1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
27 #include "xcoffsolib.h"
31 extern struct obstack frame_cache_obstack;
35 /* Nonzero if we just simulated a single step break. */
38 /* Breakpoint shadows for the single step instructions will be kept here. */
40 static struct sstep_breaks {
41 /* Address, or 0 if this is not in use. */
43 /* Shadow contents. */
47 /* Static function prototypes */
50 find_toc_address PARAMS ((CORE_ADDR pc));
53 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
56 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
57 struct aix_framedata *fdatap));
60 * Calculate the destination of a branch/jump. Return -1 if not a branch.
63 branch_dest (opcode, instr, pc, safety)
75 absolute = (int) ((instr >> 1) & 1);
79 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
82 if (opcode != 18) /* br conditional */
83 immediate = ((instr & ~3) << 16) >> 16;
87 dest = pc + immediate;
91 ext_op = (instr>>1) & 0x3ff;
93 if (ext_op == 16) /* br conditional register */
94 dest = read_register (LR_REGNUM) & ~3;
96 else if (ext_op == 528) /* br cond to count reg */
98 dest = read_register (CTR_REGNUM) & ~3;
100 /* If we are about to execute a system call, dest is something
101 like 0x22fc or 0x3b00. Upon completion the system call
102 will return to the address in the link register. */
103 if (dest < TEXT_SEGMENT_BASE)
104 dest = read_register (LR_REGNUM) & ~3;
111 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
116 /* AIX does not support PT_STEP. Simulate it. */
122 #define INSNLEN(OPCODE) 4
124 static char breakp[] = BREAKPOINT;
133 read_memory (loc, (char *) &insn, 4);
135 breaks[0] = loc + INSNLEN(insn);
137 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
139 /* Don't put two breakpoints on the same address. */
140 if (breaks[1] == breaks[0])
143 stepBreaks[1].address = 0;
145 for (ii=0; ii < 2; ++ii) {
147 /* ignore invalid breakpoint. */
148 if ( breaks[ii] == -1)
151 read_memory (breaks[ii], stepBreaks[ii].data, 4);
153 write_memory (breaks[ii], breakp, 4);
154 stepBreaks[ii].address = breaks[ii];
160 /* remove step breakpoints. */
161 for (ii=0; ii < 2; ++ii)
162 if (stepBreaks[ii].address != 0)
164 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
168 errno = 0; /* FIXME, don't ignore errors! */
169 /* What errors? {read,write}_memory call error(). */
173 /* return pc value after skipping a function prologue. */
182 if (target_read_memory (pc, buf, 4))
183 return pc; /* Can't access it -- assume no prologue. */
184 op = extract_unsigned_integer (buf, 4);
186 /* Assume that subsequent fetches can fail with low probability. */
188 if (op == 0x7c0802a6) { /* mflr r0 */
190 op = read_memory_integer (pc, 4);
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
195 op = read_memory_integer (pc, 4);
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
200 op = read_memory_integer (pc, 4);
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
209 return pc - 4; /* don't skip over this branch */
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
219 op = read_memory_integer (pc, 4);
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
227 op = read_memory_integer (pc, 4);
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
235 /* store parameters into stack */
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
274 /* check and see if we are in main. If so, skip over this initializer
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
291 *************************************************************************/
293 /* The total size of dummy frame is 436, which is;
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
302 #define DUMMY_FRAME_SIZE 436
304 #define DUMMY_FRAME_ADDR_SIZE 10
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
313 extern int stop_stack_dummy;
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
326 /* Same thing, target byte order. */
331 target_fetch_registers (-1);
333 if (dummy_frame_count >= dummy_frame_size) {
334 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
335 if (dummy_frame_addr)
336 dummy_frame_addr = (CORE_ADDR*) xrealloc
337 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
339 dummy_frame_addr = (CORE_ADDR*)
340 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
343 sp = read_register(SP_REGNUM);
344 pc = read_register(PC_REGNUM);
345 memcpy (pc_targ, (char *) &pc, 4);
347 dummy_frame_addr [dummy_frame_count++] = sp;
349 /* Be careful! If the stack pointer is not decremented first, then kernel
350 thinks he is free to use the space underneath it. And kernel actually
351 uses that area for IPC purposes when executing ptrace(2) calls. So
352 before writing register values into the new frame, decrement and update
353 %sp first in order to secure your frame. */
355 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
357 /* gdb relies on the state of current_frame. We'd better update it,
358 otherwise things like do_registers_info() wouldn't work properly! */
360 flush_cached_frames ();
362 /* save program counter in link register's space. */
363 write_memory (sp+8, pc_targ, 4);
365 /* save all floating point and general purpose registers here. */
368 for (ii = 0; ii < 32; ++ii)
369 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
372 for (ii=1; ii <=32; ++ii)
373 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
375 /* so far, 32*2 + 32 words = 384 bytes have been written.
376 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
378 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
379 write_memory (sp-384-(ii*4),
380 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
383 /* Save sp or so called back chain right here. */
384 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
385 sp -= DUMMY_FRAME_SIZE;
387 /* And finally, this is the back chain. */
388 write_memory (sp+8, pc_targ, 4);
392 /* Pop a dummy frame.
394 In rs6000 when we push a dummy frame, we save all of the registers. This
395 is usually done before user calls a function explicitly.
397 After a dummy frame is pushed, some instructions are copied into stack,
398 and stack pointer is decremented even more. Since we don't have a frame
399 pointer to get back to the parent frame of the dummy, we start having
400 trouble poping it. Therefore, we keep a dummy frame stack, keeping
401 addresses of dummy frames as such. When poping happens and when we
402 detect that was a dummy frame, we pop it back to its parent by using
403 dummy frame stack (`dummy_frame_addr' array).
405 FIXME: This whole concept is broken. You should be able to detect
406 a dummy stack frame *on the user's stack itself*. When you do,
407 then you know the format of that stack frame -- including its
408 saved SP register! There should *not* be a separate stack in the
416 sp = dummy_frame_addr [--dummy_frame_count];
418 /* restore all fpr's. */
419 for (ii = 1; ii <= 32; ++ii)
420 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
422 /* restore all gpr's */
423 for (ii=1; ii <= 32; ++ii) {
424 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
427 /* restore the rest of the registers. */
428 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
429 read_memory (sp-384-(ii*4),
430 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
432 read_memory (sp-(DUMMY_FRAME_SIZE-8),
433 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
435 /* when a dummy frame was being pushed, we had to decrement %sp first, in
436 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
437 one we should restore. Change it with the one we need. */
439 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
441 /* Now we can restore all registers. */
443 target_store_registers (-1);
445 flush_cached_frames ();
449 /* pop the innermost frame, go back to the caller. */
454 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
455 struct aix_framedata fdata;
456 FRAME fr = get_current_frame ();
462 if (stop_stack_dummy && dummy_frame_count) {
467 /* figure out previous %pc value. If the function is frameless, it is
468 still in the link register, otherwise walk the frames and retrieve the
469 saved %pc value in the previous frame. */
471 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
472 function_frame_info (addr, &fdata);
474 prev_sp = read_memory_integer (sp, 4);
476 lr = read_register (LR_REGNUM);
478 lr = read_memory_integer (prev_sp+8, 4);
480 /* reset %pc value. */
481 write_register (PC_REGNUM, lr);
483 /* reset register values if any was saved earlier. */
484 addr = prev_sp - fdata.offset;
486 if (fdata.saved_gpr != -1)
487 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
488 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
492 if (fdata.saved_fpr != -1)
493 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
494 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
498 write_register (SP_REGNUM, prev_sp);
499 target_store_registers (-1);
500 flush_cached_frames ();
503 /* fixup the call sequence of a dummy function, with the real function address.
504 its argumets will be passed by gdb. */
507 fix_call_dummy(dummyname, pc, fun, nargs, type)
511 int nargs; /* not used */
512 int type; /* not used */
514 #define TOC_ADDR_OFFSET 20
515 #define TARGET_ADDR_OFFSET 28
518 CORE_ADDR target_addr;
522 tocvalue = find_toc_address (target_addr);
524 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
525 ii = (ii & 0xffff0000) | (tocvalue >> 16);
526 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
528 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
529 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
530 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
532 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (target_addr >> 16);
534 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
536 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
538 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
542 /* return information about a function frame.
543 in struct aix_frameinfo fdata:
544 - frameless is TRUE, if function does not have a frame.
545 - nosavedpc is TRUE, if function does not save %pc value in its frame.
546 - offset is the number of bytes used in the frame to save registers.
547 - saved_gpr is the number of the first saved gpr.
548 - saved_fpr is the number of the first saved fpr.
549 - alloca_reg is the number of the register used for alloca() handling.
553 function_frame_info (pc, fdata)
555 struct aix_framedata *fdata;
558 register unsigned int op;
561 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
562 fdata->frameless = 1;
564 op = read_memory_integer (pc, 4);
565 if (op == 0x7c0802a6) { /* mflr r0 */
567 op = read_memory_integer (pc, 4);
568 fdata->nosavedpc = 0;
569 fdata->frameless = 0;
571 else /* else, pc is not saved */
572 fdata->nosavedpc = 1;
574 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
576 op = read_memory_integer (pc, 4);
577 fdata->frameless = 0;
580 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
582 op = read_memory_integer (pc, 4);
583 /* At this point, make sure this is not a trampoline function
584 (a function that simply calls another functions, and nothing else).
585 If the next is not a nop, this branch was part of the function
588 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
590 return; /* prologue is over */
591 fdata->frameless = 0;
594 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
595 pc += 4; /* store floating register double */
596 op = read_memory_integer (pc, 4);
597 fdata->frameless = 0;
600 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
602 fdata->saved_gpr = (op >> 21) & 0x1f;
605 tmp2 = (~0 &~ 0xffff) | tmp2;
609 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
610 if ( fdata->saved_fpr > 0)
611 fdata->saved_fpr = 32 - fdata->saved_fpr;
613 fdata->saved_fpr = -1;
615 fdata->offset = tmp2;
617 op = read_memory_integer (pc, 4);
618 fdata->frameless = 0;
621 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
622 (tmp == 0x9421) || /* stu r1, NUM(r1) */
623 (tmp == 0x93e1)) /* st r31, NUM(r1) */
627 /* gcc takes a short cut and uses this instruction to save r31 only. */
631 /* fatal ("Unrecognized prolog."); */
632 printf_unfiltered ("Unrecognized prolog!\n");
634 fdata->saved_gpr = 31;
637 tmp2 = - ((~0 &~ 0xffff) | tmp2);
638 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
639 if ( fdata->saved_fpr > 0)
640 fdata->saved_fpr = 32 - fdata->saved_fpr;
642 fdata->saved_fpr = -1;
644 fdata->offset = tmp2;
647 op = read_memory_integer (pc, 4);
648 fdata->frameless = 0;
651 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
652 pc += 4; /* l r30, ... */
653 op = read_memory_integer (pc, 4);
654 fdata->frameless = 0;
657 /* store parameters into stack */
659 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
660 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
661 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
662 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
664 pc += 4; /* store fpr double */
665 op = read_memory_integer (pc, 4);
666 fdata->frameless = 0;
669 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
670 fdata->alloca_reg = 31;
671 fdata->frameless = 0;
676 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
677 eight words of the argument list (that might be less than eight parameters if
678 some parameters occupy more than one word) are passed in r3..r11 registers.
679 float and double parameters are passed in fpr's, in addition to that. Rest of
680 the parameters if any are passed in user stack. There might be cases in which
681 half of the parameter is copied into registers, the other half is pushed into
684 If the function is returning a structure, then the return address is passed
685 in r3, then the first 7 words of the parametes can be passed in registers,
689 push_arguments (nargs, args, sp, struct_return, struct_addr)
694 CORE_ADDR struct_addr;
697 int argno; /* current argument number */
698 int argbytes; /* current argument byte */
699 char tmp_buffer [50];
701 int f_argno = 0; /* current floating point argno */
703 CORE_ADDR saved_sp, pc;
705 if ( dummy_frame_count <= 0)
706 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
708 /* The first eight words of ther arguments are passed in registers. Copy
711 If the function is returning a `struct', then the first word (which
712 will be passed in r3) is used for struct return address. In that
713 case we should advance one word and start from r4 register to copy
716 ii = struct_return ? 1 : 0;
718 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
720 arg = value_arg_coerce (args[argno]);
721 len = TYPE_LENGTH (VALUE_TYPE (arg));
723 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
725 /* floating point arguments are passed in fpr's, as well as gpr's.
726 There are 13 fpr's reserved for passing parameters. At this point
727 there is no way we would run out of them. */
731 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
733 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
740 /* Argument takes more than one register. */
741 while (argbytes < len) {
743 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
744 memcpy (®isters[REGISTER_BYTE(ii+3)],
745 ((char*)VALUE_CONTENTS (arg))+argbytes,
746 (len - argbytes) > 4 ? 4 : len - argbytes);
750 goto ran_out_of_registers_for_arguments;
755 else { /* Argument can fit in one register. No problem. */
756 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
757 memcpy (®isters[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
762 ran_out_of_registers_for_arguments:
764 /* location for 8 parameters are always reserved. */
767 /* another six words for back chain, TOC register, link register, etc. */
770 /* if there are more arguments, allocate space for them in
771 the stack, then push them starting from the ninth one. */
773 if ((argno < nargs) || argbytes) {
778 space += ((len - argbytes + 3) & -4);
784 for (; jj < nargs; ++jj) {
785 val = value_arg_coerce (args[jj]);
786 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
789 /* add location required for the rest of the parameters */
790 space = (space + 7) & -8;
793 /* This is another instance we need to be concerned about securing our
794 stack space. If we write anything underneath %sp (r1), we might conflict
795 with the kernel who thinks he is free to use this area. So, update %sp
796 first before doing anything else. */
798 write_register (SP_REGNUM, sp);
800 /* if the last argument copied into the registers didn't fit there
801 completely, push the rest of it into stack. */
805 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
807 ii += ((len - argbytes + 3) & -4) / 4;
810 /* push the rest of the arguments into stack. */
811 for (; argno < nargs; ++argno) {
813 arg = value_arg_coerce (args[argno]);
814 len = TYPE_LENGTH (VALUE_TYPE (arg));
817 /* float types should be passed in fpr's, as well as in the stack. */
818 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
822 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
824 memcpy (®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
829 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
830 ii += ((len + 3) & -4) / 4;
834 /* Secure stack areas first, before doing anything else. */
835 write_register (SP_REGNUM, sp);
837 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
838 read_memory (saved_sp, tmp_buffer, 24);
839 write_memory (sp, tmp_buffer, 24);
841 write_memory (sp, &saved_sp, 4); /* set back chain properly */
843 target_store_registers (-1);
847 /* a given return value in `regbuf' with a type `valtype', extract and copy its
848 value into `valbuf' */
851 extract_return_value (valtype, regbuf, valbuf)
852 struct type *valtype;
853 char regbuf[REGISTER_BYTES];
857 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
860 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
861 We need to truncate the return value into float size (4 byte) if
864 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
865 memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)],
866 TYPE_LENGTH (valtype));
868 memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
870 memcpy (valbuf, &ff, sizeof(float));
874 /* return value is copied starting from r3. */
875 memcpy (valbuf, ®buf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
879 /* keep structure return address in this variable.
880 FIXME: This is a horrid kludge which should not be allowed to continue
881 living. This only allows a single nested call to a structure-returning
884 CORE_ADDR rs6000_struct_return_address;
887 /* Indirect function calls use a piece of trampoline code to do context
888 switching, i.e. to set the new TOC table. Skip such code if we are on
889 its first instruction (as when we have single-stepped to here).
890 Result is desired PC to step until, or NULL if we are not in
894 skip_trampoline_code (pc)
897 register unsigned int ii, op;
899 static unsigned trampoline_code[] = {
900 0x800b0000, /* l r0,0x0(r11) */
901 0x90410014, /* st r2,0x14(r1) */
902 0x7c0903a6, /* mtctr r0 */
903 0x804b0004, /* l r2,0x4(r11) */
904 0x816b0008, /* l r11,0x8(r11) */
905 0x4e800420, /* bctr */
910 for (ii=0; trampoline_code[ii]; ++ii) {
911 op = read_memory_integer (pc + (ii*4), 4);
912 if (op != trampoline_code [ii])
915 ii = read_register (11); /* r11 holds destination addr */
916 pc = read_memory_integer (ii, 4); /* (r11) value */
921 /* Determines whether the function FI has a frame on the stack or not.
922 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
923 second argument of 0, and from the FRAME_SAVED_PC macro with a
924 second argument of 1. */
927 frameless_function_invocation (fi, pcsaved)
928 struct frame_info *fi;
931 CORE_ADDR func_start;
932 struct aix_framedata fdata;
934 if (fi->next != NULL)
935 /* Don't even think about framelessness except on the innermost frame. */
936 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
937 a signal happens while executing in a frameless function). */
940 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
942 /* If we failed to find the start of the function, it is a mistake
943 to inspect the instructions. */
948 function_frame_info (func_start, &fdata);
949 return pcsaved ? fdata.nosavedpc : fdata.frameless;
953 /* If saved registers of frame FI are not known yet, read and cache them.
954 &FDATAP contains aix_framedata; TDATAP can be NULL,
955 in which case the framedata are read. */
958 frame_get_cache_fsr (fi, fdatap)
959 struct frame_info *fi;
960 struct aix_framedata *fdatap;
963 CORE_ADDR frame_addr;
964 struct aix_framedata work_fdata;
969 if (fdatap == NULL) {
970 fdatap = &work_fdata;
971 function_frame_info (get_pc_function_start (fi->pc), fdatap);
974 fi->cache_fsr = (struct frame_saved_regs *)
975 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
976 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
978 if (fi->prev && fi->prev->frame)
979 frame_addr = fi->prev->frame;
981 frame_addr = read_memory_integer (fi->frame, 4);
983 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
984 All fpr's from saved_fpr to fp31 are saved right underneath caller
985 stack pointer, starting from fp31 first. */
987 if (fdatap->saved_fpr >= 0) {
988 for (ii=31; ii >= fdatap->saved_fpr; --ii)
989 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
990 frame_addr -= (32 - fdatap->saved_fpr) * 8;
993 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
994 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
995 starting from r31 first. */
997 if (fdatap->saved_gpr >= 0)
998 for (ii=31; ii >= fdatap->saved_gpr; --ii)
999 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1002 /* Return the address of a frame. This is the inital %sp value when the frame
1003 was first allocated. For functions calling alloca(), it might be saved in
1004 an alloca register. */
1007 frame_initial_stack_address (fi)
1008 struct frame_info *fi;
1011 struct aix_framedata fdata;
1012 struct frame_info *callee_fi;
1014 /* if the initial stack pointer (frame address) of this frame is known,
1018 return fi->initial_sp;
1020 /* find out if this function is using an alloca register.. */
1022 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1024 /* if saved registers of this frame are not known yet, read and cache them. */
1027 frame_get_cache_fsr (fi, &fdata);
1029 /* If no alloca register used, then fi->frame is the value of the %sp for
1030 this frame, and it is good enough. */
1032 if (fdata.alloca_reg < 0) {
1033 fi->initial_sp = fi->frame;
1034 return fi->initial_sp;
1037 /* This function has an alloca register. If this is the top-most frame
1038 (with the lowest address), the value in alloca register is good. */
1041 return fi->initial_sp = read_register (fdata.alloca_reg);
1043 /* Otherwise, this is a caller frame. Callee has usually already saved
1044 registers, but there are exceptions (such as when the callee
1045 has no parameters). Find the address in which caller's alloca
1046 register is saved. */
1048 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1050 if (!callee_fi->cache_fsr)
1051 frame_get_cache_fsr (callee_fi, NULL);
1053 /* this is the address in which alloca register is saved. */
1055 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1057 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1058 return fi->initial_sp;
1061 /* Go look into deeper levels of the frame chain to see if any one of
1062 the callees has saved alloca register. */
1065 /* If alloca register was not saved, by the callee (or any of its callees)
1066 then the value in the register is still good. */
1068 return fi->initial_sp = read_register (fdata.alloca_reg);
1072 rs6000_frame_chain (thisframe)
1073 struct frame_info *thisframe;
1076 if (inside_entry_file ((thisframe)->pc))
1078 if (thisframe->signal_handler_caller)
1080 /* This was determined by experimentation on AIX 3.2. Perhaps
1081 it corresponds to some offset in /usr/include/sys/user.h or
1082 something like that. Using some system include file would
1083 have the advantage of probably being more robust in the face
1084 of OS upgrades, but the disadvantage of being wrong for
1087 #define SIG_FRAME_FP_OFFSET 284
1088 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1091 fp = read_memory_integer ((thisframe)->frame, 4);
1096 /* Keep an array of load segment information and their TOC table addresses.
1097 This info will be useful when calling a shared library function by hand. */
1100 CORE_ADDR textorg, dataorg;
1101 unsigned long toc_offset;
1104 #define LOADINFOLEN 10
1106 static struct loadinfo *loadinfo = NULL;
1107 static int loadinfolen = 0;
1108 static int loadinfotocindex = 0;
1109 static int loadinfotextindex = 0;
1113 xcoff_init_loadinfo ()
1115 loadinfotocindex = 0;
1116 loadinfotextindex = 0;
1118 if (loadinfolen == 0) {
1119 loadinfo = (struct loadinfo *)
1120 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1121 loadinfolen = LOADINFOLEN;
1126 /* FIXME -- this is never called! */
1134 loadinfotocindex = 0;
1135 loadinfotextindex = 0;
1138 /* this is called from xcoffread.c */
1141 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1143 while (loadinfotocindex >= loadinfolen) {
1144 loadinfolen += LOADINFOLEN;
1145 loadinfo = (struct loadinfo *)
1146 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1148 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1152 add_text_to_loadinfo (textaddr, dataaddr)
1156 while (loadinfotextindex >= loadinfolen) {
1157 loadinfolen += LOADINFOLEN;
1158 loadinfo = (struct loadinfo *)
1159 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1161 loadinfo [loadinfotextindex].textorg = textaddr;
1162 loadinfo [loadinfotextindex].dataorg = dataaddr;
1163 ++loadinfotextindex;
1167 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1168 of a member of this array are correlated with the "toc_offset"
1169 element of the same member. But they are sequentially assigned in wildly
1170 different places, and probably there is no correlation. FIXME! */
1173 find_toc_address (pc)
1176 int ii, toc_entry, tocbase = 0;
1178 for (ii=0; ii < loadinfotextindex; ++ii)
1179 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1181 tocbase = loadinfo[ii].textorg;
1184 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;