
14889 for (; i != NULL; i = i->map_tail.s)
14891 /* All but the last zero terminator should have been removed. */
14896 = (i->size + eh_alignment - 1) & -eh_alignment;
14897 if (i->size != size)
14905 elf_link_hash_traverse (elf_hash_table (info),
14906 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14909 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14911 const struct elf_backend_data *bed;
14914 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14916 s = abfd->sections;
14917 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14920 bed = get_elf_backend_data (abfd);
14922 if (bed->elf_backend_discard_info != NULL)
14924 if (!init_reloc_cookie (&cookie, info, abfd))
14927 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14930 fini_reloc_cookie (&cookie, abfd);
14934 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14935 _bfd_elf_end_eh_frame_parsing (info);
14937 if (info->eh_frame_hdr_type
14938 && !bfd_link_relocatable (info)
14939 && _bfd_elf_discard_section_eh_frame_hdr (info))
14946 _bfd_elf_section_already_linked (bfd *abfd,
14948 struct bfd_link_info *info)
14951 const char *name, *key;
14952 struct bfd_section_already_linked *l;
14953 struct bfd_section_already_linked_hash_entry *already_linked_list;
14955 if (sec->output_section == bfd_abs_section_ptr)
14958 flags = sec->flags;
14960 /* Return if it isn't a linkonce section. A comdat group section
14961 also has SEC_LINK_ONCE set. */
14962 if ((flags & SEC_LINK_ONCE) == 0)
14965 /* Don't put group member sections on our list of already linked
14966 sections. They are handled as a group via their group section. */
14967 if (elf_sec_group (sec) != NULL)
14970 /* For a SHT_GROUP section, use the group signature as the key. */
14972 if ((flags & SEC_GROUP) != 0
14973 && elf_next_in_group (sec) != NULL
14974 && elf_group_name (elf_next_in_group (sec)) != NULL)
14975 key = elf_group_name (elf_next_in_group (sec));
14978 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14979 if (startswith (name, ".gnu.linkonce.")
14980 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14983 /* Must be a user linkonce section that doesn't follow gcc's
14984 naming convention. In this case we won't be matching
14985 single member groups. */
14989 already_linked_list = bfd_section_already_linked_table_lookup (key);
14991 for (l = already_linked_list->entry; l != NULL; l = l->next)
14993 /* We may have 2 different types of sections on the list: group
14994 sections with a signature of <key> (<key> is some string),
14995 and linkonce sections named .gnu.linkonce.<type>.<key>.
14996 Match like sections. LTO plugin sections are an exception.
14997 They are always named .gnu.linkonce.t.<key> and match either
14998 type of section. */
14999 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
15000 && ((flags & SEC_GROUP) != 0
15001 || strcmp (name, l->sec->name) == 0))
15002 || (l->sec->owner->flags & BFD_PLUGIN) != 0
15003 || (sec->owner->flags & BFD_PLUGIN) != 0)
15005 /* The section has already been linked. See if we should
15006 issue a warning. */
15007 if (!_bfd_handle_already_linked (sec, l, info))
15010 if (flags & SEC_GROUP)
15012 asection *first = elf_next_in_group (sec);
15013 asection *s = first;
15017 s->output_section = bfd_abs_section_ptr;
15018 /* Record which group discards it. */
15019 s->kept_section = l->sec;
15020 s = elf_next_in_group (s);
15021 /* These lists are circular. */
15031 /* A single member comdat group section may be discarded by a
15032 linkonce section and vice versa. */
15033 if ((flags & SEC_GROUP) != 0)
15035 asection *first = elf_next_in_group (sec);
15037 if (first != NULL && elf_next_in_group (first) == first)
15038 /* Check this single member group against linkonce sections. */
15039 for (l = already_linked_list->entry; l != NULL; l = l->next)
15040 if ((l->sec->flags & SEC_GROUP) == 0
15041 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
15043 first->output_section = bfd_abs_section_ptr;
15044 first->kept_section = l->sec;
15045 sec->output_section = bfd_abs_section_ptr;
15050 /* Check this linkonce section against single member groups. */
15051 for (l = already_linked_list->entry; l != NULL; l = l->next)
15052 if (l->sec->flags & SEC_GROUP)
15054 asection *first = elf_next_in_group (l->sec);
15057 && elf_next_in_group (first) == first
15058 && bfd_elf_match_symbols_in_sections (first, sec, info))
15060 sec->output_section = bfd_abs_section_ptr;
15061 sec->kept_section = first;
15066 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
15067 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
15068 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
15069 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
15070 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
15071 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
15072 `.gnu.linkonce.t.F' section from a different bfd not requiring any
15073 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
15074 The reverse order cannot happen as there is never a bfd with only the
15075 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
15076 matter as here were are looking only for cross-bfd sections. */
15078 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r."))
15079 for (l = already_linked_list->entry; l != NULL; l = l->next)
15080 if ((l->sec->flags & SEC_GROUP) == 0
15081 && startswith (l->sec->name, ".gnu.linkonce.t."))
15083 if (abfd != l->sec->owner)
15084 sec->output_section = bfd_abs_section_ptr;
15088 /* This is the first section with this name. Record it. */
15089 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
15090 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
15091 return sec->output_section == bfd_abs_section_ptr;
15095 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
15097 return sym->st_shndx == SHN_COMMON;
15101 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
15107 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
15109 return bfd_com_section_ptr;
15113 _bfd_elf_default_got_elt_size (bfd *abfd,
15114 struct bfd_link_info *info ATTRIBUTE_UNUSED,
15115 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
15116 bfd *ibfd ATTRIBUTE_UNUSED,
15117 unsigned long symndx ATTRIBUTE_UNUSED)
15119 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15120 return bed->s->arch_size / 8;
15123 /* Routines to support the creation of dynamic relocs. */
15125 /* Returns the name of the dynamic reloc section associated with SEC. */
15127 static const char *
15128 get_dynamic_reloc_section_name (bfd * abfd,
15133 const char *old_name = bfd_section_name (sec);
15134 const char *prefix = is_rela ? ".rela" : ".rel";
15136 if (old_name == NULL)
15139 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
15140 sprintf (name, "%s%s", prefix, old_name);
15145 /* Returns the dynamic reloc section associated with SEC.
15146 If necessary compute the name of the dynamic reloc section based
15147 on SEC's name (looked up in ABFD's string table) and the setting
15151 _bfd_elf_get_dynamic_reloc_section (bfd *abfd,
15155 asection *reloc_sec = elf_section_data (sec)->sreloc;
15157 if (reloc_sec == NULL)
15159 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15163 reloc_sec = bfd_get_linker_section (abfd, name);
15165 if (reloc_sec != NULL)
15166 elf_section_data (sec)->sreloc = reloc_sec;
15173 /* Returns the dynamic reloc section associated with SEC. If the
15174 section does not exist it is created and attached to the DYNOBJ
15175 bfd and stored in the SRELOC field of SEC's elf_section_data
15178 ALIGNMENT is the alignment for the newly created section and
15179 IS_RELA defines whether the name should be .rela.<SEC's name>
15180 or .rel.<SEC's name>. The section name is looked up in the
15181 string table associated with ABFD. */
15184 _bfd_elf_make_dynamic_reloc_section (asection *sec,
15186 unsigned int alignment,
15190 asection * reloc_sec = elf_section_data (sec)->sreloc;
15192 if (reloc_sec == NULL)
15194 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
15199 reloc_sec = bfd_get_linker_section (dynobj, name);
15201 if (reloc_sec == NULL)
15203 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
15204 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
15205 if ((sec->flags & SEC_ALLOC) != 0)
15206 flags |= SEC_ALLOC | SEC_LOAD;
15208 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
15209 if (reloc_sec != NULL)
15211 /* _bfd_elf_get_sec_type_attr chooses a section type by
15212 name. Override as it may be wrong, eg. for a user
15213 section named "auto" we'll get ".relauto" which is
15214 seen to be a .rela section. */
15215 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
15216 if (!bfd_set_section_alignment (reloc_sec, alignment))
15221 elf_section_data (sec)->sreloc = reloc_sec;
15227 /* Copy the ELF symbol type and other attributes for a linker script
15228 assignment from HSRC to HDEST. Generally this should be treated as
15229 if we found a strong non-dynamic definition for HDEST (except that
15230 ld ignores multiple definition errors). */
15232 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
15233 struct bfd_link_hash_entry *hdest,
15234 struct bfd_link_hash_entry *hsrc)
15236 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
15237 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
15238 Elf_Internal_Sym isym;
15240 ehdest->type = ehsrc->type;
15241 ehdest->target_internal = ehsrc->target_internal;
15243 isym.st_other = ehsrc->other;
15244 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false);
15247 /* Append a RELA relocation REL to section S in BFD. */
15250 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15252 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15253 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
15254 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
15255 bed->s->swap_reloca_out (abfd, rel, loc);
15258 /* Append a REL relocation REL to section S in BFD. */
15261 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
15263 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15264 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
15265 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
15266 bed->s->swap_reloc_out (abfd, rel, loc);
15269 /* Define __start, __stop, .startof. or .sizeof. symbol. */
15271 struct bfd_link_hash_entry *
15272 bfd_elf_define_start_stop (struct bfd_link_info *info,
15273 const char *symbol, asection *sec)
15275 struct elf_link_hash_entry *h;
15277 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
15278 false, false, true);
15279 /* NB: Common symbols will be turned into definition later. */
15281 && !h->root.ldscript_def
15282 && (h->root.type == bfd_link_hash_undefined
15283 || h->root.type == bfd_link_hash_undefweak
15284 || ((h->ref_regular || h->def_dynamic)
15286 && h->root.type != bfd_link_hash_common)))
15288 bool was_dynamic = h->ref_dynamic || h->def_dynamic;
15289 h->verinfo.verdef = NULL;
15290 h->root.type = bfd_link_hash_defined;
15291 h->root.u.def.section = sec;
15292 h->root.u.def.value = 0;
15293 h->def_regular = 1;
15294 h->def_dynamic = 0;
15296 h->u2.start_stop_section = sec;
15297 if (symbol[0] == '.')
15299 /* .startof. and .sizeof. symbols are local. */
15300 const struct elf_backend_data *bed;
15301 bed = get_elf_backend_data (info->output_bfd);
15302 (*bed->elf_backend_hide_symbol) (info, h, true);
15306 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15307 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1))
15308 | info->start_stop_visibility);
15310 bfd_elf_link_record_dynamic_symbol (info, h);
15317 /* Find dynamic relocs for H that apply to read-only sections. */
15320 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h)
15322 struct elf_dyn_relocs *p;
15324 for (p = h->dyn_relocs; p != NULL; p = p->next)
15326 asection *s = p->sec->output_section;
15328 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15334 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
15335 read-only sections. */
15338 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
15342 if (h->root.type == bfd_link_hash_indirect)
15345 sec = _bfd_elf_readonly_dynrelocs (h);
15348 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15350 info->flags |= DF_TEXTREL;
15351 /* xgettext:c-format */
15352 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' "
15353 "in read-only section `%pA'\n"),
15354 sec->owner, h->root.root.string, sec);
15356 if (bfd_link_textrel_check (info))
15357 /* xgettext:c-format */
15358 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' "
15359 "in read-only section `%pA'\n"),
15360 sec->owner, h->root.root.string, sec);
15362 /* Not an error, just cut short the traversal. */
15368 /* Add dynamic tags. */
15371 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info,
15372 bool need_dynamic_reloc)
15374 struct elf_link_hash_table *htab = elf_hash_table (info);
15376 if (htab->dynamic_sections_created)
15378 /* Add some entries to the .dynamic section. We fill in the
15379 values later, in finish_dynamic_sections, but we must add
15380 the entries now so that we get the correct size for the
15381 .dynamic section. The DT_DEBUG entry is filled in by the
15382 dynamic linker and used by the debugger. */
15383 #define add_dynamic_entry(TAG, VAL) \
15384 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
15386 const struct elf_backend_data *bed
15387 = get_elf_backend_data (output_bfd);
15389 if (bfd_link_executable (info))
15391 if (!add_dynamic_entry (DT_DEBUG, 0))
15395 if (htab->dt_pltgot_required || htab->splt->size != 0)
15397 /* DT_PLTGOT is used by prelink even if there is no PLT
15399 if (!add_dynamic_entry (DT_PLTGOT, 0))
15403 if (htab->dt_jmprel_required || htab->srelplt->size != 0)
15405 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
15406 || !add_dynamic_entry (DT_PLTREL,
15407 (bed->rela_plts_and_copies_p
15408 ? DT_RELA : DT_REL))
15409 || !add_dynamic_entry (DT_JMPREL, 0))
15413 if (htab->tlsdesc_plt
15414 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
15415 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
15418 if (need_dynamic_reloc)
15420 if (bed->rela_plts_and_copies_p)
15422 if (!add_dynamic_entry (DT_RELA, 0)
15423 || !add_dynamic_entry (DT_RELASZ, 0)
15424 || !add_dynamic_entry (DT_RELAENT,
15425 bed->s->sizeof_rela))
15430 if (!add_dynamic_entry (DT_REL, 0)
15431 || !add_dynamic_entry (DT_RELSZ, 0)
15432 || !add_dynamic_entry (DT_RELENT,
15433 bed->s->sizeof_rel))
15437 /* If any dynamic relocs apply to a read-only section,
15438 then we need a DT_TEXTREL entry. */
15439 if ((info->flags & DF_TEXTREL) == 0)
15440 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel,
15443 if ((info->flags & DF_TEXTREL) != 0)
15445 if (htab->ifunc_resolvers)
15446 info->callbacks->einfo
15447 (_("%P: warning: GNU indirect functions with DT_TEXTREL "
15448 "may result in a segfault at runtime; recompile with %s\n"),
15449 bfd_link_dll (info) ? "-fPIC" : "-fPIE");
15451 if (!add_dynamic_entry (DT_TEXTREL, 0))
15456 #undef add_dynamic_entry