1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
26 #include <sys/param.h>
30 #include <sys/ioctl.h>
33 #include <sys/ptrace.h>
43 extern struct obstack frame_cache_obstack;
47 /* Nonzero if we just simulated a single step break. */
50 /* Breakpoint shadows for the single step instructions will be kept here. */
52 static struct sstep_breaks {
57 /* Static function prototypes */
60 add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr));
63 find_toc_address PARAMS ((CORE_ADDR pc));
66 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
69 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
70 struct aix_framedata *fdatap));
73 * Calculate the destination of a branch/jump. Return -1 if not a branch.
76 branch_dest (opcode, instr, pc, safety)
88 absolute = (int) ((instr >> 1) & 1);
92 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
95 if (opcode != 18) /* br conditional */
96 immediate = ((instr & ~3) << 16) >> 16;
100 dest = pc + immediate;
104 ext_op = (instr>>1) & 0x3ff;
106 if (ext_op == 16) /* br conditional register */
107 dest = read_register (LR_REGNUM) & ~3;
109 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
117 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
122 /* AIX does not support PT_STEP. Simulate it. */
128 #define INSNLEN(OPCODE) 4
130 static char breakp[] = BREAKPOINT;
131 int ii, insn, ret, loc;
132 int breaks[2], opcode;
137 ret = read_memory (loc, &insn, sizeof (int));
139 printf ("Error in single_step()!!\n");
141 breaks[0] = loc + INSNLEN(insn);
143 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
145 /* Don't put two breakpoints on the same address. */
146 if (breaks[1] == breaks[0])
149 stepBreaks[1].address = -1;
151 for (ii=0; ii < 2; ++ii) {
153 /* ignore invalid breakpoint. */
154 if ( breaks[ii] == -1)
157 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
159 ret = write_memory (breaks[ii], breakp, sizeof(int));
160 stepBreaks[ii].address = breaks[ii];
166 /* remove step breakpoints. */
167 for (ii=0; ii < 2; ++ii)
168 if (stepBreaks[ii].address != -1)
170 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
174 errno = 0; /* FIXME, don't ignore errors! */
178 /* return pc value after skipping a function prologue. */
184 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
186 if (target_read_memory (pc, (char *)&op, sizeof (op)))
187 return pc; /* Can't access it -- assume no prologue. */
188 SWAP_TARGET_AND_HOST (&op, sizeof (op));
190 /* Assume that subsequent fetches can fail with low probability. */
192 if (op == 0x7c0802a6) { /* mflr r0 */
194 op = read_memory_integer (pc, 4);
197 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
199 op = read_memory_integer (pc, 4);
202 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
204 op = read_memory_integer (pc, 4);
206 /* At this point, make sure this is not a trampoline function
207 (a function that simply calls another functions, and nothing else).
208 If the next is not a nop, this branch was part of the function
211 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
213 return pc - 4; /* don't skip over this branch */
216 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
218 op = read_memory_integer (pc, 4);
221 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
222 (tmp == 0x9421) || /* stu r1, NUM(r1) */
223 (op == 0x93e1fffc)) /* st r31,-4(r1) */
226 op = read_memory_integer (pc, 4);
229 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
230 pc += 4; /* l r30, ... */
231 op = read_memory_integer (pc, 4);
234 /* store parameters into stack */
236 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
237 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
238 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
239 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
241 pc += 4; /* store fpr double */
242 op = read_memory_integer (pc, 4);
245 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
246 pc += 4; /* this happens if r31 is used as */
247 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
250 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
251 pc += 4; /* st r4, NUM(r31), ... */
252 op = read_memory_integer (pc, 4);
257 /* I have problems with skipping over __main() that I need to address
258 * sometime. Previously, I used to use misc_function_vector which
259 * didn't work as well as I wanted to be. -MGO */
261 /* If the first thing after skipping a prolog is a branch to a function,
262 this might be a call to an initializer in main(), introduced by gcc2.
263 We'd like to skip over it as well. Fortunately, xlc does some extra
264 work before calling a function right after a prologue, thus we can
265 single out such gcc2 behaviour. */
268 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
269 op = read_memory_integer (pc+4, 4);
271 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
273 /* check and see if we are in main. If so, skip over this initializer
276 tmp = find_pc_misc_function (pc);
277 if (tmp >= 0 && !strcmp (misc_function_vector [tmp].name, "main"))
287 /*************************************************************************
288 Support for creating pushind a dummy frame into the stack, and popping
290 *************************************************************************/
292 /* The total size of dummy frame is 436, which is;
297 and 24 extra bytes for the callee's link area. The last 24 bytes
298 for the link area might not be necessary, since it will be taken
299 care of by push_arguments(). */
301 #define DUMMY_FRAME_SIZE 436
303 #define DUMMY_FRAME_ADDR_SIZE 10
305 /* Make sure you initialize these in somewhere, in case gdb gives up what it
306 was debugging and starts debugging something else. FIXMEibm */
308 static int dummy_frame_count = 0;
309 static int dummy_frame_size = 0;
310 static CORE_ADDR *dummy_frame_addr = 0;
312 extern int stop_stack_dummy;
314 /* push a dummy frame into stack, save all register. Currently we are saving
315 only gpr's and fpr's, which is not good enough! FIXMEmgo */
320 int sp, pc; /* stack pointer and link register */
323 target_fetch_registers (-1);
325 if (dummy_frame_count >= dummy_frame_size) {
326 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
327 if (dummy_frame_addr)
328 dummy_frame_addr = (CORE_ADDR*) xrealloc
329 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
331 dummy_frame_addr = (CORE_ADDR*)
332 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
335 sp = read_register(SP_REGNUM);
336 pc = read_register(PC_REGNUM);
338 dummy_frame_addr [dummy_frame_count++] = sp;
340 /* Be careful! If the stack pointer is not decremented first, then kernel
341 thinks he is free to use the space underneath it. And kernel actually
342 uses that area for IPC purposes when executing ptrace(2) calls. So
343 before writing register values into the new frame, decrement and update
344 %sp first in order to secure your frame. */
346 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
348 /* gdb relies on the state of current_frame. We'd better update it,
349 otherwise things like do_registers_info() wouldn't work properly! */
351 flush_cached_frames ();
352 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
354 /* save program counter in link register's space. */
355 write_memory (sp+8, &pc, 4);
357 /* save all floating point and general purpose registers here. */
360 for (ii = 0; ii < 32; ++ii)
361 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
364 for (ii=1; ii <=32; ++ii)
365 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
367 /* so far, 32*2 + 32 words = 384 bytes have been written.
368 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
370 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
371 write_memory (sp-384-(ii*4),
372 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
375 /* Save sp or so called back chain right here. */
376 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
377 sp -= DUMMY_FRAME_SIZE;
379 /* And finally, this is the back chain. */
380 write_memory (sp+8, &pc, 4);
384 /* Pop a dummy frame.
386 In rs6000 when we push a dummy frame, we save all of the registers. This
387 is usually done before user calls a function explicitly.
389 After a dummy frame is pushed, some instructions are copied into stack,
390 and stack pointer is decremented even more. Since we don't have a frame
391 pointer to get back to the parent frame of the dummy, we start having
392 trouble poping it. Therefore, we keep a dummy frame stack, keeping
393 addresses of dummy frames as such. When poping happens and when we
394 detect that was a dummy frame, we pop it back to its parent by using
395 dummy frame stack (`dummy_frame_addr' array).
397 FIXME: This whole concept is broken. You should be able to detect
398 a dummy stack frame *on the user's stack itself*. When you do,
399 then you know the format of that stack frame -- including its
400 saved SP register! There should *not* be a separate stack in the
408 sp = dummy_frame_addr [--dummy_frame_count];
410 /* restore all fpr's. */
411 for (ii = 1; ii <= 32; ++ii)
412 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
414 /* restore all gpr's */
415 for (ii=1; ii <= 32; ++ii) {
416 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
419 /* restore the rest of the registers. */
420 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
421 read_memory (sp-384-(ii*4),
422 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
424 read_memory (sp-(DUMMY_FRAME_SIZE-8),
425 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
427 /* when a dummy frame was being pushed, we had to decrement %sp first, in
428 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
429 one we should restore. Change it with the one we need. */
431 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
433 /* Now we can restore all registers. */
435 target_store_registers (-1);
437 flush_cached_frames ();
438 set_current_frame (create_new_frame (sp, pc));
442 /* pop the innermost frame, go back to the caller. */
447 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
448 struct aix_framedata fdata;
449 FRAME fr = get_current_frame ();
455 if (stop_stack_dummy && dummy_frame_count) {
460 /* figure out previous %pc value. If the function is frameless, it is
461 still in the link register, otherwise walk the frames and retrieve the
462 saved %pc value in the previous frame. */
464 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
465 function_frame_info (addr, &fdata);
467 read_memory (sp, &prev_sp, 4);
469 lr = read_register (LR_REGNUM);
471 read_memory (prev_sp+8, &lr, 4);
473 /* reset %pc value. */
474 write_register (PC_REGNUM, lr);
476 /* reset register values if any was saved earlier. */
477 addr = prev_sp - fdata.offset;
479 if (fdata.saved_gpr != -1)
480 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
481 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
482 addr += sizeof (int);
485 if (fdata.saved_fpr != -1)
486 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
487 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
491 write_register (SP_REGNUM, prev_sp);
492 target_store_registers (-1);
493 flush_cached_frames ();
494 set_current_frame (create_new_frame (prev_sp, lr));
498 /* fixup the call sequence of a dummy function, with the real function address.
499 its argumets will be passed by gdb. */
502 fix_call_dummy(dummyname, pc, fun, nargs, type)
506 int nargs; /* not used */
507 int type; /* not used */
509 #define TOC_ADDR_OFFSET 20
510 #define TARGET_ADDR_OFFSET 28
513 CORE_ADDR target_addr;
517 tocvalue = find_toc_address (target_addr);
519 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
520 ii = (ii & 0xffff0000) | (tocvalue >> 16);
521 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
523 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
524 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
525 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
527 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
528 ii = (ii & 0xffff0000) | (target_addr >> 16);
529 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
531 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
532 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
533 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
537 /* return information about a function frame.
538 in struct aix_frameinfo fdata:
539 - frameless is TRUE, if function does not save %pc value in its frame.
540 - offset is the number of bytes used in the frame to save registers.
541 - saved_gpr is the number of the first saved gpr.
542 - saved_fpr is the number of the first saved fpr.
543 - alloca_reg is the number of the register used for alloca() handling.
547 function_frame_info (pc, fdata)
549 struct aix_framedata *fdata;
552 register unsigned int op;
555 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
557 op = read_memory_integer (pc, 4);
558 if (op == 0x7c0802a6) { /* mflr r0 */
560 op = read_memory_integer (pc, 4);
561 fdata->frameless = 0;
563 else /* else, this is a frameless invocation */
564 fdata->frameless = 1;
567 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
569 op = read_memory_integer (pc, 4);
572 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
574 op = read_memory_integer (pc, 4);
575 /* At this point, make sure this is not a trampoline function
576 (a function that simply calls another functions, and nothing else).
577 If the next is not a nop, this branch was part of the function
580 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
582 return; /* prologue is over */
585 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
586 pc += 4; /* store floating register double */
587 op = read_memory_integer (pc, 4);
590 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
592 fdata->saved_gpr = (op >> 21) & 0x1f;
595 tmp2 = 0xffff0000 | tmp2;
599 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
600 if ( fdata->saved_fpr > 0)
601 fdata->saved_fpr = 32 - fdata->saved_fpr;
603 fdata->saved_fpr = -1;
605 fdata->offset = tmp2;
607 op = read_memory_integer (pc, 4);
610 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
611 (tmp == 0x9421) || /* stu r1, NUM(r1) */
612 (op == 0x93e1fffc)) /* st r31,-4(r1) */
614 /* gcc takes a short cut and uses this instruction to save r31 only. */
616 if (op == 0x93e1fffc) {
618 /* fatal ("Unrecognized prolog."); */
619 printf ("Unrecognized prolog!\n");
621 fdata->saved_gpr = 31;
625 op = read_memory_integer (pc, 4);
628 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
629 pc += 4; /* l r30, ... */
630 op = read_memory_integer (pc, 4);
633 /* store parameters into stack */
635 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
636 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
637 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
638 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
640 pc += 4; /* store fpr double */
641 op = read_memory_integer (pc, 4);
644 if (op == 0x603f0000) /* oril r31, r1, 0x0 */
645 fdata->alloca_reg = 31;
649 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
650 eight words of the argument list (that might be less than eight parameters if
651 some parameters occupy more than one word) are passed in r3..r11 registers.
652 float and double parameters are passed in fpr's, in addition to that. Rest of
653 the parameters if any are passed in user stack. There might be cases in which
654 half of the parameter is copied into registers, the other half is pushed into
657 If the function is returning a structure, then the return address is passed
658 in r3, then the first 7 words of the parametes can be passed in registers,
662 push_arguments (nargs, args, sp, struct_return, struct_addr)
667 CORE_ADDR struct_addr;
670 int argno; /* current argument number */
671 int argbytes; /* current argument byte */
672 char tmp_buffer [50];
674 int f_argno = 0; /* current floating point argno */
676 CORE_ADDR saved_sp, pc;
678 if ( dummy_frame_count <= 0)
679 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
681 /* The first eight words of ther arguments are passed in registers. Copy
684 If the function is returning a `struct', then the first word (which
685 will be passed in r3) is used for struct return address. In that
686 case we should advance one word and start from r4 register to copy
689 ii = struct_return ? 1 : 0;
691 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
693 arg = value_arg_coerce (args[argno]);
694 len = TYPE_LENGTH (VALUE_TYPE (arg));
696 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
698 /* floating point arguments are passed in fpr's, as well as gpr's.
699 There are 13 fpr's reserved for passing parameters. At this point
700 there is no way we would run out of them. */
704 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
706 bcopy (VALUE_CONTENTS (arg),
707 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
713 /* Argument takes more than one register. */
714 while (argbytes < len) {
716 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
717 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
718 ®isters[REGISTER_BYTE(ii+3)],
719 (len - argbytes) > 4 ? 4 : len - argbytes);
723 goto ran_out_of_registers_for_arguments;
728 else { /* Argument can fit in one register. No problem. */
729 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
730 bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
735 ran_out_of_registers_for_arguments:
737 /* location for 8 parameters are always reserved. */
740 /* another six words for back chain, TOC register, link register, etc. */
743 /* if there are more arguments, allocate space for them in
744 the stack, then push them starting from the ninth one. */
746 if ((argno < nargs) || argbytes) {
751 space += ((len - argbytes + 3) & -4);
757 for (; jj < nargs; ++jj) {
758 val = value_arg_coerce (args[jj]);
759 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
762 /* add location required for the rest of the parameters */
763 space = (space + 7) & -8;
766 /* This is another instance we need to be concerned about securing our
767 stack space. If we write anything underneath %sp (r1), we might conflict
768 with the kernel who thinks he is free to use this area. So, update %sp
769 first before doing anything else. */
771 write_register (SP_REGNUM, sp);
773 /* if the last argument copied into the registers didn't fit there
774 completely, push the rest of it into stack. */
778 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
780 ii += ((len - argbytes + 3) & -4) / 4;
783 /* push the rest of the arguments into stack. */
784 for (; argno < nargs; ++argno) {
786 arg = value_arg_coerce (args[argno]);
787 len = TYPE_LENGTH (VALUE_TYPE (arg));
790 /* float types should be passed in fpr's, as well as in the stack. */
791 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
795 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
797 bcopy (VALUE_CONTENTS (arg),
798 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
802 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
803 ii += ((len + 3) & -4) / 4;
807 /* Secure stack areas first, before doing anything else. */
808 write_register (SP_REGNUM, sp);
810 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
811 read_memory (saved_sp, tmp_buffer, 24);
812 write_memory (sp, tmp_buffer, 24);
814 write_memory (sp, &saved_sp, 4); /* set back chain properly */
816 target_store_registers (-1);
820 /* a given return value in `regbuf' with a type `valtype', extract and copy its
821 value into `valbuf' */
824 extract_return_value (valtype, regbuf, valbuf)
825 struct type *valtype;
826 char regbuf[REGISTER_BYTES];
830 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
833 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
834 We need to truncate the return value into float size (4 byte) if
837 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
838 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
839 TYPE_LENGTH (valtype));
841 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
843 bcopy (&ff, valbuf, sizeof(float));
847 /* return value is copied starting from r3. */
848 bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
852 /* keep structure return address in this variable.
853 FIXME: This is a horrid kludge which should not be allowed to continue
854 living. This only allows a single nested call to a structure-returning
857 CORE_ADDR rs6000_struct_return_address;
860 /* Throw away this debugging code. FIXMEmgo. */
866 for (ii=0; ii<40; ++ii) {
869 val = read_memory_integer (fram + ii * 4, 4);
870 printf ("0x%08x\t", val);
877 /* Indirect function calls use a piece of trampoline code to do context
878 switching, i.e. to set the new TOC table. Skip such code if we are on
879 its first instruction (as when we have single-stepped to here).
880 Result is desired PC to step until, or NULL if we are not in
884 skip_trampoline_code (pc)
887 register unsigned int ii, op;
889 static unsigned trampoline_code[] = {
890 0x800b0000, /* l r0,0x0(r11) */
891 0x90410014, /* st r2,0x14(r1) */
892 0x7c0903a6, /* mtctr r0 */
893 0x804b0004, /* l r2,0x4(r11) */
894 0x816b0008, /* l r11,0x8(r11) */
895 0x4e800420, /* bctr */
900 for (ii=0; trampoline_code[ii]; ++ii) {
901 op = read_memory_integer (pc + (ii*4), 4);
902 if (op != trampoline_code [ii])
905 ii = read_register (11); /* r11 holds destination addr */
906 pc = read_memory_integer (ii, 4); /* (r11) value */
911 /* Determines whether the function FI has a frame on the stack or not.
912 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h. */
915 frameless_function_invocation (fi)
916 struct frame_info *fi;
918 CORE_ADDR func_start;
919 struct aix_framedata fdata;
921 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
923 /* If we failed to find the start of the function, it is a mistake
924 to inspect the instructions. */
929 function_frame_info (func_start, &fdata);
930 return fdata.frameless;
934 /* If saved registers of frame FI are not known yet, read and cache them.
935 &FDATAP contains aix_framedata; TDATAP can be NULL,
936 in which case the framedata are read. */
939 frame_get_cache_fsr (fi, fdatap)
940 struct frame_info *fi;
941 struct aix_framedata *fdatap;
944 CORE_ADDR frame_addr;
945 struct aix_framedata work_fdata;
950 if (fdatap == NULL) {
951 fdatap = &work_fdata;
952 function_frame_info (get_pc_function_start (fi->pc), fdatap);
955 fi->cache_fsr = (struct frame_saved_regs *)
956 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
957 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
959 if (fi->prev && fi->prev->frame)
960 frame_addr = fi->prev->frame;
962 frame_addr = read_memory_integer (fi->frame, 4);
964 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
965 All fpr's from saved_fpr to fp31 are saved right underneath caller
966 stack pointer, starting from fp31 first. */
968 if (fdatap->saved_fpr >= 0) {
969 for (ii=31; ii >= fdatap->saved_fpr; --ii)
970 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
971 frame_addr -= (32 - fdatap->saved_fpr) * 8;
974 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
975 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
976 starting from r31 first. */
978 if (fdatap->saved_gpr >= 0)
979 for (ii=31; ii >= fdatap->saved_gpr; --ii)
980 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
983 /* Return the address of a frame. This is the inital %sp value when the frame
984 was first allocated. For functions calling alloca(), it might be saved in
985 an alloca register. */
988 frame_initial_stack_address (fi)
989 struct frame_info *fi;
992 struct aix_framedata fdata;
993 struct frame_info *callee_fi;
995 /* if the initial stack pointer (frame address) of this frame is known,
999 return fi->initial_sp;
1001 /* find out if this function is using an alloca register.. */
1003 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1005 /* if saved registers of this frame are not known yet, read and cache them. */
1008 frame_get_cache_fsr (fi, &fdata);
1010 /* If no alloca register used, then fi->frame is the value of the %sp for
1011 this frame, and it is good enough. */
1013 if (fdata.alloca_reg < 0) {
1014 fi->initial_sp = fi->frame;
1015 return fi->initial_sp;
1018 /* This function has an alloca register. If this is the top-most frame
1019 (with the lowest address), the value in alloca register is good. */
1022 return fi->initial_sp = read_register (fdata.alloca_reg);
1024 /* Otherwise, this is a caller frame. Callee has usually already saved
1025 registers, but there are exceptions (such as when the callee
1026 has no parameters). Find the address in which caller's alloca
1027 register is saved. */
1029 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1031 if (!callee_fi->cache_fsr)
1032 frame_get_cache_fsr (fi, NULL);
1034 /* this is the address in which alloca register is saved. */
1036 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1038 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1039 return fi->initial_sp;
1042 /* Go look into deeper levels of the frame chain to see if any one of
1043 the callees has saved alloca register. */
1046 /* If alloca register was not saved, by the callee (or any of its callees)
1047 then the value in the register is still good. */
1049 return fi->initial_sp = read_register (fdata.alloca_reg);
1052 /* xcoff_relocate_symtab - hook for symbol table relocation.
1053 also reads shared libraries.. */
1055 xcoff_relocate_symtab (pid)
1058 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1060 struct ld_info *ldi;
1063 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1065 /* According to my humble theory, AIX has some timing problems and
1066 when the user stack grows, kernel doesn't update stack info in time
1067 and ptrace calls step on user stack. That is why we sleep here a little,
1068 and give kernel to update its internals. */
1073 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1074 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1076 perror_with_name ("ptrace ldinfo");
1083 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1084 } while (ldi->ldinfo_next
1085 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1088 /* Now that we've jumbled things around, re-sort them. */
1089 sort_minimal_symbols ();
1092 /* relocate the exec and core sections as well. */
1096 /* Keep an array of load segment information and their TOC table addresses.
1097 This info will be useful when calling a shared library function by hand. */
1100 CORE_ADDR textorg, dataorg;
1101 unsigned long toc_offset;
1104 #define LOADINFOLEN 10
1106 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1109 static struct loadinfo *loadinfo = NULL;
1110 static int loadinfolen = 0;
1111 static int loadinfotocindex = 0;
1112 int loadinfotextindex = 0;
1116 xcoff_init_loadinfo ()
1118 loadinfotocindex = 0;
1119 loadinfotextindex = 0;
1121 if (loadinfolen == 0) {
1122 loadinfo = (struct loadinfo *)
1123 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1124 loadinfolen = LOADINFOLEN;
1129 /* FIXME -- this is never called! */
1137 loadinfotocindex = 0;
1138 loadinfotextindex = 0;
1141 /* this is called from xcoffread.c */
1144 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1146 while (loadinfotocindex >= loadinfolen) {
1147 loadinfolen += LOADINFOLEN;
1148 loadinfo = (struct loadinfo *)
1149 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1151 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1156 add_text_to_loadinfo (textaddr, dataaddr)
1160 while (loadinfotextindex >= loadinfolen) {
1161 loadinfolen += LOADINFOLEN;
1162 loadinfo = (struct loadinfo *)
1163 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1165 loadinfo [loadinfotextindex].textorg = textaddr;
1166 loadinfo [loadinfotextindex].dataorg = dataaddr;
1167 ++loadinfotextindex;
1171 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1172 of a member of this array are correlated with the "toc_offset"
1173 element of the same member. But they are sequentially assigned in wildly
1174 different places, and probably there is no correlation. FIXME! */
1177 find_toc_address (pc)
1180 int ii, toc_entry, tocbase = 0;
1182 for (ii=0; ii < loadinfotextindex; ++ii)
1183 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1185 tocbase = loadinfo[ii].textorg;
1188 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;