1 /* Parameters for execution on a H8/300 series machine.
2 Copyright (C) 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
26 #define EXTRA_FRAME_INFO \
27 struct frame_saved_regs *fsr; \
29 CORE_ADDR args_pointer;\
30 CORE_ADDR locals_pointer ;
34 /* Zero the frame_saved_regs pointer when the frame is initialized,
35 so that FRAME_FIND_SAVED_REGS () will know to allocate and
36 initialize a frame_saved_regs struct the first time it is called.
37 Set the arg_pointer to -1, which is not valid; 0 and other values
38 indicate real, cached values. */
40 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
41 init_extra_frame_info (fromleaf, fi)
43 extern void init_extra_frame_info ();
47 /* Define the bit, byte, and word ordering of the machine. */
48 #define TARGET_BYTE_ORDER BIG_ENDIAN
50 #define TARGET_INT_BIT 16
52 #define TARGET_PTR_BIT 16
55 /* Offset from address of function to start of its code.
56 Zero on most machines. */
58 #define FUNCTION_START_OFFSET 0
60 /* Advance PC across any function entry prologue instructions
61 to reach some "real" code. */
64 #define SKIP_PROLOGUE(ip) {(ip) = h8300_skip_prologue(ip);}
65 extern CORE_ADDR h8300_skip_prologue ();
68 /* Immediately after a function call, return the saved pc.
69 Can't always go through the frames for this because on some machines
70 the new frame is not set up until the new function executes
73 #define SAVED_PC_AFTER_CALL(frame) \
74 UNSIGNED_SHORT(read_memory_integer (read_register (SP_REGNUM), 2))
76 /* Stack grows downward. */
80 /* Sequence of bytes for breakpoint instruction.
81 This is a TRAP instruction. The last 4 bits (0xf below) is the
82 vector. Systems which don't use 0xf should define BPT_VECTOR
83 themselves before including this file. */
86 #define BPT_VECTOR 0xf
90 #define BREAKPOINT {0x4e, (0x40 | BPT_VECTOR)}
93 /* If your kernel resets the pc after the trap happens you may need to
94 define this before including this file. */
97 #define DECR_PC_AFTER_BREAK 0
100 /* Nonzero if instruction at PC is a return instruction. */
101 /* Allow any of the return instructions, including a trapv and a return
104 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 2) & ~0x3) == 0x4e74)
106 /* Return 1 if P points to an invalid floating point value. */
108 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
110 /* Say how long registers are. */
112 #define REGISTER_TYPE unsigned short
115 # define REGISTER_BYTES (10*2)
118 /* Index within `registers' of the first byte of the space for
121 #define REGISTER_BYTE(N) ((N) * 2)
123 /* Number of bytes of storage in the actual machine representation
124 for register N. On the H8/300, all regs are 2 bytes. */
126 #define REGISTER_RAW_SIZE(N) 2
128 /* Number of bytes of storage in the program's representation
129 for register N. On the H8/300, all regs are 2 bytes. */
131 #define REGISTER_VIRTUAL_SIZE(N) 2
133 /* Largest value REGISTER_RAW_SIZE can have. */
135 #define MAX_REGISTER_RAW_SIZE 2
137 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
139 #define MAX_REGISTER_VIRTUAL_SIZE 2
141 /* Nonzero if register N requires conversion
142 from raw format to virtual format. */
144 #define REGISTER_CONVERTIBLE(N) 1
146 /* Convert data from raw format for register REGNUM
147 to virtual format for register REGNUM. */
149 /*#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) */
151 /* Convert data from virtual format for register REGNUM
152 to raw format for register REGNUM. */
154 /*#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) */
156 /* Return the GDB type object for the "standard" data type
157 of data in register N. */
159 #define REGISTER_VIRTUAL_TYPE(N) builtin_type_unsigned_short
162 /* Initializer for an array of names of registers.
163 Entries beyond the first NUM_REGS are ignored. */
165 #define REGISTER_NAMES \
166 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp","ccr","pc"}
169 /* Register numbers of various important registers.
170 Note that some of these values are "real" register numbers,
171 and correspond to the general registers of the machine,
172 and some are "phony" register numbers which are too large
173 to be actual register numbers as far as the user is concerned
174 but do serve to get the desired values when passed to read_register. */
177 #define FP_REGNUM 6 /* Contains address of executing stack frame */
178 #define SP_REGNUM 7 /* Contains address of top of stack */
179 #define CCR_REGNUM 8 /* Contains processor status */
180 #define PC_REGNUM 9 /* Contains program counter */
182 /* Store the address of the place in which to copy the structure the
183 subroutine will return. This is called from call_function. */
185 /*#define STORE_STRUCT_RETURN(ADDR, SP) \
186 { write_register (0, (ADDR)); abort(); }*/
188 /* Extract from an array REGBUF containing the (raw) register state
189 a function return value of type TYPE, and copy that, in virtual format,
192 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
193 bcopy ((char *)(REGBUF), VALBUF, TYPE_LENGTH(TYPE))
196 /* Write into appropriate registers a function return value
197 of type TYPE, given in virtual format. Assumes floats are passed
201 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
202 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
205 /* Extract from an array REGBUF containing the (raw) register state
206 the address in which a function should return its structure value,
207 as a CORE_ADDR (or an expression that can be used as one). */
209 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))
211 /* Describe the pointer in each stack frame to the previous stack frame
214 /* FRAME_CHAIN takes a frame's nominal address
215 and produces the frame's chain-pointer.
217 However, if FRAME_CHAIN_VALID returns zero,
218 it means the given frame is the outermost one and has no caller. */
220 /* In the case of the H8/300, the frame's nominal address
221 is the address of a 2-byte word containing the calling frame's address. */
223 /* Use the alternate method of avoiding running up off the end of
224 the frame chain or following frames back into the startup code.
225 See the comments in objfile.h */
227 #define FRAME_CHAIN_VALID_ALTERNATE
229 /* Define other aspects of the stack frame. */
231 /* A macro that tells us whether the function invocation represented
232 by FI does not have a frame on the stack associated with it. If it
233 does not, FRAMELESS is set to 1, else 0. */
234 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
235 (FRAMELESS) = frameless_look_for_prologue(FI)
237 /* Any function with a frame looks like this
243 SAVED FP <-FP POINTS HERE
245 LOCALS1 <-SP POINTS HERE
248 #define FRAME_SAVED_PC(FRAME) frame_saved_pc(FRAME)
250 #define FRAME_ARGS_ADDRESS(fi) frame_args_address(fi)
252 #define FRAME_LOCALS_ADDRESS(fi) frame_locals_address(fi);
254 /* Set VAL to the number of args passed to frame described by FI.
255 Can set VAL to -1, meaning no way to tell. */
257 /* We can't tell how many args there are
258 now that the C compiler delays popping them. */
260 #define FRAME_NUM_ARGS(val,fi) (val = -1)
263 /* Return number of bytes at start of arglist that are not really args. */
265 #define FRAME_ARGS_SKIP 0
267 /* Put here the code to store, into a struct frame_saved_regs,
268 the addresses of the saved registers of frame described by FRAME_INFO.
269 This includes special registers such as pc and fp saved in special
270 ways in the stack frame. sp is even more special:
271 the address we return for it IS the sp for the next frame. */
273 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
274 frame_find_saved_regs(frame_info, &(frame_saved_regs))
277 /* Push an empty stack frame, to record the current PC, etc. */
279 /*#define PUSH_DUMMY_FRAME { h8300_push_dummy_frame (); }*/
281 /* Discard from the stack the innermost frame, restoring all registers. */
283 #define POP_FRAME { h8300_pop_frame (); }
285 #define SHORT_INT_MAX 32767
286 #define SHORT_INT_MIN -32768
289 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
290 { memcpy((TO), (FROM), 2); }
291 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
292 { memcpy((TO), (FROM), 2); }
294 #define BEFORE_MAIN_LOOP_HOOK \
295 hms_before_main_loop();
298 #define NAMES_HAVE_UNDERSCORE
300 typedef unsigned short INSN_WORD;
302 #define ADDR_BITS_REMOVE(addr) ((addr) & 0xffff)
303 #define ADDR_BITS_SET(addr) (((addr)))
305 #define read_memory_short(x) (read_memory_integer(x,2) & 0xffff)
306 #define DONT_USE_REMOTE