1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include "ieee-float.h"
27 #include "symfile.h" /* for objfiles.h */
28 #include "objfiles.h" /* for find_pc_section */
31 #include <sys/procfs.h>
37 extern int stop_after_trap;
39 /* We don't store all registers immediately when requested, since they
40 get sent over in large chunks anyway. Instead, we accumulate most
41 of the changes and send them over once. "deferred_stores" keeps
42 track of which sets of registers we have locally-changed copies of,
43 so we only need send the groups that have changed. */
45 int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
49 Error, not_branch, bicc, bicca, ba, baa, ticc, ta
52 /* Simulate single-step ptrace call for sun4. Code written by Gary
55 /* npc4 and next_pc describe the situation at the time that the
56 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
57 static CORE_ADDR next_pc, npc4, target;
58 static int brknpc4, brktrg;
59 typedef char binsn_quantum[BREAKPOINT_MAX];
60 static binsn_quantum break_mem[3];
62 /* Non-zero if we just simulated a single-step ptrace call. This is
63 needed because we cannot remove the breakpoints in the inferior
64 process until after the `wait' in `wait_for_inferior'. Used for
69 /* single_step() is called just before we want to resume the inferior,
70 if we want to single-step it but there is no hardware or kernel single-step
71 support (as on all SPARCs). We find all the possible targets of the
72 coming instruction and breakpoint them.
74 single_step is also called just after the inferior stops. If we had
75 set up a simulated single-step, we undo our damage. */
79 int ignore; /* pid, but we don't need it */
81 branch_type br, isannulled();
87 /* Always set breakpoint for NPC. */
88 next_pc = read_register (NPC_REGNUM);
89 npc4 = next_pc + 4; /* branch not taken */
91 target_insert_breakpoint (next_pc, break_mem[0]);
92 /* printf ("set break at %x\n",next_pc); */
94 pc = read_register (PC_REGNUM);
95 pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
96 br = isannulled (pc_instruction, pc, &target);
101 /* Conditional annulled branch will either end up at
102 npc (if taken) or at npc+4 (if not taken).
105 target_insert_breakpoint (npc4, break_mem[1]);
107 else if (br == baa && target != next_pc)
109 /* Unconditional annulled branch will always end up at
112 target_insert_breakpoint (target, break_mem[2]);
115 /* We are ready to let it go */
121 /* Remove breakpoints */
122 target_remove_breakpoint (next_pc, break_mem[0]);
125 target_remove_breakpoint (npc4, break_mem[1]);
128 target_remove_breakpoint (target, break_mem[2]);
134 #define FRAME_SAVED_L0 0 /* Byte offset from SP */
135 #define FRAME_SAVED_I0 (8 * REGISTER_RAW_SIZE (0)) /* Byte offset from SP */
138 sparc_frame_chain (thisframe)
141 REGISTER_TYPE retval;
145 addr = thisframe->frame + FRAME_SAVED_I0 +
146 REGISTER_RAW_SIZE (FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
147 err = target_read_memory (addr, (char *) &retval, sizeof (REGISTER_TYPE));
150 return extract_address (&retval, sizeof (retval));
154 sparc_extract_struct_value_address (regbuf)
155 char regbuf[REGISTER_BYTES];
157 /* FIXME, handle byte swapping */
158 return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
162 /* Find the pc saved in frame FRAME. */
165 frame_saved_pc (frame)
168 REGISTER_TYPE retval;
171 addr = (frame->bottom + FRAME_SAVED_I0 +
172 REGISTER_RAW_SIZE (I7_REGNUM) * (I7_REGNUM - I0_REGNUM));
173 read_memory (addr, (char *) &retval, sizeof (REGISTER_TYPE));
174 return PC_ADJUST (extract_address (&retval, sizeof (REGISTER_TYPE)));
178 * Since an individual frame in the frame cache is defined by two
179 * arguments (a frame pointer and a stack pointer), we need two
180 * arguments to get info for an arbitrary stack frame. This routine
181 * takes two arguments and makes the cached frames look as if these
182 * two arguments defined a frame on the cache. This allows the rest
183 * of info frame to extract the important arguments without
187 setup_arbitrary_frame (argc, argv)
194 error ("Sparc frame specifications require two arguments: fp and sp");
196 fid = create_new_frame (argv[0], 0);
199 fatal ("internal: create_new_frame returned invalid frame id");
201 fid->bottom = argv[1];
202 fid->pc = FRAME_SAVED_PC (fid);
206 /* Given a pc value, skip it forward past the function prologue by
207 disassembling instructions that appear to be a prologue.
209 If FRAMELESS_P is set, we are only testing to see if the function
210 is frameless. This allows a quicker answer.
212 This routine should be more specific in its actions; making sure
213 that it uses the same register in the initial prologue section. */
215 skip_prologue (start_pc, frameless_p)
221 unsigned long int code;
227 unsigned int imm22:22;
236 unsigned int simm13:13;
241 CORE_ADDR pc = start_pc;
243 x.i = read_memory_integer (pc, 4);
245 /* Recognize the `sethi' insn and record its destination. */
246 if (x.sethi.op == 0 && x.sethi.op2 == 4)
250 x.i = read_memory_integer (pc, 4);
253 /* Recognize an add immediate value to register to either %g1 or
254 the destination register recorded above. Actually, this might
255 well recognize several different arithmetic operations.
256 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
257 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
258 I imagine any compiler really does that, however). */
259 if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
262 x.i = read_memory_integer (pc, 4);
265 /* This recognizes any SAVE insn. But why do the XOR and then
266 the compare? That's identical to comparing against 60 (as long
267 as there isn't any sign extension). */
268 if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
271 if (frameless_p) /* If the save is all we care about, */
272 return pc; /* return before doing more work */
273 x.i = read_memory_integer (pc, 4);
277 /* Without a save instruction, it's not a prologue. */
281 /* Now we need to recognize stores into the frame from the input
282 registers. This recognizes all non alternate stores of input
283 register, into a location offset from the frame pointer. */
285 && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
286 && (x.add.rd & 0x18) == 0x18 /* Input register. */
287 && x.add.i /* Immediate mode. */
288 && x.add.rs1 == 30 /* Off of frame pointer. */
289 /* Into reserved stack space. */
290 && x.add.simm13 >= 0x44
291 && x.add.simm13 < 0x5b)
294 x.i = read_memory_integer (pc, 4);
299 /* Check instruction at ADDR to see if it is an annulled branch.
300 All other instructions will go to NPC or will trap.
301 Set *TARGET if we find a canidate branch; set to zero if not. */
304 isannulled (instruction, addr, target)
306 CORE_ADDR addr, *target;
308 branch_type val = not_branch;
309 long int offset; /* Must be signed for sign-extend. */
312 unsigned long int code;
319 unsigned int disp22:22;
324 insn.code = instruction;
327 && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
329 if (insn.b.cond == 8)
330 val = insn.b.a ? baa : ba;
332 val = insn.b.a ? bicca : bicc;
333 offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
334 *target = addr + offset;
340 /* sparc_frame_find_saved_regs ()
342 Stores, into a struct frame_saved_regs,
343 the addresses of the saved registers of frame described by FRAME_INFO.
344 This includes special registers such as pc and fp saved in special
345 ways in the stack frame. sp is even more special:
346 the address we return for it IS the sp for the next frame.
348 Note that on register window machines, we are currently making the
349 assumption that window registers are being saved somewhere in the
350 frame in which they are being used. If they are stored in an
351 inferior frame, find_saved_register will break.
353 On the Sun 4, the only time all registers are saved is when
354 a dummy frame is involved. Otherwise, the only saved registers
355 are the LOCAL and IN registers which are saved as a result
356 of the "save/restore" opcodes. This condition is determined
357 by address rather than by value.
359 The "pc" is not stored in a frame on the SPARC. (What is stored
360 is a return address minus 8.) sparc_pop_frame knows how to
361 deal with that. Other routines might or might not.
363 See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
364 about how this works. */
367 sparc_frame_find_saved_regs (fi, saved_regs_addr)
368 struct frame_info *fi;
369 struct frame_saved_regs *saved_regs_addr;
372 FRAME_ADDR frame = read_register (FP_REGNUM);
373 FRAME fid = FRAME_INFO_ID (fi);
376 fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
378 memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
381 if (fi->pc >= frame - CALL_DUMMY_LENGTH - 0x140
382 && fi->pc <= frame) */
384 if (fi->pc >= (fi->bottom ? fi->bottom :
385 read_register (SP_REGNUM))
386 && fi->pc <= FRAME_FP(fi))
388 /* Dummy frame. All but the window regs are in there somewhere. */
389 for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
390 saved_regs_addr->regs[regnum] =
391 frame + (regnum - G0_REGNUM) * 4 - 0xa0;
392 for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
393 saved_regs_addr->regs[regnum] =
394 frame + (regnum - I0_REGNUM) * 4 - 0xc0;
395 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
396 saved_regs_addr->regs[regnum] =
397 frame + (regnum - FP0_REGNUM) * 4 - 0x80;
398 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
399 saved_regs_addr->regs[regnum] =
400 frame + (regnum - Y_REGNUM) * 4 - 0xe0;
402 fi->bottom : read_register (SP_REGNUM);
406 /* Normal frame. Just Local and In registers */
408 fi->bottom : read_register (SP_REGNUM);
409 for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
410 saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
414 /* Pull off either the next frame pointer or the stack pointer */
415 FRAME_ADDR next_next_frame =
418 read_register (SP_REGNUM));
419 for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
420 saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
422 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
423 saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
426 /* Push an empty stack frame, and record in it the current PC, regs, etc.
428 We save the non-windowed registers and the ins. The locals and outs
429 are new; they don't need to be saved. The i's and l's of
430 the last frame were already saved on the stack
432 The return pointer register %i7 does not have the pc saved into it
433 (return from this frame will be accomplished by a POP_FRAME). In
434 fact, we must leave it unclobbered, since we must preserve it in
435 the calling routine except across call instructions. I'm not sure
436 the preceding sentence is true; isn't it based on confusing the %i7
437 saved in the dummy frame versus the one saved in the frame of the
440 /* Definitely see tm-sparc.h for more doc of the frame format here. */
443 sparc_push_dummy_frame ()
446 char register_temp[REGISTER_BYTES];
448 sp = read_register (SP_REGNUM);
450 read_register_bytes (REGISTER_BYTE (FP0_REGNUM), register_temp,
451 REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
452 write_memory (sp - 0x80, register_temp, REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
454 read_register_bytes (REGISTER_BYTE (G0_REGNUM), register_temp,
455 REGISTER_RAW_SIZE (G0_REGNUM) * 8);
456 write_memory (sp - 0xa0, register_temp, REGISTER_RAW_SIZE (G0_REGNUM) * 8);
458 read_register_bytes (REGISTER_BYTE (O0_REGNUM), register_temp,
459 REGISTER_RAW_SIZE (O0_REGNUM) * 8);
460 write_memory (sp - 0xc0, register_temp, REGISTER_RAW_SIZE (O0_REGNUM) * 8);
462 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
463 read_register_bytes (REGISTER_BYTE (Y_REGNUM), register_temp,
464 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
465 write_memory (sp - 0xe0, register_temp, REGISTER_RAW_SIZE (Y_REGNUM) * 8);
468 CORE_ADDR old_sp = sp;
470 /* Now move the stack pointer (equivalent to the add part of a save
473 write_register (SP_REGNUM, sp);
475 /* Now make sure that the frame pointer we save in the new frame points
476 to the old frame (equivalent to the register window shift part of
477 a save instruction). Need to do this after the write to the sp, or
478 else this might get written into the wrong set of saved ins&locals. */
479 write_register (FP_REGNUM, old_sp);
483 /* Discard from the stack the innermost frame, restoring all saved registers.
485 Note that the values stored in fsr by get_frame_saved_regs are *in
486 the context of the called frame*. What this means is that the i
487 regs of fsr must be restored into the o regs of the (calling) frame that
488 we pop into. We don't care about the output regs of the calling frame,
489 since unless it's a dummy frame, it won't have any output regs in it.
491 We never have to bother with %l (local) regs, since the called routine's
492 locals get tossed, and the calling routine's locals are already saved
495 /* Definitely see tm-sparc.h for more doc of the frame format here. */
500 register FRAME frame = get_current_frame ();
501 register CORE_ADDR pc;
502 struct frame_saved_regs fsr;
503 struct frame_info *fi;
504 char raw_buffer[REGISTER_BYTES];
506 fi = get_frame_info (frame);
507 get_frame_saved_regs (fi, &fsr);
508 if (fsr.regs[FP0_REGNUM])
510 read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
511 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
513 if (fsr.regs[G1_REGNUM])
515 read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
516 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
518 if (fsr.regs[I0_REGNUM])
522 char reg_temp[REGISTER_BYTES];
524 read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
526 /* Get the ins and locals which we are about to restore. Just
527 moving the stack pointer is all that is really needed, except
528 store_inferior_registers is then going to write the ins and
529 locals from the registers array, so we need to muck with the
531 sp = fsr.regs[SP_REGNUM];
532 read_memory (sp, reg_temp, REGISTER_RAW_SIZE (L0_REGNUM) * 16);
534 /* Restore the out registers.
535 Among other things this writes the new stack pointer. */
536 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
537 REGISTER_RAW_SIZE (O0_REGNUM) * 8);
539 write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
540 REGISTER_RAW_SIZE (L0_REGNUM) * 16);
542 if (fsr.regs[PS_REGNUM])
543 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
544 if (fsr.regs[Y_REGNUM])
545 write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
546 if (fsr.regs[PC_REGNUM])
548 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
549 write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
550 if (fsr.regs[NPC_REGNUM])
551 write_register (NPC_REGNUM,
552 read_memory_integer (fsr.regs[NPC_REGNUM], 4));
554 else if (fsr.regs[I7_REGNUM])
556 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
557 pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
558 write_register (PC_REGNUM, pc);
559 write_register (NPC_REGNUM, pc + 4);
561 flush_cached_frames ();
562 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
566 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
567 encodes the structure size being returned. If we detect such
568 a fake insn, step past it. */
578 err = target_read_memory (pc + 8, buf, sizeof(long));
579 insn = extract_unsigned_integer (buf, 4);
580 if ((err == 0) && (insn & 0xfffffe00) == 0)
587 /* Structure of SPARC extended floating point numbers.
588 This information is not currently used by GDB, since no current SPARC
589 implementations support extended float. */
591 const struct ext_format ext_format_sparc = {
592 /* tot sbyte smask expbyte manbyte */
593 16, 0, 0x80, 0,1, 4,8, /* sparc */
596 #ifdef USE_PROC_FS /* Target dependent support for /proc */
598 /* The /proc interface divides the target machine's register set up into
599 two different sets, the general register set (gregset) and the floating
600 point register set (fpregset). For each set, there is an ioctl to get
601 the current register set and another ioctl to set the current values.
603 The actual structure passed through the ioctl interface is, of course,
604 naturally machine dependent, and is different for each set of registers.
605 For the sparc for example, the general register set is typically defined
608 typedef int gregset_t[38];
614 and the floating point set by:
616 typedef struct prfpregset {
624 u_char pr_q_entrysize;
629 These routines provide the packing and unpacking of gregset_t and
630 fpregset_t formatted data.
635 /* Given a pointer to a general register set in /proc format (gregset_t *),
636 unpack the register contents and supply them as gdb's idea of the current
640 supply_gregset (gregsetp)
641 prgregset_t *gregsetp;
644 register prgreg_t *regp = (prgreg_t *) gregsetp;
646 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
647 for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
649 supply_register (regi, (char *) (regp + regi));
652 /* These require a bit more care. */
653 supply_register (PS_REGNUM, (char *) (regp + R_PS));
654 supply_register (PC_REGNUM, (char *) (regp + R_PC));
655 supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
656 supply_register (Y_REGNUM, (char *) (regp + R_Y));
660 fill_gregset (gregsetp, regno)
661 prgregset_t *gregsetp;
665 register prgreg_t *regp = (prgreg_t *) gregsetp;
666 extern char registers[];
668 for (regi = 0 ; regi <= R_I7 ; regi++)
670 if ((regno == -1) || (regno == regi))
672 *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
675 if ((regno == -1) || (regno == PS_REGNUM))
677 *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
679 if ((regno == -1) || (regno == PC_REGNUM))
681 *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
683 if ((regno == -1) || (regno == NPC_REGNUM))
685 *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
687 if ((regno == -1) || (regno == Y_REGNUM))
689 *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
693 #if defined (FP0_REGNUM)
695 /* Given a pointer to a floating point register set in /proc format
696 (fpregset_t *), unpack the register contents and supply them as gdb's
697 idea of the current floating point register values. */
700 supply_fpregset (fpregsetp)
701 prfpregset_t *fpregsetp;
706 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
708 from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
709 supply_register (regi, from);
711 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
714 /* Given a pointer to a floating point register set in /proc format
715 (fpregset_t *), update the register specified by REGNO from gdb's idea
716 of the current floating point register set. If REGNO is -1, update
720 fill_fpregset (fpregsetp, regno)
721 prfpregset_t *fpregsetp;
727 extern char registers[];
729 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
731 if ((regno == -1) || (regno == regi))
733 from = (char *) ®isters[REGISTER_BYTE (regi)];
734 to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
735 memcpy (to, from, REGISTER_RAW_SIZE (regi));
738 if ((regno == -1) || (regno == FPS_REGNUM))
740 fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
744 #endif /* defined (FP0_REGNUM) */
746 #endif /* USE_PROC_FS */
749 #ifdef GET_LONGJMP_TARGET
751 /* Figure out where the longjmp will land. We expect that we have just entered
752 longjmp and haven't yet setup the stack frame, so the args are still in the
753 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
754 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
755 This routine returns true on success */
758 get_longjmp_target(pc)
762 #define LONGJMP_TARGET_SIZE 4
763 char buf[LONGJMP_TARGET_SIZE];
765 jb_addr = read_register(O0_REGNUM);
767 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
768 LONGJMP_TARGET_SIZE))
771 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
775 #endif /* GET_LONGJMP_TARGET */
777 /* So far used only for sparc solaris. In sparc solaris, we recognize
778 a trampoline by it's section name. That is, if the pc is in a
779 section named ".plt" then we are in a trampline. */
782 in_solib_trampoline(pc, name)
786 struct obj_section *s;
789 s = find_pc_section(pc);
792 && s->sec_ptr->name != NULL
793 && STREQ (s->sec_ptr->name, ".plt"));