1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 /* Maximum-sized dynamic type. */
251 static unsigned int varsize_limit;
253 static const char ada_completer_word_break_characters[] =
255 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
257 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
260 /* The name of the symbol to use to get the name of the main subprogram. */
261 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
262 = "__gnat_ada_main_program_name";
264 /* Limit on the number of warnings to raise per expression evaluation. */
265 static int warning_limit = 2;
267 /* Number of warning messages issued; reset to 0 by cleanups after
268 expression evaluation. */
269 static int warnings_issued = 0;
271 static const char * const known_runtime_file_name_patterns[] = {
272 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
275 static const char * const known_auxiliary_function_name_patterns[] = {
276 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
279 /* Maintenance-related settings for this module. */
281 static struct cmd_list_element *maint_set_ada_cmdlist;
282 static struct cmd_list_element *maint_show_ada_cmdlist;
284 /* The "maintenance ada set/show ignore-descriptive-type" value. */
286 static bool ada_ignore_descriptive_types_p = false;
288 /* Inferior-specific data. */
290 /* Per-inferior data for this module. */
292 struct ada_inferior_data
294 /* The ada__tags__type_specific_data type, which is used when decoding
295 tagged types. With older versions of GNAT, this type was directly
296 accessible through a component ("tsd") in the object tag. But this
297 is no longer the case, so we cache it for each inferior. */
298 struct type *tsd_type = nullptr;
300 /* The exception_support_info data. This data is used to determine
301 how to implement support for Ada exception catchpoints in a given
303 const struct exception_support_info *exception_info = nullptr;
306 /* Our key to this module's inferior data. */
307 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
309 /* Return our inferior data for the given inferior (INF).
311 This function always returns a valid pointer to an allocated
312 ada_inferior_data structure. If INF's inferior data has not
313 been previously set, this functions creates a new one with all
314 fields set to zero, sets INF's inferior to it, and then returns
315 a pointer to that newly allocated ada_inferior_data. */
317 static struct ada_inferior_data *
318 get_ada_inferior_data (struct inferior *inf)
320 struct ada_inferior_data *data;
322 data = ada_inferior_data.get (inf);
324 data = ada_inferior_data.emplace (inf);
329 /* Perform all necessary cleanups regarding our module's inferior data
330 that is required after the inferior INF just exited. */
333 ada_inferior_exit (struct inferior *inf)
335 ada_inferior_data.clear (inf);
339 /* program-space-specific data. */
341 /* This module's per-program-space data. */
342 struct ada_pspace_data
344 /* The Ada symbol cache. */
345 std::unique_ptr<ada_symbol_cache> sym_cache;
348 /* Key to our per-program-space data. */
349 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
351 /* Return this module's data for the given program space (PSPACE).
352 If not is found, add a zero'ed one now.
354 This function always returns a valid object. */
356 static struct ada_pspace_data *
357 get_ada_pspace_data (struct program_space *pspace)
359 struct ada_pspace_data *data;
361 data = ada_pspace_data_handle.get (pspace);
363 data = ada_pspace_data_handle.emplace (pspace);
370 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
371 all typedef layers have been peeled. Otherwise, return TYPE.
373 Normally, we really expect a typedef type to only have 1 typedef layer.
374 In other words, we really expect the target type of a typedef type to be
375 a non-typedef type. This is particularly true for Ada units, because
376 the language does not have a typedef vs not-typedef distinction.
377 In that respect, the Ada compiler has been trying to eliminate as many
378 typedef definitions in the debugging information, since they generally
379 do not bring any extra information (we still use typedef under certain
380 circumstances related mostly to the GNAT encoding).
382 Unfortunately, we have seen situations where the debugging information
383 generated by the compiler leads to such multiple typedef layers. For
384 instance, consider the following example with stabs:
386 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
387 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389 This is an error in the debugging information which causes type
390 pck__float_array___XUP to be defined twice, and the second time,
391 it is defined as a typedef of a typedef.
393 This is on the fringe of legality as far as debugging information is
394 concerned, and certainly unexpected. But it is easy to handle these
395 situations correctly, so we can afford to be lenient in this case. */
398 ada_typedef_target_type (struct type *type)
400 while (type->code () == TYPE_CODE_TYPEDEF)
401 type = TYPE_TARGET_TYPE (type);
405 /* Given DECODED_NAME a string holding a symbol name in its
406 decoded form (ie using the Ada dotted notation), returns
407 its unqualified name. */
410 ada_unqualified_name (const char *decoded_name)
414 /* If the decoded name starts with '<', it means that the encoded
415 name does not follow standard naming conventions, and thus that
416 it is not your typical Ada symbol name. Trying to unqualify it
417 is therefore pointless and possibly erroneous. */
418 if (decoded_name[0] == '<')
421 result = strrchr (decoded_name, '.');
423 result++; /* Skip the dot... */
425 result = decoded_name;
430 /* Return a string starting with '<', followed by STR, and '>'. */
433 add_angle_brackets (const char *str)
435 return string_printf ("<%s>", str);
438 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
439 suffix of FIELD_NAME beginning "___". */
442 field_name_match (const char *field_name, const char *target)
444 int len = strlen (target);
447 (strncmp (field_name, target, len) == 0
448 && (field_name[len] == '\0'
449 || (startswith (field_name + len, "___")
450 && strcmp (field_name + strlen (field_name) - 6,
455 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
456 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
457 and return its index. This function also handles fields whose name
458 have ___ suffixes because the compiler sometimes alters their name
459 by adding such a suffix to represent fields with certain constraints.
460 If the field could not be found, return a negative number if
461 MAYBE_MISSING is set. Otherwise raise an error. */
464 ada_get_field_index (const struct type *type, const char *field_name,
468 struct type *struct_type = check_typedef ((struct type *) type);
470 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
471 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
475 error (_("Unable to find field %s in struct %s. Aborting"),
476 field_name, struct_type->name ());
481 /* The length of the prefix of NAME prior to any "___" suffix. */
484 ada_name_prefix_len (const char *name)
490 const char *p = strstr (name, "___");
493 return strlen (name);
499 /* Return non-zero if SUFFIX is a suffix of STR.
500 Return zero if STR is null. */
503 is_suffix (const char *str, const char *suffix)
510 len2 = strlen (suffix);
511 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
514 /* The contents of value VAL, treated as a value of type TYPE. The
515 result is an lval in memory if VAL is. */
517 static struct value *
518 coerce_unspec_val_to_type (struct value *val, struct type *type)
520 type = ada_check_typedef (type);
521 if (value_type (val) == type)
525 struct value *result;
527 /* Make sure that the object size is not unreasonable before
528 trying to allocate some memory for it. */
529 ada_ensure_varsize_limit (type);
531 if (value_optimized_out (val))
532 result = allocate_optimized_out_value (type);
533 else if (value_lazy (val)
534 /* Be careful not to make a lazy not_lval value. */
535 || (VALUE_LVAL (val) != not_lval
536 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
537 result = allocate_value_lazy (type);
540 result = allocate_value (type);
541 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
543 set_value_component_location (result, val);
544 set_value_bitsize (result, value_bitsize (val));
545 set_value_bitpos (result, value_bitpos (val));
546 if (VALUE_LVAL (result) == lval_memory)
547 set_value_address (result, value_address (val));
552 static const gdb_byte *
553 cond_offset_host (const gdb_byte *valaddr, long offset)
558 return valaddr + offset;
562 cond_offset_target (CORE_ADDR address, long offset)
567 return address + offset;
570 /* Issue a warning (as for the definition of warning in utils.c, but
571 with exactly one argument rather than ...), unless the limit on the
572 number of warnings has passed during the evaluation of the current
575 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
576 provided by "complaint". */
577 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
580 lim_warning (const char *format, ...)
584 va_start (args, format);
585 warnings_issued += 1;
586 if (warnings_issued <= warning_limit)
587 vwarning (format, args);
592 /* Issue an error if the size of an object of type T is unreasonable,
593 i.e. if it would be a bad idea to allocate a value of this type in
597 ada_ensure_varsize_limit (const struct type *type)
599 if (TYPE_LENGTH (type) > varsize_limit)
600 error (_("object size is larger than varsize-limit"));
603 /* Maximum value of a SIZE-byte signed integer type. */
605 max_of_size (int size)
607 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
609 return top_bit | (top_bit - 1);
612 /* Minimum value of a SIZE-byte signed integer type. */
614 min_of_size (int size)
616 return -max_of_size (size) - 1;
619 /* Maximum value of a SIZE-byte unsigned integer type. */
621 umax_of_size (int size)
623 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
625 return top_bit | (top_bit - 1);
628 /* Maximum value of integral type T, as a signed quantity. */
630 max_of_type (struct type *t)
632 if (t->is_unsigned ())
633 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
635 return max_of_size (TYPE_LENGTH (t));
638 /* Minimum value of integral type T, as a signed quantity. */
640 min_of_type (struct type *t)
642 if (t->is_unsigned ())
645 return min_of_size (TYPE_LENGTH (t));
648 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
650 ada_discrete_type_high_bound (struct type *type)
652 type = resolve_dynamic_type (type, {}, 0);
653 switch (type->code ())
655 case TYPE_CODE_RANGE:
657 const dynamic_prop &high = type->bounds ()->high;
659 if (high.kind () == PROP_CONST)
660 return high.const_val ();
663 gdb_assert (high.kind () == PROP_UNDEFINED);
665 /* This happens when trying to evaluate a type's dynamic bound
666 without a live target. There is nothing relevant for us to
667 return here, so return 0. */
672 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
677 return max_of_type (type);
679 error (_("Unexpected type in ada_discrete_type_high_bound."));
683 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
685 ada_discrete_type_low_bound (struct type *type)
687 type = resolve_dynamic_type (type, {}, 0);
688 switch (type->code ())
690 case TYPE_CODE_RANGE:
692 const dynamic_prop &low = type->bounds ()->low;
694 if (low.kind () == PROP_CONST)
695 return low.const_val ();
698 gdb_assert (low.kind () == PROP_UNDEFINED);
700 /* This happens when trying to evaluate a type's dynamic bound
701 without a live target. There is nothing relevant for us to
702 return here, so return 0. */
707 return TYPE_FIELD_ENUMVAL (type, 0);
712 return min_of_type (type);
714 error (_("Unexpected type in ada_discrete_type_low_bound."));
718 /* The identity on non-range types. For range types, the underlying
719 non-range scalar type. */
722 get_base_type (struct type *type)
724 while (type != NULL && type->code () == TYPE_CODE_RANGE)
726 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
728 type = TYPE_TARGET_TYPE (type);
733 /* Return a decoded version of the given VALUE. This means returning
734 a value whose type is obtained by applying all the GNAT-specific
735 encodings, making the resulting type a static but standard description
736 of the initial type. */
739 ada_get_decoded_value (struct value *value)
741 struct type *type = ada_check_typedef (value_type (value));
743 if (ada_is_array_descriptor_type (type)
744 || (ada_is_constrained_packed_array_type (type)
745 && type->code () != TYPE_CODE_PTR))
747 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
748 value = ada_coerce_to_simple_array_ptr (value);
750 value = ada_coerce_to_simple_array (value);
753 value = ada_to_fixed_value (value);
758 /* Same as ada_get_decoded_value, but with the given TYPE.
759 Because there is no associated actual value for this type,
760 the resulting type might be a best-effort approximation in
761 the case of dynamic types. */
764 ada_get_decoded_type (struct type *type)
766 type = to_static_fixed_type (type);
767 if (ada_is_constrained_packed_array_type (type))
768 type = ada_coerce_to_simple_array_type (type);
774 /* Language Selection */
776 /* If the main program is in Ada, return language_ada, otherwise return LANG
777 (the main program is in Ada iif the adainit symbol is found). */
780 ada_update_initial_language (enum language lang)
782 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
788 /* If the main procedure is written in Ada, then return its name.
789 The result is good until the next call. Return NULL if the main
790 procedure doesn't appear to be in Ada. */
795 struct bound_minimal_symbol msym;
796 static gdb::unique_xmalloc_ptr<char> main_program_name;
798 /* For Ada, the name of the main procedure is stored in a specific
799 string constant, generated by the binder. Look for that symbol,
800 extract its address, and then read that string. If we didn't find
801 that string, then most probably the main procedure is not written
803 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
805 if (msym.minsym != NULL)
807 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
808 if (main_program_name_addr == 0)
809 error (_("Invalid address for Ada main program name."));
811 main_program_name = target_read_string (main_program_name_addr, 1024);
812 return main_program_name.get ();
815 /* The main procedure doesn't seem to be in Ada. */
821 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
824 const struct ada_opname_map ada_opname_table[] = {
825 {"Oadd", "\"+\"", BINOP_ADD},
826 {"Osubtract", "\"-\"", BINOP_SUB},
827 {"Omultiply", "\"*\"", BINOP_MUL},
828 {"Odivide", "\"/\"", BINOP_DIV},
829 {"Omod", "\"mod\"", BINOP_MOD},
830 {"Orem", "\"rem\"", BINOP_REM},
831 {"Oexpon", "\"**\"", BINOP_EXP},
832 {"Olt", "\"<\"", BINOP_LESS},
833 {"Ole", "\"<=\"", BINOP_LEQ},
834 {"Ogt", "\">\"", BINOP_GTR},
835 {"Oge", "\">=\"", BINOP_GEQ},
836 {"Oeq", "\"=\"", BINOP_EQUAL},
837 {"One", "\"/=\"", BINOP_NOTEQUAL},
838 {"Oand", "\"and\"", BINOP_BITWISE_AND},
839 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
840 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
841 {"Oconcat", "\"&\"", BINOP_CONCAT},
842 {"Oabs", "\"abs\"", UNOP_ABS},
843 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
844 {"Oadd", "\"+\"", UNOP_PLUS},
845 {"Osubtract", "\"-\"", UNOP_NEG},
849 /* The "encoded" form of DECODED, according to GNAT conventions. If
850 THROW_ERRORS, throw an error if invalid operator name is found.
851 Otherwise, return the empty string in that case. */
854 ada_encode_1 (const char *decoded, bool throw_errors)
859 std::string encoding_buffer;
860 for (const char *p = decoded; *p != '\0'; p += 1)
863 encoding_buffer.append ("__");
866 const struct ada_opname_map *mapping;
868 for (mapping = ada_opname_table;
869 mapping->encoded != NULL
870 && !startswith (p, mapping->decoded); mapping += 1)
872 if (mapping->encoded == NULL)
875 error (_("invalid Ada operator name: %s"), p);
879 encoding_buffer.append (mapping->encoded);
883 encoding_buffer.push_back (*p);
886 return encoding_buffer;
889 /* The "encoded" form of DECODED, according to GNAT conventions. */
892 ada_encode (const char *decoded)
894 return ada_encode_1 (decoded, true);
897 /* Return NAME folded to lower case, or, if surrounded by single
898 quotes, unfolded, but with the quotes stripped away. Result good
902 ada_fold_name (gdb::string_view name)
904 static std::string fold_storage;
906 if (!name.empty () && name[0] == '\'')
907 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
910 fold_storage = gdb::to_string (name);
911 for (int i = 0; i < name.size (); i += 1)
912 fold_storage[i] = tolower (fold_storage[i]);
915 return fold_storage.c_str ();
918 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
921 is_lower_alphanum (const char c)
923 return (isdigit (c) || (isalpha (c) && islower (c)));
926 /* ENCODED is the linkage name of a symbol and LEN contains its length.
927 This function saves in LEN the length of that same symbol name but
928 without either of these suffixes:
934 These are suffixes introduced by the compiler for entities such as
935 nested subprogram for instance, in order to avoid name clashes.
936 They do not serve any purpose for the debugger. */
939 ada_remove_trailing_digits (const char *encoded, int *len)
941 if (*len > 1 && isdigit (encoded[*len - 1]))
945 while (i > 0 && isdigit (encoded[i]))
947 if (i >= 0 && encoded[i] == '.')
949 else if (i >= 0 && encoded[i] == '$')
951 else if (i >= 2 && startswith (encoded + i - 2, "___"))
953 else if (i >= 1 && startswith (encoded + i - 1, "__"))
958 /* Remove the suffix introduced by the compiler for protected object
962 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
964 /* Remove trailing N. */
966 /* Protected entry subprograms are broken into two
967 separate subprograms: The first one is unprotected, and has
968 a 'N' suffix; the second is the protected version, and has
969 the 'P' suffix. The second calls the first one after handling
970 the protection. Since the P subprograms are internally generated,
971 we leave these names undecoded, giving the user a clue that this
972 entity is internal. */
975 && encoded[*len - 1] == 'N'
976 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
980 /* See ada-lang.h. */
983 ada_decode (const char *encoded, bool wrap)
991 /* With function descriptors on PPC64, the value of a symbol named
992 ".FN", if it exists, is the entry point of the function "FN". */
993 if (encoded[0] == '.')
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
999 if (startswith (encoded, "_ada_"))
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
1005 if (encoded[0] == '_' || encoded[0] == '<')
1008 len0 = strlen (encoded);
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1030 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1037 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1043 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1046 /* Make decoded big enough for possible expansion by operator name. */
1048 decoded.resize (2 * len0 + 1, 'X');
1050 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1055 while ((i >= 0 && isdigit (encoded[i]))
1056 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 else if (encoded[i] == '$')
1064 /* The first few characters that are not alphabetic are not part
1065 of any encoding we use, so we can copy them over verbatim. */
1067 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1068 decoded[j] = encoded[i];
1073 /* Is this a symbol function? */
1074 if (at_start_name && encoded[i] == 'O')
1078 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 int op_len = strlen (ada_opname_table[k].encoded);
1081 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 && !isalnum (encoded[i + op_len]))
1085 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1088 j += strlen (ada_opname_table[k].decoded);
1092 if (ada_opname_table[k].encoded != NULL)
1097 /* Replace "TK__" with "__", which will eventually be translated
1098 into "." (just below). */
1100 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1103 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1104 be translated into "." (just below). These are internal names
1105 generated for anonymous blocks inside which our symbol is nested. */
1107 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1108 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1109 && isdigit (encoded [i+4]))
1113 while (k < len0 && isdigit (encoded[k]))
1114 k++; /* Skip any extra digit. */
1116 /* Double-check that the "__B_{DIGITS}+" sequence we found
1117 is indeed followed by "__". */
1118 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1122 /* Remove _E{DIGITS}+[sb] */
1124 /* Just as for protected object subprograms, there are 2 categories
1125 of subprograms created by the compiler for each entry. The first
1126 one implements the actual entry code, and has a suffix following
1127 the convention above; the second one implements the barrier and
1128 uses the same convention as above, except that the 'E' is replaced
1131 Just as above, we do not decode the name of barrier functions
1132 to give the user a clue that the code he is debugging has been
1133 internally generated. */
1135 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1136 && isdigit (encoded[i+2]))
1140 while (k < len0 && isdigit (encoded[k]))
1144 && (encoded[k] == 'b' || encoded[k] == 's'))
1147 /* Just as an extra precaution, make sure that if this
1148 suffix is followed by anything else, it is a '_'.
1149 Otherwise, we matched this sequence by accident. */
1151 || (k < len0 && encoded[k] == '_'))
1156 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1157 the GNAT front-end in protected object subprograms. */
1160 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 /* Backtrack a bit up until we reach either the begining of
1163 the encoded name, or "__". Make sure that we only find
1164 digits or lowercase characters. */
1165 const char *ptr = encoded + i - 1;
1167 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1170 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1174 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 /* This is a X[bn]* sequence not separated from the previous
1177 part of the name with a non-alpha-numeric character (in other
1178 words, immediately following an alpha-numeric character), then
1179 verify that it is placed at the end of the encoded name. If
1180 not, then the encoding is not valid and we should abort the
1181 decoding. Otherwise, just skip it, it is used in body-nested
1185 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1189 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1191 /* Replace '__' by '.'. */
1199 /* It's a character part of the decoded name, so just copy it
1201 decoded[j] = encoded[i];
1208 /* Decoded names should never contain any uppercase character.
1209 Double-check this, and abort the decoding if we find one. */
1211 for (i = 0; i < decoded.length(); ++i)
1212 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 if (encoded[0] == '<')
1224 decoded = '<' + std::string(encoded) + '>';
1228 /* Table for keeping permanent unique copies of decoded names. Once
1229 allocated, names in this table are never released. While this is a
1230 storage leak, it should not be significant unless there are massive
1231 changes in the set of decoded names in successive versions of a
1232 symbol table loaded during a single session. */
1233 static struct htab *decoded_names_store;
1235 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1236 in the language-specific part of GSYMBOL, if it has not been
1237 previously computed. Tries to save the decoded name in the same
1238 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1239 in any case, the decoded symbol has a lifetime at least that of
1241 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1242 const, but nevertheless modified to a semantically equivalent form
1243 when a decoded name is cached in it. */
1246 ada_decode_symbol (const struct general_symbol_info *arg)
1248 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1249 const char **resultp =
1250 &gsymbol->language_specific.demangled_name;
1252 if (!gsymbol->ada_mangled)
1254 std::string decoded = ada_decode (gsymbol->linkage_name ());
1255 struct obstack *obstack = gsymbol->language_specific.obstack;
1257 gsymbol->ada_mangled = 1;
1259 if (obstack != NULL)
1260 *resultp = obstack_strdup (obstack, decoded.c_str ());
1263 /* Sometimes, we can't find a corresponding objfile, in
1264 which case, we put the result on the heap. Since we only
1265 decode when needed, we hope this usually does not cause a
1266 significant memory leak (FIXME). */
1268 char **slot = (char **) htab_find_slot (decoded_names_store,
1269 decoded.c_str (), INSERT);
1272 *slot = xstrdup (decoded.c_str ());
1281 ada_la_decode (const char *encoded, int options)
1283 return xstrdup (ada_decode (encoded).c_str ());
1290 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1291 generated by the GNAT compiler to describe the index type used
1292 for each dimension of an array, check whether it follows the latest
1293 known encoding. If not, fix it up to conform to the latest encoding.
1294 Otherwise, do nothing. This function also does nothing if
1295 INDEX_DESC_TYPE is NULL.
1297 The GNAT encoding used to describe the array index type evolved a bit.
1298 Initially, the information would be provided through the name of each
1299 field of the structure type only, while the type of these fields was
1300 described as unspecified and irrelevant. The debugger was then expected
1301 to perform a global type lookup using the name of that field in order
1302 to get access to the full index type description. Because these global
1303 lookups can be very expensive, the encoding was later enhanced to make
1304 the global lookup unnecessary by defining the field type as being
1305 the full index type description.
1307 The purpose of this routine is to allow us to support older versions
1308 of the compiler by detecting the use of the older encoding, and by
1309 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1310 we essentially replace each field's meaningless type by the associated
1314 ada_fixup_array_indexes_type (struct type *index_desc_type)
1318 if (index_desc_type == NULL)
1320 gdb_assert (index_desc_type->num_fields () > 0);
1322 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1323 to check one field only, no need to check them all). If not, return
1326 If our INDEX_DESC_TYPE was generated using the older encoding,
1327 the field type should be a meaningless integer type whose name
1328 is not equal to the field name. */
1329 if (index_desc_type->field (0).type ()->name () != NULL
1330 && strcmp (index_desc_type->field (0).type ()->name (),
1331 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1334 /* Fixup each field of INDEX_DESC_TYPE. */
1335 for (i = 0; i < index_desc_type->num_fields (); i++)
1337 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1338 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1341 index_desc_type->field (i).set_type (raw_type);
1345 /* The desc_* routines return primitive portions of array descriptors
1348 /* The descriptor or array type, if any, indicated by TYPE; removes
1349 level of indirection, if needed. */
1351 static struct type *
1352 desc_base_type (struct type *type)
1356 type = ada_check_typedef (type);
1357 if (type->code () == TYPE_CODE_TYPEDEF)
1358 type = ada_typedef_target_type (type);
1361 && (type->code () == TYPE_CODE_PTR
1362 || type->code () == TYPE_CODE_REF))
1363 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1368 /* True iff TYPE indicates a "thin" array pointer type. */
1371 is_thin_pntr (struct type *type)
1374 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1375 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1378 /* The descriptor type for thin pointer type TYPE. */
1380 static struct type *
1381 thin_descriptor_type (struct type *type)
1383 struct type *base_type = desc_base_type (type);
1385 if (base_type == NULL)
1387 if (is_suffix (ada_type_name (base_type), "___XVE"))
1391 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1393 if (alt_type == NULL)
1400 /* A pointer to the array data for thin-pointer value VAL. */
1402 static struct value *
1403 thin_data_pntr (struct value *val)
1405 struct type *type = ada_check_typedef (value_type (val));
1406 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1408 data_type = lookup_pointer_type (data_type);
1410 if (type->code () == TYPE_CODE_PTR)
1411 return value_cast (data_type, value_copy (val));
1413 return value_from_longest (data_type, value_address (val));
1416 /* True iff TYPE indicates a "thick" array pointer type. */
1419 is_thick_pntr (struct type *type)
1421 type = desc_base_type (type);
1422 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1423 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1426 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1427 pointer to one, the type of its bounds data; otherwise, NULL. */
1429 static struct type *
1430 desc_bounds_type (struct type *type)
1434 type = desc_base_type (type);
1438 else if (is_thin_pntr (type))
1440 type = thin_descriptor_type (type);
1443 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1445 return ada_check_typedef (r);
1447 else if (type->code () == TYPE_CODE_STRUCT)
1449 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1451 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1456 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1457 one, a pointer to its bounds data. Otherwise NULL. */
1459 static struct value *
1460 desc_bounds (struct value *arr)
1462 struct type *type = ada_check_typedef (value_type (arr));
1464 if (is_thin_pntr (type))
1466 struct type *bounds_type =
1467 desc_bounds_type (thin_descriptor_type (type));
1470 if (bounds_type == NULL)
1471 error (_("Bad GNAT array descriptor"));
1473 /* NOTE: The following calculation is not really kosher, but
1474 since desc_type is an XVE-encoded type (and shouldn't be),
1475 the correct calculation is a real pain. FIXME (and fix GCC). */
1476 if (type->code () == TYPE_CODE_PTR)
1477 addr = value_as_long (arr);
1479 addr = value_address (arr);
1482 value_from_longest (lookup_pointer_type (bounds_type),
1483 addr - TYPE_LENGTH (bounds_type));
1486 else if (is_thick_pntr (type))
1488 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1489 _("Bad GNAT array descriptor"));
1490 struct type *p_bounds_type = value_type (p_bounds);
1493 && p_bounds_type->code () == TYPE_CODE_PTR)
1495 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1497 if (target_type->is_stub ())
1498 p_bounds = value_cast (lookup_pointer_type
1499 (ada_check_typedef (target_type)),
1503 error (_("Bad GNAT array descriptor"));
1511 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1512 position of the field containing the address of the bounds data. */
1515 fat_pntr_bounds_bitpos (struct type *type)
1517 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1520 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1521 size of the field containing the address of the bounds data. */
1524 fat_pntr_bounds_bitsize (struct type *type)
1526 type = desc_base_type (type);
1528 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 1);
1531 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1534 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1535 pointer to one, the type of its array data (a array-with-no-bounds type);
1536 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1539 static struct type *
1540 desc_data_target_type (struct type *type)
1542 type = desc_base_type (type);
1544 /* NOTE: The following is bogus; see comment in desc_bounds. */
1545 if (is_thin_pntr (type))
1546 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1547 else if (is_thick_pntr (type))
1549 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1552 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1553 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1559 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1562 static struct value *
1563 desc_data (struct value *arr)
1565 struct type *type = value_type (arr);
1567 if (is_thin_pntr (type))
1568 return thin_data_pntr (arr);
1569 else if (is_thick_pntr (type))
1570 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1571 _("Bad GNAT array descriptor"));
1577 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1578 position of the field containing the address of the data. */
1581 fat_pntr_data_bitpos (struct type *type)
1583 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1586 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1587 size of the field containing the address of the data. */
1590 fat_pntr_data_bitsize (struct type *type)
1592 type = desc_base_type (type);
1594 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1595 return TYPE_FIELD_BITSIZE (type, 0);
1597 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1600 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1601 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1602 bound, if WHICH is 1. The first bound is I=1. */
1604 static struct value *
1605 desc_one_bound (struct value *bounds, int i, int which)
1607 char bound_name[20];
1608 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1609 which ? 'U' : 'L', i - 1);
1610 return value_struct_elt (&bounds, {}, bound_name, NULL,
1611 _("Bad GNAT array descriptor bounds"));
1614 /* If BOUNDS is an array-bounds structure type, return the bit position
1615 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1616 bound, if WHICH is 1. The first bound is I=1. */
1619 desc_bound_bitpos (struct type *type, int i, int which)
1621 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1624 /* If BOUNDS is an array-bounds structure type, return the bit field size
1625 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1626 bound, if WHICH is 1. The first bound is I=1. */
1629 desc_bound_bitsize (struct type *type, int i, int which)
1631 type = desc_base_type (type);
1633 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1634 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1636 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1639 /* If TYPE is the type of an array-bounds structure, the type of its
1640 Ith bound (numbering from 1). Otherwise, NULL. */
1642 static struct type *
1643 desc_index_type (struct type *type, int i)
1645 type = desc_base_type (type);
1647 if (type->code () == TYPE_CODE_STRUCT)
1649 char bound_name[20];
1650 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1651 return lookup_struct_elt_type (type, bound_name, 1);
1657 /* The number of index positions in the array-bounds type TYPE.
1658 Return 0 if TYPE is NULL. */
1661 desc_arity (struct type *type)
1663 type = desc_base_type (type);
1666 return type->num_fields () / 2;
1670 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1671 an array descriptor type (representing an unconstrained array
1675 ada_is_direct_array_type (struct type *type)
1679 type = ada_check_typedef (type);
1680 return (type->code () == TYPE_CODE_ARRAY
1681 || ada_is_array_descriptor_type (type));
1684 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1688 ada_is_array_type (struct type *type)
1691 && (type->code () == TYPE_CODE_PTR
1692 || type->code () == TYPE_CODE_REF))
1693 type = TYPE_TARGET_TYPE (type);
1694 return ada_is_direct_array_type (type);
1697 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1700 ada_is_simple_array_type (struct type *type)
1704 type = ada_check_typedef (type);
1705 return (type->code () == TYPE_CODE_ARRAY
1706 || (type->code () == TYPE_CODE_PTR
1707 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1708 == TYPE_CODE_ARRAY)));
1711 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1714 ada_is_array_descriptor_type (struct type *type)
1716 struct type *data_type = desc_data_target_type (type);
1720 type = ada_check_typedef (type);
1721 return (data_type != NULL
1722 && data_type->code () == TYPE_CODE_ARRAY
1723 && desc_arity (desc_bounds_type (type)) > 0);
1726 /* Non-zero iff type is a partially mal-formed GNAT array
1727 descriptor. FIXME: This is to compensate for some problems with
1728 debugging output from GNAT. Re-examine periodically to see if it
1732 ada_is_bogus_array_descriptor (struct type *type)
1736 && type->code () == TYPE_CODE_STRUCT
1737 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1738 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1739 && !ada_is_array_descriptor_type (type);
1743 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1744 (fat pointer) returns the type of the array data described---specifically,
1745 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1746 in from the descriptor; otherwise, they are left unspecified. If
1747 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1748 returns NULL. The result is simply the type of ARR if ARR is not
1751 static struct type *
1752 ada_type_of_array (struct value *arr, int bounds)
1754 if (ada_is_constrained_packed_array_type (value_type (arr)))
1755 return decode_constrained_packed_array_type (value_type (arr));
1757 if (!ada_is_array_descriptor_type (value_type (arr)))
1758 return value_type (arr);
1762 struct type *array_type =
1763 ada_check_typedef (desc_data_target_type (value_type (arr)));
1765 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1766 TYPE_FIELD_BITSIZE (array_type, 0) =
1767 decode_packed_array_bitsize (value_type (arr));
1773 struct type *elt_type;
1775 struct value *descriptor;
1777 elt_type = ada_array_element_type (value_type (arr), -1);
1778 arity = ada_array_arity (value_type (arr));
1780 if (elt_type == NULL || arity == 0)
1781 return ada_check_typedef (value_type (arr));
1783 descriptor = desc_bounds (arr);
1784 if (value_as_long (descriptor) == 0)
1788 struct type *range_type = alloc_type_copy (value_type (arr));
1789 struct type *array_type = alloc_type_copy (value_type (arr));
1790 struct value *low = desc_one_bound (descriptor, arity, 0);
1791 struct value *high = desc_one_bound (descriptor, arity, 1);
1794 create_static_range_type (range_type, value_type (low),
1795 longest_to_int (value_as_long (low)),
1796 longest_to_int (value_as_long (high)));
1797 elt_type = create_array_type (array_type, elt_type, range_type);
1799 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1801 /* We need to store the element packed bitsize, as well as
1802 recompute the array size, because it was previously
1803 computed based on the unpacked element size. */
1804 LONGEST lo = value_as_long (low);
1805 LONGEST hi = value_as_long (high);
1807 TYPE_FIELD_BITSIZE (elt_type, 0) =
1808 decode_packed_array_bitsize (value_type (arr));
1809 /* If the array has no element, then the size is already
1810 zero, and does not need to be recomputed. */
1814 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1816 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1821 return lookup_pointer_type (elt_type);
1825 /* If ARR does not represent an array, returns ARR unchanged.
1826 Otherwise, returns either a standard GDB array with bounds set
1827 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1828 GDB array. Returns NULL if ARR is a null fat pointer. */
1831 ada_coerce_to_simple_array_ptr (struct value *arr)
1833 if (ada_is_array_descriptor_type (value_type (arr)))
1835 struct type *arrType = ada_type_of_array (arr, 1);
1837 if (arrType == NULL)
1839 return value_cast (arrType, value_copy (desc_data (arr)));
1841 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1842 return decode_constrained_packed_array (arr);
1847 /* If ARR does not represent an array, returns ARR unchanged.
1848 Otherwise, returns a standard GDB array describing ARR (which may
1849 be ARR itself if it already is in the proper form). */
1852 ada_coerce_to_simple_array (struct value *arr)
1854 if (ada_is_array_descriptor_type (value_type (arr)))
1856 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1859 error (_("Bounds unavailable for null array pointer."));
1860 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1861 return value_ind (arrVal);
1863 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1864 return decode_constrained_packed_array (arr);
1869 /* If TYPE represents a GNAT array type, return it translated to an
1870 ordinary GDB array type (possibly with BITSIZE fields indicating
1871 packing). For other types, is the identity. */
1874 ada_coerce_to_simple_array_type (struct type *type)
1876 if (ada_is_constrained_packed_array_type (type))
1877 return decode_constrained_packed_array_type (type);
1879 if (ada_is_array_descriptor_type (type))
1880 return ada_check_typedef (desc_data_target_type (type));
1885 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1888 ada_is_gnat_encoded_packed_array_type (struct type *type)
1892 type = desc_base_type (type);
1893 type = ada_check_typedef (type);
1895 ada_type_name (type) != NULL
1896 && strstr (ada_type_name (type), "___XP") != NULL;
1899 /* Non-zero iff TYPE represents a standard GNAT constrained
1900 packed-array type. */
1903 ada_is_constrained_packed_array_type (struct type *type)
1905 return ada_is_gnat_encoded_packed_array_type (type)
1906 && !ada_is_array_descriptor_type (type);
1909 /* Non-zero iff TYPE represents an array descriptor for a
1910 unconstrained packed-array type. */
1913 ada_is_unconstrained_packed_array_type (struct type *type)
1915 if (!ada_is_array_descriptor_type (type))
1918 if (ada_is_gnat_encoded_packed_array_type (type))
1921 /* If we saw GNAT encodings, then the above code is sufficient.
1922 However, with minimal encodings, we will just have a thick
1924 if (is_thick_pntr (type))
1926 type = desc_base_type (type);
1927 /* The structure's first field is a pointer to an array, so this
1928 fetches the array type. */
1929 type = TYPE_TARGET_TYPE (type->field (0).type ());
1930 /* Now we can see if the array elements are packed. */
1931 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1937 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1938 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1941 ada_is_any_packed_array_type (struct type *type)
1943 return (ada_is_constrained_packed_array_type (type)
1944 || (type->code () == TYPE_CODE_ARRAY
1945 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1948 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1949 return the size of its elements in bits. */
1952 decode_packed_array_bitsize (struct type *type)
1954 const char *raw_name;
1958 /* Access to arrays implemented as fat pointers are encoded as a typedef
1959 of the fat pointer type. We need the name of the fat pointer type
1960 to do the decoding, so strip the typedef layer. */
1961 if (type->code () == TYPE_CODE_TYPEDEF)
1962 type = ada_typedef_target_type (type);
1964 raw_name = ada_type_name (ada_check_typedef (type));
1966 raw_name = ada_type_name (desc_base_type (type));
1971 tail = strstr (raw_name, "___XP");
1972 if (tail == nullptr)
1974 gdb_assert (is_thick_pntr (type));
1975 /* The structure's first field is a pointer to an array, so this
1976 fetches the array type. */
1977 type = TYPE_TARGET_TYPE (type->field (0).type ());
1978 /* Now we can see if the array elements are packed. */
1979 return TYPE_FIELD_BITSIZE (type, 0);
1982 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1985 (_("could not understand bit size information on packed array"));
1992 /* Given that TYPE is a standard GDB array type with all bounds filled
1993 in, and that the element size of its ultimate scalar constituents
1994 (that is, either its elements, or, if it is an array of arrays, its
1995 elements' elements, etc.) is *ELT_BITS, return an identical type,
1996 but with the bit sizes of its elements (and those of any
1997 constituent arrays) recorded in the BITSIZE components of its
1998 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2001 Note that, for arrays whose index type has an XA encoding where
2002 a bound references a record discriminant, getting that discriminant,
2003 and therefore the actual value of that bound, is not possible
2004 because none of the given parameters gives us access to the record.
2005 This function assumes that it is OK in the context where it is being
2006 used to return an array whose bounds are still dynamic and where
2007 the length is arbitrary. */
2009 static struct type *
2010 constrained_packed_array_type (struct type *type, long *elt_bits)
2012 struct type *new_elt_type;
2013 struct type *new_type;
2014 struct type *index_type_desc;
2015 struct type *index_type;
2016 LONGEST low_bound, high_bound;
2018 type = ada_check_typedef (type);
2019 if (type->code () != TYPE_CODE_ARRAY)
2022 index_type_desc = ada_find_parallel_type (type, "___XA");
2023 if (index_type_desc)
2024 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2027 index_type = type->index_type ();
2029 new_type = alloc_type_copy (type);
2031 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2033 create_array_type (new_type, new_elt_type, index_type);
2034 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2035 new_type->set_name (ada_type_name (type));
2037 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2038 && is_dynamic_type (check_typedef (index_type)))
2039 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2040 low_bound = high_bound = 0;
2041 if (high_bound < low_bound)
2042 *elt_bits = TYPE_LENGTH (new_type) = 0;
2045 *elt_bits *= (high_bound - low_bound + 1);
2046 TYPE_LENGTH (new_type) =
2047 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2050 new_type->set_is_fixed_instance (true);
2054 /* The array type encoded by TYPE, where
2055 ada_is_constrained_packed_array_type (TYPE). */
2057 static struct type *
2058 decode_constrained_packed_array_type (struct type *type)
2060 const char *raw_name = ada_type_name (ada_check_typedef (type));
2063 struct type *shadow_type;
2067 raw_name = ada_type_name (desc_base_type (type));
2072 name = (char *) alloca (strlen (raw_name) + 1);
2073 tail = strstr (raw_name, "___XP");
2074 type = desc_base_type (type);
2076 memcpy (name, raw_name, tail - raw_name);
2077 name[tail - raw_name] = '\000';
2079 shadow_type = ada_find_parallel_type_with_name (type, name);
2081 if (shadow_type == NULL)
2083 lim_warning (_("could not find bounds information on packed array"));
2086 shadow_type = check_typedef (shadow_type);
2088 if (shadow_type->code () != TYPE_CODE_ARRAY)
2090 lim_warning (_("could not understand bounds "
2091 "information on packed array"));
2095 bits = decode_packed_array_bitsize (type);
2096 return constrained_packed_array_type (shadow_type, &bits);
2099 /* Helper function for decode_constrained_packed_array. Set the field
2100 bitsize on a series of packed arrays. Returns the number of
2101 elements in TYPE. */
2104 recursively_update_array_bitsize (struct type *type)
2106 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2109 if (!get_discrete_bounds (type->index_type (), &low, &high)
2112 LONGEST our_len = high - low + 1;
2114 struct type *elt_type = TYPE_TARGET_TYPE (type);
2115 if (elt_type->code () == TYPE_CODE_ARRAY)
2117 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2118 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2119 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2121 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2128 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2129 array, returns a simple array that denotes that array. Its type is a
2130 standard GDB array type except that the BITSIZEs of the array
2131 target types are set to the number of bits in each element, and the
2132 type length is set appropriately. */
2134 static struct value *
2135 decode_constrained_packed_array (struct value *arr)
2139 /* If our value is a pointer, then dereference it. Likewise if
2140 the value is a reference. Make sure that this operation does not
2141 cause the target type to be fixed, as this would indirectly cause
2142 this array to be decoded. The rest of the routine assumes that
2143 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2144 and "value_ind" routines to perform the dereferencing, as opposed
2145 to using "ada_coerce_ref" or "ada_value_ind". */
2146 arr = coerce_ref (arr);
2147 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2148 arr = value_ind (arr);
2150 type = decode_constrained_packed_array_type (value_type (arr));
2153 error (_("can't unpack array"));
2157 /* Decoding the packed array type could not correctly set the field
2158 bitsizes for any dimension except the innermost, because the
2159 bounds may be variable and were not passed to that function. So,
2160 we further resolve the array bounds here and then update the
2162 const gdb_byte *valaddr = value_contents_for_printing (arr);
2163 CORE_ADDR address = value_address (arr);
2164 gdb::array_view<const gdb_byte> view
2165 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2166 type = resolve_dynamic_type (type, view, address);
2167 recursively_update_array_bitsize (type);
2169 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2170 && ada_is_modular_type (value_type (arr)))
2172 /* This is a (right-justified) modular type representing a packed
2173 array with no wrapper. In order to interpret the value through
2174 the (left-justified) packed array type we just built, we must
2175 first left-justify it. */
2176 int bit_size, bit_pos;
2179 mod = ada_modulus (value_type (arr)) - 1;
2186 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2187 arr = ada_value_primitive_packed_val (arr, NULL,
2188 bit_pos / HOST_CHAR_BIT,
2189 bit_pos % HOST_CHAR_BIT,
2194 return coerce_unspec_val_to_type (arr, type);
2198 /* The value of the element of packed array ARR at the ARITY indices
2199 given in IND. ARR must be a simple array. */
2201 static struct value *
2202 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2205 int bits, elt_off, bit_off;
2206 long elt_total_bit_offset;
2207 struct type *elt_type;
2211 elt_total_bit_offset = 0;
2212 elt_type = ada_check_typedef (value_type (arr));
2213 for (i = 0; i < arity; i += 1)
2215 if (elt_type->code () != TYPE_CODE_ARRAY
2216 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2218 (_("attempt to do packed indexing of "
2219 "something other than a packed array"));
2222 struct type *range_type = elt_type->index_type ();
2223 LONGEST lowerbound, upperbound;
2226 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2228 lim_warning (_("don't know bounds of array"));
2229 lowerbound = upperbound = 0;
2232 idx = pos_atr (ind[i]);
2233 if (idx < lowerbound || idx > upperbound)
2234 lim_warning (_("packed array index %ld out of bounds"),
2236 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2237 elt_total_bit_offset += (idx - lowerbound) * bits;
2238 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2241 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2242 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2244 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2249 /* Non-zero iff TYPE includes negative integer values. */
2252 has_negatives (struct type *type)
2254 switch (type->code ())
2259 return !type->is_unsigned ();
2260 case TYPE_CODE_RANGE:
2261 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2265 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2266 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2267 the unpacked buffer.
2269 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2270 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2272 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2275 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2277 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2280 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2281 gdb_byte *unpacked, int unpacked_len,
2282 int is_big_endian, int is_signed_type,
2285 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2286 int src_idx; /* Index into the source area */
2287 int src_bytes_left; /* Number of source bytes left to process. */
2288 int srcBitsLeft; /* Number of source bits left to move */
2289 int unusedLS; /* Number of bits in next significant
2290 byte of source that are unused */
2292 int unpacked_idx; /* Index into the unpacked buffer */
2293 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2295 unsigned long accum; /* Staging area for bits being transferred */
2296 int accumSize; /* Number of meaningful bits in accum */
2299 /* Transmit bytes from least to most significant; delta is the direction
2300 the indices move. */
2301 int delta = is_big_endian ? -1 : 1;
2303 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2305 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2306 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2307 bit_size, unpacked_len);
2309 srcBitsLeft = bit_size;
2310 src_bytes_left = src_len;
2311 unpacked_bytes_left = unpacked_len;
2316 src_idx = src_len - 1;
2318 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2322 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2328 unpacked_idx = unpacked_len - 1;
2332 /* Non-scalar values must be aligned at a byte boundary... */
2334 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2335 /* ... And are placed at the beginning (most-significant) bytes
2337 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2338 unpacked_bytes_left = unpacked_idx + 1;
2343 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2345 src_idx = unpacked_idx = 0;
2346 unusedLS = bit_offset;
2349 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2354 while (src_bytes_left > 0)
2356 /* Mask for removing bits of the next source byte that are not
2357 part of the value. */
2358 unsigned int unusedMSMask =
2359 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2361 /* Sign-extend bits for this byte. */
2362 unsigned int signMask = sign & ~unusedMSMask;
2365 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2366 accumSize += HOST_CHAR_BIT - unusedLS;
2367 if (accumSize >= HOST_CHAR_BIT)
2369 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 unpacked_bytes_left -= 1;
2373 unpacked_idx += delta;
2375 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2377 src_bytes_left -= 1;
2380 while (unpacked_bytes_left > 0)
2382 accum |= sign << accumSize;
2383 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2384 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2393 /* Create a new value of type TYPE from the contents of OBJ starting
2394 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2395 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2396 assigning through the result will set the field fetched from.
2397 VALADDR is ignored unless OBJ is NULL, in which case,
2398 VALADDR+OFFSET must address the start of storage containing the
2399 packed value. The value returned in this case is never an lval.
2400 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2403 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2404 long offset, int bit_offset, int bit_size,
2408 const gdb_byte *src; /* First byte containing data to unpack */
2410 const int is_scalar = is_scalar_type (type);
2411 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2412 gdb::byte_vector staging;
2414 type = ada_check_typedef (type);
2417 src = valaddr + offset;
2419 src = value_contents (obj) + offset;
2421 if (is_dynamic_type (type))
2423 /* The length of TYPE might by dynamic, so we need to resolve
2424 TYPE in order to know its actual size, which we then use
2425 to create the contents buffer of the value we return.
2426 The difficulty is that the data containing our object is
2427 packed, and therefore maybe not at a byte boundary. So, what
2428 we do, is unpack the data into a byte-aligned buffer, and then
2429 use that buffer as our object's value for resolving the type. */
2430 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2431 staging.resize (staging_len);
2433 ada_unpack_from_contents (src, bit_offset, bit_size,
2434 staging.data (), staging.size (),
2435 is_big_endian, has_negatives (type),
2437 type = resolve_dynamic_type (type, staging, 0);
2438 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2440 /* This happens when the length of the object is dynamic,
2441 and is actually smaller than the space reserved for it.
2442 For instance, in an array of variant records, the bit_size
2443 we're given is the array stride, which is constant and
2444 normally equal to the maximum size of its element.
2445 But, in reality, each element only actually spans a portion
2447 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2453 v = allocate_value (type);
2454 src = valaddr + offset;
2456 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2458 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2461 v = value_at (type, value_address (obj) + offset);
2462 buf = (gdb_byte *) alloca (src_len);
2463 read_memory (value_address (v), buf, src_len);
2468 v = allocate_value (type);
2469 src = value_contents (obj) + offset;
2474 long new_offset = offset;
2476 set_value_component_location (v, obj);
2477 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2478 set_value_bitsize (v, bit_size);
2479 if (value_bitpos (v) >= HOST_CHAR_BIT)
2482 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2484 set_value_offset (v, new_offset);
2486 /* Also set the parent value. This is needed when trying to
2487 assign a new value (in inferior memory). */
2488 set_value_parent (v, obj);
2491 set_value_bitsize (v, bit_size);
2492 unpacked = value_contents_writeable (v);
2496 memset (unpacked, 0, TYPE_LENGTH (type));
2500 if (staging.size () == TYPE_LENGTH (type))
2502 /* Small short-cut: If we've unpacked the data into a buffer
2503 of the same size as TYPE's length, then we can reuse that,
2504 instead of doing the unpacking again. */
2505 memcpy (unpacked, staging.data (), staging.size ());
2508 ada_unpack_from_contents (src, bit_offset, bit_size,
2509 unpacked, TYPE_LENGTH (type),
2510 is_big_endian, has_negatives (type), is_scalar);
2515 /* Store the contents of FROMVAL into the location of TOVAL.
2516 Return a new value with the location of TOVAL and contents of
2517 FROMVAL. Handles assignment into packed fields that have
2518 floating-point or non-scalar types. */
2520 static struct value *
2521 ada_value_assign (struct value *toval, struct value *fromval)
2523 struct type *type = value_type (toval);
2524 int bits = value_bitsize (toval);
2526 toval = ada_coerce_ref (toval);
2527 fromval = ada_coerce_ref (fromval);
2529 if (ada_is_direct_array_type (value_type (toval)))
2530 toval = ada_coerce_to_simple_array (toval);
2531 if (ada_is_direct_array_type (value_type (fromval)))
2532 fromval = ada_coerce_to_simple_array (fromval);
2534 if (!deprecated_value_modifiable (toval))
2535 error (_("Left operand of assignment is not a modifiable lvalue."));
2537 if (VALUE_LVAL (toval) == lval_memory
2539 && (type->code () == TYPE_CODE_FLT
2540 || type->code () == TYPE_CODE_STRUCT))
2542 int len = (value_bitpos (toval)
2543 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2545 gdb_byte *buffer = (gdb_byte *) alloca (len);
2547 CORE_ADDR to_addr = value_address (toval);
2549 if (type->code () == TYPE_CODE_FLT)
2550 fromval = value_cast (type, fromval);
2552 read_memory (to_addr, buffer, len);
2553 from_size = value_bitsize (fromval);
2555 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2557 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2558 ULONGEST from_offset = 0;
2559 if (is_big_endian && is_scalar_type (value_type (fromval)))
2560 from_offset = from_size - bits;
2561 copy_bitwise (buffer, value_bitpos (toval),
2562 value_contents (fromval), from_offset,
2563 bits, is_big_endian);
2564 write_memory_with_notification (to_addr, buffer, len);
2566 val = value_copy (toval);
2567 memcpy (value_contents_raw (val), value_contents (fromval),
2568 TYPE_LENGTH (type));
2569 deprecated_set_value_type (val, type);
2574 return value_assign (toval, fromval);
2578 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2579 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2580 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2581 COMPONENT, and not the inferior's memory. The current contents
2582 of COMPONENT are ignored.
2584 Although not part of the initial design, this function also works
2585 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2586 had a null address, and COMPONENT had an address which is equal to
2587 its offset inside CONTAINER. */
2590 value_assign_to_component (struct value *container, struct value *component,
2593 LONGEST offset_in_container =
2594 (LONGEST) (value_address (component) - value_address (container));
2595 int bit_offset_in_container =
2596 value_bitpos (component) - value_bitpos (container);
2599 val = value_cast (value_type (component), val);
2601 if (value_bitsize (component) == 0)
2602 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2604 bits = value_bitsize (component);
2606 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2610 if (is_scalar_type (check_typedef (value_type (component))))
2612 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2615 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2616 value_bitpos (container) + bit_offset_in_container,
2617 value_contents (val), src_offset, bits, 1);
2620 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2621 value_bitpos (container) + bit_offset_in_container,
2622 value_contents (val), 0, bits, 0);
2625 /* Determine if TYPE is an access to an unconstrained array. */
2628 ada_is_access_to_unconstrained_array (struct type *type)
2630 return (type->code () == TYPE_CODE_TYPEDEF
2631 && is_thick_pntr (ada_typedef_target_type (type)));
2634 /* The value of the element of array ARR at the ARITY indices given in IND.
2635 ARR may be either a simple array, GNAT array descriptor, or pointer
2639 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2643 struct type *elt_type;
2645 elt = ada_coerce_to_simple_array (arr);
2647 elt_type = ada_check_typedef (value_type (elt));
2648 if (elt_type->code () == TYPE_CODE_ARRAY
2649 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2650 return value_subscript_packed (elt, arity, ind);
2652 for (k = 0; k < arity; k += 1)
2654 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2656 if (elt_type->code () != TYPE_CODE_ARRAY)
2657 error (_("too many subscripts (%d expected)"), k);
2659 elt = value_subscript (elt, pos_atr (ind[k]));
2661 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2662 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2664 /* The element is a typedef to an unconstrained array,
2665 except that the value_subscript call stripped the
2666 typedef layer. The typedef layer is GNAT's way to
2667 specify that the element is, at the source level, an
2668 access to the unconstrained array, rather than the
2669 unconstrained array. So, we need to restore that
2670 typedef layer, which we can do by forcing the element's
2671 type back to its original type. Otherwise, the returned
2672 value is going to be printed as the array, rather
2673 than as an access. Another symptom of the same issue
2674 would be that an expression trying to dereference the
2675 element would also be improperly rejected. */
2676 deprecated_set_value_type (elt, saved_elt_type);
2679 elt_type = ada_check_typedef (value_type (elt));
2685 /* Assuming ARR is a pointer to a GDB array, the value of the element
2686 of *ARR at the ARITY indices given in IND.
2687 Does not read the entire array into memory.
2689 Note: Unlike what one would expect, this function is used instead of
2690 ada_value_subscript for basically all non-packed array types. The reason
2691 for this is that a side effect of doing our own pointer arithmetics instead
2692 of relying on value_subscript is that there is no implicit typedef peeling.
2693 This is important for arrays of array accesses, where it allows us to
2694 preserve the fact that the array's element is an array access, where the
2695 access part os encoded in a typedef layer. */
2697 static struct value *
2698 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2701 struct value *array_ind = ada_value_ind (arr);
2703 = check_typedef (value_enclosing_type (array_ind));
2705 if (type->code () == TYPE_CODE_ARRAY
2706 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2707 return value_subscript_packed (array_ind, arity, ind);
2709 for (k = 0; k < arity; k += 1)
2713 if (type->code () != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 get_discrete_bounds (type->index_type (), &lwb, &upb);
2718 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2719 type = TYPE_TARGET_TYPE (type);
2722 return value_ind (arr);
2725 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2726 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2727 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2728 this array is LOW, as per Ada rules. */
2729 static struct value *
2730 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2733 struct type *type0 = ada_check_typedef (type);
2734 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2735 struct type *index_type
2736 = create_static_range_type (NULL, base_index_type, low, high);
2737 struct type *slice_type = create_array_type_with_stride
2738 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2739 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2740 TYPE_FIELD_BITSIZE (type0, 0));
2741 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2742 gdb::optional<LONGEST> base_low_pos, low_pos;
2745 low_pos = discrete_position (base_index_type, low);
2746 base_low_pos = discrete_position (base_index_type, base_low);
2748 if (!low_pos.has_value () || !base_low_pos.has_value ())
2750 warning (_("unable to get positions in slice, use bounds instead"));
2752 base_low_pos = base_low;
2755 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2757 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2759 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2760 return value_at_lazy (slice_type, base);
2764 static struct value *
2765 ada_value_slice (struct value *array, int low, int high)
2767 struct type *type = ada_check_typedef (value_type (array));
2768 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2769 struct type *index_type
2770 = create_static_range_type (NULL, type->index_type (), low, high);
2771 struct type *slice_type = create_array_type_with_stride
2772 (NULL, TYPE_TARGET_TYPE (type), index_type,
2773 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2774 TYPE_FIELD_BITSIZE (type, 0));
2775 gdb::optional<LONGEST> low_pos, high_pos;
2778 low_pos = discrete_position (base_index_type, low);
2779 high_pos = discrete_position (base_index_type, high);
2781 if (!low_pos.has_value () || !high_pos.has_value ())
2783 warning (_("unable to get positions in slice, use bounds instead"));
2788 return value_cast (slice_type,
2789 value_slice (array, low, *high_pos - *low_pos + 1));
2792 /* If type is a record type in the form of a standard GNAT array
2793 descriptor, returns the number of dimensions for type. If arr is a
2794 simple array, returns the number of "array of"s that prefix its
2795 type designation. Otherwise, returns 0. */
2798 ada_array_arity (struct type *type)
2805 type = desc_base_type (type);
2808 if (type->code () == TYPE_CODE_STRUCT)
2809 return desc_arity (desc_bounds_type (type));
2811 while (type->code () == TYPE_CODE_ARRAY)
2814 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2820 /* If TYPE is a record type in the form of a standard GNAT array
2821 descriptor or a simple array type, returns the element type for
2822 TYPE after indexing by NINDICES indices, or by all indices if
2823 NINDICES is -1. Otherwise, returns NULL. */
2826 ada_array_element_type (struct type *type, int nindices)
2828 type = desc_base_type (type);
2830 if (type->code () == TYPE_CODE_STRUCT)
2833 struct type *p_array_type;
2835 p_array_type = desc_data_target_type (type);
2837 k = ada_array_arity (type);
2841 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2842 if (nindices >= 0 && k > nindices)
2844 while (k > 0 && p_array_type != NULL)
2846 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2849 return p_array_type;
2851 else if (type->code () == TYPE_CODE_ARRAY)
2853 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2855 type = TYPE_TARGET_TYPE (type);
2864 /* See ada-lang.h. */
2867 ada_index_type (struct type *type, int n, const char *name)
2869 struct type *result_type;
2871 type = desc_base_type (type);
2873 if (n < 0 || n > ada_array_arity (type))
2874 error (_("invalid dimension number to '%s"), name);
2876 if (ada_is_simple_array_type (type))
2880 for (i = 1; i < n; i += 1)
2882 type = ada_check_typedef (type);
2883 type = TYPE_TARGET_TYPE (type);
2885 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2886 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2887 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2888 perhaps stabsread.c would make more sense. */
2889 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2894 result_type = desc_index_type (desc_bounds_type (type), n);
2895 if (result_type == NULL)
2896 error (_("attempt to take bound of something that is not an array"));
2902 /* Given that arr is an array type, returns the lower bound of the
2903 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2904 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2905 array-descriptor type. It works for other arrays with bounds supplied
2906 by run-time quantities other than discriminants. */
2909 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2911 struct type *type, *index_type_desc, *index_type;
2914 gdb_assert (which == 0 || which == 1);
2916 if (ada_is_constrained_packed_array_type (arr_type))
2917 arr_type = decode_constrained_packed_array_type (arr_type);
2919 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2920 return (LONGEST) - which;
2922 if (arr_type->code () == TYPE_CODE_PTR)
2923 type = TYPE_TARGET_TYPE (arr_type);
2927 if (type->is_fixed_instance ())
2929 /* The array has already been fixed, so we do not need to
2930 check the parallel ___XA type again. That encoding has
2931 already been applied, so ignore it now. */
2932 index_type_desc = NULL;
2936 index_type_desc = ada_find_parallel_type (type, "___XA");
2937 ada_fixup_array_indexes_type (index_type_desc);
2940 if (index_type_desc != NULL)
2941 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2945 struct type *elt_type = check_typedef (type);
2947 for (i = 1; i < n; i++)
2948 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2950 index_type = elt_type->index_type ();
2954 (LONGEST) (which == 0
2955 ? ada_discrete_type_low_bound (index_type)
2956 : ada_discrete_type_high_bound (index_type));
2959 /* Given that arr is an array value, returns the lower bound of the
2960 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2961 WHICH is 1. This routine will also work for arrays with bounds
2962 supplied by run-time quantities other than discriminants. */
2965 ada_array_bound (struct value *arr, int n, int which)
2967 struct type *arr_type;
2969 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2975 else if (ada_is_simple_array_type (arr_type))
2976 return ada_array_bound_from_type (arr_type, n, which);
2978 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2981 /* Given that arr is an array value, returns the length of the
2982 nth index. This routine will also work for arrays with bounds
2983 supplied by run-time quantities other than discriminants.
2984 Does not work for arrays indexed by enumeration types with representation
2985 clauses at the moment. */
2988 ada_array_length (struct value *arr, int n)
2990 struct type *arr_type, *index_type;
2993 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2994 arr = value_ind (arr);
2995 arr_type = value_enclosing_type (arr);
2997 if (ada_is_constrained_packed_array_type (arr_type))
2998 return ada_array_length (decode_constrained_packed_array (arr), n);
3000 if (ada_is_simple_array_type (arr_type))
3002 low = ada_array_bound_from_type (arr_type, n, 0);
3003 high = ada_array_bound_from_type (arr_type, n, 1);
3007 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3008 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3011 arr_type = check_typedef (arr_type);
3012 index_type = ada_index_type (arr_type, n, "length");
3013 if (index_type != NULL)
3015 struct type *base_type;
3016 if (index_type->code () == TYPE_CODE_RANGE)
3017 base_type = TYPE_TARGET_TYPE (index_type);
3019 base_type = index_type;
3021 low = pos_atr (value_from_longest (base_type, low));
3022 high = pos_atr (value_from_longest (base_type, high));
3024 return high - low + 1;
3027 /* An array whose type is that of ARR_TYPE (an array type), with
3028 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3029 less than LOW, then LOW-1 is used. */
3031 static struct value *
3032 empty_array (struct type *arr_type, int low, int high)
3034 struct type *arr_type0 = ada_check_typedef (arr_type);
3035 struct type *index_type
3036 = create_static_range_type
3037 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3038 high < low ? low - 1 : high);
3039 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3041 return allocate_value (create_array_type (NULL, elt_type, index_type));
3045 /* Name resolution */
3047 /* The "decoded" name for the user-definable Ada operator corresponding
3051 ada_decoded_op_name (enum exp_opcode op)
3055 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3057 if (ada_opname_table[i].op == op)
3058 return ada_opname_table[i].decoded;
3060 error (_("Could not find operator name for opcode"));
3063 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3064 in a listing of choices during disambiguation (see sort_choices, below).
3065 The idea is that overloadings of a subprogram name from the
3066 same package should sort in their source order. We settle for ordering
3067 such symbols by their trailing number (__N or $N). */
3070 encoded_ordered_before (const char *N0, const char *N1)
3074 else if (N0 == NULL)
3080 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3082 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3084 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3085 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3090 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3093 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3095 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3096 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3098 return (strcmp (N0, N1) < 0);
3102 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3106 sort_choices (struct block_symbol syms[], int nsyms)
3110 for (i = 1; i < nsyms; i += 1)
3112 struct block_symbol sym = syms[i];
3115 for (j = i - 1; j >= 0; j -= 1)
3117 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3118 sym.symbol->linkage_name ()))
3120 syms[j + 1] = syms[j];
3126 /* Whether GDB should display formals and return types for functions in the
3127 overloads selection menu. */
3128 static bool print_signatures = true;
3130 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3131 all but functions, the signature is just the name of the symbol. For
3132 functions, this is the name of the function, the list of types for formals
3133 and the return type (if any). */
3136 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3137 const struct type_print_options *flags)
3139 struct type *type = SYMBOL_TYPE (sym);
3141 fprintf_filtered (stream, "%s", sym->print_name ());
3142 if (!print_signatures
3144 || type->code () != TYPE_CODE_FUNC)
3147 if (type->num_fields () > 0)
3151 fprintf_filtered (stream, " (");
3152 for (i = 0; i < type->num_fields (); ++i)
3155 fprintf_filtered (stream, "; ");
3156 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3159 fprintf_filtered (stream, ")");
3161 if (TYPE_TARGET_TYPE (type) != NULL
3162 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3164 fprintf_filtered (stream, " return ");
3165 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3169 /* Read and validate a set of numeric choices from the user in the
3170 range 0 .. N_CHOICES-1. Place the results in increasing
3171 order in CHOICES[0 .. N-1], and return N.
3173 The user types choices as a sequence of numbers on one line
3174 separated by blanks, encoding them as follows:
3176 + A choice of 0 means to cancel the selection, throwing an error.
3177 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3178 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3180 The user is not allowed to choose more than MAX_RESULTS values.
3182 ANNOTATION_SUFFIX, if present, is used to annotate the input
3183 prompts (for use with the -f switch). */
3186 get_selections (int *choices, int n_choices, int max_results,
3187 int is_all_choice, const char *annotation_suffix)
3192 int first_choice = is_all_choice ? 2 : 1;
3194 prompt = getenv ("PS2");
3198 args = command_line_input (prompt, annotation_suffix);
3201 error_no_arg (_("one or more choice numbers"));
3205 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3206 order, as given in args. Choices are validated. */
3212 args = skip_spaces (args);
3213 if (*args == '\0' && n_chosen == 0)
3214 error_no_arg (_("one or more choice numbers"));
3215 else if (*args == '\0')
3218 choice = strtol (args, &args2, 10);
3219 if (args == args2 || choice < 0
3220 || choice > n_choices + first_choice - 1)
3221 error (_("Argument must be choice number"));
3225 error (_("cancelled"));
3227 if (choice < first_choice)
3229 n_chosen = n_choices;
3230 for (j = 0; j < n_choices; j += 1)
3234 choice -= first_choice;
3236 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3240 if (j < 0 || choice != choices[j])
3244 for (k = n_chosen - 1; k > j; k -= 1)
3245 choices[k + 1] = choices[k];
3246 choices[j + 1] = choice;
3251 if (n_chosen > max_results)
3252 error (_("Select no more than %d of the above"), max_results);
3257 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3262 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3263 to be re-integrated one of these days. */
3266 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3269 int *chosen = XALLOCAVEC (int , nsyms);
3271 int first_choice = (max_results == 1) ? 1 : 2;
3272 const char *select_mode = multiple_symbols_select_mode ();
3274 if (max_results < 1)
3275 error (_("Request to select 0 symbols!"));
3279 if (select_mode == multiple_symbols_cancel)
3281 canceled because the command is ambiguous\n\
3282 See set/show multiple-symbol."));
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3290 printf_filtered (_("[0] cancel\n"));
3291 if (max_results > 1)
3292 printf_filtered (_("[1] all\n"));
3294 sort_choices (syms, nsyms);
3296 for (i = 0; i < nsyms; i += 1)
3298 if (syms[i].symbol == NULL)
3301 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].symbol, 1);
3306 printf_filtered ("[%d] ", i + first_choice);
3307 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3308 &type_print_raw_options);
3309 if (sal.symtab == NULL)
3310 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3311 metadata_style.style ().ptr (), nullptr, sal.line);
3315 styled_string (file_name_style.style (),
3316 symtab_to_filename_for_display (sal.symtab)),
3323 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3324 && SYMBOL_TYPE (syms[i].symbol) != NULL
3325 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3326 struct symtab *symtab = NULL;
3328 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3329 symtab = symbol_symtab (syms[i].symbol);
3331 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 printf_filtered (_(" at %s:%d\n"),
3337 symtab_to_filename_for_display (symtab),
3338 SYMBOL_LINE (syms[i].symbol));
3340 else if (is_enumeral
3341 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3343 printf_filtered (("[%d] "), i + first_choice);
3344 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3345 gdb_stdout, -1, 0, &type_print_raw_options);
3346 printf_filtered (_("'(%s) (enumeral)\n"),
3347 syms[i].symbol->print_name ());
3351 printf_filtered ("[%d] ", i + first_choice);
3352 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3353 &type_print_raw_options);
3356 printf_filtered (is_enumeral
3357 ? _(" in %s (enumeral)\n")
3359 symtab_to_filename_for_display (symtab));
3361 printf_filtered (is_enumeral
3362 ? _(" (enumeral)\n")
3368 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3371 for (i = 0; i < n_chosen; i += 1)
3372 syms[i] = syms[chosen[i]];
3377 /* See ada-lang.h. */
3380 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3381 int nargs, value *argvec[])
3383 if (possible_user_operator_p (op, argvec))
3385 std::vector<struct block_symbol> candidates
3386 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3389 int i = ada_resolve_function (candidates, argvec,
3390 nargs, ada_decoded_op_name (op), NULL,
3393 return candidates[i];
3398 /* See ada-lang.h. */
3401 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3402 struct type *context_type,
3403 bool parse_completion,
3404 int nargs, value *argvec[],
3405 innermost_block_tracker *tracker)
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3411 if (candidates.size () == 1)
3415 i = ada_resolve_function
3418 sym->linkage_name (),
3419 context_type, parse_completion);
3421 error (_("Could not find a match for %s"), sym->print_name ());
3424 tracker->update (candidates[i]);
3425 return candidates[i];
3428 /* Resolve a mention of a name where the context type is an
3429 enumeration type. */
3432 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3433 const char *name, struct type *context_type,
3434 bool parse_completion)
3436 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3437 context_type = ada_check_typedef (context_type);
3439 for (int i = 0; i < syms.size (); ++i)
3441 /* We already know the name matches, so we're just looking for
3442 an element of the correct enum type. */
3443 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3447 error (_("No name '%s' in enumeration type '%s'"), name,
3448 ada_type_name (context_type));
3451 /* See ada-lang.h. */
3454 ada_resolve_variable (struct symbol *sym, const struct block *block,
3455 struct type *context_type,
3456 bool parse_completion,
3458 innermost_block_tracker *tracker)
3460 std::vector<struct block_symbol> candidates
3461 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3463 if (std::any_of (candidates.begin (),
3465 [] (block_symbol &bsym)
3467 switch (SYMBOL_CLASS (bsym.symbol))
3472 case LOC_REGPARM_ADDR:
3481 /* Types tend to get re-introduced locally, so if there
3482 are any local symbols that are not types, first filter
3486 (candidates.begin (),
3488 [] (block_symbol &bsym)
3490 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3496 if (candidates.empty ())
3497 error (_("No definition found for %s"), sym->print_name ());
3498 else if (candidates.size () == 1)
3500 else if (context_type != nullptr
3501 && context_type->code () == TYPE_CODE_ENUM)
3502 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3504 else if (deprocedure_p && !is_nonfunction (candidates))
3506 i = ada_resolve_function
3507 (candidates, NULL, 0,
3508 sym->linkage_name (),
3509 context_type, parse_completion);
3511 error (_("Could not find a match for %s"), sym->print_name ());
3515 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3516 user_select_syms (candidates.data (), candidates.size (), 1);
3520 tracker->update (candidates[i]);
3521 return candidates[i];
3524 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3525 /* The term "match" here is rather loose. The match is heuristic and
3529 ada_type_match (struct type *ftype, struct type *atype)
3531 ftype = ada_check_typedef (ftype);
3532 atype = ada_check_typedef (atype);
3534 if (ftype->code () == TYPE_CODE_REF)
3535 ftype = TYPE_TARGET_TYPE (ftype);
3536 if (atype->code () == TYPE_CODE_REF)
3537 atype = TYPE_TARGET_TYPE (atype);
3539 switch (ftype->code ())
3542 return ftype->code () == atype->code ();
3544 if (atype->code () != TYPE_CODE_PTR)
3546 atype = TYPE_TARGET_TYPE (atype);
3547 /* This can only happen if the actual argument is 'null'. */
3548 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3550 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3552 case TYPE_CODE_ENUM:
3553 case TYPE_CODE_RANGE:
3554 switch (atype->code ())
3557 case TYPE_CODE_ENUM:
3558 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_ARRAY:
3565 return (atype->code () == TYPE_CODE_ARRAY
3566 || ada_is_array_descriptor_type (atype));
3568 case TYPE_CODE_STRUCT:
3569 if (ada_is_array_descriptor_type (ftype))
3570 return (atype->code () == TYPE_CODE_ARRAY
3571 || ada_is_array_descriptor_type (atype));
3573 return (atype->code () == TYPE_CODE_STRUCT
3574 && !ada_is_array_descriptor_type (atype));
3576 case TYPE_CODE_UNION:
3578 return (atype->code () == ftype->code ());
3582 /* Return non-zero if the formals of FUNC "sufficiently match" the
3583 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3584 may also be an enumeral, in which case it is treated as a 0-
3585 argument function. */
3588 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3591 struct type *func_type = SYMBOL_TYPE (func);
3593 if (SYMBOL_CLASS (func) == LOC_CONST
3594 && func_type->code () == TYPE_CODE_ENUM)
3595 return (n_actuals == 0);
3596 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3599 if (func_type->num_fields () != n_actuals)
3602 for (i = 0; i < n_actuals; i += 1)
3604 if (actuals[i] == NULL)
3608 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3609 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3611 if (!ada_type_match (ftype, atype))
3618 /* False iff function type FUNC_TYPE definitely does not produce a value
3619 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3620 FUNC_TYPE is not a valid function type with a non-null return type
3621 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3624 return_match (struct type *func_type, struct type *context_type)
3626 struct type *return_type;
3628 if (func_type == NULL)
3631 if (func_type->code () == TYPE_CODE_FUNC)
3632 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3634 return_type = get_base_type (func_type);
3635 if (return_type == NULL)
3638 context_type = get_base_type (context_type);
3640 if (return_type->code () == TYPE_CODE_ENUM)
3641 return context_type == NULL || return_type == context_type;
3642 else if (context_type == NULL)
3643 return return_type->code () != TYPE_CODE_VOID;
3645 return return_type->code () == context_type->code ();
3649 /* Returns the index in SYMS that contains the symbol for the
3650 function (if any) that matches the types of the NARGS arguments in
3651 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3652 that returns that type, then eliminate matches that don't. If
3653 CONTEXT_TYPE is void and there is at least one match that does not
3654 return void, eliminate all matches that do.
3656 Asks the user if there is more than one match remaining. Returns -1
3657 if there is no such symbol or none is selected. NAME is used
3658 solely for messages. May re-arrange and modify SYMS in
3659 the process; the index returned is for the modified vector. */
3662 ada_resolve_function (std::vector<struct block_symbol> &syms,
3663 struct value **args, int nargs,
3664 const char *name, struct type *context_type,
3665 bool parse_completion)
3669 int m; /* Number of hits */
3672 /* In the first pass of the loop, we only accept functions matching
3673 context_type. If none are found, we add a second pass of the loop
3674 where every function is accepted. */
3675 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3677 for (k = 0; k < syms.size (); k += 1)
3679 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3681 if (ada_args_match (syms[k].symbol, args, nargs)
3682 && (fallback || return_match (type, context_type)))
3690 /* If we got multiple matches, ask the user which one to use. Don't do this
3691 interactive thing during completion, though, as the purpose of the
3692 completion is providing a list of all possible matches. Prompting the
3693 user to filter it down would be completely unexpected in this case. */
3696 else if (m > 1 && !parse_completion)
3698 printf_filtered (_("Multiple matches for %s\n"), name);
3699 user_select_syms (syms.data (), m, 1);
3705 /* Type-class predicates */
3707 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3711 numeric_type_p (struct type *type)
3717 switch (type->code ())
3721 case TYPE_CODE_FIXED_POINT:
3723 case TYPE_CODE_RANGE:
3724 return (type == TYPE_TARGET_TYPE (type)
3725 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3732 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3735 integer_type_p (struct type *type)
3741 switch (type->code ())
3745 case TYPE_CODE_RANGE:
3746 return (type == TYPE_TARGET_TYPE (type)
3747 || integer_type_p (TYPE_TARGET_TYPE (type)));
3754 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3757 scalar_type_p (struct type *type)
3763 switch (type->code ())
3766 case TYPE_CODE_RANGE:
3767 case TYPE_CODE_ENUM:
3769 case TYPE_CODE_FIXED_POINT:
3777 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3780 discrete_type_p (struct type *type)
3786 switch (type->code ())
3789 case TYPE_CODE_RANGE:
3790 case TYPE_CODE_ENUM:
3791 case TYPE_CODE_BOOL:
3799 /* Returns non-zero if OP with operands in the vector ARGS could be
3800 a user-defined function. Errs on the side of pre-defined operators
3801 (i.e., result 0). */
3804 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3806 struct type *type0 =
3807 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3808 struct type *type1 =
3809 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3823 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3827 case BINOP_BITWISE_AND:
3828 case BINOP_BITWISE_IOR:
3829 case BINOP_BITWISE_XOR:
3830 return (!(integer_type_p (type0) && integer_type_p (type1)));
3833 case BINOP_NOTEQUAL:
3838 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3841 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3844 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3848 case UNOP_LOGICAL_NOT:
3850 return (!numeric_type_p (type0));
3859 1. In the following, we assume that a renaming type's name may
3860 have an ___XD suffix. It would be nice if this went away at some
3862 2. We handle both the (old) purely type-based representation of
3863 renamings and the (new) variable-based encoding. At some point,
3864 it is devoutly to be hoped that the former goes away
3865 (FIXME: hilfinger-2007-07-09).
3866 3. Subprogram renamings are not implemented, although the XRS
3867 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3869 /* If SYM encodes a renaming,
3871 <renaming> renames <renamed entity>,
3873 sets *LEN to the length of the renamed entity's name,
3874 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3875 the string describing the subcomponent selected from the renamed
3876 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3877 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3878 are undefined). Otherwise, returns a value indicating the category
3879 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3880 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3881 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3882 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3883 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3884 may be NULL, in which case they are not assigned.
3886 [Currently, however, GCC does not generate subprogram renamings.] */
3888 enum ada_renaming_category
3889 ada_parse_renaming (struct symbol *sym,
3890 const char **renamed_entity, int *len,
3891 const char **renaming_expr)
3893 enum ada_renaming_category kind;
3898 return ADA_NOT_RENAMING;
3899 switch (SYMBOL_CLASS (sym))
3902 return ADA_NOT_RENAMING;
3906 case LOC_OPTIMIZED_OUT:
3907 info = strstr (sym->linkage_name (), "___XR");
3909 return ADA_NOT_RENAMING;
3913 kind = ADA_OBJECT_RENAMING;
3917 kind = ADA_EXCEPTION_RENAMING;
3921 kind = ADA_PACKAGE_RENAMING;
3925 kind = ADA_SUBPROGRAM_RENAMING;
3929 return ADA_NOT_RENAMING;
3933 if (renamed_entity != NULL)
3934 *renamed_entity = info;
3935 suffix = strstr (info, "___XE");
3936 if (suffix == NULL || suffix == info)
3937 return ADA_NOT_RENAMING;
3939 *len = strlen (info) - strlen (suffix);
3941 if (renaming_expr != NULL)
3942 *renaming_expr = suffix;
3946 /* Compute the value of the given RENAMING_SYM, which is expected to
3947 be a symbol encoding a renaming expression. BLOCK is the block
3948 used to evaluate the renaming. */
3950 static struct value *
3951 ada_read_renaming_var_value (struct symbol *renaming_sym,
3952 const struct block *block)
3954 const char *sym_name;
3956 sym_name = renaming_sym->linkage_name ();
3957 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3958 return evaluate_expression (expr.get ());
3962 /* Evaluation: Function Calls */
3964 /* Return an lvalue containing the value VAL. This is the identity on
3965 lvalues, and otherwise has the side-effect of allocating memory
3966 in the inferior where a copy of the value contents is copied. */
3968 static struct value *
3969 ensure_lval (struct value *val)
3971 if (VALUE_LVAL (val) == not_lval
3972 || VALUE_LVAL (val) == lval_internalvar)
3974 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3975 const CORE_ADDR addr =
3976 value_as_long (value_allocate_space_in_inferior (len));
3978 VALUE_LVAL (val) = lval_memory;
3979 set_value_address (val, addr);
3980 write_memory (addr, value_contents (val), len);
3986 /* Given ARG, a value of type (pointer or reference to a)*
3987 structure/union, extract the component named NAME from the ultimate
3988 target structure/union and return it as a value with its
3991 The routine searches for NAME among all members of the structure itself
3992 and (recursively) among all members of any wrapper members
3995 If NO_ERR, then simply return NULL in case of error, rather than
3998 static struct value *
3999 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4001 struct type *t, *t1;
4006 t1 = t = ada_check_typedef (value_type (arg));
4007 if (t->code () == TYPE_CODE_REF)
4009 t1 = TYPE_TARGET_TYPE (t);
4012 t1 = ada_check_typedef (t1);
4013 if (t1->code () == TYPE_CODE_PTR)
4015 arg = coerce_ref (arg);
4020 while (t->code () == TYPE_CODE_PTR)
4022 t1 = TYPE_TARGET_TYPE (t);
4025 t1 = ada_check_typedef (t1);
4026 if (t1->code () == TYPE_CODE_PTR)
4028 arg = value_ind (arg);
4035 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4039 v = ada_search_struct_field (name, arg, 0, t);
4042 int bit_offset, bit_size, byte_offset;
4043 struct type *field_type;
4046 if (t->code () == TYPE_CODE_PTR)
4047 address = value_address (ada_value_ind (arg));
4049 address = value_address (ada_coerce_ref (arg));
4051 /* Check to see if this is a tagged type. We also need to handle
4052 the case where the type is a reference to a tagged type, but
4053 we have to be careful to exclude pointers to tagged types.
4054 The latter should be shown as usual (as a pointer), whereas
4055 a reference should mostly be transparent to the user. */
4057 if (ada_is_tagged_type (t1, 0)
4058 || (t1->code () == TYPE_CODE_REF
4059 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4061 /* We first try to find the searched field in the current type.
4062 If not found then let's look in the fixed type. */
4064 if (!find_struct_field (name, t1, 0,
4065 &field_type, &byte_offset, &bit_offset,
4074 /* Convert to fixed type in all cases, so that we have proper
4075 offsets to each field in unconstrained record types. */
4076 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4077 address, NULL, check_tag);
4079 /* Resolve the dynamic type as well. */
4080 arg = value_from_contents_and_address (t1, nullptr, address);
4081 t1 = value_type (arg);
4083 if (find_struct_field (name, t1, 0,
4084 &field_type, &byte_offset, &bit_offset,
4089 if (t->code () == TYPE_CODE_REF)
4090 arg = ada_coerce_ref (arg);
4092 arg = ada_value_ind (arg);
4093 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4094 bit_offset, bit_size,
4098 v = value_at_lazy (field_type, address + byte_offset);
4102 if (v != NULL || no_err)
4105 error (_("There is no member named %s."), name);
4111 error (_("Attempt to extract a component of "
4112 "a value that is not a record."));
4115 /* Return the value ACTUAL, converted to be an appropriate value for a
4116 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4117 allocating any necessary descriptors (fat pointers), or copies of
4118 values not residing in memory, updating it as needed. */
4121 ada_convert_actual (struct value *actual, struct type *formal_type0)
4123 struct type *actual_type = ada_check_typedef (value_type (actual));
4124 struct type *formal_type = ada_check_typedef (formal_type0);
4125 struct type *formal_target =
4126 formal_type->code () == TYPE_CODE_PTR
4127 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4128 struct type *actual_target =
4129 actual_type->code () == TYPE_CODE_PTR
4130 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4132 if (ada_is_array_descriptor_type (formal_target)
4133 && actual_target->code () == TYPE_CODE_ARRAY)
4134 return make_array_descriptor (formal_type, actual);
4135 else if (formal_type->code () == TYPE_CODE_PTR
4136 || formal_type->code () == TYPE_CODE_REF)
4138 struct value *result;
4140 if (formal_target->code () == TYPE_CODE_ARRAY
4141 && ada_is_array_descriptor_type (actual_target))
4142 result = desc_data (actual);
4143 else if (formal_type->code () != TYPE_CODE_PTR)
4145 if (VALUE_LVAL (actual) != lval_memory)
4149 actual_type = ada_check_typedef (value_type (actual));
4150 val = allocate_value (actual_type);
4151 memcpy ((char *) value_contents_raw (val),
4152 (char *) value_contents (actual),
4153 TYPE_LENGTH (actual_type));
4154 actual = ensure_lval (val);
4156 result = value_addr (actual);
4160 return value_cast_pointers (formal_type, result, 0);
4162 else if (actual_type->code () == TYPE_CODE_PTR)
4163 return ada_value_ind (actual);
4164 else if (ada_is_aligner_type (formal_type))
4166 /* We need to turn this parameter into an aligner type
4168 struct value *aligner = allocate_value (formal_type);
4169 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4171 value_assign_to_component (aligner, component, actual);
4178 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4179 type TYPE. This is usually an inefficient no-op except on some targets
4180 (such as AVR) where the representation of a pointer and an address
4184 value_pointer (struct value *value, struct type *type)
4186 unsigned len = TYPE_LENGTH (type);
4187 gdb_byte *buf = (gdb_byte *) alloca (len);
4190 addr = value_address (value);
4191 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4192 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4197 /* Push a descriptor of type TYPE for array value ARR on the stack at
4198 *SP, updating *SP to reflect the new descriptor. Return either
4199 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4200 to-descriptor type rather than a descriptor type), a struct value *
4201 representing a pointer to this descriptor. */
4203 static struct value *
4204 make_array_descriptor (struct type *type, struct value *arr)
4206 struct type *bounds_type = desc_bounds_type (type);
4207 struct type *desc_type = desc_base_type (type);
4208 struct value *descriptor = allocate_value (desc_type);
4209 struct value *bounds = allocate_value (bounds_type);
4212 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4215 modify_field (value_type (bounds), value_contents_writeable (bounds),
4216 ada_array_bound (arr, i, 0),
4217 desc_bound_bitpos (bounds_type, i, 0),
4218 desc_bound_bitsize (bounds_type, i, 0));
4219 modify_field (value_type (bounds), value_contents_writeable (bounds),
4220 ada_array_bound (arr, i, 1),
4221 desc_bound_bitpos (bounds_type, i, 1),
4222 desc_bound_bitsize (bounds_type, i, 1));
4225 bounds = ensure_lval (bounds);
4227 modify_field (value_type (descriptor),
4228 value_contents_writeable (descriptor),
4229 value_pointer (ensure_lval (arr),
4230 desc_type->field (0).type ()),
4231 fat_pntr_data_bitpos (desc_type),
4232 fat_pntr_data_bitsize (desc_type));
4234 modify_field (value_type (descriptor),
4235 value_contents_writeable (descriptor),
4236 value_pointer (bounds,
4237 desc_type->field (1).type ()),
4238 fat_pntr_bounds_bitpos (desc_type),
4239 fat_pntr_bounds_bitsize (desc_type));
4241 descriptor = ensure_lval (descriptor);
4243 if (type->code () == TYPE_CODE_PTR)
4244 return value_addr (descriptor);
4249 /* Symbol Cache Module */
4251 /* Performance measurements made as of 2010-01-15 indicate that
4252 this cache does bring some noticeable improvements. Depending
4253 on the type of entity being printed, the cache can make it as much
4254 as an order of magnitude faster than without it.
4256 The descriptive type DWARF extension has significantly reduced
4257 the need for this cache, at least when DWARF is being used. However,
4258 even in this case, some expensive name-based symbol searches are still
4259 sometimes necessary - to find an XVZ variable, mostly. */
4261 /* Return the symbol cache associated to the given program space PSPACE.
4262 If not allocated for this PSPACE yet, allocate and initialize one. */
4264 static struct ada_symbol_cache *
4265 ada_get_symbol_cache (struct program_space *pspace)
4267 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4269 if (pspace_data->sym_cache == nullptr)
4270 pspace_data->sym_cache.reset (new ada_symbol_cache);
4272 return pspace_data->sym_cache.get ();
4275 /* Clear all entries from the symbol cache. */
4278 ada_clear_symbol_cache ()
4280 struct ada_pspace_data *pspace_data
4281 = get_ada_pspace_data (current_program_space);
4283 if (pspace_data->sym_cache != nullptr)
4284 pspace_data->sym_cache.reset ();
4287 /* Search our cache for an entry matching NAME and DOMAIN.
4288 Return it if found, or NULL otherwise. */
4290 static struct cache_entry **
4291 find_entry (const char *name, domain_enum domain)
4293 struct ada_symbol_cache *sym_cache
4294 = ada_get_symbol_cache (current_program_space);
4295 int h = msymbol_hash (name) % HASH_SIZE;
4296 struct cache_entry **e;
4298 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4300 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4306 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4307 Return 1 if found, 0 otherwise.
4309 If an entry was found and SYM is not NULL, set *SYM to the entry's
4310 SYM. Same principle for BLOCK if not NULL. */
4313 lookup_cached_symbol (const char *name, domain_enum domain,
4314 struct symbol **sym, const struct block **block)
4316 struct cache_entry **e = find_entry (name, domain);
4323 *block = (*e)->block;
4327 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4328 in domain DOMAIN, save this result in our symbol cache. */
4331 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4332 const struct block *block)
4334 struct ada_symbol_cache *sym_cache
4335 = ada_get_symbol_cache (current_program_space);
4337 struct cache_entry *e;
4339 /* Symbols for builtin types don't have a block.
4340 For now don't cache such symbols. */
4341 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4344 /* If the symbol is a local symbol, then do not cache it, as a search
4345 for that symbol depends on the context. To determine whether
4346 the symbol is local or not, we check the block where we found it
4347 against the global and static blocks of its associated symtab. */
4349 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4350 GLOBAL_BLOCK) != block
4351 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4352 STATIC_BLOCK) != block)
4355 h = msymbol_hash (name) % HASH_SIZE;
4356 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4357 e->next = sym_cache->root[h];
4358 sym_cache->root[h] = e;
4359 e->name = obstack_strdup (&sym_cache->cache_space, name);
4367 /* Return the symbol name match type that should be used used when
4368 searching for all symbols matching LOOKUP_NAME.
4370 LOOKUP_NAME is expected to be a symbol name after transformation
4373 static symbol_name_match_type
4374 name_match_type_from_name (const char *lookup_name)
4376 return (strstr (lookup_name, "__") == NULL
4377 ? symbol_name_match_type::WILD
4378 : symbol_name_match_type::FULL);
4381 /* Return the result of a standard (literal, C-like) lookup of NAME in
4382 given DOMAIN, visible from lexical block BLOCK. */
4384 static struct symbol *
4385 standard_lookup (const char *name, const struct block *block,
4388 /* Initialize it just to avoid a GCC false warning. */
4389 struct block_symbol sym = {};
4391 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4393 ada_lookup_encoded_symbol (name, block, domain, &sym);
4394 cache_symbol (name, domain, sym.symbol, sym.block);
4399 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4400 in the symbol fields of SYMS. We treat enumerals as functions,
4401 since they contend in overloading in the same way. */
4403 is_nonfunction (const std::vector<struct block_symbol> &syms)
4405 for (const block_symbol &sym : syms)
4406 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4407 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4408 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4414 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4415 struct types. Otherwise, they may not. */
4418 equiv_types (struct type *type0, struct type *type1)
4422 if (type0 == NULL || type1 == NULL
4423 || type0->code () != type1->code ())
4425 if ((type0->code () == TYPE_CODE_STRUCT
4426 || type0->code () == TYPE_CODE_ENUM)
4427 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4428 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4434 /* True iff SYM0 represents the same entity as SYM1, or one that is
4435 no more defined than that of SYM1. */
4438 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4442 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4443 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4446 switch (SYMBOL_CLASS (sym0))
4452 struct type *type0 = SYMBOL_TYPE (sym0);
4453 struct type *type1 = SYMBOL_TYPE (sym1);
4454 const char *name0 = sym0->linkage_name ();
4455 const char *name1 = sym1->linkage_name ();
4456 int len0 = strlen (name0);
4459 type0->code () == type1->code ()
4460 && (equiv_types (type0, type1)
4461 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4462 && startswith (name1 + len0, "___XV")));
4465 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4466 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4470 const char *name0 = sym0->linkage_name ();
4471 const char *name1 = sym1->linkage_name ();
4472 return (strcmp (name0, name1) == 0
4473 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4481 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4482 records in RESULT. Do nothing if SYM is a duplicate. */
4485 add_defn_to_vec (std::vector<struct block_symbol> &result,
4487 const struct block *block)
4489 /* Do not try to complete stub types, as the debugger is probably
4490 already scanning all symbols matching a certain name at the
4491 time when this function is called. Trying to replace the stub
4492 type by its associated full type will cause us to restart a scan
4493 which may lead to an infinite recursion. Instead, the client
4494 collecting the matching symbols will end up collecting several
4495 matches, with at least one of them complete. It can then filter
4496 out the stub ones if needed. */
4498 for (int i = result.size () - 1; i >= 0; i -= 1)
4500 if (lesseq_defined_than (sym, result[i].symbol))
4502 else if (lesseq_defined_than (result[i].symbol, sym))
4504 result[i].symbol = sym;
4505 result[i].block = block;
4510 struct block_symbol info;
4513 result.push_back (info);
4516 /* Return a bound minimal symbol matching NAME according to Ada
4517 decoding rules. Returns an invalid symbol if there is no such
4518 minimal symbol. Names prefixed with "standard__" are handled
4519 specially: "standard__" is first stripped off, and only static and
4520 global symbols are searched. */
4522 struct bound_minimal_symbol
4523 ada_lookup_simple_minsym (const char *name)
4525 struct bound_minimal_symbol result;
4527 memset (&result, 0, sizeof (result));
4529 symbol_name_match_type match_type = name_match_type_from_name (name);
4530 lookup_name_info lookup_name (name, match_type);
4532 symbol_name_matcher_ftype *match_name
4533 = ada_get_symbol_name_matcher (lookup_name);
4535 for (objfile *objfile : current_program_space->objfiles ())
4537 for (minimal_symbol *msymbol : objfile->msymbols ())
4539 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4540 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4542 result.minsym = msymbol;
4543 result.objfile = objfile;
4552 /* True if TYPE is definitely an artificial type supplied to a symbol
4553 for which no debugging information was given in the symbol file. */
4556 is_nondebugging_type (struct type *type)
4558 const char *name = ada_type_name (type);
4560 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4563 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4564 that are deemed "identical" for practical purposes.
4566 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4567 types and that their number of enumerals is identical (in other
4568 words, type1->num_fields () == type2->num_fields ()). */
4571 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4575 /* The heuristic we use here is fairly conservative. We consider
4576 that 2 enumerate types are identical if they have the same
4577 number of enumerals and that all enumerals have the same
4578 underlying value and name. */
4580 /* All enums in the type should have an identical underlying value. */
4581 for (i = 0; i < type1->num_fields (); i++)
4582 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4585 /* All enumerals should also have the same name (modulo any numerical
4587 for (i = 0; i < type1->num_fields (); i++)
4589 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4590 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4591 int len_1 = strlen (name_1);
4592 int len_2 = strlen (name_2);
4594 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4595 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4597 || strncmp (TYPE_FIELD_NAME (type1, i),
4598 TYPE_FIELD_NAME (type2, i),
4606 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4607 that are deemed "identical" for practical purposes. Sometimes,
4608 enumerals are not strictly identical, but their types are so similar
4609 that they can be considered identical.
4611 For instance, consider the following code:
4613 type Color is (Black, Red, Green, Blue, White);
4614 type RGB_Color is new Color range Red .. Blue;
4616 Type RGB_Color is a subrange of an implicit type which is a copy
4617 of type Color. If we call that implicit type RGB_ColorB ("B" is
4618 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4619 As a result, when an expression references any of the enumeral
4620 by name (Eg. "print green"), the expression is technically
4621 ambiguous and the user should be asked to disambiguate. But
4622 doing so would only hinder the user, since it wouldn't matter
4623 what choice he makes, the outcome would always be the same.
4624 So, for practical purposes, we consider them as the same. */
4627 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4631 /* Before performing a thorough comparison check of each type,
4632 we perform a series of inexpensive checks. We expect that these
4633 checks will quickly fail in the vast majority of cases, and thus
4634 help prevent the unnecessary use of a more expensive comparison.
4635 Said comparison also expects us to make some of these checks
4636 (see ada_identical_enum_types_p). */
4638 /* Quick check: All symbols should have an enum type. */
4639 for (i = 0; i < syms.size (); i++)
4640 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4643 /* Quick check: They should all have the same value. */
4644 for (i = 1; i < syms.size (); i++)
4645 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4648 /* Quick check: They should all have the same number of enumerals. */
4649 for (i = 1; i < syms.size (); i++)
4650 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4651 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4654 /* All the sanity checks passed, so we might have a set of
4655 identical enumeration types. Perform a more complete
4656 comparison of the type of each symbol. */
4657 for (i = 1; i < syms.size (); i++)
4658 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4659 SYMBOL_TYPE (syms[0].symbol)))
4665 /* Remove any non-debugging symbols in SYMS that definitely
4666 duplicate other symbols in the list (The only case I know of where
4667 this happens is when object files containing stabs-in-ecoff are
4668 linked with files containing ordinary ecoff debugging symbols (or no
4669 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4672 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4676 /* We should never be called with less than 2 symbols, as there
4677 cannot be any extra symbol in that case. But it's easy to
4678 handle, since we have nothing to do in that case. */
4679 if (syms->size () < 2)
4683 while (i < syms->size ())
4687 /* If two symbols have the same name and one of them is a stub type,
4688 the get rid of the stub. */
4690 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4691 && (*syms)[i].symbol->linkage_name () != NULL)
4693 for (j = 0; j < syms->size (); j++)
4696 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4697 && (*syms)[j].symbol->linkage_name () != NULL
4698 && strcmp ((*syms)[i].symbol->linkage_name (),
4699 (*syms)[j].symbol->linkage_name ()) == 0)
4704 /* Two symbols with the same name, same class and same address
4705 should be identical. */
4707 else if ((*syms)[i].symbol->linkage_name () != NULL
4708 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4709 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4711 for (j = 0; j < syms->size (); j += 1)
4714 && (*syms)[j].symbol->linkage_name () != NULL
4715 && strcmp ((*syms)[i].symbol->linkage_name (),
4716 (*syms)[j].symbol->linkage_name ()) == 0
4717 && SYMBOL_CLASS ((*syms)[i].symbol)
4718 == SYMBOL_CLASS ((*syms)[j].symbol)
4719 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4720 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4726 syms->erase (syms->begin () + i);
4731 /* If all the remaining symbols are identical enumerals, then
4732 just keep the first one and discard the rest.
4734 Unlike what we did previously, we do not discard any entry
4735 unless they are ALL identical. This is because the symbol
4736 comparison is not a strict comparison, but rather a practical
4737 comparison. If all symbols are considered identical, then
4738 we can just go ahead and use the first one and discard the rest.
4739 But if we cannot reduce the list to a single element, we have
4740 to ask the user to disambiguate anyways. And if we have to
4741 present a multiple-choice menu, it's less confusing if the list
4742 isn't missing some choices that were identical and yet distinct. */
4743 if (symbols_are_identical_enums (*syms))
4747 /* Given a type that corresponds to a renaming entity, use the type name
4748 to extract the scope (package name or function name, fully qualified,
4749 and following the GNAT encoding convention) where this renaming has been
4753 xget_renaming_scope (struct type *renaming_type)
4755 /* The renaming types adhere to the following convention:
4756 <scope>__<rename>___<XR extension>.
4757 So, to extract the scope, we search for the "___XR" extension,
4758 and then backtrack until we find the first "__". */
4760 const char *name = renaming_type->name ();
4761 const char *suffix = strstr (name, "___XR");
4764 /* Now, backtrack a bit until we find the first "__". Start looking
4765 at suffix - 3, as the <rename> part is at least one character long. */
4767 for (last = suffix - 3; last > name; last--)
4768 if (last[0] == '_' && last[1] == '_')
4771 /* Make a copy of scope and return it. */
4772 return std::string (name, last);
4775 /* Return nonzero if NAME corresponds to a package name. */
4778 is_package_name (const char *name)
4780 /* Here, We take advantage of the fact that no symbols are generated
4781 for packages, while symbols are generated for each function.
4782 So the condition for NAME represent a package becomes equivalent
4783 to NAME not existing in our list of symbols. There is only one
4784 small complication with library-level functions (see below). */
4786 /* If it is a function that has not been defined at library level,
4787 then we should be able to look it up in the symbols. */
4788 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4791 /* Library-level function names start with "_ada_". See if function
4792 "_ada_" followed by NAME can be found. */
4794 /* Do a quick check that NAME does not contain "__", since library-level
4795 functions names cannot contain "__" in them. */
4796 if (strstr (name, "__") != NULL)
4799 std::string fun_name = string_printf ("_ada_%s", name);
4801 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4804 /* Return nonzero if SYM corresponds to a renaming entity that is
4805 not visible from FUNCTION_NAME. */
4808 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4810 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4813 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4815 /* If the rename has been defined in a package, then it is visible. */
4816 if (is_package_name (scope.c_str ()))
4819 /* Check that the rename is in the current function scope by checking
4820 that its name starts with SCOPE. */
4822 /* If the function name starts with "_ada_", it means that it is
4823 a library-level function. Strip this prefix before doing the
4824 comparison, as the encoding for the renaming does not contain
4826 if (startswith (function_name, "_ada_"))
4829 return !startswith (function_name, scope.c_str ());
4832 /* Remove entries from SYMS that corresponds to a renaming entity that
4833 is not visible from the function associated with CURRENT_BLOCK or
4834 that is superfluous due to the presence of more specific renaming
4835 information. Places surviving symbols in the initial entries of
4839 First, in cases where an object renaming is implemented as a
4840 reference variable, GNAT may produce both the actual reference
4841 variable and the renaming encoding. In this case, we discard the
4844 Second, GNAT emits a type following a specified encoding for each renaming
4845 entity. Unfortunately, STABS currently does not support the definition
4846 of types that are local to a given lexical block, so all renamings types
4847 are emitted at library level. As a consequence, if an application
4848 contains two renaming entities using the same name, and a user tries to
4849 print the value of one of these entities, the result of the ada symbol
4850 lookup will also contain the wrong renaming type.
4852 This function partially covers for this limitation by attempting to
4853 remove from the SYMS list renaming symbols that should be visible
4854 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4855 method with the current information available. The implementation
4856 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4858 - When the user tries to print a rename in a function while there
4859 is another rename entity defined in a package: Normally, the
4860 rename in the function has precedence over the rename in the
4861 package, so the latter should be removed from the list. This is
4862 currently not the case.
4864 - This function will incorrectly remove valid renames if
4865 the CURRENT_BLOCK corresponds to a function which symbol name
4866 has been changed by an "Export" pragma. As a consequence,
4867 the user will be unable to print such rename entities. */
4870 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4871 const struct block *current_block)
4873 struct symbol *current_function;
4874 const char *current_function_name;
4876 int is_new_style_renaming;
4878 /* If there is both a renaming foo___XR... encoded as a variable and
4879 a simple variable foo in the same block, discard the latter.
4880 First, zero out such symbols, then compress. */
4881 is_new_style_renaming = 0;
4882 for (i = 0; i < syms->size (); i += 1)
4884 struct symbol *sym = (*syms)[i].symbol;
4885 const struct block *block = (*syms)[i].block;
4889 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4891 name = sym->linkage_name ();
4892 suffix = strstr (name, "___XR");
4896 int name_len = suffix - name;
4899 is_new_style_renaming = 1;
4900 for (j = 0; j < syms->size (); j += 1)
4901 if (i != j && (*syms)[j].symbol != NULL
4902 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4904 && block == (*syms)[j].block)
4905 (*syms)[j].symbol = NULL;
4908 if (is_new_style_renaming)
4912 for (j = k = 0; j < syms->size (); j += 1)
4913 if ((*syms)[j].symbol != NULL)
4915 (*syms)[k] = (*syms)[j];
4922 /* Extract the function name associated to CURRENT_BLOCK.
4923 Abort if unable to do so. */
4925 if (current_block == NULL)
4928 current_function = block_linkage_function (current_block);
4929 if (current_function == NULL)
4932 current_function_name = current_function->linkage_name ();
4933 if (current_function_name == NULL)
4936 /* Check each of the symbols, and remove it from the list if it is
4937 a type corresponding to a renaming that is out of the scope of
4938 the current block. */
4941 while (i < syms->size ())
4943 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4944 == ADA_OBJECT_RENAMING
4945 && old_renaming_is_invisible ((*syms)[i].symbol,
4946 current_function_name))
4947 syms->erase (syms->begin () + i);
4953 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4954 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4956 Note: This function assumes that RESULT is empty. */
4959 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4960 const lookup_name_info &lookup_name,
4961 const struct block *block, domain_enum domain)
4963 while (block != NULL)
4965 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4967 /* If we found a non-function match, assume that's the one. We
4968 only check this when finding a function boundary, so that we
4969 can accumulate all results from intervening blocks first. */
4970 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
4973 block = BLOCK_SUPERBLOCK (block);
4977 /* An object of this type is used as the callback argument when
4978 calling the map_matching_symbols method. */
4982 explicit match_data (std::vector<struct block_symbol> *rp)
4986 DISABLE_COPY_AND_ASSIGN (match_data);
4988 bool operator() (struct block_symbol *bsym);
4990 struct objfile *objfile = nullptr;
4991 std::vector<struct block_symbol> *resultp;
4992 struct symbol *arg_sym = nullptr;
4993 bool found_sym = false;
4996 /* A callback for add_nonlocal_symbols that adds symbol, found in
4997 BSYM, to a list of symbols. */
5000 match_data::operator() (struct block_symbol *bsym)
5002 const struct block *block = bsym->block;
5003 struct symbol *sym = bsym->symbol;
5007 if (!found_sym && arg_sym != NULL)
5008 add_defn_to_vec (*resultp,
5009 fixup_symbol_section (arg_sym, objfile),
5016 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5018 else if (SYMBOL_IS_ARGUMENT (sym))
5023 add_defn_to_vec (*resultp,
5024 fixup_symbol_section (sym, objfile),
5031 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5032 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5033 symbols to RESULT. Return whether we found such symbols. */
5036 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5037 const struct block *block,
5038 const lookup_name_info &lookup_name,
5041 struct using_direct *renaming;
5042 int defns_mark = result.size ();
5044 symbol_name_matcher_ftype *name_match
5045 = ada_get_symbol_name_matcher (lookup_name);
5047 for (renaming = block_using (block);
5049 renaming = renaming->next)
5053 /* Avoid infinite recursions: skip this renaming if we are actually
5054 already traversing it.
5056 Currently, symbol lookup in Ada don't use the namespace machinery from
5057 C++/Fortran support: skip namespace imports that use them. */
5058 if (renaming->searched
5059 || (renaming->import_src != NULL
5060 && renaming->import_src[0] != '\0')
5061 || (renaming->import_dest != NULL
5062 && renaming->import_dest[0] != '\0'))
5064 renaming->searched = 1;
5066 /* TODO: here, we perform another name-based symbol lookup, which can
5067 pull its own multiple overloads. In theory, we should be able to do
5068 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5069 not a simple name. But in order to do this, we would need to enhance
5070 the DWARF reader to associate a symbol to this renaming, instead of a
5071 name. So, for now, we do something simpler: re-use the C++/Fortran
5072 namespace machinery. */
5073 r_name = (renaming->alias != NULL
5075 : renaming->declaration);
5076 if (name_match (r_name, lookup_name, NULL))
5078 lookup_name_info decl_lookup_name (renaming->declaration,
5079 lookup_name.match_type ());
5080 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5083 renaming->searched = 0;
5085 return result.size () != defns_mark;
5088 /* Implements compare_names, but only applying the comparision using
5089 the given CASING. */
5092 compare_names_with_case (const char *string1, const char *string2,
5093 enum case_sensitivity casing)
5095 while (*string1 != '\0' && *string2 != '\0')
5099 if (isspace (*string1) || isspace (*string2))
5100 return strcmp_iw_ordered (string1, string2);
5102 if (casing == case_sensitive_off)
5104 c1 = tolower (*string1);
5105 c2 = tolower (*string2);
5122 return strcmp_iw_ordered (string1, string2);
5124 if (*string2 == '\0')
5126 if (is_name_suffix (string1))
5133 if (*string2 == '(')
5134 return strcmp_iw_ordered (string1, string2);
5137 if (casing == case_sensitive_off)
5138 return tolower (*string1) - tolower (*string2);
5140 return *string1 - *string2;
5145 /* Compare STRING1 to STRING2, with results as for strcmp.
5146 Compatible with strcmp_iw_ordered in that...
5148 strcmp_iw_ordered (STRING1, STRING2) <= 0
5152 compare_names (STRING1, STRING2) <= 0
5154 (they may differ as to what symbols compare equal). */
5157 compare_names (const char *string1, const char *string2)
5161 /* Similar to what strcmp_iw_ordered does, we need to perform
5162 a case-insensitive comparison first, and only resort to
5163 a second, case-sensitive, comparison if the first one was
5164 not sufficient to differentiate the two strings. */
5166 result = compare_names_with_case (string1, string2, case_sensitive_off);
5168 result = compare_names_with_case (string1, string2, case_sensitive_on);
5173 /* Convenience function to get at the Ada encoded lookup name for
5174 LOOKUP_NAME, as a C string. */
5177 ada_lookup_name (const lookup_name_info &lookup_name)
5179 return lookup_name.ada ().lookup_name ().c_str ();
5182 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5183 for OBJFILE, then walk the objfile's symtabs and update the
5187 map_matching_symbols (struct objfile *objfile,
5188 const lookup_name_info &lookup_name,
5194 data.objfile = objfile;
5195 objfile->expand_matching_symbols (lookup_name, domain, global,
5196 is_wild_match ? nullptr : compare_names);
5198 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5199 for (compunit_symtab *symtab : objfile->compunits ())
5201 const struct block *block
5202 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5203 if (!iterate_over_symbols_terminated (block, lookup_name,
5209 /* Add to RESULT all non-local symbols whose name and domain match
5210 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5211 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5212 symbols otherwise. */
5215 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5216 const lookup_name_info &lookup_name,
5217 domain_enum domain, int global)
5219 struct match_data data (&result);
5221 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5223 for (objfile *objfile : current_program_space->objfiles ())
5225 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5228 for (compunit_symtab *cu : objfile->compunits ())
5230 const struct block *global_block
5231 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5233 if (ada_add_block_renamings (result, global_block, lookup_name,
5235 data.found_sym = true;
5239 if (result.empty () && global && !is_wild_match)
5241 const char *name = ada_lookup_name (lookup_name);
5242 std::string bracket_name = std::string ("<_ada_") + name + '>';
5243 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5245 for (objfile *objfile : current_program_space->objfiles ())
5246 map_matching_symbols (objfile, name1, false, domain, global, data);
5250 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5251 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5252 returning the number of matches. Add these to RESULT.
5254 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5255 symbol match within the nest of blocks whose innermost member is BLOCK,
5256 is the one match returned (no other matches in that or
5257 enclosing blocks is returned). If there are any matches in or
5258 surrounding BLOCK, then these alone are returned.
5260 Names prefixed with "standard__" are handled specially:
5261 "standard__" is first stripped off (by the lookup_name
5262 constructor), and only static and global symbols are searched.
5264 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5265 to lookup global symbols. */
5268 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5269 const struct block *block,
5270 const lookup_name_info &lookup_name,
5273 int *made_global_lookup_p)
5277 if (made_global_lookup_p)
5278 *made_global_lookup_p = 0;
5280 /* Special case: If the user specifies a symbol name inside package
5281 Standard, do a non-wild matching of the symbol name without
5282 the "standard__" prefix. This was primarily introduced in order
5283 to allow the user to specifically access the standard exceptions
5284 using, for instance, Standard.Constraint_Error when Constraint_Error
5285 is ambiguous (due to the user defining its own Constraint_Error
5286 entity inside its program). */
5287 if (lookup_name.ada ().standard_p ())
5290 /* Check the non-global symbols. If we have ANY match, then we're done. */
5295 ada_add_local_symbols (result, lookup_name, block, domain);
5298 /* In the !full_search case we're are being called by
5299 iterate_over_symbols, and we don't want to search
5301 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5303 if (!result.empty () || !full_search)
5307 /* No non-global symbols found. Check our cache to see if we have
5308 already performed this search before. If we have, then return
5311 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5312 domain, &sym, &block))
5315 add_defn_to_vec (result, sym, block);
5319 if (made_global_lookup_p)
5320 *made_global_lookup_p = 1;
5322 /* Search symbols from all global blocks. */
5324 add_nonlocal_symbols (result, lookup_name, domain, 1);
5326 /* Now add symbols from all per-file blocks if we've gotten no hits
5327 (not strictly correct, but perhaps better than an error). */
5329 if (result.empty ())
5330 add_nonlocal_symbols (result, lookup_name, domain, 0);
5333 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5334 is non-zero, enclosing scope and in global scopes.
5336 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5337 blocks and symbol tables (if any) in which they were found.
5339 When full_search is non-zero, any non-function/non-enumeral
5340 symbol match within the nest of blocks whose innermost member is BLOCK,
5341 is the one match returned (no other matches in that or
5342 enclosing blocks is returned). If there are any matches in or
5343 surrounding BLOCK, then these alone are returned.
5345 Names prefixed with "standard__" are handled specially: "standard__"
5346 is first stripped off, and only static and global symbols are searched. */
5348 static std::vector<struct block_symbol>
5349 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5350 const struct block *block,
5354 int syms_from_global_search;
5355 std::vector<struct block_symbol> results;
5357 ada_add_all_symbols (results, block, lookup_name,
5358 domain, full_search, &syms_from_global_search);
5360 remove_extra_symbols (&results);
5362 if (results.empty () && full_search && syms_from_global_search)
5363 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5365 if (results.size () == 1 && full_search && syms_from_global_search)
5366 cache_symbol (ada_lookup_name (lookup_name), domain,
5367 results[0].symbol, results[0].block);
5369 remove_irrelevant_renamings (&results, block);
5373 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5374 in global scopes, returning (SYM,BLOCK) tuples.
5376 See ada_lookup_symbol_list_worker for further details. */
5378 std::vector<struct block_symbol>
5379 ada_lookup_symbol_list (const char *name, const struct block *block,
5382 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5383 lookup_name_info lookup_name (name, name_match_type);
5385 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5388 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5389 to 1, but choosing the first symbol found if there are multiple
5392 The result is stored in *INFO, which must be non-NULL.
5393 If no match is found, INFO->SYM is set to NULL. */
5396 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5398 struct block_symbol *info)
5400 /* Since we already have an encoded name, wrap it in '<>' to force a
5401 verbatim match. Otherwise, if the name happens to not look like
5402 an encoded name (because it doesn't include a "__"),
5403 ada_lookup_name_info would re-encode/fold it again, and that
5404 would e.g., incorrectly lowercase object renaming names like
5405 "R28b" -> "r28b". */
5406 std::string verbatim = add_angle_brackets (name);
5408 gdb_assert (info != NULL);
5409 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5412 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5413 scope and in global scopes, or NULL if none. NAME is folded and
5414 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5415 choosing the first symbol if there are multiple choices. */
5418 ada_lookup_symbol (const char *name, const struct block *block0,
5421 std::vector<struct block_symbol> candidates
5422 = ada_lookup_symbol_list (name, block0, domain);
5424 if (candidates.empty ())
5427 block_symbol info = candidates[0];
5428 info.symbol = fixup_symbol_section (info.symbol, NULL);
5433 /* True iff STR is a possible encoded suffix of a normal Ada name
5434 that is to be ignored for matching purposes. Suffixes of parallel
5435 names (e.g., XVE) are not included here. Currently, the possible suffixes
5436 are given by any of the regular expressions:
5438 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5439 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5440 TKB [subprogram suffix for task bodies]
5441 _E[0-9]+[bs]$ [protected object entry suffixes]
5442 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5444 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5445 match is performed. This sequence is used to differentiate homonyms,
5446 is an optional part of a valid name suffix. */
5449 is_name_suffix (const char *str)
5452 const char *matching;
5453 const int len = strlen (str);
5455 /* Skip optional leading __[0-9]+. */
5457 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5460 while (isdigit (str[0]))
5466 if (str[0] == '.' || str[0] == '$')
5469 while (isdigit (matching[0]))
5471 if (matching[0] == '\0')
5477 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5480 while (isdigit (matching[0]))
5482 if (matching[0] == '\0')
5486 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5488 if (strcmp (str, "TKB") == 0)
5492 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5493 with a N at the end. Unfortunately, the compiler uses the same
5494 convention for other internal types it creates. So treating
5495 all entity names that end with an "N" as a name suffix causes
5496 some regressions. For instance, consider the case of an enumerated
5497 type. To support the 'Image attribute, it creates an array whose
5499 Having a single character like this as a suffix carrying some
5500 information is a bit risky. Perhaps we should change the encoding
5501 to be something like "_N" instead. In the meantime, do not do
5502 the following check. */
5503 /* Protected Object Subprograms */
5504 if (len == 1 && str [0] == 'N')
5509 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5512 while (isdigit (matching[0]))
5514 if ((matching[0] == 'b' || matching[0] == 's')
5515 && matching [1] == '\0')
5519 /* ??? We should not modify STR directly, as we are doing below. This
5520 is fine in this case, but may become problematic later if we find
5521 that this alternative did not work, and want to try matching
5522 another one from the begining of STR. Since we modified it, we
5523 won't be able to find the begining of the string anymore! */
5527 while (str[0] != '_' && str[0] != '\0')
5529 if (str[0] != 'n' && str[0] != 'b')
5535 if (str[0] == '\000')
5540 if (str[1] != '_' || str[2] == '\000')
5544 if (strcmp (str + 3, "JM") == 0)
5546 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5547 the LJM suffix in favor of the JM one. But we will
5548 still accept LJM as a valid suffix for a reasonable
5549 amount of time, just to allow ourselves to debug programs
5550 compiled using an older version of GNAT. */
5551 if (strcmp (str + 3, "LJM") == 0)
5555 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5556 || str[4] == 'U' || str[4] == 'P')
5558 if (str[4] == 'R' && str[5] != 'T')
5562 if (!isdigit (str[2]))
5564 for (k = 3; str[k] != '\0'; k += 1)
5565 if (!isdigit (str[k]) && str[k] != '_')
5569 if (str[0] == '$' && isdigit (str[1]))
5571 for (k = 2; str[k] != '\0'; k += 1)
5572 if (!isdigit (str[k]) && str[k] != '_')
5579 /* Return non-zero if the string starting at NAME and ending before
5580 NAME_END contains no capital letters. */
5583 is_valid_name_for_wild_match (const char *name0)
5585 std::string decoded_name = ada_decode (name0);
5588 /* If the decoded name starts with an angle bracket, it means that
5589 NAME0 does not follow the GNAT encoding format. It should then
5590 not be allowed as a possible wild match. */
5591 if (decoded_name[0] == '<')
5594 for (i=0; decoded_name[i] != '\0'; i++)
5595 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5601 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5602 character which could start a simple name. Assumes that *NAMEP points
5603 somewhere inside the string beginning at NAME0. */
5606 advance_wild_match (const char **namep, const char *name0, char target0)
5608 const char *name = *namep;
5618 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5621 if (name == name0 + 5 && startswith (name0, "_ada"))
5626 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5627 || name[2] == target0))
5632 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5634 /* Names like "pkg__B_N__name", where N is a number, are
5635 block-local. We can handle these by simply skipping
5642 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5652 /* Return true iff NAME encodes a name of the form prefix.PATN.
5653 Ignores any informational suffixes of NAME (i.e., for which
5654 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5658 wild_match (const char *name, const char *patn)
5661 const char *name0 = name;
5665 const char *match = name;
5669 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5672 if (*p == '\0' && is_name_suffix (name))
5673 return match == name0 || is_valid_name_for_wild_match (name0);
5675 if (name[-1] == '_')
5678 if (!advance_wild_match (&name, name0, *patn))
5683 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5684 necessary). OBJFILE is the section containing BLOCK. */
5687 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5688 const struct block *block,
5689 const lookup_name_info &lookup_name,
5690 domain_enum domain, struct objfile *objfile)
5692 struct block_iterator iter;
5693 /* A matching argument symbol, if any. */
5694 struct symbol *arg_sym;
5695 /* Set true when we find a matching non-argument symbol. */
5701 for (sym = block_iter_match_first (block, lookup_name, &iter);
5703 sym = block_iter_match_next (lookup_name, &iter))
5705 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5707 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5709 if (SYMBOL_IS_ARGUMENT (sym))
5714 add_defn_to_vec (result,
5715 fixup_symbol_section (sym, objfile),
5722 /* Handle renamings. */
5724 if (ada_add_block_renamings (result, block, lookup_name, domain))
5727 if (!found_sym && arg_sym != NULL)
5729 add_defn_to_vec (result,
5730 fixup_symbol_section (arg_sym, objfile),
5734 if (!lookup_name.ada ().wild_match_p ())
5738 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5739 const char *name = ada_lookup_name.c_str ();
5740 size_t name_len = ada_lookup_name.size ();
5742 ALL_BLOCK_SYMBOLS (block, iter, sym)
5744 if (symbol_matches_domain (sym->language (),
5745 SYMBOL_DOMAIN (sym), domain))
5749 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5752 cmp = !startswith (sym->linkage_name (), "_ada_");
5754 cmp = strncmp (name, sym->linkage_name () + 5,
5759 && is_name_suffix (sym->linkage_name () + name_len + 5))
5761 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5763 if (SYMBOL_IS_ARGUMENT (sym))
5768 add_defn_to_vec (result,
5769 fixup_symbol_section (sym, objfile),
5777 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5778 They aren't parameters, right? */
5779 if (!found_sym && arg_sym != NULL)
5781 add_defn_to_vec (result,
5782 fixup_symbol_section (arg_sym, objfile),
5789 /* Symbol Completion */
5794 ada_lookup_name_info::matches
5795 (const char *sym_name,
5796 symbol_name_match_type match_type,
5797 completion_match_result *comp_match_res) const
5800 const char *text = m_encoded_name.c_str ();
5801 size_t text_len = m_encoded_name.size ();
5803 /* First, test against the fully qualified name of the symbol. */
5805 if (strncmp (sym_name, text, text_len) == 0)
5808 std::string decoded_name = ada_decode (sym_name);
5809 if (match && !m_encoded_p)
5811 /* One needed check before declaring a positive match is to verify
5812 that iff we are doing a verbatim match, the decoded version
5813 of the symbol name starts with '<'. Otherwise, this symbol name
5814 is not a suitable completion. */
5816 bool has_angle_bracket = (decoded_name[0] == '<');
5817 match = (has_angle_bracket == m_verbatim_p);
5820 if (match && !m_verbatim_p)
5822 /* When doing non-verbatim match, another check that needs to
5823 be done is to verify that the potentially matching symbol name
5824 does not include capital letters, because the ada-mode would
5825 not be able to understand these symbol names without the
5826 angle bracket notation. */
5829 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5834 /* Second: Try wild matching... */
5836 if (!match && m_wild_match_p)
5838 /* Since we are doing wild matching, this means that TEXT
5839 may represent an unqualified symbol name. We therefore must
5840 also compare TEXT against the unqualified name of the symbol. */
5841 sym_name = ada_unqualified_name (decoded_name.c_str ());
5843 if (strncmp (sym_name, text, text_len) == 0)
5847 /* Finally: If we found a match, prepare the result to return. */
5852 if (comp_match_res != NULL)
5854 std::string &match_str = comp_match_res->match.storage ();
5857 match_str = ada_decode (sym_name);
5861 match_str = add_angle_brackets (sym_name);
5863 match_str = sym_name;
5867 comp_match_res->set_match (match_str.c_str ());
5875 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5876 for tagged types. */
5879 ada_is_dispatch_table_ptr_type (struct type *type)
5883 if (type->code () != TYPE_CODE_PTR)
5886 name = TYPE_TARGET_TYPE (type)->name ();
5890 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5893 /* Return non-zero if TYPE is an interface tag. */
5896 ada_is_interface_tag (struct type *type)
5898 const char *name = type->name ();
5903 return (strcmp (name, "ada__tags__interface_tag") == 0);
5906 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5907 to be invisible to users. */
5910 ada_is_ignored_field (struct type *type, int field_num)
5912 if (field_num < 0 || field_num > type->num_fields ())
5915 /* Check the name of that field. */
5917 const char *name = TYPE_FIELD_NAME (type, field_num);
5919 /* Anonymous field names should not be printed.
5920 brobecker/2007-02-20: I don't think this can actually happen
5921 but we don't want to print the value of anonymous fields anyway. */
5925 /* Normally, fields whose name start with an underscore ("_")
5926 are fields that have been internally generated by the compiler,
5927 and thus should not be printed. The "_parent" field is special,
5928 however: This is a field internally generated by the compiler
5929 for tagged types, and it contains the components inherited from
5930 the parent type. This field should not be printed as is, but
5931 should not be ignored either. */
5932 if (name[0] == '_' && !startswith (name, "_parent"))
5936 /* If this is the dispatch table of a tagged type or an interface tag,
5938 if (ada_is_tagged_type (type, 1)
5939 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5940 || ada_is_interface_tag (type->field (field_num).type ())))
5943 /* Not a special field, so it should not be ignored. */
5947 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5948 pointer or reference type whose ultimate target has a tag field. */
5951 ada_is_tagged_type (struct type *type, int refok)
5953 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5956 /* True iff TYPE represents the type of X'Tag */
5959 ada_is_tag_type (struct type *type)
5961 type = ada_check_typedef (type);
5963 if (type == NULL || type->code () != TYPE_CODE_PTR)
5967 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5969 return (name != NULL
5970 && strcmp (name, "ada__tags__dispatch_table") == 0);
5974 /* The type of the tag on VAL. */
5976 static struct type *
5977 ada_tag_type (struct value *val)
5979 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5982 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5983 retired at Ada 05). */
5986 is_ada95_tag (struct value *tag)
5988 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5991 /* The value of the tag on VAL. */
5993 static struct value *
5994 ada_value_tag (struct value *val)
5996 return ada_value_struct_elt (val, "_tag", 0);
5999 /* The value of the tag on the object of type TYPE whose contents are
6000 saved at VALADDR, if it is non-null, or is at memory address
6003 static struct value *
6004 value_tag_from_contents_and_address (struct type *type,
6005 const gdb_byte *valaddr,
6008 int tag_byte_offset;
6009 struct type *tag_type;
6011 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6014 const gdb_byte *valaddr1 = ((valaddr == NULL)
6016 : valaddr + tag_byte_offset);
6017 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6019 return value_from_contents_and_address (tag_type, valaddr1, address1);
6024 static struct type *
6025 type_from_tag (struct value *tag)
6027 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6029 if (type_name != NULL)
6030 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6034 /* Given a value OBJ of a tagged type, return a value of this
6035 type at the base address of the object. The base address, as
6036 defined in Ada.Tags, it is the address of the primary tag of
6037 the object, and therefore where the field values of its full
6038 view can be fetched. */
6041 ada_tag_value_at_base_address (struct value *obj)
6044 LONGEST offset_to_top = 0;
6045 struct type *ptr_type, *obj_type;
6047 CORE_ADDR base_address;
6049 obj_type = value_type (obj);
6051 /* It is the responsability of the caller to deref pointers. */
6053 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6056 tag = ada_value_tag (obj);
6060 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6062 if (is_ada95_tag (tag))
6065 ptr_type = language_lookup_primitive_type
6066 (language_def (language_ada), target_gdbarch(), "storage_offset");
6067 ptr_type = lookup_pointer_type (ptr_type);
6068 val = value_cast (ptr_type, tag);
6072 /* It is perfectly possible that an exception be raised while
6073 trying to determine the base address, just like for the tag;
6074 see ada_tag_name for more details. We do not print the error
6075 message for the same reason. */
6079 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6082 catch (const gdb_exception_error &e)
6087 /* If offset is null, nothing to do. */
6089 if (offset_to_top == 0)
6092 /* -1 is a special case in Ada.Tags; however, what should be done
6093 is not quite clear from the documentation. So do nothing for
6096 if (offset_to_top == -1)
6099 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6100 from the base address. This was however incompatible with
6101 C++ dispatch table: C++ uses a *negative* value to *add*
6102 to the base address. Ada's convention has therefore been
6103 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6104 use the same convention. Here, we support both cases by
6105 checking the sign of OFFSET_TO_TOP. */
6107 if (offset_to_top > 0)
6108 offset_to_top = -offset_to_top;
6110 base_address = value_address (obj) + offset_to_top;
6111 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6113 /* Make sure that we have a proper tag at the new address.
6114 Otherwise, offset_to_top is bogus (which can happen when
6115 the object is not initialized yet). */
6120 obj_type = type_from_tag (tag);
6125 return value_from_contents_and_address (obj_type, NULL, base_address);
6128 /* Return the "ada__tags__type_specific_data" type. */
6130 static struct type *
6131 ada_get_tsd_type (struct inferior *inf)
6133 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6135 if (data->tsd_type == 0)
6136 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6137 return data->tsd_type;
6140 /* Return the TSD (type-specific data) associated to the given TAG.
6141 TAG is assumed to be the tag of a tagged-type entity.
6143 May return NULL if we are unable to get the TSD. */
6145 static struct value *
6146 ada_get_tsd_from_tag (struct value *tag)
6151 /* First option: The TSD is simply stored as a field of our TAG.
6152 Only older versions of GNAT would use this format, but we have
6153 to test it first, because there are no visible markers for
6154 the current approach except the absence of that field. */
6156 val = ada_value_struct_elt (tag, "tsd", 1);
6160 /* Try the second representation for the dispatch table (in which
6161 there is no explicit 'tsd' field in the referent of the tag pointer,
6162 and instead the tsd pointer is stored just before the dispatch
6165 type = ada_get_tsd_type (current_inferior());
6168 type = lookup_pointer_type (lookup_pointer_type (type));
6169 val = value_cast (type, tag);
6172 return value_ind (value_ptradd (val, -1));
6175 /* Given the TSD of a tag (type-specific data), return a string
6176 containing the name of the associated type.
6178 May return NULL if we are unable to determine the tag name. */
6180 static gdb::unique_xmalloc_ptr<char>
6181 ada_tag_name_from_tsd (struct value *tsd)
6186 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6189 gdb::unique_xmalloc_ptr<char> buffer
6190 = target_read_string (value_as_address (val), INT_MAX);
6191 if (buffer == nullptr)
6194 for (p = buffer.get (); *p != '\0'; ++p)
6203 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6206 Return NULL if the TAG is not an Ada tag, or if we were unable to
6207 determine the name of that tag. */
6209 gdb::unique_xmalloc_ptr<char>
6210 ada_tag_name (struct value *tag)
6212 gdb::unique_xmalloc_ptr<char> name;
6214 if (!ada_is_tag_type (value_type (tag)))
6217 /* It is perfectly possible that an exception be raised while trying
6218 to determine the TAG's name, even under normal circumstances:
6219 The associated variable may be uninitialized or corrupted, for
6220 instance. We do not let any exception propagate past this point.
6221 instead we return NULL.
6223 We also do not print the error message either (which often is very
6224 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6225 the caller print a more meaningful message if necessary. */
6228 struct value *tsd = ada_get_tsd_from_tag (tag);
6231 name = ada_tag_name_from_tsd (tsd);
6233 catch (const gdb_exception_error &e)
6240 /* The parent type of TYPE, or NULL if none. */
6243 ada_parent_type (struct type *type)
6247 type = ada_check_typedef (type);
6249 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6252 for (i = 0; i < type->num_fields (); i += 1)
6253 if (ada_is_parent_field (type, i))
6255 struct type *parent_type = type->field (i).type ();
6257 /* If the _parent field is a pointer, then dereference it. */
6258 if (parent_type->code () == TYPE_CODE_PTR)
6259 parent_type = TYPE_TARGET_TYPE (parent_type);
6260 /* If there is a parallel XVS type, get the actual base type. */
6261 parent_type = ada_get_base_type (parent_type);
6263 return ada_check_typedef (parent_type);
6269 /* True iff field number FIELD_NUM of structure type TYPE contains the
6270 parent-type (inherited) fields of a derived type. Assumes TYPE is
6271 a structure type with at least FIELD_NUM+1 fields. */
6274 ada_is_parent_field (struct type *type, int field_num)
6276 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6278 return (name != NULL
6279 && (startswith (name, "PARENT")
6280 || startswith (name, "_parent")));
6283 /* True iff field number FIELD_NUM of structure type TYPE is a
6284 transparent wrapper field (which should be silently traversed when doing
6285 field selection and flattened when printing). Assumes TYPE is a
6286 structure type with at least FIELD_NUM+1 fields. Such fields are always
6290 ada_is_wrapper_field (struct type *type, int field_num)
6292 const char *name = TYPE_FIELD_NAME (type, field_num);
6294 if (name != NULL && strcmp (name, "RETVAL") == 0)
6296 /* This happens in functions with "out" or "in out" parameters
6297 which are passed by copy. For such functions, GNAT describes
6298 the function's return type as being a struct where the return
6299 value is in a field called RETVAL, and where the other "out"
6300 or "in out" parameters are fields of that struct. This is not
6305 return (name != NULL
6306 && (startswith (name, "PARENT")
6307 || strcmp (name, "REP") == 0
6308 || startswith (name, "_parent")
6309 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6312 /* True iff field number FIELD_NUM of structure or union type TYPE
6313 is a variant wrapper. Assumes TYPE is a structure type with at least
6314 FIELD_NUM+1 fields. */
6317 ada_is_variant_part (struct type *type, int field_num)
6319 /* Only Ada types are eligible. */
6320 if (!ADA_TYPE_P (type))
6323 struct type *field_type = type->field (field_num).type ();
6325 return (field_type->code () == TYPE_CODE_UNION
6326 || (is_dynamic_field (type, field_num)
6327 && (TYPE_TARGET_TYPE (field_type)->code ()
6328 == TYPE_CODE_UNION)));
6331 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6332 whose discriminants are contained in the record type OUTER_TYPE,
6333 returns the type of the controlling discriminant for the variant.
6334 May return NULL if the type could not be found. */
6337 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6339 const char *name = ada_variant_discrim_name (var_type);
6341 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6344 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6345 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6346 represents a 'when others' clause; otherwise 0. */
6349 ada_is_others_clause (struct type *type, int field_num)
6351 const char *name = TYPE_FIELD_NAME (type, field_num);
6353 return (name != NULL && name[0] == 'O');
6356 /* Assuming that TYPE0 is the type of the variant part of a record,
6357 returns the name of the discriminant controlling the variant.
6358 The value is valid until the next call to ada_variant_discrim_name. */
6361 ada_variant_discrim_name (struct type *type0)
6363 static std::string result;
6366 const char *discrim_end;
6367 const char *discrim_start;
6369 if (type0->code () == TYPE_CODE_PTR)
6370 type = TYPE_TARGET_TYPE (type0);
6374 name = ada_type_name (type);
6376 if (name == NULL || name[0] == '\000')
6379 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6382 if (startswith (discrim_end, "___XVN"))
6385 if (discrim_end == name)
6388 for (discrim_start = discrim_end; discrim_start != name + 3;
6391 if (discrim_start == name + 1)
6393 if ((discrim_start > name + 3
6394 && startswith (discrim_start - 3, "___"))
6395 || discrim_start[-1] == '.')
6399 result = std::string (discrim_start, discrim_end - discrim_start);
6400 return result.c_str ();
6403 /* Scan STR for a subtype-encoded number, beginning at position K.
6404 Put the position of the character just past the number scanned in
6405 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6406 Return 1 if there was a valid number at the given position, and 0
6407 otherwise. A "subtype-encoded" number consists of the absolute value
6408 in decimal, followed by the letter 'm' to indicate a negative number.
6409 Assumes 0m does not occur. */
6412 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6416 if (!isdigit (str[k]))
6419 /* Do it the hard way so as not to make any assumption about
6420 the relationship of unsigned long (%lu scan format code) and
6423 while (isdigit (str[k]))
6425 RU = RU * 10 + (str[k] - '0');
6432 *R = (-(LONGEST) (RU - 1)) - 1;
6438 /* NOTE on the above: Technically, C does not say what the results of
6439 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6440 number representable as a LONGEST (although either would probably work
6441 in most implementations). When RU>0, the locution in the then branch
6442 above is always equivalent to the negative of RU. */
6449 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6450 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6451 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6454 ada_in_variant (LONGEST val, struct type *type, int field_num)
6456 const char *name = TYPE_FIELD_NAME (type, field_num);
6470 if (!ada_scan_number (name, p + 1, &W, &p))
6480 if (!ada_scan_number (name, p + 1, &L, &p)
6481 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6483 if (val >= L && val <= U)
6495 /* FIXME: Lots of redundancy below. Try to consolidate. */
6497 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6498 ARG_TYPE, extract and return the value of one of its (non-static)
6499 fields. FIELDNO says which field. Differs from value_primitive_field
6500 only in that it can handle packed values of arbitrary type. */
6503 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6504 struct type *arg_type)
6508 arg_type = ada_check_typedef (arg_type);
6509 type = arg_type->field (fieldno).type ();
6511 /* Handle packed fields. It might be that the field is not packed
6512 relative to its containing structure, but the structure itself is
6513 packed; in this case we must take the bit-field path. */
6514 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6516 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6517 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6519 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6520 offset + bit_pos / 8,
6521 bit_pos % 8, bit_size, type);
6524 return value_primitive_field (arg1, offset, fieldno, arg_type);
6527 /* Find field with name NAME in object of type TYPE. If found,
6528 set the following for each argument that is non-null:
6529 - *FIELD_TYPE_P to the field's type;
6530 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6531 an object of that type;
6532 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6533 - *BIT_SIZE_P to its size in bits if the field is packed, and
6535 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6536 fields up to but not including the desired field, or by the total
6537 number of fields if not found. A NULL value of NAME never
6538 matches; the function just counts visible fields in this case.
6540 Notice that we need to handle when a tagged record hierarchy
6541 has some components with the same name, like in this scenario:
6543 type Top_T is tagged record
6549 type Middle_T is new Top.Top_T with record
6550 N : Character := 'a';
6554 type Bottom_T is new Middle.Middle_T with record
6556 C : Character := '5';
6558 A : Character := 'J';
6561 Let's say we now have a variable declared and initialized as follow:
6563 TC : Top_A := new Bottom_T;
6565 And then we use this variable to call this function
6567 procedure Assign (Obj: in out Top_T; TV : Integer);
6571 Assign (Top_T (B), 12);
6573 Now, we're in the debugger, and we're inside that procedure
6574 then and we want to print the value of obj.c:
6576 Usually, the tagged record or one of the parent type owns the
6577 component to print and there's no issue but in this particular
6578 case, what does it mean to ask for Obj.C? Since the actual
6579 type for object is type Bottom_T, it could mean two things: type
6580 component C from the Middle_T view, but also component C from
6581 Bottom_T. So in that "undefined" case, when the component is
6582 not found in the non-resolved type (which includes all the
6583 components of the parent type), then resolve it and see if we
6584 get better luck once expanded.
6586 In the case of homonyms in the derived tagged type, we don't
6587 guaranty anything, and pick the one that's easiest for us
6590 Returns 1 if found, 0 otherwise. */
6593 find_struct_field (const char *name, struct type *type, int offset,
6594 struct type **field_type_p,
6595 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6599 int parent_offset = -1;
6601 type = ada_check_typedef (type);
6603 if (field_type_p != NULL)
6604 *field_type_p = NULL;
6605 if (byte_offset_p != NULL)
6607 if (bit_offset_p != NULL)
6609 if (bit_size_p != NULL)
6612 for (i = 0; i < type->num_fields (); i += 1)
6614 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6615 int fld_offset = offset + bit_pos / 8;
6616 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6618 if (t_field_name == NULL)
6621 else if (ada_is_parent_field (type, i))
6623 /* This is a field pointing us to the parent type of a tagged
6624 type. As hinted in this function's documentation, we give
6625 preference to fields in the current record first, so what
6626 we do here is just record the index of this field before
6627 we skip it. If it turns out we couldn't find our field
6628 in the current record, then we'll get back to it and search
6629 inside it whether the field might exist in the parent. */
6635 else if (name != NULL && field_name_match (t_field_name, name))
6637 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6639 if (field_type_p != NULL)
6640 *field_type_p = type->field (i).type ();
6641 if (byte_offset_p != NULL)
6642 *byte_offset_p = fld_offset;
6643 if (bit_offset_p != NULL)
6644 *bit_offset_p = bit_pos % 8;
6645 if (bit_size_p != NULL)
6646 *bit_size_p = bit_size;
6649 else if (ada_is_wrapper_field (type, i))
6651 if (find_struct_field (name, type->field (i).type (), fld_offset,
6652 field_type_p, byte_offset_p, bit_offset_p,
6653 bit_size_p, index_p))
6656 else if (ada_is_variant_part (type, i))
6658 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6661 struct type *field_type
6662 = ada_check_typedef (type->field (i).type ());
6664 for (j = 0; j < field_type->num_fields (); j += 1)
6666 if (find_struct_field (name, field_type->field (j).type (),
6668 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6669 field_type_p, byte_offset_p,
6670 bit_offset_p, bit_size_p, index_p))
6674 else if (index_p != NULL)
6678 /* Field not found so far. If this is a tagged type which
6679 has a parent, try finding that field in the parent now. */
6681 if (parent_offset != -1)
6683 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6684 int fld_offset = offset + bit_pos / 8;
6686 if (find_struct_field (name, type->field (parent_offset).type (),
6687 fld_offset, field_type_p, byte_offset_p,
6688 bit_offset_p, bit_size_p, index_p))
6695 /* Number of user-visible fields in record type TYPE. */
6698 num_visible_fields (struct type *type)
6703 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6707 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6708 and search in it assuming it has (class) type TYPE.
6709 If found, return value, else return NULL.
6711 Searches recursively through wrapper fields (e.g., '_parent').
6713 In the case of homonyms in the tagged types, please refer to the
6714 long explanation in find_struct_field's function documentation. */
6716 static struct value *
6717 ada_search_struct_field (const char *name, struct value *arg, int offset,
6721 int parent_offset = -1;
6723 type = ada_check_typedef (type);
6724 for (i = 0; i < type->num_fields (); i += 1)
6726 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6728 if (t_field_name == NULL)
6731 else if (ada_is_parent_field (type, i))
6733 /* This is a field pointing us to the parent type of a tagged
6734 type. As hinted in this function's documentation, we give
6735 preference to fields in the current record first, so what
6736 we do here is just record the index of this field before
6737 we skip it. If it turns out we couldn't find our field
6738 in the current record, then we'll get back to it and search
6739 inside it whether the field might exist in the parent. */
6745 else if (field_name_match (t_field_name, name))
6746 return ada_value_primitive_field (arg, offset, i, type);
6748 else if (ada_is_wrapper_field (type, i))
6750 struct value *v = /* Do not let indent join lines here. */
6751 ada_search_struct_field (name, arg,
6752 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6753 type->field (i).type ());
6759 else if (ada_is_variant_part (type, i))
6761 /* PNH: Do we ever get here? See find_struct_field. */
6763 struct type *field_type = ada_check_typedef (type->field (i).type ());
6764 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6766 for (j = 0; j < field_type->num_fields (); j += 1)
6768 struct value *v = ada_search_struct_field /* Force line
6771 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6772 field_type->field (j).type ());
6780 /* Field not found so far. If this is a tagged type which
6781 has a parent, try finding that field in the parent now. */
6783 if (parent_offset != -1)
6785 struct value *v = ada_search_struct_field (
6786 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6787 type->field (parent_offset).type ());
6796 static struct value *ada_index_struct_field_1 (int *, struct value *,
6797 int, struct type *);
6800 /* Return field #INDEX in ARG, where the index is that returned by
6801 * find_struct_field through its INDEX_P argument. Adjust the address
6802 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6803 * If found, return value, else return NULL. */
6805 static struct value *
6806 ada_index_struct_field (int index, struct value *arg, int offset,
6809 return ada_index_struct_field_1 (&index, arg, offset, type);
6813 /* Auxiliary function for ada_index_struct_field. Like
6814 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6817 static struct value *
6818 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6822 type = ada_check_typedef (type);
6824 for (i = 0; i < type->num_fields (); i += 1)
6826 if (TYPE_FIELD_NAME (type, i) == NULL)
6828 else if (ada_is_wrapper_field (type, i))
6830 struct value *v = /* Do not let indent join lines here. */
6831 ada_index_struct_field_1 (index_p, arg,
6832 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6833 type->field (i).type ());
6839 else if (ada_is_variant_part (type, i))
6841 /* PNH: Do we ever get here? See ada_search_struct_field,
6842 find_struct_field. */
6843 error (_("Cannot assign this kind of variant record"));
6845 else if (*index_p == 0)
6846 return ada_value_primitive_field (arg, offset, i, type);
6853 /* Return a string representation of type TYPE. */
6856 type_as_string (struct type *type)
6858 string_file tmp_stream;
6860 type_print (type, "", &tmp_stream, -1);
6862 return std::move (tmp_stream.string ());
6865 /* Given a type TYPE, look up the type of the component of type named NAME.
6866 If DISPP is non-null, add its byte displacement from the beginning of a
6867 structure (pointed to by a value) of type TYPE to *DISPP (does not
6868 work for packed fields).
6870 Matches any field whose name has NAME as a prefix, possibly
6873 TYPE can be either a struct or union. If REFOK, TYPE may also
6874 be a (pointer or reference)+ to a struct or union, and the
6875 ultimate target type will be searched.
6877 Looks recursively into variant clauses and parent types.
6879 In the case of homonyms in the tagged types, please refer to the
6880 long explanation in find_struct_field's function documentation.
6882 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6883 TYPE is not a type of the right kind. */
6885 static struct type *
6886 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6890 int parent_offset = -1;
6895 if (refok && type != NULL)
6898 type = ada_check_typedef (type);
6899 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6901 type = TYPE_TARGET_TYPE (type);
6905 || (type->code () != TYPE_CODE_STRUCT
6906 && type->code () != TYPE_CODE_UNION))
6911 error (_("Type %s is not a structure or union type"),
6912 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6915 type = to_static_fixed_type (type);
6917 for (i = 0; i < type->num_fields (); i += 1)
6919 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6922 if (t_field_name == NULL)
6925 else if (ada_is_parent_field (type, i))
6927 /* This is a field pointing us to the parent type of a tagged
6928 type. As hinted in this function's documentation, we give
6929 preference to fields in the current record first, so what
6930 we do here is just record the index of this field before
6931 we skip it. If it turns out we couldn't find our field
6932 in the current record, then we'll get back to it and search
6933 inside it whether the field might exist in the parent. */
6939 else if (field_name_match (t_field_name, name))
6940 return type->field (i).type ();
6942 else if (ada_is_wrapper_field (type, i))
6944 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6950 else if (ada_is_variant_part (type, i))
6953 struct type *field_type = ada_check_typedef (type->field (i).type ());
6955 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6957 /* FIXME pnh 2008/01/26: We check for a field that is
6958 NOT wrapped in a struct, since the compiler sometimes
6959 generates these for unchecked variant types. Revisit
6960 if the compiler changes this practice. */
6961 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6963 if (v_field_name != NULL
6964 && field_name_match (v_field_name, name))
6965 t = field_type->field (j).type ();
6967 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6977 /* Field not found so far. If this is a tagged type which
6978 has a parent, try finding that field in the parent now. */
6980 if (parent_offset != -1)
6984 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6993 const char *name_str = name != NULL ? name : _("<null>");
6995 error (_("Type %s has no component named %s"),
6996 type_as_string (type).c_str (), name_str);
7002 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7003 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7004 represents an unchecked union (that is, the variant part of a
7005 record that is named in an Unchecked_Union pragma). */
7008 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7010 const char *discrim_name = ada_variant_discrim_name (var_type);
7012 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7016 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7017 within OUTER, determine which variant clause (field number in VAR_TYPE,
7018 numbering from 0) is applicable. Returns -1 if none are. */
7021 ada_which_variant_applies (struct type *var_type, struct value *outer)
7025 const char *discrim_name = ada_variant_discrim_name (var_type);
7026 struct value *discrim;
7027 LONGEST discrim_val;
7029 /* Using plain value_from_contents_and_address here causes problems
7030 because we will end up trying to resolve a type that is currently
7031 being constructed. */
7032 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7033 if (discrim == NULL)
7035 discrim_val = value_as_long (discrim);
7038 for (i = 0; i < var_type->num_fields (); i += 1)
7040 if (ada_is_others_clause (var_type, i))
7042 else if (ada_in_variant (discrim_val, var_type, i))
7046 return others_clause;
7051 /* Dynamic-Sized Records */
7053 /* Strategy: The type ostensibly attached to a value with dynamic size
7054 (i.e., a size that is not statically recorded in the debugging
7055 data) does not accurately reflect the size or layout of the value.
7056 Our strategy is to convert these values to values with accurate,
7057 conventional types that are constructed on the fly. */
7059 /* There is a subtle and tricky problem here. In general, we cannot
7060 determine the size of dynamic records without its data. However,
7061 the 'struct value' data structure, which GDB uses to represent
7062 quantities in the inferior process (the target), requires the size
7063 of the type at the time of its allocation in order to reserve space
7064 for GDB's internal copy of the data. That's why the
7065 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7066 rather than struct value*s.
7068 However, GDB's internal history variables ($1, $2, etc.) are
7069 struct value*s containing internal copies of the data that are not, in
7070 general, the same as the data at their corresponding addresses in
7071 the target. Fortunately, the types we give to these values are all
7072 conventional, fixed-size types (as per the strategy described
7073 above), so that we don't usually have to perform the
7074 'to_fixed_xxx_type' conversions to look at their values.
7075 Unfortunately, there is one exception: if one of the internal
7076 history variables is an array whose elements are unconstrained
7077 records, then we will need to create distinct fixed types for each
7078 element selected. */
7080 /* The upshot of all of this is that many routines take a (type, host
7081 address, target address) triple as arguments to represent a value.
7082 The host address, if non-null, is supposed to contain an internal
7083 copy of the relevant data; otherwise, the program is to consult the
7084 target at the target address. */
7086 /* Assuming that VAL0 represents a pointer value, the result of
7087 dereferencing it. Differs from value_ind in its treatment of
7088 dynamic-sized types. */
7091 ada_value_ind (struct value *val0)
7093 struct value *val = value_ind (val0);
7095 if (ada_is_tagged_type (value_type (val), 0))
7096 val = ada_tag_value_at_base_address (val);
7098 return ada_to_fixed_value (val);
7101 /* The value resulting from dereferencing any "reference to"
7102 qualifiers on VAL0. */
7104 static struct value *
7105 ada_coerce_ref (struct value *val0)
7107 if (value_type (val0)->code () == TYPE_CODE_REF)
7109 struct value *val = val0;
7111 val = coerce_ref (val);
7113 if (ada_is_tagged_type (value_type (val), 0))
7114 val = ada_tag_value_at_base_address (val);
7116 return ada_to_fixed_value (val);
7122 /* Return the bit alignment required for field #F of template type TYPE. */
7125 field_alignment (struct type *type, int f)
7127 const char *name = TYPE_FIELD_NAME (type, f);
7131 /* The field name should never be null, unless the debugging information
7132 is somehow malformed. In this case, we assume the field does not
7133 require any alignment. */
7137 len = strlen (name);
7139 if (!isdigit (name[len - 1]))
7142 if (isdigit (name[len - 2]))
7143 align_offset = len - 2;
7145 align_offset = len - 1;
7147 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7148 return TARGET_CHAR_BIT;
7150 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7153 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7155 static struct symbol *
7156 ada_find_any_type_symbol (const char *name)
7160 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7161 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7164 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7168 /* Find a type named NAME. Ignores ambiguity. This routine will look
7169 solely for types defined by debug info, it will not search the GDB
7172 static struct type *
7173 ada_find_any_type (const char *name)
7175 struct symbol *sym = ada_find_any_type_symbol (name);
7178 return SYMBOL_TYPE (sym);
7183 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7184 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7185 symbol, in which case it is returned. Otherwise, this looks for
7186 symbols whose name is that of NAME_SYM suffixed with "___XR".
7187 Return symbol if found, and NULL otherwise. */
7190 ada_is_renaming_symbol (struct symbol *name_sym)
7192 const char *name = name_sym->linkage_name ();
7193 return strstr (name, "___XR") != NULL;
7196 /* Because of GNAT encoding conventions, several GDB symbols may match a
7197 given type name. If the type denoted by TYPE0 is to be preferred to
7198 that of TYPE1 for purposes of type printing, return non-zero;
7199 otherwise return 0. */
7202 ada_prefer_type (struct type *type0, struct type *type1)
7206 else if (type0 == NULL)
7208 else if (type1->code () == TYPE_CODE_VOID)
7210 else if (type0->code () == TYPE_CODE_VOID)
7212 else if (type1->name () == NULL && type0->name () != NULL)
7214 else if (ada_is_constrained_packed_array_type (type0))
7216 else if (ada_is_array_descriptor_type (type0)
7217 && !ada_is_array_descriptor_type (type1))
7221 const char *type0_name = type0->name ();
7222 const char *type1_name = type1->name ();
7224 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7225 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7231 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7235 ada_type_name (struct type *type)
7239 return type->name ();
7242 /* Search the list of "descriptive" types associated to TYPE for a type
7243 whose name is NAME. */
7245 static struct type *
7246 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7248 struct type *result, *tmp;
7250 if (ada_ignore_descriptive_types_p)
7253 /* If there no descriptive-type info, then there is no parallel type
7255 if (!HAVE_GNAT_AUX_INFO (type))
7258 result = TYPE_DESCRIPTIVE_TYPE (type);
7259 while (result != NULL)
7261 const char *result_name = ada_type_name (result);
7263 if (result_name == NULL)
7265 warning (_("unexpected null name on descriptive type"));
7269 /* If the names match, stop. */
7270 if (strcmp (result_name, name) == 0)
7273 /* Otherwise, look at the next item on the list, if any. */
7274 if (HAVE_GNAT_AUX_INFO (result))
7275 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7279 /* If not found either, try after having resolved the typedef. */
7284 result = check_typedef (result);
7285 if (HAVE_GNAT_AUX_INFO (result))
7286 result = TYPE_DESCRIPTIVE_TYPE (result);
7292 /* If we didn't find a match, see whether this is a packed array. With
7293 older compilers, the descriptive type information is either absent or
7294 irrelevant when it comes to packed arrays so the above lookup fails.
7295 Fall back to using a parallel lookup by name in this case. */
7296 if (result == NULL && ada_is_constrained_packed_array_type (type))
7297 return ada_find_any_type (name);
7302 /* Find a parallel type to TYPE with the specified NAME, using the
7303 descriptive type taken from the debugging information, if available,
7304 and otherwise using the (slower) name-based method. */
7306 static struct type *
7307 ada_find_parallel_type_with_name (struct type *type, const char *name)
7309 struct type *result = NULL;
7311 if (HAVE_GNAT_AUX_INFO (type))
7312 result = find_parallel_type_by_descriptive_type (type, name);
7314 result = ada_find_any_type (name);
7319 /* Same as above, but specify the name of the parallel type by appending
7320 SUFFIX to the name of TYPE. */
7323 ada_find_parallel_type (struct type *type, const char *suffix)
7326 const char *type_name = ada_type_name (type);
7329 if (type_name == NULL)
7332 len = strlen (type_name);
7334 name = (char *) alloca (len + strlen (suffix) + 1);
7336 strcpy (name, type_name);
7337 strcpy (name + len, suffix);
7339 return ada_find_parallel_type_with_name (type, name);
7342 /* If TYPE is a variable-size record type, return the corresponding template
7343 type describing its fields. Otherwise, return NULL. */
7345 static struct type *
7346 dynamic_template_type (struct type *type)
7348 type = ada_check_typedef (type);
7350 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7351 || ada_type_name (type) == NULL)
7355 int len = strlen (ada_type_name (type));
7357 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7360 return ada_find_parallel_type (type, "___XVE");
7364 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7365 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7368 is_dynamic_field (struct type *templ_type, int field_num)
7370 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7373 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7374 && strstr (name, "___XVL") != NULL;
7377 /* The index of the variant field of TYPE, or -1 if TYPE does not
7378 represent a variant record type. */
7381 variant_field_index (struct type *type)
7385 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7388 for (f = 0; f < type->num_fields (); f += 1)
7390 if (ada_is_variant_part (type, f))
7396 /* A record type with no fields. */
7398 static struct type *
7399 empty_record (struct type *templ)
7401 struct type *type = alloc_type_copy (templ);
7403 type->set_code (TYPE_CODE_STRUCT);
7404 INIT_NONE_SPECIFIC (type);
7405 type->set_name ("<empty>");
7406 TYPE_LENGTH (type) = 0;
7410 /* An ordinary record type (with fixed-length fields) that describes
7411 the value of type TYPE at VALADDR or ADDRESS (see comments at
7412 the beginning of this section) VAL according to GNAT conventions.
7413 DVAL0 should describe the (portion of a) record that contains any
7414 necessary discriminants. It should be NULL if value_type (VAL) is
7415 an outer-level type (i.e., as opposed to a branch of a variant.) A
7416 variant field (unless unchecked) is replaced by a particular branch
7419 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7420 length are not statically known are discarded. As a consequence,
7421 VALADDR, ADDRESS and DVAL0 are ignored.
7423 NOTE: Limitations: For now, we assume that dynamic fields and
7424 variants occupy whole numbers of bytes. However, they need not be
7428 ada_template_to_fixed_record_type_1 (struct type *type,
7429 const gdb_byte *valaddr,
7430 CORE_ADDR address, struct value *dval0,
7431 int keep_dynamic_fields)
7433 struct value *mark = value_mark ();
7436 int nfields, bit_len;
7442 /* Compute the number of fields in this record type that are going
7443 to be processed: unless keep_dynamic_fields, this includes only
7444 fields whose position and length are static will be processed. */
7445 if (keep_dynamic_fields)
7446 nfields = type->num_fields ();
7450 while (nfields < type->num_fields ()
7451 && !ada_is_variant_part (type, nfields)
7452 && !is_dynamic_field (type, nfields))
7456 rtype = alloc_type_copy (type);
7457 rtype->set_code (TYPE_CODE_STRUCT);
7458 INIT_NONE_SPECIFIC (rtype);
7459 rtype->set_num_fields (nfields);
7461 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7462 rtype->set_name (ada_type_name (type));
7463 rtype->set_is_fixed_instance (true);
7469 for (f = 0; f < nfields; f += 1)
7471 off = align_up (off, field_alignment (type, f))
7472 + TYPE_FIELD_BITPOS (type, f);
7473 SET_FIELD_BITPOS (rtype->field (f), off);
7474 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7476 if (ada_is_variant_part (type, f))
7481 else if (is_dynamic_field (type, f))
7483 const gdb_byte *field_valaddr = valaddr;
7484 CORE_ADDR field_address = address;
7485 struct type *field_type =
7486 TYPE_TARGET_TYPE (type->field (f).type ());
7490 /* rtype's length is computed based on the run-time
7491 value of discriminants. If the discriminants are not
7492 initialized, the type size may be completely bogus and
7493 GDB may fail to allocate a value for it. So check the
7494 size first before creating the value. */
7495 ada_ensure_varsize_limit (rtype);
7496 /* Using plain value_from_contents_and_address here
7497 causes problems because we will end up trying to
7498 resolve a type that is currently being
7500 dval = value_from_contents_and_address_unresolved (rtype,
7503 rtype = value_type (dval);
7508 /* If the type referenced by this field is an aligner type, we need
7509 to unwrap that aligner type, because its size might not be set.
7510 Keeping the aligner type would cause us to compute the wrong
7511 size for this field, impacting the offset of the all the fields
7512 that follow this one. */
7513 if (ada_is_aligner_type (field_type))
7515 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7517 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7518 field_address = cond_offset_target (field_address, field_offset);
7519 field_type = ada_aligned_type (field_type);
7522 field_valaddr = cond_offset_host (field_valaddr,
7523 off / TARGET_CHAR_BIT);
7524 field_address = cond_offset_target (field_address,
7525 off / TARGET_CHAR_BIT);
7527 /* Get the fixed type of the field. Note that, in this case,
7528 we do not want to get the real type out of the tag: if
7529 the current field is the parent part of a tagged record,
7530 we will get the tag of the object. Clearly wrong: the real
7531 type of the parent is not the real type of the child. We
7532 would end up in an infinite loop. */
7533 field_type = ada_get_base_type (field_type);
7534 field_type = ada_to_fixed_type (field_type, field_valaddr,
7535 field_address, dval, 0);
7536 /* If the field size is already larger than the maximum
7537 object size, then the record itself will necessarily
7538 be larger than the maximum object size. We need to make
7539 this check now, because the size might be so ridiculously
7540 large (due to an uninitialized variable in the inferior)
7541 that it would cause an overflow when adding it to the
7543 ada_ensure_varsize_limit (field_type);
7545 rtype->field (f).set_type (field_type);
7546 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7547 /* The multiplication can potentially overflow. But because
7548 the field length has been size-checked just above, and
7549 assuming that the maximum size is a reasonable value,
7550 an overflow should not happen in practice. So rather than
7551 adding overflow recovery code to this already complex code,
7552 we just assume that it's not going to happen. */
7554 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7558 /* Note: If this field's type is a typedef, it is important
7559 to preserve the typedef layer.
7561 Otherwise, we might be transforming a typedef to a fat
7562 pointer (encoding a pointer to an unconstrained array),
7563 into a basic fat pointer (encoding an unconstrained
7564 array). As both types are implemented using the same
7565 structure, the typedef is the only clue which allows us
7566 to distinguish between the two options. Stripping it
7567 would prevent us from printing this field appropriately. */
7568 rtype->field (f).set_type (type->field (f).type ());
7569 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7570 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7572 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7575 struct type *field_type = type->field (f).type ();
7577 /* We need to be careful of typedefs when computing
7578 the length of our field. If this is a typedef,
7579 get the length of the target type, not the length
7581 if (field_type->code () == TYPE_CODE_TYPEDEF)
7582 field_type = ada_typedef_target_type (field_type);
7585 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7588 if (off + fld_bit_len > bit_len)
7589 bit_len = off + fld_bit_len;
7591 TYPE_LENGTH (rtype) =
7592 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7595 /* We handle the variant part, if any, at the end because of certain
7596 odd cases in which it is re-ordered so as NOT to be the last field of
7597 the record. This can happen in the presence of representation
7599 if (variant_field >= 0)
7601 struct type *branch_type;
7603 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7607 /* Using plain value_from_contents_and_address here causes
7608 problems because we will end up trying to resolve a type
7609 that is currently being constructed. */
7610 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7612 rtype = value_type (dval);
7618 to_fixed_variant_branch_type
7619 (type->field (variant_field).type (),
7620 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7621 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7622 if (branch_type == NULL)
7624 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7625 rtype->field (f - 1) = rtype->field (f);
7626 rtype->set_num_fields (rtype->num_fields () - 1);
7630 rtype->field (variant_field).set_type (branch_type);
7631 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7633 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7635 if (off + fld_bit_len > bit_len)
7636 bit_len = off + fld_bit_len;
7637 TYPE_LENGTH (rtype) =
7638 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7642 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7643 should contain the alignment of that record, which should be a strictly
7644 positive value. If null or negative, then something is wrong, most
7645 probably in the debug info. In that case, we don't round up the size
7646 of the resulting type. If this record is not part of another structure,
7647 the current RTYPE length might be good enough for our purposes. */
7648 if (TYPE_LENGTH (type) <= 0)
7651 warning (_("Invalid type size for `%s' detected: %s."),
7652 rtype->name (), pulongest (TYPE_LENGTH (type)));
7654 warning (_("Invalid type size for <unnamed> detected: %s."),
7655 pulongest (TYPE_LENGTH (type)));
7659 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7660 TYPE_LENGTH (type));
7663 value_free_to_mark (mark);
7664 if (TYPE_LENGTH (rtype) > varsize_limit)
7665 error (_("record type with dynamic size is larger than varsize-limit"));
7669 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7672 static struct type *
7673 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7674 CORE_ADDR address, struct value *dval0)
7676 return ada_template_to_fixed_record_type_1 (type, valaddr,
7680 /* An ordinary record type in which ___XVL-convention fields and
7681 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7682 static approximations, containing all possible fields. Uses
7683 no runtime values. Useless for use in values, but that's OK,
7684 since the results are used only for type determinations. Works on both
7685 structs and unions. Representation note: to save space, we memorize
7686 the result of this function in the TYPE_TARGET_TYPE of the
7689 static struct type *
7690 template_to_static_fixed_type (struct type *type0)
7696 /* No need no do anything if the input type is already fixed. */
7697 if (type0->is_fixed_instance ())
7700 /* Likewise if we already have computed the static approximation. */
7701 if (TYPE_TARGET_TYPE (type0) != NULL)
7702 return TYPE_TARGET_TYPE (type0);
7704 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7706 nfields = type0->num_fields ();
7708 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7709 recompute all over next time. */
7710 TYPE_TARGET_TYPE (type0) = type;
7712 for (f = 0; f < nfields; f += 1)
7714 struct type *field_type = type0->field (f).type ();
7715 struct type *new_type;
7717 if (is_dynamic_field (type0, f))
7719 field_type = ada_check_typedef (field_type);
7720 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7723 new_type = static_unwrap_type (field_type);
7725 if (new_type != field_type)
7727 /* Clone TYPE0 only the first time we get a new field type. */
7730 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7731 type->set_code (type0->code ());
7732 INIT_NONE_SPECIFIC (type);
7733 type->set_num_fields (nfields);
7737 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7738 memcpy (fields, type0->fields (),
7739 sizeof (struct field) * nfields);
7740 type->set_fields (fields);
7742 type->set_name (ada_type_name (type0));
7743 type->set_is_fixed_instance (true);
7744 TYPE_LENGTH (type) = 0;
7746 type->field (f).set_type (new_type);
7747 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7754 /* Given an object of type TYPE whose contents are at VALADDR and
7755 whose address in memory is ADDRESS, returns a revision of TYPE,
7756 which should be a non-dynamic-sized record, in which the variant
7757 part, if any, is replaced with the appropriate branch. Looks
7758 for discriminant values in DVAL0, which can be NULL if the record
7759 contains the necessary discriminant values. */
7761 static struct type *
7762 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7763 CORE_ADDR address, struct value *dval0)
7765 struct value *mark = value_mark ();
7768 struct type *branch_type;
7769 int nfields = type->num_fields ();
7770 int variant_field = variant_field_index (type);
7772 if (variant_field == -1)
7777 dval = value_from_contents_and_address (type, valaddr, address);
7778 type = value_type (dval);
7783 rtype = alloc_type_copy (type);
7784 rtype->set_code (TYPE_CODE_STRUCT);
7785 INIT_NONE_SPECIFIC (rtype);
7786 rtype->set_num_fields (nfields);
7789 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7790 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7791 rtype->set_fields (fields);
7793 rtype->set_name (ada_type_name (type));
7794 rtype->set_is_fixed_instance (true);
7795 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7797 branch_type = to_fixed_variant_branch_type
7798 (type->field (variant_field).type (),
7799 cond_offset_host (valaddr,
7800 TYPE_FIELD_BITPOS (type, variant_field)
7802 cond_offset_target (address,
7803 TYPE_FIELD_BITPOS (type, variant_field)
7804 / TARGET_CHAR_BIT), dval);
7805 if (branch_type == NULL)
7809 for (f = variant_field + 1; f < nfields; f += 1)
7810 rtype->field (f - 1) = rtype->field (f);
7811 rtype->set_num_fields (rtype->num_fields () - 1);
7815 rtype->field (variant_field).set_type (branch_type);
7816 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7817 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7818 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7820 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7822 value_free_to_mark (mark);
7826 /* An ordinary record type (with fixed-length fields) that describes
7827 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7828 beginning of this section]. Any necessary discriminants' values
7829 should be in DVAL, a record value; it may be NULL if the object
7830 at ADDR itself contains any necessary discriminant values.
7831 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7832 values from the record are needed. Except in the case that DVAL,
7833 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7834 unchecked) is replaced by a particular branch of the variant.
7836 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7837 is questionable and may be removed. It can arise during the
7838 processing of an unconstrained-array-of-record type where all the
7839 variant branches have exactly the same size. This is because in
7840 such cases, the compiler does not bother to use the XVS convention
7841 when encoding the record. I am currently dubious of this
7842 shortcut and suspect the compiler should be altered. FIXME. */
7844 static struct type *
7845 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7846 CORE_ADDR address, struct value *dval)
7848 struct type *templ_type;
7850 if (type0->is_fixed_instance ())
7853 templ_type = dynamic_template_type (type0);
7855 if (templ_type != NULL)
7856 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7857 else if (variant_field_index (type0) >= 0)
7859 if (dval == NULL && valaddr == NULL && address == 0)
7861 return to_record_with_fixed_variant_part (type0, valaddr, address,
7866 type0->set_is_fixed_instance (true);
7872 /* An ordinary record type (with fixed-length fields) that describes
7873 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7874 union type. Any necessary discriminants' values should be in DVAL,
7875 a record value. That is, this routine selects the appropriate
7876 branch of the union at ADDR according to the discriminant value
7877 indicated in the union's type name. Returns VAR_TYPE0 itself if
7878 it represents a variant subject to a pragma Unchecked_Union. */
7880 static struct type *
7881 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7882 CORE_ADDR address, struct value *dval)
7885 struct type *templ_type;
7886 struct type *var_type;
7888 if (var_type0->code () == TYPE_CODE_PTR)
7889 var_type = TYPE_TARGET_TYPE (var_type0);
7891 var_type = var_type0;
7893 templ_type = ada_find_parallel_type (var_type, "___XVU");
7895 if (templ_type != NULL)
7896 var_type = templ_type;
7898 if (is_unchecked_variant (var_type, value_type (dval)))
7900 which = ada_which_variant_applies (var_type, dval);
7903 return empty_record (var_type);
7904 else if (is_dynamic_field (var_type, which))
7905 return to_fixed_record_type
7906 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7907 valaddr, address, dval);
7908 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7910 to_fixed_record_type
7911 (var_type->field (which).type (), valaddr, address, dval);
7913 return var_type->field (which).type ();
7916 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7917 ENCODING_TYPE, a type following the GNAT conventions for discrete
7918 type encodings, only carries redundant information. */
7921 ada_is_redundant_range_encoding (struct type *range_type,
7922 struct type *encoding_type)
7924 const char *bounds_str;
7928 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7930 if (get_base_type (range_type)->code ()
7931 != get_base_type (encoding_type)->code ())
7933 /* The compiler probably used a simple base type to describe
7934 the range type instead of the range's actual base type,
7935 expecting us to get the real base type from the encoding
7936 anyway. In this situation, the encoding cannot be ignored
7941 if (is_dynamic_type (range_type))
7944 if (encoding_type->name () == NULL)
7947 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7948 if (bounds_str == NULL)
7951 n = 8; /* Skip "___XDLU_". */
7952 if (!ada_scan_number (bounds_str, n, &lo, &n))
7954 if (range_type->bounds ()->low.const_val () != lo)
7957 n += 2; /* Skip the "__" separator between the two bounds. */
7958 if (!ada_scan_number (bounds_str, n, &hi, &n))
7960 if (range_type->bounds ()->high.const_val () != hi)
7966 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7967 a type following the GNAT encoding for describing array type
7968 indices, only carries redundant information. */
7971 ada_is_redundant_index_type_desc (struct type *array_type,
7972 struct type *desc_type)
7974 struct type *this_layer = check_typedef (array_type);
7977 for (i = 0; i < desc_type->num_fields (); i++)
7979 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7980 desc_type->field (i).type ()))
7982 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7988 /* Assuming that TYPE0 is an array type describing the type of a value
7989 at ADDR, and that DVAL describes a record containing any
7990 discriminants used in TYPE0, returns a type for the value that
7991 contains no dynamic components (that is, no components whose sizes
7992 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7993 true, gives an error message if the resulting type's size is over
7996 static struct type *
7997 to_fixed_array_type (struct type *type0, struct value *dval,
8000 struct type *index_type_desc;
8001 struct type *result;
8002 int constrained_packed_array_p;
8003 static const char *xa_suffix = "___XA";
8005 type0 = ada_check_typedef (type0);
8006 if (type0->is_fixed_instance ())
8009 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8010 if (constrained_packed_array_p)
8012 type0 = decode_constrained_packed_array_type (type0);
8013 if (type0 == nullptr)
8014 error (_("could not decode constrained packed array type"));
8017 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8019 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8020 encoding suffixed with 'P' may still be generated. If so,
8021 it should be used to find the XA type. */
8023 if (index_type_desc == NULL)
8025 const char *type_name = ada_type_name (type0);
8027 if (type_name != NULL)
8029 const int len = strlen (type_name);
8030 char *name = (char *) alloca (len + strlen (xa_suffix));
8032 if (type_name[len - 1] == 'P')
8034 strcpy (name, type_name);
8035 strcpy (name + len - 1, xa_suffix);
8036 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8041 ada_fixup_array_indexes_type (index_type_desc);
8042 if (index_type_desc != NULL
8043 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8045 /* Ignore this ___XA parallel type, as it does not bring any
8046 useful information. This allows us to avoid creating fixed
8047 versions of the array's index types, which would be identical
8048 to the original ones. This, in turn, can also help avoid
8049 the creation of fixed versions of the array itself. */
8050 index_type_desc = NULL;
8053 if (index_type_desc == NULL)
8055 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8057 /* NOTE: elt_type---the fixed version of elt_type0---should never
8058 depend on the contents of the array in properly constructed
8060 /* Create a fixed version of the array element type.
8061 We're not providing the address of an element here,
8062 and thus the actual object value cannot be inspected to do
8063 the conversion. This should not be a problem, since arrays of
8064 unconstrained objects are not allowed. In particular, all
8065 the elements of an array of a tagged type should all be of
8066 the same type specified in the debugging info. No need to
8067 consult the object tag. */
8068 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8070 /* Make sure we always create a new array type when dealing with
8071 packed array types, since we're going to fix-up the array
8072 type length and element bitsize a little further down. */
8073 if (elt_type0 == elt_type && !constrained_packed_array_p)
8076 result = create_array_type (alloc_type_copy (type0),
8077 elt_type, type0->index_type ());
8082 struct type *elt_type0;
8085 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8086 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8088 /* NOTE: result---the fixed version of elt_type0---should never
8089 depend on the contents of the array in properly constructed
8091 /* Create a fixed version of the array element type.
8092 We're not providing the address of an element here,
8093 and thus the actual object value cannot be inspected to do
8094 the conversion. This should not be a problem, since arrays of
8095 unconstrained objects are not allowed. In particular, all
8096 the elements of an array of a tagged type should all be of
8097 the same type specified in the debugging info. No need to
8098 consult the object tag. */
8100 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8103 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8105 struct type *range_type =
8106 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8108 result = create_array_type (alloc_type_copy (elt_type0),
8109 result, range_type);
8110 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8112 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8113 error (_("array type with dynamic size is larger than varsize-limit"));
8116 /* We want to preserve the type name. This can be useful when
8117 trying to get the type name of a value that has already been
8118 printed (for instance, if the user did "print VAR; whatis $". */
8119 result->set_name (type0->name ());
8121 if (constrained_packed_array_p)
8123 /* So far, the resulting type has been created as if the original
8124 type was a regular (non-packed) array type. As a result, the
8125 bitsize of the array elements needs to be set again, and the array
8126 length needs to be recomputed based on that bitsize. */
8127 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8128 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8130 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8131 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8132 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8133 TYPE_LENGTH (result)++;
8136 result->set_is_fixed_instance (true);
8141 /* A standard type (containing no dynamically sized components)
8142 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8143 DVAL describes a record containing any discriminants used in TYPE0,
8144 and may be NULL if there are none, or if the object of type TYPE at
8145 ADDRESS or in VALADDR contains these discriminants.
8147 If CHECK_TAG is not null, in the case of tagged types, this function
8148 attempts to locate the object's tag and use it to compute the actual
8149 type. However, when ADDRESS is null, we cannot use it to determine the
8150 location of the tag, and therefore compute the tagged type's actual type.
8151 So we return the tagged type without consulting the tag. */
8153 static struct type *
8154 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8155 CORE_ADDR address, struct value *dval, int check_tag)
8157 type = ada_check_typedef (type);
8159 /* Only un-fixed types need to be handled here. */
8160 if (!HAVE_GNAT_AUX_INFO (type))
8163 switch (type->code ())
8167 case TYPE_CODE_STRUCT:
8169 struct type *static_type = to_static_fixed_type (type);
8170 struct type *fixed_record_type =
8171 to_fixed_record_type (type, valaddr, address, NULL);
8173 /* If STATIC_TYPE is a tagged type and we know the object's address,
8174 then we can determine its tag, and compute the object's actual
8175 type from there. Note that we have to use the fixed record
8176 type (the parent part of the record may have dynamic fields
8177 and the way the location of _tag is expressed may depend on
8180 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8183 value_tag_from_contents_and_address
8187 struct type *real_type = type_from_tag (tag);
8189 value_from_contents_and_address (fixed_record_type,
8192 fixed_record_type = value_type (obj);
8193 if (real_type != NULL)
8194 return to_fixed_record_type
8196 value_address (ada_tag_value_at_base_address (obj)), NULL);
8199 /* Check to see if there is a parallel ___XVZ variable.
8200 If there is, then it provides the actual size of our type. */
8201 else if (ada_type_name (fixed_record_type) != NULL)
8203 const char *name = ada_type_name (fixed_record_type);
8205 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8206 bool xvz_found = false;
8209 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8212 xvz_found = get_int_var_value (xvz_name, size);
8214 catch (const gdb_exception_error &except)
8216 /* We found the variable, but somehow failed to read
8217 its value. Rethrow the same error, but with a little
8218 bit more information, to help the user understand
8219 what went wrong (Eg: the variable might have been
8221 throw_error (except.error,
8222 _("unable to read value of %s (%s)"),
8223 xvz_name, except.what ());
8226 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8228 fixed_record_type = copy_type (fixed_record_type);
8229 TYPE_LENGTH (fixed_record_type) = size;
8231 /* The FIXED_RECORD_TYPE may have be a stub. We have
8232 observed this when the debugging info is STABS, and
8233 apparently it is something that is hard to fix.
8235 In practice, we don't need the actual type definition
8236 at all, because the presence of the XVZ variable allows us
8237 to assume that there must be a XVS type as well, which we
8238 should be able to use later, when we need the actual type
8241 In the meantime, pretend that the "fixed" type we are
8242 returning is NOT a stub, because this can cause trouble
8243 when using this type to create new types targeting it.
8244 Indeed, the associated creation routines often check
8245 whether the target type is a stub and will try to replace
8246 it, thus using a type with the wrong size. This, in turn,
8247 might cause the new type to have the wrong size too.
8248 Consider the case of an array, for instance, where the size
8249 of the array is computed from the number of elements in
8250 our array multiplied by the size of its element. */
8251 fixed_record_type->set_is_stub (false);
8254 return fixed_record_type;
8256 case TYPE_CODE_ARRAY:
8257 return to_fixed_array_type (type, dval, 1);
8258 case TYPE_CODE_UNION:
8262 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8266 /* The same as ada_to_fixed_type_1, except that it preserves the type
8267 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8269 The typedef layer needs be preserved in order to differentiate between
8270 arrays and array pointers when both types are implemented using the same
8271 fat pointer. In the array pointer case, the pointer is encoded as
8272 a typedef of the pointer type. For instance, considering:
8274 type String_Access is access String;
8275 S1 : String_Access := null;
8277 To the debugger, S1 is defined as a typedef of type String. But
8278 to the user, it is a pointer. So if the user tries to print S1,
8279 we should not dereference the array, but print the array address
8282 If we didn't preserve the typedef layer, we would lose the fact that
8283 the type is to be presented as a pointer (needs de-reference before
8284 being printed). And we would also use the source-level type name. */
8287 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8288 CORE_ADDR address, struct value *dval, int check_tag)
8291 struct type *fixed_type =
8292 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8294 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8295 then preserve the typedef layer.
8297 Implementation note: We can only check the main-type portion of
8298 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8299 from TYPE now returns a type that has the same instance flags
8300 as TYPE. For instance, if TYPE is a "typedef const", and its
8301 target type is a "struct", then the typedef elimination will return
8302 a "const" version of the target type. See check_typedef for more
8303 details about how the typedef layer elimination is done.
8305 brobecker/2010-11-19: It seems to me that the only case where it is
8306 useful to preserve the typedef layer is when dealing with fat pointers.
8307 Perhaps, we could add a check for that and preserve the typedef layer
8308 only in that situation. But this seems unnecessary so far, probably
8309 because we call check_typedef/ada_check_typedef pretty much everywhere.
8311 if (type->code () == TYPE_CODE_TYPEDEF
8312 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8313 == TYPE_MAIN_TYPE (fixed_type)))
8319 /* A standard (static-sized) type corresponding as well as possible to
8320 TYPE0, but based on no runtime data. */
8322 static struct type *
8323 to_static_fixed_type (struct type *type0)
8330 if (type0->is_fixed_instance ())
8333 type0 = ada_check_typedef (type0);
8335 switch (type0->code ())
8339 case TYPE_CODE_STRUCT:
8340 type = dynamic_template_type (type0);
8342 return template_to_static_fixed_type (type);
8344 return template_to_static_fixed_type (type0);
8345 case TYPE_CODE_UNION:
8346 type = ada_find_parallel_type (type0, "___XVU");
8348 return template_to_static_fixed_type (type);
8350 return template_to_static_fixed_type (type0);
8354 /* A static approximation of TYPE with all type wrappers removed. */
8356 static struct type *
8357 static_unwrap_type (struct type *type)
8359 if (ada_is_aligner_type (type))
8361 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8362 if (ada_type_name (type1) == NULL)
8363 type1->set_name (ada_type_name (type));
8365 return static_unwrap_type (type1);
8369 struct type *raw_real_type = ada_get_base_type (type);
8371 if (raw_real_type == type)
8374 return to_static_fixed_type (raw_real_type);
8378 /* In some cases, incomplete and private types require
8379 cross-references that are not resolved as records (for example,
8381 type FooP is access Foo;
8383 type Foo is array ...;
8384 ). In these cases, since there is no mechanism for producing
8385 cross-references to such types, we instead substitute for FooP a
8386 stub enumeration type that is nowhere resolved, and whose tag is
8387 the name of the actual type. Call these types "non-record stubs". */
8389 /* A type equivalent to TYPE that is not a non-record stub, if one
8390 exists, otherwise TYPE. */
8393 ada_check_typedef (struct type *type)
8398 /* If our type is an access to an unconstrained array, which is encoded
8399 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8400 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8401 what allows us to distinguish between fat pointers that represent
8402 array types, and fat pointers that represent array access types
8403 (in both cases, the compiler implements them as fat pointers). */
8404 if (ada_is_access_to_unconstrained_array (type))
8407 type = check_typedef (type);
8408 if (type == NULL || type->code () != TYPE_CODE_ENUM
8409 || !type->is_stub ()
8410 || type->name () == NULL)
8414 const char *name = type->name ();
8415 struct type *type1 = ada_find_any_type (name);
8420 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8421 stubs pointing to arrays, as we don't create symbols for array
8422 types, only for the typedef-to-array types). If that's the case,
8423 strip the typedef layer. */
8424 if (type1->code () == TYPE_CODE_TYPEDEF)
8425 type1 = ada_check_typedef (type1);
8431 /* A value representing the data at VALADDR/ADDRESS as described by
8432 type TYPE0, but with a standard (static-sized) type that correctly
8433 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8434 type, then return VAL0 [this feature is simply to avoid redundant
8435 creation of struct values]. */
8437 static struct value *
8438 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8441 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8443 if (type == type0 && val0 != NULL)
8446 if (VALUE_LVAL (val0) != lval_memory)
8448 /* Our value does not live in memory; it could be a convenience
8449 variable, for instance. Create a not_lval value using val0's
8451 return value_from_contents (type, value_contents (val0));
8454 return value_from_contents_and_address (type, 0, address);
8457 /* A value representing VAL, but with a standard (static-sized) type
8458 that correctly describes it. Does not necessarily create a new
8462 ada_to_fixed_value (struct value *val)
8464 val = unwrap_value (val);
8465 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8472 /* Table mapping attribute numbers to names.
8473 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8475 static const char * const attribute_names[] = {
8493 ada_attribute_name (enum exp_opcode n)
8495 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8496 return attribute_names[n - OP_ATR_FIRST + 1];
8498 return attribute_names[0];
8501 /* Evaluate the 'POS attribute applied to ARG. */
8504 pos_atr (struct value *arg)
8506 struct value *val = coerce_ref (arg);
8507 struct type *type = value_type (val);
8509 if (!discrete_type_p (type))
8510 error (_("'POS only defined on discrete types"));
8512 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8513 if (!result.has_value ())
8514 error (_("enumeration value is invalid: can't find 'POS"));
8520 ada_pos_atr (struct type *expect_type,
8521 struct expression *exp,
8522 enum noside noside, enum exp_opcode op,
8525 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8526 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8527 return value_zero (type, not_lval);
8528 return value_from_longest (type, pos_atr (arg));
8531 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8533 static struct value *
8534 val_atr (struct type *type, LONGEST val)
8536 gdb_assert (discrete_type_p (type));
8537 if (type->code () == TYPE_CODE_RANGE)
8538 type = TYPE_TARGET_TYPE (type);
8539 if (type->code () == TYPE_CODE_ENUM)
8541 if (val < 0 || val >= type->num_fields ())
8542 error (_("argument to 'VAL out of range"));
8543 val = TYPE_FIELD_ENUMVAL (type, val);
8545 return value_from_longest (type, val);
8549 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8552 return value_zero (type, not_lval);
8554 if (!discrete_type_p (type))
8555 error (_("'VAL only defined on discrete types"));
8556 if (!integer_type_p (value_type (arg)))
8557 error (_("'VAL requires integral argument"));
8559 return val_atr (type, value_as_long (arg));
8565 /* True if TYPE appears to be an Ada character type.
8566 [At the moment, this is true only for Character and Wide_Character;
8567 It is a heuristic test that could stand improvement]. */
8570 ada_is_character_type (struct type *type)
8574 /* If the type code says it's a character, then assume it really is,
8575 and don't check any further. */
8576 if (type->code () == TYPE_CODE_CHAR)
8579 /* Otherwise, assume it's a character type iff it is a discrete type
8580 with a known character type name. */
8581 name = ada_type_name (type);
8582 return (name != NULL
8583 && (type->code () == TYPE_CODE_INT
8584 || type->code () == TYPE_CODE_RANGE)
8585 && (strcmp (name, "character") == 0
8586 || strcmp (name, "wide_character") == 0
8587 || strcmp (name, "wide_wide_character") == 0
8588 || strcmp (name, "unsigned char") == 0));
8591 /* True if TYPE appears to be an Ada string type. */
8594 ada_is_string_type (struct type *type)
8596 type = ada_check_typedef (type);
8598 && type->code () != TYPE_CODE_PTR
8599 && (ada_is_simple_array_type (type)
8600 || ada_is_array_descriptor_type (type))
8601 && ada_array_arity (type) == 1)
8603 struct type *elttype = ada_array_element_type (type, 1);
8605 return ada_is_character_type (elttype);
8611 /* The compiler sometimes provides a parallel XVS type for a given
8612 PAD type. Normally, it is safe to follow the PAD type directly,
8613 but older versions of the compiler have a bug that causes the offset
8614 of its "F" field to be wrong. Following that field in that case
8615 would lead to incorrect results, but this can be worked around
8616 by ignoring the PAD type and using the associated XVS type instead.
8618 Set to True if the debugger should trust the contents of PAD types.
8619 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8620 static bool trust_pad_over_xvs = true;
8622 /* True if TYPE is a struct type introduced by the compiler to force the
8623 alignment of a value. Such types have a single field with a
8624 distinctive name. */
8627 ada_is_aligner_type (struct type *type)
8629 type = ada_check_typedef (type);
8631 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8634 return (type->code () == TYPE_CODE_STRUCT
8635 && type->num_fields () == 1
8636 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8639 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8640 the parallel type. */
8643 ada_get_base_type (struct type *raw_type)
8645 struct type *real_type_namer;
8646 struct type *raw_real_type;
8648 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8651 if (ada_is_aligner_type (raw_type))
8652 /* The encoding specifies that we should always use the aligner type.
8653 So, even if this aligner type has an associated XVS type, we should
8656 According to the compiler gurus, an XVS type parallel to an aligner
8657 type may exist because of a stabs limitation. In stabs, aligner
8658 types are empty because the field has a variable-sized type, and
8659 thus cannot actually be used as an aligner type. As a result,
8660 we need the associated parallel XVS type to decode the type.
8661 Since the policy in the compiler is to not change the internal
8662 representation based on the debugging info format, we sometimes
8663 end up having a redundant XVS type parallel to the aligner type. */
8666 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8667 if (real_type_namer == NULL
8668 || real_type_namer->code () != TYPE_CODE_STRUCT
8669 || real_type_namer->num_fields () != 1)
8672 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8674 /* This is an older encoding form where the base type needs to be
8675 looked up by name. We prefer the newer encoding because it is
8677 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8678 if (raw_real_type == NULL)
8681 return raw_real_type;
8684 /* The field in our XVS type is a reference to the base type. */
8685 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8688 /* The type of value designated by TYPE, with all aligners removed. */
8691 ada_aligned_type (struct type *type)
8693 if (ada_is_aligner_type (type))
8694 return ada_aligned_type (type->field (0).type ());
8696 return ada_get_base_type (type);
8700 /* The address of the aligned value in an object at address VALADDR
8701 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8704 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8706 if (ada_is_aligner_type (type))
8707 return ada_aligned_value_addr (type->field (0).type (),
8709 TYPE_FIELD_BITPOS (type,
8710 0) / TARGET_CHAR_BIT);
8717 /* The printed representation of an enumeration literal with encoded
8718 name NAME. The value is good to the next call of ada_enum_name. */
8720 ada_enum_name (const char *name)
8722 static std::string storage;
8725 /* First, unqualify the enumeration name:
8726 1. Search for the last '.' character. If we find one, then skip
8727 all the preceding characters, the unqualified name starts
8728 right after that dot.
8729 2. Otherwise, we may be debugging on a target where the compiler
8730 translates dots into "__". Search forward for double underscores,
8731 but stop searching when we hit an overloading suffix, which is
8732 of the form "__" followed by digits. */
8734 tmp = strrchr (name, '.');
8739 while ((tmp = strstr (name, "__")) != NULL)
8741 if (isdigit (tmp[2]))
8752 if (name[1] == 'U' || name[1] == 'W')
8754 if (sscanf (name + 2, "%x", &v) != 1)
8757 else if (((name[1] >= '0' && name[1] <= '9')
8758 || (name[1] >= 'a' && name[1] <= 'z'))
8761 storage = string_printf ("'%c'", name[1]);
8762 return storage.c_str ();
8767 if (isascii (v) && isprint (v))
8768 storage = string_printf ("'%c'", v);
8769 else if (name[1] == 'U')
8770 storage = string_printf ("[\"%02x\"]", v);
8772 storage = string_printf ("[\"%04x\"]", v);
8774 return storage.c_str ();
8778 tmp = strstr (name, "__");
8780 tmp = strstr (name, "$");
8783 storage = std::string (name, tmp - name);
8784 return storage.c_str ();
8791 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8794 static struct value *
8795 unwrap_value (struct value *val)
8797 struct type *type = ada_check_typedef (value_type (val));
8799 if (ada_is_aligner_type (type))
8801 struct value *v = ada_value_struct_elt (val, "F", 0);
8802 struct type *val_type = ada_check_typedef (value_type (v));
8804 if (ada_type_name (val_type) == NULL)
8805 val_type->set_name (ada_type_name (type));
8807 return unwrap_value (v);
8811 struct type *raw_real_type =
8812 ada_check_typedef (ada_get_base_type (type));
8814 /* If there is no parallel XVS or XVE type, then the value is
8815 already unwrapped. Return it without further modification. */
8816 if ((type == raw_real_type)
8817 && ada_find_parallel_type (type, "___XVE") == NULL)
8821 coerce_unspec_val_to_type
8822 (val, ada_to_fixed_type (raw_real_type, 0,
8823 value_address (val),
8828 /* Given two array types T1 and T2, return nonzero iff both arrays
8829 contain the same number of elements. */
8832 ada_same_array_size_p (struct type *t1, struct type *t2)
8834 LONGEST lo1, hi1, lo2, hi2;
8836 /* Get the array bounds in order to verify that the size of
8837 the two arrays match. */
8838 if (!get_array_bounds (t1, &lo1, &hi1)
8839 || !get_array_bounds (t2, &lo2, &hi2))
8840 error (_("unable to determine array bounds"));
8842 /* To make things easier for size comparison, normalize a bit
8843 the case of empty arrays by making sure that the difference
8844 between upper bound and lower bound is always -1. */
8850 return (hi1 - lo1 == hi2 - lo2);
8853 /* Assuming that VAL is an array of integrals, and TYPE represents
8854 an array with the same number of elements, but with wider integral
8855 elements, return an array "casted" to TYPE. In practice, this
8856 means that the returned array is built by casting each element
8857 of the original array into TYPE's (wider) element type. */
8859 static struct value *
8860 ada_promote_array_of_integrals (struct type *type, struct value *val)
8862 struct type *elt_type = TYPE_TARGET_TYPE (type);
8867 /* Verify that both val and type are arrays of scalars, and
8868 that the size of val's elements is smaller than the size
8869 of type's element. */
8870 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8871 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8872 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8873 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8874 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8875 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8877 if (!get_array_bounds (type, &lo, &hi))
8878 error (_("unable to determine array bounds"));
8880 res = allocate_value (type);
8882 /* Promote each array element. */
8883 for (i = 0; i < hi - lo + 1; i++)
8885 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8887 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8888 value_contents_all (elt), TYPE_LENGTH (elt_type));
8894 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8895 return the converted value. */
8897 static struct value *
8898 coerce_for_assign (struct type *type, struct value *val)
8900 struct type *type2 = value_type (val);
8905 type2 = ada_check_typedef (type2);
8906 type = ada_check_typedef (type);
8908 if (type2->code () == TYPE_CODE_PTR
8909 && type->code () == TYPE_CODE_ARRAY)
8911 val = ada_value_ind (val);
8912 type2 = value_type (val);
8915 if (type2->code () == TYPE_CODE_ARRAY
8916 && type->code () == TYPE_CODE_ARRAY)
8918 if (!ada_same_array_size_p (type, type2))
8919 error (_("cannot assign arrays of different length"));
8921 if (is_integral_type (TYPE_TARGET_TYPE (type))
8922 && is_integral_type (TYPE_TARGET_TYPE (type2))
8923 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8924 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8926 /* Allow implicit promotion of the array elements to
8928 return ada_promote_array_of_integrals (type, val);
8931 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8932 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8933 error (_("Incompatible types in assignment"));
8934 deprecated_set_value_type (val, type);
8939 static struct value *
8940 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8943 struct type *type1, *type2;
8946 arg1 = coerce_ref (arg1);
8947 arg2 = coerce_ref (arg2);
8948 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8949 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8951 if (type1->code () != TYPE_CODE_INT
8952 || type2->code () != TYPE_CODE_INT)
8953 return value_binop (arg1, arg2, op);
8962 return value_binop (arg1, arg2, op);
8965 v2 = value_as_long (arg2);
8969 if (op == BINOP_MOD)
8971 else if (op == BINOP_DIV)
8975 gdb_assert (op == BINOP_REM);
8979 error (_("second operand of %s must not be zero."), name);
8982 if (type1->is_unsigned () || op == BINOP_MOD)
8983 return value_binop (arg1, arg2, op);
8985 v1 = value_as_long (arg1);
8990 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8991 v += v > 0 ? -1 : 1;
8999 /* Should not reach this point. */
9003 val = allocate_value (type1);
9004 store_unsigned_integer (value_contents_raw (val),
9005 TYPE_LENGTH (value_type (val)),
9006 type_byte_order (type1), v);
9011 ada_value_equal (struct value *arg1, struct value *arg2)
9013 if (ada_is_direct_array_type (value_type (arg1))
9014 || ada_is_direct_array_type (value_type (arg2)))
9016 struct type *arg1_type, *arg2_type;
9018 /* Automatically dereference any array reference before
9019 we attempt to perform the comparison. */
9020 arg1 = ada_coerce_ref (arg1);
9021 arg2 = ada_coerce_ref (arg2);
9023 arg1 = ada_coerce_to_simple_array (arg1);
9024 arg2 = ada_coerce_to_simple_array (arg2);
9026 arg1_type = ada_check_typedef (value_type (arg1));
9027 arg2_type = ada_check_typedef (value_type (arg2));
9029 if (arg1_type->code () != TYPE_CODE_ARRAY
9030 || arg2_type->code () != TYPE_CODE_ARRAY)
9031 error (_("Attempt to compare array with non-array"));
9032 /* FIXME: The following works only for types whose
9033 representations use all bits (no padding or undefined bits)
9034 and do not have user-defined equality. */
9035 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9036 && memcmp (value_contents (arg1), value_contents (arg2),
9037 TYPE_LENGTH (arg1_type)) == 0);
9039 return value_equal (arg1, arg2);
9046 check_objfile (const std::unique_ptr<ada_component> &comp,
9047 struct objfile *objfile)
9049 return comp->uses_objfile (objfile);
9052 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9053 component of LHS (a simple array or a record). Does not modify the
9054 inferior's memory, nor does it modify LHS (unless LHS ==
9058 assign_component (struct value *container, struct value *lhs, LONGEST index,
9059 struct expression *exp, operation_up &arg)
9061 scoped_value_mark mark;
9064 struct type *lhs_type = check_typedef (value_type (lhs));
9066 if (lhs_type->code () == TYPE_CODE_ARRAY)
9068 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9069 struct value *index_val = value_from_longest (index_type, index);
9071 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9075 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9076 elt = ada_to_fixed_value (elt);
9079 ada_aggregate_operation *ag_op
9080 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9081 if (ag_op != nullptr)
9082 ag_op->assign_aggregate (container, elt, exp);
9084 value_assign_to_component (container, elt,
9085 arg->evaluate (nullptr, exp,
9090 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9092 for (const auto &item : m_components)
9093 if (item->uses_objfile (objfile))
9099 ada_aggregate_component::dump (ui_file *stream, int depth)
9101 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9102 for (const auto &item : m_components)
9103 item->dump (stream, depth + 1);
9107 ada_aggregate_component::assign (struct value *container,
9108 struct value *lhs, struct expression *exp,
9109 std::vector<LONGEST> &indices,
9110 LONGEST low, LONGEST high)
9112 for (auto &item : m_components)
9113 item->assign (container, lhs, exp, indices, low, high);
9116 /* See ada-exp.h. */
9119 ada_aggregate_operation::assign_aggregate (struct value *container,
9121 struct expression *exp)
9123 struct type *lhs_type;
9124 LONGEST low_index, high_index;
9126 container = ada_coerce_ref (container);
9127 if (ada_is_direct_array_type (value_type (container)))
9128 container = ada_coerce_to_simple_array (container);
9129 lhs = ada_coerce_ref (lhs);
9130 if (!deprecated_value_modifiable (lhs))
9131 error (_("Left operand of assignment is not a modifiable lvalue."));
9133 lhs_type = check_typedef (value_type (lhs));
9134 if (ada_is_direct_array_type (lhs_type))
9136 lhs = ada_coerce_to_simple_array (lhs);
9137 lhs_type = check_typedef (value_type (lhs));
9138 low_index = lhs_type->bounds ()->low.const_val ();
9139 high_index = lhs_type->bounds ()->high.const_val ();
9141 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9144 high_index = num_visible_fields (lhs_type) - 1;
9147 error (_("Left-hand side must be array or record."));
9149 std::vector<LONGEST> indices (4);
9150 indices[0] = indices[1] = low_index - 1;
9151 indices[2] = indices[3] = high_index + 1;
9153 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9154 low_index, high_index);
9160 ada_positional_component::uses_objfile (struct objfile *objfile)
9162 return m_op->uses_objfile (objfile);
9166 ada_positional_component::dump (ui_file *stream, int depth)
9168 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9169 depth, "", m_index);
9170 m_op->dump (stream, depth + 1);
9173 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9174 construct, given that the positions are relative to lower bound
9175 LOW, where HIGH is the upper bound. Record the position in
9176 INDICES. CONTAINER is as for assign_aggregate. */
9178 ada_positional_component::assign (struct value *container,
9179 struct value *lhs, struct expression *exp,
9180 std::vector<LONGEST> &indices,
9181 LONGEST low, LONGEST high)
9183 LONGEST ind = m_index + low;
9185 if (ind - 1 == high)
9186 warning (_("Extra components in aggregate ignored."));
9189 add_component_interval (ind, ind, indices);
9190 assign_component (container, lhs, ind, exp, m_op);
9195 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9197 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9201 ada_discrete_range_association::dump (ui_file *stream, int depth)
9203 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9204 m_low->dump (stream, depth + 1);
9205 m_high->dump (stream, depth + 1);
9209 ada_discrete_range_association::assign (struct value *container,
9211 struct expression *exp,
9212 std::vector<LONGEST> &indices,
9213 LONGEST low, LONGEST high,
9216 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9217 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9219 if (lower <= upper && (lower < low || upper > high))
9220 error (_("Index in component association out of bounds."));
9222 add_component_interval (lower, upper, indices);
9223 while (lower <= upper)
9225 assign_component (container, lhs, lower, exp, op);
9231 ada_name_association::uses_objfile (struct objfile *objfile)
9233 return m_val->uses_objfile (objfile);
9237 ada_name_association::dump (ui_file *stream, int depth)
9239 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9240 m_val->dump (stream, depth + 1);
9244 ada_name_association::assign (struct value *container,
9246 struct expression *exp,
9247 std::vector<LONGEST> &indices,
9248 LONGEST low, LONGEST high,
9253 if (ada_is_direct_array_type (value_type (lhs)))
9254 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9258 ada_string_operation *strop
9259 = dynamic_cast<ada_string_operation *> (m_val.get ());
9262 if (strop != nullptr)
9263 name = strop->get_name ();
9266 ada_var_value_operation *vvo
9267 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9269 error (_("Invalid record component association."));
9270 name = vvo->get_symbol ()->natural_name ();
9274 if (! find_struct_field (name, value_type (lhs), 0,
9275 NULL, NULL, NULL, NULL, &index))
9276 error (_("Unknown component name: %s."), name);
9279 add_component_interval (index, index, indices);
9280 assign_component (container, lhs, index, exp, op);
9284 ada_choices_component::uses_objfile (struct objfile *objfile)
9286 if (m_op->uses_objfile (objfile))
9288 for (const auto &item : m_assocs)
9289 if (item->uses_objfile (objfile))
9295 ada_choices_component::dump (ui_file *stream, int depth)
9297 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9298 m_op->dump (stream, depth + 1);
9299 for (const auto &item : m_assocs)
9300 item->dump (stream, depth + 1);
9303 /* Assign into the components of LHS indexed by the OP_CHOICES
9304 construct at *POS, updating *POS past the construct, given that
9305 the allowable indices are LOW..HIGH. Record the indices assigned
9306 to in INDICES. CONTAINER is as for assign_aggregate. */
9308 ada_choices_component::assign (struct value *container,
9309 struct value *lhs, struct expression *exp,
9310 std::vector<LONGEST> &indices,
9311 LONGEST low, LONGEST high)
9313 for (auto &item : m_assocs)
9314 item->assign (container, lhs, exp, indices, low, high, m_op);
9318 ada_others_component::uses_objfile (struct objfile *objfile)
9320 return m_op->uses_objfile (objfile);
9324 ada_others_component::dump (ui_file *stream, int depth)
9326 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9327 m_op->dump (stream, depth + 1);
9330 /* Assign the value of the expression in the OP_OTHERS construct in
9331 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9332 have not been previously assigned. The index intervals already assigned
9333 are in INDICES. CONTAINER is as for assign_aggregate. */
9335 ada_others_component::assign (struct value *container,
9336 struct value *lhs, struct expression *exp,
9337 std::vector<LONGEST> &indices,
9338 LONGEST low, LONGEST high)
9340 int num_indices = indices.size ();
9341 for (int i = 0; i < num_indices - 2; i += 2)
9343 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9344 assign_component (container, lhs, ind, exp, m_op);
9349 ada_assign_operation::evaluate (struct type *expect_type,
9350 struct expression *exp,
9353 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9355 ada_aggregate_operation *ag_op
9356 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9357 if (ag_op != nullptr)
9359 if (noside != EVAL_NORMAL)
9362 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9363 return ada_value_assign (arg1, arg1);
9365 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9366 except if the lhs of our assignment is a convenience variable.
9367 In the case of assigning to a convenience variable, the lhs
9368 should be exactly the result of the evaluation of the rhs. */
9369 struct type *type = value_type (arg1);
9370 if (VALUE_LVAL (arg1) == lval_internalvar)
9372 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9373 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9375 if (VALUE_LVAL (arg1) == lval_internalvar)
9380 arg2 = coerce_for_assign (value_type (arg1), arg2);
9381 return ada_value_assign (arg1, arg2);
9384 } /* namespace expr */
9386 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9387 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9390 add_component_interval (LONGEST low, LONGEST high,
9391 std::vector<LONGEST> &indices)
9395 int size = indices.size ();
9396 for (i = 0; i < size; i += 2) {
9397 if (high >= indices[i] && low <= indices[i + 1])
9401 for (kh = i + 2; kh < size; kh += 2)
9402 if (high < indices[kh])
9404 if (low < indices[i])
9406 indices[i + 1] = indices[kh - 1];
9407 if (high > indices[i + 1])
9408 indices[i + 1] = high;
9409 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9410 indices.resize (kh - i - 2);
9413 else if (high < indices[i])
9417 indices.resize (indices.size () + 2);
9418 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9419 indices[j] = indices[j - 2];
9421 indices[i + 1] = high;
9424 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9427 static struct value *
9428 ada_value_cast (struct type *type, struct value *arg2)
9430 if (type == ada_check_typedef (value_type (arg2)))
9433 return value_cast (type, arg2);
9436 /* Evaluating Ada expressions, and printing their result.
9437 ------------------------------------------------------
9442 We usually evaluate an Ada expression in order to print its value.
9443 We also evaluate an expression in order to print its type, which
9444 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9445 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9446 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9447 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9450 Evaluating expressions is a little more complicated for Ada entities
9451 than it is for entities in languages such as C. The main reason for
9452 this is that Ada provides types whose definition might be dynamic.
9453 One example of such types is variant records. Or another example
9454 would be an array whose bounds can only be known at run time.
9456 The following description is a general guide as to what should be
9457 done (and what should NOT be done) in order to evaluate an expression
9458 involving such types, and when. This does not cover how the semantic
9459 information is encoded by GNAT as this is covered separatly. For the
9460 document used as the reference for the GNAT encoding, see exp_dbug.ads
9461 in the GNAT sources.
9463 Ideally, we should embed each part of this description next to its
9464 associated code. Unfortunately, the amount of code is so vast right
9465 now that it's hard to see whether the code handling a particular
9466 situation might be duplicated or not. One day, when the code is
9467 cleaned up, this guide might become redundant with the comments
9468 inserted in the code, and we might want to remove it.
9470 2. ``Fixing'' an Entity, the Simple Case:
9471 -----------------------------------------
9473 When evaluating Ada expressions, the tricky issue is that they may
9474 reference entities whose type contents and size are not statically
9475 known. Consider for instance a variant record:
9477 type Rec (Empty : Boolean := True) is record
9480 when False => Value : Integer;
9483 Yes : Rec := (Empty => False, Value => 1);
9484 No : Rec := (empty => True);
9486 The size and contents of that record depends on the value of the
9487 descriminant (Rec.Empty). At this point, neither the debugging
9488 information nor the associated type structure in GDB are able to
9489 express such dynamic types. So what the debugger does is to create
9490 "fixed" versions of the type that applies to the specific object.
9491 We also informally refer to this operation as "fixing" an object,
9492 which means creating its associated fixed type.
9494 Example: when printing the value of variable "Yes" above, its fixed
9495 type would look like this:
9502 On the other hand, if we printed the value of "No", its fixed type
9509 Things become a little more complicated when trying to fix an entity
9510 with a dynamic type that directly contains another dynamic type,
9511 such as an array of variant records, for instance. There are
9512 two possible cases: Arrays, and records.
9514 3. ``Fixing'' Arrays:
9515 ---------------------
9517 The type structure in GDB describes an array in terms of its bounds,
9518 and the type of its elements. By design, all elements in the array
9519 have the same type and we cannot represent an array of variant elements
9520 using the current type structure in GDB. When fixing an array,
9521 we cannot fix the array element, as we would potentially need one
9522 fixed type per element of the array. As a result, the best we can do
9523 when fixing an array is to produce an array whose bounds and size
9524 are correct (allowing us to read it from memory), but without having
9525 touched its element type. Fixing each element will be done later,
9526 when (if) necessary.
9528 Arrays are a little simpler to handle than records, because the same
9529 amount of memory is allocated for each element of the array, even if
9530 the amount of space actually used by each element differs from element
9531 to element. Consider for instance the following array of type Rec:
9533 type Rec_Array is array (1 .. 2) of Rec;
9535 The actual amount of memory occupied by each element might be different
9536 from element to element, depending on the value of their discriminant.
9537 But the amount of space reserved for each element in the array remains
9538 fixed regardless. So we simply need to compute that size using
9539 the debugging information available, from which we can then determine
9540 the array size (we multiply the number of elements of the array by
9541 the size of each element).
9543 The simplest case is when we have an array of a constrained element
9544 type. For instance, consider the following type declarations:
9546 type Bounded_String (Max_Size : Integer) is
9548 Buffer : String (1 .. Max_Size);
9550 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9552 In this case, the compiler describes the array as an array of
9553 variable-size elements (identified by its XVS suffix) for which
9554 the size can be read in the parallel XVZ variable.
9556 In the case of an array of an unconstrained element type, the compiler
9557 wraps the array element inside a private PAD type. This type should not
9558 be shown to the user, and must be "unwrap"'ed before printing. Note
9559 that we also use the adjective "aligner" in our code to designate
9560 these wrapper types.
9562 In some cases, the size allocated for each element is statically
9563 known. In that case, the PAD type already has the correct size,
9564 and the array element should remain unfixed.
9566 But there are cases when this size is not statically known.
9567 For instance, assuming that "Five" is an integer variable:
9569 type Dynamic is array (1 .. Five) of Integer;
9570 type Wrapper (Has_Length : Boolean := False) is record
9573 when True => Length : Integer;
9577 type Wrapper_Array is array (1 .. 2) of Wrapper;
9579 Hello : Wrapper_Array := (others => (Has_Length => True,
9580 Data => (others => 17),
9584 The debugging info would describe variable Hello as being an
9585 array of a PAD type. The size of that PAD type is not statically
9586 known, but can be determined using a parallel XVZ variable.
9587 In that case, a copy of the PAD type with the correct size should
9588 be used for the fixed array.
9590 3. ``Fixing'' record type objects:
9591 ----------------------------------
9593 Things are slightly different from arrays in the case of dynamic
9594 record types. In this case, in order to compute the associated
9595 fixed type, we need to determine the size and offset of each of
9596 its components. This, in turn, requires us to compute the fixed
9597 type of each of these components.
9599 Consider for instance the example:
9601 type Bounded_String (Max_Size : Natural) is record
9602 Str : String (1 .. Max_Size);
9605 My_String : Bounded_String (Max_Size => 10);
9607 In that case, the position of field "Length" depends on the size
9608 of field Str, which itself depends on the value of the Max_Size
9609 discriminant. In order to fix the type of variable My_String,
9610 we need to fix the type of field Str. Therefore, fixing a variant
9611 record requires us to fix each of its components.
9613 However, if a component does not have a dynamic size, the component
9614 should not be fixed. In particular, fields that use a PAD type
9615 should not fixed. Here is an example where this might happen
9616 (assuming type Rec above):
9618 type Container (Big : Boolean) is record
9622 when True => Another : Integer;
9626 My_Container : Container := (Big => False,
9627 First => (Empty => True),
9630 In that example, the compiler creates a PAD type for component First,
9631 whose size is constant, and then positions the component After just
9632 right after it. The offset of component After is therefore constant
9635 The debugger computes the position of each field based on an algorithm
9636 that uses, among other things, the actual position and size of the field
9637 preceding it. Let's now imagine that the user is trying to print
9638 the value of My_Container. If the type fixing was recursive, we would
9639 end up computing the offset of field After based on the size of the
9640 fixed version of field First. And since in our example First has
9641 only one actual field, the size of the fixed type is actually smaller
9642 than the amount of space allocated to that field, and thus we would
9643 compute the wrong offset of field After.
9645 To make things more complicated, we need to watch out for dynamic
9646 components of variant records (identified by the ___XVL suffix in
9647 the component name). Even if the target type is a PAD type, the size
9648 of that type might not be statically known. So the PAD type needs
9649 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9650 we might end up with the wrong size for our component. This can be
9651 observed with the following type declarations:
9653 type Octal is new Integer range 0 .. 7;
9654 type Octal_Array is array (Positive range <>) of Octal;
9655 pragma Pack (Octal_Array);
9657 type Octal_Buffer (Size : Positive) is record
9658 Buffer : Octal_Array (1 .. Size);
9662 In that case, Buffer is a PAD type whose size is unset and needs
9663 to be computed by fixing the unwrapped type.
9665 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9666 ----------------------------------------------------------
9668 Lastly, when should the sub-elements of an entity that remained unfixed
9669 thus far, be actually fixed?
9671 The answer is: Only when referencing that element. For instance
9672 when selecting one component of a record, this specific component
9673 should be fixed at that point in time. Or when printing the value
9674 of a record, each component should be fixed before its value gets
9675 printed. Similarly for arrays, the element of the array should be
9676 fixed when printing each element of the array, or when extracting
9677 one element out of that array. On the other hand, fixing should
9678 not be performed on the elements when taking a slice of an array!
9680 Note that one of the side effects of miscomputing the offset and
9681 size of each field is that we end up also miscomputing the size
9682 of the containing type. This can have adverse results when computing
9683 the value of an entity. GDB fetches the value of an entity based
9684 on the size of its type, and thus a wrong size causes GDB to fetch
9685 the wrong amount of memory. In the case where the computed size is
9686 too small, GDB fetches too little data to print the value of our
9687 entity. Results in this case are unpredictable, as we usually read
9688 past the buffer containing the data =:-o. */
9690 /* A helper function for TERNOP_IN_RANGE. */
9693 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9695 value *arg1, value *arg2, value *arg3)
9697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9698 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9699 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9701 value_from_longest (type,
9702 (value_less (arg1, arg3)
9703 || value_equal (arg1, arg3))
9704 && (value_less (arg2, arg1)
9705 || value_equal (arg2, arg1)));
9708 /* A helper function for UNOP_NEG. */
9711 ada_unop_neg (struct type *expect_type,
9712 struct expression *exp,
9713 enum noside noside, enum exp_opcode op,
9716 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9717 return value_neg (arg1);
9720 /* A helper function for UNOP_IN_RANGE. */
9723 ada_unop_in_range (struct type *expect_type,
9724 struct expression *exp,
9725 enum noside noside, enum exp_opcode op,
9726 struct value *arg1, struct type *type)
9728 struct value *arg2, *arg3;
9729 switch (type->code ())
9732 lim_warning (_("Membership test incompletely implemented; "
9733 "always returns true"));
9734 type = language_bool_type (exp->language_defn, exp->gdbarch);
9735 return value_from_longest (type, (LONGEST) 1);
9737 case TYPE_CODE_RANGE:
9738 arg2 = value_from_longest (type,
9739 type->bounds ()->low.const_val ());
9740 arg3 = value_from_longest (type,
9741 type->bounds ()->high.const_val ());
9742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9744 type = language_bool_type (exp->language_defn, exp->gdbarch);
9746 value_from_longest (type,
9747 (value_less (arg1, arg3)
9748 || value_equal (arg1, arg3))
9749 && (value_less (arg2, arg1)
9750 || value_equal (arg2, arg1)));
9754 /* A helper function for OP_ATR_TAG. */
9757 ada_atr_tag (struct type *expect_type,
9758 struct expression *exp,
9759 enum noside noside, enum exp_opcode op,
9762 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9763 return value_zero (ada_tag_type (arg1), not_lval);
9765 return ada_value_tag (arg1);
9768 /* A helper function for OP_ATR_SIZE. */
9771 ada_atr_size (struct type *expect_type,
9772 struct expression *exp,
9773 enum noside noside, enum exp_opcode op,
9776 struct type *type = value_type (arg1);
9778 /* If the argument is a reference, then dereference its type, since
9779 the user is really asking for the size of the actual object,
9780 not the size of the pointer. */
9781 if (type->code () == TYPE_CODE_REF)
9782 type = TYPE_TARGET_TYPE (type);
9784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9785 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9787 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9788 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9791 /* A helper function for UNOP_ABS. */
9794 ada_abs (struct type *expect_type,
9795 struct expression *exp,
9796 enum noside noside, enum exp_opcode op,
9799 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9800 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9801 return value_neg (arg1);
9806 /* A helper function for BINOP_MUL. */
9809 ada_mult_binop (struct type *expect_type,
9810 struct expression *exp,
9811 enum noside noside, enum exp_opcode op,
9812 struct value *arg1, struct value *arg2)
9814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9816 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9817 return value_zero (value_type (arg1), not_lval);
9821 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9822 return ada_value_binop (arg1, arg2, op);
9826 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9829 ada_equal_binop (struct type *expect_type,
9830 struct expression *exp,
9831 enum noside noside, enum exp_opcode op,
9832 struct value *arg1, struct value *arg2)
9835 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9840 tem = ada_value_equal (arg1, arg2);
9842 if (op == BINOP_NOTEQUAL)
9844 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9845 return value_from_longest (type, (LONGEST) tem);
9848 /* A helper function for TERNOP_SLICE. */
9851 ada_ternop_slice (struct expression *exp,
9853 struct value *array, struct value *low_bound_val,
9854 struct value *high_bound_val)
9859 low_bound_val = coerce_ref (low_bound_val);
9860 high_bound_val = coerce_ref (high_bound_val);
9861 low_bound = value_as_long (low_bound_val);
9862 high_bound = value_as_long (high_bound_val);
9864 /* If this is a reference to an aligner type, then remove all
9866 if (value_type (array)->code () == TYPE_CODE_REF
9867 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9868 TYPE_TARGET_TYPE (value_type (array)) =
9869 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9871 if (ada_is_any_packed_array_type (value_type (array)))
9872 error (_("cannot slice a packed array"));
9874 /* If this is a reference to an array or an array lvalue,
9875 convert to a pointer. */
9876 if (value_type (array)->code () == TYPE_CODE_REF
9877 || (value_type (array)->code () == TYPE_CODE_ARRAY
9878 && VALUE_LVAL (array) == lval_memory))
9879 array = value_addr (array);
9881 if (noside == EVAL_AVOID_SIDE_EFFECTS
9882 && ada_is_array_descriptor_type (ada_check_typedef
9883 (value_type (array))))
9884 return empty_array (ada_type_of_array (array, 0), low_bound,
9887 array = ada_coerce_to_simple_array_ptr (array);
9889 /* If we have more than one level of pointer indirection,
9890 dereference the value until we get only one level. */
9891 while (value_type (array)->code () == TYPE_CODE_PTR
9892 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9894 array = value_ind (array);
9896 /* Make sure we really do have an array type before going further,
9897 to avoid a SEGV when trying to get the index type or the target
9898 type later down the road if the debug info generated by
9899 the compiler is incorrect or incomplete. */
9900 if (!ada_is_simple_array_type (value_type (array)))
9901 error (_("cannot take slice of non-array"));
9903 if (ada_check_typedef (value_type (array))->code ()
9906 struct type *type0 = ada_check_typedef (value_type (array));
9908 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9909 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9912 struct type *arr_type0 =
9913 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9915 return ada_value_slice_from_ptr (array, arr_type0,
9916 longest_to_int (low_bound),
9917 longest_to_int (high_bound));
9920 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9922 else if (high_bound < low_bound)
9923 return empty_array (value_type (array), low_bound, high_bound);
9925 return ada_value_slice (array, longest_to_int (low_bound),
9926 longest_to_int (high_bound));
9929 /* A helper function for BINOP_IN_BOUNDS. */
9932 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9933 struct value *arg1, struct value *arg2, int n)
9935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9937 struct type *type = language_bool_type (exp->language_defn,
9939 return value_zero (type, not_lval);
9942 struct type *type = ada_index_type (value_type (arg2), n, "range");
9944 type = value_type (arg1);
9946 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9947 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9949 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9950 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9951 type = language_bool_type (exp->language_defn, exp->gdbarch);
9952 return value_from_longest (type,
9953 (value_less (arg1, arg3)
9954 || value_equal (arg1, arg3))
9955 && (value_less (arg2, arg1)
9956 || value_equal (arg2, arg1)));
9959 /* A helper function for some attribute operations. */
9962 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9963 struct value *arg1, struct type *type_arg, int tem)
9965 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9967 if (type_arg == NULL)
9968 type_arg = value_type (arg1);
9970 if (ada_is_constrained_packed_array_type (type_arg))
9971 type_arg = decode_constrained_packed_array_type (type_arg);
9973 if (!discrete_type_p (type_arg))
9977 default: /* Should never happen. */
9978 error (_("unexpected attribute encountered"));
9981 type_arg = ada_index_type (type_arg, tem,
9982 ada_attribute_name (op));
9985 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9990 return value_zero (type_arg, not_lval);
9992 else if (type_arg == NULL)
9994 arg1 = ada_coerce_ref (arg1);
9996 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9997 arg1 = ada_coerce_to_simple_array (arg1);
10000 if (op == OP_ATR_LENGTH)
10001 type = builtin_type (exp->gdbarch)->builtin_int;
10004 type = ada_index_type (value_type (arg1), tem,
10005 ada_attribute_name (op));
10007 type = builtin_type (exp->gdbarch)->builtin_int;
10012 default: /* Should never happen. */
10013 error (_("unexpected attribute encountered"));
10015 return value_from_longest
10016 (type, ada_array_bound (arg1, tem, 0));
10018 return value_from_longest
10019 (type, ada_array_bound (arg1, tem, 1));
10020 case OP_ATR_LENGTH:
10021 return value_from_longest
10022 (type, ada_array_length (arg1, tem));
10025 else if (discrete_type_p (type_arg))
10027 struct type *range_type;
10028 const char *name = ada_type_name (type_arg);
10031 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10032 range_type = to_fixed_range_type (type_arg, NULL);
10033 if (range_type == NULL)
10034 range_type = type_arg;
10038 error (_("unexpected attribute encountered"));
10040 return value_from_longest
10041 (range_type, ada_discrete_type_low_bound (range_type));
10043 return value_from_longest
10044 (range_type, ada_discrete_type_high_bound (range_type));
10045 case OP_ATR_LENGTH:
10046 error (_("the 'length attribute applies only to array types"));
10049 else if (type_arg->code () == TYPE_CODE_FLT)
10050 error (_("unimplemented type attribute"));
10055 if (ada_is_constrained_packed_array_type (type_arg))
10056 type_arg = decode_constrained_packed_array_type (type_arg);
10059 if (op == OP_ATR_LENGTH)
10060 type = builtin_type (exp->gdbarch)->builtin_int;
10063 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10065 type = builtin_type (exp->gdbarch)->builtin_int;
10071 error (_("unexpected attribute encountered"));
10073 low = ada_array_bound_from_type (type_arg, tem, 0);
10074 return value_from_longest (type, low);
10076 high = ada_array_bound_from_type (type_arg, tem, 1);
10077 return value_from_longest (type, high);
10078 case OP_ATR_LENGTH:
10079 low = ada_array_bound_from_type (type_arg, tem, 0);
10080 high = ada_array_bound_from_type (type_arg, tem, 1);
10081 return value_from_longest (type, high - low + 1);
10086 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10089 ada_binop_minmax (struct type *expect_type,
10090 struct expression *exp,
10091 enum noside noside, enum exp_opcode op,
10092 struct value *arg1, struct value *arg2)
10094 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10095 return value_zero (value_type (arg1), not_lval);
10098 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10099 return value_binop (arg1, arg2, op);
10103 /* A helper function for BINOP_EXP. */
10106 ada_binop_exp (struct type *expect_type,
10107 struct expression *exp,
10108 enum noside noside, enum exp_opcode op,
10109 struct value *arg1, struct value *arg2)
10111 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10112 return value_zero (value_type (arg1), not_lval);
10115 /* For integer exponentiation operations,
10116 only promote the first argument. */
10117 if (is_integral_type (value_type (arg2)))
10118 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10122 return value_binop (arg1, arg2, op);
10129 /* See ada-exp.h. */
10132 ada_resolvable::replace (operation_up &&owner,
10133 struct expression *exp,
10134 bool deprocedure_p,
10135 bool parse_completion,
10136 innermost_block_tracker *tracker,
10137 struct type *context_type)
10139 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10140 return (make_operation<ada_funcall_operation>
10141 (std::move (owner),
10142 std::vector<operation_up> ()));
10143 return std::move (owner);
10146 /* Convert the character literal whose ASCII value would be VAL to the
10147 appropriate value of type TYPE, if there is a translation.
10148 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10149 the literal 'A' (VAL == 65), returns 0. */
10152 convert_char_literal (struct type *type, LONGEST val)
10159 type = check_typedef (type);
10160 if (type->code () != TYPE_CODE_ENUM)
10163 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10164 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10166 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10167 size_t len = strlen (name);
10168 for (f = 0; f < type->num_fields (); f += 1)
10170 /* Check the suffix because an enum constant in a package will
10171 have a name like "pkg__QUxx". This is safe enough because we
10172 already have the correct type, and because mangling means
10173 there can't be clashes. */
10174 const char *ename = TYPE_FIELD_NAME (type, f);
10175 size_t elen = strlen (ename);
10177 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10178 return TYPE_FIELD_ENUMVAL (type, f);
10183 /* See ada-exp.h. */
10186 ada_char_operation::replace (operation_up &&owner,
10187 struct expression *exp,
10188 bool deprocedure_p,
10189 bool parse_completion,
10190 innermost_block_tracker *tracker,
10191 struct type *context_type)
10193 operation_up result = std::move (owner);
10195 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10197 gdb_assert (result.get () == this);
10198 std::get<0> (m_storage) = context_type;
10199 std::get<1> (m_storage)
10200 = convert_char_literal (context_type, std::get<1> (m_storage));
10203 return make_operation<ada_wrapped_operation> (std::move (result));
10207 ada_wrapped_operation::evaluate (struct type *expect_type,
10208 struct expression *exp,
10209 enum noside noside)
10211 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10212 if (noside == EVAL_NORMAL)
10213 result = unwrap_value (result);
10215 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10216 then we need to perform the conversion manually, because
10217 evaluate_subexp_standard doesn't do it. This conversion is
10218 necessary in Ada because the different kinds of float/fixed
10219 types in Ada have different representations.
10221 Similarly, we need to perform the conversion from OP_LONG
10223 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10224 result = ada_value_cast (expect_type, result);
10230 ada_string_operation::evaluate (struct type *expect_type,
10231 struct expression *exp,
10232 enum noside noside)
10234 value *result = string_operation::evaluate (expect_type, exp, noside);
10235 /* The result type will have code OP_STRING, bashed there from
10236 OP_ARRAY. Bash it back. */
10237 if (value_type (result)->code () == TYPE_CODE_STRING)
10238 value_type (result)->set_code (TYPE_CODE_ARRAY);
10243 ada_qual_operation::evaluate (struct type *expect_type,
10244 struct expression *exp,
10245 enum noside noside)
10247 struct type *type = std::get<1> (m_storage);
10248 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10252 ada_ternop_range_operation::evaluate (struct type *expect_type,
10253 struct expression *exp,
10254 enum noside noside)
10256 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10257 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10258 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10259 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10263 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10264 struct expression *exp,
10265 enum noside noside)
10267 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10268 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10270 auto do_op = [=] (LONGEST x, LONGEST y)
10272 if (std::get<0> (m_storage) == BINOP_ADD)
10277 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10278 return (value_from_longest
10279 (value_type (arg1),
10280 do_op (value_as_long (arg1), value_as_long (arg2))));
10281 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10282 return (value_from_longest
10283 (value_type (arg2),
10284 do_op (value_as_long (arg1), value_as_long (arg2))));
10285 /* Preserve the original type for use by the range case below.
10286 We cannot cast the result to a reference type, so if ARG1 is
10287 a reference type, find its underlying type. */
10288 struct type *type = value_type (arg1);
10289 while (type->code () == TYPE_CODE_REF)
10290 type = TYPE_TARGET_TYPE (type);
10291 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10292 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10293 /* We need to special-case the result with a range.
10294 This is done for the benefit of "ptype". gdb's Ada support
10295 historically used the LHS to set the result type here, so
10296 preserve this behavior. */
10297 if (type->code () == TYPE_CODE_RANGE)
10298 arg1 = value_cast (type, arg1);
10303 ada_unop_atr_operation::evaluate (struct type *expect_type,
10304 struct expression *exp,
10305 enum noside noside)
10307 struct type *type_arg = nullptr;
10308 value *val = nullptr;
10310 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10312 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10313 EVAL_AVOID_SIDE_EFFECTS);
10314 type_arg = value_type (tem);
10317 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10319 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10320 val, type_arg, std::get<2> (m_storage));
10324 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10325 struct expression *exp,
10326 enum noside noside)
10328 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10329 return value_zero (expect_type, not_lval);
10331 const bound_minimal_symbol &b = std::get<0> (m_storage);
10332 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10334 val = ada_value_cast (expect_type, val);
10336 /* Follow the Ada language semantics that do not allow taking
10337 an address of the result of a cast (view conversion in Ada). */
10338 if (VALUE_LVAL (val) == lval_memory)
10340 if (value_lazy (val))
10341 value_fetch_lazy (val);
10342 VALUE_LVAL (val) = not_lval;
10348 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10349 struct expression *exp,
10350 enum noside noside)
10352 value *val = evaluate_var_value (noside,
10353 std::get<0> (m_storage).block,
10354 std::get<0> (m_storage).symbol);
10356 val = ada_value_cast (expect_type, val);
10358 /* Follow the Ada language semantics that do not allow taking
10359 an address of the result of a cast (view conversion in Ada). */
10360 if (VALUE_LVAL (val) == lval_memory)
10362 if (value_lazy (val))
10363 value_fetch_lazy (val);
10364 VALUE_LVAL (val) = not_lval;
10370 ada_var_value_operation::evaluate (struct type *expect_type,
10371 struct expression *exp,
10372 enum noside noside)
10374 symbol *sym = std::get<0> (m_storage).symbol;
10376 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10377 /* Only encountered when an unresolved symbol occurs in a
10378 context other than a function call, in which case, it is
10380 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10381 sym->print_name ());
10383 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10385 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10386 /* Check to see if this is a tagged type. We also need to handle
10387 the case where the type is a reference to a tagged type, but
10388 we have to be careful to exclude pointers to tagged types.
10389 The latter should be shown as usual (as a pointer), whereas
10390 a reference should mostly be transparent to the user. */
10391 if (ada_is_tagged_type (type, 0)
10392 || (type->code () == TYPE_CODE_REF
10393 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10395 /* Tagged types are a little special in the fact that the real
10396 type is dynamic and can only be determined by inspecting the
10397 object's tag. This means that we need to get the object's
10398 value first (EVAL_NORMAL) and then extract the actual object
10401 Note that we cannot skip the final step where we extract
10402 the object type from its tag, because the EVAL_NORMAL phase
10403 results in dynamic components being resolved into fixed ones.
10404 This can cause problems when trying to print the type
10405 description of tagged types whose parent has a dynamic size:
10406 We use the type name of the "_parent" component in order
10407 to print the name of the ancestor type in the type description.
10408 If that component had a dynamic size, the resolution into
10409 a fixed type would result in the loss of that type name,
10410 thus preventing us from printing the name of the ancestor
10411 type in the type description. */
10412 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10414 if (type->code () != TYPE_CODE_REF)
10416 struct type *actual_type;
10418 actual_type = type_from_tag (ada_value_tag (arg1));
10419 if (actual_type == NULL)
10420 /* If, for some reason, we were unable to determine
10421 the actual type from the tag, then use the static
10422 approximation that we just computed as a fallback.
10423 This can happen if the debugging information is
10424 incomplete, for instance. */
10425 actual_type = type;
10426 return value_zero (actual_type, not_lval);
10430 /* In the case of a ref, ada_coerce_ref takes care
10431 of determining the actual type. But the evaluation
10432 should return a ref as it should be valid to ask
10433 for its address; so rebuild a ref after coerce. */
10434 arg1 = ada_coerce_ref (arg1);
10435 return value_ref (arg1, TYPE_CODE_REF);
10439 /* Records and unions for which GNAT encodings have been
10440 generated need to be statically fixed as well.
10441 Otherwise, non-static fixing produces a type where
10442 all dynamic properties are removed, which prevents "ptype"
10443 from being able to completely describe the type.
10444 For instance, a case statement in a variant record would be
10445 replaced by the relevant components based on the actual
10446 value of the discriminants. */
10447 if ((type->code () == TYPE_CODE_STRUCT
10448 && dynamic_template_type (type) != NULL)
10449 || (type->code () == TYPE_CODE_UNION
10450 && ada_find_parallel_type (type, "___XVU") != NULL))
10451 return value_zero (to_static_fixed_type (type), not_lval);
10454 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10455 return ada_to_fixed_value (arg1);
10459 ada_var_value_operation::resolve (struct expression *exp,
10460 bool deprocedure_p,
10461 bool parse_completion,
10462 innermost_block_tracker *tracker,
10463 struct type *context_type)
10465 symbol *sym = std::get<0> (m_storage).symbol;
10466 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10468 block_symbol resolved
10469 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10470 context_type, parse_completion,
10471 deprocedure_p, tracker);
10472 std::get<0> (m_storage) = resolved;
10476 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10477 == TYPE_CODE_FUNC))
10484 ada_atr_val_operation::evaluate (struct type *expect_type,
10485 struct expression *exp,
10486 enum noside noside)
10488 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10489 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10493 ada_unop_ind_operation::evaluate (struct type *expect_type,
10494 struct expression *exp,
10495 enum noside noside)
10497 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10499 struct type *type = ada_check_typedef (value_type (arg1));
10500 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10502 if (ada_is_array_descriptor_type (type))
10503 /* GDB allows dereferencing GNAT array descriptors. */
10505 struct type *arrType = ada_type_of_array (arg1, 0);
10507 if (arrType == NULL)
10508 error (_("Attempt to dereference null array pointer."));
10509 return value_at_lazy (arrType, 0);
10511 else if (type->code () == TYPE_CODE_PTR
10512 || type->code () == TYPE_CODE_REF
10513 /* In C you can dereference an array to get the 1st elt. */
10514 || type->code () == TYPE_CODE_ARRAY)
10516 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10517 only be determined by inspecting the object's tag.
10518 This means that we need to evaluate completely the
10519 expression in order to get its type. */
10521 if ((type->code () == TYPE_CODE_REF
10522 || type->code () == TYPE_CODE_PTR)
10523 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10525 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10527 type = value_type (ada_value_ind (arg1));
10531 type = to_static_fixed_type
10533 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10535 ada_ensure_varsize_limit (type);
10536 return value_zero (type, lval_memory);
10538 else if (type->code () == TYPE_CODE_INT)
10540 /* GDB allows dereferencing an int. */
10541 if (expect_type == NULL)
10542 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10547 to_static_fixed_type (ada_aligned_type (expect_type));
10548 return value_zero (expect_type, lval_memory);
10552 error (_("Attempt to take contents of a non-pointer value."));
10554 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10555 type = ada_check_typedef (value_type (arg1));
10557 if (type->code () == TYPE_CODE_INT)
10558 /* GDB allows dereferencing an int. If we were given
10559 the expect_type, then use that as the target type.
10560 Otherwise, assume that the target type is an int. */
10562 if (expect_type != NULL)
10563 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10566 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10567 (CORE_ADDR) value_as_address (arg1));
10570 struct type *target_type = (to_static_fixed_type
10572 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10573 ada_ensure_varsize_limit (target_type);
10575 if (ada_is_array_descriptor_type (type))
10576 /* GDB allows dereferencing GNAT array descriptors. */
10577 return ada_coerce_to_simple_array (arg1);
10579 return ada_value_ind (arg1);
10583 ada_structop_operation::evaluate (struct type *expect_type,
10584 struct expression *exp,
10585 enum noside noside)
10587 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10588 const char *str = std::get<1> (m_storage).c_str ();
10589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10592 struct type *type1 = value_type (arg1);
10594 if (ada_is_tagged_type (type1, 1))
10596 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10598 /* If the field is not found, check if it exists in the
10599 extension of this object's type. This means that we
10600 need to evaluate completely the expression. */
10604 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10606 arg1 = ada_value_struct_elt (arg1, str, 0);
10607 arg1 = unwrap_value (arg1);
10608 type = value_type (ada_to_fixed_value (arg1));
10612 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10614 return value_zero (ada_aligned_type (type), lval_memory);
10618 arg1 = ada_value_struct_elt (arg1, str, 0);
10619 arg1 = unwrap_value (arg1);
10620 return ada_to_fixed_value (arg1);
10625 ada_funcall_operation::evaluate (struct type *expect_type,
10626 struct expression *exp,
10627 enum noside noside)
10629 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10630 int nargs = args_up.size ();
10631 std::vector<value *> argvec (nargs);
10632 operation_up &callee_op = std::get<0> (m_storage);
10634 ada_var_value_operation *avv
10635 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10637 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10638 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10639 avv->get_symbol ()->print_name ());
10641 value *callee = callee_op->evaluate (nullptr, exp, noside);
10642 for (int i = 0; i < args_up.size (); ++i)
10643 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10645 if (ada_is_constrained_packed_array_type
10646 (desc_base_type (value_type (callee))))
10647 callee = ada_coerce_to_simple_array (callee);
10648 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10649 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10650 /* This is a packed array that has already been fixed, and
10651 therefore already coerced to a simple array. Nothing further
10654 else if (value_type (callee)->code () == TYPE_CODE_REF)
10656 /* Make sure we dereference references so that all the code below
10657 feels like it's really handling the referenced value. Wrapping
10658 types (for alignment) may be there, so make sure we strip them as
10660 callee = ada_to_fixed_value (coerce_ref (callee));
10662 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10663 && VALUE_LVAL (callee) == lval_memory)
10664 callee = value_addr (callee);
10666 struct type *type = ada_check_typedef (value_type (callee));
10668 /* Ada allows us to implicitly dereference arrays when subscripting
10669 them. So, if this is an array typedef (encoding use for array
10670 access types encoded as fat pointers), strip it now. */
10671 if (type->code () == TYPE_CODE_TYPEDEF)
10672 type = ada_typedef_target_type (type);
10674 if (type->code () == TYPE_CODE_PTR)
10676 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10678 case TYPE_CODE_FUNC:
10679 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10681 case TYPE_CODE_ARRAY:
10683 case TYPE_CODE_STRUCT:
10684 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10685 callee = ada_value_ind (callee);
10686 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10689 error (_("cannot subscript or call something of type `%s'"),
10690 ada_type_name (value_type (callee)));
10695 switch (type->code ())
10697 case TYPE_CODE_FUNC:
10698 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 if (TYPE_TARGET_TYPE (type) == NULL)
10701 error_call_unknown_return_type (NULL);
10702 return allocate_value (TYPE_TARGET_TYPE (type));
10704 return call_function_by_hand (callee, NULL, argvec);
10705 case TYPE_CODE_INTERNAL_FUNCTION:
10706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10707 /* We don't know anything about what the internal
10708 function might return, but we have to return
10710 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10713 return call_internal_function (exp->gdbarch, exp->language_defn,
10717 case TYPE_CODE_STRUCT:
10721 arity = ada_array_arity (type);
10722 type = ada_array_element_type (type, nargs);
10724 error (_("cannot subscript or call a record"));
10725 if (arity != nargs)
10726 error (_("wrong number of subscripts; expecting %d"), arity);
10727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10728 return value_zero (ada_aligned_type (type), lval_memory);
10730 unwrap_value (ada_value_subscript
10731 (callee, nargs, argvec.data ()));
10733 case TYPE_CODE_ARRAY:
10734 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10736 type = ada_array_element_type (type, nargs);
10738 error (_("element type of array unknown"));
10740 return value_zero (ada_aligned_type (type), lval_memory);
10743 unwrap_value (ada_value_subscript
10744 (ada_coerce_to_simple_array (callee),
10745 nargs, argvec.data ()));
10746 case TYPE_CODE_PTR: /* Pointer to array */
10747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10749 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10750 type = ada_array_element_type (type, nargs);
10752 error (_("element type of array unknown"));
10754 return value_zero (ada_aligned_type (type), lval_memory);
10757 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10761 error (_("Attempt to index or call something other than an "
10762 "array or function"));
10767 ada_funcall_operation::resolve (struct expression *exp,
10768 bool deprocedure_p,
10769 bool parse_completion,
10770 innermost_block_tracker *tracker,
10771 struct type *context_type)
10773 operation_up &callee_op = std::get<0> (m_storage);
10775 ada_var_value_operation *avv
10776 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10777 if (avv == nullptr)
10780 symbol *sym = avv->get_symbol ();
10781 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10784 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10785 int nargs = args_up.size ();
10786 std::vector<value *> argvec (nargs);
10788 for (int i = 0; i < args_up.size (); ++i)
10789 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10791 const block *block = avv->get_block ();
10792 block_symbol resolved
10793 = ada_resolve_funcall (sym, block,
10794 context_type, parse_completion,
10795 nargs, argvec.data (),
10798 std::get<0> (m_storage)
10799 = make_operation<ada_var_value_operation> (resolved);
10804 ada_ternop_slice_operation::resolve (struct expression *exp,
10805 bool deprocedure_p,
10806 bool parse_completion,
10807 innermost_block_tracker *tracker,
10808 struct type *context_type)
10810 /* Historically this check was done during resolution, so we
10811 continue that here. */
10812 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10813 EVAL_AVOID_SIDE_EFFECTS);
10814 if (ada_is_any_packed_array_type (value_type (v)))
10815 error (_("cannot slice a packed array"));
10823 /* Return non-zero iff TYPE represents a System.Address type. */
10826 ada_is_system_address_type (struct type *type)
10828 return (type->name () && strcmp (type->name (), "system__address") == 0);
10835 /* Scan STR beginning at position K for a discriminant name, and
10836 return the value of that discriminant field of DVAL in *PX. If
10837 PNEW_K is not null, put the position of the character beyond the
10838 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10839 not alter *PX and *PNEW_K if unsuccessful. */
10842 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10845 static std::string storage;
10846 const char *pstart, *pend, *bound;
10847 struct value *bound_val;
10849 if (dval == NULL || str == NULL || str[k] == '\0')
10853 pend = strstr (pstart, "__");
10857 k += strlen (bound);
10861 int len = pend - pstart;
10863 /* Strip __ and beyond. */
10864 storage = std::string (pstart, len);
10865 bound = storage.c_str ();
10869 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10870 if (bound_val == NULL)
10873 *px = value_as_long (bound_val);
10874 if (pnew_k != NULL)
10879 /* Value of variable named NAME. Only exact matches are considered.
10880 If no such variable found, then if ERR_MSG is null, returns 0, and
10881 otherwise causes an error with message ERR_MSG. */
10883 static struct value *
10884 get_var_value (const char *name, const char *err_msg)
10886 std::string quoted_name = add_angle_brackets (name);
10888 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10890 std::vector<struct block_symbol> syms
10891 = ada_lookup_symbol_list_worker (lookup_name,
10892 get_selected_block (0),
10895 if (syms.size () != 1)
10897 if (err_msg == NULL)
10900 error (("%s"), err_msg);
10903 return value_of_variable (syms[0].symbol, syms[0].block);
10906 /* Value of integer variable named NAME in the current environment.
10907 If no such variable is found, returns false. Otherwise, sets VALUE
10908 to the variable's value and returns true. */
10911 get_int_var_value (const char *name, LONGEST &value)
10913 struct value *var_val = get_var_value (name, 0);
10918 value = value_as_long (var_val);
10923 /* Return a range type whose base type is that of the range type named
10924 NAME in the current environment, and whose bounds are calculated
10925 from NAME according to the GNAT range encoding conventions.
10926 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10927 corresponding range type from debug information; fall back to using it
10928 if symbol lookup fails. If a new type must be created, allocate it
10929 like ORIG_TYPE was. The bounds information, in general, is encoded
10930 in NAME, the base type given in the named range type. */
10932 static struct type *
10933 to_fixed_range_type (struct type *raw_type, struct value *dval)
10936 struct type *base_type;
10937 const char *subtype_info;
10939 gdb_assert (raw_type != NULL);
10940 gdb_assert (raw_type->name () != NULL);
10942 if (raw_type->code () == TYPE_CODE_RANGE)
10943 base_type = TYPE_TARGET_TYPE (raw_type);
10945 base_type = raw_type;
10947 name = raw_type->name ();
10948 subtype_info = strstr (name, "___XD");
10949 if (subtype_info == NULL)
10951 LONGEST L = ada_discrete_type_low_bound (raw_type);
10952 LONGEST U = ada_discrete_type_high_bound (raw_type);
10954 if (L < INT_MIN || U > INT_MAX)
10957 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10962 int prefix_len = subtype_info - name;
10965 const char *bounds_str;
10969 bounds_str = strchr (subtype_info, '_');
10972 if (*subtype_info == 'L')
10974 if (!ada_scan_number (bounds_str, n, &L, &n)
10975 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10977 if (bounds_str[n] == '_')
10979 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10985 std::string name_buf = std::string (name, prefix_len) + "___L";
10986 if (!get_int_var_value (name_buf.c_str (), L))
10988 lim_warning (_("Unknown lower bound, using 1."));
10993 if (*subtype_info == 'U')
10995 if (!ada_scan_number (bounds_str, n, &U, &n)
10996 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11001 std::string name_buf = std::string (name, prefix_len) + "___U";
11002 if (!get_int_var_value (name_buf.c_str (), U))
11004 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11009 type = create_static_range_type (alloc_type_copy (raw_type),
11011 /* create_static_range_type alters the resulting type's length
11012 to match the size of the base_type, which is not what we want.
11013 Set it back to the original range type's length. */
11014 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11015 type->set_name (name);
11020 /* True iff NAME is the name of a range type. */
11023 ada_is_range_type_name (const char *name)
11025 return (name != NULL && strstr (name, "___XD"));
11029 /* Modular types */
11031 /* True iff TYPE is an Ada modular type. */
11034 ada_is_modular_type (struct type *type)
11036 struct type *subranged_type = get_base_type (type);
11038 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11039 && subranged_type->code () == TYPE_CODE_INT
11040 && subranged_type->is_unsigned ());
11043 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11046 ada_modulus (struct type *type)
11048 const dynamic_prop &high = type->bounds ()->high;
11050 if (high.kind () == PROP_CONST)
11051 return (ULONGEST) high.const_val () + 1;
11053 /* If TYPE is unresolved, the high bound might be a location list. Return
11054 0, for lack of a better value to return. */
11059 /* Ada exception catchpoint support:
11060 ---------------------------------
11062 We support 3 kinds of exception catchpoints:
11063 . catchpoints on Ada exceptions
11064 . catchpoints on unhandled Ada exceptions
11065 . catchpoints on failed assertions
11067 Exceptions raised during failed assertions, or unhandled exceptions
11068 could perfectly be caught with the general catchpoint on Ada exceptions.
11069 However, we can easily differentiate these two special cases, and having
11070 the option to distinguish these two cases from the rest can be useful
11071 to zero-in on certain situations.
11073 Exception catchpoints are a specialized form of breakpoint,
11074 since they rely on inserting breakpoints inside known routines
11075 of the GNAT runtime. The implementation therefore uses a standard
11076 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11079 Support in the runtime for exception catchpoints have been changed
11080 a few times already, and these changes affect the implementation
11081 of these catchpoints. In order to be able to support several
11082 variants of the runtime, we use a sniffer that will determine
11083 the runtime variant used by the program being debugged. */
11085 /* Ada's standard exceptions.
11087 The Ada 83 standard also defined Numeric_Error. But there so many
11088 situations where it was unclear from the Ada 83 Reference Manual
11089 (RM) whether Constraint_Error or Numeric_Error should be raised,
11090 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11091 Interpretation saying that anytime the RM says that Numeric_Error
11092 should be raised, the implementation may raise Constraint_Error.
11093 Ada 95 went one step further and pretty much removed Numeric_Error
11094 from the list of standard exceptions (it made it a renaming of
11095 Constraint_Error, to help preserve compatibility when compiling
11096 an Ada83 compiler). As such, we do not include Numeric_Error from
11097 this list of standard exceptions. */
11099 static const char * const standard_exc[] = {
11100 "constraint_error",
11106 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11108 /* A structure that describes how to support exception catchpoints
11109 for a given executable. */
11111 struct exception_support_info
11113 /* The name of the symbol to break on in order to insert
11114 a catchpoint on exceptions. */
11115 const char *catch_exception_sym;
11117 /* The name of the symbol to break on in order to insert
11118 a catchpoint on unhandled exceptions. */
11119 const char *catch_exception_unhandled_sym;
11121 /* The name of the symbol to break on in order to insert
11122 a catchpoint on failed assertions. */
11123 const char *catch_assert_sym;
11125 /* The name of the symbol to break on in order to insert
11126 a catchpoint on exception handling. */
11127 const char *catch_handlers_sym;
11129 /* Assuming that the inferior just triggered an unhandled exception
11130 catchpoint, this function is responsible for returning the address
11131 in inferior memory where the name of that exception is stored.
11132 Return zero if the address could not be computed. */
11133 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11136 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11137 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11139 /* The following exception support info structure describes how to
11140 implement exception catchpoints with the latest version of the
11141 Ada runtime (as of 2019-08-??). */
11143 static const struct exception_support_info default_exception_support_info =
11145 "__gnat_debug_raise_exception", /* catch_exception_sym */
11146 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11147 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11148 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11149 ada_unhandled_exception_name_addr
11152 /* The following exception support info structure describes how to
11153 implement exception catchpoints with an earlier version of the
11154 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11156 static const struct exception_support_info exception_support_info_v0 =
11158 "__gnat_debug_raise_exception", /* catch_exception_sym */
11159 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11160 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11161 "__gnat_begin_handler", /* catch_handlers_sym */
11162 ada_unhandled_exception_name_addr
11165 /* The following exception support info structure describes how to
11166 implement exception catchpoints with a slightly older version
11167 of the Ada runtime. */
11169 static const struct exception_support_info exception_support_info_fallback =
11171 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11172 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11173 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11174 "__gnat_begin_handler", /* catch_handlers_sym */
11175 ada_unhandled_exception_name_addr_from_raise
11178 /* Return nonzero if we can detect the exception support routines
11179 described in EINFO.
11181 This function errors out if an abnormal situation is detected
11182 (for instance, if we find the exception support routines, but
11183 that support is found to be incomplete). */
11186 ada_has_this_exception_support (const struct exception_support_info *einfo)
11188 struct symbol *sym;
11190 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11191 that should be compiled with debugging information. As a result, we
11192 expect to find that symbol in the symtabs. */
11194 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11197 /* Perhaps we did not find our symbol because the Ada runtime was
11198 compiled without debugging info, or simply stripped of it.
11199 It happens on some GNU/Linux distributions for instance, where
11200 users have to install a separate debug package in order to get
11201 the runtime's debugging info. In that situation, let the user
11202 know why we cannot insert an Ada exception catchpoint.
11204 Note: Just for the purpose of inserting our Ada exception
11205 catchpoint, we could rely purely on the associated minimal symbol.
11206 But we would be operating in degraded mode anyway, since we are
11207 still lacking the debugging info needed later on to extract
11208 the name of the exception being raised (this name is printed in
11209 the catchpoint message, and is also used when trying to catch
11210 a specific exception). We do not handle this case for now. */
11211 struct bound_minimal_symbol msym
11212 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11214 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11215 error (_("Your Ada runtime appears to be missing some debugging "
11216 "information.\nCannot insert Ada exception catchpoint "
11217 "in this configuration."));
11222 /* Make sure that the symbol we found corresponds to a function. */
11224 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11226 error (_("Symbol \"%s\" is not a function (class = %d)"),
11227 sym->linkage_name (), SYMBOL_CLASS (sym));
11231 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11234 struct bound_minimal_symbol msym
11235 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11237 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11238 error (_("Your Ada runtime appears to be missing some debugging "
11239 "information.\nCannot insert Ada exception catchpoint "
11240 "in this configuration."));
11245 /* Make sure that the symbol we found corresponds to a function. */
11247 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11249 error (_("Symbol \"%s\" is not a function (class = %d)"),
11250 sym->linkage_name (), SYMBOL_CLASS (sym));
11257 /* Inspect the Ada runtime and determine which exception info structure
11258 should be used to provide support for exception catchpoints.
11260 This function will always set the per-inferior exception_info,
11261 or raise an error. */
11264 ada_exception_support_info_sniffer (void)
11266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11268 /* If the exception info is already known, then no need to recompute it. */
11269 if (data->exception_info != NULL)
11272 /* Check the latest (default) exception support info. */
11273 if (ada_has_this_exception_support (&default_exception_support_info))
11275 data->exception_info = &default_exception_support_info;
11279 /* Try the v0 exception suport info. */
11280 if (ada_has_this_exception_support (&exception_support_info_v0))
11282 data->exception_info = &exception_support_info_v0;
11286 /* Try our fallback exception suport info. */
11287 if (ada_has_this_exception_support (&exception_support_info_fallback))
11289 data->exception_info = &exception_support_info_fallback;
11293 /* Sometimes, it is normal for us to not be able to find the routine
11294 we are looking for. This happens when the program is linked with
11295 the shared version of the GNAT runtime, and the program has not been
11296 started yet. Inform the user of these two possible causes if
11299 if (ada_update_initial_language (language_unknown) != language_ada)
11300 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11302 /* If the symbol does not exist, then check that the program is
11303 already started, to make sure that shared libraries have been
11304 loaded. If it is not started, this may mean that the symbol is
11305 in a shared library. */
11307 if (inferior_ptid.pid () == 0)
11308 error (_("Unable to insert catchpoint. Try to start the program first."));
11310 /* At this point, we know that we are debugging an Ada program and
11311 that the inferior has been started, but we still are not able to
11312 find the run-time symbols. That can mean that we are in
11313 configurable run time mode, or that a-except as been optimized
11314 out by the linker... In any case, at this point it is not worth
11315 supporting this feature. */
11317 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11320 /* True iff FRAME is very likely to be that of a function that is
11321 part of the runtime system. This is all very heuristic, but is
11322 intended to be used as advice as to what frames are uninteresting
11326 is_known_support_routine (struct frame_info *frame)
11328 enum language func_lang;
11330 const char *fullname;
11332 /* If this code does not have any debugging information (no symtab),
11333 This cannot be any user code. */
11335 symtab_and_line sal = find_frame_sal (frame);
11336 if (sal.symtab == NULL)
11339 /* If there is a symtab, but the associated source file cannot be
11340 located, then assume this is not user code: Selecting a frame
11341 for which we cannot display the code would not be very helpful
11342 for the user. This should also take care of case such as VxWorks
11343 where the kernel has some debugging info provided for a few units. */
11345 fullname = symtab_to_fullname (sal.symtab);
11346 if (access (fullname, R_OK) != 0)
11349 /* Check the unit filename against the Ada runtime file naming.
11350 We also check the name of the objfile against the name of some
11351 known system libraries that sometimes come with debugging info
11354 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11356 re_comp (known_runtime_file_name_patterns[i]);
11357 if (re_exec (lbasename (sal.symtab->filename)))
11359 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11360 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11364 /* Check whether the function is a GNAT-generated entity. */
11366 gdb::unique_xmalloc_ptr<char> func_name
11367 = find_frame_funname (frame, &func_lang, NULL);
11368 if (func_name == NULL)
11371 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11373 re_comp (known_auxiliary_function_name_patterns[i]);
11374 if (re_exec (func_name.get ()))
11381 /* Find the first frame that contains debugging information and that is not
11382 part of the Ada run-time, starting from FI and moving upward. */
11385 ada_find_printable_frame (struct frame_info *fi)
11387 for (; fi != NULL; fi = get_prev_frame (fi))
11389 if (!is_known_support_routine (fi))
11398 /* Assuming that the inferior just triggered an unhandled exception
11399 catchpoint, return the address in inferior memory where the name
11400 of the exception is stored.
11402 Return zero if the address could not be computed. */
11405 ada_unhandled_exception_name_addr (void)
11407 return parse_and_eval_address ("e.full_name");
11410 /* Same as ada_unhandled_exception_name_addr, except that this function
11411 should be used when the inferior uses an older version of the runtime,
11412 where the exception name needs to be extracted from a specific frame
11413 several frames up in the callstack. */
11416 ada_unhandled_exception_name_addr_from_raise (void)
11419 struct frame_info *fi;
11420 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11422 /* To determine the name of this exception, we need to select
11423 the frame corresponding to RAISE_SYM_NAME. This frame is
11424 at least 3 levels up, so we simply skip the first 3 frames
11425 without checking the name of their associated function. */
11426 fi = get_current_frame ();
11427 for (frame_level = 0; frame_level < 3; frame_level += 1)
11429 fi = get_prev_frame (fi);
11433 enum language func_lang;
11435 gdb::unique_xmalloc_ptr<char> func_name
11436 = find_frame_funname (fi, &func_lang, NULL);
11437 if (func_name != NULL)
11439 if (strcmp (func_name.get (),
11440 data->exception_info->catch_exception_sym) == 0)
11441 break; /* We found the frame we were looking for... */
11443 fi = get_prev_frame (fi);
11450 return parse_and_eval_address ("id.full_name");
11453 /* Assuming the inferior just triggered an Ada exception catchpoint
11454 (of any type), return the address in inferior memory where the name
11455 of the exception is stored, if applicable.
11457 Assumes the selected frame is the current frame.
11459 Return zero if the address could not be computed, or if not relevant. */
11462 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11463 struct breakpoint *b)
11465 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11469 case ada_catch_exception:
11470 return (parse_and_eval_address ("e.full_name"));
11473 case ada_catch_exception_unhandled:
11474 return data->exception_info->unhandled_exception_name_addr ();
11477 case ada_catch_handlers:
11478 return 0; /* The runtimes does not provide access to the exception
11482 case ada_catch_assert:
11483 return 0; /* Exception name is not relevant in this case. */
11487 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11491 return 0; /* Should never be reached. */
11494 /* Assuming the inferior is stopped at an exception catchpoint,
11495 return the message which was associated to the exception, if
11496 available. Return NULL if the message could not be retrieved.
11498 Note: The exception message can be associated to an exception
11499 either through the use of the Raise_Exception function, or
11500 more simply (Ada 2005 and later), via:
11502 raise Exception_Name with "exception message";
11506 static gdb::unique_xmalloc_ptr<char>
11507 ada_exception_message_1 (void)
11509 struct value *e_msg_val;
11512 /* For runtimes that support this feature, the exception message
11513 is passed as an unbounded string argument called "message". */
11514 e_msg_val = parse_and_eval ("message");
11515 if (e_msg_val == NULL)
11516 return NULL; /* Exception message not supported. */
11518 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11519 gdb_assert (e_msg_val != NULL);
11520 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11522 /* If the message string is empty, then treat it as if there was
11523 no exception message. */
11524 if (e_msg_len <= 0)
11527 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11528 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11530 e_msg.get ()[e_msg_len] = '\0';
11535 /* Same as ada_exception_message_1, except that all exceptions are
11536 contained here (returning NULL instead). */
11538 static gdb::unique_xmalloc_ptr<char>
11539 ada_exception_message (void)
11541 gdb::unique_xmalloc_ptr<char> e_msg;
11545 e_msg = ada_exception_message_1 ();
11547 catch (const gdb_exception_error &e)
11549 e_msg.reset (nullptr);
11555 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11556 any error that ada_exception_name_addr_1 might cause to be thrown.
11557 When an error is intercepted, a warning with the error message is printed,
11558 and zero is returned. */
11561 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11562 struct breakpoint *b)
11564 CORE_ADDR result = 0;
11568 result = ada_exception_name_addr_1 (ex, b);
11571 catch (const gdb_exception_error &e)
11573 warning (_("failed to get exception name: %s"), e.what ());
11580 static std::string ada_exception_catchpoint_cond_string
11581 (const char *excep_string,
11582 enum ada_exception_catchpoint_kind ex);
11584 /* Ada catchpoints.
11586 In the case of catchpoints on Ada exceptions, the catchpoint will
11587 stop the target on every exception the program throws. When a user
11588 specifies the name of a specific exception, we translate this
11589 request into a condition expression (in text form), and then parse
11590 it into an expression stored in each of the catchpoint's locations.
11591 We then use this condition to check whether the exception that was
11592 raised is the one the user is interested in. If not, then the
11593 target is resumed again. We store the name of the requested
11594 exception, in order to be able to re-set the condition expression
11595 when symbols change. */
11597 /* An instance of this type is used to represent an Ada catchpoint
11598 breakpoint location. */
11600 class ada_catchpoint_location : public bp_location
11603 ada_catchpoint_location (breakpoint *owner)
11604 : bp_location (owner, bp_loc_software_breakpoint)
11607 /* The condition that checks whether the exception that was raised
11608 is the specific exception the user specified on catchpoint
11610 expression_up excep_cond_expr;
11613 /* An instance of this type is used to represent an Ada catchpoint. */
11615 struct ada_catchpoint : public breakpoint
11617 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11622 /* The name of the specific exception the user specified. */
11623 std::string excep_string;
11625 /* What kind of catchpoint this is. */
11626 enum ada_exception_catchpoint_kind m_kind;
11629 /* Parse the exception condition string in the context of each of the
11630 catchpoint's locations, and store them for later evaluation. */
11633 create_excep_cond_exprs (struct ada_catchpoint *c,
11634 enum ada_exception_catchpoint_kind ex)
11636 /* Nothing to do if there's no specific exception to catch. */
11637 if (c->excep_string.empty ())
11640 /* Same if there are no locations... */
11641 if (c->loc == NULL)
11644 /* Compute the condition expression in text form, from the specific
11645 expection we want to catch. */
11646 std::string cond_string
11647 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11649 /* Iterate over all the catchpoint's locations, and parse an
11650 expression for each. */
11651 for (bp_location *bl : c->locations ())
11653 struct ada_catchpoint_location *ada_loc
11654 = (struct ada_catchpoint_location *) bl;
11657 if (!bl->shlib_disabled)
11661 s = cond_string.c_str ();
11664 exp = parse_exp_1 (&s, bl->address,
11665 block_for_pc (bl->address),
11668 catch (const gdb_exception_error &e)
11670 warning (_("failed to reevaluate internal exception condition "
11671 "for catchpoint %d: %s"),
11672 c->number, e.what ());
11676 ada_loc->excep_cond_expr = std::move (exp);
11680 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11681 structure for all exception catchpoint kinds. */
11683 static struct bp_location *
11684 allocate_location_exception (struct breakpoint *self)
11686 return new ada_catchpoint_location (self);
11689 /* Implement the RE_SET method in the breakpoint_ops structure for all
11690 exception catchpoint kinds. */
11693 re_set_exception (struct breakpoint *b)
11695 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11697 /* Call the base class's method. This updates the catchpoint's
11699 bkpt_breakpoint_ops.re_set (b);
11701 /* Reparse the exception conditional expressions. One for each
11703 create_excep_cond_exprs (c, c->m_kind);
11706 /* Returns true if we should stop for this breakpoint hit. If the
11707 user specified a specific exception, we only want to cause a stop
11708 if the program thrown that exception. */
11711 should_stop_exception (const struct bp_location *bl)
11713 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11714 const struct ada_catchpoint_location *ada_loc
11715 = (const struct ada_catchpoint_location *) bl;
11718 struct internalvar *var = lookup_internalvar ("_ada_exception");
11719 if (c->m_kind == ada_catch_assert)
11720 clear_internalvar (var);
11727 if (c->m_kind == ada_catch_handlers)
11728 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11729 ".all.occurrence.id");
11733 struct value *exc = parse_and_eval (expr);
11734 set_internalvar (var, exc);
11736 catch (const gdb_exception_error &ex)
11738 clear_internalvar (var);
11742 /* With no specific exception, should always stop. */
11743 if (c->excep_string.empty ())
11746 if (ada_loc->excep_cond_expr == NULL)
11748 /* We will have a NULL expression if back when we were creating
11749 the expressions, this location's had failed to parse. */
11756 struct value *mark;
11758 mark = value_mark ();
11759 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11760 value_free_to_mark (mark);
11762 catch (const gdb_exception &ex)
11764 exception_fprintf (gdb_stderr, ex,
11765 _("Error in testing exception condition:\n"));
11771 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11772 for all exception catchpoint kinds. */
11775 check_status_exception (bpstat bs)
11777 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11780 /* Implement the PRINT_IT method in the breakpoint_ops structure
11781 for all exception catchpoint kinds. */
11783 static enum print_stop_action
11784 print_it_exception (bpstat bs)
11786 struct ui_out *uiout = current_uiout;
11787 struct breakpoint *b = bs->breakpoint_at;
11789 annotate_catchpoint (b->number);
11791 if (uiout->is_mi_like_p ())
11793 uiout->field_string ("reason",
11794 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11795 uiout->field_string ("disp", bpdisp_text (b->disposition));
11798 uiout->text (b->disposition == disp_del
11799 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11800 uiout->field_signed ("bkptno", b->number);
11801 uiout->text (", ");
11803 /* ada_exception_name_addr relies on the selected frame being the
11804 current frame. Need to do this here because this function may be
11805 called more than once when printing a stop, and below, we'll
11806 select the first frame past the Ada run-time (see
11807 ada_find_printable_frame). */
11808 select_frame (get_current_frame ());
11810 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11813 case ada_catch_exception:
11814 case ada_catch_exception_unhandled:
11815 case ada_catch_handlers:
11817 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11818 char exception_name[256];
11822 read_memory (addr, (gdb_byte *) exception_name,
11823 sizeof (exception_name) - 1);
11824 exception_name [sizeof (exception_name) - 1] = '\0';
11828 /* For some reason, we were unable to read the exception
11829 name. This could happen if the Runtime was compiled
11830 without debugging info, for instance. In that case,
11831 just replace the exception name by the generic string
11832 "exception" - it will read as "an exception" in the
11833 notification we are about to print. */
11834 memcpy (exception_name, "exception", sizeof ("exception"));
11836 /* In the case of unhandled exception breakpoints, we print
11837 the exception name as "unhandled EXCEPTION_NAME", to make
11838 it clearer to the user which kind of catchpoint just got
11839 hit. We used ui_out_text to make sure that this extra
11840 info does not pollute the exception name in the MI case. */
11841 if (c->m_kind == ada_catch_exception_unhandled)
11842 uiout->text ("unhandled ");
11843 uiout->field_string ("exception-name", exception_name);
11846 case ada_catch_assert:
11847 /* In this case, the name of the exception is not really
11848 important. Just print "failed assertion" to make it clearer
11849 that his program just hit an assertion-failure catchpoint.
11850 We used ui_out_text because this info does not belong in
11852 uiout->text ("failed assertion");
11856 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11857 if (exception_message != NULL)
11859 uiout->text (" (");
11860 uiout->field_string ("exception-message", exception_message.get ());
11864 uiout->text (" at ");
11865 ada_find_printable_frame (get_current_frame ());
11867 return PRINT_SRC_AND_LOC;
11870 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11871 for all exception catchpoint kinds. */
11874 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11876 struct ui_out *uiout = current_uiout;
11877 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11878 struct value_print_options opts;
11880 get_user_print_options (&opts);
11882 if (opts.addressprint)
11883 uiout->field_skip ("addr");
11885 annotate_field (5);
11888 case ada_catch_exception:
11889 if (!c->excep_string.empty ())
11891 std::string msg = string_printf (_("`%s' Ada exception"),
11892 c->excep_string.c_str ());
11894 uiout->field_string ("what", msg);
11897 uiout->field_string ("what", "all Ada exceptions");
11901 case ada_catch_exception_unhandled:
11902 uiout->field_string ("what", "unhandled Ada exceptions");
11905 case ada_catch_handlers:
11906 if (!c->excep_string.empty ())
11908 uiout->field_fmt ("what",
11909 _("`%s' Ada exception handlers"),
11910 c->excep_string.c_str ());
11913 uiout->field_string ("what", "all Ada exceptions handlers");
11916 case ada_catch_assert:
11917 uiout->field_string ("what", "failed Ada assertions");
11921 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11926 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11927 for all exception catchpoint kinds. */
11930 print_mention_exception (struct breakpoint *b)
11932 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11933 struct ui_out *uiout = current_uiout;
11935 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11936 : _("Catchpoint "));
11937 uiout->field_signed ("bkptno", b->number);
11938 uiout->text (": ");
11942 case ada_catch_exception:
11943 if (!c->excep_string.empty ())
11945 std::string info = string_printf (_("`%s' Ada exception"),
11946 c->excep_string.c_str ());
11947 uiout->text (info);
11950 uiout->text (_("all Ada exceptions"));
11953 case ada_catch_exception_unhandled:
11954 uiout->text (_("unhandled Ada exceptions"));
11957 case ada_catch_handlers:
11958 if (!c->excep_string.empty ())
11961 = string_printf (_("`%s' Ada exception handlers"),
11962 c->excep_string.c_str ());
11963 uiout->text (info);
11966 uiout->text (_("all Ada exceptions handlers"));
11969 case ada_catch_assert:
11970 uiout->text (_("failed Ada assertions"));
11974 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11979 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11980 for all exception catchpoint kinds. */
11983 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11985 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11989 case ada_catch_exception:
11990 fprintf_filtered (fp, "catch exception");
11991 if (!c->excep_string.empty ())
11992 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11995 case ada_catch_exception_unhandled:
11996 fprintf_filtered (fp, "catch exception unhandled");
11999 case ada_catch_handlers:
12000 fprintf_filtered (fp, "catch handlers");
12003 case ada_catch_assert:
12004 fprintf_filtered (fp, "catch assert");
12008 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12010 print_recreate_thread (b, fp);
12013 /* Virtual tables for various breakpoint types. */
12014 static struct breakpoint_ops catch_exception_breakpoint_ops;
12015 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12016 static struct breakpoint_ops catch_assert_breakpoint_ops;
12017 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12019 /* See ada-lang.h. */
12022 is_ada_exception_catchpoint (breakpoint *bp)
12024 return (bp->ops == &catch_exception_breakpoint_ops
12025 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12026 || bp->ops == &catch_assert_breakpoint_ops
12027 || bp->ops == &catch_handlers_breakpoint_ops);
12030 /* Split the arguments specified in a "catch exception" command.
12031 Set EX to the appropriate catchpoint type.
12032 Set EXCEP_STRING to the name of the specific exception if
12033 specified by the user.
12034 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12035 "catch handlers" command. False otherwise.
12036 If a condition is found at the end of the arguments, the condition
12037 expression is stored in COND_STRING (memory must be deallocated
12038 after use). Otherwise COND_STRING is set to NULL. */
12041 catch_ada_exception_command_split (const char *args,
12042 bool is_catch_handlers_cmd,
12043 enum ada_exception_catchpoint_kind *ex,
12044 std::string *excep_string,
12045 std::string *cond_string)
12047 std::string exception_name;
12049 exception_name = extract_arg (&args);
12050 if (exception_name == "if")
12052 /* This is not an exception name; this is the start of a condition
12053 expression for a catchpoint on all exceptions. So, "un-get"
12054 this token, and set exception_name to NULL. */
12055 exception_name.clear ();
12059 /* Check to see if we have a condition. */
12061 args = skip_spaces (args);
12062 if (startswith (args, "if")
12063 && (isspace (args[2]) || args[2] == '\0'))
12066 args = skip_spaces (args);
12068 if (args[0] == '\0')
12069 error (_("Condition missing after `if' keyword"));
12070 *cond_string = args;
12072 args += strlen (args);
12075 /* Check that we do not have any more arguments. Anything else
12078 if (args[0] != '\0')
12079 error (_("Junk at end of expression"));
12081 if (is_catch_handlers_cmd)
12083 /* Catch handling of exceptions. */
12084 *ex = ada_catch_handlers;
12085 *excep_string = exception_name;
12087 else if (exception_name.empty ())
12089 /* Catch all exceptions. */
12090 *ex = ada_catch_exception;
12091 excep_string->clear ();
12093 else if (exception_name == "unhandled")
12095 /* Catch unhandled exceptions. */
12096 *ex = ada_catch_exception_unhandled;
12097 excep_string->clear ();
12101 /* Catch a specific exception. */
12102 *ex = ada_catch_exception;
12103 *excep_string = exception_name;
12107 /* Return the name of the symbol on which we should break in order to
12108 implement a catchpoint of the EX kind. */
12110 static const char *
12111 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12115 gdb_assert (data->exception_info != NULL);
12119 case ada_catch_exception:
12120 return (data->exception_info->catch_exception_sym);
12122 case ada_catch_exception_unhandled:
12123 return (data->exception_info->catch_exception_unhandled_sym);
12125 case ada_catch_assert:
12126 return (data->exception_info->catch_assert_sym);
12128 case ada_catch_handlers:
12129 return (data->exception_info->catch_handlers_sym);
12132 internal_error (__FILE__, __LINE__,
12133 _("unexpected catchpoint kind (%d)"), ex);
12137 /* Return the breakpoint ops "virtual table" used for catchpoints
12140 static const struct breakpoint_ops *
12141 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12145 case ada_catch_exception:
12146 return (&catch_exception_breakpoint_ops);
12148 case ada_catch_exception_unhandled:
12149 return (&catch_exception_unhandled_breakpoint_ops);
12151 case ada_catch_assert:
12152 return (&catch_assert_breakpoint_ops);
12154 case ada_catch_handlers:
12155 return (&catch_handlers_breakpoint_ops);
12158 internal_error (__FILE__, __LINE__,
12159 _("unexpected catchpoint kind (%d)"), ex);
12163 /* Return the condition that will be used to match the current exception
12164 being raised with the exception that the user wants to catch. This
12165 assumes that this condition is used when the inferior just triggered
12166 an exception catchpoint.
12167 EX: the type of catchpoints used for catching Ada exceptions. */
12170 ada_exception_catchpoint_cond_string (const char *excep_string,
12171 enum ada_exception_catchpoint_kind ex)
12174 bool is_standard_exc = false;
12175 std::string result;
12177 if (ex == ada_catch_handlers)
12179 /* For exception handlers catchpoints, the condition string does
12180 not use the same parameter as for the other exceptions. */
12181 result = ("long_integer (GNAT_GCC_exception_Access"
12182 "(gcc_exception).all.occurrence.id)");
12185 result = "long_integer (e)";
12187 /* The standard exceptions are a special case. They are defined in
12188 runtime units that have been compiled without debugging info; if
12189 EXCEP_STRING is the not-fully-qualified name of a standard
12190 exception (e.g. "constraint_error") then, during the evaluation
12191 of the condition expression, the symbol lookup on this name would
12192 *not* return this standard exception. The catchpoint condition
12193 may then be set only on user-defined exceptions which have the
12194 same not-fully-qualified name (e.g. my_package.constraint_error).
12196 To avoid this unexcepted behavior, these standard exceptions are
12197 systematically prefixed by "standard". This means that "catch
12198 exception constraint_error" is rewritten into "catch exception
12199 standard.constraint_error".
12201 If an exception named constraint_error is defined in another package of
12202 the inferior program, then the only way to specify this exception as a
12203 breakpoint condition is to use its fully-qualified named:
12204 e.g. my_package.constraint_error. */
12206 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12208 if (strcmp (standard_exc [i], excep_string) == 0)
12210 is_standard_exc = true;
12217 if (is_standard_exc)
12218 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12220 string_appendf (result, "long_integer (&%s)", excep_string);
12225 /* Return the symtab_and_line that should be used to insert an exception
12226 catchpoint of the TYPE kind.
12228 ADDR_STRING returns the name of the function where the real
12229 breakpoint that implements the catchpoints is set, depending on the
12230 type of catchpoint we need to create. */
12232 static struct symtab_and_line
12233 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12234 std::string *addr_string, const struct breakpoint_ops **ops)
12236 const char *sym_name;
12237 struct symbol *sym;
12239 /* First, find out which exception support info to use. */
12240 ada_exception_support_info_sniffer ();
12242 /* Then lookup the function on which we will break in order to catch
12243 the Ada exceptions requested by the user. */
12244 sym_name = ada_exception_sym_name (ex);
12245 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12248 error (_("Catchpoint symbol not found: %s"), sym_name);
12250 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12251 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12253 /* Set ADDR_STRING. */
12254 *addr_string = sym_name;
12257 *ops = ada_exception_breakpoint_ops (ex);
12259 return find_function_start_sal (sym, 1);
12262 /* Create an Ada exception catchpoint.
12264 EX_KIND is the kind of exception catchpoint to be created.
12266 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12267 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12268 of the exception to which this catchpoint applies.
12270 COND_STRING, if not empty, is the catchpoint condition.
12272 TEMPFLAG, if nonzero, means that the underlying breakpoint
12273 should be temporary.
12275 FROM_TTY is the usual argument passed to all commands implementations. */
12278 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12279 enum ada_exception_catchpoint_kind ex_kind,
12280 const std::string &excep_string,
12281 const std::string &cond_string,
12286 std::string addr_string;
12287 const struct breakpoint_ops *ops = NULL;
12288 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12290 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12291 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12292 ops, tempflag, disabled, from_tty);
12293 c->excep_string = excep_string;
12294 create_excep_cond_exprs (c.get (), ex_kind);
12295 if (!cond_string.empty ())
12296 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12297 install_breakpoint (0, std::move (c), 1);
12300 /* Implement the "catch exception" command. */
12303 catch_ada_exception_command (const char *arg_entry, int from_tty,
12304 struct cmd_list_element *command)
12306 const char *arg = arg_entry;
12307 struct gdbarch *gdbarch = get_current_arch ();
12309 enum ada_exception_catchpoint_kind ex_kind;
12310 std::string excep_string;
12311 std::string cond_string;
12313 tempflag = command->context () == CATCH_TEMPORARY;
12317 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12319 create_ada_exception_catchpoint (gdbarch, ex_kind,
12320 excep_string, cond_string,
12321 tempflag, 1 /* enabled */,
12325 /* Implement the "catch handlers" command. */
12328 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12329 struct cmd_list_element *command)
12331 const char *arg = arg_entry;
12332 struct gdbarch *gdbarch = get_current_arch ();
12334 enum ada_exception_catchpoint_kind ex_kind;
12335 std::string excep_string;
12336 std::string cond_string;
12338 tempflag = command->context () == CATCH_TEMPORARY;
12342 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12344 create_ada_exception_catchpoint (gdbarch, ex_kind,
12345 excep_string, cond_string,
12346 tempflag, 1 /* enabled */,
12350 /* Completion function for the Ada "catch" commands. */
12353 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12354 const char *text, const char *word)
12356 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12358 for (const ada_exc_info &info : exceptions)
12360 if (startswith (info.name, word))
12361 tracker.add_completion (make_unique_xstrdup (info.name));
12365 /* Split the arguments specified in a "catch assert" command.
12367 ARGS contains the command's arguments (or the empty string if
12368 no arguments were passed).
12370 If ARGS contains a condition, set COND_STRING to that condition
12371 (the memory needs to be deallocated after use). */
12374 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12376 args = skip_spaces (args);
12378 /* Check whether a condition was provided. */
12379 if (startswith (args, "if")
12380 && (isspace (args[2]) || args[2] == '\0'))
12383 args = skip_spaces (args);
12384 if (args[0] == '\0')
12385 error (_("condition missing after `if' keyword"));
12386 cond_string.assign (args);
12389 /* Otherwise, there should be no other argument at the end of
12391 else if (args[0] != '\0')
12392 error (_("Junk at end of arguments."));
12395 /* Implement the "catch assert" command. */
12398 catch_assert_command (const char *arg_entry, int from_tty,
12399 struct cmd_list_element *command)
12401 const char *arg = arg_entry;
12402 struct gdbarch *gdbarch = get_current_arch ();
12404 std::string cond_string;
12406 tempflag = command->context () == CATCH_TEMPORARY;
12410 catch_ada_assert_command_split (arg, cond_string);
12411 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12413 tempflag, 1 /* enabled */,
12417 /* Return non-zero if the symbol SYM is an Ada exception object. */
12420 ada_is_exception_sym (struct symbol *sym)
12422 const char *type_name = SYMBOL_TYPE (sym)->name ();
12424 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12425 && SYMBOL_CLASS (sym) != LOC_BLOCK
12426 && SYMBOL_CLASS (sym) != LOC_CONST
12427 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12428 && type_name != NULL && strcmp (type_name, "exception") == 0);
12431 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12432 Ada exception object. This matches all exceptions except the ones
12433 defined by the Ada language. */
12436 ada_is_non_standard_exception_sym (struct symbol *sym)
12440 if (!ada_is_exception_sym (sym))
12443 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12444 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12445 return 0; /* A standard exception. */
12447 /* Numeric_Error is also a standard exception, so exclude it.
12448 See the STANDARD_EXC description for more details as to why
12449 this exception is not listed in that array. */
12450 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12456 /* A helper function for std::sort, comparing two struct ada_exc_info
12459 The comparison is determined first by exception name, and then
12460 by exception address. */
12463 ada_exc_info::operator< (const ada_exc_info &other) const
12467 result = strcmp (name, other.name);
12470 if (result == 0 && addr < other.addr)
12476 ada_exc_info::operator== (const ada_exc_info &other) const
12478 return addr == other.addr && strcmp (name, other.name) == 0;
12481 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12482 routine, but keeping the first SKIP elements untouched.
12484 All duplicates are also removed. */
12487 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12490 std::sort (exceptions->begin () + skip, exceptions->end ());
12491 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12492 exceptions->end ());
12495 /* Add all exceptions defined by the Ada standard whose name match
12496 a regular expression.
12498 If PREG is not NULL, then this regexp_t object is used to
12499 perform the symbol name matching. Otherwise, no name-based
12500 filtering is performed.
12502 EXCEPTIONS is a vector of exceptions to which matching exceptions
12506 ada_add_standard_exceptions (compiled_regex *preg,
12507 std::vector<ada_exc_info> *exceptions)
12511 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12514 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12516 struct bound_minimal_symbol msymbol
12517 = ada_lookup_simple_minsym (standard_exc[i]);
12519 if (msymbol.minsym != NULL)
12521 struct ada_exc_info info
12522 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12524 exceptions->push_back (info);
12530 /* Add all Ada exceptions defined locally and accessible from the given
12533 If PREG is not NULL, then this regexp_t object is used to
12534 perform the symbol name matching. Otherwise, no name-based
12535 filtering is performed.
12537 EXCEPTIONS is a vector of exceptions to which matching exceptions
12541 ada_add_exceptions_from_frame (compiled_regex *preg,
12542 struct frame_info *frame,
12543 std::vector<ada_exc_info> *exceptions)
12545 const struct block *block = get_frame_block (frame, 0);
12549 struct block_iterator iter;
12550 struct symbol *sym;
12552 ALL_BLOCK_SYMBOLS (block, iter, sym)
12554 switch (SYMBOL_CLASS (sym))
12561 if (ada_is_exception_sym (sym))
12563 struct ada_exc_info info = {sym->print_name (),
12564 SYMBOL_VALUE_ADDRESS (sym)};
12566 exceptions->push_back (info);
12570 if (BLOCK_FUNCTION (block) != NULL)
12572 block = BLOCK_SUPERBLOCK (block);
12576 /* Return true if NAME matches PREG or if PREG is NULL. */
12579 name_matches_regex (const char *name, compiled_regex *preg)
12581 return (preg == NULL
12582 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12585 /* Add all exceptions defined globally whose name name match
12586 a regular expression, excluding standard exceptions.
12588 The reason we exclude standard exceptions is that they need
12589 to be handled separately: Standard exceptions are defined inside
12590 a runtime unit which is normally not compiled with debugging info,
12591 and thus usually do not show up in our symbol search. However,
12592 if the unit was in fact built with debugging info, we need to
12593 exclude them because they would duplicate the entry we found
12594 during the special loop that specifically searches for those
12595 standard exceptions.
12597 If PREG is not NULL, then this regexp_t object is used to
12598 perform the symbol name matching. Otherwise, no name-based
12599 filtering is performed.
12601 EXCEPTIONS is a vector of exceptions to which matching exceptions
12605 ada_add_global_exceptions (compiled_regex *preg,
12606 std::vector<ada_exc_info> *exceptions)
12608 /* In Ada, the symbol "search name" is a linkage name, whereas the
12609 regular expression used to do the matching refers to the natural
12610 name. So match against the decoded name. */
12611 expand_symtabs_matching (NULL,
12612 lookup_name_info::match_any (),
12613 [&] (const char *search_name)
12615 std::string decoded = ada_decode (search_name);
12616 return name_matches_regex (decoded.c_str (), preg);
12619 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12622 for (objfile *objfile : current_program_space->objfiles ())
12624 for (compunit_symtab *s : objfile->compunits ())
12626 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12629 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12631 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12632 struct block_iterator iter;
12633 struct symbol *sym;
12635 ALL_BLOCK_SYMBOLS (b, iter, sym)
12636 if (ada_is_non_standard_exception_sym (sym)
12637 && name_matches_regex (sym->natural_name (), preg))
12639 struct ada_exc_info info
12640 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12642 exceptions->push_back (info);
12649 /* Implements ada_exceptions_list with the regular expression passed
12650 as a regex_t, rather than a string.
12652 If not NULL, PREG is used to filter out exceptions whose names
12653 do not match. Otherwise, all exceptions are listed. */
12655 static std::vector<ada_exc_info>
12656 ada_exceptions_list_1 (compiled_regex *preg)
12658 std::vector<ada_exc_info> result;
12661 /* First, list the known standard exceptions. These exceptions
12662 need to be handled separately, as they are usually defined in
12663 runtime units that have been compiled without debugging info. */
12665 ada_add_standard_exceptions (preg, &result);
12667 /* Next, find all exceptions whose scope is local and accessible
12668 from the currently selected frame. */
12670 if (has_stack_frames ())
12672 prev_len = result.size ();
12673 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12675 if (result.size () > prev_len)
12676 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12679 /* Add all exceptions whose scope is global. */
12681 prev_len = result.size ();
12682 ada_add_global_exceptions (preg, &result);
12683 if (result.size () > prev_len)
12684 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12689 /* Return a vector of ada_exc_info.
12691 If REGEXP is NULL, all exceptions are included in the result.
12692 Otherwise, it should contain a valid regular expression,
12693 and only the exceptions whose names match that regular expression
12694 are included in the result.
12696 The exceptions are sorted in the following order:
12697 - Standard exceptions (defined by the Ada language), in
12698 alphabetical order;
12699 - Exceptions only visible from the current frame, in
12700 alphabetical order;
12701 - Exceptions whose scope is global, in alphabetical order. */
12703 std::vector<ada_exc_info>
12704 ada_exceptions_list (const char *regexp)
12706 if (regexp == NULL)
12707 return ada_exceptions_list_1 (NULL);
12709 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12710 return ada_exceptions_list_1 (®);
12713 /* Implement the "info exceptions" command. */
12716 info_exceptions_command (const char *regexp, int from_tty)
12718 struct gdbarch *gdbarch = get_current_arch ();
12720 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12722 if (regexp != NULL)
12724 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12726 printf_filtered (_("All defined Ada exceptions:\n"));
12728 for (const ada_exc_info &info : exceptions)
12729 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12733 /* Language vector */
12735 /* symbol_name_matcher_ftype adapter for wild_match. */
12738 do_wild_match (const char *symbol_search_name,
12739 const lookup_name_info &lookup_name,
12740 completion_match_result *comp_match_res)
12742 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12745 /* symbol_name_matcher_ftype adapter for full_match. */
12748 do_full_match (const char *symbol_search_name,
12749 const lookup_name_info &lookup_name,
12750 completion_match_result *comp_match_res)
12752 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12754 /* If both symbols start with "_ada_", just let the loop below
12755 handle the comparison. However, if only the symbol name starts
12756 with "_ada_", skip the prefix and let the match proceed as
12758 if (startswith (symbol_search_name, "_ada_")
12759 && !startswith (lname, "_ada"))
12760 symbol_search_name += 5;
12762 int uscore_count = 0;
12763 while (*lname != '\0')
12765 if (*symbol_search_name != *lname)
12767 if (*symbol_search_name == 'B' && uscore_count == 2
12768 && symbol_search_name[1] == '_')
12770 symbol_search_name += 2;
12771 while (isdigit (*symbol_search_name))
12772 ++symbol_search_name;
12773 if (symbol_search_name[0] == '_'
12774 && symbol_search_name[1] == '_')
12776 symbol_search_name += 2;
12783 if (*symbol_search_name == '_')
12788 ++symbol_search_name;
12792 return is_name_suffix (symbol_search_name);
12795 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12798 do_exact_match (const char *symbol_search_name,
12799 const lookup_name_info &lookup_name,
12800 completion_match_result *comp_match_res)
12802 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12805 /* Build the Ada lookup name for LOOKUP_NAME. */
12807 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12809 gdb::string_view user_name = lookup_name.name ();
12811 if (!user_name.empty () && user_name[0] == '<')
12813 if (user_name.back () == '>')
12815 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12818 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12819 m_encoded_p = true;
12820 m_verbatim_p = true;
12821 m_wild_match_p = false;
12822 m_standard_p = false;
12826 m_verbatim_p = false;
12828 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12832 const char *folded = ada_fold_name (user_name);
12833 m_encoded_name = ada_encode_1 (folded, false);
12834 if (m_encoded_name.empty ())
12835 m_encoded_name = gdb::to_string (user_name);
12838 m_encoded_name = gdb::to_string (user_name);
12840 /* Handle the 'package Standard' special case. See description
12841 of m_standard_p. */
12842 if (startswith (m_encoded_name.c_str (), "standard__"))
12844 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12845 m_standard_p = true;
12848 m_standard_p = false;
12850 /* If the name contains a ".", then the user is entering a fully
12851 qualified entity name, and the match must not be done in wild
12852 mode. Similarly, if the user wants to complete what looks
12853 like an encoded name, the match must not be done in wild
12854 mode. Also, in the standard__ special case always do
12855 non-wild matching. */
12857 = (lookup_name.match_type () != symbol_name_match_type::FULL
12860 && user_name.find ('.') == std::string::npos);
12864 /* symbol_name_matcher_ftype method for Ada. This only handles
12865 completion mode. */
12868 ada_symbol_name_matches (const char *symbol_search_name,
12869 const lookup_name_info &lookup_name,
12870 completion_match_result *comp_match_res)
12872 return lookup_name.ada ().matches (symbol_search_name,
12873 lookup_name.match_type (),
12877 /* A name matcher that matches the symbol name exactly, with
12881 literal_symbol_name_matcher (const char *symbol_search_name,
12882 const lookup_name_info &lookup_name,
12883 completion_match_result *comp_match_res)
12885 gdb::string_view name_view = lookup_name.name ();
12887 if (lookup_name.completion_mode ()
12888 ? (strncmp (symbol_search_name, name_view.data (),
12889 name_view.size ()) == 0)
12890 : symbol_search_name == name_view)
12892 if (comp_match_res != NULL)
12893 comp_match_res->set_match (symbol_search_name);
12900 /* Implement the "get_symbol_name_matcher" language_defn method for
12903 static symbol_name_matcher_ftype *
12904 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12906 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12907 return literal_symbol_name_matcher;
12909 if (lookup_name.completion_mode ())
12910 return ada_symbol_name_matches;
12913 if (lookup_name.ada ().wild_match_p ())
12914 return do_wild_match;
12915 else if (lookup_name.ada ().verbatim_p ())
12916 return do_exact_match;
12918 return do_full_match;
12922 /* Class representing the Ada language. */
12924 class ada_language : public language_defn
12928 : language_defn (language_ada)
12931 /* See language.h. */
12933 const char *name () const override
12936 /* See language.h. */
12938 const char *natural_name () const override
12941 /* See language.h. */
12943 const std::vector<const char *> &filename_extensions () const override
12945 static const std::vector<const char *> extensions
12946 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12950 /* Print an array element index using the Ada syntax. */
12952 void print_array_index (struct type *index_type,
12954 struct ui_file *stream,
12955 const value_print_options *options) const override
12957 struct value *index_value = val_atr (index_type, index);
12959 value_print (index_value, stream, options);
12960 fprintf_filtered (stream, " => ");
12963 /* Implement the "read_var_value" language_defn method for Ada. */
12965 struct value *read_var_value (struct symbol *var,
12966 const struct block *var_block,
12967 struct frame_info *frame) const override
12969 /* The only case where default_read_var_value is not sufficient
12970 is when VAR is a renaming... */
12971 if (frame != nullptr)
12973 const struct block *frame_block = get_frame_block (frame, NULL);
12974 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12975 return ada_read_renaming_var_value (var, frame_block);
12978 /* This is a typical case where we expect the default_read_var_value
12979 function to work. */
12980 return language_defn::read_var_value (var, var_block, frame);
12983 /* See language.h. */
12984 void language_arch_info (struct gdbarch *gdbarch,
12985 struct language_arch_info *lai) const override
12987 const struct builtin_type *builtin = builtin_type (gdbarch);
12989 /* Helper function to allow shorter lines below. */
12990 auto add = [&] (struct type *t)
12992 lai->add_primitive_type (t);
12995 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12997 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12998 0, "long_integer"));
12999 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13000 0, "short_integer"));
13001 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13003 lai->set_string_char_type (char_type);
13005 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13006 "float", gdbarch_float_format (gdbarch)));
13007 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13008 "long_float", gdbarch_double_format (gdbarch)));
13009 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13010 0, "long_long_integer"));
13011 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13013 gdbarch_long_double_format (gdbarch)));
13014 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13016 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13018 add (builtin->builtin_void);
13020 struct type *system_addr_ptr
13021 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13023 system_addr_ptr->set_name ("system__address");
13024 add (system_addr_ptr);
13026 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13027 type. This is a signed integral type whose size is the same as
13028 the size of addresses. */
13029 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13030 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13031 "storage_offset"));
13033 lai->set_bool_type (builtin->builtin_bool);
13036 /* See language.h. */
13038 bool iterate_over_symbols
13039 (const struct block *block, const lookup_name_info &name,
13040 domain_enum domain,
13041 gdb::function_view<symbol_found_callback_ftype> callback) const override
13043 std::vector<struct block_symbol> results
13044 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13045 for (block_symbol &sym : results)
13047 if (!callback (&sym))
13054 /* See language.h. */
13055 bool sniff_from_mangled_name (const char *mangled,
13056 char **out) const override
13058 std::string demangled = ada_decode (mangled);
13062 if (demangled != mangled && demangled[0] != '<')
13064 /* Set the gsymbol language to Ada, but still return 0.
13065 Two reasons for that:
13067 1. For Ada, we prefer computing the symbol's decoded name
13068 on the fly rather than pre-compute it, in order to save
13069 memory (Ada projects are typically very large).
13071 2. There are some areas in the definition of the GNAT
13072 encoding where, with a bit of bad luck, we might be able
13073 to decode a non-Ada symbol, generating an incorrect
13074 demangled name (Eg: names ending with "TB" for instance
13075 are identified as task bodies and so stripped from
13076 the decoded name returned).
13078 Returning true, here, but not setting *DEMANGLED, helps us get
13079 a little bit of the best of both worlds. Because we're last,
13080 we should not affect any of the other languages that were
13081 able to demangle the symbol before us; we get to correctly
13082 tag Ada symbols as such; and even if we incorrectly tagged a
13083 non-Ada symbol, which should be rare, any routing through the
13084 Ada language should be transparent (Ada tries to behave much
13085 like C/C++ with non-Ada symbols). */
13092 /* See language.h. */
13094 char *demangle_symbol (const char *mangled, int options) const override
13096 return ada_la_decode (mangled, options);
13099 /* See language.h. */
13101 void print_type (struct type *type, const char *varstring,
13102 struct ui_file *stream, int show, int level,
13103 const struct type_print_options *flags) const override
13105 ada_print_type (type, varstring, stream, show, level, flags);
13108 /* See language.h. */
13110 const char *word_break_characters (void) const override
13112 return ada_completer_word_break_characters;
13115 /* See language.h. */
13117 void collect_symbol_completion_matches (completion_tracker &tracker,
13118 complete_symbol_mode mode,
13119 symbol_name_match_type name_match_type,
13120 const char *text, const char *word,
13121 enum type_code code) const override
13123 struct symbol *sym;
13124 const struct block *b, *surrounding_static_block = 0;
13125 struct block_iterator iter;
13127 gdb_assert (code == TYPE_CODE_UNDEF);
13129 lookup_name_info lookup_name (text, name_match_type, true);
13131 /* First, look at the partial symtab symbols. */
13132 expand_symtabs_matching (NULL,
13136 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13139 /* At this point scan through the misc symbol vectors and add each
13140 symbol you find to the list. Eventually we want to ignore
13141 anything that isn't a text symbol (everything else will be
13142 handled by the psymtab code above). */
13144 for (objfile *objfile : current_program_space->objfiles ())
13146 for (minimal_symbol *msymbol : objfile->msymbols ())
13150 if (completion_skip_symbol (mode, msymbol))
13153 language symbol_language = msymbol->language ();
13155 /* Ada minimal symbols won't have their language set to Ada. If
13156 we let completion_list_add_name compare using the
13157 default/C-like matcher, then when completing e.g., symbols in a
13158 package named "pck", we'd match internal Ada symbols like
13159 "pckS", which are invalid in an Ada expression, unless you wrap
13160 them in '<' '>' to request a verbatim match.
13162 Unfortunately, some Ada encoded names successfully demangle as
13163 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13164 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13165 with the wrong language set. Paper over that issue here. */
13166 if (symbol_language == language_auto
13167 || symbol_language == language_cplus)
13168 symbol_language = language_ada;
13170 completion_list_add_name (tracker,
13172 msymbol->linkage_name (),
13173 lookup_name, text, word);
13177 /* Search upwards from currently selected frame (so that we can
13178 complete on local vars. */
13180 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13182 if (!BLOCK_SUPERBLOCK (b))
13183 surrounding_static_block = b; /* For elmin of dups */
13185 ALL_BLOCK_SYMBOLS (b, iter, sym)
13187 if (completion_skip_symbol (mode, sym))
13190 completion_list_add_name (tracker,
13192 sym->linkage_name (),
13193 lookup_name, text, word);
13197 /* Go through the symtabs and check the externs and statics for
13198 symbols which match. */
13200 for (objfile *objfile : current_program_space->objfiles ())
13202 for (compunit_symtab *s : objfile->compunits ())
13205 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13206 ALL_BLOCK_SYMBOLS (b, iter, sym)
13208 if (completion_skip_symbol (mode, sym))
13211 completion_list_add_name (tracker,
13213 sym->linkage_name (),
13214 lookup_name, text, word);
13219 for (objfile *objfile : current_program_space->objfiles ())
13221 for (compunit_symtab *s : objfile->compunits ())
13224 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13225 /* Don't do this block twice. */
13226 if (b == surrounding_static_block)
13228 ALL_BLOCK_SYMBOLS (b, iter, sym)
13230 if (completion_skip_symbol (mode, sym))
13233 completion_list_add_name (tracker,
13235 sym->linkage_name (),
13236 lookup_name, text, word);
13242 /* See language.h. */
13244 gdb::unique_xmalloc_ptr<char> watch_location_expression
13245 (struct type *type, CORE_ADDR addr) const override
13247 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13248 std::string name = type_to_string (type);
13249 return gdb::unique_xmalloc_ptr<char>
13250 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13253 /* See language.h. */
13255 void value_print (struct value *val, struct ui_file *stream,
13256 const struct value_print_options *options) const override
13258 return ada_value_print (val, stream, options);
13261 /* See language.h. */
13263 void value_print_inner
13264 (struct value *val, struct ui_file *stream, int recurse,
13265 const struct value_print_options *options) const override
13267 return ada_value_print_inner (val, stream, recurse, options);
13270 /* See language.h. */
13272 struct block_symbol lookup_symbol_nonlocal
13273 (const char *name, const struct block *block,
13274 const domain_enum domain) const override
13276 struct block_symbol sym;
13278 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13279 if (sym.symbol != NULL)
13282 /* If we haven't found a match at this point, try the primitive
13283 types. In other languages, this search is performed before
13284 searching for global symbols in order to short-circuit that
13285 global-symbol search if it happens that the name corresponds
13286 to a primitive type. But we cannot do the same in Ada, because
13287 it is perfectly legitimate for a program to declare a type which
13288 has the same name as a standard type. If looking up a type in
13289 that situation, we have traditionally ignored the primitive type
13290 in favor of user-defined types. This is why, unlike most other
13291 languages, we search the primitive types this late and only after
13292 having searched the global symbols without success. */
13294 if (domain == VAR_DOMAIN)
13296 struct gdbarch *gdbarch;
13299 gdbarch = target_gdbarch ();
13301 gdbarch = block_gdbarch (block);
13303 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13304 if (sym.symbol != NULL)
13311 /* See language.h. */
13313 int parser (struct parser_state *ps) const override
13315 warnings_issued = 0;
13316 return ada_parse (ps);
13319 /* See language.h. */
13321 void emitchar (int ch, struct type *chtype,
13322 struct ui_file *stream, int quoter) const override
13324 ada_emit_char (ch, chtype, stream, quoter, 1);
13327 /* See language.h. */
13329 void printchar (int ch, struct type *chtype,
13330 struct ui_file *stream) const override
13332 ada_printchar (ch, chtype, stream);
13335 /* See language.h. */
13337 void printstr (struct ui_file *stream, struct type *elttype,
13338 const gdb_byte *string, unsigned int length,
13339 const char *encoding, int force_ellipses,
13340 const struct value_print_options *options) const override
13342 ada_printstr (stream, elttype, string, length, encoding,
13343 force_ellipses, options);
13346 /* See language.h. */
13348 void print_typedef (struct type *type, struct symbol *new_symbol,
13349 struct ui_file *stream) const override
13351 ada_print_typedef (type, new_symbol, stream);
13354 /* See language.h. */
13356 bool is_string_type_p (struct type *type) const override
13358 return ada_is_string_type (type);
13361 /* See language.h. */
13363 const char *struct_too_deep_ellipsis () const override
13364 { return "(...)"; }
13366 /* See language.h. */
13368 bool c_style_arrays_p () const override
13371 /* See language.h. */
13373 bool store_sym_names_in_linkage_form_p () const override
13376 /* See language.h. */
13378 const struct lang_varobj_ops *varobj_ops () const override
13379 { return &ada_varobj_ops; }
13382 /* See language.h. */
13384 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13385 (const lookup_name_info &lookup_name) const override
13387 return ada_get_symbol_name_matcher (lookup_name);
13391 /* Single instance of the Ada language class. */
13393 static ada_language ada_language_defn;
13395 /* Command-list for the "set/show ada" prefix command. */
13396 static struct cmd_list_element *set_ada_list;
13397 static struct cmd_list_element *show_ada_list;
13400 initialize_ada_catchpoint_ops (void)
13402 struct breakpoint_ops *ops;
13404 initialize_breakpoint_ops ();
13406 ops = &catch_exception_breakpoint_ops;
13407 *ops = bkpt_breakpoint_ops;
13408 ops->allocate_location = allocate_location_exception;
13409 ops->re_set = re_set_exception;
13410 ops->check_status = check_status_exception;
13411 ops->print_it = print_it_exception;
13412 ops->print_one = print_one_exception;
13413 ops->print_mention = print_mention_exception;
13414 ops->print_recreate = print_recreate_exception;
13416 ops = &catch_exception_unhandled_breakpoint_ops;
13417 *ops = bkpt_breakpoint_ops;
13418 ops->allocate_location = allocate_location_exception;
13419 ops->re_set = re_set_exception;
13420 ops->check_status = check_status_exception;
13421 ops->print_it = print_it_exception;
13422 ops->print_one = print_one_exception;
13423 ops->print_mention = print_mention_exception;
13424 ops->print_recreate = print_recreate_exception;
13426 ops = &catch_assert_breakpoint_ops;
13427 *ops = bkpt_breakpoint_ops;
13428 ops->allocate_location = allocate_location_exception;
13429 ops->re_set = re_set_exception;
13430 ops->check_status = check_status_exception;
13431 ops->print_it = print_it_exception;
13432 ops->print_one = print_one_exception;
13433 ops->print_mention = print_mention_exception;
13434 ops->print_recreate = print_recreate_exception;
13436 ops = &catch_handlers_breakpoint_ops;
13437 *ops = bkpt_breakpoint_ops;
13438 ops->allocate_location = allocate_location_exception;
13439 ops->re_set = re_set_exception;
13440 ops->check_status = check_status_exception;
13441 ops->print_it = print_it_exception;
13442 ops->print_one = print_one_exception;
13443 ops->print_mention = print_mention_exception;
13444 ops->print_recreate = print_recreate_exception;
13447 /* This module's 'new_objfile' observer. */
13450 ada_new_objfile_observer (struct objfile *objfile)
13452 ada_clear_symbol_cache ();
13455 /* This module's 'free_objfile' observer. */
13458 ada_free_objfile_observer (struct objfile *objfile)
13460 ada_clear_symbol_cache ();
13463 void _initialize_ada_language ();
13465 _initialize_ada_language ()
13467 initialize_ada_catchpoint_ops ();
13469 add_basic_prefix_cmd ("ada", no_class,
13470 _("Prefix command for changing Ada-specific settings."),
13471 &set_ada_list, 0, &setlist);
13473 add_show_prefix_cmd ("ada", no_class,
13474 _("Generic command for showing Ada-specific settings."),
13475 &show_ada_list, 0, &showlist);
13477 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13478 &trust_pad_over_xvs, _("\
13479 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13480 Show whether an optimization trusting PAD types over XVS types is activated."),
13482 This is related to the encoding used by the GNAT compiler. The debugger\n\
13483 should normally trust the contents of PAD types, but certain older versions\n\
13484 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13485 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13486 work around this bug. It is always safe to turn this option \"off\", but\n\
13487 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13488 this option to \"off\" unless necessary."),
13489 NULL, NULL, &set_ada_list, &show_ada_list);
13491 add_setshow_boolean_cmd ("print-signatures", class_vars,
13492 &print_signatures, _("\
13493 Enable or disable the output of formal and return types for functions in the \
13494 overloads selection menu."), _("\
13495 Show whether the output of formal and return types for functions in the \
13496 overloads selection menu is activated."),
13497 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13499 add_catch_command ("exception", _("\
13500 Catch Ada exceptions, when raised.\n\
13501 Usage: catch exception [ARG] [if CONDITION]\n\
13502 Without any argument, stop when any Ada exception is raised.\n\
13503 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13504 being raised does not have a handler (and will therefore lead to the task's\n\
13506 Otherwise, the catchpoint only stops when the name of the exception being\n\
13507 raised is the same as ARG.\n\
13508 CONDITION is a boolean expression that is evaluated to see whether the\n\
13509 exception should cause a stop."),
13510 catch_ada_exception_command,
13511 catch_ada_completer,
13515 add_catch_command ("handlers", _("\
13516 Catch Ada exceptions, when handled.\n\
13517 Usage: catch handlers [ARG] [if CONDITION]\n\
13518 Without any argument, stop when any Ada exception is handled.\n\
13519 With an argument, catch only exceptions with the given name.\n\
13520 CONDITION is a boolean expression that is evaluated to see whether the\n\
13521 exception should cause a stop."),
13522 catch_ada_handlers_command,
13523 catch_ada_completer,
13526 add_catch_command ("assert", _("\
13527 Catch failed Ada assertions, when raised.\n\
13528 Usage: catch assert [if CONDITION]\n\
13529 CONDITION is a boolean expression that is evaluated to see whether the\n\
13530 exception should cause a stop."),
13531 catch_assert_command,
13536 varsize_limit = 65536;
13537 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13538 &varsize_limit, _("\
13539 Set the maximum number of bytes allowed in a variable-size object."), _("\
13540 Show the maximum number of bytes allowed in a variable-size object."), _("\
13541 Attempts to access an object whose size is not a compile-time constant\n\
13542 and exceeds this limit will cause an error."),
13543 NULL, NULL, &setlist, &showlist);
13545 add_info ("exceptions", info_exceptions_command,
13547 List all Ada exception names.\n\
13548 Usage: info exceptions [REGEXP]\n\
13549 If a regular expression is passed as an argument, only those matching\n\
13550 the regular expression are listed."));
13552 add_basic_prefix_cmd ("ada", class_maintenance,
13553 _("Set Ada maintenance-related variables."),
13554 &maint_set_ada_cmdlist,
13555 0/*allow-unknown*/, &maintenance_set_cmdlist);
13557 add_show_prefix_cmd ("ada", class_maintenance,
13558 _("Show Ada maintenance-related variables."),
13559 &maint_show_ada_cmdlist,
13560 0/*allow-unknown*/, &maintenance_show_cmdlist);
13562 add_setshow_boolean_cmd
13563 ("ignore-descriptive-types", class_maintenance,
13564 &ada_ignore_descriptive_types_p,
13565 _("Set whether descriptive types generated by GNAT should be ignored."),
13566 _("Show whether descriptive types generated by GNAT should be ignored."),
13568 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13569 DWARF attribute."),
13570 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13572 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13574 NULL, xcalloc, xfree);
13576 /* The ada-lang observers. */
13577 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13578 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13579 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");