1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <ctype.h> /* XXX for isupper () */
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
34 #include "arch-utils.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
41 #include "gdb/sim-arm.h"
44 #include "coff/internal.h"
47 #include "gdb_assert.h"
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
141 /* This is used to keep the bfd arch_info in sync with the disassembly
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
147 static void convert_from_extended (const struct floatformat *, const void *,
149 static void convert_to_extended (const struct floatformat *, void *,
152 struct arm_prologue_cache
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
167 /* The register used to hold the frame pointer for this frame. */
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
180 /* Set to true if the 32-bit mode is in use. */
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
190 static int target_is_thumb;
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
196 static int caller_is_thumb;
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
202 arm_pc_is_thumb (CORE_ADDR memaddr)
204 struct minimal_symbol *sym;
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
214 return (MSYMBOL_IS_SPECIAL (sym));
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
228 CORE_ADDR sp = read_sp ();
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (deprecated_pc_in_call_dummy (memaddr))
238 return caller_is_thumb;
243 /* Remove useless bits from addresses in a running program. */
245 arm_addr_bits_remove (CORE_ADDR val)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
250 return (val & 0x03fffffc);
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
256 arm_smash_text_address (CORE_ADDR val)
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
267 arm_saved_pc_after_call (struct frame_info *frame)
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
272 /* A typical Thumb prologue looks like this:
276 Sometimes the latter instruction may be replaced by:
284 or, on tpcs, like this:
291 There is always one instruction of three classes:
296 When we have found at least one of each class we are done with the prolog.
297 Note that the "sub sp, #NN" before the push does not count.
301 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
303 CORE_ADDR current_pc;
305 bit 0 - push { rlist }
306 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
307 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
311 for (current_pc = pc;
312 current_pc + 2 < func_end && current_pc < pc + 40;
315 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
317 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
319 findmask |= 1; /* push found */
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
324 if ((findmask & 1) == 0) /* before push ? */
327 findmask |= 4; /* add/sub sp found */
329 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
331 findmask |= 2; /* setting of r7 found */
333 else if (insn == 0x466f) /* mov r7, sp */
335 findmask |= 2; /* setting of r7 found */
337 else if (findmask == (4+2+1))
339 /* We have found one of each type of prologue instruction */
343 /* Something in the prolog that we don't care about or some
344 instruction from outside the prolog scheduled here for
352 /* Advance the PC across any function entry prologue instructions to
353 reach some "real" code.
355 The APCS (ARM Procedure Call Standard) defines the following
359 [stmfd sp!, {a1,a2,a3,a4}]
360 stmfd sp!, {...,fp,ip,lr,pc}
361 [stfe f7, [sp, #-12]!]
362 [stfe f6, [sp, #-12]!]
363 [stfe f5, [sp, #-12]!]
364 [stfe f4, [sp, #-12]!]
365 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
368 arm_skip_prologue (CORE_ADDR pc)
372 CORE_ADDR func_addr, func_end = 0;
374 struct symtab_and_line sal;
376 /* If we're in a dummy frame, don't even try to skip the prologue. */
377 if (deprecated_pc_in_call_dummy (pc))
380 /* See what the symbol table says. */
382 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
386 /* Found a function. */
387 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
388 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
390 /* Don't use this trick for assembly source files. */
391 sal = find_pc_line (func_addr, 0);
392 if ((sal.line != 0) && (sal.end < func_end))
397 /* Check if this is Thumb code. */
398 if (arm_pc_is_thumb (pc))
399 return thumb_skip_prologue (pc, func_end);
401 /* Can't find the prologue end in the symbol table, try it the hard way
402 by disassembling the instructions. */
404 /* Like arm_scan_prologue, stop no later than pc + 64. */
405 if (func_end == 0 || func_end > pc + 64)
408 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
410 inst = read_memory_integer (skip_pc, 4);
412 /* "mov ip, sp" is no longer a required part of the prologue. */
413 if (inst == 0xe1a0c00d) /* mov ip, sp */
416 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
419 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
422 /* Some prologues begin with "str lr, [sp, #-4]!". */
423 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
426 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
429 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
432 /* Any insns after this point may float into the code, if it makes
433 for better instruction scheduling, so we skip them only if we
434 find them, but still consider the function to be frame-ful. */
436 /* We may have either one sfmfd instruction here, or several stfe
437 insns, depending on the version of floating point code we
439 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
442 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
445 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
448 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
451 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
452 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
453 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
456 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
457 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
458 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
461 /* Un-recognized instruction; stop scanning. */
465 return skip_pc; /* End of prologue */
469 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
470 This function decodes a Thumb function prologue to determine:
471 1) the size of the stack frame
472 2) which registers are saved on it
473 3) the offsets of saved regs
474 4) the offset from the stack pointer to the frame pointer
476 A typical Thumb function prologue would create this stack frame
477 (offsets relative to FP)
478 old SP -> 24 stack parameters
481 R7 -> 0 local variables (16 bytes)
482 SP -> -12 additional stack space (12 bytes)
483 The frame size would thus be 36 bytes, and the frame offset would be
484 12 bytes. The frame register is R7.
486 The comments for thumb_skip_prolog() describe the algorithm we use
487 to detect the end of the prolog. */
491 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
493 CORE_ADDR prologue_start;
494 CORE_ADDR prologue_end;
495 CORE_ADDR current_pc;
496 /* Which register has been copied to register n? */
499 bit 0 - push { rlist }
500 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
501 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
506 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
508 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
510 if (sal.line == 0) /* no line info, use current PC */
511 prologue_end = prev_pc;
512 else if (sal.end < prologue_end) /* next line begins after fn end */
513 prologue_end = sal.end; /* (probably means no prologue) */
516 /* We're in the boondocks: allow for
517 16 pushes, an add, and "mv fp,sp". */
518 prologue_end = prologue_start + 40;
520 prologue_end = min (prologue_end, prev_pc);
522 /* Initialize the saved register map. When register H is copied to
523 register L, we will put H in saved_reg[L]. */
524 for (i = 0; i < 16; i++)
527 /* Search the prologue looking for instructions that set up the
528 frame pointer, adjust the stack pointer, and save registers.
529 Do this until all basic prolog instructions are found. */
531 cache->framesize = 0;
532 for (current_pc = prologue_start;
533 (current_pc < prologue_end) && ((findmask & 7) != 7);
540 insn = read_memory_unsigned_integer (current_pc, 2);
542 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
545 findmask |= 1; /* push found */
546 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
547 whether to save LR (R14). */
548 mask = (insn & 0xff) | ((insn & 0x100) << 6);
550 /* Calculate offsets of saved R0-R7 and LR. */
551 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
552 if (mask & (1 << regno))
554 cache->framesize += 4;
555 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
556 /* Reset saved register map. */
557 saved_reg[regno] = regno;
560 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
563 if ((findmask & 1) == 0) /* before push? */
566 findmask |= 4; /* add/sub sp found */
568 offset = (insn & 0x7f) << 2; /* get scaled offset */
569 if (insn & 0x80) /* is it signed? (==subtracting) */
571 cache->frameoffset += offset;
574 cache->framesize -= offset;
576 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
578 findmask |= 2; /* setting of r7 found */
579 cache->framereg = THUMB_FP_REGNUM;
580 /* get scaled offset */
581 cache->frameoffset = (insn & 0xff) << 2;
583 else if (insn == 0x466f) /* mov r7, sp */
585 findmask |= 2; /* setting of r7 found */
586 cache->framereg = THUMB_FP_REGNUM;
587 cache->frameoffset = 0;
588 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
590 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
592 int lo_reg = insn & 7; /* dest. register (r0-r7) */
593 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
594 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
597 /* Something in the prolog that we don't care about or some
598 instruction from outside the prolog scheduled here for
604 /* This function decodes an ARM function prologue to determine:
605 1) the size of the stack frame
606 2) which registers are saved on it
607 3) the offsets of saved regs
608 4) the offset from the stack pointer to the frame pointer
609 This information is stored in the "extra" fields of the frame_info.
611 There are two basic forms for the ARM prologue. The fixed argument
612 function call will look like:
615 stmfd sp!, {fp, ip, lr, pc}
619 Which would create this stack frame (offsets relative to FP):
620 IP -> 4 (caller's stack)
621 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
622 -4 LR (return address in caller)
623 -8 IP (copy of caller's SP)
625 SP -> -28 Local variables
627 The frame size would thus be 32 bytes, and the frame offset would be
628 28 bytes. The stmfd call can also save any of the vN registers it
629 plans to use, which increases the frame size accordingly.
631 Note: The stored PC is 8 off of the STMFD instruction that stored it
632 because the ARM Store instructions always store PC + 8 when you read
635 A variable argument function call will look like:
638 stmfd sp!, {a1, a2, a3, a4}
639 stmfd sp!, {fp, ip, lr, pc}
642 Which would create this stack frame (offsets relative to FP):
643 IP -> 20 (caller's stack)
648 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
649 -4 LR (return address in caller)
650 -8 IP (copy of caller's SP)
652 SP -> -28 Local variables
654 The frame size would thus be 48 bytes, and the frame offset would be
657 There is another potential complication, which is that the optimizer
658 will try to separate the store of fp in the "stmfd" instruction from
659 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
660 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
662 Also, note, the original version of the ARM toolchain claimed that there
665 instruction at the end of the prologue. I have never seen GCC produce
666 this, and the ARM docs don't mention it. We still test for it below in
672 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
674 int regno, sp_offset, fp_offset, ip_offset;
675 CORE_ADDR prologue_start, prologue_end, current_pc;
676 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
678 /* Assume there is no frame until proven otherwise. */
679 cache->framereg = ARM_SP_REGNUM;
680 cache->framesize = 0;
681 cache->frameoffset = 0;
683 /* Check for Thumb prologue. */
684 if (arm_pc_is_thumb (prev_pc))
686 thumb_scan_prologue (prev_pc, cache);
690 /* Find the function prologue. If we can't find the function in
691 the symbol table, peek in the stack frame to find the PC. */
692 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
694 /* One way to find the end of the prologue (which works well
695 for unoptimized code) is to do the following:
697 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
700 prologue_end = prev_pc;
701 else if (sal.end < prologue_end)
702 prologue_end = sal.end;
704 This mechanism is very accurate so long as the optimizer
705 doesn't move any instructions from the function body into the
706 prologue. If this happens, sal.end will be the last
707 instruction in the first hunk of prologue code just before
708 the first instruction that the scheduler has moved from
709 the body to the prologue.
711 In order to make sure that we scan all of the prologue
712 instructions, we use a slightly less accurate mechanism which
713 may scan more than necessary. To help compensate for this
714 lack of accuracy, the prologue scanning loop below contains
715 several clauses which'll cause the loop to terminate early if
716 an implausible prologue instruction is encountered.
722 is a suitable endpoint since it accounts for the largest
723 possible prologue plus up to five instructions inserted by
726 if (prologue_end > prologue_start + 64)
728 prologue_end = prologue_start + 64; /* See above. */
733 /* We have no symbol information. Our only option is to assume this
734 function has a standard stack frame and the normal frame register.
735 Then, we can find the value of our frame pointer on entrance to
736 the callee (or at the present moment if this is the innermost frame).
737 The value stored there should be the address of the stmfd + 8. */
739 LONGEST return_value;
741 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
742 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
746 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
747 prologue_end = prologue_start + 64; /* See above. */
751 if (prev_pc < prologue_end)
752 prologue_end = prev_pc;
754 /* Now search the prologue looking for instructions that set up the
755 frame pointer, adjust the stack pointer, and save registers.
757 Be careful, however, and if it doesn't look like a prologue,
758 don't try to scan it. If, for instance, a frameless function
759 begins with stmfd sp!, then we will tell ourselves there is
760 a frame, which will confuse stack traceback, as well as "finish"
761 and other operations that rely on a knowledge of the stack
764 In the APCS, the prologue should start with "mov ip, sp" so
765 if we don't see this as the first insn, we will stop.
767 [Note: This doesn't seem to be true any longer, so it's now an
768 optional part of the prologue. - Kevin Buettner, 2001-11-20]
770 [Note further: The "mov ip,sp" only seems to be missing in
771 frameless functions at optimization level "-O2" or above,
772 in which case it is often (but not always) replaced by
773 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
775 sp_offset = fp_offset = ip_offset = 0;
777 for (current_pc = prologue_start;
778 current_pc < prologue_end;
781 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
783 if (insn == 0xe1a0c00d) /* mov ip, sp */
788 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
790 unsigned imm = insn & 0xff; /* immediate value */
791 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
792 imm = (imm >> rot) | (imm << (32 - rot));
796 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
798 unsigned imm = insn & 0xff; /* immediate value */
799 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
800 imm = (imm >> rot) | (imm << (32 - rot));
804 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
807 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
810 else if ((insn & 0xffff0000) == 0xe92d0000)
811 /* stmfd sp!, {..., fp, ip, lr, pc}
813 stmfd sp!, {a1, a2, a3, a4} */
815 int mask = insn & 0xffff;
817 /* Calculate offsets of saved registers. */
818 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
819 if (mask & (1 << regno))
822 cache->saved_regs[regno].addr = sp_offset;
825 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
826 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
827 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
829 /* No need to add this to saved_regs -- it's just an arg reg. */
832 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
833 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
834 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
836 /* No need to add this to saved_regs -- it's just an arg reg. */
839 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
841 unsigned imm = insn & 0xff; /* immediate value */
842 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
843 imm = (imm >> rot) | (imm << (32 - rot));
844 fp_offset = -imm + ip_offset;
845 cache->framereg = ARM_FP_REGNUM;
847 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
849 unsigned imm = insn & 0xff; /* immediate value */
850 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
851 imm = (imm >> rot) | (imm << (32 - rot));
854 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
857 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
858 cache->saved_regs[regno].addr = sp_offset;
860 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
863 unsigned int fp_start_reg, fp_bound_reg;
865 if ((insn & 0x800) == 0x800) /* N0 is set */
867 if ((insn & 0x40000) == 0x40000) /* N1 is set */
874 if ((insn & 0x40000) == 0x40000) /* N1 is set */
880 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
881 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
882 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
885 cache->saved_regs[fp_start_reg++].addr = sp_offset;
888 else if ((insn & 0xf0000000) != 0xe0000000)
889 break; /* Condition not true, exit early */
890 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
891 break; /* Don't scan past a block load */
893 /* The optimizer might shove anything into the prologue,
894 so we just skip what we don't recognize. */
898 /* The frame size is just the negative of the offset (from the
899 original SP) of the last thing thing we pushed on the stack.
900 The frame offset is [new FP] - [new SP]. */
901 cache->framesize = -sp_offset;
902 if (cache->framereg == ARM_FP_REGNUM)
903 cache->frameoffset = fp_offset - sp_offset;
905 cache->frameoffset = 0;
908 static struct arm_prologue_cache *
909 arm_make_prologue_cache (struct frame_info *next_frame)
912 struct arm_prologue_cache *cache;
913 CORE_ADDR unwound_fp;
915 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
916 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
918 arm_scan_prologue (next_frame, cache);
920 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
924 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
926 /* Calculate actual addresses of saved registers using offsets
927 determined by arm_scan_prologue. */
928 for (reg = 0; reg < NUM_REGS; reg++)
929 if (trad_frame_addr_p (cache->saved_regs, reg))
930 cache->saved_regs[reg].addr += cache->prev_sp;
935 /* Our frame ID for a normal frame is the current function's starting PC
936 and the caller's SP when we were called. */
939 arm_prologue_this_id (struct frame_info *next_frame,
941 struct frame_id *this_id)
943 struct arm_prologue_cache *cache;
947 if (*this_cache == NULL)
948 *this_cache = arm_make_prologue_cache (next_frame);
951 func = frame_func_unwind (next_frame);
953 /* This is meant to halt the backtrace at "_start". Make sure we
954 don't halt it at a generic dummy frame. */
955 if (func <= LOWEST_PC)
958 /* If we've hit a wall, stop. */
959 if (cache->prev_sp == 0)
962 id = frame_id_build (cache->prev_sp, func);
967 arm_prologue_prev_register (struct frame_info *next_frame,
971 enum lval_type *lvalp,
976 struct arm_prologue_cache *cache;
978 if (*this_cache == NULL)
979 *this_cache = arm_make_prologue_cache (next_frame);
982 /* If we are asked to unwind the PC, then we need to return the LR
983 instead. The saved value of PC points into this frame's
984 prologue, not the next frame's resume location. */
985 if (prev_regnum == ARM_PC_REGNUM)
986 prev_regnum = ARM_LR_REGNUM;
988 /* SP is generally not saved to the stack, but this frame is
989 identified by NEXT_FRAME's stack pointer at the time of the call.
990 The value was already reconstructed into PREV_SP. */
991 if (prev_regnum == ARM_SP_REGNUM)
995 store_unsigned_integer (valuep, 4, cache->prev_sp);
999 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1000 optimized, lvalp, addrp, realnump, valuep);
1003 struct frame_unwind arm_prologue_unwind = {
1005 arm_prologue_this_id,
1006 arm_prologue_prev_register
1009 static const struct frame_unwind *
1010 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1012 return &arm_prologue_unwind;
1016 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1018 struct arm_prologue_cache *cache;
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
1024 return cache->prev_sp + cache->frameoffset - cache->framesize;
1027 struct frame_base arm_normal_base = {
1028 &arm_prologue_unwind,
1029 arm_normal_frame_base,
1030 arm_normal_frame_base,
1031 arm_normal_frame_base
1034 static struct arm_prologue_cache *
1035 arm_make_sigtramp_cache (struct frame_info *next_frame)
1037 struct arm_prologue_cache *cache;
1040 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1042 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1044 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1046 for (reg = 0; reg < NUM_REGS; reg++)
1047 cache->saved_regs[reg].addr
1048 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1049 frame_pc_unwind (next_frame), reg);
1051 /* FIXME: What about thumb mode? */
1052 cache->framereg = ARM_SP_REGNUM;
1054 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1055 register_size (current_gdbarch, cache->framereg));
1061 arm_sigtramp_this_id (struct frame_info *next_frame,
1063 struct frame_id *this_id)
1065 struct arm_prologue_cache *cache;
1067 if (*this_cache == NULL)
1068 *this_cache = arm_make_sigtramp_cache (next_frame);
1069 cache = *this_cache;
1071 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1072 the sigtramp frame; the PC should be the beginning of the trampoline. */
1073 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1077 arm_sigtramp_prev_register (struct frame_info *next_frame,
1081 enum lval_type *lvalp,
1086 struct arm_prologue_cache *cache;
1088 if (*this_cache == NULL)
1089 *this_cache = arm_make_sigtramp_cache (next_frame);
1090 cache = *this_cache;
1092 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1093 optimized, lvalp, addrp, realnump, valuep);
1096 struct frame_unwind arm_sigtramp_unwind = {
1098 arm_sigtramp_this_id,
1099 arm_sigtramp_prev_register
1102 static const struct frame_unwind *
1103 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1105 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1106 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1107 return &arm_sigtramp_unwind;
1112 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1113 dummy frame. The frame ID's base needs to match the TOS value
1114 saved by save_dummy_frame_tos() and returned from
1115 arm_push_dummy_call, and the PC needs to match the dummy frame's
1118 static struct frame_id
1119 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1121 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1122 frame_pc_unwind (next_frame));
1125 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1126 be used to construct the previous frame's ID, after looking up the
1127 containing function). */
1130 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1133 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1134 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1138 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1140 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1143 /* When arguments must be pushed onto the stack, they go on in reverse
1144 order. The code below implements a FILO (stack) to do this. */
1149 struct stack_item *prev;
1153 static struct stack_item *
1154 push_stack_item (struct stack_item *prev, void *contents, int len)
1156 struct stack_item *si;
1157 si = xmalloc (sizeof (struct stack_item));
1158 si->data = xmalloc (len);
1161 memcpy (si->data, contents, len);
1165 static struct stack_item *
1166 pop_stack_item (struct stack_item *si)
1168 struct stack_item *dead = si;
1175 /* We currently only support passing parameters in integer registers. This
1176 conforms with GCC's default model. Several other variants exist and
1177 we should probably support some of them based on the selected ABI. */
1180 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1181 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1182 struct value **args, CORE_ADDR sp, int struct_return,
1183 CORE_ADDR struct_addr)
1188 struct stack_item *si = NULL;
1190 /* Set the return address. For the ARM, the return breakpoint is
1191 always at BP_ADDR. */
1192 /* XXX Fix for Thumb. */
1193 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1195 /* Walk through the list of args and determine how large a temporary
1196 stack is required. Need to take care here as structs may be
1197 passed on the stack, and we have to to push them. */
1200 argreg = ARM_A1_REGNUM;
1203 /* Some platforms require a double-word aligned stack. Make sure sp
1204 is correctly aligned before we start. We always do this even if
1205 it isn't really needed -- it can never hurt things. */
1206 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1219 for (argnum = 0; argnum < nargs; argnum++)
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
1227 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1228 len = TYPE_LENGTH (arg_type);
1229 target_type = TYPE_TARGET_TYPE (arg_type);
1230 typecode = TYPE_CODE (arg_type);
1231 val = VALUE_CONTENTS (args[argnum]);
1233 /* If the argument is a pointer to a function, and it is a
1234 Thumb function, create a LOCAL copy of the value and set
1235 the THUMB bit in it. */
1236 if (TYPE_CODE_PTR == typecode
1237 && target_type != NULL
1238 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1240 CORE_ADDR regval = extract_unsigned_integer (val, len);
1241 if (arm_pc_is_thumb (regval))
1244 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1248 /* Copy the argument to general registers or the stack in
1249 register-sized pieces. Large arguments are split between
1250 registers and stack. */
1253 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1255 if (argreg <= ARM_LAST_ARG_REGNUM)
1257 /* The argument is being passed in a general purpose
1259 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1261 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1262 argnum, REGISTER_NAME (argreg),
1263 phex (regval, DEPRECATED_REGISTER_SIZE));
1264 regcache_cooked_write_unsigned (regcache, argreg, regval);
1269 /* Push the arguments onto the stack. */
1271 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1273 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1274 nstack += DEPRECATED_REGISTER_SIZE;
1281 /* If we have an odd number of words to push, then decrement the stack
1282 by one word now, so first stack argument will be dword aligned. */
1289 write_memory (sp, si->data, si->len);
1290 si = pop_stack_item (si);
1293 /* Finally, update teh SP register. */
1294 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1300 print_fpu_flags (int flags)
1302 if (flags & (1 << 0))
1303 fputs ("IVO ", stdout);
1304 if (flags & (1 << 1))
1305 fputs ("DVZ ", stdout);
1306 if (flags & (1 << 2))
1307 fputs ("OFL ", stdout);
1308 if (flags & (1 << 3))
1309 fputs ("UFL ", stdout);
1310 if (flags & (1 << 4))
1311 fputs ("INX ", stdout);
1315 /* Print interesting information about the floating point processor
1316 (if present) or emulator. */
1318 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1319 struct frame_info *frame, const char *args)
1321 unsigned long status = read_register (ARM_FPS_REGNUM);
1324 type = (status >> 24) & 127;
1325 printf ("%s FPU type %d\n",
1326 (status & (1 << 31)) ? "Hardware" : "Software",
1328 fputs ("mask: ", stdout);
1329 print_fpu_flags (status >> 16);
1330 fputs ("flags: ", stdout);
1331 print_fpu_flags (status);
1334 /* Return the GDB type object for the "standard" data type of data in
1337 static struct type *
1338 arm_register_type (struct gdbarch *gdbarch, int regnum)
1340 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1342 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1343 return builtin_type_arm_ext_big;
1345 return builtin_type_arm_ext_littlebyte_bigword;
1348 return builtin_type_int32;
1351 /* Index within `registers' of the first byte of the space for
1355 arm_register_byte (int regnum)
1357 if (regnum < ARM_F0_REGNUM)
1358 return regnum * INT_REGISTER_SIZE;
1359 else if (regnum < ARM_PS_REGNUM)
1360 return (NUM_GREGS * INT_REGISTER_SIZE
1361 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1363 return (NUM_GREGS * INT_REGISTER_SIZE
1364 + NUM_FREGS * FP_REGISTER_SIZE
1365 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1368 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1370 arm_register_sim_regno (int regnum)
1373 gdb_assert (reg >= 0 && reg < NUM_REGS);
1375 if (reg < NUM_GREGS)
1376 return SIM_ARM_R0_REGNUM + reg;
1379 if (reg < NUM_FREGS)
1380 return SIM_ARM_FP0_REGNUM + reg;
1383 if (reg < NUM_SREGS)
1384 return SIM_ARM_FPS_REGNUM + reg;
1387 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1390 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1391 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1392 It is thought that this is is the floating-point register format on
1393 little-endian systems. */
1396 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1400 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1401 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1403 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1405 floatformat_from_doublest (fmt, &d, dbl);
1409 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1412 floatformat_to_doublest (fmt, ptr, &d);
1413 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1414 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1416 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1421 condition_true (unsigned long cond, unsigned long status_reg)
1423 if (cond == INST_AL || cond == INST_NV)
1429 return ((status_reg & FLAG_Z) != 0);
1431 return ((status_reg & FLAG_Z) == 0);
1433 return ((status_reg & FLAG_C) != 0);
1435 return ((status_reg & FLAG_C) == 0);
1437 return ((status_reg & FLAG_N) != 0);
1439 return ((status_reg & FLAG_N) == 0);
1441 return ((status_reg & FLAG_V) != 0);
1443 return ((status_reg & FLAG_V) == 0);
1445 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1447 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1449 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1451 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1453 return (((status_reg & FLAG_Z) == 0) &&
1454 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1456 return (((status_reg & FLAG_Z) != 0) ||
1457 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1462 /* Support routines for single stepping. Calculate the next PC value. */
1463 #define submask(x) ((1L << ((x) + 1)) - 1)
1464 #define bit(obj,st) (((obj) >> (st)) & 1)
1465 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1466 #define sbits(obj,st,fn) \
1467 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1468 #define BranchDest(addr,instr) \
1469 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1472 static unsigned long
1473 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1474 unsigned long status_reg)
1476 unsigned long res, shift;
1477 int rm = bits (inst, 0, 3);
1478 unsigned long shifttype = bits (inst, 5, 6);
1482 int rs = bits (inst, 8, 11);
1483 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1486 shift = bits (inst, 7, 11);
1489 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1490 + (bit (inst, 4) ? 12 : 8))
1491 : read_register (rm));
1496 res = shift >= 32 ? 0 : res << shift;
1500 res = shift >= 32 ? 0 : res >> shift;
1506 res = ((res & 0x80000000L)
1507 ? ~((~res) >> shift) : res >> shift);
1510 case 3: /* ROR/RRX */
1513 res = (res >> 1) | (carry ? 0x80000000L : 0);
1515 res = (res >> shift) | (res << (32 - shift));
1519 return res & 0xffffffff;
1522 /* Return number of 1-bits in VAL. */
1525 bitcount (unsigned long val)
1528 for (nbits = 0; val != 0; nbits++)
1529 val &= val - 1; /* delete rightmost 1-bit in val */
1534 thumb_get_next_pc (CORE_ADDR pc)
1536 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1537 unsigned short inst1 = read_memory_integer (pc, 2);
1538 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1539 unsigned long offset;
1541 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1545 /* Fetch the saved PC from the stack. It's stored above
1546 all of the other registers. */
1547 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1548 sp = read_register (ARM_SP_REGNUM);
1549 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1550 nextpc = ADDR_BITS_REMOVE (nextpc);
1552 error ("Infinite loop detected");
1554 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1556 unsigned long status = read_register (ARM_PS_REGNUM);
1557 unsigned long cond = bits (inst1, 8, 11);
1558 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1559 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1561 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1563 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1565 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1567 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1568 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1569 nextpc = pc_val + offset;
1570 /* For BLX make sure to clear the low bits. */
1571 if (bits (inst2, 11, 12) == 1)
1572 nextpc = nextpc & 0xfffffffc;
1574 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1576 if (bits (inst1, 3, 6) == 0x0f)
1579 nextpc = read_register (bits (inst1, 3, 6));
1581 nextpc = ADDR_BITS_REMOVE (nextpc);
1583 error ("Infinite loop detected");
1590 arm_get_next_pc (CORE_ADDR pc)
1592 unsigned long pc_val;
1593 unsigned long this_instr;
1594 unsigned long status;
1597 if (arm_pc_is_thumb (pc))
1598 return thumb_get_next_pc (pc);
1600 pc_val = (unsigned long) pc;
1601 this_instr = read_memory_integer (pc, 4);
1602 status = read_register (ARM_PS_REGNUM);
1603 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1605 if (condition_true (bits (this_instr, 28, 31), status))
1607 switch (bits (this_instr, 24, 27))
1610 case 0x1: /* data processing */
1614 unsigned long operand1, operand2, result = 0;
1618 if (bits (this_instr, 12, 15) != 15)
1621 if (bits (this_instr, 22, 25) == 0
1622 && bits (this_instr, 4, 7) == 9) /* multiply */
1623 error ("Illegal update to pc in instruction");
1625 /* BX <reg>, BLX <reg> */
1626 if (bits (this_instr, 4, 28) == 0x12fff1
1627 || bits (this_instr, 4, 28) == 0x12fff3)
1629 rn = bits (this_instr, 0, 3);
1630 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1631 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1634 error ("Infinite loop detected");
1639 /* Multiply into PC */
1640 c = (status & FLAG_C) ? 1 : 0;
1641 rn = bits (this_instr, 16, 19);
1642 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1644 if (bit (this_instr, 25))
1646 unsigned long immval = bits (this_instr, 0, 7);
1647 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1648 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1651 else /* operand 2 is a shifted register */
1652 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1654 switch (bits (this_instr, 21, 24))
1657 result = operand1 & operand2;
1661 result = operand1 ^ operand2;
1665 result = operand1 - operand2;
1669 result = operand2 - operand1;
1673 result = operand1 + operand2;
1677 result = operand1 + operand2 + c;
1681 result = operand1 - operand2 + c;
1685 result = operand2 - operand1 + c;
1691 case 0xb: /* tst, teq, cmp, cmn */
1692 result = (unsigned long) nextpc;
1696 result = operand1 | operand2;
1700 /* Always step into a function. */
1705 result = operand1 & ~operand2;
1712 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1715 error ("Infinite loop detected");
1720 case 0x5: /* data transfer */
1723 if (bit (this_instr, 20))
1726 if (bits (this_instr, 12, 15) == 15)
1732 if (bit (this_instr, 22))
1733 error ("Illegal update to pc in instruction");
1735 /* byte write to PC */
1736 rn = bits (this_instr, 16, 19);
1737 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1738 if (bit (this_instr, 24))
1741 int c = (status & FLAG_C) ? 1 : 0;
1742 unsigned long offset =
1743 (bit (this_instr, 25)
1744 ? shifted_reg_val (this_instr, c, pc_val, status)
1745 : bits (this_instr, 0, 11));
1747 if (bit (this_instr, 23))
1752 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1755 nextpc = ADDR_BITS_REMOVE (nextpc);
1758 error ("Infinite loop detected");
1764 case 0x9: /* block transfer */
1765 if (bit (this_instr, 20))
1768 if (bit (this_instr, 15))
1773 if (bit (this_instr, 23))
1776 unsigned long reglist = bits (this_instr, 0, 14);
1777 offset = bitcount (reglist) * 4;
1778 if (bit (this_instr, 24)) /* pre */
1781 else if (bit (this_instr, 24))
1785 unsigned long rn_val =
1786 read_register (bits (this_instr, 16, 19));
1788 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1792 nextpc = ADDR_BITS_REMOVE (nextpc);
1794 error ("Infinite loop detected");
1799 case 0xb: /* branch & link */
1800 case 0xa: /* branch */
1802 nextpc = BranchDest (pc, this_instr);
1805 if (bits (this_instr, 28, 31) == INST_NV)
1806 nextpc |= bit (this_instr, 24) << 1;
1808 nextpc = ADDR_BITS_REMOVE (nextpc);
1810 error ("Infinite loop detected");
1816 case 0xe: /* coproc ops */
1821 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1829 /* single_step() is called just before we want to resume the inferior,
1830 if we want to single-step it but there is no hardware or kernel
1831 single-step support. We find the target of the coming instruction
1834 single_step() is also called just after the inferior stops. If we
1835 had set up a simulated single-step, we undo our damage. */
1838 arm_software_single_step (enum target_signal sig, int insert_bpt)
1840 static int next_pc; /* State between setting and unsetting. */
1841 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1845 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1846 target_insert_breakpoint (next_pc, break_mem);
1849 target_remove_breakpoint (next_pc, break_mem);
1852 #include "bfd-in2.h"
1853 #include "libcoff.h"
1856 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1858 if (arm_pc_is_thumb (memaddr))
1860 static asymbol *asym;
1861 static combined_entry_type ce;
1862 static struct coff_symbol_struct csym;
1863 static struct bfd fake_bfd;
1864 static bfd_target fake_target;
1866 if (csym.native == NULL)
1868 /* Create a fake symbol vector containing a Thumb symbol.
1869 This is solely so that the code in print_insn_little_arm()
1870 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1871 the presence of a Thumb symbol and switch to decoding
1872 Thumb instructions. */
1874 fake_target.flavour = bfd_target_coff_flavour;
1875 fake_bfd.xvec = &fake_target;
1876 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1878 csym.symbol.the_bfd = &fake_bfd;
1879 csym.symbol.name = "fake";
1880 asym = (asymbol *) & csym;
1883 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1884 info->symbols = &asym;
1887 info->symbols = NULL;
1889 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1890 return print_insn_big_arm (memaddr, info);
1892 return print_insn_little_arm (memaddr, info);
1895 /* The following define instruction sequences that will cause ARM
1896 cpu's to take an undefined instruction trap. These are used to
1897 signal a breakpoint to GDB.
1899 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1900 modes. A different instruction is required for each mode. The ARM
1901 cpu's can also be big or little endian. Thus four different
1902 instructions are needed to support all cases.
1904 Note: ARMv4 defines several new instructions that will take the
1905 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1906 not in fact add the new instructions. The new undefined
1907 instructions in ARMv4 are all instructions that had no defined
1908 behaviour in earlier chips. There is no guarantee that they will
1909 raise an exception, but may be treated as NOP's. In practice, it
1910 may only safe to rely on instructions matching:
1912 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1913 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1914 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1916 Even this may only true if the condition predicate is true. The
1917 following use a condition predicate of ALWAYS so it is always TRUE.
1919 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1920 and NetBSD all use a software interrupt rather than an undefined
1921 instruction to force a trap. This can be handled by by the
1922 abi-specific code during establishment of the gdbarch vector. */
1925 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1926 override these definitions. */
1927 #ifndef ARM_LE_BREAKPOINT
1928 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1930 #ifndef ARM_BE_BREAKPOINT
1931 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1933 #ifndef THUMB_LE_BREAKPOINT
1934 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1936 #ifndef THUMB_BE_BREAKPOINT
1937 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1940 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1941 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1942 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1943 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1945 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1946 the program counter value to determine whether a 16-bit or 32-bit
1947 breakpoint should be used. It returns a pointer to a string of
1948 bytes that encode a breakpoint instruction, stores the length of
1949 the string to *lenptr, and adjusts the program counter (if
1950 necessary) to point to the actual memory location where the
1951 breakpoint should be inserted. */
1953 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1954 breakpoints and storing their handles instread of what was in
1955 memory. It is nice that this is the same size as a handle -
1956 otherwise remote-rdp will have to change. */
1958 static const unsigned char *
1959 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1961 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1963 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1965 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1966 *lenptr = tdep->thumb_breakpoint_size;
1967 return tdep->thumb_breakpoint;
1971 *lenptr = tdep->arm_breakpoint_size;
1972 return tdep->arm_breakpoint;
1976 /* Extract from an array REGBUF containing the (raw) register state a
1977 function return value of type TYPE, and copy that, in virtual
1978 format, into VALBUF. */
1981 arm_extract_return_value (struct type *type,
1982 struct regcache *regs,
1985 bfd_byte *valbuf = dst;
1987 if (TYPE_CODE_FLT == TYPE_CODE (type))
1989 switch (arm_get_fp_model (current_gdbarch))
1993 /* The value is in register F0 in internal format. We need to
1994 extract the raw value and then convert it to the desired
1996 bfd_byte tmpbuf[FP_REGISTER_SIZE];
1998 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
1999 convert_from_extended (floatformat_from_type (type), tmpbuf,
2004 case ARM_FLOAT_SOFT_FPA:
2005 case ARM_FLOAT_SOFT_VFP:
2006 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2007 if (TYPE_LENGTH (type) > 4)
2008 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2009 valbuf + INT_REGISTER_SIZE);
2014 (__FILE__, __LINE__,
2015 "arm_extract_return_value: Floating point model not supported");
2019 else if (TYPE_CODE (type) == TYPE_CODE_INT
2020 || TYPE_CODE (type) == TYPE_CODE_CHAR
2021 || TYPE_CODE (type) == TYPE_CODE_BOOL
2022 || TYPE_CODE (type) == TYPE_CODE_PTR
2023 || TYPE_CODE (type) == TYPE_CODE_REF
2024 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2026 /* If the the type is a plain integer, then the access is
2027 straight-forward. Otherwise we have to play around a bit more. */
2028 int len = TYPE_LENGTH (type);
2029 int regno = ARM_A1_REGNUM;
2034 /* By using store_unsigned_integer we avoid having to do
2035 anything special for small big-endian values. */
2036 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2037 store_unsigned_integer (valbuf,
2038 (len > INT_REGISTER_SIZE
2039 ? INT_REGISTER_SIZE : len),
2041 len -= INT_REGISTER_SIZE;
2042 valbuf += INT_REGISTER_SIZE;
2047 /* For a structure or union the behaviour is as if the value had
2048 been stored to word-aligned memory and then loaded into
2049 registers with 32-bit load instruction(s). */
2050 int len = TYPE_LENGTH (type);
2051 int regno = ARM_A1_REGNUM;
2052 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2056 regcache_cooked_read (regs, regno++, tmpbuf);
2057 memcpy (valbuf, tmpbuf,
2058 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2059 len -= INT_REGISTER_SIZE;
2060 valbuf += INT_REGISTER_SIZE;
2065 /* Extract from an array REGBUF containing the (raw) register state
2066 the address in which a function should return its structure value. */
2069 arm_extract_struct_value_address (struct regcache *regcache)
2073 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2077 /* Will a function return an aggregate type in memory or in a
2078 register? Return 0 if an aggregate type can be returned in a
2079 register, 1 if it must be returned in memory. */
2082 arm_use_struct_convention (int gcc_p, struct type *type)
2085 enum type_code code;
2087 CHECK_TYPEDEF (type);
2089 /* In the ARM ABI, "integer" like aggregate types are returned in
2090 registers. For an aggregate type to be integer like, its size
2091 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2092 offset of each addressable subfield must be zero. Note that bit
2093 fields are not addressable, and all addressable subfields of
2094 unions always start at offset zero.
2096 This function is based on the behaviour of GCC 2.95.1.
2097 See: gcc/arm.c: arm_return_in_memory() for details.
2099 Note: All versions of GCC before GCC 2.95.2 do not set up the
2100 parameters correctly for a function returning the following
2101 structure: struct { float f;}; This should be returned in memory,
2102 not a register. Richard Earnshaw sent me a patch, but I do not
2103 know of any way to detect if a function like the above has been
2104 compiled with the correct calling convention. */
2106 /* All aggregate types that won't fit in a register must be returned
2108 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2113 /* The only aggregate types that can be returned in a register are
2114 structs and unions. Arrays must be returned in memory. */
2115 code = TYPE_CODE (type);
2116 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2121 /* Assume all other aggregate types can be returned in a register.
2122 Run a check for structures, unions and arrays. */
2125 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2128 /* Need to check if this struct/union is "integer" like. For
2129 this to be true, its size must be less than or equal to
2130 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2131 subfield must be zero. Note that bit fields are not
2132 addressable, and unions always start at offset zero. If any
2133 of the subfields is a floating point type, the struct/union
2134 cannot be an integer type. */
2136 /* For each field in the object, check:
2137 1) Is it FP? --> yes, nRc = 1;
2138 2) Is it addressable (bitpos != 0) and
2139 not packed (bitsize == 0)?
2143 for (i = 0; i < TYPE_NFIELDS (type); i++)
2145 enum type_code field_type_code;
2146 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2148 /* Is it a floating point type field? */
2149 if (field_type_code == TYPE_CODE_FLT)
2155 /* If bitpos != 0, then we have to care about it. */
2156 if (TYPE_FIELD_BITPOS (type, i) != 0)
2158 /* Bitfields are not addressable. If the field bitsize is
2159 zero, then the field is not packed. Hence it cannot be
2160 a bitfield or any other packed type. */
2161 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2173 /* Write into appropriate registers a function return value of type
2174 TYPE, given in virtual format. */
2177 arm_store_return_value (struct type *type, struct regcache *regs,
2180 const bfd_byte *valbuf = src;
2182 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2184 char buf[MAX_REGISTER_SIZE];
2186 switch (arm_get_fp_model (current_gdbarch))
2190 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2191 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2194 case ARM_FLOAT_SOFT_FPA:
2195 case ARM_FLOAT_SOFT_VFP:
2196 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2197 if (TYPE_LENGTH (type) > 4)
2198 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2199 valbuf + INT_REGISTER_SIZE);
2204 (__FILE__, __LINE__,
2205 "arm_store_return_value: Floating point model not supported");
2209 else if (TYPE_CODE (type) == TYPE_CODE_INT
2210 || TYPE_CODE (type) == TYPE_CODE_CHAR
2211 || TYPE_CODE (type) == TYPE_CODE_BOOL
2212 || TYPE_CODE (type) == TYPE_CODE_PTR
2213 || TYPE_CODE (type) == TYPE_CODE_REF
2214 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2216 if (TYPE_LENGTH (type) <= 4)
2218 /* Values of one word or less are zero/sign-extended and
2220 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2221 LONGEST val = unpack_long (type, valbuf);
2223 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2224 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2228 /* Integral values greater than one word are stored in consecutive
2229 registers starting with r0. This will always be a multiple of
2230 the regiser size. */
2231 int len = TYPE_LENGTH (type);
2232 int regno = ARM_A1_REGNUM;
2236 regcache_cooked_write (regs, regno++, valbuf);
2237 len -= INT_REGISTER_SIZE;
2238 valbuf += INT_REGISTER_SIZE;
2244 /* For a structure or union the behaviour is as if the value had
2245 been stored to word-aligned memory and then loaded into
2246 registers with 32-bit load instruction(s). */
2247 int len = TYPE_LENGTH (type);
2248 int regno = ARM_A1_REGNUM;
2249 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2253 memcpy (tmpbuf, valbuf,
2254 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2255 regcache_cooked_write (regs, regno++, tmpbuf);
2256 len -= INT_REGISTER_SIZE;
2257 valbuf += INT_REGISTER_SIZE;
2263 arm_get_longjmp_target (CORE_ADDR *pc)
2266 char buf[INT_REGISTER_SIZE];
2267 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2269 jb_addr = read_register (ARM_A1_REGNUM);
2271 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2275 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2279 /* Return non-zero if the PC is inside a thumb call thunk. */
2282 arm_in_call_stub (CORE_ADDR pc, char *name)
2284 CORE_ADDR start_addr;
2286 /* Find the starting address of the function containing the PC. If
2287 the caller didn't give us a name, look it up at the same time. */
2288 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2292 return strncmp (name, "_call_via_r", 11) == 0;
2295 /* If PC is in a Thumb call or return stub, return the address of the
2296 target PC, which is in a register. The thunk functions are called
2297 _called_via_xx, where x is the register name. The possible names
2298 are r0-r9, sl, fp, ip, sp, and lr. */
2301 arm_skip_stub (CORE_ADDR pc)
2304 CORE_ADDR start_addr;
2306 /* Find the starting address and name of the function containing the PC. */
2307 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2310 /* Call thunks always start with "_call_via_". */
2311 if (strncmp (name, "_call_via_", 10) == 0)
2313 /* Use the name suffix to determine which register contains the
2315 static char *table[15] =
2316 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2317 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2321 for (regno = 0; regno <= 14; regno++)
2322 if (strcmp (&name[10], table[regno]) == 0)
2323 return read_register (regno);
2326 return 0; /* not a stub */
2330 set_arm_command (char *args, int from_tty)
2332 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2333 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2337 show_arm_command (char *args, int from_tty)
2339 cmd_show_list (showarmcmdlist, from_tty, "");
2342 enum arm_float_model
2343 arm_get_fp_model (struct gdbarch *gdbarch)
2345 if (arm_fp_model == ARM_FLOAT_AUTO)
2346 return gdbarch_tdep (gdbarch)->fp_model;
2348 return arm_fp_model;
2352 arm_set_fp (struct gdbarch *gdbarch)
2354 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2356 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2357 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2359 set_gdbarch_double_format (gdbarch,
2360 &floatformat_ieee_double_littlebyte_bigword);
2361 set_gdbarch_long_double_format
2362 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2366 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2367 set_gdbarch_long_double_format (gdbarch,
2368 &floatformat_ieee_double_little);
2373 set_fp_model_sfunc (char *args, int from_tty,
2374 struct cmd_list_element *c)
2376 enum arm_float_model fp_model;
2378 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2379 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2381 arm_fp_model = fp_model;
2385 if (fp_model == ARM_FLOAT_LAST)
2386 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2389 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2390 arm_set_fp (current_gdbarch);
2394 show_fp_model (char *args, int from_tty,
2395 struct cmd_list_element *c)
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2399 if (arm_fp_model == ARM_FLOAT_AUTO
2400 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2401 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2402 fp_model_strings[tdep->fp_model]);
2405 /* If the user changes the register disassembly style used for info
2406 register and other commands, we have to also switch the style used
2407 in opcodes for disassembly output. This function is run in the "set
2408 arm disassembly" command, and does that. */
2411 set_disassembly_style_sfunc (char *args, int from_tty,
2412 struct cmd_list_element *c)
2414 set_disassembly_style ();
2417 /* Return the ARM register name corresponding to register I. */
2419 arm_register_name (int i)
2421 return arm_register_names[i];
2425 set_disassembly_style (void)
2427 const char *setname, *setdesc, **regnames;
2430 /* Find the style that the user wants in the opcodes table. */
2432 numregs = get_arm_regnames (current, &setname, &setdesc, ®names);
2433 while ((disassembly_style != setname)
2434 && (current < num_disassembly_options))
2435 get_arm_regnames (++current, &setname, &setdesc, ®names);
2436 current_option = current;
2438 /* Fill our copy. */
2439 for (j = 0; j < numregs; j++)
2440 arm_register_names[j] = (char *) regnames[j];
2443 if (isupper (*regnames[ARM_PC_REGNUM]))
2445 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2446 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2450 arm_register_names[ARM_FPS_REGNUM] = "fps";
2451 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2454 /* Synchronize the disassembler. */
2455 set_arm_regname_option (current);
2458 /* arm_othernames implements the "othernames" command. This is deprecated
2459 by the "set arm disassembly" command. */
2462 arm_othernames (char *names, int n)
2464 /* Circle through the various flavors. */
2465 current_option = (current_option + 1) % num_disassembly_options;
2467 disassembly_style = valid_disassembly_styles[current_option];
2468 set_disassembly_style ();
2471 /* Test whether the coff symbol specific value corresponds to a Thumb
2475 coff_sym_is_thumb (int val)
2477 return (val == C_THUMBEXT ||
2478 val == C_THUMBSTAT ||
2479 val == C_THUMBEXTFUNC ||
2480 val == C_THUMBSTATFUNC ||
2481 val == C_THUMBLABEL);
2484 /* arm_coff_make_msymbol_special()
2485 arm_elf_make_msymbol_special()
2487 These functions test whether the COFF or ELF symbol corresponds to
2488 an address in thumb code, and set a "special" bit in a minimal
2489 symbol to indicate that it does. */
2492 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2494 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2496 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2498 MSYMBOL_SET_SPECIAL (msym);
2502 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2504 if (coff_sym_is_thumb (val))
2505 MSYMBOL_SET_SPECIAL (msym);
2509 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2511 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2513 /* If necessary, set the T bit. */
2516 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2517 if (arm_pc_is_thumb (pc))
2518 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2520 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2524 static enum gdb_osabi
2525 arm_elf_osabi_sniffer (bfd *abfd)
2527 unsigned int elfosabi, eflags;
2528 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2530 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2535 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2536 file are conforming to the base specification for that machine
2537 (there are no OS-specific extensions). In order to determine the
2538 real OS in use we must look for OS notes that have been added. */
2539 bfd_map_over_sections (abfd,
2540 generic_elf_osabi_sniff_abi_tag_sections,
2542 if (osabi == GDB_OSABI_UNKNOWN)
2544 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2545 field for more information. */
2546 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2549 case EF_ARM_EABI_VER1:
2550 osabi = GDB_OSABI_ARM_EABI_V1;
2553 case EF_ARM_EABI_VER2:
2554 osabi = GDB_OSABI_ARM_EABI_V2;
2557 case EF_ARM_EABI_UNKNOWN:
2558 /* Assume GNU tools. */
2559 osabi = GDB_OSABI_ARM_APCS;
2563 internal_error (__FILE__, __LINE__,
2564 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2565 "version 0x%x", eflags);
2571 /* GNU tools use this value. Check note sections in this case,
2573 bfd_map_over_sections (abfd,
2574 generic_elf_osabi_sniff_abi_tag_sections,
2576 if (osabi == GDB_OSABI_UNKNOWN)
2578 /* Assume APCS ABI. */
2579 osabi = GDB_OSABI_ARM_APCS;
2583 case ELFOSABI_FREEBSD:
2584 osabi = GDB_OSABI_FREEBSD_ELF;
2587 case ELFOSABI_NETBSD:
2588 osabi = GDB_OSABI_NETBSD_ELF;
2591 case ELFOSABI_LINUX:
2592 osabi = GDB_OSABI_LINUX;
2600 /* Initialize the current architecture based on INFO. If possible,
2601 re-use an architecture from ARCHES, which is a list of
2602 architectures already created during this debugging session.
2604 Called e.g. at program startup, when reading a core file, and when
2605 reading a binary file. */
2607 static struct gdbarch *
2608 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2610 struct gdbarch_tdep *tdep;
2611 struct gdbarch *gdbarch;
2613 /* Try to deterimine the ABI of the object we are loading. */
2615 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2617 switch (bfd_get_flavour (info.abfd))
2619 case bfd_target_aout_flavour:
2620 /* Assume it's an old APCS-style ABI. */
2621 info.osabi = GDB_OSABI_ARM_APCS;
2624 case bfd_target_coff_flavour:
2625 /* Assume it's an old APCS-style ABI. */
2627 info.osabi = GDB_OSABI_ARM_APCS;
2631 /* Leave it as "unknown". */
2636 /* If there is already a candidate, use it. */
2637 arches = gdbarch_list_lookup_by_info (arches, &info);
2639 return arches->gdbarch;
2641 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2642 gdbarch = gdbarch_alloc (&info, tdep);
2644 /* We used to default to FPA for generic ARM, but almost nobody uses that
2645 now, and we now provide a way for the user to force the model. So
2646 default to the most useful variant. */
2647 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2650 switch (info.byte_order)
2652 case BFD_ENDIAN_BIG:
2653 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2654 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2655 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2656 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2660 case BFD_ENDIAN_LITTLE:
2661 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2662 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2663 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2664 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2669 internal_error (__FILE__, __LINE__,
2670 "arm_gdbarch_init: bad byte order for float format");
2673 /* On ARM targets char defaults to unsigned. */
2674 set_gdbarch_char_signed (gdbarch, 0);
2676 /* This should be low enough for everything. */
2677 tdep->lowest_pc = 0x20;
2678 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2680 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2682 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2684 /* Frame handling. */
2685 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2686 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2687 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2689 frame_base_set_default (gdbarch, &arm_normal_base);
2691 /* Address manipulation. */
2692 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2693 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2695 /* Advance PC across function entry code. */
2696 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2698 /* Get the PC when a frame might not be available. */
2699 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2701 /* The stack grows downward. */
2702 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2704 /* Breakpoint manipulation. */
2705 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2707 /* Information about registers, etc. */
2708 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2709 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2710 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2711 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2712 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2713 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2714 set_gdbarch_register_type (gdbarch, arm_register_type);
2716 /* Internal <-> external register number maps. */
2717 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2719 /* Integer registers are 4 bytes. */
2720 set_gdbarch_deprecated_register_size (gdbarch, 4);
2721 set_gdbarch_register_name (gdbarch, arm_register_name);
2723 /* Returning results. */
2724 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2725 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2726 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
2727 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2729 /* Single stepping. */
2730 /* XXX For an RDI target we should ask the target if it can single-step. */
2731 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2734 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2736 /* Minsymbol frobbing. */
2737 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2738 set_gdbarch_coff_make_msymbol_special (gdbarch,
2739 arm_coff_make_msymbol_special);
2741 /* Hook in the ABI-specific overrides, if they have been registered. */
2742 gdbarch_init_osabi (info, gdbarch);
2744 /* Add some default predicates. */
2745 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2746 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2748 /* Now we have tuned the configuration, set a few final things,
2749 based on what the OS ABI has told us. */
2751 if (tdep->jb_pc >= 0)
2752 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2754 /* Floating point sizes and format. */
2755 switch (info.byte_order)
2757 case BFD_ENDIAN_BIG:
2758 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2759 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2760 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2764 case BFD_ENDIAN_LITTLE:
2765 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2766 arm_set_fp (gdbarch);
2770 internal_error (__FILE__, __LINE__,
2771 "arm_gdbarch_init: bad byte order for float format");
2778 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2780 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2785 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2786 (unsigned long) tdep->lowest_pc);
2790 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2791 struct gdbarch *gdbarch)
2797 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2798 struct gdbarch *gdbarch)
2804 arm_init_abi_apcs (struct gdbarch_info info,
2805 struct gdbarch *gdbarch)
2810 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2813 _initialize_arm_tdep (void)
2815 struct ui_file *stb;
2817 struct cmd_list_element *new_set, *new_show;
2818 const char *setname;
2819 const char *setdesc;
2820 const char **regnames;
2822 static char *helptext;
2824 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2826 /* Register an ELF OS ABI sniffer for ARM binaries. */
2827 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2828 bfd_target_elf_flavour,
2829 arm_elf_osabi_sniffer);
2831 /* Register some ABI variants for embedded systems. */
2832 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2833 arm_init_abi_eabi_v1);
2834 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2835 arm_init_abi_eabi_v2);
2836 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2839 /* Get the number of possible sets of register names defined in opcodes. */
2840 num_disassembly_options = get_arm_regname_num_options ();
2842 /* Add root prefix command for all "set arm"/"show arm" commands. */
2843 add_prefix_cmd ("arm", no_class, set_arm_command,
2844 "Various ARM-specific commands.",
2845 &setarmcmdlist, "set arm ", 0, &setlist);
2847 add_prefix_cmd ("arm", no_class, show_arm_command,
2848 "Various ARM-specific commands.",
2849 &showarmcmdlist, "show arm ", 0, &showlist);
2851 /* Sync the opcode insn printer with our register viewer. */
2852 parse_arm_disassembler_option ("reg-names-std");
2854 /* Begin creating the help text. */
2855 stb = mem_fileopen ();
2856 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2857 "The valid values are:\n");
2859 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2860 valid_disassembly_styles
2861 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2862 for (i = 0; i < num_disassembly_options; i++)
2864 numregs = get_arm_regnames (i, &setname, &setdesc, ®names);
2865 valid_disassembly_styles[i] = setname;
2866 fprintf_unfiltered (stb, "%s - %s\n", setname,
2868 /* Copy the default names (if found) and synchronize disassembler. */
2869 if (!strcmp (setname, "std"))
2871 disassembly_style = setname;
2873 for (j = 0; j < numregs; j++)
2874 arm_register_names[j] = (char *) regnames[j];
2875 set_arm_regname_option (i);
2878 /* Mark the end of valid options. */
2879 valid_disassembly_styles[num_disassembly_options] = NULL;
2881 /* Finish the creation of the help text. */
2882 fprintf_unfiltered (stb, "The default is \"std\".");
2883 helptext = ui_file_xstrdup (stb, &length);
2884 ui_file_delete (stb);
2886 /* Add the deprecated disassembly-flavor command. */
2887 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
2888 valid_disassembly_styles,
2892 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2893 deprecate_cmd (new_set, "set arm disassembly");
2894 deprecate_cmd (deprecated_add_show_from_set (new_set, &showlist),
2895 "show arm disassembly");
2897 /* And now add the new interface. */
2898 new_set = add_set_enum_cmd ("disassembler", no_class,
2899 valid_disassembly_styles, &disassembly_style,
2900 helptext, &setarmcmdlist);
2902 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2903 deprecated_add_show_from_set (new_set, &showarmcmdlist);
2905 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, "\
2906 Set usage of ARM 32-bit mode.", "\
2907 Show usage of ARM 32-bit mode.", "\
2908 When off, a 26-bit PC will be used.\n\
2909 When off, a 26-bit PC will be used.", "\
2910 Usage of ARM 32-bit mode is %s.",
2912 &setarmcmdlist, &showarmcmdlist);
2914 /* Add a command to allow the user to force the FPU model. */
2915 new_set = add_set_enum_cmd
2916 ("fpu", no_class, fp_model_strings, ¤t_fp_model,
2917 "Set the floating point type.\n"
2918 "auto - Determine the FP typefrom the OS-ABI.\n"
2919 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2920 "fpa - FPA co-processor (GCC compiled).\n"
2921 "softvfp - Software FP with pure-endian doubles.\n"
2922 "vfp - VFP co-processor.",
2924 set_cmd_sfunc (new_set, set_fp_model_sfunc);
2925 set_cmd_sfunc (deprecated_add_show_from_set (new_set, &showarmcmdlist),
2928 /* Add the deprecated "othernames" command. */
2929 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2930 "Switch to the next set of register names."),
2931 "set arm disassembly");
2933 /* Debugging flag. */
2934 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, "\
2935 Set ARM debugging.", "\
2936 Show ARM debugging.", "\
2937 When on, arm-specific debugging is enabled.", "\
2938 ARM debugging is %s.",
2940 &setdebuglist, &showdebuglist);