3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
9 # This file is part of GDB.
11 # This program is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # This program is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with this program; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 # Make certain that the script is running in an internationalized
28 LC_ALL=c ; export LC_ALL
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
39 echo "${file} unchanged" 1>&2
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
55 if test "${line}" = ""
58 elif test "${line}" = "#" -a "${comment}" = ""
61 elif expr "${line}" : "#" > /dev/null
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
78 if test -n "${garbage_at_eol}"
80 echo "Garbage at end-of-line in ${line}" 1>&2
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
89 if eval test \"\${${r}}\" = \"\ \"
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
98 # Provide a UCASE version of function (for when there isn't MACRO)
100 elif test "${macro}" = "${FUNCTION}"
102 echo "${function}: Specify = for macro field" 1>&2
107 # Check that macro definition wasn't supplied for multi-arch
110 if test "${macro}" != ""
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
126 case "${invalid_p}" in
128 if test -n "${predefault}"
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
137 predicate="gdbarch->${function} != NULL"
141 echo "Predicate function ${function} with invalid_p." 1>&2
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
155 if [ -n "${postdefault}" ]
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
160 fallbackdefault="${predefault}"
165 #NOT YET: See gdbarch.log for basic verification of
180 fallback_default_p ()
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
186 class_is_variable_p ()
194 class_is_function_p ()
197 *f* | *F* | *m* | *M* ) true ;;
202 class_is_multiarch_p ()
210 class_is_predicate_p ()
213 *F* | *V* | *M* ) true ;;
227 # dump out/verify the doco
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
258 # For functions, the return type; for variables, the data type
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
345 # See also PREDEFAULT and POSTDEFAULT.
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
355 garbage_at_eol ) : ;;
357 # Catches stray fields.
360 echo "Bad field ${field}"
368 # See below (DOCO) for description of each field
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
379 # Number of bits in a short or unsigned short for the target machine.
380 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
387 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
393 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
394 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
395 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
396 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
397 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
398 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
400 # For most targets, a pointer on the target and its representation as an
401 # address in GDB have the same size and "look the same". For such a
402 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
403 # / addr_bit will be set from it.
405 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
406 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
408 # ptr_bit is the size of a pointer on the target
409 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
410 # addr_bit is the size of a target address as represented in gdb
411 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
412 # Number of bits in a BFD_VMA for the target object file format.
413 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
418 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
419 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
420 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
421 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
422 # Function for getting target's idea of a frame pointer. FIXME: GDB's
423 # whole scheme for dealing with "frames" and "frame pointers" needs a
425 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
427 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
428 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
430 v:=:int:num_regs:::0:-1
431 # This macro gives the number of pseudo-registers that live in the
432 # register namespace but do not get fetched or stored on the target.
433 # These pseudo-registers may be aliases for other registers,
434 # combinations of other registers, or they may be computed by GDB.
435 v:=:int:num_pseudo_regs:::0:0::0
437 # GDB's standard (or well known) register numbers. These can map onto
438 # a real register or a pseudo (computed) register or not be defined at
440 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
441 v:=:int:sp_regnum:::-1:-1::0
442 v:=:int:pc_regnum:::-1:-1::0
443 v:=:int:ps_regnum:::-1:-1::0
444 v:=:int:fp0_regnum:::0:-1::0
445 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
446 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
447 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
448 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
450 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
451 # Convert from an sdb register number to an internal gdb register number.
452 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
453 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
454 f:=:const char *:register_name:int regnr:regnr
456 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
457 M::struct type *:register_type:int reg_nr:reg_nr
458 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
459 # register offsets computed using just REGISTER_TYPE, this can be
460 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
461 # function with predicate has a valid (callable) initial value. As a
462 # consequence, even when the predicate is false, the corresponding
463 # function works. This simplifies the migration process - old code,
464 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
465 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
467 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
468 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
469 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
470 # DEPRECATED_FP_REGNUM.
471 v:=:int:deprecated_fp_regnum:::-1:-1::0
473 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
474 # replacement for DEPRECATED_PUSH_ARGUMENTS.
475 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
476 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
477 F:=:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
478 # DEPRECATED_REGISTER_SIZE can be deleted.
479 v:=:int:deprecated_register_size
480 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
481 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
483 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
489 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
490 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
491 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
492 # setjmp/longjmp support.
493 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
495 v:=:int:believe_pcc_promotion:::::::
497 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
498 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf:0
499 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf:0
501 f:=:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf::unsigned_pointer_to_address::0
502 f:=:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
503 F:=:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
505 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
506 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
508 # It has been suggested that this, well actually its predecessor,
509 # should take the type/value of the function to be called and not the
510 # return type. This is left as an exercise for the reader.
512 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
513 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
514 # (via legacy_return_value), when a small struct is involved.
516 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
518 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
519 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
520 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
523 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
524 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf::legacy_store_return_value::0
525 f:=:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
526 f:=:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
527 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
529 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
530 # ABI suitable for the implementation of a robust extract
531 # struct-convention return-value address method (the sparc saves the
532 # address in the callers frame). All the other cases so far examined,
533 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
534 # erreneous - the code was incorrectly assuming that the return-value
535 # address, stored in a register, was preserved across the entire
538 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
539 # the ABIs that are still to be analyzed - perhaps this should simply
540 # be deleted. The commented out extract_returned_value_address method
541 # is provided as a starting point for the 32-bit SPARC. It, or
542 # something like it, along with changes to both infcmd.c and stack.c
543 # will be needed for that case to work. NB: It is passed the callers
544 # frame since it is only after the callee has returned that this
547 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
548 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
551 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
552 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
553 f:=:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
554 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
555 f:=:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_insert_breakpoint::0
556 f:=:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache:0:default_memory_remove_breakpoint::0
557 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
559 # A function can be addressed by either it's "pointer" (possibly a
560 # descriptor address) or "entry point" (first executable instruction).
561 # The method "convert_from_func_ptr_addr" converting the former to the
562 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
563 # a simplified subset of that functionality - the function's address
564 # corresponds to the "function pointer" and the function's start
565 # corresponds to the "function entry point" - and hence is redundant.
567 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
569 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
571 v:=:CORE_ADDR:frame_args_skip:::0:::0
572 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
573 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
574 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
575 # frame-base. Enable frame-base before frame-unwind.
576 F:=:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
577 F:=:int:frame_num_args:struct frame_info *frame:frame
579 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
580 # to frame_align and the requirement that methods such as
581 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
583 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
584 M::CORE_ADDR:frame_align:CORE_ADDR address:address
585 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
586 # stabs_argument_has_addr.
587 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
588 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
589 v:=:int:frame_red_zone_size
591 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
592 # On some machines there are bits in addresses which are not really
593 # part of the address, but are used by the kernel, the hardware, etc.
594 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
595 # we get a "real" address such as one would find in a symbol table.
596 # This is used only for addresses of instructions, and even then I'm
597 # not sure it's used in all contexts. It exists to deal with there
598 # being a few stray bits in the PC which would mislead us, not as some
599 # sort of generic thing to handle alignment or segmentation (it's
600 # possible it should be in TARGET_READ_PC instead).
601 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
602 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
604 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
605 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
606 # the target needs software single step. An ISA method to implement it.
608 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
609 # using the breakpoint system instead of blatting memory directly (as with rs6000).
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
612 # single step. If not, then implement single step using breakpoints.
613 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
614 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
615 # disassembler. Perhaps objdump can handle it?
616 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
617 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
620 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
621 # evaluates non-zero, this is the address where the debugger will place
622 # a step-resume breakpoint to get us past the dynamic linker.
623 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
624 # For SVR4 shared libraries, each call goes through a small piece of
625 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
626 # to nonzero if we are currently stopped in one of these.
627 f:=:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_call_trampoline::0
629 # Some systems also have trampoline code for returning from shared libs.
630 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
632 # A target might have problems with watchpoints as soon as the stack
633 # frame of the current function has been destroyed. This mostly happens
634 # as the first action in a funtion's epilogue. in_function_epilogue_p()
635 # is defined to return a non-zero value if either the given addr is one
636 # instruction after the stack destroying instruction up to the trailing
637 # return instruction or if we can figure out that the stack frame has
638 # already been invalidated regardless of the value of addr. Targets
639 # which don't suffer from that problem could just let this functionality
641 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
642 # Given a vector of command-line arguments, return a newly allocated
643 # string which, when passed to the create_inferior function, will be
644 # parsed (on Unix systems, by the shell) to yield the same vector.
645 # This function should call error() if the argument vector is not
646 # representable for this target or if this target does not support
647 # command-line arguments.
648 # ARGC is the number of elements in the vector.
649 # ARGV is an array of strings, one per argument.
650 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
651 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
652 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
653 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
654 v:=:int:cannot_step_breakpoint:::0:0::0
655 v:=:int:have_nonsteppable_watchpoint:::0:0::0
656 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
657 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
658 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
659 # Is a register in a group
660 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
661 # Fetch the pointer to the ith function argument.
662 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
664 # Return the appropriate register set for a core file section with
665 # name SECT_NAME and size SECT_SIZE.
666 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
673 exec > new-gdbarch.log
674 function_list | while do_read
677 ${class} ${returntype} ${function} ($formal)
681 eval echo \"\ \ \ \ ${r}=\${${r}}\"
683 if class_is_predicate_p && fallback_default_p
685 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
689 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
691 echo "Error: postdefault is useless when invalid_p=0" 1>&2
695 if class_is_multiarch_p
697 if class_is_predicate_p ; then :
698 elif test "x${predefault}" = "x"
700 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
709 compare_new gdbarch.log
715 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
717 /* Dynamic architecture support for GDB, the GNU debugger.
719 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
720 Software Foundation, Inc.
722 This file is part of GDB.
724 This program is free software; you can redistribute it and/or modify
725 it under the terms of the GNU General Public License as published by
726 the Free Software Foundation; either version 2 of the License, or
727 (at your option) any later version.
729 This program is distributed in the hope that it will be useful,
730 but WITHOUT ANY WARRANTY; without even the implied warranty of
731 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
732 GNU General Public License for more details.
734 You should have received a copy of the GNU General Public License
735 along with this program; if not, write to the Free Software
736 Foundation, Inc., 59 Temple Place - Suite 330,
737 Boston, MA 02111-1307, USA. */
739 /* This file was created with the aid of \`\`gdbarch.sh''.
741 The Bourne shell script \`\`gdbarch.sh'' creates the files
742 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
743 against the existing \`\`gdbarch.[hc]''. Any differences found
746 If editing this file, please also run gdbarch.sh and merge any
747 changes into that script. Conversely, when making sweeping changes
748 to this file, modifying gdbarch.sh and using its output may prove
769 struct minimal_symbol;
773 struct disassemble_info;
777 extern struct gdbarch *current_gdbarch;
783 printf "/* The following are pre-initialized by GDBARCH. */\n"
784 function_list | while do_read
789 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
790 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
791 if test -n "${macro}"
793 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
794 printf "#error \"Non multi-arch definition of ${macro}\"\n"
796 printf "#if !defined (${macro})\n"
797 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "/* The following are initialized by the target dependent code. */\n"
807 function_list | while do_read
809 if [ -n "${comment}" ]
811 echo "${comment}" | sed \
817 if class_is_predicate_p
819 if test -n "${macro}"
822 printf "#if defined (${macro})\n"
823 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
824 printf "#if !defined (${macro}_P)\n"
825 printf "#define ${macro}_P() (1)\n"
830 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
831 if test -n "${macro}"
833 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
834 printf "#error \"Non multi-arch definition of ${macro}\"\n"
836 printf "#if !defined (${macro}_P)\n"
837 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
841 if class_is_variable_p
844 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
845 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
846 if test -n "${macro}"
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#if !defined (${macro})\n"
852 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
856 if class_is_function_p
859 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
861 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
862 elif class_is_multiarch_p
864 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
866 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
868 if [ "x${formal}" = "xvoid" ]
870 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
874 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
875 if test -n "${macro}"
877 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
878 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 if [ "x${actual}" = "x" ]
882 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
883 elif [ "x${actual}" = "x-" ]
885 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
887 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
889 printf "#if !defined (${macro})\n"
890 if [ "x${actual}" = "x" ]
892 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
893 elif [ "x${actual}" = "x-" ]
895 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
897 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
907 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
910 /* Mechanism for co-ordinating the selection of a specific
913 GDB targets (*-tdep.c) can register an interest in a specific
914 architecture. Other GDB components can register a need to maintain
915 per-architecture data.
917 The mechanisms below ensures that there is only a loose connection
918 between the set-architecture command and the various GDB
919 components. Each component can independently register their need
920 to maintain architecture specific data with gdbarch.
924 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
927 The more traditional mega-struct containing architecture specific
928 data for all the various GDB components was also considered. Since
929 GDB is built from a variable number of (fairly independent)
930 components it was determined that the global aproach was not
934 /* Register a new architectural family with GDB.
936 Register support for the specified ARCHITECTURE with GDB. When
937 gdbarch determines that the specified architecture has been
938 selected, the corresponding INIT function is called.
942 The INIT function takes two parameters: INFO which contains the
943 information available to gdbarch about the (possibly new)
944 architecture; ARCHES which is a list of the previously created
945 \`\`struct gdbarch'' for this architecture.
947 The INFO parameter is, as far as possible, be pre-initialized with
948 information obtained from INFO.ABFD or the previously selected
951 The ARCHES parameter is a linked list (sorted most recently used)
952 of all the previously created architures for this architecture
953 family. The (possibly NULL) ARCHES->gdbarch can used to access
954 values from the previously selected architecture for this
955 architecture family. The global \`\`current_gdbarch'' shall not be
958 The INIT function shall return any of: NULL - indicating that it
959 doesn't recognize the selected architecture; an existing \`\`struct
960 gdbarch'' from the ARCHES list - indicating that the new
961 architecture is just a synonym for an earlier architecture (see
962 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
963 - that describes the selected architecture (see gdbarch_alloc()).
965 The DUMP_TDEP function shall print out all target specific values.
966 Care should be taken to ensure that the function works in both the
967 multi-arch and non- multi-arch cases. */
971 struct gdbarch *gdbarch;
972 struct gdbarch_list *next;
977 /* Use default: NULL (ZERO). */
978 const struct bfd_arch_info *bfd_arch_info;
980 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
983 /* Use default: NULL (ZERO). */
986 /* Use default: NULL (ZERO). */
987 struct gdbarch_tdep_info *tdep_info;
989 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
990 enum gdb_osabi osabi;
993 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
994 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
996 /* DEPRECATED - use gdbarch_register() */
997 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
999 extern void gdbarch_register (enum bfd_architecture architecture,
1000 gdbarch_init_ftype *,
1001 gdbarch_dump_tdep_ftype *);
1004 /* Return a freshly allocated, NULL terminated, array of the valid
1005 architecture names. Since architectures are registered during the
1006 _initialize phase this function only returns useful information
1007 once initialization has been completed. */
1009 extern const char **gdbarch_printable_names (void);
1012 /* Helper function. Search the list of ARCHES for a GDBARCH that
1013 matches the information provided by INFO. */
1015 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1018 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1019 basic initialization using values obtained from the INFO andTDEP
1020 parameters. set_gdbarch_*() functions are called to complete the
1021 initialization of the object. */
1023 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1026 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1027 It is assumed that the caller freeds the \`\`struct
1030 extern void gdbarch_free (struct gdbarch *);
1033 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1034 obstack. The memory is freed when the corresponding architecture
1037 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1038 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1039 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1042 /* Helper function. Force an update of the current architecture.
1044 The actual architecture selected is determined by INFO, \`\`(gdb) set
1045 architecture'' et.al., the existing architecture and BFD's default
1046 architecture. INFO should be initialized to zero and then selected
1047 fields should be updated.
1049 Returns non-zero if the update succeeds */
1051 extern int gdbarch_update_p (struct gdbarch_info info);
1054 /* Helper function. Find an architecture matching info.
1056 INFO should be initialized using gdbarch_info_init, relevant fields
1057 set, and then finished using gdbarch_info_fill.
1059 Returns the corresponding architecture, or NULL if no matching
1060 architecture was found. "current_gdbarch" is not updated. */
1062 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1065 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1067 FIXME: kettenis/20031124: Of the functions that follow, only
1068 gdbarch_from_bfd is supposed to survive. The others will
1069 dissappear since in the future GDB will (hopefully) be truly
1070 multi-arch. However, for now we're still stuck with the concept of
1071 a single active architecture. */
1073 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1076 /* Register per-architecture data-pointer.
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
1080 be saved in a local static variable.
1082 Memory for the per-architecture data shall be allocated using
1083 gdbarch_obstack_zalloc. That memory will be deleted when the
1084 corresponding architecture object is deleted.
1086 When a previously created architecture is re-selected, the
1087 per-architecture data-pointer for that previous architecture is
1088 restored. INIT() is not re-called.
1090 Multiple registrarants for any architecture are allowed (and
1091 strongly encouraged). */
1093 struct gdbarch_data;
1095 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1096 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1097 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1098 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1099 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1100 struct gdbarch_data *data,
1103 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1107 /* Register per-architecture memory region.
1109 Provide a memory-region swap mechanism. Per-architecture memory
1110 region are created. These memory regions are swapped whenever the
1111 architecture is changed. For a new architecture, the memory region
1112 is initialized with zero (0) and the INIT function is called.
1114 Memory regions are swapped / initialized in the order that they are
1115 registered. NULL DATA and/or INIT values can be specified.
1117 New code should use gdbarch_data_register_*(). */
1119 typedef void (gdbarch_swap_ftype) (void);
1120 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1121 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1125 /* Set the dynamic target-system-dependent parameters (architecture,
1126 byte-order, ...) using information found in the BFD */
1128 extern void set_gdbarch_from_file (bfd *);
1131 /* Initialize the current architecture to the "first" one we find on
1134 extern void initialize_current_architecture (void);
1136 /* gdbarch trace variable */
1137 extern int gdbarch_debug;
1139 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1144 #../move-if-change new-gdbarch.h gdbarch.h
1145 compare_new gdbarch.h
1152 exec > new-gdbarch.c
1157 #include "arch-utils.h"
1160 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1163 #include "floatformat.h"
1165 #include "gdb_assert.h"
1166 #include "gdb_string.h"
1167 #include "gdb-events.h"
1168 #include "reggroups.h"
1170 #include "gdb_obstack.h"
1172 /* Static function declarations */
1174 static void alloc_gdbarch_data (struct gdbarch *);
1176 /* Non-zero if we want to trace architecture code. */
1178 #ifndef GDBARCH_DEBUG
1179 #define GDBARCH_DEBUG 0
1181 int gdbarch_debug = GDBARCH_DEBUG;
1184 pformat (const struct floatformat *format)
1189 return format->name;
1194 # gdbarch open the gdbarch object
1196 printf "/* Maintain the struct gdbarch object */\n"
1198 printf "struct gdbarch\n"
1200 printf " /* Has this architecture been fully initialized? */\n"
1201 printf " int initialized_p;\n"
1203 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1204 printf " struct obstack *obstack;\n"
1206 printf " /* basic architectural information */\n"
1207 function_list | while do_read
1211 printf " ${returntype} ${function};\n"
1215 printf " /* target specific vector. */\n"
1216 printf " struct gdbarch_tdep *tdep;\n"
1217 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1219 printf " /* per-architecture data-pointers */\n"
1220 printf " unsigned nr_data;\n"
1221 printf " void **data;\n"
1223 printf " /* per-architecture swap-regions */\n"
1224 printf " struct gdbarch_swap *swap;\n"
1227 /* Multi-arch values.
1229 When extending this structure you must:
1231 Add the field below.
1233 Declare set/get functions and define the corresponding
1236 gdbarch_alloc(): If zero/NULL is not a suitable default,
1237 initialize the new field.
1239 verify_gdbarch(): Confirm that the target updated the field
1242 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1245 \`\`startup_gdbarch()'': Append an initial value to the static
1246 variable (base values on the host's c-type system).
1248 get_gdbarch(): Implement the set/get functions (probably using
1249 the macro's as shortcuts).
1254 function_list | while do_read
1256 if class_is_variable_p
1258 printf " ${returntype} ${function};\n"
1259 elif class_is_function_p
1261 printf " gdbarch_${function}_ftype *${function};\n"
1266 # A pre-initialized vector
1270 /* The default architecture uses host values (for want of a better
1274 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1276 printf "struct gdbarch startup_gdbarch =\n"
1278 printf " 1, /* Always initialized. */\n"
1279 printf " NULL, /* The obstack. */\n"
1280 printf " /* basic architecture information */\n"
1281 function_list | while do_read
1285 printf " ${staticdefault}, /* ${function} */\n"
1289 /* target specific vector and its dump routine */
1291 /*per-architecture data-pointers and swap regions */
1293 /* Multi-arch values */
1295 function_list | while do_read
1297 if class_is_function_p || class_is_variable_p
1299 printf " ${staticdefault}, /* ${function} */\n"
1303 /* startup_gdbarch() */
1306 struct gdbarch *current_gdbarch = &startup_gdbarch;
1309 # Create a new gdbarch struct
1312 /* Create a new \`\`struct gdbarch'' based on information provided by
1313 \`\`struct gdbarch_info''. */
1318 gdbarch_alloc (const struct gdbarch_info *info,
1319 struct gdbarch_tdep *tdep)
1321 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1322 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1323 the current local architecture and not the previous global
1324 architecture. This ensures that the new architectures initial
1325 values are not influenced by the previous architecture. Once
1326 everything is parameterised with gdbarch, this will go away. */
1327 struct gdbarch *current_gdbarch;
1329 /* Create an obstack for allocating all the per-architecture memory,
1330 then use that to allocate the architecture vector. */
1331 struct obstack *obstack = XMALLOC (struct obstack);
1332 obstack_init (obstack);
1333 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1334 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1335 current_gdbarch->obstack = obstack;
1337 alloc_gdbarch_data (current_gdbarch);
1339 current_gdbarch->tdep = tdep;
1342 function_list | while do_read
1346 printf " current_gdbarch->${function} = info->${function};\n"
1350 printf " /* Force the explicit initialization of these. */\n"
1351 function_list | while do_read
1353 if class_is_function_p || class_is_variable_p
1355 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1357 printf " current_gdbarch->${function} = ${predefault};\n"
1362 /* gdbarch_alloc() */
1364 return current_gdbarch;
1368 # Free a gdbarch struct.
1372 /* Allocate extra space using the per-architecture obstack. */
1375 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1377 void *data = obstack_alloc (arch->obstack, size);
1378 memset (data, 0, size);
1383 /* Free a gdbarch struct. This should never happen in normal
1384 operation --- once you've created a gdbarch, you keep it around.
1385 However, if an architecture's init function encounters an error
1386 building the structure, it may need to clean up a partially
1387 constructed gdbarch. */
1390 gdbarch_free (struct gdbarch *arch)
1392 struct obstack *obstack;
1393 gdb_assert (arch != NULL);
1394 gdb_assert (!arch->initialized_p);
1395 obstack = arch->obstack;
1396 obstack_free (obstack, 0); /* Includes the ARCH. */
1401 # verify a new architecture
1405 /* Ensure that all values in a GDBARCH are reasonable. */
1407 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1408 just happens to match the global variable \`\`current_gdbarch''. That
1409 way macros refering to that variable get the local and not the global
1410 version - ulgh. Once everything is parameterised with gdbarch, this
1414 verify_gdbarch (struct gdbarch *current_gdbarch)
1416 struct ui_file *log;
1417 struct cleanup *cleanups;
1420 log = mem_fileopen ();
1421 cleanups = make_cleanup_ui_file_delete (log);
1423 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1424 fprintf_unfiltered (log, "\n\tbyte-order");
1425 if (current_gdbarch->bfd_arch_info == NULL)
1426 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1427 /* Check those that need to be defined for the given multi-arch level. */
1429 function_list | while do_read
1431 if class_is_function_p || class_is_variable_p
1433 if [ "x${invalid_p}" = "x0" ]
1435 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1436 elif class_is_predicate_p
1438 printf " /* Skip verify of ${function}, has predicate */\n"
1439 # FIXME: See do_read for potential simplification
1440 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1442 printf " if (${invalid_p})\n"
1443 printf " current_gdbarch->${function} = ${postdefault};\n"
1444 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1446 printf " if (current_gdbarch->${function} == ${predefault})\n"
1447 printf " current_gdbarch->${function} = ${postdefault};\n"
1448 elif [ -n "${postdefault}" ]
1450 printf " if (current_gdbarch->${function} == 0)\n"
1451 printf " current_gdbarch->${function} = ${postdefault};\n"
1452 elif [ -n "${invalid_p}" ]
1454 printf " if (${invalid_p})\n"
1455 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1456 elif [ -n "${predefault}" ]
1458 printf " if (current_gdbarch->${function} == ${predefault})\n"
1459 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1464 buf = ui_file_xstrdup (log, &dummy);
1465 make_cleanup (xfree, buf);
1466 if (strlen (buf) > 0)
1467 internal_error (__FILE__, __LINE__,
1468 "verify_gdbarch: the following are invalid ...%s",
1470 do_cleanups (cleanups);
1474 # dump the structure
1478 /* Print out the details of the current architecture. */
1480 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1481 just happens to match the global variable \`\`current_gdbarch''. That
1482 way macros refering to that variable get the local and not the global
1483 version - ulgh. Once everything is parameterised with gdbarch, this
1487 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1489 const char *gdb_xm_file = "<not-defined>";
1490 const char *gdb_nm_file = "<not-defined>";
1491 const char *gdb_tm_file = "<not-defined>";
1492 #if defined (GDB_XM_FILE)
1493 gdb_xm_file = GDB_XM_FILE;
1495 fprintf_unfiltered (file,
1496 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1498 #if defined (GDB_NM_FILE)
1499 gdb_nm_file = GDB_NM_FILE;
1501 fprintf_unfiltered (file,
1502 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1504 #if defined (GDB_TM_FILE)
1505 gdb_tm_file = GDB_TM_FILE;
1507 fprintf_unfiltered (file,
1508 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1511 function_list | sort -t: -k 4 | while do_read
1513 # First the predicate
1514 if class_is_predicate_p
1516 if test -n "${macro}"
1518 printf "#ifdef ${macro}_P\n"
1519 printf " fprintf_unfiltered (file,\n"
1520 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1521 printf " \"${macro}_P()\",\n"
1522 printf " XSTRING (${macro}_P ()));\n"
1525 printf " fprintf_unfiltered (file,\n"
1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1527 printf " gdbarch_${function}_p (current_gdbarch));\n"
1529 # Print the macro definition.
1530 if test -n "${macro}"
1532 printf "#ifdef ${macro}\n"
1533 if class_is_function_p
1535 printf " fprintf_unfiltered (file,\n"
1536 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1537 printf " \"${macro}(${actual})\",\n"
1538 printf " XSTRING (${macro} (${actual})));\n"
1540 printf " fprintf_unfiltered (file,\n"
1541 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1542 printf " XSTRING (${macro}));\n"
1546 # Print the corresponding value.
1547 if class_is_function_p
1549 printf " fprintf_unfiltered (file,\n"
1550 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1551 printf " (long) current_gdbarch->${function});\n"
1554 case "${print}:${returntype}" in
1557 print="paddr_nz (current_gdbarch->${function})"
1561 print="paddr_d (current_gdbarch->${function})"
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1569 printf " ${print});\n"
1573 if (current_gdbarch->dump_tdep != NULL)
1574 current_gdbarch->dump_tdep (current_gdbarch, file);
1582 struct gdbarch_tdep *
1583 gdbarch_tdep (struct gdbarch *gdbarch)
1585 if (gdbarch_debug >= 2)
1586 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1587 return gdbarch->tdep;
1591 function_list | while do_read
1593 if class_is_predicate_p
1597 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1599 printf " gdb_assert (gdbarch != NULL);\n"
1600 printf " return ${predicate};\n"
1603 if class_is_function_p
1606 printf "${returntype}\n"
1607 if [ "x${formal}" = "xvoid" ]
1609 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1611 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1614 printf " gdb_assert (gdbarch != NULL);\n"
1615 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1616 if class_is_predicate_p && test -n "${predefault}"
1618 # Allow a call to a function with a predicate.
1619 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1621 printf " if (gdbarch_debug >= 2)\n"
1622 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1623 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1625 if class_is_multiarch_p
1632 if class_is_multiarch_p
1634 params="gdbarch, ${actual}"
1639 if [ "x${returntype}" = "xvoid" ]
1641 printf " gdbarch->${function} (${params});\n"
1643 printf " return gdbarch->${function} (${params});\n"
1648 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1649 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1651 printf " gdbarch->${function} = ${function};\n"
1653 elif class_is_variable_p
1656 printf "${returntype}\n"
1657 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1659 printf " gdb_assert (gdbarch != NULL);\n"
1660 if [ "x${invalid_p}" = "x0" ]
1662 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1663 elif [ -n "${invalid_p}" ]
1665 printf " /* Check variable is valid. */\n"
1666 printf " gdb_assert (!(${invalid_p}));\n"
1667 elif [ -n "${predefault}" ]
1669 printf " /* Check variable changed from pre-default. */\n"
1670 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1672 printf " if (gdbarch_debug >= 2)\n"
1673 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1674 printf " return gdbarch->${function};\n"
1678 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1679 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1681 printf " gdbarch->${function} = ${function};\n"
1683 elif class_is_info_p
1686 printf "${returntype}\n"
1687 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1689 printf " gdb_assert (gdbarch != NULL);\n"
1690 printf " if (gdbarch_debug >= 2)\n"
1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1692 printf " return gdbarch->${function};\n"
1697 # All the trailing guff
1701 /* Keep a registry of per-architecture data-pointers required by GDB
1708 gdbarch_data_pre_init_ftype *pre_init;
1709 gdbarch_data_post_init_ftype *post_init;
1712 struct gdbarch_data_registration
1714 struct gdbarch_data *data;
1715 struct gdbarch_data_registration *next;
1718 struct gdbarch_data_registry
1721 struct gdbarch_data_registration *registrations;
1724 struct gdbarch_data_registry gdbarch_data_registry =
1729 static struct gdbarch_data *
1730 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1731 gdbarch_data_post_init_ftype *post_init)
1733 struct gdbarch_data_registration **curr;
1734 /* Append the new registraration. */
1735 for (curr = &gdbarch_data_registry.registrations;
1737 curr = &(*curr)->next);
1738 (*curr) = XMALLOC (struct gdbarch_data_registration);
1739 (*curr)->next = NULL;
1740 (*curr)->data = XMALLOC (struct gdbarch_data);
1741 (*curr)->data->index = gdbarch_data_registry.nr++;
1742 (*curr)->data->pre_init = pre_init;
1743 (*curr)->data->post_init = post_init;
1744 (*curr)->data->init_p = 1;
1745 return (*curr)->data;
1748 struct gdbarch_data *
1749 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1751 return gdbarch_data_register (pre_init, NULL);
1754 struct gdbarch_data *
1755 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1757 return gdbarch_data_register (NULL, post_init);
1760 /* Create/delete the gdbarch data vector. */
1763 alloc_gdbarch_data (struct gdbarch *gdbarch)
1765 gdb_assert (gdbarch->data == NULL);
1766 gdbarch->nr_data = gdbarch_data_registry.nr;
1767 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1770 /* Initialize the current value of the specified per-architecture
1774 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1775 struct gdbarch_data *data,
1778 gdb_assert (data->index < gdbarch->nr_data);
1779 gdb_assert (gdbarch->data[data->index] == NULL);
1780 gdb_assert (data->pre_init == NULL);
1781 gdbarch->data[data->index] = pointer;
1784 /* Return the current value of the specified per-architecture
1788 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1790 gdb_assert (data->index < gdbarch->nr_data);
1791 if (gdbarch->data[data->index] == NULL)
1793 /* The data-pointer isn't initialized, call init() to get a
1795 if (data->pre_init != NULL)
1796 /* Mid architecture creation: pass just the obstack, and not
1797 the entire architecture, as that way it isn't possible for
1798 pre-init code to refer to undefined architecture
1800 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1801 else if (gdbarch->initialized_p
1802 && data->post_init != NULL)
1803 /* Post architecture creation: pass the entire architecture
1804 (as all fields are valid), but be careful to also detect
1805 recursive references. */
1807 gdb_assert (data->init_p);
1809 gdbarch->data[data->index] = data->post_init (gdbarch);
1813 /* The architecture initialization hasn't completed - punt -
1814 hope that the caller knows what they are doing. Once
1815 deprecated_set_gdbarch_data has been initialized, this can be
1816 changed to an internal error. */
1818 gdb_assert (gdbarch->data[data->index] != NULL);
1820 return gdbarch->data[data->index];
1825 /* Keep a registry of swapped data required by GDB modules. */
1830 struct gdbarch_swap_registration *source;
1831 struct gdbarch_swap *next;
1834 struct gdbarch_swap_registration
1837 unsigned long sizeof_data;
1838 gdbarch_swap_ftype *init;
1839 struct gdbarch_swap_registration *next;
1842 struct gdbarch_swap_registry
1845 struct gdbarch_swap_registration *registrations;
1848 struct gdbarch_swap_registry gdbarch_swap_registry =
1854 deprecated_register_gdbarch_swap (void *data,
1855 unsigned long sizeof_data,
1856 gdbarch_swap_ftype *init)
1858 struct gdbarch_swap_registration **rego;
1859 for (rego = &gdbarch_swap_registry.registrations;
1861 rego = &(*rego)->next);
1862 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1863 (*rego)->next = NULL;
1864 (*rego)->init = init;
1865 (*rego)->data = data;
1866 (*rego)->sizeof_data = sizeof_data;
1870 current_gdbarch_swap_init_hack (void)
1872 struct gdbarch_swap_registration *rego;
1873 struct gdbarch_swap **curr = ¤t_gdbarch->swap;
1874 for (rego = gdbarch_swap_registry.registrations;
1878 if (rego->data != NULL)
1880 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1881 struct gdbarch_swap);
1882 (*curr)->source = rego;
1883 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1885 (*curr)->next = NULL;
1886 curr = &(*curr)->next;
1888 if (rego->init != NULL)
1893 static struct gdbarch *
1894 current_gdbarch_swap_out_hack (void)
1896 struct gdbarch *old_gdbarch = current_gdbarch;
1897 struct gdbarch_swap *curr;
1899 gdb_assert (old_gdbarch != NULL);
1900 for (curr = old_gdbarch->swap;
1904 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1905 memset (curr->source->data, 0, curr->source->sizeof_data);
1907 current_gdbarch = NULL;
1912 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1914 struct gdbarch_swap *curr;
1916 gdb_assert (current_gdbarch == NULL);
1917 for (curr = new_gdbarch->swap;
1920 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1921 current_gdbarch = new_gdbarch;
1925 /* Keep a registry of the architectures known by GDB. */
1927 struct gdbarch_registration
1929 enum bfd_architecture bfd_architecture;
1930 gdbarch_init_ftype *init;
1931 gdbarch_dump_tdep_ftype *dump_tdep;
1932 struct gdbarch_list *arches;
1933 struct gdbarch_registration *next;
1936 static struct gdbarch_registration *gdbarch_registry = NULL;
1939 append_name (const char ***buf, int *nr, const char *name)
1941 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1947 gdbarch_printable_names (void)
1949 /* Accumulate a list of names based on the registed list of
1951 enum bfd_architecture a;
1953 const char **arches = NULL;
1954 struct gdbarch_registration *rego;
1955 for (rego = gdbarch_registry;
1959 const struct bfd_arch_info *ap;
1960 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1962 internal_error (__FILE__, __LINE__,
1963 "gdbarch_architecture_names: multi-arch unknown");
1966 append_name (&arches, &nr_arches, ap->printable_name);
1971 append_name (&arches, &nr_arches, NULL);
1977 gdbarch_register (enum bfd_architecture bfd_architecture,
1978 gdbarch_init_ftype *init,
1979 gdbarch_dump_tdep_ftype *dump_tdep)
1981 struct gdbarch_registration **curr;
1982 const struct bfd_arch_info *bfd_arch_info;
1983 /* Check that BFD recognizes this architecture */
1984 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1985 if (bfd_arch_info == NULL)
1987 internal_error (__FILE__, __LINE__,
1988 "gdbarch: Attempt to register unknown architecture (%d)",
1991 /* Check that we haven't seen this architecture before */
1992 for (curr = &gdbarch_registry;
1994 curr = &(*curr)->next)
1996 if (bfd_architecture == (*curr)->bfd_architecture)
1997 internal_error (__FILE__, __LINE__,
1998 "gdbarch: Duplicate registraration of architecture (%s)",
1999 bfd_arch_info->printable_name);
2003 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2004 bfd_arch_info->printable_name,
2007 (*curr) = XMALLOC (struct gdbarch_registration);
2008 (*curr)->bfd_architecture = bfd_architecture;
2009 (*curr)->init = init;
2010 (*curr)->dump_tdep = dump_tdep;
2011 (*curr)->arches = NULL;
2012 (*curr)->next = NULL;
2016 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2017 gdbarch_init_ftype *init)
2019 gdbarch_register (bfd_architecture, init, NULL);
2023 /* Look for an architecture using gdbarch_info. Base search on only
2024 BFD_ARCH_INFO and BYTE_ORDER. */
2026 struct gdbarch_list *
2027 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2028 const struct gdbarch_info *info)
2030 for (; arches != NULL; arches = arches->next)
2032 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2034 if (info->byte_order != arches->gdbarch->byte_order)
2036 if (info->osabi != arches->gdbarch->osabi)
2044 /* Find an architecture that matches the specified INFO. Create a new
2045 architecture if needed. Return that new architecture. Assumes
2046 that there is no current architecture. */
2048 static struct gdbarch *
2049 find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
2051 struct gdbarch *new_gdbarch;
2052 struct gdbarch_registration *rego;
2054 /* The existing architecture has been swapped out - all this code
2055 works from a clean slate. */
2056 gdb_assert (current_gdbarch == NULL);
2058 /* Fill in missing parts of the INFO struct using a number of
2059 sources: "set ..."; INFOabfd supplied; and the existing
2061 gdbarch_info_fill (old_gdbarch, &info);
2063 /* Must have found some sort of architecture. */
2064 gdb_assert (info.bfd_arch_info != NULL);
2068 fprintf_unfiltered (gdb_stdlog,
2069 "find_arch_by_info: info.bfd_arch_info %s\n",
2070 (info.bfd_arch_info != NULL
2071 ? info.bfd_arch_info->printable_name
2073 fprintf_unfiltered (gdb_stdlog,
2074 "find_arch_by_info: info.byte_order %d (%s)\n",
2076 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2077 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2079 fprintf_unfiltered (gdb_stdlog,
2080 "find_arch_by_info: info.osabi %d (%s)\n",
2081 info.osabi, gdbarch_osabi_name (info.osabi));
2082 fprintf_unfiltered (gdb_stdlog,
2083 "find_arch_by_info: info.abfd 0x%lx\n",
2085 fprintf_unfiltered (gdb_stdlog,
2086 "find_arch_by_info: info.tdep_info 0x%lx\n",
2087 (long) info.tdep_info);
2090 /* Find the tdep code that knows about this architecture. */
2091 for (rego = gdbarch_registry;
2094 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2099 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2100 "No matching architecture\n");
2104 /* Ask the tdep code for an architecture that matches "info". */
2105 new_gdbarch = rego->init (info, rego->arches);
2107 /* Did the tdep code like it? No. Reject the change and revert to
2108 the old architecture. */
2109 if (new_gdbarch == NULL)
2112 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2113 "Target rejected architecture\n");
2117 /* Is this a pre-existing architecture (as determined by already
2118 being initialized)? Move it to the front of the architecture
2119 list (keeping the list sorted Most Recently Used). */
2120 if (new_gdbarch->initialized_p)
2122 struct gdbarch_list **list;
2123 struct gdbarch_list *this;
2125 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2126 "Previous architecture 0x%08lx (%s) selected\n",
2128 new_gdbarch->bfd_arch_info->printable_name);
2129 /* Find the existing arch in the list. */
2130 for (list = ®o->arches;
2131 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2132 list = &(*list)->next);
2133 /* It had better be in the list of architectures. */
2134 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2137 (*list) = this->next;
2138 /* Insert THIS at the front. */
2139 this->next = rego->arches;
2140 rego->arches = this;
2145 /* It's a new architecture. */
2147 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2148 "New architecture 0x%08lx (%s) selected\n",
2150 new_gdbarch->bfd_arch_info->printable_name);
2152 /* Insert the new architecture into the front of the architecture
2153 list (keep the list sorted Most Recently Used). */
2155 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2156 this->next = rego->arches;
2157 this->gdbarch = new_gdbarch;
2158 rego->arches = this;
2161 /* Check that the newly installed architecture is valid. Plug in
2162 any post init values. */
2163 new_gdbarch->dump_tdep = rego->dump_tdep;
2164 verify_gdbarch (new_gdbarch);
2165 new_gdbarch->initialized_p = 1;
2167 /* Initialize any per-architecture swap areas. This phase requires
2168 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2169 swap the entire architecture out. */
2170 current_gdbarch = new_gdbarch;
2171 current_gdbarch_swap_init_hack ();
2172 current_gdbarch_swap_out_hack ();
2175 gdbarch_dump (new_gdbarch, gdb_stdlog);
2181 gdbarch_find_by_info (struct gdbarch_info info)
2183 /* Save the previously selected architecture, setting the global to
2184 NULL. This stops things like gdbarch->init() trying to use the
2185 previous architecture's configuration. The previous architecture
2186 may not even be of the same architecture family. The most recent
2187 architecture of the same family is found at the head of the
2188 rego->arches list. */
2189 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2191 /* Find the specified architecture. */
2192 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2194 /* Restore the existing architecture. */
2195 gdb_assert (current_gdbarch == NULL);
2196 current_gdbarch_swap_in_hack (old_gdbarch);
2201 /* Make the specified architecture current, swapping the existing one
2205 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2207 gdb_assert (new_gdbarch != NULL);
2208 gdb_assert (current_gdbarch != NULL);
2209 gdb_assert (new_gdbarch->initialized_p);
2210 current_gdbarch_swap_out_hack ();
2211 current_gdbarch_swap_in_hack (new_gdbarch);
2212 architecture_changed_event ();
2215 extern void _initialize_gdbarch (void);
2218 _initialize_gdbarch (void)
2220 struct cmd_list_element *c;
2222 deprecated_add_show_from_set
2223 (add_set_cmd ("arch",
2226 (char *)&gdbarch_debug,
2227 "Set architecture debugging.\\n\\
2228 When non-zero, architecture debugging is enabled.", &setdebuglist),
2230 c = add_set_cmd ("archdebug",
2233 (char *)&gdbarch_debug,
2234 "Set architecture debugging.\\n\\
2235 When non-zero, architecture debugging is enabled.", &setlist);
2237 deprecate_cmd (c, "set debug arch");
2238 deprecate_cmd (deprecated_add_show_from_set (c, &showlist), "show debug arch");
2244 #../move-if-change new-gdbarch.c gdbarch.c
2245 compare_new gdbarch.c