1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
29 /* For argument passing to the inferior */
33 #include <sys/types.h>
36 #include <sys/param.h>
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
47 /*#include <sys/user.h> After a.out.h */
58 static int extract_5_load PARAMS ((unsigned int));
60 static unsigned extract_5R_store PARAMS ((unsigned int));
62 static unsigned extract_5r_store PARAMS ((unsigned int));
64 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
67 static int find_proc_framesize PARAMS ((CORE_ADDR));
69 static int find_return_regnum PARAMS ((CORE_ADDR));
71 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
73 static int extract_17 PARAMS ((unsigned int));
75 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
77 static int extract_21 PARAMS ((unsigned));
79 static unsigned deposit_14 PARAMS ((int, unsigned int));
81 static int extract_14 PARAMS ((unsigned));
83 static void unwind_command PARAMS ((char *, int));
85 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
87 static int sign_extend PARAMS ((unsigned int, unsigned int));
89 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
91 static int hppa_alignof PARAMS ((struct type *));
93 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
95 static int is_branch PARAMS ((unsigned long));
97 static int inst_saves_gr PARAMS ((unsigned long));
99 static int inst_saves_fr PARAMS ((unsigned long));
101 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
103 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
105 static int compare_unwind_entries PARAMS ((const void *, const void *));
107 static void read_unwind_info PARAMS ((struct objfile *));
109 static void internalize_unwinds PARAMS ((struct objfile *,
110 struct unwind_table_entry *,
111 asection *, unsigned int,
112 unsigned int, CORE_ADDR));
113 static void pa_print_registers PARAMS ((char *, int, int));
114 static void pa_print_fp_reg PARAMS ((int));
117 /* Routines to extract various sized constants out of hppa
120 /* This assumes that no garbage lies outside of the lower bits of
124 sign_extend (val, bits)
127 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
130 /* For many immediate values the sign bit is the low bit! */
133 low_sign_extend (val, bits)
136 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
139 /* extract the immediate field from a ld{bhw}s instruction */
144 get_field (val, from, to)
145 unsigned val, from, to;
147 val = val >> 31 - to;
148 return val & ((1 << 32 - from) - 1);
152 set_field (val, from, to, new_val)
153 unsigned *val, from, to;
155 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
156 return *val = *val & mask | (new_val << (31 - from));
159 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
165 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
171 extract_5_load (word)
174 return low_sign_extend (word >> 16 & MASK_5, 5);
179 /* extract the immediate field from a st{bhw}s instruction */
182 extract_5_store (word)
185 return low_sign_extend (word & MASK_5, 5);
190 /* extract the immediate field from a break instruction */
193 extract_5r_store (word)
196 return (word & MASK_5);
199 /* extract the immediate field from a {sr}sm instruction */
202 extract_5R_store (word)
205 return (word >> 16 & MASK_5);
208 /* extract an 11 bit immediate field */
216 return low_sign_extend (word & MASK_11, 11);
221 /* extract a 14 bit immediate field */
227 return low_sign_extend (word & MASK_14, 14);
230 /* deposit a 14 bit constant in a word */
233 deposit_14 (opnd, word)
237 unsigned sign = (opnd < 0 ? 1 : 0);
239 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
242 /* extract a 21 bit constant */
252 val = GET_FIELD (word, 20, 20);
254 val |= GET_FIELD (word, 9, 19);
256 val |= GET_FIELD (word, 5, 6);
258 val |= GET_FIELD (word, 0, 4);
260 val |= GET_FIELD (word, 7, 8);
261 return sign_extend (val, 21) << 11;
264 /* deposit a 21 bit constant in a word. Although 21 bit constants are
265 usually the top 21 bits of a 32 bit constant, we assume that only
266 the low 21 bits of opnd are relevant */
269 deposit_21 (opnd, word)
274 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
276 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
278 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
280 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
282 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
286 /* extract a 12 bit constant from branch instructions */
294 return sign_extend (GET_FIELD (word, 19, 28) |
295 GET_FIELD (word, 29, 29) << 10 |
296 (word & 0x1) << 11, 12) << 2;
299 /* Deposit a 17 bit constant in an instruction (like bl). */
302 deposit_17 (opnd, word)
305 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
306 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
307 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
308 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
315 /* extract a 17 bit constant from branch instructions, returning the
316 19 bit signed value. */
322 return sign_extend (GET_FIELD (word, 19, 28) |
323 GET_FIELD (word, 29, 29) << 10 |
324 GET_FIELD (word, 11, 15) << 11 |
325 (word & 0x1) << 16, 17) << 2;
329 /* Compare the start address for two unwind entries returning 1 if
330 the first address is larger than the second, -1 if the second is
331 larger than the first, and zero if they are equal. */
334 compare_unwind_entries (arg1, arg2)
338 const struct unwind_table_entry *a = arg1;
339 const struct unwind_table_entry *b = arg2;
341 if (a->region_start > b->region_start)
343 else if (a->region_start < b->region_start)
350 internalize_unwinds (objfile, table, section, entries, size, text_offset)
351 struct objfile *objfile;
352 struct unwind_table_entry *table;
354 unsigned int entries, size;
355 CORE_ADDR text_offset;
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
363 char *buf = alloca (size);
365 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
367 /* Now internalize the information being careful to handle host/target
369 for (i = 0; i < entries; i++)
371 table[i].region_start = bfd_get_32 (objfile->obfd,
373 table[i].region_start += text_offset;
375 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
376 table[i].region_end += text_offset;
378 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
380 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
381 table[i].Millicode = (tmp >> 30) & 0x1;
382 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
383 table[i].Region_description = (tmp >> 27) & 0x3;
384 table[i].reserved1 = (tmp >> 26) & 0x1;
385 table[i].Entry_SR = (tmp >> 25) & 0x1;
386 table[i].Entry_FR = (tmp >> 21) & 0xf;
387 table[i].Entry_GR = (tmp >> 16) & 0x1f;
388 table[i].Args_stored = (tmp >> 15) & 0x1;
389 table[i].Variable_Frame = (tmp >> 14) & 0x1;
390 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
391 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
392 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
393 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
394 table[i].Ada_Region = (tmp >> 9) & 0x1;
395 table[i].reserved2 = (tmp >> 5) & 0xf;
396 table[i].Save_SP = (tmp >> 4) & 0x1;
397 table[i].Save_RP = (tmp >> 3) & 0x1;
398 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
399 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
400 table[i].Cleanup_defined = tmp & 0x1;
401 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
403 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
404 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
405 table[i].Large_frame = (tmp >> 29) & 0x1;
406 table[i].reserved4 = (tmp >> 27) & 0x3;
407 table[i].Total_frame_size = tmp & 0x7ffffff;
412 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
413 the object file. This info is used mainly by find_unwind_entry() to find
414 out the stack frame size and frame pointer used by procedures. We put
415 everything on the psymbol obstack in the objfile so that it automatically
416 gets freed when the objfile is destroyed. */
419 read_unwind_info (objfile)
420 struct objfile *objfile;
422 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
423 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
424 unsigned index, unwind_entries, elf_unwind_entries;
425 unsigned stub_entries, total_entries;
426 CORE_ADDR text_offset;
427 struct obj_unwind_info *ui;
429 text_offset = ANOFFSET (objfile->section_offsets, 0);
430 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
431 sizeof (struct obj_unwind_info));
437 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
438 section in ELF at the moment. */
439 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
440 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
441 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
443 /* Get sizes and unwind counts for all sections. */
446 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
447 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
457 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
458 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
463 elf_unwind_entries = 0;
468 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
469 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
473 stub_unwind_size = 0;
477 /* Compute total number of unwind entries and their total size. */
478 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
479 total_size = total_entries * sizeof (struct unwind_table_entry);
481 /* Allocate memory for the unwind table. */
482 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
483 ui->last = total_entries - 1;
485 /* Internalize the standard unwind entries. */
487 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
488 unwind_entries, unwind_size, text_offset);
489 index += unwind_entries;
490 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
491 elf_unwind_entries, elf_unwind_size, text_offset);
492 index += elf_unwind_entries;
494 /* Now internalize the stub unwind entries. */
495 if (stub_unwind_size > 0)
498 char *buf = alloca (stub_unwind_size);
500 /* Read in the stub unwind entries. */
501 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
502 0, stub_unwind_size);
504 /* Now convert them into regular unwind entries. */
505 for (i = 0; i < stub_entries; i++, index++)
507 /* Clear out the next unwind entry. */
508 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
510 /* Convert offset & size into region_start and region_end.
511 Stuff away the stub type into "reserved" fields. */
512 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
514 ui->table[index].region_start += text_offset;
516 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
519 ui->table[index].region_end
520 = ui->table[index].region_start + 4 *
521 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
527 /* Unwind table needs to be kept sorted. */
528 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
529 compare_unwind_entries);
531 /* Keep a pointer to the unwind information. */
532 objfile->obj_private = (PTR) ui;
535 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
536 of the objfiles seeking the unwind table entry for this PC. Each objfile
537 contains a sorted list of struct unwind_table_entry. Since we do a binary
538 search of the unwind tables, we depend upon them to be sorted. */
540 struct unwind_table_entry *
541 find_unwind_entry(pc)
544 int first, middle, last;
545 struct objfile *objfile;
547 ALL_OBJFILES (objfile)
549 struct obj_unwind_info *ui;
551 ui = OBJ_UNWIND_INFO (objfile);
555 read_unwind_info (objfile);
556 ui = OBJ_UNWIND_INFO (objfile);
559 /* First, check the cache */
562 && pc >= ui->cache->region_start
563 && pc <= ui->cache->region_end)
566 /* Not in the cache, do a binary search */
571 while (first <= last)
573 middle = (first + last) / 2;
574 if (pc >= ui->table[middle].region_start
575 && pc <= ui->table[middle].region_end)
577 ui->cache = &ui->table[middle];
578 return &ui->table[middle];
581 if (pc < ui->table[middle].region_start)
586 } /* ALL_OBJFILES() */
590 /* Return the adjustment necessary to make for addresses on the stack
591 as presented by hpread.c.
593 This is necessary because of the stack direction on the PA and the
594 bizarre way in which someone (?) decided they wanted to handle
595 frame pointerless code in GDB. */
597 hpread_adjust_stack_address (func_addr)
600 struct unwind_table_entry *u;
602 u = find_unwind_entry (func_addr);
606 return u->Total_frame_size << 3;
609 /* Called to determine if PC is in an interrupt handler of some
613 pc_in_interrupt_handler (pc)
616 struct unwind_table_entry *u;
617 struct minimal_symbol *msym_us;
619 u = find_unwind_entry (pc);
623 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
624 its frame isn't a pure interrupt frame. Deal with this. */
625 msym_us = lookup_minimal_symbol_by_pc (pc);
627 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
630 /* Called when no unwind descriptor was found for PC. Returns 1 if it
631 appears that PC is in a linker stub. */
634 pc_in_linker_stub (pc)
637 int found_magic_instruction = 0;
641 /* If unable to read memory, assume pc is not in a linker stub. */
642 if (target_read_memory (pc, buf, 4) != 0)
645 /* We are looking for something like
647 ; $$dyncall jams RP into this special spot in the frame (RP')
648 ; before calling the "call stub"
651 ldsid (rp),r1 ; Get space associated with RP into r1
652 mtsp r1,sp ; Move it into space register 0
653 be,n 0(sr0),rp) ; back to your regularly scheduled program
656 /* Maximum known linker stub size is 4 instructions. Search forward
657 from the given PC, then backward. */
658 for (i = 0; i < 4; i++)
660 /* If we hit something with an unwind, stop searching this direction. */
662 if (find_unwind_entry (pc + i * 4) != 0)
665 /* Check for ldsid (rp),r1 which is the magic instruction for a
666 return from a cross-space function call. */
667 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
669 found_magic_instruction = 1;
672 /* Add code to handle long call/branch and argument relocation stubs
676 if (found_magic_instruction != 0)
679 /* Now look backward. */
680 for (i = 0; i < 4; i++)
682 /* If we hit something with an unwind, stop searching this direction. */
684 if (find_unwind_entry (pc - i * 4) != 0)
687 /* Check for ldsid (rp),r1 which is the magic instruction for a
688 return from a cross-space function call. */
689 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
691 found_magic_instruction = 1;
694 /* Add code to handle long call/branch and argument relocation stubs
697 return found_magic_instruction;
701 find_return_regnum(pc)
704 struct unwind_table_entry *u;
706 u = find_unwind_entry (pc);
717 /* Return size of frame, or -1 if we should use a frame pointer. */
719 find_proc_framesize (pc)
722 struct unwind_table_entry *u;
723 struct minimal_symbol *msym_us;
725 u = find_unwind_entry (pc);
729 if (pc_in_linker_stub (pc))
730 /* Linker stubs have a zero size frame. */
736 msym_us = lookup_minimal_symbol_by_pc (pc);
738 /* If Save_SP is set, and we're not in an interrupt or signal caller,
739 then we have a frame pointer. Use it. */
740 if (u->Save_SP && !pc_in_interrupt_handler (pc)
741 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
744 return u->Total_frame_size << 3;
747 /* Return offset from sp at which rp is saved, or 0 if not saved. */
748 static int rp_saved PARAMS ((CORE_ADDR));
754 struct unwind_table_entry *u;
756 u = find_unwind_entry (pc);
760 if (pc_in_linker_stub (pc))
761 /* This is the so-called RP'. */
769 else if (u->stub_type != 0)
771 switch (u->stub_type)
776 case PARAMETER_RELOCATION:
787 frameless_function_invocation (frame)
788 struct frame_info *frame;
790 struct unwind_table_entry *u;
792 u = find_unwind_entry (frame->pc);
797 return (u->Total_frame_size == 0 && u->stub_type == 0);
801 saved_pc_after_call (frame)
802 struct frame_info *frame;
806 struct unwind_table_entry *u;
808 ret_regnum = find_return_regnum (get_frame_pc (frame));
809 pc = read_register (ret_regnum) & ~0x3;
811 /* If PC is in a linker stub, then we need to dig the address
812 the stub will return to out of the stack. */
813 u = find_unwind_entry (pc);
814 if (u && u->stub_type != 0)
815 return frame_saved_pc (frame);
821 frame_saved_pc (frame)
822 struct frame_info *frame;
824 CORE_ADDR pc = get_frame_pc (frame);
825 struct unwind_table_entry *u;
827 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
828 at the base of the frame in an interrupt handler. Registers within
829 are saved in the exact same order as GDB numbers registers. How
831 if (pc_in_interrupt_handler (pc))
832 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
834 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
835 /* Deal with signal handler caller frames too. */
836 if (frame->signal_handler_caller)
839 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
844 if (frameless_function_invocation (frame))
848 ret_regnum = find_return_regnum (pc);
850 /* If the next frame is an interrupt frame or a signal
851 handler caller, then we need to look in the saved
852 register area to get the return pointer (the values
853 in the registers may not correspond to anything useful). */
855 && (frame->next->signal_handler_caller
856 || pc_in_interrupt_handler (frame->next->pc)))
858 struct frame_saved_regs saved_regs;
860 get_frame_saved_regs (frame->next, &saved_regs);
861 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
863 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
865 /* Syscalls are really two frames. The syscall stub itself
866 with a return pointer in %rp and the kernel call with
867 a return pointer in %r31. We return the %rp variant
868 if %r31 is the same as frame->pc. */
870 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
873 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
876 pc = read_register (ret_regnum) & ~0x3;
883 rp_offset = rp_saved (pc);
884 /* Similar to code in frameless function case. If the next
885 frame is a signal or interrupt handler, then dig the right
886 information out of the saved register info. */
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
892 struct frame_saved_regs saved_regs;
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
897 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
899 /* Syscalls are really two frames. The syscall stub itself
900 with a return pointer in %rp and the kernel call with
901 a return pointer in %r31. We return the %rp variant
902 if %r31 is the same as frame->pc. */
904 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
907 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
909 else if (rp_offset == 0)
910 pc = read_register (RP_REGNUM) & ~0x3;
912 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
915 /* If PC is inside a linker stub, then dig out the address the stub
918 Don't do this for long branch stubs. Why? For some unknown reason
919 _start is marked as a long branch stub in hpux10. */
920 u = find_unwind_entry (pc);
921 if (u && u->stub_type != 0
922 && u->stub_type != LONG_BRANCH)
926 /* If this is a dynamic executable, and we're in a signal handler,
927 then the call chain will eventually point us into the stub for
928 _sigreturn. Unlike most cases, we'll be pointed to the branch
929 to the real sigreturn rather than the code after the real branch!.
931 Else, try to dig the address the stub will return to in the normal
933 insn = read_memory_integer (pc, 4);
934 if ((insn & 0xfc00e000) == 0xe8000000)
935 return (pc + extract_17 (insn) + 8) & ~0x3;
943 /* We need to correct the PC and the FP for the outermost frame when we are
947 init_extra_frame_info (fromleaf, frame)
949 struct frame_info *frame;
954 if (frame->next && !fromleaf)
957 /* If the next frame represents a frameless function invocation
958 then we have to do some adjustments that are normally done by
959 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
962 /* Find the framesize of *this* frame without peeking at the PC
963 in the current frame structure (it isn't set yet). */
964 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
966 /* Now adjust our base frame accordingly. If we have a frame pointer
967 use it, else subtract the size of this frame from the current
968 frame. (we always want frame->frame to point at the lowest address
971 frame->frame = read_register (FP_REGNUM);
973 frame->frame -= framesize;
977 flags = read_register (FLAGS_REGNUM);
978 if (flags & 2) /* In system call? */
979 frame->pc = read_register (31) & ~0x3;
981 /* The outermost frame is always derived from PC-framesize
983 One might think frameless innermost frames should have
984 a frame->frame that is the same as the parent's frame->frame.
985 That is wrong; frame->frame in that case should be the *high*
986 address of the parent's frame. It's complicated as hell to
987 explain, but the parent *always* creates some stack space for
988 the child. So the child actually does have a frame of some
989 sorts, and its base is the high address in its parent's frame. */
990 framesize = find_proc_framesize(frame->pc);
992 frame->frame = read_register (FP_REGNUM);
994 frame->frame = read_register (SP_REGNUM) - framesize;
997 /* Given a GDB frame, determine the address of the calling function's frame.
998 This will be used to create a new GDB frame struct, and then
999 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1001 This may involve searching through prologues for several functions
1002 at boundaries where GCC calls HP C code, or where code which has
1003 a frame pointer calls code without a frame pointer. */
1007 struct frame_info *frame;
1009 int my_framesize, caller_framesize;
1010 struct unwind_table_entry *u;
1011 CORE_ADDR frame_base;
1012 struct frame_info *tmp_frame;
1014 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1015 are easy; at *sp we have a full save state strucutre which we can
1016 pull the old stack pointer from. Also see frame_saved_pc for
1017 code to dig a saved PC out of the save state structure. */
1018 if (pc_in_interrupt_handler (frame->pc))
1019 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1020 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1021 else if (frame->signal_handler_caller)
1023 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1027 frame_base = frame->frame;
1029 /* Get frame sizes for the current frame and the frame of the
1031 my_framesize = find_proc_framesize (frame->pc);
1032 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1034 /* If caller does not have a frame pointer, then its frame
1035 can be found at current_frame - caller_framesize. */
1036 if (caller_framesize != -1)
1037 return frame_base - caller_framesize;
1039 /* Both caller and callee have frame pointers and are GCC compiled
1040 (SAVE_SP bit in unwind descriptor is on for both functions.
1041 The previous frame pointer is found at the top of the current frame. */
1042 if (caller_framesize == -1 && my_framesize == -1)
1043 return read_memory_integer (frame_base, 4);
1045 /* Caller has a frame pointer, but callee does not. This is a little
1046 more difficult as GCC and HP C lay out locals and callee register save
1047 areas very differently.
1049 The previous frame pointer could be in a register, or in one of
1050 several areas on the stack.
1052 Walk from the current frame to the innermost frame examining
1053 unwind descriptors to determine if %r3 ever gets saved into the
1054 stack. If so return whatever value got saved into the stack.
1055 If it was never saved in the stack, then the value in %r3 is still
1058 We use information from unwind descriptors to determine if %r3
1059 is saved into the stack (Entry_GR field has this information). */
1064 u = find_unwind_entry (tmp_frame->pc);
1068 /* We could find this information by examining prologues. I don't
1069 think anyone has actually written any tools (not even "strip")
1070 which leave them out of an executable, so maybe this is a moot
1072 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1076 /* Entry_GR specifies the number of callee-saved general registers
1077 saved in the stack. It starts at %r3, so %r3 would be 1. */
1078 if (u->Entry_GR >= 1 || u->Save_SP
1079 || tmp_frame->signal_handler_caller
1080 || pc_in_interrupt_handler (tmp_frame->pc))
1083 tmp_frame = tmp_frame->next;
1088 /* We may have walked down the chain into a function with a frame
1091 && !tmp_frame->signal_handler_caller
1092 && !pc_in_interrupt_handler (tmp_frame->pc))
1093 return read_memory_integer (tmp_frame->frame, 4);
1094 /* %r3 was saved somewhere in the stack. Dig it out. */
1097 struct frame_saved_regs saved_regs;
1101 For optimization purposes many kernels don't have the
1102 callee saved registers into the save_state structure upon
1103 entry into the kernel for a syscall; the optimization
1104 is usually turned off if the process is being traced so
1105 that the debugger can get full register state for the
1108 This scheme works well except for two cases:
1110 * Attaching to a process when the process is in the
1111 kernel performing a system call (debugger can't get
1112 full register state for the inferior process since
1113 the process wasn't being traced when it entered the
1116 * Register state is not complete if the system call
1117 causes the process to core dump.
1120 The following heinous code is an attempt to deal with
1121 the lack of register state in a core dump. It will
1122 fail miserably if the function which performs the
1123 system call has a variable sized stack frame. */
1125 get_frame_saved_regs (tmp_frame, &saved_regs);
1127 /* Abominable hack. */
1128 if (current_target.to_has_execution == 0
1129 && ((saved_regs.regs[FLAGS_REGNUM]
1130 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1132 || (saved_regs.regs[FLAGS_REGNUM] == 0
1133 && read_register (FLAGS_REGNUM) & 0x2)))
1135 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1137 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1139 return frame_base - (u->Total_frame_size << 3);
1142 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1147 struct frame_saved_regs saved_regs;
1149 /* Get the innermost frame. */
1151 while (tmp_frame->next != NULL)
1152 tmp_frame = tmp_frame->next;
1154 get_frame_saved_regs (tmp_frame, &saved_regs);
1155 /* Abominable hack. See above. */
1156 if (current_target.to_has_execution == 0
1157 && ((saved_regs.regs[FLAGS_REGNUM]
1158 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1160 || (saved_regs.regs[FLAGS_REGNUM] == 0
1161 && read_register (FLAGS_REGNUM) & 0x2)))
1163 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1165 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1167 return frame_base - (u->Total_frame_size << 3);
1170 /* The value in %r3 was never saved into the stack (thus %r3 still
1171 holds the value of the previous frame pointer). */
1172 return read_register (FP_REGNUM);
1177 /* To see if a frame chain is valid, see if the caller looks like it
1178 was compiled with gcc. */
1181 frame_chain_valid (chain, thisframe)
1183 struct frame_info *thisframe;
1185 struct minimal_symbol *msym_us;
1186 struct minimal_symbol *msym_start;
1187 struct unwind_table_entry *u, *next_u = NULL;
1188 struct frame_info *next;
1193 u = find_unwind_entry (thisframe->pc);
1198 /* We can't just check that the same of msym_us is "_start", because
1199 someone idiotically decided that they were going to make a Ltext_end
1200 symbol with the same address. This Ltext_end symbol is totally
1201 indistinguishable (as nearly as I can tell) from the symbol for a function
1202 which is (legitimately, since it is in the user's namespace)
1203 named Ltext_end, so we can't just ignore it. */
1204 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1205 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1208 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1211 /* Grrrr. Some new idiot decided that they don't want _start for the
1212 PRO configurations; $START$ calls main directly.... Deal with it. */
1213 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1216 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1219 next = get_next_frame (thisframe);
1221 next_u = find_unwind_entry (next->pc);
1223 /* If this frame does not save SP, has no stack, isn't a stub,
1224 and doesn't "call" an interrupt routine or signal handler caller,
1225 then its not valid. */
1226 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1227 || (thisframe->next && thisframe->next->signal_handler_caller)
1228 || (next_u && next_u->HP_UX_interrupt_marker))
1231 if (pc_in_linker_stub (thisframe->pc))
1238 * These functions deal with saving and restoring register state
1239 * around a function call in the inferior. They keep the stack
1240 * double-word aligned; eventually, on an hp700, the stack will have
1241 * to be aligned to a 64-byte boundary.
1245 push_dummy_frame (inf_status)
1246 struct inferior_status *inf_status;
1248 CORE_ADDR sp, pc, pcspace;
1249 register int regnum;
1253 /* Oh, what a hack. If we're trying to perform an inferior call
1254 while the inferior is asleep, we have to make sure to clear
1255 the "in system call" bit in the flag register (the call will
1256 start after the syscall returns, so we're no longer in the system
1257 call!) This state is kept in "inf_status", change it there.
1259 We also need a number of horrid hacks to deal with lossage in the
1260 PC queue registers (apparently they're not valid when the in syscall
1262 pc = target_read_pc (inferior_pid);
1263 int_buffer = read_register (FLAGS_REGNUM);
1264 if (int_buffer & 0x2)
1268 memcpy (inf_status->registers, &int_buffer, 4);
1269 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1273 sid = (pc >> 30) & 0x3;
1275 pcspace = read_register (SR4_REGNUM);
1277 pcspace = read_register (SR4_REGNUM + 4 + sid);
1278 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1284 pcspace = read_register (PCSQ_HEAD_REGNUM);
1286 /* Space for "arguments"; the RP goes in here. */
1287 sp = read_register (SP_REGNUM) + 48;
1288 int_buffer = read_register (RP_REGNUM) | 0x3;
1289 write_memory (sp - 20, (char *)&int_buffer, 4);
1291 int_buffer = read_register (FP_REGNUM);
1292 write_memory (sp, (char *)&int_buffer, 4);
1294 write_register (FP_REGNUM, sp);
1298 for (regnum = 1; regnum < 32; regnum++)
1299 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1300 sp = push_word (sp, read_register (regnum));
1304 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1306 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1307 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1309 sp = push_word (sp, read_register (IPSW_REGNUM));
1310 sp = push_word (sp, read_register (SAR_REGNUM));
1311 sp = push_word (sp, pc);
1312 sp = push_word (sp, pcspace);
1313 sp = push_word (sp, pc + 4);
1314 sp = push_word (sp, pcspace);
1315 write_register (SP_REGNUM, sp);
1319 find_dummy_frame_regs (frame, frame_saved_regs)
1320 struct frame_info *frame;
1321 struct frame_saved_regs *frame_saved_regs;
1323 CORE_ADDR fp = frame->frame;
1326 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1327 frame_saved_regs->regs[FP_REGNUM] = fp;
1328 frame_saved_regs->regs[1] = fp + 8;
1330 for (fp += 12, i = 3; i < 32; i++)
1334 frame_saved_regs->regs[i] = fp;
1340 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1341 frame_saved_regs->regs[i] = fp;
1343 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1344 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1345 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1346 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1347 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1348 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1354 register struct frame_info *frame = get_current_frame ();
1355 register CORE_ADDR fp, npc, target_pc;
1356 register int regnum;
1357 struct frame_saved_regs fsr;
1360 fp = FRAME_FP (frame);
1361 get_frame_saved_regs (frame, &fsr);
1363 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1364 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1365 restore_pc_queue (&fsr);
1368 for (regnum = 31; regnum > 0; regnum--)
1369 if (fsr.regs[regnum])
1370 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1372 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1373 if (fsr.regs[regnum])
1375 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1376 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1379 if (fsr.regs[IPSW_REGNUM])
1380 write_register (IPSW_REGNUM,
1381 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1383 if (fsr.regs[SAR_REGNUM])
1384 write_register (SAR_REGNUM,
1385 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1387 /* If the PC was explicitly saved, then just restore it. */
1388 if (fsr.regs[PCOQ_TAIL_REGNUM])
1390 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1391 write_register (PCOQ_TAIL_REGNUM, npc);
1393 /* Else use the value in %rp to set the new PC. */
1396 npc = read_register (RP_REGNUM);
1397 target_write_pc (npc, 0);
1400 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1402 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1403 write_register (SP_REGNUM, fp - 48);
1405 write_register (SP_REGNUM, fp);
1407 /* The PC we just restored may be inside a return trampoline. If so
1408 we want to restart the inferior and run it through the trampoline.
1410 Do this by setting a momentary breakpoint at the location the
1411 trampoline returns to.
1413 Don't skip through the trampoline if we're popping a dummy frame. */
1414 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1415 if (target_pc && !fsr.regs[IPSW_REGNUM])
1417 struct symtab_and_line sal;
1418 struct breakpoint *breakpoint;
1419 struct cleanup *old_chain;
1421 /* Set up our breakpoint. Set it to be silent as the MI code
1422 for "return_command" will print the frame we returned to. */
1423 sal = find_pc_line (target_pc, 0);
1425 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1426 breakpoint->silent = 1;
1428 /* So we can clean things up. */
1429 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1431 /* Start up the inferior. */
1432 clear_proceed_status ();
1433 proceed_to_finish = 1;
1434 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1436 /* Perform our cleanups. */
1437 do_cleanups (old_chain);
1439 flush_cached_frames ();
1443 * After returning to a dummy on the stack, restore the instruction
1444 * queue space registers. */
1447 restore_pc_queue (fsr)
1448 struct frame_saved_regs *fsr;
1450 CORE_ADDR pc = read_pc ();
1451 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1452 struct target_waitstatus w;
1455 /* Advance past break instruction in the call dummy. */
1456 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1457 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1460 * HPUX doesn't let us set the space registers or the space
1461 * registers of the PC queue through ptrace. Boo, hiss.
1462 * Conveniently, the call dummy has this sequence of instructions
1467 * So, load up the registers and single step until we are in the
1471 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1472 write_register (22, new_pc);
1474 for (insn_count = 0; insn_count < 3; insn_count++)
1476 /* FIXME: What if the inferior gets a signal right now? Want to
1477 merge this into wait_for_inferior (as a special kind of
1478 watchpoint? By setting a breakpoint at the end? Is there
1479 any other choice? Is there *any* way to do this stuff with
1480 ptrace() or some equivalent?). */
1482 target_wait (inferior_pid, &w);
1484 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1486 stop_signal = w.value.sig;
1487 terminal_ours_for_output ();
1488 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1489 target_signal_to_name (stop_signal),
1490 target_signal_to_string (stop_signal));
1491 gdb_flush (gdb_stdout);
1495 target_terminal_ours ();
1496 target_fetch_registers (-1);
1501 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1506 CORE_ADDR struct_addr;
1508 /* array of arguments' offsets */
1509 int *offset = (int *)alloca(nargs * sizeof (int));
1513 for (i = 0; i < nargs; i++)
1515 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1517 /* value must go at proper alignment. Assume alignment is a
1519 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1520 if (cum % alignment)
1521 cum = (cum + alignment) & -alignment;
1524 sp += max ((cum + 7) & -8, 16);
1526 for (i = 0; i < nargs; i++)
1527 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1528 TYPE_LENGTH (VALUE_TYPE (args[i])));
1531 write_register (28, struct_addr);
1536 * Insert the specified number of args and function address
1537 * into a call sequence of the above form stored at DUMMYNAME.
1539 * On the hppa we need to call the stack dummy through $$dyncall.
1540 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1541 * real_pc, which is the location where gdb should start up the
1542 * inferior to do the function call.
1546 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1555 CORE_ADDR dyncall_addr;
1556 struct minimal_symbol *msymbol;
1557 struct minimal_symbol *trampoline;
1558 int flags = read_register (FLAGS_REGNUM);
1559 struct unwind_table_entry *u;
1562 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1563 if (msymbol == NULL)
1564 error ("Can't find an address for $$dyncall trampoline");
1566 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1568 /* FUN could be a procedure label, in which case we have to get
1569 its real address and the value of its GOT/DP. */
1572 /* Get the GOT/DP value for the target function. It's
1573 at *(fun+4). Note the call dummy is *NOT* allowed to
1574 trash %r19 before calling the target function. */
1575 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1577 /* Now get the real address for the function we are calling, it's
1579 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1584 #ifndef GDB_TARGET_IS_PA_ELF
1585 /* FUN could be either an export stub, or the real address of a
1586 function in a shared library. We must call an import stub
1587 rather than the export stub or real function for lazy binding
1588 to work correctly. */
1589 if (som_solib_get_got_by_pc (fun))
1591 struct objfile *objfile;
1592 struct minimal_symbol *funsymbol, *stub_symbol;
1593 CORE_ADDR newfun = 0;
1595 funsymbol = lookup_minimal_symbol_by_pc (fun);
1597 error ("Unable to find minimal symbol for target fucntion.\n");
1599 /* Search all the object files for an import symbol with the
1601 ALL_OBJFILES (objfile)
1603 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1605 /* Found a symbol with the right name. */
1608 struct unwind_table_entry *u;
1609 /* It must be a shared library trampoline. */
1610 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1613 /* It must also be an import stub. */
1614 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1615 if (!u || u->stub_type != IMPORT)
1618 /* OK. Looks like the correct import stub. */
1619 newfun = SYMBOL_VALUE (stub_symbol);
1624 write_register (19, som_solib_get_got_by_pc (fun));
1629 /* If we are calling an import stub (eg calling into a dynamic library)
1630 then have sr4export call the magic __d_plt_call routine which is linked
1631 in from end.o. (You can't use _sr4export to call the import stub as
1632 the value in sp-24 will get fried and you end up returning to the
1633 wrong location. You can't call the import stub directly as the code
1634 to bind the PLT entry to a function can't return to a stack address.) */
1635 u = find_unwind_entry (fun);
1636 if (u && u->stub_type == IMPORT)
1640 /* Prefer __gcc_plt_call over the HP supplied routine because
1641 __gcc_plt_call works for any number of arguments. */
1642 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1643 if (trampoline == NULL)
1644 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1646 if (trampoline == NULL)
1647 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1649 /* This is where sr4export will jump to. */
1650 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1652 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1654 /* We have to store the address of the stub in __shlib_funcptr. */
1655 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1656 (struct objfile *)NULL);
1657 if (msymbol == NULL)
1658 error ("Can't find an address for __shlib_funcptr");
1660 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1662 /* We want sr4export to call __d_plt_call, so we claim it is
1663 the final target. Clear trampoline. */
1669 /* Store upper 21 bits of function address into ldil. fun will either be
1670 the final target (most cases) or __d_plt_call when calling into a shared
1671 library and __gcc_plt_call is not available. */
1672 store_unsigned_integer
1673 (&dummy[FUNC_LDIL_OFFSET],
1675 deposit_21 (fun >> 11,
1676 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1677 INSTRUCTION_SIZE)));
1679 /* Store lower 11 bits of function address into ldo */
1680 store_unsigned_integer
1681 (&dummy[FUNC_LDO_OFFSET],
1683 deposit_14 (fun & MASK_11,
1684 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1685 INSTRUCTION_SIZE)));
1686 #ifdef SR4EXPORT_LDIL_OFFSET
1689 CORE_ADDR trampoline_addr;
1691 /* We may still need sr4export's address too. */
1693 if (trampoline == NULL)
1695 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1696 if (msymbol == NULL)
1697 error ("Can't find an address for _sr4export trampoline");
1699 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1702 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1705 /* Store upper 21 bits of trampoline's address into ldil */
1706 store_unsigned_integer
1707 (&dummy[SR4EXPORT_LDIL_OFFSET],
1709 deposit_21 (trampoline_addr >> 11,
1710 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1711 INSTRUCTION_SIZE)));
1713 /* Store lower 11 bits of trampoline's address into ldo */
1714 store_unsigned_integer
1715 (&dummy[SR4EXPORT_LDO_OFFSET],
1717 deposit_14 (trampoline_addr & MASK_11,
1718 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1719 INSTRUCTION_SIZE)));
1723 write_register (22, pc);
1725 /* If we are in a syscall, then we should call the stack dummy
1726 directly. $$dyncall is not needed as the kernel sets up the
1727 space id registers properly based on the value in %r31. In
1728 fact calling $$dyncall will not work because the value in %r22
1729 will be clobbered on the syscall exit path.
1731 Similarly if the current PC is in a shared library. Note however,
1732 this scheme won't work if the shared library isn't mapped into
1733 the same space as the stack. */
1736 #ifndef GDB_TARGET_IS_PA_ELF
1737 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1741 return dyncall_addr;
1745 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1749 target_read_pc (pid)
1752 int flags = read_register (FLAGS_REGNUM);
1755 return read_register (31) & ~0x3;
1757 return read_register (PC_REGNUM) & ~0x3;
1760 /* Write out the PC. If currently in a syscall, then also write the new
1761 PC value into %r31. */
1764 target_write_pc (v, pid)
1768 int flags = read_register (FLAGS_REGNUM);
1770 /* If in a syscall, then set %r31. Also make sure to get the
1771 privilege bits set correctly. */
1773 write_register (31, (long) (v | 0x3));
1775 write_register (PC_REGNUM, (long) v);
1776 write_register (NPC_REGNUM, (long) v + 4);
1779 /* return the alignment of a type in bytes. Structures have the maximum
1780 alignment required by their fields. */
1786 int max_align, align, i;
1787 CHECK_TYPEDEF (type);
1788 switch (TYPE_CODE (type))
1793 return TYPE_LENGTH (type);
1794 case TYPE_CODE_ARRAY:
1795 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1796 case TYPE_CODE_STRUCT:
1797 case TYPE_CODE_UNION:
1799 for (i = 0; i < TYPE_NFIELDS (type); i++)
1801 /* Bit fields have no real alignment. */
1802 if (!TYPE_FIELD_BITPOS (type, i))
1804 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1805 max_align = max (max_align, align);
1814 /* Print the register regnum, or all registers if regnum is -1 */
1817 pa_do_registers_info (regnum, fpregs)
1821 char raw_regs [REGISTER_BYTES];
1824 for (i = 0; i < NUM_REGS; i++)
1825 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1827 pa_print_registers (raw_regs, regnum, fpregs);
1828 else if (regnum < FP0_REGNUM)
1829 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1830 REGISTER_BYTE (regnum)));
1832 pa_print_fp_reg (regnum);
1836 pa_print_registers (raw_regs, regnum, fpregs)
1844 for (i = 0; i < 18; i++)
1846 for (j = 0; j < 4; j++)
1849 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1850 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1852 printf_unfiltered ("\n");
1856 for (i = 72; i < NUM_REGS; i++)
1857 pa_print_fp_reg (i);
1864 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1865 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1867 /* Get 32bits of data. */
1868 read_relative_register_raw_bytes (i, raw_buffer);
1870 /* Put it in the buffer. No conversions are ever necessary. */
1871 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1873 fputs_filtered (reg_names[i], gdb_stdout);
1874 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1875 fputs_filtered ("(single precision) ", gdb_stdout);
1877 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1878 1, 0, Val_pretty_default);
1879 printf_filtered ("\n");
1881 /* If "i" is even, then this register can also be a double-precision
1882 FP register. Dump it out as such. */
1885 /* Get the data in raw format for the 2nd half. */
1886 read_relative_register_raw_bytes (i + 1, raw_buffer);
1888 /* Copy it into the appropriate part of the virtual buffer. */
1889 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1890 REGISTER_RAW_SIZE (i));
1892 /* Dump it as a double. */
1893 fputs_filtered (reg_names[i], gdb_stdout);
1894 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1895 fputs_filtered ("(double precision) ", gdb_stdout);
1897 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1898 1, 0, Val_pretty_default);
1899 printf_filtered ("\n");
1903 /* Return one if PC is in the call path of a trampoline, else return zero.
1905 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1906 just shared library trampolines (import, export). */
1909 in_solib_call_trampoline (pc, name)
1913 struct minimal_symbol *minsym;
1914 struct unwind_table_entry *u;
1915 static CORE_ADDR dyncall = 0;
1916 static CORE_ADDR sr4export = 0;
1918 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1921 /* First see if PC is in one of the two C-library trampolines. */
1924 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1926 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1933 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1935 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1940 if (pc == dyncall || pc == sr4export)
1943 /* Get the unwind descriptor corresponding to PC, return zero
1944 if no unwind was found. */
1945 u = find_unwind_entry (pc);
1949 /* If this isn't a linker stub, then return now. */
1950 if (u->stub_type == 0)
1953 /* By definition a long-branch stub is a call stub. */
1954 if (u->stub_type == LONG_BRANCH)
1957 /* The call and return path execute the same instructions within
1958 an IMPORT stub! So an IMPORT stub is both a call and return
1960 if (u->stub_type == IMPORT)
1963 /* Parameter relocation stubs always have a call path and may have a
1965 if (u->stub_type == PARAMETER_RELOCATION
1966 || u->stub_type == EXPORT)
1970 /* Search forward from the current PC until we hit a branch
1971 or the end of the stub. */
1972 for (addr = pc; addr <= u->region_end; addr += 4)
1976 insn = read_memory_integer (addr, 4);
1978 /* Does it look like a bl? If so then it's the call path, if
1979 we find a bv or be first, then we're on the return path. */
1980 if ((insn & 0xfc00e000) == 0xe8000000)
1982 else if ((insn & 0xfc00e001) == 0xe800c000
1983 || (insn & 0xfc000000) == 0xe0000000)
1987 /* Should never happen. */
1988 warning ("Unable to find branch in parameter relocation stub.\n");
1992 /* Unknown stub type. For now, just return zero. */
1996 /* Return one if PC is in the return path of a trampoline, else return zero.
1998 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1999 just shared library trampolines (import, export). */
2002 in_solib_return_trampoline (pc, name)
2006 struct unwind_table_entry *u;
2008 /* Get the unwind descriptor corresponding to PC, return zero
2009 if no unwind was found. */
2010 u = find_unwind_entry (pc);
2014 /* If this isn't a linker stub or it's just a long branch stub, then
2016 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2019 /* The call and return path execute the same instructions within
2020 an IMPORT stub! So an IMPORT stub is both a call and return
2022 if (u->stub_type == IMPORT)
2025 /* Parameter relocation stubs always have a call path and may have a
2027 if (u->stub_type == PARAMETER_RELOCATION
2028 || u->stub_type == EXPORT)
2032 /* Search forward from the current PC until we hit a branch
2033 or the end of the stub. */
2034 for (addr = pc; addr <= u->region_end; addr += 4)
2038 insn = read_memory_integer (addr, 4);
2040 /* Does it look like a bl? If so then it's the call path, if
2041 we find a bv or be first, then we're on the return path. */
2042 if ((insn & 0xfc00e000) == 0xe8000000)
2044 else if ((insn & 0xfc00e001) == 0xe800c000
2045 || (insn & 0xfc000000) == 0xe0000000)
2049 /* Should never happen. */
2050 warning ("Unable to find branch in parameter relocation stub.\n");
2054 /* Unknown stub type. For now, just return zero. */
2059 /* Figure out if PC is in a trampoline, and if so find out where
2060 the trampoline will jump to. If not in a trampoline, return zero.
2062 Simple code examination probably is not a good idea since the code
2063 sequences in trampolines can also appear in user code.
2065 We use unwinds and information from the minimal symbol table to
2066 determine when we're in a trampoline. This won't work for ELF
2067 (yet) since it doesn't create stub unwind entries. Whether or
2068 not ELF will create stub unwinds or normal unwinds for linker
2069 stubs is still being debated.
2071 This should handle simple calls through dyncall or sr4export,
2072 long calls, argument relocation stubs, and dyncall/sr4export
2073 calling an argument relocation stub. It even handles some stubs
2074 used in dynamic executables. */
2077 skip_trampoline_code (pc, name)
2082 long prev_inst, curr_inst, loc;
2083 static CORE_ADDR dyncall = 0;
2084 static CORE_ADDR sr4export = 0;
2085 struct minimal_symbol *msym;
2086 struct unwind_table_entry *u;
2088 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2093 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2095 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2102 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2104 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2109 /* Addresses passed to dyncall may *NOT* be the actual address
2110 of the function. So we may have to do something special. */
2113 pc = (CORE_ADDR) read_register (22);
2115 /* If bit 30 (counting from the left) is on, then pc is the address of
2116 the PLT entry for this function, not the address of the function
2117 itself. Bit 31 has meaning too, but only for MPE. */
2119 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2121 else if (pc == sr4export)
2122 pc = (CORE_ADDR) (read_register (22));
2124 /* Get the unwind descriptor corresponding to PC, return zero
2125 if no unwind was found. */
2126 u = find_unwind_entry (pc);
2130 /* If this isn't a linker stub, then return now. */
2131 if (u->stub_type == 0)
2132 return orig_pc == pc ? 0 : pc & ~0x3;
2134 /* It's a stub. Search for a branch and figure out where it goes.
2135 Note we have to handle multi insn branch sequences like ldil;ble.
2136 Most (all?) other branches can be determined by examining the contents
2137 of certain registers and the stack. */
2143 /* Make sure we haven't walked outside the range of this stub. */
2144 if (u != find_unwind_entry (loc))
2146 warning ("Unable to find branch in linker stub");
2147 return orig_pc == pc ? 0 : pc & ~0x3;
2150 prev_inst = curr_inst;
2151 curr_inst = read_memory_integer (loc, 4);
2153 /* Does it look like a branch external using %r1? Then it's the
2154 branch from the stub to the actual function. */
2155 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2157 /* Yup. See if the previous instruction loaded
2158 a value into %r1. If so compute and return the jump address. */
2159 if ((prev_inst & 0xffe00000) == 0x20200000)
2160 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2163 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2164 return orig_pc == pc ? 0 : pc & ~0x3;
2168 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2169 import stub to an export stub.
2171 It is impossible to determine the target of the branch via
2172 simple examination of instructions and/or data (consider
2173 that the address in the plabel may be the address of the
2174 bind-on-reference routine in the dynamic loader).
2176 So we have try an alternative approach.
2178 Get the name of the symbol at our current location; it should
2179 be a stub symbol with the same name as the symbol in the
2182 Then lookup a minimal symbol with the same name; we should
2183 get the minimal symbol for the target routine in the shared
2184 library as those take precedence of import/export stubs. */
2185 if (curr_inst == 0xe2a00000)
2187 struct minimal_symbol *stubsym, *libsym;
2189 stubsym = lookup_minimal_symbol_by_pc (loc);
2190 if (stubsym == NULL)
2192 warning ("Unable to find symbol for 0x%x", loc);
2193 return orig_pc == pc ? 0 : pc & ~0x3;
2196 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2199 warning ("Unable to find library symbol for %s\n",
2200 SYMBOL_NAME (stubsym));
2201 return orig_pc == pc ? 0 : pc & ~0x3;
2204 return SYMBOL_VALUE (libsym);
2207 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2208 branch from the stub to the actual function. */
2209 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2210 || (curr_inst & 0xffe0e000) == 0xe8000000)
2211 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2213 /* Does it look like bv (rp)? Note this depends on the
2214 current stack pointer being the same as the stack
2215 pointer in the stub itself! This is a branch on from the
2216 stub back to the original caller. */
2217 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2219 /* Yup. See if the previous instruction loaded
2221 if (prev_inst == 0x4bc23ff1)
2222 return (read_memory_integer
2223 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2226 warning ("Unable to find restore of %%rp before bv (%%rp).");
2227 return orig_pc == pc ? 0 : pc & ~0x3;
2231 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2232 the original caller from the stub. Used in dynamic executables. */
2233 else if (curr_inst == 0xe0400002)
2235 /* The value we jump to is sitting in sp - 24. But that's
2236 loaded several instructions before the be instruction.
2237 I guess we could check for the previous instruction being
2238 mtsp %r1,%sr0 if we want to do sanity checking. */
2239 return (read_memory_integer
2240 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2243 /* Haven't found the branch yet, but we're still in the stub.
2249 /* For the given instruction (INST), return any adjustment it makes
2250 to the stack pointer or zero for no adjustment.
2252 This only handles instructions commonly found in prologues. */
2255 prologue_inst_adjust_sp (inst)
2258 /* This must persist across calls. */
2259 static int save_high21;
2261 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2262 if ((inst & 0xffffc000) == 0x37de0000)
2263 return extract_14 (inst);
2266 if ((inst & 0xffe00000) == 0x6fc00000)
2267 return extract_14 (inst);
2269 /* addil high21,%r1; ldo low11,(%r1),%r30)
2270 save high bits in save_high21 for later use. */
2271 if ((inst & 0xffe00000) == 0x28200000)
2273 save_high21 = extract_21 (inst);
2277 if ((inst & 0xffff0000) == 0x343e0000)
2278 return save_high21 + extract_14 (inst);
2280 /* fstws as used by the HP compilers. */
2281 if ((inst & 0xffffffe0) == 0x2fd01220)
2282 return extract_5_load (inst);
2284 /* No adjustment. */
2288 /* Return nonzero if INST is a branch of some kind, else return zero. */
2318 /* Return the register number for a GR which is saved by INST or
2319 zero it INST does not save a GR. */
2322 inst_saves_gr (inst)
2325 /* Does it look like a stw? */
2326 if ((inst >> 26) == 0x1a)
2327 return extract_5R_store (inst);
2329 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2330 if ((inst >> 26) == 0x1b)
2331 return extract_5R_store (inst);
2333 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2335 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2336 return extract_5R_store (inst);
2341 /* Return the register number for a FR which is saved by INST or
2342 zero it INST does not save a FR.
2344 Note we only care about full 64bit register stores (that's the only
2345 kind of stores the prologue will use).
2347 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2350 inst_saves_fr (inst)
2353 if ((inst & 0xfc00dfc0) == 0x2c001200)
2354 return extract_5r_store (inst);
2358 /* Advance PC across any function entry prologue instructions
2359 to reach some "real" code.
2361 Use information in the unwind table to determine what exactly should
2362 be in the prologue. */
2369 CORE_ADDR orig_pc = pc;
2370 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2371 unsigned long args_stored, status, i, restart_gr, restart_fr;
2372 struct unwind_table_entry *u;
2378 u = find_unwind_entry (pc);
2382 /* If we are not at the beginning of a function, then return now. */
2383 if ((pc & ~0x3) != u->region_start)
2386 /* This is how much of a frame adjustment we need to account for. */
2387 stack_remaining = u->Total_frame_size << 3;
2389 /* Magic register saves we want to know about. */
2390 save_rp = u->Save_RP;
2391 save_sp = u->Save_SP;
2393 /* An indication that args may be stored into the stack. Unfortunately
2394 the HPUX compilers tend to set this in cases where no args were
2398 /* Turn the Entry_GR field into a bitmask. */
2400 for (i = 3; i < u->Entry_GR + 3; i++)
2402 /* Frame pointer gets saved into a special location. */
2403 if (u->Save_SP && i == FP_REGNUM)
2406 save_gr |= (1 << i);
2408 save_gr &= ~restart_gr;
2410 /* Turn the Entry_FR field into a bitmask too. */
2412 for (i = 12; i < u->Entry_FR + 12; i++)
2413 save_fr |= (1 << i);
2414 save_fr &= ~restart_fr;
2416 /* Loop until we find everything of interest or hit a branch.
2418 For unoptimized GCC code and for any HP CC code this will never ever
2419 examine any user instructions.
2421 For optimzied GCC code we're faced with problems. GCC will schedule
2422 its prologue and make prologue instructions available for delay slot
2423 filling. The end result is user code gets mixed in with the prologue
2424 and a prologue instruction may be in the delay slot of the first branch
2427 Some unexpected things are expected with debugging optimized code, so
2428 we allow this routine to walk past user instructions in optimized
2430 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2433 unsigned int reg_num;
2434 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2435 unsigned long old_save_rp, old_save_sp, next_inst;
2437 /* Save copies of all the triggers so we can compare them later
2439 old_save_gr = save_gr;
2440 old_save_fr = save_fr;
2441 old_save_rp = save_rp;
2442 old_save_sp = save_sp;
2443 old_stack_remaining = stack_remaining;
2445 status = target_read_memory (pc, buf, 4);
2446 inst = extract_unsigned_integer (buf, 4);
2452 /* Note the interesting effects of this instruction. */
2453 stack_remaining -= prologue_inst_adjust_sp (inst);
2455 /* There is only one instruction used for saving RP into the stack. */
2456 if (inst == 0x6bc23fd9)
2459 /* This is the only way we save SP into the stack. At this time
2460 the HP compilers never bother to save SP into the stack. */
2461 if ((inst & 0xffffc000) == 0x6fc10000)
2464 /* Account for general and floating-point register saves. */
2465 reg_num = inst_saves_gr (inst);
2466 save_gr &= ~(1 << reg_num);
2468 /* Ugh. Also account for argument stores into the stack.
2469 Unfortunately args_stored only tells us that some arguments
2470 where stored into the stack. Not how many or what kind!
2472 This is a kludge as on the HP compiler sets this bit and it
2473 never does prologue scheduling. So once we see one, skip past
2474 all of them. We have similar code for the fp arg stores below.
2476 FIXME. Can still die if we have a mix of GR and FR argument
2478 if (reg_num >= 23 && reg_num <= 26)
2480 while (reg_num >= 23 && reg_num <= 26)
2483 status = target_read_memory (pc, buf, 4);
2484 inst = extract_unsigned_integer (buf, 4);
2487 reg_num = inst_saves_gr (inst);
2493 reg_num = inst_saves_fr (inst);
2494 save_fr &= ~(1 << reg_num);
2496 status = target_read_memory (pc + 4, buf, 4);
2497 next_inst = extract_unsigned_integer (buf, 4);
2503 /* We've got to be read to handle the ldo before the fp register
2505 if ((inst & 0xfc000000) == 0x34000000
2506 && inst_saves_fr (next_inst) >= 4
2507 && inst_saves_fr (next_inst) <= 7)
2509 /* So we drop into the code below in a reasonable state. */
2510 reg_num = inst_saves_fr (next_inst);
2514 /* Ugh. Also account for argument stores into the stack.
2515 This is a kludge as on the HP compiler sets this bit and it
2516 never does prologue scheduling. So once we see one, skip past
2518 if (reg_num >= 4 && reg_num <= 7)
2520 while (reg_num >= 4 && reg_num <= 7)
2523 status = target_read_memory (pc, buf, 4);
2524 inst = extract_unsigned_integer (buf, 4);
2527 if ((inst & 0xfc000000) != 0x34000000)
2529 status = target_read_memory (pc + 4, buf, 4);
2530 next_inst = extract_unsigned_integer (buf, 4);
2533 reg_num = inst_saves_fr (next_inst);
2539 /* Quit if we hit any kind of branch. This can happen if a prologue
2540 instruction is in the delay slot of the first call/branch. */
2541 if (is_branch (inst))
2544 /* What a crock. The HP compilers set args_stored even if no
2545 arguments were stored into the stack (boo hiss). This could
2546 cause this code to then skip a bunch of user insns (up to the
2549 To combat this we try to identify when args_stored was bogusly
2550 set and clear it. We only do this when args_stored is nonzero,
2551 all other resources are accounted for, and nothing changed on
2554 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2555 && old_save_gr == save_gr && old_save_fr == save_fr
2556 && old_save_rp == save_rp && old_save_sp == save_sp
2557 && old_stack_remaining == stack_remaining)
2564 /* We've got a tenative location for the end of the prologue. However
2565 because of limitations in the unwind descriptor mechanism we may
2566 have went too far into user code looking for the save of a register
2567 that does not exist. So, if there registers we expected to be saved
2568 but never were, mask them out and restart.
2570 This should only happen in optimized code, and should be very rare. */
2571 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2574 restart_gr = save_gr;
2575 restart_fr = save_fr;
2582 /* Put here the code to store, into a struct frame_saved_regs,
2583 the addresses of the saved registers of frame described by FRAME_INFO.
2584 This includes special registers such as pc and fp saved in special
2585 ways in the stack frame. sp is even more special:
2586 the address we return for it IS the sp for the next frame. */
2589 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2590 struct frame_info *frame_info;
2591 struct frame_saved_regs *frame_saved_regs;
2594 struct unwind_table_entry *u;
2595 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2600 /* Zero out everything. */
2601 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2603 /* Call dummy frames always look the same, so there's no need to
2604 examine the dummy code to determine locations of saved registers;
2605 instead, let find_dummy_frame_regs fill in the correct offsets
2606 for the saved registers. */
2607 if ((frame_info->pc >= frame_info->frame
2608 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2609 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2611 find_dummy_frame_regs (frame_info, frame_saved_regs);
2613 /* Interrupt handlers are special too. They lay out the register
2614 state in the exact same order as the register numbers in GDB. */
2615 if (pc_in_interrupt_handler (frame_info->pc))
2617 for (i = 0; i < NUM_REGS; i++)
2619 /* SP is a little special. */
2621 frame_saved_regs->regs[SP_REGNUM]
2622 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2624 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2629 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2630 /* Handle signal handler callers. */
2631 if (frame_info->signal_handler_caller)
2633 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2638 /* Get the starting address of the function referred to by the PC
2640 pc = get_pc_function_start (frame_info->pc);
2643 u = find_unwind_entry (pc);
2647 /* This is how much of a frame adjustment we need to account for. */
2648 stack_remaining = u->Total_frame_size << 3;
2650 /* Magic register saves we want to know about. */
2651 save_rp = u->Save_RP;
2652 save_sp = u->Save_SP;
2654 /* Turn the Entry_GR field into a bitmask. */
2656 for (i = 3; i < u->Entry_GR + 3; i++)
2658 /* Frame pointer gets saved into a special location. */
2659 if (u->Save_SP && i == FP_REGNUM)
2662 save_gr |= (1 << i);
2665 /* Turn the Entry_FR field into a bitmask too. */
2667 for (i = 12; i < u->Entry_FR + 12; i++)
2668 save_fr |= (1 << i);
2670 /* The frame always represents the value of %sp at entry to the
2671 current function (and is thus equivalent to the "saved" stack
2673 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2675 /* Loop until we find everything of interest or hit a branch.
2677 For unoptimized GCC code and for any HP CC code this will never ever
2678 examine any user instructions.
2680 For optimzied GCC code we're faced with problems. GCC will schedule
2681 its prologue and make prologue instructions available for delay slot
2682 filling. The end result is user code gets mixed in with the prologue
2683 and a prologue instruction may be in the delay slot of the first branch
2686 Some unexpected things are expected with debugging optimized code, so
2687 we allow this routine to walk past user instructions in optimized
2689 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2691 status = target_read_memory (pc, buf, 4);
2692 inst = extract_unsigned_integer (buf, 4);
2698 /* Note the interesting effects of this instruction. */
2699 stack_remaining -= prologue_inst_adjust_sp (inst);
2701 /* There is only one instruction used for saving RP into the stack. */
2702 if (inst == 0x6bc23fd9)
2705 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2708 /* Just note that we found the save of SP into the stack. The
2709 value for frame_saved_regs was computed above. */
2710 if ((inst & 0xffffc000) == 0x6fc10000)
2713 /* Account for general and floating-point register saves. */
2714 reg = inst_saves_gr (inst);
2715 if (reg >= 3 && reg <= 18
2716 && (!u->Save_SP || reg != FP_REGNUM))
2718 save_gr &= ~(1 << reg);
2720 /* stwm with a positive displacement is a *post modify*. */
2721 if ((inst >> 26) == 0x1b
2722 && extract_14 (inst) >= 0)
2723 frame_saved_regs->regs[reg] = frame_info->frame;
2726 /* Handle code with and without frame pointers. */
2728 frame_saved_regs->regs[reg]
2729 = frame_info->frame + extract_14 (inst);
2731 frame_saved_regs->regs[reg]
2732 = frame_info->frame + (u->Total_frame_size << 3)
2733 + extract_14 (inst);
2738 /* GCC handles callee saved FP regs a little differently.
2740 It emits an instruction to put the value of the start of
2741 the FP store area into %r1. It then uses fstds,ma with
2742 a basereg of %r1 for the stores.
2744 HP CC emits them at the current stack pointer modifying
2745 the stack pointer as it stores each register. */
2747 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2748 if ((inst & 0xffffc000) == 0x34610000
2749 || (inst & 0xffffc000) == 0x37c10000)
2750 fp_loc = extract_14 (inst);
2752 reg = inst_saves_fr (inst);
2753 if (reg >= 12 && reg <= 21)
2755 /* Note +4 braindamage below is necessary because the FP status
2756 registers are internally 8 registers rather than the expected
2758 save_fr &= ~(1 << reg);
2761 /* 1st HP CC FP register store. After this instruction
2762 we've set enough state that the GCC and HPCC code are
2763 both handled in the same manner. */
2764 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2769 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2770 = frame_info->frame + fp_loc;
2775 /* Quit if we hit any kind of branch. This can happen if a prologue
2776 instruction is in the delay slot of the first call/branch. */
2777 if (is_branch (inst))
2785 #ifdef MAINTENANCE_CMDS
2788 unwind_command (exp, from_tty)
2793 struct unwind_table_entry *u;
2795 /* If we have an expression, evaluate it and use it as the address. */
2797 if (exp != 0 && *exp != 0)
2798 address = parse_and_eval_address (exp);
2802 u = find_unwind_entry (address);
2806 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2810 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2812 printf_unfiltered ("\tregion_start = ");
2813 print_address (u->region_start, gdb_stdout);
2815 printf_unfiltered ("\n\tregion_end = ");
2816 print_address (u->region_end, gdb_stdout);
2819 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2821 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2824 printf_unfiltered ("\n\tflags =");
2825 pif (Cannot_unwind);
2827 pif (Millicode_save_sr0);
2830 pif (Variable_Frame);
2831 pif (Separate_Package_Body);
2832 pif (Frame_Extension_Millicode);
2833 pif (Stack_Overflow_Check);
2834 pif (Two_Instruction_SP_Increment);
2838 pif (Save_MRP_in_frame);
2839 pif (extn_ptr_defined);
2840 pif (Cleanup_defined);
2841 pif (MPE_XL_interrupt_marker);
2842 pif (HP_UX_interrupt_marker);
2845 putchar_unfiltered ('\n');
2848 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2850 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2853 pin (Region_description);
2856 pin (Total_frame_size);
2858 #endif /* MAINTENANCE_CMDS */
2861 _initialize_hppa_tdep ()
2863 tm_print_insn = print_insn_hppa;
2865 #ifdef MAINTENANCE_CMDS
2866 add_cmd ("unwind", class_maintenance, unwind_command,
2867 "Print unwind table entry at given address.",
2868 &maintenanceprintlist);
2869 #endif /* MAINTENANCE_CMDS */