1 /* Target-specific definition for the Mitsubishi D30V
2 Copyright 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
24 /* Define the bit, byte, and word ordering of the machine. */
26 #define TARGET_BYTE_ORDER BIG_ENDIAN
28 /* Offset from address of function to start of its code.
29 Zero on most machines. */
31 #define FUNCTION_START_OFFSET 0
33 /* these are the addresses the D30V-EVA board maps data */
34 /* and instruction memory to. */
36 #define DMEM_START 0x20000000
37 #define IMEM_START 0x00000000 /* was 0x10000000 */
38 #define STACK_START 0x20007ffe
40 /* Forward decls for prototypes */
42 struct frame_saved_regs;
46 /* Advance PC across any function entry prologue instructions
47 to reach some "real" code. */
49 extern CORE_ADDR d30v_skip_prologue (CORE_ADDR);
50 #define SKIP_PROLOGUE(ip) (d30v_skip_prologue (ip))
53 /* Stack grows downward. */
54 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
56 /* for a breakpoint, use "dbt || nop" */
57 #define BREAKPOINT {0x00, 0xb0, 0x00, 0x00,\
58 0x00, 0xf0, 0x00, 0x00}
60 /* If your kernel resets the pc after the trap happens you may need to
61 define this before including this file. */
62 #define DECR_PC_AFTER_BREAK 0
64 #define REGISTER_NAMES \
65 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
67 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
68 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
69 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
70 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
71 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
72 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
74 "psw", "bpsw", "pc", "bpc", "dpsw", "dpc", "cr6", "rpt_c", \
75 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "eit_vb",\
76 "int_s", "int_m", "a0", "a1" \
81 /* Register numbers of various important registers.
82 Note that some of these values are "real" register numbers,
83 and correspond to the general registers of the machine,
84 and some are "phony" register numbers which are too large
85 to be actual register numbers as far as the user is concerned
86 but do serve to get the desired values when passed to read_register. */
92 #define SPI_REGNUM 64 /* Interrupt stack pointer */
93 #define SPU_REGNUM 65 /* User stack pointer */
94 #define CREGS_START 66
96 #define PSW_REGNUM (CREGS_START + 0) /* psw, bpsw, or dpsw??? */
97 #define PSW_SM (((unsigned long)0x80000000) >> 0) /* Stack mode: 0/SPI */
99 #define PSW_EA (((unsigned long)0x80000000) >> 2) /* Execution status */
100 #define PSW_DB (((unsigned long)0x80000000) >> 3) /* Debug mode */
101 #define PSW_DS (((unsigned long)0x80000000) >> 4) /* Debug EIT status */
102 #define PSW_IE (((unsigned long)0x80000000) >> 5) /* Interrupt enable */
103 #define PSW_RP (((unsigned long)0x80000000) >> 6) /* Repeat enable */
104 #define PSW_MD (((unsigned long)0x80000000) >> 7) /* Modulo enable */
105 #define PSW_F0 (((unsigned long)0x80000000) >> 17) /* F0 flag */
106 #define PSW_F1 (((unsigned long)0x80000000) >> 19) /* F1 flag */
107 #define PSW_F2 (((unsigned long)0x80000000) >> 21) /* F2 flag */
108 #define PSW_F3 (((unsigned long)0x80000000) >> 23) /* F3 flag */
109 #define PSW_S (((unsigned long)0x80000000) >> 25) /* Saturation flag */
110 #define PSW_V (((unsigned long)0x80000000) >> 27) /* Overflow flag */
111 #define PSW_VA (((unsigned long)0x80000000) >> 29) /* Accum. overflow */
112 #define PSW_C (((unsigned long)0x80000000) >> 31) /* Carry/Borrow flag */
114 #define BPSW_REGNUM (CREGS_START + 1) /* Backup PSW (on interrupt) */
115 #define PC_REGNUM (CREGS_START + 2) /* pc, bpc, or dpc??? */
116 #define BPC_REGNUM (CREGS_START + 3) /* Backup PC (on interrupt) */
117 #define DPSW_REGNUM (CREGS_START + 4) /* Backup PSW (on debug trap) */
118 #define DPC_REGNUM (CREGS_START + 5) /* Backup PC (on debug trap) */
119 #define RPT_C_REGNUM (CREGS_START + 7) /* Loop count */
120 #define RPT_S_REGNUM (CREGS_START + 8) /* Loop start address */
121 #define RPT_E_REGNUM (CREGS_START + 9) /* Loop end address */
122 #define MOD_S_REGNUM (CREGS_START + 10)
123 #define MOD_E_REGNUM (CREGS_START + 11)
124 #define IBA_REGNUM (CREGS_START + 14) /* Instruction break address */
125 #define EIT_VB_REGNUM (CREGS_START + 15) /* Vector base address */
126 #define INT_S_REGNUM (CREGS_START + 16) /* Interrupt status */
127 #define INT_M_REGNUM (CREGS_START + 17) /* Interrupt mask */
131 /* Say how much memory is needed to store a copy of the register set */
132 #define REGISTER_BYTES ((NUM_REGS - 2) * 4 + 2 * 8)
134 /* Index within `registers' of the first byte of the space for
137 #define REGISTER_BYTE(N) \
138 ( ((N) >= A0_REGNUM) ? ( ((N) - A0_REGNUM) * 8 + A0_REGNUM * 4 ) : ((N) * 4) )
140 /* Number of bytes of storage in the actual machine representation
143 #define REGISTER_RAW_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 4 )
145 /* Number of bytes of storage in the program's representation
147 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
149 /* Largest value REGISTER_RAW_SIZE can have. */
151 #define MAX_REGISTER_RAW_SIZE 8
153 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
155 #define MAX_REGISTER_VIRTUAL_SIZE 8
157 /* Return the GDB type object for the "standard" data type
158 of data in register N. */
160 #define REGISTER_VIRTUAL_TYPE(N) \
161 ( ((N) < A0_REGNUM ) ? builtin_type_long : builtin_type_long_long)
163 /* Writing to r0 is a noop (not an error or exception or anything like
166 #define CANNOT_STORE_REGISTER(regno) ((regno) == R0_REGNUM)
168 void d30v_do_registers_info (int regnum, int fpregs);
170 #define DO_REGISTERS_INFO d30v_do_registers_info
172 /* Store the address of the place in which to copy the structure the
173 subroutine will return. This is called from call_function.
175 We store structs through a pointer passed in R2 */
177 #define STORE_STRUCT_RETURN(ADDR, SP) \
178 { write_register (2, (ADDR)); }
181 /* Write into appropriate registers a function return value
182 of type TYPE, given in virtual format.
184 Things always get returned in R2/R3 */
186 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
187 write_register_bytes (REGISTER_BYTE(2), VALBUF, TYPE_LENGTH (TYPE))
190 /* Extract from an array REGBUF containing the (raw) register state
191 the address in which a function should return its structure value,
192 as a CORE_ADDR (or an expression that can be used as one). */
193 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (((CORE_ADDR *)(REGBUF))[2])
196 /* Define other aspects of the stack frame.
197 we keep a copy of the worked out return pc lying around, since it
198 is a useful bit of info */
200 #define EXTRA_FRAME_INFO \
201 CORE_ADDR return_pc; \
206 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
207 d30v_init_extra_frame_info(fromleaf, fi)
209 extern void d30v_init_extra_frame_info (int fromleaf, struct frame_info *fi);
211 /* A macro that tells us whether the function invocation represented
212 by FI does not have a frame on the stack associated with it. If it
213 does not, FRAMELESS is set to 1, else 0. */
215 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
216 (frameless_look_for_prologue (FI))
218 CORE_ADDR d30v_frame_chain (struct frame_info *frame);
219 #define FRAME_CHAIN(FRAME) d30v_frame_chain(FRAME)
220 extern int d30v_frame_chain_valid (CORE_ADDR, struct frame_info *);
221 #define FRAME_CHAIN_VALID(chain, thisframe) d30v_frame_chain_valid (chain, thisframe)
222 #define FRAME_SAVED_PC(FRAME) ((FRAME)->return_pc)
223 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
224 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
226 void d30v_init_frame_pc (int fromleaf, struct frame_info *prev);
227 #define INIT_FRAME_PC_FIRST(fromleaf, prev) d30v_init_frame_pc(fromleaf, prev)
228 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
230 /* Immediately after a function call, return the saved pc. We can't */
231 /* use frame->return_pc beause that is determined by reading R62 off the */
232 /* stack and that may not be written yet. */
234 #define SAVED_PC_AFTER_CALL(frame) (read_register(LR_REGNUM))
236 /* Set VAL to the number of args passed to frame described by FI.
237 Can set VAL to -1, meaning no way to tell. */
238 /* We can't tell how many args there are */
240 #define FRAME_NUM_ARGS(fi) (-1)
242 /* Return number of bytes at start of arglist that are not really args. */
244 #define FRAME_ARGS_SKIP 0
247 /* Put here the code to store, into a struct frame_saved_regs,
248 the addresses of the saved registers of frame described by FRAME_INFO.
249 This includes special registers such as pc and fp saved in special
250 ways in the stack frame. sp is even more special:
251 the address we return for it IS the sp for the next frame. */
253 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
254 d30v_frame_find_saved_regs(frame_info, &(frame_saved_regs))
256 extern void d30v_frame_find_saved_regs (struct frame_info *,
257 struct frame_saved_regs *);
259 /* DUMMY FRAMES. Need these to support inferior function calls.
260 They work like this on D30V:
261 First we set a breakpoint at 0 or __start.
262 Then we push all the registers onto the stack.
263 Then put the function arguments in the proper registers and set r13
264 to our breakpoint address.
265 Finally call the function directly.
266 When it hits the breakpoint, clear the break point and pop the old
267 register contents off the stack. */
269 #define CALL_DUMMY { 0 }
270 #define PUSH_DUMMY_FRAME
271 #define CALL_DUMMY_START_OFFSET 0
272 #define CALL_DUMMY_LOCATION AT_ENTRY_POINT
273 #define CALL_DUMMY_BREAKPOINT_OFFSET (0)
275 extern CORE_ADDR d30v_call_dummy_address (void);
276 #define CALL_DUMMY_ADDRESS() d30v_call_dummy_address()
278 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
279 sp = d30v_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
281 #define PC_IN_CALL_DUMMY(pc, sp, frame_address) ( pc == IMEM_START + 4 )
283 extern CORE_ADDR d30v_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR,
284 int, struct value **,
286 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
287 (d30v_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
288 extern CORE_ADDR d30v_push_arguments (int, struct value **, CORE_ADDR, int,
292 /* Extract from an array REGBUF containing the (raw) register state
293 a function return value of type TYPE, and copy that, in virtual format,
296 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
297 d30v_extract_return_value(TYPE, REGBUF, VALBUF)
298 extern void d30v_extract_return_value (struct type *, char *, char *);
301 /* Discard from the stack the innermost frame,
302 restoring all saved registers. */
303 #define POP_FRAME d30v_pop_frame();
304 extern void d30v_pop_frame (void);
306 #define REGISTER_SIZE 4
308 /* Need to handle SP special, as we need to select between spu and spi. */
309 #if 0 /* XXX until the simulator is fixed */
310 #define TARGET_READ_SP() ((read_register (PSW_REGNUM) & PSW_SM) \
311 ? read_register (SPU_REGNUM) \
312 : read_register (SPI_REGNUM))
314 #define TARGET_WRITE_SP(val) ((read_register (PSW_REGNUM) & PSW_SM) \
315 ? write_register (SPU_REGNUM, (val)) \
316 : write_register (SPI_REGNUM, (val)))
319 #define STACK_ALIGN(len) (((len) + 7 ) & ~7)
321 /* Turn this on to cause remote-sim.c to use sim_set/clear_breakpoint. */
323 #define SIM_HAS_BREAKPOINTS
325 #endif /* TM_D30V_H */