1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
38 #include "gdb_string.h"
39 #include "gdb_assert.h"
41 /* Flag indicating HP compilers were used; needed to correctly handle some
42 value operations with HP aCC code/runtime. */
43 extern int hp_som_som_object_present;
45 extern int overload_debug;
46 /* Local functions. */
48 static int typecmp (int staticp, int varargs, int nargs,
49 struct field t1[], struct value *t2[]);
51 static CORE_ADDR find_function_addr (struct value *, struct type **);
52 static struct value *value_arg_coerce (struct value *, struct type *, int);
55 static CORE_ADDR value_push (CORE_ADDR, struct value *);
57 static struct value *search_struct_field (char *, struct value *, int,
60 static struct value *search_struct_method (char *, struct value **,
62 int, int *, struct type *);
64 static int check_field_in (struct type *, const char *);
66 static CORE_ADDR allocate_space_in_inferior (int);
68 static struct value *cast_into_complex (struct type *, struct value *);
70 static struct fn_field *find_method_list (struct value ** argp, char *method,
72 struct type *type, int *num_fns,
73 struct type **basetype,
76 void _initialize_valops (void);
78 /* Flag for whether we want to abandon failed expression evals by default. */
81 static int auto_abandon = 0;
84 int overload_resolution = 0;
86 /* This boolean tells what gdb should do if a signal is received while in
87 a function called from gdb (call dummy). If set, gdb unwinds the stack
88 and restore the context to what as it was before the call.
89 The default is to stop in the frame where the signal was received. */
91 int unwind_on_signal_p = 0;
95 /* Find the address of function name NAME in the inferior. */
98 find_function_in_inferior (char *name)
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
106 error ("\"%s\" exists in this program but is not a function.",
109 return value_of_variable (sym, NULL);
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_pointer (type, maddr);
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
138 value_allocate_space_in_inferior (int len)
140 struct value *blocklen;
141 struct value *val = find_function_in_inferior ("malloc");
143 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
144 val = call_function_by_hand (val, 1, &blocklen);
145 if (value_logical_not (val))
147 if (!target_has_execution)
148 error ("No memory available to program now: you need to start the target first");
150 error ("No memory available to program: call to malloc failed");
156 allocate_space_in_inferior (int len)
158 return value_as_long (value_allocate_space_in_inferior (len));
161 /* Cast value ARG2 to type TYPE and return as a value.
162 More general than a C cast: accepts any two types of the same length,
163 and if ARG2 is an lvalue it can be cast into anything at all. */
164 /* In C++, casts may change pointer or object representations. */
167 value_cast (struct type *type, struct value *arg2)
169 register enum type_code code1;
170 register enum type_code code2;
174 int convert_to_boolean = 0;
176 if (VALUE_TYPE (arg2) == type)
179 CHECK_TYPEDEF (type);
180 code1 = TYPE_CODE (type);
182 type2 = check_typedef (VALUE_TYPE (arg2));
184 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
185 is treated like a cast to (TYPE [N])OBJECT,
186 where N is sizeof(OBJECT)/sizeof(TYPE). */
187 if (code1 == TYPE_CODE_ARRAY)
189 struct type *element_type = TYPE_TARGET_TYPE (type);
190 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
191 if (element_length > 0
192 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
194 struct type *range_type = TYPE_INDEX_TYPE (type);
195 int val_length = TYPE_LENGTH (type2);
196 LONGEST low_bound, high_bound, new_length;
197 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
198 low_bound = 0, high_bound = 0;
199 new_length = val_length / element_length;
200 if (val_length % element_length != 0)
201 warning ("array element type size does not divide object size in cast");
202 /* FIXME-type-allocation: need a way to free this type when we are
204 range_type = create_range_type ((struct type *) NULL,
205 TYPE_TARGET_TYPE (range_type),
207 new_length + low_bound - 1);
208 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
209 element_type, range_type);
214 if (current_language->c_style_arrays
215 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
216 arg2 = value_coerce_array (arg2);
218 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
219 arg2 = value_coerce_function (arg2);
221 type2 = check_typedef (VALUE_TYPE (arg2));
222 COERCE_VARYING_ARRAY (arg2, type2);
223 code2 = TYPE_CODE (type2);
225 if (code1 == TYPE_CODE_COMPLEX)
226 return cast_into_complex (type, arg2);
227 if (code1 == TYPE_CODE_BOOL)
229 code1 = TYPE_CODE_INT;
230 convert_to_boolean = 1;
232 if (code1 == TYPE_CODE_CHAR)
233 code1 = TYPE_CODE_INT;
234 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
235 code2 = TYPE_CODE_INT;
237 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
238 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
240 if (code1 == TYPE_CODE_STRUCT
241 && code2 == TYPE_CODE_STRUCT
242 && TYPE_NAME (type) != 0)
244 /* Look in the type of the source to see if it contains the
245 type of the target as a superclass. If so, we'll need to
246 offset the object in addition to changing its type. */
247 struct value *v = search_struct_field (type_name_no_tag (type),
251 VALUE_TYPE (v) = type;
255 if (code1 == TYPE_CODE_FLT && scalar)
256 return value_from_double (type, value_as_double (arg2));
257 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
258 || code1 == TYPE_CODE_RANGE)
259 && (scalar || code2 == TYPE_CODE_PTR))
263 if (hp_som_som_object_present && /* if target compiled by HP aCC */
264 (code2 == TYPE_CODE_PTR))
267 struct value *retvalp;
269 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
271 /* With HP aCC, pointers to data members have a bias */
272 case TYPE_CODE_MEMBER:
273 retvalp = value_from_longest (type, value_as_long (arg2));
274 /* force evaluation */
275 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
276 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
279 /* While pointers to methods don't really point to a function */
280 case TYPE_CODE_METHOD:
281 error ("Pointers to methods not supported with HP aCC");
284 break; /* fall out and go to normal handling */
288 /* When we cast pointers to integers, we mustn't use
289 POINTER_TO_ADDRESS to find the address the pointer
290 represents, as value_as_long would. GDB should evaluate
291 expressions just as the compiler would --- and the compiler
292 sees a cast as a simple reinterpretation of the pointer's
294 if (code2 == TYPE_CODE_PTR)
295 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
296 TYPE_LENGTH (type2));
298 longest = value_as_long (arg2);
299 return value_from_longest (type, convert_to_boolean ?
300 (LONGEST) (longest ? 1 : 0) : longest);
302 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
303 code2 == TYPE_CODE_ENUM ||
304 code2 == TYPE_CODE_RANGE))
306 /* TYPE_LENGTH (type) is the length of a pointer, but we really
307 want the length of an address! -- we are really dealing with
308 addresses (i.e., gdb representations) not pointers (i.e.,
309 target representations) here.
311 This allows things like "print *(int *)0x01000234" to work
312 without printing a misleading message -- which would
313 otherwise occur when dealing with a target having two byte
314 pointers and four byte addresses. */
316 int addr_bit = TARGET_ADDR_BIT;
318 LONGEST longest = value_as_long (arg2);
319 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
321 if (longest >= ((LONGEST) 1 << addr_bit)
322 || longest <= -((LONGEST) 1 << addr_bit))
323 warning ("value truncated");
325 return value_from_longest (type, longest);
327 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
329 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
331 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
332 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
333 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
334 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
335 && !value_logical_not (arg2))
339 /* Look in the type of the source to see if it contains the
340 type of the target as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type. */
342 if (TYPE_NAME (t1) != NULL)
344 v = search_struct_field (type_name_no_tag (t1),
345 value_ind (arg2), 0, t2, 1);
349 VALUE_TYPE (v) = type;
354 /* Look in the type of the target to see if it contains the
355 type of the source as a superclass. If so, we'll need to
356 offset the pointer rather than just change its type.
357 FIXME: This fails silently with virtual inheritance. */
358 if (TYPE_NAME (t2) != NULL)
360 v = search_struct_field (type_name_no_tag (t2),
361 value_zero (t1, not_lval), 0, t1, 1);
364 struct value *v2 = value_ind (arg2);
365 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
368 /* JYG: adjust the new pointer value and
370 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
371 VALUE_EMBEDDED_OFFSET (v2) = 0;
373 v2 = value_addr (v2);
374 VALUE_TYPE (v2) = type;
379 /* No superclass found, just fall through to change ptr type. */
381 VALUE_TYPE (arg2) = type;
382 arg2 = value_change_enclosing_type (arg2, type);
383 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
386 else if (chill_varying_type (type))
388 struct type *range1, *range2, *eltype1, *eltype2;
391 LONGEST low_bound, high_bound;
392 char *valaddr, *valaddr_data;
393 /* For lint warning about eltype2 possibly uninitialized: */
395 if (code2 == TYPE_CODE_BITSTRING)
396 error ("not implemented: converting bitstring to varying type");
397 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
398 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
399 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
400 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
401 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
402 error ("Invalid conversion to varying type");
403 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
404 range2 = TYPE_FIELD_TYPE (type2, 0);
405 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
408 count1 = high_bound - low_bound + 1;
409 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
410 count1 = -1, count2 = 0; /* To force error before */
412 count2 = high_bound - low_bound + 1;
414 error ("target varying type is too small");
415 val = allocate_value (type);
416 valaddr = VALUE_CONTENTS_RAW (val);
417 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
418 /* Set val's __var_length field to count2. */
419 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
421 /* Set the __var_data field to count2 elements copied from arg2. */
422 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
423 count2 * TYPE_LENGTH (eltype2));
424 /* Zero the rest of the __var_data field of val. */
425 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
426 (count1 - count2) * TYPE_LENGTH (eltype2));
429 else if (VALUE_LVAL (arg2) == lval_memory)
431 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
432 VALUE_BFD_SECTION (arg2));
434 else if (code1 == TYPE_CODE_VOID)
436 return value_zero (builtin_type_void, not_lval);
440 error ("Invalid cast.");
445 /* Create a value of type TYPE that is zero, and return it. */
448 value_zero (struct type *type, enum lval_type lv)
450 struct value *val = allocate_value (type);
452 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
453 VALUE_LVAL (val) = lv;
458 /* Return a value with type TYPE located at ADDR.
460 Call value_at only if the data needs to be fetched immediately;
461 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
462 value_at_lazy instead. value_at_lazy simply records the address of
463 the data and sets the lazy-evaluation-required flag. The lazy flag
464 is tested in the VALUE_CONTENTS macro, which is used if and when
465 the contents are actually required.
467 Note: value_at does *NOT* handle embedded offsets; perform such
468 adjustments before or after calling it. */
471 value_at (struct type *type, CORE_ADDR addr, asection *sect)
475 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
476 error ("Attempt to dereference a generic pointer.");
478 val = allocate_value (type);
480 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
482 VALUE_LVAL (val) = lval_memory;
483 VALUE_ADDRESS (val) = addr;
484 VALUE_BFD_SECTION (val) = sect;
489 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
492 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
496 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
497 error ("Attempt to dereference a generic pointer.");
499 val = allocate_value (type);
501 VALUE_LVAL (val) = lval_memory;
502 VALUE_ADDRESS (val) = addr;
503 VALUE_LAZY (val) = 1;
504 VALUE_BFD_SECTION (val) = sect;
509 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
510 if the current data for a variable needs to be loaded into
511 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
512 clears the lazy flag to indicate that the data in the buffer is valid.
514 If the value is zero-length, we avoid calling read_memory, which would
515 abort. We mark the value as fetched anyway -- all 0 bytes of it.
517 This function returns a value because it is used in the VALUE_CONTENTS
518 macro as part of an expression, where a void would not work. The
522 value_fetch_lazy (struct value *val)
524 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
525 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
527 struct type *type = VALUE_TYPE (val);
529 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
531 VALUE_LAZY (val) = 0;
536 /* Store the contents of FROMVAL into the location of TOVAL.
537 Return a new value with the location of TOVAL and contents of FROMVAL. */
540 value_assign (struct value *toval, struct value *fromval)
542 register struct type *type;
544 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
547 if (!toval->modifiable)
548 error ("Left operand of assignment is not a modifiable lvalue.");
552 type = VALUE_TYPE (toval);
553 if (VALUE_LVAL (toval) != lval_internalvar)
554 fromval = value_cast (type, fromval);
556 COERCE_ARRAY (fromval);
557 CHECK_TYPEDEF (type);
559 /* If TOVAL is a special machine register requiring conversion
560 of program values to a special raw format,
561 convert FROMVAL's contents now, with result in `raw_buffer',
562 and set USE_BUFFER to the number of bytes to write. */
564 if (VALUE_REGNO (toval) >= 0)
566 int regno = VALUE_REGNO (toval);
567 if (CONVERT_REGISTER_P (regno))
569 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
570 VALUE_TO_REGISTER (fromtype, regno, VALUE_CONTENTS (fromval), raw_buffer);
571 use_buffer = REGISTER_RAW_SIZE (regno);
575 switch (VALUE_LVAL (toval))
577 case lval_internalvar:
578 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
579 val = value_copy (VALUE_INTERNALVAR (toval)->value);
580 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
581 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
582 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
585 case lval_internalvar_component:
586 set_internalvar_component (VALUE_INTERNALVAR (toval),
587 VALUE_OFFSET (toval),
588 VALUE_BITPOS (toval),
589 VALUE_BITSIZE (toval),
596 CORE_ADDR changed_addr;
599 if (VALUE_BITSIZE (toval))
601 char buffer[sizeof (LONGEST)];
602 /* We assume that the argument to read_memory is in units of
603 host chars. FIXME: Is that correct? */
604 changed_len = (VALUE_BITPOS (toval)
605 + VALUE_BITSIZE (toval)
609 if (changed_len > (int) sizeof (LONGEST))
610 error ("Can't handle bitfields which don't fit in a %d bit word.",
611 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
613 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
614 buffer, changed_len);
615 modify_field (buffer, value_as_long (fromval),
616 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
617 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
618 dest_buffer = buffer;
622 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
623 changed_len = use_buffer;
624 dest_buffer = raw_buffer;
628 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
629 changed_len = TYPE_LENGTH (type);
630 dest_buffer = VALUE_CONTENTS (fromval);
633 write_memory (changed_addr, dest_buffer, changed_len);
634 if (memory_changed_hook)
635 memory_changed_hook (changed_addr, changed_len);
640 if (VALUE_BITSIZE (toval))
642 char buffer[sizeof (LONGEST)];
644 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
646 if (len > (int) sizeof (LONGEST))
647 error ("Can't handle bitfields in registers larger than %d bits.",
648 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
650 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
651 > len * HOST_CHAR_BIT)
652 /* Getting this right would involve being very careful about
654 error ("Can't assign to bitfields that cross register "
657 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
659 modify_field (buffer, value_as_long (fromval),
660 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
661 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
666 raw_buffer, use_buffer);
669 /* Do any conversion necessary when storing this type to more
670 than one register. */
671 #ifdef REGISTER_CONVERT_FROM_TYPE
672 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
673 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, TYPE_LENGTH (type));
677 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
678 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
681 /* Assigning to the stack pointer, frame pointer, and other
682 (architecture and calling convention specific) registers may
683 cause the frame cache to be out of date. We just do this
684 on all assignments to registers for simplicity; I doubt the slowdown
686 reinit_frame_cache ();
689 case lval_reg_frame_relative:
691 /* value is stored in a series of registers in the frame
692 specified by the structure. Copy that value out, modify
693 it, and copy it back in. */
694 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
695 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
696 int byte_offset = VALUE_OFFSET (toval) % reg_size;
697 int reg_offset = VALUE_OFFSET (toval) / reg_size;
700 /* Make the buffer large enough in all cases. */
701 /* FIXME (alloca): Not safe for very large data types. */
702 char *buffer = (char *) alloca (amount_to_copy
704 + MAX_REGISTER_RAW_SIZE);
707 struct frame_info *frame;
709 /* Figure out which frame this is in currently. */
710 for (frame = get_current_frame ();
711 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
712 frame = get_prev_frame (frame))
716 error ("Value being assigned to is no longer active.");
718 amount_to_copy += (reg_size - amount_to_copy % reg_size);
721 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
723 amount_copied < amount_to_copy;
724 amount_copied += reg_size, regno++)
726 get_saved_register (buffer + amount_copied,
727 (int *) NULL, (CORE_ADDR *) NULL,
728 frame, regno, (enum lval_type *) NULL);
731 /* Modify what needs to be modified. */
732 if (VALUE_BITSIZE (toval))
733 modify_field (buffer + byte_offset,
734 value_as_long (fromval),
735 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
737 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
739 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
743 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
745 amount_copied < amount_to_copy;
746 amount_copied += reg_size, regno++)
752 /* Just find out where to put it. */
753 get_saved_register ((char *) NULL,
754 &optim, &addr, frame, regno, &lval);
757 error ("Attempt to assign to a value that was optimized out.");
758 if (lval == lval_memory)
759 write_memory (addr, buffer + amount_copied, reg_size);
760 else if (lval == lval_register)
761 write_register_bytes (addr, buffer + amount_copied, reg_size);
763 error ("Attempt to assign to an unmodifiable value.");
766 if (register_changed_hook)
767 register_changed_hook (-1);
773 error ("Left operand of assignment is not an lvalue.");
776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
777 If the field is signed, and is negative, then sign extend. */
778 if ((VALUE_BITSIZE (toval) > 0)
779 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
781 LONGEST fieldval = value_as_long (fromval);
782 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
785 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
786 fieldval |= ~valmask;
788 fromval = value_from_longest (type, fieldval);
791 val = value_copy (toval);
792 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
794 VALUE_TYPE (val) = type;
795 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
796 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
797 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
802 /* Extend a value VAL to COUNT repetitions of its type. */
805 value_repeat (struct value *arg1, int count)
809 if (VALUE_LVAL (arg1) != lval_memory)
810 error ("Only values in memory can be extended with '@'.");
812 error ("Invalid number %d of repetitions.", count);
814 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
816 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
817 VALUE_CONTENTS_ALL_RAW (val),
818 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
819 VALUE_LVAL (val) = lval_memory;
820 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
826 value_of_variable (struct symbol *var, struct block *b)
829 struct frame_info *frame = NULL;
832 frame = NULL; /* Use selected frame. */
833 else if (symbol_read_needs_frame (var))
835 frame = block_innermost_frame (b);
838 if (BLOCK_FUNCTION (b)
839 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
840 error ("No frame is currently executing in block %s.",
841 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
843 error ("No frame is currently executing in specified block");
847 val = read_var_value (var, frame);
849 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
854 /* Given a value which is an array, return a value which is a pointer to its
855 first element, regardless of whether or not the array has a nonzero lower
858 FIXME: A previous comment here indicated that this routine should be
859 substracting the array's lower bound. It's not clear to me that this
860 is correct. Given an array subscripting operation, it would certainly
861 work to do the adjustment here, essentially computing:
863 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
865 However I believe a more appropriate and logical place to account for
866 the lower bound is to do so in value_subscript, essentially computing:
868 (&array[0] + ((index - lowerbound) * sizeof array[0]))
870 As further evidence consider what would happen with operations other
871 than array subscripting, where the caller would get back a value that
872 had an address somewhere before the actual first element of the array,
873 and the information about the lower bound would be lost because of
874 the coercion to pointer type.
878 value_coerce_array (struct value *arg1)
880 register struct type *type = check_typedef (VALUE_TYPE (arg1));
882 if (VALUE_LVAL (arg1) != lval_memory)
883 error ("Attempt to take address of value not located in memory.");
885 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
886 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
889 /* Given a value which is a function, return a value which is a pointer
893 value_coerce_function (struct value *arg1)
895 struct value *retval;
897 if (VALUE_LVAL (arg1) != lval_memory)
898 error ("Attempt to take address of value not located in memory.");
900 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
901 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
902 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
906 /* Return a pointer value for the object for which ARG1 is the contents. */
909 value_addr (struct value *arg1)
913 struct type *type = check_typedef (VALUE_TYPE (arg1));
914 if (TYPE_CODE (type) == TYPE_CODE_REF)
916 /* Copy the value, but change the type from (T&) to (T*).
917 We keep the same location information, which is efficient,
918 and allows &(&X) to get the location containing the reference. */
919 arg2 = value_copy (arg1);
920 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
923 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
924 return value_coerce_function (arg1);
926 if (VALUE_LVAL (arg1) != lval_memory)
927 error ("Attempt to take address of value not located in memory.");
929 /* Get target memory address */
930 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1)
932 + VALUE_OFFSET (arg1)
933 + VALUE_EMBEDDED_OFFSET (arg1)));
935 /* This may be a pointer to a base subobject; so remember the
936 full derived object's type ... */
937 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
938 /* ... and also the relative position of the subobject in the full object */
939 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
940 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
944 /* Given a value of a pointer type, apply the C unary * operator to it. */
947 value_ind (struct value *arg1)
949 struct type *base_type;
954 base_type = check_typedef (VALUE_TYPE (arg1));
956 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
957 error ("not implemented: member types in value_ind");
959 /* Allow * on an integer so we can cast it to whatever we want.
960 This returns an int, which seems like the most C-like thing
961 to do. "long long" variables are rare enough that
962 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
963 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
964 return value_at_lazy (builtin_type_int,
965 (CORE_ADDR) value_as_long (arg1),
966 VALUE_BFD_SECTION (arg1));
967 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
969 struct type *enc_type;
970 /* We may be pointing to something embedded in a larger object */
971 /* Get the real type of the enclosing object */
972 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
973 enc_type = TYPE_TARGET_TYPE (enc_type);
974 /* Retrieve the enclosing object pointed to */
975 arg2 = value_at_lazy (enc_type,
976 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
977 VALUE_BFD_SECTION (arg1));
979 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
980 /* Add embedding info */
981 arg2 = value_change_enclosing_type (arg2, enc_type);
982 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
984 /* We may be pointing to an object of some derived type */
985 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
989 error ("Attempt to take contents of a non-pointer value.");
990 return 0; /* For lint -- never reached */
993 /* Pushing small parts of stack frames. */
995 /* Push one word (the size of object that a register holds). */
998 push_word (CORE_ADDR sp, ULONGEST word)
1000 register int len = REGISTER_SIZE;
1001 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1003 store_unsigned_integer (buffer, len, word);
1004 if (INNER_THAN (1, 2))
1006 /* stack grows downward */
1008 write_memory (sp, buffer, len);
1012 /* stack grows upward */
1013 write_memory (sp, buffer, len);
1020 /* Push LEN bytes with data at BUFFER. */
1023 push_bytes (CORE_ADDR sp, char *buffer, int len)
1025 if (INNER_THAN (1, 2))
1027 /* stack grows downward */
1029 write_memory (sp, buffer, len);
1033 /* stack grows upward */
1034 write_memory (sp, buffer, len);
1041 #ifndef PARM_BOUNDARY
1042 #define PARM_BOUNDARY (0)
1045 /* Push onto the stack the specified value VALUE. Pad it correctly for
1046 it to be an argument to a function. */
1049 value_push (register CORE_ADDR sp, struct value *arg)
1051 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1052 register int container_len = len;
1053 register int offset;
1055 /* How big is the container we're going to put this value in? */
1057 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1058 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1060 /* Are we going to put it at the high or low end of the container? */
1061 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1062 offset = container_len - len;
1066 if (INNER_THAN (1, 2))
1068 /* stack grows downward */
1069 sp -= container_len;
1070 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1074 /* stack grows upward */
1075 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1076 sp += container_len;
1083 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1084 int struct_return, CORE_ADDR struct_addr)
1086 /* ASSERT ( !struct_return); */
1088 for (i = nargs - 1; i >= 0; i--)
1089 sp = value_push (sp, args[i]);
1094 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1096 How you should pass arguments to a function depends on whether it
1097 was defined in K&R style or prototype style. If you define a
1098 function using the K&R syntax that takes a `float' argument, then
1099 callers must pass that argument as a `double'. If you define the
1100 function using the prototype syntax, then you must pass the
1101 argument as a `float', with no promotion.
1103 Unfortunately, on certain older platforms, the debug info doesn't
1104 indicate reliably how each function was defined. A function type's
1105 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1106 defined in prototype style. When calling a function whose
1107 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1108 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1110 For modern targets, it is proper to assume that, if the prototype
1111 flag is clear, that can be trusted: `float' arguments should be
1112 promoted to `double'. You should register the function
1113 `standard_coerce_float_to_double' to get this behavior.
1115 For some older targets, if the prototype flag is clear, that
1116 doesn't tell us anything. So we guess that, if we don't have a
1117 type for the formal parameter (i.e., the first argument to
1118 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1119 otherwise, we should leave it alone. The function
1120 `default_coerce_float_to_double' provides this behavior; it is the
1121 default value, for compatibility with older configurations. */
1123 default_coerce_float_to_double (struct type *formal, struct type *actual)
1125 return formal == NULL;
1130 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1136 /* Perform the standard coercions that are specified
1137 for arguments to be passed to C functions.
1139 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1140 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1142 static struct value *
1143 value_arg_coerce (struct value *arg, struct type *param_type,
1146 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1147 register struct type *type
1148 = param_type ? check_typedef (param_type) : arg_type;
1150 switch (TYPE_CODE (type))
1153 if (TYPE_CODE (arg_type) != TYPE_CODE_REF
1154 && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
1156 arg = value_addr (arg);
1157 VALUE_TYPE (arg) = param_type;
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_BOOL:
1164 case TYPE_CODE_ENUM:
1165 /* If we don't have a prototype, coerce to integer type if necessary. */
1168 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1169 type = builtin_type_int;
1171 /* Currently all target ABIs require at least the width of an integer
1172 type for an argument. We may have to conditionalize the following
1173 type coercion for future targets. */
1174 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1175 type = builtin_type_int;
1178 /* FIXME: We should always convert floats to doubles in the
1179 non-prototyped case. As many debugging formats include
1180 no information about prototyping, we have to live with
1181 COERCE_FLOAT_TO_DOUBLE for now. */
1182 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1184 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1185 type = builtin_type_double;
1186 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1187 type = builtin_type_long_double;
1190 case TYPE_CODE_FUNC:
1191 type = lookup_pointer_type (type);
1193 case TYPE_CODE_ARRAY:
1194 /* Arrays are coerced to pointers to their first element, unless
1195 they are vectors, in which case we want to leave them alone,
1196 because they are passed by value. */
1197 if (current_language->c_style_arrays)
1198 if (!TYPE_VECTOR (type))
1199 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1201 case TYPE_CODE_UNDEF:
1203 case TYPE_CODE_STRUCT:
1204 case TYPE_CODE_UNION:
1205 case TYPE_CODE_VOID:
1207 case TYPE_CODE_RANGE:
1208 case TYPE_CODE_STRING:
1209 case TYPE_CODE_BITSTRING:
1210 case TYPE_CODE_ERROR:
1211 case TYPE_CODE_MEMBER:
1212 case TYPE_CODE_METHOD:
1213 case TYPE_CODE_COMPLEX:
1218 return value_cast (type, arg);
1221 /* Determine a function's address and its return type from its value.
1222 Calls error() if the function is not valid for calling. */
1225 find_function_addr (struct value *function, struct type **retval_type)
1227 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1228 register enum type_code code = TYPE_CODE (ftype);
1229 struct type *value_type;
1232 /* If it's a member function, just look at the function
1235 /* Determine address to call. */
1236 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1238 funaddr = VALUE_ADDRESS (function);
1239 value_type = TYPE_TARGET_TYPE (ftype);
1241 else if (code == TYPE_CODE_PTR)
1243 funaddr = value_as_address (function);
1244 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1245 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1246 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1248 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1249 value_type = TYPE_TARGET_TYPE (ftype);
1252 value_type = builtin_type_int;
1254 else if (code == TYPE_CODE_INT)
1256 /* Handle the case of functions lacking debugging info.
1257 Their values are characters since their addresses are char */
1258 if (TYPE_LENGTH (ftype) == 1)
1259 funaddr = value_as_address (value_addr (function));
1261 /* Handle integer used as address of a function. */
1262 funaddr = (CORE_ADDR) value_as_long (function);
1264 value_type = builtin_type_int;
1267 error ("Invalid data type for function to be called.");
1269 *retval_type = value_type;
1273 /* All this stuff with a dummy frame may seem unnecessarily complicated
1274 (why not just save registers in GDB?). The purpose of pushing a dummy
1275 frame which looks just like a real frame is so that if you call a
1276 function and then hit a breakpoint (get a signal, etc), "backtrace"
1277 will look right. Whether the backtrace needs to actually show the
1278 stack at the time the inferior function was called is debatable, but
1279 it certainly needs to not display garbage. So if you are contemplating
1280 making dummy frames be different from normal frames, consider that. */
1282 /* Perform a function call in the inferior.
1283 ARGS is a vector of values of arguments (NARGS of them).
1284 FUNCTION is a value, the function to be called.
1285 Returns a value representing what the function returned.
1286 May fail to return, if a breakpoint or signal is hit
1287 during the execution of the function.
1289 ARGS is modified to contain coerced values. */
1291 static struct value *
1292 hand_function_call (struct value *function, int nargs, struct value **args)
1294 register CORE_ADDR sp;
1298 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1299 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1300 and remove any extra bytes which might exist because ULONGEST is
1301 bigger than REGISTER_SIZE.
1303 NOTE: This is pretty wierd, as the call dummy is actually a
1304 sequence of instructions. But CISC machines will have
1305 to pack the instructions into REGISTER_SIZE units (and
1306 so will RISC machines for which INSTRUCTION_SIZE is not
1309 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1310 target byte order. */
1312 static ULONGEST *dummy;
1316 struct type *value_type;
1317 unsigned char struct_return;
1318 CORE_ADDR struct_addr = 0;
1319 struct inferior_status *inf_status;
1320 struct cleanup *old_chain;
1322 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1324 struct type *param_type = NULL;
1325 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1326 int n_method_args = 0;
1328 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1329 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1330 dummy1 = alloca (sizeof_dummy1);
1331 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1333 if (!target_has_execution)
1336 inf_status = save_inferior_status (1);
1337 old_chain = make_cleanup_restore_inferior_status (inf_status);
1339 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1340 (and POP_FRAME for restoring them). (At least on most machines)
1341 they are saved on the stack in the inferior. */
1344 old_sp = sp = read_sp ();
1346 if (INNER_THAN (1, 2))
1348 /* Stack grows down */
1349 sp -= sizeof_dummy1;
1354 /* Stack grows up */
1356 sp += sizeof_dummy1;
1359 funaddr = find_function_addr (function, &value_type);
1360 CHECK_TYPEDEF (value_type);
1363 struct block *b = block_for_pc (funaddr);
1364 /* If compiled without -g, assume GCC 2. */
1365 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1368 /* Are we returning a value using a structure return or a normal
1371 struct_return = using_struct_return (function, funaddr, value_type,
1374 /* Create a call sequence customized for this function
1375 and the number of arguments for it. */
1376 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1377 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1379 (ULONGEST) dummy[i]);
1381 #ifdef GDB_TARGET_IS_HPPA
1382 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1385 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1386 value_type, using_gcc);
1390 if (CALL_DUMMY_LOCATION == ON_STACK)
1392 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1393 if (USE_GENERIC_DUMMY_FRAMES)
1394 generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
1397 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1399 /* Convex Unix prohibits executing in the stack segment. */
1400 /* Hope there is empty room at the top of the text segment. */
1401 extern CORE_ADDR text_end;
1402 static int checked = 0;
1404 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1405 if (read_memory_integer (start_sp, 1) != 0)
1406 error ("text segment full -- no place to put call");
1409 real_pc = text_end - sizeof_dummy1;
1410 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1411 if (USE_GENERIC_DUMMY_FRAMES)
1412 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1415 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1417 extern CORE_ADDR text_end;
1421 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1423 error ("Cannot write text segment -- call_function failed");
1424 if (USE_GENERIC_DUMMY_FRAMES)
1425 generic_save_call_dummy_addr (real_pc, real_pc + sizeof_dummy1);
1428 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1431 if (USE_GENERIC_DUMMY_FRAMES)
1432 /* NOTE: cagney/2002-04-13: The entry point is going to be
1433 modified with a single breakpoint. */
1434 generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
1435 CALL_DUMMY_ADDRESS () + 1);
1439 sp = old_sp; /* It really is used, for some ifdef's... */
1442 if (nargs < TYPE_NFIELDS (ftype))
1443 error ("too few arguments in function call");
1445 for (i = nargs - 1; i >= 0; i--)
1449 /* FIXME drow/2002-05-31: Should just always mark methods as
1450 prototyped. Can we respect TYPE_VARARGS? Probably not. */
1451 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1454 prototyped = TYPE_PROTOTYPED (ftype);
1456 if (i < TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
1460 args[i] = value_arg_coerce (args[i], NULL, 0);
1462 /*elz: this code is to handle the case in which the function to be called
1463 has a pointer to function as parameter and the corresponding actual argument
1464 is the address of a function and not a pointer to function variable.
1465 In aCC compiled code, the calls through pointers to functions (in the body
1466 of the function called by hand) are made via $$dyncall_external which
1467 requires some registers setting, this is taken care of if we call
1468 via a function pointer variable, but not via a function address.
1469 In cc this is not a problem. */
1472 if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
1473 /* if this parameter is a pointer to function */
1474 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1475 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
1476 /* elz: FIXME here should go the test about the compiler used
1477 to compile the target. We want to issue the error
1478 message only if the compiler used was HP's aCC.
1479 If we used HP's cc, then there is no problem and no need
1480 to return at this point */
1481 if (using_gcc == 0) /* && compiler == aCC */
1482 /* go see if the actual parameter is a variable of type
1483 pointer to function or just a function */
1484 if (args[i]->lval == not_lval)
1487 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1489 You cannot use function <%s> as argument. \n\
1490 You must use a pointer to function type variable. Command ignored.", arg_name);
1494 if (REG_STRUCT_HAS_ADDR_P ())
1496 /* This is a machine like the sparc, where we may need to pass a
1497 pointer to the structure, not the structure itself. */
1498 for (i = nargs - 1; i >= 0; i--)
1500 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1501 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1502 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1503 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1504 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1505 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1506 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1507 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1508 && TYPE_LENGTH (arg_type) > 8)
1510 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1513 int len; /* = TYPE_LENGTH (arg_type); */
1515 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1516 len = TYPE_LENGTH (arg_type);
1518 if (STACK_ALIGN_P ())
1519 /* MVS 11/22/96: I think at least some of this
1520 stack_align code is really broken. Better to let
1521 PUSH_ARGUMENTS adjust the stack in a target-defined
1523 aligned_len = STACK_ALIGN (len);
1526 if (INNER_THAN (1, 2))
1528 /* stack grows downward */
1530 /* ... so the address of the thing we push is the
1531 stack pointer after we push it. */
1536 /* The stack grows up, so the address of the thing
1537 we push is the stack pointer before we push it. */
1541 /* Push the structure. */
1542 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1543 /* The value we're going to pass is the address of the
1544 thing we just pushed. */
1545 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1547 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1554 /* Reserve space for the return structure to be written on the
1555 stack, if necessary */
1559 int len = TYPE_LENGTH (value_type);
1560 if (STACK_ALIGN_P ())
1561 /* MVS 11/22/96: I think at least some of this stack_align
1562 code is really broken. Better to let PUSH_ARGUMENTS adjust
1563 the stack in a target-defined manner. */
1564 len = STACK_ALIGN (len);
1565 if (INNER_THAN (1, 2))
1567 /* stack grows downward */
1573 /* stack grows upward */
1579 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1580 on other architectures. This is because all the alignment is
1581 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1582 in hppa_push_arguments */
1583 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1585 /* MVS 11/22/96: I think at least some of this stack_align code
1586 is really broken. Better to let PUSH_ARGUMENTS adjust the
1587 stack in a target-defined manner. */
1588 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1590 /* If stack grows down, we must leave a hole at the top. */
1593 for (i = nargs - 1; i >= 0; i--)
1594 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1595 if (CALL_DUMMY_STACK_ADJUST_P)
1596 len += CALL_DUMMY_STACK_ADJUST;
1597 sp -= STACK_ALIGN (len) - len;
1601 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1603 if (PUSH_RETURN_ADDRESS_P ())
1604 /* for targets that use no CALL_DUMMY */
1605 /* There are a number of targets now which actually don't write
1606 any CALL_DUMMY instructions into the target, but instead just
1607 save the machine state, push the arguments, and jump directly
1608 to the callee function. Since this doesn't actually involve
1609 executing a JSR/BSR instruction, the return address must be set
1610 up by hand, either by pushing onto the stack or copying into a
1611 return-address register as appropriate. Formerly this has been
1612 done in PUSH_ARGUMENTS, but that's overloading its
1613 functionality a bit, so I'm making it explicit to do it here. */
1614 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1616 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1618 /* If stack grows up, we must leave a hole at the bottom, note
1619 that sp already has been advanced for the arguments! */
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 sp += CALL_DUMMY_STACK_ADJUST;
1622 sp = STACK_ALIGN (sp);
1625 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1627 /* MVS 11/22/96: I think at least some of this stack_align code is
1628 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1629 a target-defined manner. */
1630 if (CALL_DUMMY_STACK_ADJUST_P)
1631 if (INNER_THAN (1, 2))
1633 /* stack grows downward */
1634 sp -= CALL_DUMMY_STACK_ADJUST;
1637 /* Store the address at which the structure is supposed to be
1638 written. Note that this (and the code which reserved the space
1639 above) assumes that gcc was used to compile this function. Since
1640 it doesn't cost us anything but space and if the function is pcc
1641 it will ignore this value, we will make that assumption.
1643 Also note that on some machines (like the sparc) pcc uses a
1644 convention like gcc's. */
1647 STORE_STRUCT_RETURN (struct_addr, sp);
1649 /* Write the stack pointer. This is here because the statements above
1650 might fool with it. On SPARC, this write also stores the register
1651 window into the right place in the new stack frame, which otherwise
1652 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1655 if (SAVE_DUMMY_FRAME_TOS_P ())
1656 SAVE_DUMMY_FRAME_TOS (sp);
1659 char *retbuf = (char*) alloca (REGISTER_BYTES);
1661 struct symbol *symbol;
1664 symbol = find_pc_function (funaddr);
1667 name = SYMBOL_SOURCE_NAME (symbol);
1671 /* Try the minimal symbols. */
1672 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1676 name = SYMBOL_SOURCE_NAME (msymbol);
1682 sprintf (format, "at %s", local_hex_format ());
1684 /* FIXME-32x64: assumes funaddr fits in a long. */
1685 sprintf (name, format, (unsigned long) funaddr);
1688 /* Execute the stack dummy routine, calling FUNCTION.
1689 When it is done, discard the empty frame
1690 after storing the contents of all regs into retbuf. */
1691 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1695 /* We stopped inside the FUNCTION because of a random signal.
1696 Further execution of the FUNCTION is not allowed. */
1698 if (unwind_on_signal_p)
1700 /* The user wants the context restored. */
1702 /* We must get back to the frame we were before the dummy call. */
1705 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1706 a C++ name with arguments and stuff. */
1708 The program being debugged was signaled while in a function called from GDB.\n\
1709 GDB has restored the context to what it was before the call.\n\
1710 To change this behavior use \"set unwindonsignal off\"\n\
1711 Evaluation of the expression containing the function (%s) will be abandoned.",
1716 /* The user wants to stay in the frame where we stopped (default).*/
1718 /* If we did the cleanups, we would print a spurious error
1719 message (Unable to restore previously selected frame),
1720 would write the registers from the inf_status (which is
1721 wrong), and would do other wrong things. */
1722 discard_cleanups (old_chain);
1723 discard_inferior_status (inf_status);
1725 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1726 a C++ name with arguments and stuff. */
1728 The program being debugged was signaled while in a function called from GDB.\n\
1729 GDB remains in the frame where the signal was received.\n\
1730 To change this behavior use \"set unwindonsignal on\"\n\
1731 Evaluation of the expression containing the function (%s) will be abandoned.",
1738 /* We hit a breakpoint inside the FUNCTION. */
1740 /* If we did the cleanups, we would print a spurious error
1741 message (Unable to restore previously selected frame),
1742 would write the registers from the inf_status (which is
1743 wrong), and would do other wrong things. */
1744 discard_cleanups (old_chain);
1745 discard_inferior_status (inf_status);
1747 /* The following error message used to say "The expression
1748 which contained the function call has been discarded." It
1749 is a hard concept to explain in a few words. Ideally, GDB
1750 would be able to resume evaluation of the expression when
1751 the function finally is done executing. Perhaps someday
1752 this will be implemented (it would not be easy). */
1754 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1755 a C++ name with arguments and stuff. */
1757 The program being debugged stopped while in a function called from GDB.\n\
1758 When the function (%s) is done executing, GDB will silently\n\
1759 stop (instead of continuing to evaluate the expression containing\n\
1760 the function call).", name);
1763 /* If we get here the called FUNCTION run to completion. */
1764 do_cleanups (old_chain);
1766 /* Figure out the value returned by the function. */
1767 /* elz: I defined this new macro for the hppa architecture only.
1768 this gives us a way to get the value returned by the function from the stack,
1769 at the same address we told the function to put it.
1770 We cannot assume on the pa that r28 still contains the address of the returned
1771 structure. Usually this will be overwritten by the callee.
1772 I don't know about other architectures, so I defined this macro
1775 #ifdef VALUE_RETURNED_FROM_STACK
1777 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1780 return value_being_returned (value_type, retbuf, struct_return);
1785 call_function_by_hand (struct value *function, int nargs, struct value **args)
1789 return hand_function_call (function, nargs, args);
1793 error ("Cannot invoke functions on this machine.");
1799 /* Create a value for an array by allocating space in the inferior, copying
1800 the data into that space, and then setting up an array value.
1802 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1803 populated from the values passed in ELEMVEC.
1805 The element type of the array is inherited from the type of the
1806 first element, and all elements must have the same size (though we
1807 don't currently enforce any restriction on their types). */
1810 value_array (int lowbound, int highbound, struct value **elemvec)
1814 unsigned int typelength;
1816 struct type *rangetype;
1817 struct type *arraytype;
1820 /* Validate that the bounds are reasonable and that each of the elements
1821 have the same size. */
1823 nelem = highbound - lowbound + 1;
1826 error ("bad array bounds (%d, %d)", lowbound, highbound);
1828 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1829 for (idx = 1; idx < nelem; idx++)
1831 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1833 error ("array elements must all be the same size");
1837 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1838 lowbound, highbound);
1839 arraytype = create_array_type ((struct type *) NULL,
1840 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1842 if (!current_language->c_style_arrays)
1844 val = allocate_value (arraytype);
1845 for (idx = 0; idx < nelem; idx++)
1847 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1848 VALUE_CONTENTS_ALL (elemvec[idx]),
1851 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1855 /* Allocate space to store the array in the inferior, and then initialize
1856 it by copying in each element. FIXME: Is it worth it to create a
1857 local buffer in which to collect each value and then write all the
1858 bytes in one operation? */
1860 addr = allocate_space_in_inferior (nelem * typelength);
1861 for (idx = 0; idx < nelem; idx++)
1863 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1867 /* Create the array type and set up an array value to be evaluated lazily. */
1869 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1873 /* Create a value for a string constant by allocating space in the inferior,
1874 copying the data into that space, and returning the address with type
1875 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1877 Note that string types are like array of char types with a lower bound of
1878 zero and an upper bound of LEN - 1. Also note that the string may contain
1879 embedded null bytes. */
1882 value_string (char *ptr, int len)
1885 int lowbound = current_language->string_lower_bound;
1886 struct type *rangetype = create_range_type ((struct type *) NULL,
1888 lowbound, len + lowbound - 1);
1889 struct type *stringtype
1890 = create_string_type ((struct type *) NULL, rangetype);
1893 if (current_language->c_style_arrays == 0)
1895 val = allocate_value (stringtype);
1896 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1901 /* Allocate space to store the string in the inferior, and then
1902 copy LEN bytes from PTR in gdb to that address in the inferior. */
1904 addr = allocate_space_in_inferior (len);
1905 write_memory (addr, ptr, len);
1907 val = value_at_lazy (stringtype, addr, NULL);
1912 value_bitstring (char *ptr, int len)
1915 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1917 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1918 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1919 val = allocate_value (type);
1920 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1924 /* See if we can pass arguments in T2 to a function which takes arguments
1925 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1926 vector. If some arguments need coercion of some sort, then the coerced
1927 values are written into T2. Return value is 0 if the arguments could be
1928 matched, or the position at which they differ if not.
1930 STATICP is nonzero if the T1 argument list came from a
1931 static member function. T2 will still include the ``this'' pointer,
1932 but it will be skipped.
1934 For non-static member functions, we ignore the first argument,
1935 which is the type of the instance variable. This is because we want
1936 to handle calls with objects from derived classes. This is not
1937 entirely correct: we should actually check to make sure that a
1938 requested operation is type secure, shouldn't we? FIXME. */
1941 typecmp (int staticp, int varargs, int nargs,
1942 struct field t1[], struct value *t2[])
1947 internal_error (__FILE__, __LINE__, "typecmp: no argument list");
1949 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1954 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1957 struct type *tt1, *tt2;
1962 tt1 = check_typedef (t1[i].type);
1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1965 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1966 /* We should be doing hairy argument matching, as below. */
1967 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1969 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1970 t2[i] = value_coerce_array (t2[i]);
1972 t2[i] = value_addr (t2[i]);
1976 /* djb - 20000715 - Until the new type structure is in the
1977 place, and we can attempt things like implicit conversions,
1978 we need to do this so you can take something like a map<const
1979 char *>, and properly access map["hello"], because the
1980 argument to [] will be a reference to a pointer to a char,
1981 and the argument will be a pointer to a char. */
1982 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1983 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1985 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1987 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1988 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1989 TYPE_CODE(tt2) == TYPE_CODE_REF)
1991 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1993 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1995 /* Array to pointer is a `trivial conversion' according to the ARM. */
1997 /* We should be doing much hairier argument matching (see section 13.2
1998 of the ARM), but as a quick kludge, just check for the same type
2000 if (TYPE_CODE (t1[i].type) != TYPE_CODE (VALUE_TYPE (t2[i])))
2003 if (varargs || t2[i] == NULL)
2008 /* Helper function used by value_struct_elt to recurse through baseclasses.
2009 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2010 and search in it assuming it has (class) type TYPE.
2011 If found, return value, else return NULL.
2013 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2014 look for a baseclass named NAME. */
2016 static struct value *
2017 search_struct_field (char *name, struct value *arg1, int offset,
2018 register struct type *type, int looking_for_baseclass)
2021 int nbases = TYPE_N_BASECLASSES (type);
2023 CHECK_TYPEDEF (type);
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2028 char *t_field_name = TYPE_FIELD_NAME (type, i);
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2033 if (TYPE_FIELD_STATIC (type, i))
2034 v = value_static_field (type, i);
2036 v = value_primitive_field (arg1, offset, i, type);
2038 error ("there is no field named %s", name);
2043 && (t_field_name[0] == '\0'
2044 || (TYPE_CODE (type) == TYPE_CODE_UNION
2045 && (strcmp_iw (t_field_name, "else") == 0))))
2047 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2048 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2049 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2051 /* Look for a match through the fields of an anonymous union,
2052 or anonymous struct. C++ provides anonymous unions.
2054 In the GNU Chill implementation of variant record types,
2055 each <alternative field> has an (anonymous) union type,
2056 each member of the union represents a <variant alternative>.
2057 Each <variant alternative> is represented as a struct,
2058 with a member for each <variant field>. */
2061 int new_offset = offset;
2063 /* This is pretty gross. In G++, the offset in an anonymous
2064 union is relative to the beginning of the enclosing struct.
2065 In the GNU Chill implementation of variant records,
2066 the bitpos is zero in an anonymous union field, so we
2067 have to add the offset of the union here. */
2068 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2069 || (TYPE_NFIELDS (field_type) > 0
2070 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2071 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2073 v = search_struct_field (name, arg1, new_offset, field_type,
2074 looking_for_baseclass);
2081 for (i = 0; i < nbases; i++)
2084 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2085 /* If we are looking for baseclasses, this is what we get when we
2086 hit them. But it could happen that the base part's member name
2087 is not yet filled in. */
2088 int found_baseclass = (looking_for_baseclass
2089 && TYPE_BASECLASS_NAME (type, i) != NULL
2090 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2092 if (BASETYPE_VIA_VIRTUAL (type, i))
2095 struct value *v2 = allocate_value (basetype);
2097 boffset = baseclass_offset (type, i,
2098 VALUE_CONTENTS (arg1) + offset,
2099 VALUE_ADDRESS (arg1)
2100 + VALUE_OFFSET (arg1) + offset);
2102 error ("virtual baseclass botch");
2104 /* The virtual base class pointer might have been clobbered by the
2105 user program. Make sure that it still points to a valid memory
2109 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2111 CORE_ADDR base_addr;
2113 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2114 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2115 TYPE_LENGTH (basetype)) != 0)
2116 error ("virtual baseclass botch");
2117 VALUE_LVAL (v2) = lval_memory;
2118 VALUE_ADDRESS (v2) = base_addr;
2122 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2123 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2124 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2125 if (VALUE_LAZY (arg1))
2126 VALUE_LAZY (v2) = 1;
2128 memcpy (VALUE_CONTENTS_RAW (v2),
2129 VALUE_CONTENTS_RAW (arg1) + boffset,
2130 TYPE_LENGTH (basetype));
2133 if (found_baseclass)
2135 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2136 looking_for_baseclass);
2138 else if (found_baseclass)
2139 v = value_primitive_field (arg1, offset, i, type);
2141 v = search_struct_field (name, arg1,
2142 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2143 basetype, looking_for_baseclass);
2151 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2152 * in an object pointed to by VALADDR (on the host), assumed to be of
2153 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2154 * looking (in case VALADDR is the contents of an enclosing object).
2156 * This routine recurses on the primary base of the derived class because
2157 * the virtual base entries of the primary base appear before the other
2158 * virtual base entries.
2160 * If the virtual base is not found, a negative integer is returned.
2161 * The magnitude of the negative integer is the number of entries in
2162 * the virtual table to skip over (entries corresponding to various
2163 * ancestral classes in the chain of primary bases).
2165 * Important: This assumes the HP / Taligent C++ runtime
2166 * conventions. Use baseclass_offset() instead to deal with g++
2170 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2171 int offset, int *boffset_p, int *skip_p)
2173 int boffset; /* offset of virtual base */
2174 int index; /* displacement to use in virtual table */
2178 CORE_ADDR vtbl; /* the virtual table pointer */
2179 struct type *pbc; /* the primary base class */
2181 /* Look for the virtual base recursively in the primary base, first.
2182 * This is because the derived class object and its primary base
2183 * subobject share the primary virtual table. */
2186 pbc = TYPE_PRIMARY_BASE (type);
2189 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2192 *boffset_p = boffset;
2201 /* Find the index of the virtual base according to HP/Taligent
2202 runtime spec. (Depth-first, left-to-right.) */
2203 index = virtual_base_index_skip_primaries (basetype, type);
2207 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2212 /* pai: FIXME -- 32x64 possible problem */
2213 /* First word (4 bytes) in object layout is the vtable pointer */
2214 vtbl = *(CORE_ADDR *) (valaddr + offset);
2216 /* Before the constructor is invoked, things are usually zero'd out. */
2218 error ("Couldn't find virtual table -- object may not be constructed yet.");
2221 /* Find virtual base's offset -- jump over entries for primary base
2222 * ancestors, then use the index computed above. But also adjust by
2223 * HP_ACC_VBASE_START for the vtable slots before the start of the
2224 * virtual base entries. Offset is negative -- virtual base entries
2225 * appear _before_ the address point of the virtual table. */
2227 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2230 /* epstein : FIXME -- added param for overlay section. May not be correct */
2231 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2232 boffset = value_as_long (vp);
2234 *boffset_p = boffset;
2239 /* Helper function used by value_struct_elt to recurse through baseclasses.
2240 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2241 and search in it assuming it has (class) type TYPE.
2242 If found, return value, else if name matched and args not return (value)-1,
2243 else return NULL. */
2245 static struct value *
2246 search_struct_method (char *name, struct value **arg1p,
2247 struct value **args, int offset,
2248 int *static_memfuncp, register struct type *type)
2252 int name_matched = 0;
2253 char dem_opname[64];
2255 CHECK_TYPEDEF (type);
2256 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2258 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2259 /* FIXME! May need to check for ARM demangling here */
2260 if (strncmp (t_field_name, "__", 2) == 0 ||
2261 strncmp (t_field_name, "op", 2) == 0 ||
2262 strncmp (t_field_name, "type", 4) == 0)
2264 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2265 t_field_name = dem_opname;
2266 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2267 t_field_name = dem_opname;
2269 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2271 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2272 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2275 if (j > 0 && args == 0)
2276 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2277 else if (j == 0 && args == 0)
2279 if (TYPE_FN_FIELD_STUB (f, j))
2280 check_stub_method (type, i, j);
2281 v = value_fn_field (arg1p, f, j, type, offset);
2288 if (TYPE_FN_FIELD_STUB (f, j))
2289 check_stub_method (type, i, j);
2290 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2291 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2292 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2293 TYPE_FN_FIELD_ARGS (f, j), args))
2295 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2296 return value_virtual_fn_field (arg1p, f, j, type, offset);
2297 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2298 *static_memfuncp = 1;
2299 v = value_fn_field (arg1p, f, j, type, offset);
2308 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2312 if (BASETYPE_VIA_VIRTUAL (type, i))
2314 if (TYPE_HAS_VTABLE (type))
2316 /* HP aCC compiled type, search for virtual base offset
2317 according to HP/Taligent runtime spec. */
2319 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2320 VALUE_CONTENTS_ALL (*arg1p),
2321 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2322 &base_offset, &skip);
2324 error ("Virtual base class offset not found in vtable");
2328 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2331 /* The virtual base class pointer might have been clobbered by the
2332 user program. Make sure that it still points to a valid memory
2335 if (offset < 0 || offset >= TYPE_LENGTH (type))
2337 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2338 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2339 + VALUE_OFFSET (*arg1p) + offset,
2341 TYPE_LENGTH (baseclass)) != 0)
2342 error ("virtual baseclass botch");
2345 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2348 baseclass_offset (type, i, base_valaddr,
2349 VALUE_ADDRESS (*arg1p)
2350 + VALUE_OFFSET (*arg1p) + offset);
2351 if (base_offset == -1)
2352 error ("virtual baseclass botch");
2357 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2359 v = search_struct_method (name, arg1p, args, base_offset + offset,
2360 static_memfuncp, TYPE_BASECLASS (type, i));
2361 if (v == (struct value *) - 1)
2367 /* FIXME-bothner: Why is this commented out? Why is it here? */
2368 /* *arg1p = arg1_tmp; */
2373 return (struct value *) - 1;
2378 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2379 extract the component named NAME from the ultimate target structure/union
2380 and return it as a value with its appropriate type.
2381 ERR is used in the error message if *ARGP's type is wrong.
2383 C++: ARGS is a list of argument types to aid in the selection of
2384 an appropriate method. Also, handle derived types.
2386 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2387 where the truthvalue of whether the function that was resolved was
2388 a static member function or not is stored.
2390 ERR is an error message to be printed in case the field is not found. */
2393 value_struct_elt (struct value **argp, struct value **args,
2394 char *name, int *static_memfuncp, char *err)
2396 register struct type *t;
2399 COERCE_ARRAY (*argp);
2401 t = check_typedef (VALUE_TYPE (*argp));
2403 /* Follow pointers until we get to a non-pointer. */
2405 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2407 *argp = value_ind (*argp);
2408 /* Don't coerce fn pointer to fn and then back again! */
2409 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2410 COERCE_ARRAY (*argp);
2411 t = check_typedef (VALUE_TYPE (*argp));
2414 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2415 error ("not implemented: member type in value_struct_elt");
2417 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2418 && TYPE_CODE (t) != TYPE_CODE_UNION)
2419 error ("Attempt to extract a component of a value that is not a %s.", err);
2421 /* Assume it's not, unless we see that it is. */
2422 if (static_memfuncp)
2423 *static_memfuncp = 0;
2427 /* if there are no arguments ...do this... */
2429 /* Try as a field first, because if we succeed, there
2430 is less work to be done. */
2431 v = search_struct_field (name, *argp, 0, t, 0);
2435 /* C++: If it was not found as a data field, then try to
2436 return it as a pointer to a method. */
2438 if (destructor_name_p (name, t))
2439 error ("Cannot get value of destructor");
2441 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2443 if (v == (struct value *) - 1)
2444 error ("Cannot take address of a method");
2447 if (TYPE_NFN_FIELDS (t))
2448 error ("There is no member or method named %s.", name);
2450 error ("There is no member named %s.", name);
2455 if (destructor_name_p (name, t))
2459 /* Destructors are a special case. */
2460 int m_index, f_index;
2463 if (get_destructor_fn_field (t, &m_index, &f_index))
2465 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2469 error ("could not find destructor function named %s.", name);
2475 error ("destructor should not have any argument");
2479 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2481 if (v == (struct value *) - 1)
2483 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2487 /* See if user tried to invoke data as function. If so,
2488 hand it back. If it's not callable (i.e., a pointer to function),
2489 gdb should give an error. */
2490 v = search_struct_field (name, *argp, 0, t, 0);
2494 error ("Structure has no component named %s.", name);
2498 /* Search through the methods of an object (and its bases)
2499 * to find a specified method. Return the pointer to the
2500 * fn_field list of overloaded instances.
2501 * Helper function for value_find_oload_list.
2502 * ARGP is a pointer to a pointer to a value (the object)
2503 * METHOD is a string containing the method name
2504 * OFFSET is the offset within the value
2505 * STATIC_MEMFUNCP is set if the method is static
2506 * TYPE is the assumed type of the object
2507 * NUM_FNS is the number of overloaded instances
2508 * BASETYPE is set to the actual type of the subobject where the method is found
2509 * BOFFSET is the offset of the base subobject where the method is found */
2511 static struct fn_field *
2512 find_method_list (struct value **argp, char *method, int offset,
2513 struct type *type, int *num_fns,
2514 struct type **basetype, int *boffset)
2518 CHECK_TYPEDEF (type);
2522 /* First check in object itself */
2523 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2525 /* pai: FIXME What about operators and type conversions? */
2526 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2527 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2529 /* Resolve any stub methods. */
2530 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2531 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2538 for (j = 0; j < len; j++)
2540 if (TYPE_FN_FIELD_STUB (f, j))
2541 check_stub_method (type, i, j);
2548 /* Not found in object, check in base subobjects */
2549 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2552 if (BASETYPE_VIA_VIRTUAL (type, i))
2554 if (TYPE_HAS_VTABLE (type))
2556 /* HP aCC compiled type, search for virtual base offset
2557 * according to HP/Taligent runtime spec. */
2559 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2560 VALUE_CONTENTS_ALL (*argp),
2561 offset + VALUE_EMBEDDED_OFFSET (*argp),
2562 &base_offset, &skip);
2564 error ("Virtual base class offset not found in vtable");
2568 /* probably g++ runtime model */
2569 base_offset = VALUE_OFFSET (*argp) + offset;
2571 baseclass_offset (type, i,
2572 VALUE_CONTENTS (*argp) + base_offset,
2573 VALUE_ADDRESS (*argp) + base_offset);
2574 if (base_offset == -1)
2575 error ("virtual baseclass botch");
2579 /* non-virtual base, simply use bit position from debug info */
2581 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2583 f = find_method_list (argp, method, base_offset + offset,
2584 TYPE_BASECLASS (type, i), num_fns, basetype,
2592 /* Return the list of overloaded methods of a specified name.
2593 * ARGP is a pointer to a pointer to a value (the object)
2594 * METHOD is the method name
2595 * OFFSET is the offset within the value contents
2596 * STATIC_MEMFUNCP is set if the method is static
2597 * NUM_FNS is the number of overloaded instances
2598 * BASETYPE is set to the type of the base subobject that defines the method
2599 * BOFFSET is the offset of the base subobject which defines the method */
2602 value_find_oload_method_list (struct value **argp, char *method, int offset,
2603 int *num_fns, struct type **basetype,
2608 t = check_typedef (VALUE_TYPE (*argp));
2610 /* code snarfed from value_struct_elt */
2611 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2613 *argp = value_ind (*argp);
2614 /* Don't coerce fn pointer to fn and then back again! */
2615 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2616 COERCE_ARRAY (*argp);
2617 t = check_typedef (VALUE_TYPE (*argp));
2620 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2621 error ("Not implemented: member type in value_find_oload_lis");
2623 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2624 && TYPE_CODE (t) != TYPE_CODE_UNION)
2625 error ("Attempt to extract a component of a value that is not a struct or union");
2627 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
2630 /* Given an array of argument types (ARGTYPES) (which includes an
2631 entry for "this" in the case of C++ methods), the number of
2632 arguments NARGS, the NAME of a function whether it's a method or
2633 not (METHOD), and the degree of laxness (LAX) in conforming to
2634 overload resolution rules in ANSI C++, find the best function that
2635 matches on the argument types according to the overload resolution
2638 In the case of class methods, the parameter OBJ is an object value
2639 in which to search for overloaded methods.
2641 In the case of non-method functions, the parameter FSYM is a symbol
2642 corresponding to one of the overloaded functions.
2644 Return value is an integer: 0 -> good match, 10 -> debugger applied
2645 non-standard coercions, 100 -> incompatible.
2647 If a method is being searched for, VALP will hold the value.
2648 If a non-method is being searched for, SYMP will hold the symbol for it.
2650 If a method is being searched for, and it is a static method,
2651 then STATICP will point to a non-zero value.
2653 Note: This function does *not* check the value of
2654 overload_resolution. Caller must check it to see whether overload
2655 resolution is permitted.
2659 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2660 int lax, struct value **objp, struct symbol *fsym,
2661 struct value **valp, struct symbol **symp, int *staticp)
2664 struct type **parm_types;
2665 int champ_nparms = 0;
2666 struct value *obj = (objp ? *objp : NULL);
2668 short oload_champ = -1; /* Index of best overloaded function */
2669 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2670 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2671 short oload_ambig_champ = -1; /* 2nd contender for best match */
2672 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2673 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2675 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2676 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2678 struct value *temp = obj;
2679 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2680 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2681 int num_fns = 0; /* Number of overloaded instances being considered */
2682 struct type *basetype = NULL;
2688 char *obj_type_name = NULL;
2689 char *func_name = NULL;
2691 /* Get the list of overloaded methods or functions */
2694 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2695 /* Hack: evaluate_subexp_standard often passes in a pointer
2696 value rather than the object itself, so try again */
2697 if ((!obj_type_name || !*obj_type_name) &&
2698 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2699 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2701 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2703 &basetype, &boffset);
2704 if (!fns_ptr || !num_fns)
2705 error ("Couldn't find method %s%s%s",
2707 (obj_type_name && *obj_type_name) ? "::" : "",
2709 /* If we are dealing with stub method types, they should have
2710 been resolved by find_method_list via value_find_oload_method_list
2712 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2717 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2719 /* If the name is NULL this must be a C-style function.
2720 Just return the same symbol. */
2727 oload_syms = make_symbol_overload_list (fsym);
2728 while (oload_syms[++i])
2731 error ("Couldn't find function %s", func_name);
2734 oload_champ_bv = NULL;
2736 /* Consider each candidate in turn */
2737 for (ix = 0; ix < num_fns; ix++)
2742 if (TYPE_FN_FIELD_STATIC_P (fns_ptr, ix))
2744 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2748 /* If it's not a method, this is the proper place */
2749 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2752 /* Prepare array of parameter types */
2753 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2754 for (jj = 0; jj < nparms; jj++)
2755 parm_types[jj] = (method
2756 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2757 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2759 /* Compare parameter types to supplied argument types. Skip THIS for
2761 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2762 nargs - static_offset);
2764 if (!oload_champ_bv)
2766 oload_champ_bv = bv;
2768 champ_nparms = nparms;
2771 /* See whether current candidate is better or worse than previous best */
2772 switch (compare_badness (bv, oload_champ_bv))
2775 oload_ambiguous = 1; /* top two contenders are equally good */
2776 oload_ambig_champ = ix;
2779 oload_ambiguous = 2; /* incomparable top contenders */
2780 oload_ambig_champ = ix;
2783 oload_champ_bv = bv; /* new champion, record details */
2784 oload_ambiguous = 0;
2786 oload_ambig_champ = -1;
2787 champ_nparms = nparms;
2797 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2799 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2800 for (jj = 0; jj < nargs - static_offset; jj++)
2801 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2802 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2804 } /* end loop over all candidates */
2805 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2806 if they have the exact same goodness. This is because there is no
2807 way to differentiate based on return type, which we need to in
2808 cases like overloads of .begin() <It's both const and non-const> */
2810 if (oload_ambiguous)
2813 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2815 (obj_type_name && *obj_type_name) ? "::" : "",
2818 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2823 /* Check how bad the best match is. */
2825 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2827 for (ix = 1; ix <= nargs - static_offset; ix++)
2829 if (oload_champ_bv->rank[ix] >= 100)
2830 oload_incompatible = 1; /* truly mismatched types */
2832 else if (oload_champ_bv->rank[ix] >= 10)
2833 oload_non_standard = 1; /* non-standard type conversions needed */
2835 if (oload_incompatible)
2838 error ("Cannot resolve method %s%s%s to any overloaded instance",
2840 (obj_type_name && *obj_type_name) ? "::" : "",
2843 error ("Cannot resolve function %s to any overloaded instance",
2846 else if (oload_non_standard)
2849 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2851 (obj_type_name && *obj_type_name) ? "::" : "",
2854 warning ("Using non-standard conversion to match function %s to supplied arguments",
2860 if (staticp && TYPE_FN_FIELD_STATIC_P (fns_ptr, oload_champ))
2864 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2865 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2867 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2871 *symp = oload_syms[oload_champ];
2877 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2878 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2880 temp = value_addr (temp);
2884 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2887 /* C++: return 1 is NAME is a legitimate name for the destructor
2888 of type TYPE. If TYPE does not have a destructor, or
2889 if NAME is inappropriate for TYPE, an error is signaled. */
2891 destructor_name_p (const char *name, const struct type *type)
2893 /* destructors are a special case. */
2897 char *dname = type_name_no_tag (type);
2898 char *cp = strchr (dname, '<');
2901 /* Do not compare the template part for template classes. */
2903 len = strlen (dname);
2906 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2907 error ("name of destructor must equal name of class");
2914 /* Helper function for check_field: Given TYPE, a structure/union,
2915 return 1 if the component named NAME from the ultimate
2916 target structure/union is defined, otherwise, return 0. */
2919 check_field_in (register struct type *type, const char *name)
2923 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2925 char *t_field_name = TYPE_FIELD_NAME (type, i);
2926 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2930 /* C++: If it was not found as a data field, then try to
2931 return it as a pointer to a method. */
2933 /* Destructors are a special case. */
2934 if (destructor_name_p (name, type))
2936 int m_index, f_index;
2938 return get_destructor_fn_field (type, &m_index, &f_index);
2941 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2943 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2947 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2948 if (check_field_in (TYPE_BASECLASS (type, i), name))
2955 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2956 return 1 if the component named NAME from the ultimate
2957 target structure/union is defined, otherwise, return 0. */
2960 check_field (struct value *arg1, const char *name)
2962 register struct type *t;
2964 COERCE_ARRAY (arg1);
2966 t = VALUE_TYPE (arg1);
2968 /* Follow pointers until we get to a non-pointer. */
2973 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2975 t = TYPE_TARGET_TYPE (t);
2978 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2979 error ("not implemented: member type in check_field");
2981 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2982 && TYPE_CODE (t) != TYPE_CODE_UNION)
2983 error ("Internal error: `this' is not an aggregate");
2985 return check_field_in (t, name);
2988 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2989 return the address of this member as a "pointer to member"
2990 type. If INTYPE is non-null, then it will be the type
2991 of the member we are looking for. This will help us resolve
2992 "pointers to member functions". This function is used
2993 to resolve user expressions of the form "DOMAIN::NAME". */
2996 value_struct_elt_for_reference (struct type *domain, int offset,
2997 struct type *curtype, char *name,
2998 struct type *intype)
3000 register struct type *t = curtype;
3004 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3005 && TYPE_CODE (t) != TYPE_CODE_UNION)
3006 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3008 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3010 char *t_field_name = TYPE_FIELD_NAME (t, i);
3012 if (t_field_name && STREQ (t_field_name, name))
3014 if (TYPE_FIELD_STATIC (t, i))
3016 v = value_static_field (t, i);
3018 error ("Internal error: could not find static variable %s",
3022 if (TYPE_FIELD_PACKED (t, i))
3023 error ("pointers to bitfield members not allowed");
3025 return value_from_longest
3026 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3028 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3032 /* C++: If it was not found as a data field, then try to
3033 return it as a pointer to a method. */
3035 /* Destructors are a special case. */
3036 if (destructor_name_p (name, t))
3038 error ("member pointers to destructors not implemented yet");
3041 /* Perform all necessary dereferencing. */
3042 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3043 intype = TYPE_TARGET_TYPE (intype);
3045 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3047 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3048 char dem_opname[64];
3050 if (strncmp (t_field_name, "__", 2) == 0 ||
3051 strncmp (t_field_name, "op", 2) == 0 ||
3052 strncmp (t_field_name, "type", 4) == 0)
3054 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3055 t_field_name = dem_opname;
3056 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3057 t_field_name = dem_opname;
3059 if (t_field_name && STREQ (t_field_name, name))
3061 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3062 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3064 if (intype == 0 && j > 1)
3065 error ("non-unique member `%s' requires type instantiation", name);
3069 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3072 error ("no member function matches that type instantiation");
3077 if (TYPE_FN_FIELD_STUB (f, j))
3078 check_stub_method (t, i, j);
3079 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3081 return value_from_longest
3082 (lookup_reference_type
3083 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3085 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3089 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3090 0, VAR_NAMESPACE, 0, NULL);
3097 v = read_var_value (s, 0);
3099 VALUE_TYPE (v) = lookup_reference_type
3100 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3108 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3113 if (BASETYPE_VIA_VIRTUAL (t, i))
3116 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3117 v = value_struct_elt_for_reference (domain,
3118 offset + base_offset,
3119 TYPE_BASECLASS (t, i),
3129 /* Given a pointer value V, find the real (RTTI) type
3130 of the object it points to.
3131 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3132 and refer to the values computed for the object pointed to. */
3135 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3137 struct value *target;
3139 target = value_ind (v);
3141 return value_rtti_type (target, full, top, using_enc);
3144 /* Given a value pointed to by ARGP, check its real run-time type, and
3145 if that is different from the enclosing type, create a new value
3146 using the real run-time type as the enclosing type (and of the same
3147 type as ARGP) and return it, with the embedded offset adjusted to
3148 be the correct offset to the enclosed object
3149 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3150 parameters, computed by value_rtti_type(). If these are available,
3151 they can be supplied and a second call to value_rtti_type() is avoided.
3152 (Pass RTYPE == NULL if they're not available */
3155 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3158 struct type *real_type;
3162 struct value *new_val;
3169 using_enc = xusing_enc;
3172 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3174 /* If no RTTI data, or if object is already complete, do nothing */
3175 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3178 /* If we have the full object, but for some reason the enclosing
3179 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3182 argp = value_change_enclosing_type (argp, real_type);
3186 /* Check if object is in memory */
3187 if (VALUE_LVAL (argp) != lval_memory)
3189 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3194 /* All other cases -- retrieve the complete object */
3195 /* Go back by the computed top_offset from the beginning of the object,
3196 adjusting for the embedded offset of argp if that's what value_rtti_type
3197 used for its computation. */
3198 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3199 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3200 VALUE_BFD_SECTION (argp));
3201 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3202 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3209 /* C++: return the value of the class instance variable, if one exists.
3210 Flag COMPLAIN signals an error if the request is made in an
3211 inappropriate context. */
3214 value_of_this (int complain)
3216 struct symbol *func, *sym;
3219 static const char funny_this[] = "this";
3222 if (selected_frame == 0)
3225 error ("no frame selected");
3230 func = get_frame_function (selected_frame);
3234 error ("no `this' in nameless context");
3239 b = SYMBOL_BLOCK_VALUE (func);
3240 i = BLOCK_NSYMS (b);
3244 error ("no args, no `this'");
3249 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3250 symbol instead of the LOC_ARG one (if both exist). */
3251 sym = lookup_block_symbol (b, funny_this, NULL, VAR_NAMESPACE);
3255 error ("current stack frame not in method");
3260 this = read_var_value (sym, selected_frame);
3261 if (this == 0 && complain)
3262 error ("`this' argument at unknown address");
3266 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3267 long, starting at LOWBOUND. The result has the same lower bound as
3268 the original ARRAY. */
3271 value_slice (struct value *array, int lowbound, int length)
3273 struct type *slice_range_type, *slice_type, *range_type;
3274 LONGEST lowerbound, upperbound, offset;
3275 struct value *slice;
3276 struct type *array_type;
3277 array_type = check_typedef (VALUE_TYPE (array));
3278 COERCE_VARYING_ARRAY (array, array_type);
3279 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3280 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3281 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3282 error ("cannot take slice of non-array");
3283 range_type = TYPE_INDEX_TYPE (array_type);
3284 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3285 error ("slice from bad array or bitstring");
3286 if (lowbound < lowerbound || length < 0
3287 || lowbound + length - 1 > upperbound
3288 /* Chill allows zero-length strings but not arrays. */
3289 || (current_language->la_language == language_chill
3290 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3291 error ("slice out of range");
3292 /* FIXME-type-allocation: need a way to free this type when we are
3294 slice_range_type = create_range_type ((struct type *) NULL,
3295 TYPE_TARGET_TYPE (range_type),
3296 lowbound, lowbound + length - 1);
3297 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3300 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3301 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3302 slice = value_zero (slice_type, not_lval);
3303 for (i = 0; i < length; i++)
3305 int element = value_bit_index (array_type,
3306 VALUE_CONTENTS (array),
3309 error ("internal error accessing bitstring");
3310 else if (element > 0)
3312 int j = i % TARGET_CHAR_BIT;
3313 if (BITS_BIG_ENDIAN)
3314 j = TARGET_CHAR_BIT - 1 - j;
3315 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3318 /* We should set the address, bitssize, and bitspos, so the clice
3319 can be used on the LHS, but that may require extensions to
3320 value_assign. For now, just leave as a non_lval. FIXME. */
3324 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3326 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3327 slice_type = create_array_type ((struct type *) NULL, element_type,
3329 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3330 slice = allocate_value (slice_type);
3331 if (VALUE_LAZY (array))
3332 VALUE_LAZY (slice) = 1;
3334 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3335 TYPE_LENGTH (slice_type));
3336 if (VALUE_LVAL (array) == lval_internalvar)
3337 VALUE_LVAL (slice) = lval_internalvar_component;
3339 VALUE_LVAL (slice) = VALUE_LVAL (array);
3340 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3341 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3346 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3347 value as a fixed-length array. */
3350 varying_to_slice (struct value *varray)
3352 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3353 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3354 VALUE_CONTENTS (varray)
3355 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3356 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3359 /* Create a value for a FORTRAN complex number. Currently most of
3360 the time values are coerced to COMPLEX*16 (i.e. a complex number
3361 composed of 2 doubles. This really should be a smarter routine
3362 that figures out precision inteligently as opposed to assuming
3363 doubles. FIXME: fmb */
3366 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3369 struct type *real_type = TYPE_TARGET_TYPE (type);
3371 val = allocate_value (type);
3372 arg1 = value_cast (real_type, arg1);
3373 arg2 = value_cast (real_type, arg2);
3375 memcpy (VALUE_CONTENTS_RAW (val),
3376 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3377 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3378 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3382 /* Cast a value into the appropriate complex data type. */
3384 static struct value *
3385 cast_into_complex (struct type *type, struct value *val)
3387 struct type *real_type = TYPE_TARGET_TYPE (type);
3388 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3390 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3391 struct value *re_val = allocate_value (val_real_type);
3392 struct value *im_val = allocate_value (val_real_type);
3394 memcpy (VALUE_CONTENTS_RAW (re_val),
3395 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3396 memcpy (VALUE_CONTENTS_RAW (im_val),
3397 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3398 TYPE_LENGTH (val_real_type));
3400 return value_literal_complex (re_val, im_val, type);
3402 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3403 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3404 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3406 error ("cannot cast non-number to complex");
3410 _initialize_valops (void)
3414 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3415 "Set automatic abandonment of expressions upon failure.",
3421 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3422 "Set overload resolution in evaluating C++ functions.",
3425 overload_resolution = 1;
3428 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3429 (char *) &unwind_on_signal_p,
3430 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3431 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3432 is received while in a function called from gdb (call dummy). If set, gdb\n\
3433 unwinds the stack and restore the context to what as it was before the call.\n\
3434 The default is to stop in the frame where the signal was received.", &setlist),