1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
28 #include "opcode/m68k.h"
30 static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32 static void rtype_to_howto
33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
34 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
38 static bfd_boolean elf_m68k_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static bfd_boolean elf_m68k_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static bfd_boolean elf_m68k_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static bfd_boolean elf_m68k_relocate_section
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
50 static bfd_boolean elf_m68k_finish_dynamic_symbol
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
53 static bfd_boolean elf_m68k_finish_dynamic_sections
54 PARAMS ((bfd *, struct bfd_link_info *));
56 static bfd_boolean elf32_m68k_set_private_flags
57 PARAMS ((bfd *, flagword));
58 static bfd_boolean elf32_m68k_merge_private_bfd_data
59 PARAMS ((bfd *, bfd *));
60 static bfd_boolean elf32_m68k_print_private_bfd_data
61 PARAMS ((bfd *, PTR));
62 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
63 PARAMS ((const Elf_Internal_Rela *));
65 static reloc_howto_type howto_table[] = {
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
89 /* GNU extension to record C++ vtable hierarchy. */
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
94 FALSE, /* pc_relative */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
99 FALSE, /* partial_inplace */
103 /* GNU extension to record C++ vtable member usage. */
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
108 FALSE, /* pc_relative */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
113 FALSE, /* partial_inplace */
118 /* TLS general dynamic variable reference. */
119 HOWTO (R_68K_TLS_GD32, /* type */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
123 FALSE, /* pc_relative */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_68K_TLS_GD32", /* name */
128 FALSE, /* partial_inplace */
130 0xffffffff, /* dst_mask */
131 FALSE), /* pcrel_offset */
133 HOWTO (R_68K_TLS_GD16, /* type */
135 1, /* size (0 = byte, 1 = short, 2 = long) */
137 FALSE, /* pc_relative */
139 complain_overflow_signed, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_68K_TLS_GD16", /* name */
142 FALSE, /* partial_inplace */
144 0x0000ffff, /* dst_mask */
145 FALSE), /* pcrel_offset */
147 HOWTO (R_68K_TLS_GD8, /* type */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
151 FALSE, /* pc_relative */
153 complain_overflow_signed, /* complain_on_overflow */
154 bfd_elf_generic_reloc, /* special_function */
155 "R_68K_TLS_GD8", /* name */
156 FALSE, /* partial_inplace */
158 0x000000ff, /* dst_mask */
159 FALSE), /* pcrel_offset */
161 /* TLS local dynamic variable reference. */
162 HOWTO (R_68K_TLS_LDM32, /* type */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
166 FALSE, /* pc_relative */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 bfd_elf_generic_reloc, /* special_function */
170 "R_68K_TLS_LDM32", /* name */
171 FALSE, /* partial_inplace */
173 0xffffffff, /* dst_mask */
174 FALSE), /* pcrel_offset */
176 HOWTO (R_68K_TLS_LDM16, /* type */
178 1, /* size (0 = byte, 1 = short, 2 = long) */
180 FALSE, /* pc_relative */
182 complain_overflow_signed, /* complain_on_overflow */
183 bfd_elf_generic_reloc, /* special_function */
184 "R_68K_TLS_LDM16", /* name */
185 FALSE, /* partial_inplace */
187 0x0000ffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
190 HOWTO (R_68K_TLS_LDM8, /* type */
192 0, /* size (0 = byte, 1 = short, 2 = long) */
194 FALSE, /* pc_relative */
196 complain_overflow_signed, /* complain_on_overflow */
197 bfd_elf_generic_reloc, /* special_function */
198 "R_68K_TLS_LDM8", /* name */
199 FALSE, /* partial_inplace */
201 0x000000ff, /* dst_mask */
202 FALSE), /* pcrel_offset */
204 HOWTO (R_68K_TLS_LDO32, /* type */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
208 FALSE, /* pc_relative */
210 complain_overflow_bitfield, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_68K_TLS_LDO32", /* name */
213 FALSE, /* partial_inplace */
215 0xffffffff, /* dst_mask */
216 FALSE), /* pcrel_offset */
218 HOWTO (R_68K_TLS_LDO16, /* type */
220 1, /* size (0 = byte, 1 = short, 2 = long) */
222 FALSE, /* pc_relative */
224 complain_overflow_signed, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_68K_TLS_LDO16", /* name */
227 FALSE, /* partial_inplace */
229 0x0000ffff, /* dst_mask */
230 FALSE), /* pcrel_offset */
232 HOWTO (R_68K_TLS_LDO8, /* type */
234 0, /* size (0 = byte, 1 = short, 2 = long) */
236 FALSE, /* pc_relative */
238 complain_overflow_signed, /* complain_on_overflow */
239 bfd_elf_generic_reloc, /* special_function */
240 "R_68K_TLS_LDO8", /* name */
241 FALSE, /* partial_inplace */
243 0x000000ff, /* dst_mask */
244 FALSE), /* pcrel_offset */
246 /* TLS initial execution variable reference. */
247 HOWTO (R_68K_TLS_IE32, /* type */
249 2, /* size (0 = byte, 1 = short, 2 = long) */
251 FALSE, /* pc_relative */
253 complain_overflow_bitfield, /* complain_on_overflow */
254 bfd_elf_generic_reloc, /* special_function */
255 "R_68K_TLS_IE32", /* name */
256 FALSE, /* partial_inplace */
258 0xffffffff, /* dst_mask */
259 FALSE), /* pcrel_offset */
261 HOWTO (R_68K_TLS_IE16, /* type */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
265 FALSE, /* pc_relative */
267 complain_overflow_signed, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_68K_TLS_IE16", /* name */
270 FALSE, /* partial_inplace */
272 0x0000ffff, /* dst_mask */
273 FALSE), /* pcrel_offset */
275 HOWTO (R_68K_TLS_IE8, /* type */
277 0, /* size (0 = byte, 1 = short, 2 = long) */
279 FALSE, /* pc_relative */
281 complain_overflow_signed, /* complain_on_overflow */
282 bfd_elf_generic_reloc, /* special_function */
283 "R_68K_TLS_IE8", /* name */
284 FALSE, /* partial_inplace */
286 0x000000ff, /* dst_mask */
287 FALSE), /* pcrel_offset */
289 /* TLS local execution variable reference. */
290 HOWTO (R_68K_TLS_LE32, /* type */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
294 FALSE, /* pc_relative */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_68K_TLS_LE32", /* name */
299 FALSE, /* partial_inplace */
301 0xffffffff, /* dst_mask */
302 FALSE), /* pcrel_offset */
304 HOWTO (R_68K_TLS_LE16, /* type */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
308 FALSE, /* pc_relative */
310 complain_overflow_signed, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_68K_TLS_LE16", /* name */
313 FALSE, /* partial_inplace */
315 0x0000ffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
318 HOWTO (R_68K_TLS_LE8, /* type */
320 0, /* size (0 = byte, 1 = short, 2 = long) */
322 FALSE, /* pc_relative */
324 complain_overflow_signed, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_68K_TLS_LE8", /* name */
327 FALSE, /* partial_inplace */
329 0x000000ff, /* dst_mask */
330 FALSE), /* pcrel_offset */
332 /* TLS GD/LD dynamic relocations. */
333 HOWTO (R_68K_TLS_DTPMOD32, /* type */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
337 FALSE, /* pc_relative */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_68K_TLS_DTPMOD32", /* name */
342 FALSE, /* partial_inplace */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
347 HOWTO (R_68K_TLS_DTPREL32, /* type */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
351 FALSE, /* pc_relative */
353 complain_overflow_dont, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_68K_TLS_DTPREL32", /* name */
356 FALSE, /* partial_inplace */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
361 HOWTO (R_68K_TLS_TPREL32, /* type */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
365 FALSE, /* pc_relative */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_68K_TLS_TPREL32", /* name */
370 FALSE, /* partial_inplace */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
377 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
379 unsigned int indx = ELF32_R_TYPE (dst->r_info);
381 if (indx >= (unsigned int) R_68K_max)
383 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
387 cache_ptr->howto = &howto_table[indx];
390 #define elf_info_to_howto rtype_to_howto
394 bfd_reloc_code_real_type bfd_val;
399 { BFD_RELOC_NONE, R_68K_NONE },
400 { BFD_RELOC_32, R_68K_32 },
401 { BFD_RELOC_16, R_68K_16 },
402 { BFD_RELOC_8, R_68K_8 },
403 { BFD_RELOC_32_PCREL, R_68K_PC32 },
404 { BFD_RELOC_16_PCREL, R_68K_PC16 },
405 { BFD_RELOC_8_PCREL, R_68K_PC8 },
406 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
407 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
408 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
409 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
410 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
411 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
412 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
413 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
414 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
415 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
416 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
417 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
418 { BFD_RELOC_NONE, R_68K_COPY },
419 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
420 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
421 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
422 { BFD_RELOC_CTOR, R_68K_32 },
423 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
424 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
425 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
426 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
427 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
428 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
429 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
430 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
431 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
432 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
433 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
434 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
435 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
436 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
437 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
438 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
439 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
442 static reloc_howto_type *
443 reloc_type_lookup (abfd, code)
444 bfd *abfd ATTRIBUTE_UNUSED;
445 bfd_reloc_code_real_type code;
448 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
450 if (reloc_map[i].bfd_val == code)
451 return &howto_table[reloc_map[i].elf_val];
456 static reloc_howto_type *
457 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
461 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
462 if (howto_table[i].name != NULL
463 && strcasecmp (howto_table[i].name, r_name) == 0)
464 return &howto_table[i];
469 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
470 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
471 #define ELF_ARCH bfd_arch_m68k
473 /* Functions for the m68k ELF linker. */
475 /* The name of the dynamic interpreter. This is put in the .interp
478 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
480 /* Describes one of the various PLT styles. */
482 struct elf_m68k_plt_info
484 /* The size of each PLT entry. */
487 /* The template for the first PLT entry. */
488 const bfd_byte *plt0_entry;
490 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
491 The comments by each member indicate the value that the relocation
494 unsigned int got4; /* .got + 4 */
495 unsigned int got8; /* .got + 8 */
498 /* The template for a symbol's PLT entry. */
499 const bfd_byte *symbol_entry;
501 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
502 The comments by each member indicate the value that the relocation
505 unsigned int got; /* the symbol's .got.plt entry */
506 unsigned int plt; /* .plt */
509 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
510 The stub starts with "move.l #relocoffset,%d0". */
511 bfd_vma symbol_resolve_entry;
514 /* The size in bytes of an entry in the procedure linkage table. */
516 #define PLT_ENTRY_SIZE 20
518 /* The first entry in a procedure linkage table looks like this. See
519 the SVR4 ABI m68k supplement to see how this works. */
521 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
523 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
524 0, 0, 0, 2, /* + (.got + 4) - . */
525 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
526 0, 0, 0, 2, /* + (.got + 8) - . */
527 0, 0, 0, 0 /* pad out to 20 bytes. */
530 /* Subsequent entries in a procedure linkage table look like this. */
532 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
534 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
535 0, 0, 0, 2, /* + (.got.plt entry) - . */
536 0x2f, 0x3c, /* move.l #offset,-(%sp) */
537 0, 0, 0, 0, /* + reloc index */
538 0x60, 0xff, /* bra.l .plt */
539 0, 0, 0, 0 /* + .plt - . */
542 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
544 elf_m68k_plt0_entry, { 4, 12 },
545 elf_m68k_plt_entry, { 4, 16 }, 8
548 #define ISAB_PLT_ENTRY_SIZE 24
550 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
552 0x20, 0x3c, /* move.l #offset,%d0 */
553 0, 0, 0, 0, /* + (.got + 4) - . */
554 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
555 0x20, 0x3c, /* move.l #offset,%d0 */
556 0, 0, 0, 0, /* + (.got + 8) - . */
557 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
558 0x4e, 0xd0, /* jmp (%a0) */
562 /* Subsequent entries in a procedure linkage table look like this. */
564 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
566 0x20, 0x3c, /* move.l #offset,%d0 */
567 0, 0, 0, 0, /* + (.got.plt entry) - . */
568 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
569 0x4e, 0xd0, /* jmp (%a0) */
570 0x2f, 0x3c, /* move.l #offset,-(%sp) */
571 0, 0, 0, 0, /* + reloc index */
572 0x60, 0xff, /* bra.l .plt */
573 0, 0, 0, 0 /* + .plt - . */
576 static const struct elf_m68k_plt_info elf_isab_plt_info = {
578 elf_isab_plt0_entry, { 2, 12 },
579 elf_isab_plt_entry, { 2, 20 }, 12
582 #define ISAC_PLT_ENTRY_SIZE 24
584 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
586 0x20, 0x3c, /* move.l #offset,%d0 */
587 0, 0, 0, 0, /* replaced with .got + 4 - . */
588 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
589 0x20, 0x3c, /* move.l #offset,%d0 */
590 0, 0, 0, 0, /* replaced with .got + 8 - . */
591 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
592 0x4e, 0xd0, /* jmp (%a0) */
596 /* Subsequent entries in a procedure linkage table look like this. */
598 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
600 0x20, 0x3c, /* move.l #offset,%d0 */
601 0, 0, 0, 0, /* replaced with (.got entry) - . */
602 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
603 0x4e, 0xd0, /* jmp (%a0) */
604 0x2f, 0x3c, /* move.l #offset,-(%sp) */
605 0, 0, 0, 0, /* replaced with offset into relocation table */
606 0x61, 0xff, /* bsr.l .plt */
607 0, 0, 0, 0 /* replaced with .plt - . */
610 static const struct elf_m68k_plt_info elf_isac_plt_info = {
612 elf_isac_plt0_entry, { 2, 12},
613 elf_isac_plt_entry, { 2, 20 }, 12
616 #define CPU32_PLT_ENTRY_SIZE 24
617 /* Procedure linkage table entries for the cpu32 */
618 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
620 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
621 0, 0, 0, 2, /* + (.got + 4) - . */
622 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
623 0, 0, 0, 2, /* + (.got + 8) - . */
624 0x4e, 0xd1, /* jmp %a1@ */
625 0, 0, 0, 0, /* pad out to 24 bytes. */
629 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
631 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
632 0, 0, 0, 2, /* + (.got.plt entry) - . */
633 0x4e, 0xd1, /* jmp %a1@ */
634 0x2f, 0x3c, /* move.l #offset,-(%sp) */
635 0, 0, 0, 0, /* + reloc index */
636 0x60, 0xff, /* bra.l .plt */
637 0, 0, 0, 0, /* + .plt - . */
641 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
642 CPU32_PLT_ENTRY_SIZE,
643 elf_cpu32_plt0_entry, { 4, 12 },
644 elf_cpu32_plt_entry, { 4, 18 }, 10
647 /* The m68k linker needs to keep track of the number of relocs that it
648 decides to copy in check_relocs for each symbol. This is so that it
649 can discard PC relative relocs if it doesn't need them when linking
650 with -Bsymbolic. We store the information in a field extending the
651 regular ELF linker hash table. */
653 /* This structure keeps track of the number of PC relative relocs we have
654 copied for a given symbol. */
656 struct elf_m68k_pcrel_relocs_copied
659 struct elf_m68k_pcrel_relocs_copied *next;
660 /* A section in dynobj. */
662 /* Number of relocs copied in this section. */
666 /* Forward declaration. */
667 struct elf_m68k_got_entry;
669 /* m68k ELF linker hash entry. */
671 struct elf_m68k_link_hash_entry
673 struct elf_link_hash_entry root;
675 /* Number of PC relative relocs copied for this symbol. */
676 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
678 /* Key to got_entries. */
679 unsigned long got_entry_key;
681 /* List of GOT entries for this symbol. This list is build during
682 offset finalization and is used within elf_m68k_finish_dynamic_symbol
683 to traverse all GOT entries for a particular symbol.
685 ??? We could've used root.got.glist field instead, but having
686 a separate field is cleaner. */
687 struct elf_m68k_got_entry *glist;
690 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
692 /* Key part of GOT entry in hashtable. */
693 struct elf_m68k_got_entry_key
695 /* BFD in which this symbol was defined. NULL for global symbols. */
698 /* Symbol index. Either local symbol index or h->got_entry_key. */
699 unsigned long symndx;
701 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
702 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
704 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
705 matters. That is, we distinguish between, say, R_68K_GOT16O
706 and R_68K_GOT32O when allocating offsets, but they are considered to be
707 the same when searching got->entries. */
708 enum elf_m68k_reloc_type type;
711 /* Size of the GOT offset suitable for relocation. */
712 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
714 /* Entry of the GOT. */
715 struct elf_m68k_got_entry
717 /* GOT entries are put into a got->entries hashtable. This is the key. */
718 struct elf_m68k_got_entry_key key_;
720 /* GOT entry data. We need s1 before offset finalization and s2 after. */
725 /* Number of times this entry is referenced. It is used to
726 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
732 /* Offset from the start of .got section. To calculate offset relative
733 to GOT pointer one should substract got->offset from this value. */
736 /* Pointer to the next GOT entry for this global symbol.
737 Symbols have at most one entry in one GOT, but might
738 have entries in more than one GOT.
739 Root of this list is h->glist.
740 NULL for local symbols. */
741 struct elf_m68k_got_entry *next;
746 /* Return representative type for relocation R_TYPE.
747 This is used to avoid enumerating many relocations in comparisons,
750 static enum elf_m68k_reloc_type
751 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
755 /* In most cases R_68K_GOTx relocations require the very same
756 handling as R_68K_GOT32O relocation. In cases when we need
757 to distinguish between the two, we use explicitly compare against
770 return R_68K_TLS_GD32;
772 case R_68K_TLS_LDM32:
773 case R_68K_TLS_LDM16:
775 return R_68K_TLS_LDM32;
780 return R_68K_TLS_IE32;
788 /* Return size of the GOT entry offset for relocation R_TYPE. */
790 static enum elf_m68k_got_offset_size
791 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
795 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
796 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
800 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
804 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
814 /* Return number of GOT entries we need to allocate in GOT for
815 relocation R_TYPE. */
818 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
820 switch (elf_m68k_reloc_got_type (r_type))
827 case R_68K_TLS_LDM32:
836 /* Return TRUE if relocation R_TYPE is a TLS one. */
839 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
843 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
844 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
845 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
846 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
847 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
848 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
856 /* Data structure representing a single GOT. */
859 /* Hashtable of 'struct elf_m68k_got_entry's.
860 Starting size of this table is the maximum number of
861 R_68K_GOT8O entries. */
864 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
867 n_slots[R_8] is the count of R_8 slots in this GOT.
868 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
870 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
871 in this GOT. This is the total number of slots. */
872 bfd_vma n_slots[R_LAST];
874 /* Number of local (entry->key_.h == NULL) slots in this GOT.
875 This is only used to properly calculate size of .rela.got section;
876 see elf_m68k_partition_multi_got. */
877 bfd_vma local_n_slots;
879 /* Offset of this GOT relative to beginning of .got section. */
883 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
884 struct elf_m68k_bfd2got_entry
889 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
890 GOT structure. After partitioning several BFD's might [and often do]
891 share a single GOT. */
892 struct elf_m68k_got *got;
895 /* The main data structure holding all the pieces. */
896 struct elf_m68k_multi_got
898 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
899 here, then it doesn't need a GOT (this includes the case of a BFD
900 having an empty GOT).
902 ??? This hashtable can be replaced by an array indexed by bfd->id. */
905 /* Next symndx to assign a global symbol.
906 h->got_entry_key is initialized from this counter. */
907 unsigned long global_symndx;
910 /* m68k ELF linker hash table. */
912 struct elf_m68k_link_hash_table
914 struct elf_link_hash_table root;
916 /* Small local sym cache. */
917 struct sym_cache sym_cache;
919 /* The PLT format used by this link, or NULL if the format has not
921 const struct elf_m68k_plt_info *plt_info;
923 /* True, if GP is loaded within each function which uses it.
924 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
925 bfd_boolean local_gp_p;
927 /* Switch controlling use of negative offsets to double the size of GOTs. */
928 bfd_boolean use_neg_got_offsets_p;
930 /* Switch controlling generation of multiple GOTs. */
931 bfd_boolean allow_multigot_p;
933 /* Multi-GOT data structure. */
934 struct elf_m68k_multi_got multi_got_;
937 /* Get the m68k ELF linker hash table from a link_info structure. */
939 #define elf_m68k_hash_table(p) \
940 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
941 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
943 /* Shortcut to multi-GOT data. */
944 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
946 /* Create an entry in an m68k ELF linker hash table. */
948 static struct bfd_hash_entry *
949 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
950 struct bfd_hash_table *table,
953 struct bfd_hash_entry *ret = entry;
955 /* Allocate the structure if it has not already been allocated by a
958 ret = bfd_hash_allocate (table,
959 sizeof (struct elf_m68k_link_hash_entry));
963 /* Call the allocation method of the superclass. */
964 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
967 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
968 elf_m68k_hash_entry (ret)->got_entry_key = 0;
969 elf_m68k_hash_entry (ret)->glist = NULL;
975 /* Create an m68k ELF linker hash table. */
977 static struct bfd_link_hash_table *
978 elf_m68k_link_hash_table_create (bfd *abfd)
980 struct elf_m68k_link_hash_table *ret;
981 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
983 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
984 if (ret == (struct elf_m68k_link_hash_table *) NULL)
987 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
988 elf_m68k_link_hash_newfunc,
989 sizeof (struct elf_m68k_link_hash_entry),
996 ret->sym_cache.abfd = NULL;
997 ret->plt_info = NULL;
998 ret->local_gp_p = FALSE;
999 ret->use_neg_got_offsets_p = FALSE;
1000 ret->allow_multigot_p = FALSE;
1001 ret->multi_got_.bfd2got = NULL;
1002 ret->multi_got_.global_symndx = 1;
1004 return &ret->root.root;
1007 /* Destruct local data. */
1010 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
1012 struct elf_m68k_link_hash_table *htab;
1014 htab = (struct elf_m68k_link_hash_table *) _htab;
1016 if (htab->multi_got_.bfd2got != NULL)
1018 htab_delete (htab->multi_got_.bfd2got);
1019 htab->multi_got_.bfd2got = NULL;
1023 /* Set the right machine number. */
1026 elf32_m68k_object_p (bfd *abfd)
1028 unsigned int mach = 0;
1029 unsigned features = 0;
1030 flagword eflags = elf_elfheader (abfd)->e_flags;
1032 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1034 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1036 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1040 switch (eflags & EF_M68K_CF_ISA_MASK)
1042 case EF_M68K_CF_ISA_A_NODIV:
1043 features |= mcfisa_a;
1045 case EF_M68K_CF_ISA_A:
1046 features |= mcfisa_a|mcfhwdiv;
1048 case EF_M68K_CF_ISA_A_PLUS:
1049 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1051 case EF_M68K_CF_ISA_B_NOUSP:
1052 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1054 case EF_M68K_CF_ISA_B:
1055 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1057 case EF_M68K_CF_ISA_C:
1058 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1060 case EF_M68K_CF_ISA_C_NODIV:
1061 features |= mcfisa_a|mcfisa_c|mcfusp;
1064 switch (eflags & EF_M68K_CF_MAC_MASK)
1066 case EF_M68K_CF_MAC:
1069 case EF_M68K_CF_EMAC:
1070 features |= mcfemac;
1073 if (eflags & EF_M68K_CF_FLOAT)
1077 mach = bfd_m68k_features_to_mach (features);
1078 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1083 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1084 field based on the machine number. */
1087 elf_m68k_final_write_processing (bfd *abfd,
1088 bfd_boolean linker ATTRIBUTE_UNUSED)
1090 int mach = bfd_get_mach (abfd);
1091 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1095 unsigned int arch_mask;
1097 arch_mask = bfd_m68k_mach_to_features (mach);
1099 if (arch_mask & m68000)
1100 e_flags = EF_M68K_M68000;
1101 else if (arch_mask & cpu32)
1102 e_flags = EF_M68K_CPU32;
1103 else if (arch_mask & fido_a)
1104 e_flags = EF_M68K_FIDO;
1108 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1111 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1113 case mcfisa_a | mcfhwdiv:
1114 e_flags |= EF_M68K_CF_ISA_A;
1116 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1117 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1119 case mcfisa_a | mcfisa_b | mcfhwdiv:
1120 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1122 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1123 e_flags |= EF_M68K_CF_ISA_B;
1125 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1126 e_flags |= EF_M68K_CF_ISA_C;
1128 case mcfisa_a | mcfisa_c | mcfusp:
1129 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1132 if (arch_mask & mcfmac)
1133 e_flags |= EF_M68K_CF_MAC;
1134 else if (arch_mask & mcfemac)
1135 e_flags |= EF_M68K_CF_EMAC;
1136 if (arch_mask & cfloat)
1137 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1139 elf_elfheader (abfd)->e_flags = e_flags;
1143 /* Keep m68k-specific flags in the ELF header. */
1146 elf32_m68k_set_private_flags (abfd, flags)
1150 elf_elfheader (abfd)->e_flags = flags;
1151 elf_flags_init (abfd) = TRUE;
1155 /* Merge backend specific data from an object file to the output
1156 object file when linking. */
1158 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
1166 const bfd_arch_info_type *arch_info;
1168 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1169 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1172 /* Get the merged machine. This checks for incompatibility between
1173 Coldfire & non-Coldfire flags, incompability between different
1174 Coldfire ISAs, and incompability between different MAC types. */
1175 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1179 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1181 in_flags = elf_elfheader (ibfd)->e_flags;
1182 if (!elf_flags_init (obfd))
1184 elf_flags_init (obfd) = TRUE;
1185 out_flags = in_flags;
1189 out_flags = elf_elfheader (obfd)->e_flags;
1190 unsigned int variant_mask;
1192 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1194 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1196 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1199 variant_mask = EF_M68K_CF_ISA_MASK;
1201 in_isa = (in_flags & variant_mask);
1202 out_isa = (out_flags & variant_mask);
1203 if (in_isa > out_isa)
1204 out_flags ^= in_isa ^ out_isa;
1205 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1206 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1207 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1208 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1209 out_flags = EF_M68K_FIDO;
1211 out_flags |= in_flags ^ in_isa;
1213 elf_elfheader (obfd)->e_flags = out_flags;
1218 /* Display the flags field. */
1221 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1223 FILE *file = (FILE *) ptr;
1224 flagword eflags = elf_elfheader (abfd)->e_flags;
1226 BFD_ASSERT (abfd != NULL && ptr != NULL);
1228 /* Print normal ELF private data. */
1229 _bfd_elf_print_private_bfd_data (abfd, ptr);
1231 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1233 /* xgettext:c-format */
1234 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1236 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1237 fprintf (file, " [m68000]");
1238 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1239 fprintf (file, " [cpu32]");
1240 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1241 fprintf (file, " [fido]");
1244 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1245 fprintf (file, " [cfv4e]");
1247 if (eflags & EF_M68K_CF_ISA_MASK)
1249 char const *isa = _("unknown");
1250 char const *mac = _("unknown");
1251 char const *additional = "";
1253 switch (eflags & EF_M68K_CF_ISA_MASK)
1255 case EF_M68K_CF_ISA_A_NODIV:
1257 additional = " [nodiv]";
1259 case EF_M68K_CF_ISA_A:
1262 case EF_M68K_CF_ISA_A_PLUS:
1265 case EF_M68K_CF_ISA_B_NOUSP:
1267 additional = " [nousp]";
1269 case EF_M68K_CF_ISA_B:
1272 case EF_M68K_CF_ISA_C:
1275 case EF_M68K_CF_ISA_C_NODIV:
1277 additional = " [nodiv]";
1280 fprintf (file, " [isa %s]%s", isa, additional);
1282 if (eflags & EF_M68K_CF_FLOAT)
1283 fprintf (file, " [float]");
1285 switch (eflags & EF_M68K_CF_MAC_MASK)
1290 case EF_M68K_CF_MAC:
1293 case EF_M68K_CF_EMAC:
1296 case EF_M68K_CF_EMAC_B:
1301 fprintf (file, " [%s]", mac);
1310 /* Multi-GOT support implementation design:
1312 Multi-GOT starts in check_relocs hook. There we scan all
1313 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1314 for it. If a single BFD appears to require too many GOT slots with
1315 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1317 After check_relocs has been invoked for each input BFD, we have
1318 constructed a GOT for each input BFD.
1320 To minimize total number of GOTs required for a particular output BFD
1321 (as some environments support only 1 GOT per output object) we try
1322 to merge some of the GOTs to share an offset space. Ideally [and in most
1323 cases] we end up with a single GOT. In cases when there are too many
1324 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1325 several GOTs, assuming the environment can handle them.
1327 Partitioning is done in elf_m68k_partition_multi_got. We start with
1328 an empty GOT and traverse bfd2got hashtable putting got_entries from
1329 local GOTs to the new 'big' one. We do that by constructing an
1330 intermediate GOT holding all the entries the local GOT has and the big
1331 GOT lacks. Then we check if there is room in the big GOT to accomodate
1332 all the entries from diff. On success we add those entries to the big
1333 GOT; on failure we start the new 'big' GOT and retry the adding of
1334 entries from the local GOT. Note that this retry will always succeed as
1335 each local GOT doesn't overflow the limits. After partitioning we
1336 end up with each bfd assigned one of the big GOTs. GOT entries in the
1337 big GOTs are initialized with GOT offsets. Note that big GOTs are
1338 positioned consequently in program space and represent a single huge GOT
1339 to the outside world.
1341 After that we get to elf_m68k_relocate_section. There we
1342 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1343 relocations to refer to appropriate [assigned to current input_bfd]
1348 GOT entry type: We have several types of GOT entries.
1349 * R_8 type is used in entries for symbols that have at least one
1350 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1351 such entries in one GOT.
1352 * R_16 type is used in entries for symbols that have at least one
1353 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1354 We can have at most 0x4000 such entries in one GOT.
1355 * R_32 type is used in all other cases. We can have as many
1356 such entries in one GOT as we'd like.
1357 When counting relocations we have to include the count of the smaller
1358 ranged relocations in the counts of the larger ranged ones in order
1359 to correctly detect overflow.
1361 Sorting the GOT: In each GOT starting offsets are assigned to
1362 R_8 entries, which are followed by R_16 entries, and
1363 R_32 entries go at the end. See finalize_got_offsets for details.
1365 Negative GOT offsets: To double usable offset range of GOTs we use
1366 negative offsets. As we assign entries with GOT offsets relative to
1367 start of .got section, the offset values are positive. They become
1368 negative only in relocate_section where got->offset value is
1369 subtracted from them.
1371 3 special GOT entries: There are 3 special GOT entries used internally
1372 by loader. These entries happen to be placed to .got.plt section,
1373 so we don't do anything about them in multi-GOT support.
1375 Memory management: All data except for hashtables
1376 multi_got->bfd2got and got->entries are allocated on
1377 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1378 to most functions), so we don't need to care to free them. At the
1379 moment of allocation hashtables are being linked into main data
1380 structure (multi_got), all pieces of which are reachable from
1381 elf_m68k_multi_got (info). We deallocate them in
1382 elf_m68k_link_hash_table_free. */
1384 /* Initialize GOT. */
1387 elf_m68k_init_got (struct elf_m68k_got *got)
1389 got->entries = NULL;
1390 got->n_slots[R_8] = 0;
1391 got->n_slots[R_16] = 0;
1392 got->n_slots[R_32] = 0;
1393 got->local_n_slots = 0;
1394 got->offset = (bfd_vma) -1;
1400 elf_m68k_clear_got (struct elf_m68k_got *got)
1402 if (got->entries != NULL)
1404 htab_delete (got->entries);
1405 got->entries = NULL;
1409 /* Create and empty GOT structure. INFO is the context where memory
1410 should be allocated. */
1412 static struct elf_m68k_got *
1413 elf_m68k_create_empty_got (struct bfd_link_info *info)
1415 struct elf_m68k_got *got;
1417 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1421 elf_m68k_init_got (got);
1426 /* Initialize KEY. */
1429 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1430 struct elf_link_hash_entry *h,
1431 const bfd *abfd, unsigned long symndx,
1432 enum elf_m68k_reloc_type reloc_type)
1434 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1435 /* All TLS_LDM relocations share a single GOT entry. */
1441 /* Global symbols are identified with their got_entry_key. */
1444 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1445 BFD_ASSERT (key->symndx != 0);
1448 /* Local symbols are identified by BFD they appear in and symndx. */
1451 key->symndx = symndx;
1454 key->type = reloc_type;
1457 /* Calculate hash of got_entry.
1461 elf_m68k_got_entry_hash (const void *_entry)
1463 const struct elf_m68k_got_entry_key *key;
1465 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1468 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1469 + elf_m68k_reloc_got_type (key->type));
1472 /* Check if two got entries are equal. */
1475 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1477 const struct elf_m68k_got_entry_key *key1;
1478 const struct elf_m68k_got_entry_key *key2;
1480 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1481 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1483 return (key1->bfd == key2->bfd
1484 && key1->symndx == key2->symndx
1485 && (elf_m68k_reloc_got_type (key1->type)
1486 == elf_m68k_reloc_got_type (key2->type)));
1489 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1490 and one extra R_32 slots to simplify handling of 2-slot entries during
1491 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1493 /* Maximal number of R_8 slots in a single GOT. */
1494 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1495 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1499 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1500 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1501 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1505 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1506 the entry cannot be found.
1507 FIND_OR_CREATE - search for an existing entry, but create new if there's
1509 MUST_FIND - search for an existing entry and assert that it exist.
1510 MUST_CREATE - assert that there's no such entry and create new one. */
1511 enum elf_m68k_get_entry_howto
1519 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1520 INFO is context in which memory should be allocated (can be NULL if
1521 HOWTO is SEARCH or MUST_FIND). */
1523 static struct elf_m68k_got_entry *
1524 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1525 const struct elf_m68k_got_entry_key *key,
1526 enum elf_m68k_get_entry_howto howto,
1527 struct bfd_link_info *info)
1529 struct elf_m68k_got_entry entry_;
1530 struct elf_m68k_got_entry *entry;
1533 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1535 if (got->entries == NULL)
1536 /* This is the first entry in ABFD. Initialize hashtable. */
1538 if (howto == SEARCH)
1541 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1543 elf_m68k_got_entry_hash,
1544 elf_m68k_got_entry_eq, NULL);
1545 if (got->entries == NULL)
1547 bfd_set_error (bfd_error_no_memory);
1553 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1554 ? INSERT : NO_INSERT));
1557 if (howto == SEARCH)
1558 /* Entry not found. */
1561 /* We're out of memory. */
1562 bfd_set_error (bfd_error_no_memory);
1567 /* We didn't find the entry and we're asked to create a new one. */
1569 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1571 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1575 /* Initialize new entry. */
1578 entry->u.s1.refcount = 0;
1580 /* Mark the entry as not initialized. */
1581 entry->key_.type = R_68K_max;
1586 /* We found the entry. */
1588 BFD_ASSERT (howto != MUST_CREATE);
1596 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1597 Return the value to which ENTRY's type should be set. */
1599 static enum elf_m68k_reloc_type
1600 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1601 enum elf_m68k_reloc_type was,
1602 enum elf_m68k_reloc_type new_reloc)
1604 enum elf_m68k_got_offset_size was_size;
1605 enum elf_m68k_got_offset_size new_size;
1608 if (was == R_68K_max)
1609 /* The type of the entry is not initialized yet. */
1611 /* Update all got->n_slots counters, including n_slots[R_32]. */
1618 /* !!! We, probably, should emit an error rather then fail on assert
1620 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1621 == elf_m68k_reloc_got_type (new_reloc));
1623 was_size = elf_m68k_reloc_got_offset_size (was);
1626 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1627 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1629 while (was_size > new_size)
1632 got->n_slots[was_size] += n_slots;
1635 if (new_reloc > was)
1636 /* Relocations are ordered from bigger got offset size to lesser,
1637 so choose the relocation type with lesser offset size. */
1643 /* Update GOT counters when removing an entry of type TYPE. */
1646 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1647 enum elf_m68k_reloc_type type)
1649 enum elf_m68k_got_offset_size os;
1652 n_slots = elf_m68k_reloc_got_n_slots (type);
1654 /* Decrese counter of slots with offset size corresponding to TYPE
1655 and all greater offset sizes. */
1656 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1658 BFD_ASSERT (got->n_slots[os] >= n_slots);
1660 got->n_slots[os] -= n_slots;
1664 /* Add new or update existing entry to GOT.
1665 H, ABFD, TYPE and SYMNDX is data for the entry.
1666 INFO is a context where memory should be allocated. */
1668 static struct elf_m68k_got_entry *
1669 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1670 struct elf_link_hash_entry *h,
1672 enum elf_m68k_reloc_type reloc_type,
1673 unsigned long symndx,
1674 struct bfd_link_info *info)
1676 struct elf_m68k_got_entry_key key_;
1677 struct elf_m68k_got_entry *entry;
1679 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1680 elf_m68k_hash_entry (h)->got_entry_key
1681 = elf_m68k_multi_got (info)->global_symndx++;
1683 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1685 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1689 /* Determine entry's type and update got->n_slots counters. */
1690 entry->key_.type = elf_m68k_update_got_entry_type (got,
1694 /* Update refcount. */
1695 ++entry->u.s1.refcount;
1697 if (entry->u.s1.refcount == 1)
1698 /* We see this entry for the first time. */
1700 if (entry->key_.bfd != NULL)
1701 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1704 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1706 if ((got->n_slots[R_8]
1707 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1708 || (got->n_slots[R_16]
1709 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1710 /* This BFD has too many relocation. */
1712 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1713 (*_bfd_error_handler) (_("%B: GOT overflow: "
1714 "Number of relocations with 8-bit "
1717 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1719 (*_bfd_error_handler) (_("%B: GOT overflow: "
1720 "Number of relocations with 8- or 16-bit "
1723 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1731 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1734 elf_m68k_bfd2got_entry_hash (const void *entry)
1736 const struct elf_m68k_bfd2got_entry *e;
1738 e = (const struct elf_m68k_bfd2got_entry *) entry;
1743 /* Check whether two hash entries have the same bfd. */
1746 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1748 const struct elf_m68k_bfd2got_entry *e1;
1749 const struct elf_m68k_bfd2got_entry *e2;
1751 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1752 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1754 return e1->bfd == e2->bfd;
1757 /* Destruct a bfd2got entry. */
1760 elf_m68k_bfd2got_entry_del (void *_entry)
1762 struct elf_m68k_bfd2got_entry *entry;
1764 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1766 BFD_ASSERT (entry->got != NULL);
1767 elf_m68k_clear_got (entry->got);
1770 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1771 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1772 memory should be allocated. */
1774 static struct elf_m68k_bfd2got_entry *
1775 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1777 enum elf_m68k_get_entry_howto howto,
1778 struct bfd_link_info *info)
1780 struct elf_m68k_bfd2got_entry entry_;
1782 struct elf_m68k_bfd2got_entry *entry;
1784 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1786 if (multi_got->bfd2got == NULL)
1787 /* This is the first GOT. Initialize bfd2got. */
1789 if (howto == SEARCH)
1792 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1793 elf_m68k_bfd2got_entry_eq,
1794 elf_m68k_bfd2got_entry_del);
1795 if (multi_got->bfd2got == NULL)
1797 bfd_set_error (bfd_error_no_memory);
1803 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1804 ? INSERT : NO_INSERT));
1807 if (howto == SEARCH)
1808 /* Entry not found. */
1811 /* We're out of memory. */
1812 bfd_set_error (bfd_error_no_memory);
1817 /* Entry was not found. Create new one. */
1819 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1821 entry = ((struct elf_m68k_bfd2got_entry *)
1822 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1828 entry->got = elf_m68k_create_empty_got (info);
1829 if (entry->got == NULL)
1836 BFD_ASSERT (howto != MUST_CREATE);
1838 /* Return existing entry. */
1845 struct elf_m68k_can_merge_gots_arg
1847 /* A current_got that we constructing a DIFF against. */
1848 struct elf_m68k_got *big;
1850 /* GOT holding entries not present or that should be changed in
1852 struct elf_m68k_got *diff;
1854 /* Context where to allocate memory. */
1855 struct bfd_link_info *info;
1858 bfd_boolean error_p;
1861 /* Process a single entry from the small GOT to see if it should be added
1862 or updated in the big GOT. */
1865 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1867 const struct elf_m68k_got_entry *entry1;
1868 struct elf_m68k_can_merge_gots_arg *arg;
1869 const struct elf_m68k_got_entry *entry2;
1870 enum elf_m68k_reloc_type type;
1872 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1873 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1875 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1878 /* We found an existing entry. Check if we should update it. */
1880 type = elf_m68k_update_got_entry_type (arg->diff,
1884 if (type == entry2->key_.type)
1885 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1886 To skip creation of difference entry we use the type,
1887 which we won't see in GOT entries for sure. */
1891 /* We didn't find the entry. Add entry1 to DIFF. */
1893 BFD_ASSERT (entry1->key_.type != R_68K_max);
1895 type = elf_m68k_update_got_entry_type (arg->diff,
1896 R_68K_max, entry1->key_.type);
1898 if (entry1->key_.bfd != NULL)
1899 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1902 if (type != R_68K_max)
1903 /* Create an entry in DIFF. */
1905 struct elf_m68k_got_entry *entry;
1907 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1911 arg->error_p = TRUE;
1915 entry->key_.type = type;
1921 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1922 Construct DIFF GOT holding the entries which should be added or updated
1923 in BIG GOT to accumulate information from SMALL.
1924 INFO is the context where memory should be allocated. */
1927 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1928 const struct elf_m68k_got *small,
1929 struct bfd_link_info *info,
1930 struct elf_m68k_got *diff)
1932 struct elf_m68k_can_merge_gots_arg arg_;
1934 BFD_ASSERT (small->offset == (bfd_vma) -1);
1939 arg_.error_p = FALSE;
1940 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1947 /* Check for overflow. */
1948 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1949 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1950 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1951 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1957 struct elf_m68k_merge_gots_arg
1960 struct elf_m68k_got *big;
1962 /* Context where memory should be allocated. */
1963 struct bfd_link_info *info;
1966 bfd_boolean error_p;
1969 /* Process a single entry from DIFF got. Add or update corresponding
1970 entry in the BIG got. */
1973 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1975 const struct elf_m68k_got_entry *from;
1976 struct elf_m68k_merge_gots_arg *arg;
1977 struct elf_m68k_got_entry *to;
1979 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1980 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1982 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1986 arg->error_p = TRUE;
1990 BFD_ASSERT (to->u.s1.refcount == 0);
1991 /* All we need to merge is TYPE. */
1992 to->key_.type = from->key_.type;
1997 /* Merge data from DIFF to BIG. INFO is context where memory should be
2001 elf_m68k_merge_gots (struct elf_m68k_got *big,
2002 struct elf_m68k_got *diff,
2003 struct bfd_link_info *info)
2005 if (diff->entries != NULL)
2006 /* DIFF is not empty. Merge it into BIG GOT. */
2008 struct elf_m68k_merge_gots_arg arg_;
2010 /* Merge entries. */
2013 arg_.error_p = FALSE;
2014 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2018 /* Merge counters. */
2019 big->n_slots[R_8] += diff->n_slots[R_8];
2020 big->n_slots[R_16] += diff->n_slots[R_16];
2021 big->n_slots[R_32] += diff->n_slots[R_32];
2022 big->local_n_slots += diff->local_n_slots;
2025 /* DIFF is empty. */
2027 BFD_ASSERT (diff->n_slots[R_8] == 0);
2028 BFD_ASSERT (diff->n_slots[R_16] == 0);
2029 BFD_ASSERT (diff->n_slots[R_32] == 0);
2030 BFD_ASSERT (diff->local_n_slots == 0);
2033 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2034 || ((big->n_slots[R_8]
2035 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2036 && (big->n_slots[R_16]
2037 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2042 struct elf_m68k_finalize_got_offsets_arg
2044 /* Ranges of the offsets for GOT entries.
2045 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2046 R_x is R_8, R_16 and R_32. */
2050 /* Mapping from global symndx to global symbols.
2051 This is used to build lists of got entries for global symbols. */
2052 struct elf_m68k_link_hash_entry **symndx2h;
2054 bfd_vma n_ldm_entries;
2057 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2061 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2063 struct elf_m68k_got_entry *entry;
2064 struct elf_m68k_finalize_got_offsets_arg *arg;
2066 enum elf_m68k_got_offset_size got_offset_size;
2069 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2070 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2072 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2073 BFD_ASSERT (entry->u.s1.refcount == 0);
2075 /* Get GOT offset size for the entry . */
2076 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2078 /* Calculate entry size in bytes. */
2079 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2081 /* Check if we should switch to negative range of the offsets. */
2082 if (arg->offset1[got_offset_size] + entry_size
2083 > arg->offset2[got_offset_size])
2085 /* Verify that this is the only switch to negative range for
2086 got_offset_size. If this assertion fails, then we've miscalculated
2087 range for got_offset_size entries in
2088 elf_m68k_finalize_got_offsets. */
2089 BFD_ASSERT (arg->offset2[got_offset_size]
2090 != arg->offset2[-(int) got_offset_size - 1]);
2093 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2094 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2096 /* Verify that now we have enough room for the entry. */
2097 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2098 <= arg->offset2[got_offset_size]);
2101 /* Assign offset to entry. */
2102 entry->u.s2.offset = arg->offset1[got_offset_size];
2103 arg->offset1[got_offset_size] += entry_size;
2105 if (entry->key_.bfd == NULL)
2106 /* Hook up this entry into the list of got_entries of H. */
2108 struct elf_m68k_link_hash_entry *h;
2110 h = arg->symndx2h[entry->key_.symndx];
2113 entry->u.s2.next = h->glist;
2117 /* This should be the entry for TLS_LDM relocation then. */
2119 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2121 && entry->key_.symndx == 0);
2123 ++arg->n_ldm_entries;
2127 /* This entry is for local symbol. */
2128 entry->u.s2.next = NULL;
2133 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2134 should use negative offsets.
2135 Build list of GOT entries for global symbols along the way.
2136 SYMNDX2H is mapping from global symbol indices to actual
2138 Return offset at which next GOT should start. */
2141 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2142 bfd_boolean use_neg_got_offsets_p,
2143 struct elf_m68k_link_hash_entry **symndx2h,
2144 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2146 struct elf_m68k_finalize_got_offsets_arg arg_;
2147 bfd_vma offset1_[2 * R_LAST];
2148 bfd_vma offset2_[2 * R_LAST];
2150 bfd_vma start_offset;
2152 BFD_ASSERT (got->offset != (bfd_vma) -1);
2154 /* We set entry offsets relative to the .got section (and not the
2155 start of a particular GOT), so that we can use them in
2156 finish_dynamic_symbol without needing to know the GOT which they come
2159 /* Put offset1 in the middle of offset1_, same for offset2. */
2160 arg_.offset1 = offset1_ + R_LAST;
2161 arg_.offset2 = offset2_ + R_LAST;
2163 start_offset = got->offset;
2165 if (use_neg_got_offsets_p)
2166 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2167 i = -(int) R_32 - 1;
2169 /* Setup positives ranges for R_8, R_16 and R_32. */
2172 for (; i <= (int) R_32; ++i)
2177 /* Set beginning of the range of offsets I. */
2178 arg_.offset1[i] = start_offset;
2180 /* Calculate number of slots that require I offsets. */
2181 j = (i >= 0) ? i : -i - 1;
2182 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2183 n = got->n_slots[j] - n;
2185 if (use_neg_got_offsets_p && n != 0)
2188 /* We first fill the positive side of the range, so we might
2189 end up with one empty slot at that side when we can't fit
2190 whole 2-slot entry. Account for that at negative side of
2191 the interval with one additional entry. */
2194 /* When the number of slots is odd, make positive side of the
2195 range one entry bigger. */
2199 /* N is the number of slots that require I offsets.
2200 Calculate length of the range for I offsets. */
2203 /* Set end of the range. */
2204 arg_.offset2[i] = start_offset + n;
2206 start_offset = arg_.offset2[i];
2209 if (!use_neg_got_offsets_p)
2210 /* Make sure that if we try to switch to negative offsets in
2211 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2213 for (i = R_8; i <= R_32; ++i)
2214 arg_.offset2[-i - 1] = arg_.offset2[i];
2216 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2217 beginning of GOT depending on use_neg_got_offsets_p. */
2218 got->offset = arg_.offset1[R_8];
2220 arg_.symndx2h = symndx2h;
2221 arg_.n_ldm_entries = 0;
2223 /* Assign offsets. */
2224 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2226 /* Check offset ranges we have actually assigned. */
2227 for (i = (int) R_8; i <= (int) R_32; ++i)
2228 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2230 *final_offset = start_offset;
2231 *n_ldm_entries = arg_.n_ldm_entries;
2234 struct elf_m68k_partition_multi_got_arg
2236 /* The GOT we are adding entries to. Aka big got. */
2237 struct elf_m68k_got *current_got;
2239 /* Offset to assign the next CURRENT_GOT. */
2242 /* Context where memory should be allocated. */
2243 struct bfd_link_info *info;
2245 /* Total number of slots in the .got section.
2246 This is used to calculate size of the .got and .rela.got sections. */
2249 /* Difference in numbers of allocated slots in the .got section
2250 and necessary relocations in the .rela.got section.
2251 This is used to calculate size of the .rela.got section. */
2252 bfd_vma slots_relas_diff;
2255 bfd_boolean error_p;
2257 /* Mapping from global symndx to global symbols.
2258 This is used to build lists of got entries for global symbols. */
2259 struct elf_m68k_link_hash_entry **symndx2h;
2263 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2265 bfd_vma n_ldm_entries;
2267 elf_m68k_finalize_got_offsets (arg->current_got,
2268 (elf_m68k_hash_table (arg->info)
2269 ->use_neg_got_offsets_p),
2271 &arg->offset, &n_ldm_entries);
2273 arg->n_slots += arg->current_got->n_slots[R_32];
2275 if (!arg->info->shared)
2276 /* If we are generating a shared object, we need to
2277 output a R_68K_RELATIVE reloc so that the dynamic
2278 linker can adjust this GOT entry. Overwise we
2279 don't need space in .rela.got for local symbols. */
2280 arg->slots_relas_diff += arg->current_got->local_n_slots;
2282 /* @LDM relocations require a 2-slot GOT entry, but only
2283 one relocation. Account for that. */
2284 arg->slots_relas_diff += n_ldm_entries;
2286 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2290 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2291 or start a new CURRENT_GOT. */
2294 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2296 struct elf_m68k_bfd2got_entry *entry;
2297 struct elf_m68k_partition_multi_got_arg *arg;
2298 struct elf_m68k_got *got;
2299 struct elf_m68k_got diff_;
2300 struct elf_m68k_got *diff;
2302 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2303 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2306 BFD_ASSERT (got != NULL);
2307 BFD_ASSERT (got->offset == (bfd_vma) -1);
2311 if (arg->current_got != NULL)
2312 /* Construct diff. */
2315 elf_m68k_init_got (diff);
2317 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2319 if (diff->offset == 0)
2320 /* Offset set to 0 in the diff_ indicates an error. */
2322 arg->error_p = TRUE;
2326 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2328 elf_m68k_clear_got (diff);
2329 /* Schedule to finish up current_got and start new one. */
2333 Merge GOTs no matter what. If big GOT overflows,
2334 we'll fail in relocate_section due to truncated relocations.
2336 ??? May be fail earlier? E.g., in can_merge_gots. */
2340 /* Diff of got against empty current_got is got itself. */
2342 /* Create empty current_got to put subsequent GOTs to. */
2343 arg->current_got = elf_m68k_create_empty_got (arg->info);
2344 if (arg->current_got == NULL)
2346 arg->error_p = TRUE;
2350 arg->current_got->offset = arg->offset;
2357 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2359 arg->error_p = TRUE;
2363 /* Now we can free GOT. */
2364 elf_m68k_clear_got (got);
2366 entry->got = arg->current_got;
2370 /* Finish up current_got. */
2371 elf_m68k_partition_multi_got_2 (arg);
2373 /* Schedule to start a new current_got. */
2374 arg->current_got = NULL;
2377 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2379 BFD_ASSERT (arg->error_p);
2386 elf_m68k_clear_got (diff);
2388 return arg->error_p == FALSE ? 1 : 0;
2391 /* Helper function to build symndx2h mapping. */
2394 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2397 struct elf_m68k_link_hash_entry *h;
2399 h = elf_m68k_hash_entry (_h);
2401 if (h->got_entry_key != 0)
2402 /* H has at least one entry in the GOT. */
2404 struct elf_m68k_partition_multi_got_arg *arg;
2406 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2408 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2409 arg->symndx2h[h->got_entry_key] = h;
2415 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2416 lists of GOT entries for global symbols.
2417 Calculate sizes of .got and .rela.got sections. */
2420 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2422 struct elf_m68k_multi_got *multi_got;
2423 struct elf_m68k_partition_multi_got_arg arg_;
2425 multi_got = elf_m68k_multi_got (info);
2427 arg_.current_got = NULL;
2431 arg_.slots_relas_diff = 0;
2432 arg_.error_p = FALSE;
2434 if (multi_got->bfd2got != NULL)
2436 /* Initialize symndx2h mapping. */
2438 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2439 * sizeof (*arg_.symndx2h));
2440 if (arg_.symndx2h == NULL)
2443 elf_link_hash_traverse (elf_hash_table (info),
2444 elf_m68k_init_symndx2h_1, &arg_);
2448 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2452 free (arg_.symndx2h);
2453 arg_.symndx2h = NULL;
2458 /* Finish up last current_got. */
2459 elf_m68k_partition_multi_got_2 (&arg_);
2461 free (arg_.symndx2h);
2464 if (elf_hash_table (info)->dynobj != NULL)
2465 /* Set sizes of .got and .rela.got sections. */
2469 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2471 s->size = arg_.offset;
2473 BFD_ASSERT (arg_.offset == 0);
2475 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2476 arg_.n_slots -= arg_.slots_relas_diff;
2478 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2480 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2482 BFD_ASSERT (arg_.n_slots == 0);
2485 BFD_ASSERT (multi_got->bfd2got == NULL);
2490 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2491 to hashtable slot, thus allowing removal of entry via
2492 elf_m68k_remove_got_entry. */
2494 static struct elf_m68k_got_entry **
2495 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2496 struct elf_m68k_got_entry_key *key)
2499 struct elf_m68k_got_entry entry_;
2500 struct elf_m68k_got_entry **entry_ptr;
2503 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2504 BFD_ASSERT (ptr != NULL);
2506 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2511 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2514 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2515 struct elf_m68k_got_entry **entry_ptr)
2517 struct elf_m68k_got_entry *entry;
2521 /* Check that offsets have not been finalized yet. */
2522 BFD_ASSERT (got->offset == (bfd_vma) -1);
2523 /* Check that this entry is indeed unused. */
2524 BFD_ASSERT (entry->u.s1.refcount == 0);
2526 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2528 if (entry->key_.bfd != NULL)
2529 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2531 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2533 htab_clear_slot (got->entries, (void **) entry_ptr);
2536 /* Copy any information related to dynamic linking from a pre-existing
2537 symbol to a newly created symbol. Also called to copy flags and
2538 other back-end info to a weakdef, in which case the symbol is not
2539 newly created and plt/got refcounts and dynamic indices should not
2543 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2544 struct elf_link_hash_entry *_dir,
2545 struct elf_link_hash_entry *_ind)
2547 struct elf_m68k_link_hash_entry *dir;
2548 struct elf_m68k_link_hash_entry *ind;
2550 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2552 if (_ind->root.type != bfd_link_hash_indirect)
2555 dir = elf_m68k_hash_entry (_dir);
2556 ind = elf_m68k_hash_entry (_ind);
2558 /* Any absolute non-dynamic relocations against an indirect or weak
2559 definition will be against the target symbol. */
2560 _dir->non_got_ref |= _ind->non_got_ref;
2562 /* We might have a direct symbol already having entries in the GOTs.
2563 Update its key only in case indirect symbol has GOT entries and
2564 assert that both indirect and direct symbols don't have GOT entries
2565 at the same time. */
2566 if (ind->got_entry_key != 0)
2568 BFD_ASSERT (dir->got_entry_key == 0);
2569 /* Assert that GOTs aren't partioned yet. */
2570 BFD_ASSERT (ind->glist == NULL);
2572 dir->got_entry_key = ind->got_entry_key;
2573 ind->got_entry_key = 0;
2577 /* Look through the relocs for a section during the first phase, and
2578 allocate space in the global offset table or procedure linkage
2582 elf_m68k_check_relocs (abfd, info, sec, relocs)
2584 struct bfd_link_info *info;
2586 const Elf_Internal_Rela *relocs;
2589 Elf_Internal_Shdr *symtab_hdr;
2590 struct elf_link_hash_entry **sym_hashes;
2591 const Elf_Internal_Rela *rel;
2592 const Elf_Internal_Rela *rel_end;
2596 struct elf_m68k_got *got;
2598 if (info->relocatable)
2601 dynobj = elf_hash_table (info)->dynobj;
2602 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2603 sym_hashes = elf_sym_hashes (abfd);
2611 rel_end = relocs + sec->reloc_count;
2612 for (rel = relocs; rel < rel_end; rel++)
2614 unsigned long r_symndx;
2615 struct elf_link_hash_entry *h;
2617 r_symndx = ELF32_R_SYM (rel->r_info);
2619 if (r_symndx < symtab_hdr->sh_info)
2623 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2624 while (h->root.type == bfd_link_hash_indirect
2625 || h->root.type == bfd_link_hash_warning)
2626 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2629 switch (ELF32_R_TYPE (rel->r_info))
2635 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2639 /* Relative GOT relocations. */
2645 /* TLS relocations. */
2647 case R_68K_TLS_GD16:
2648 case R_68K_TLS_GD32:
2649 case R_68K_TLS_LDM8:
2650 case R_68K_TLS_LDM16:
2651 case R_68K_TLS_LDM32:
2653 case R_68K_TLS_IE16:
2654 case R_68K_TLS_IE32:
2656 case R_68K_TLS_TPREL32:
2657 case R_68K_TLS_DTPREL32:
2659 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2661 /* Do the special chorus for libraries with static TLS. */
2662 info->flags |= DF_STATIC_TLS;
2664 /* This symbol requires a global offset table entry. */
2668 /* Create the .got section. */
2669 elf_hash_table (info)->dynobj = dynobj = abfd;
2670 if (!_bfd_elf_create_got_section (dynobj, info))
2676 sgot = bfd_get_section_by_name (dynobj, ".got");
2677 BFD_ASSERT (sgot != NULL);
2681 && (h != NULL || info->shared))
2683 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2684 if (srelgot == NULL)
2686 srelgot = bfd_make_section_with_flags (dynobj,
2692 | SEC_LINKER_CREATED
2695 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2702 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2705 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2706 abfd, FIND_OR_CREATE, info);
2707 if (bfd2got_entry == NULL)
2710 got = bfd2got_entry->got;
2711 BFD_ASSERT (got != NULL);
2715 struct elf_m68k_got_entry *got_entry;
2717 /* Add entry to got. */
2718 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2719 ELF32_R_TYPE (rel->r_info),
2721 if (got_entry == NULL)
2724 if (got_entry->u.s1.refcount == 1)
2726 /* Make sure this symbol is output as a dynamic symbol. */
2729 && !h->forced_local)
2731 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2742 /* This symbol requires a procedure linkage table entry. We
2743 actually build the entry in adjust_dynamic_symbol,
2744 because this might be a case of linking PIC code which is
2745 never referenced by a dynamic object, in which case we
2746 don't need to generate a procedure linkage table entry
2749 /* If this is a local symbol, we resolve it directly without
2750 creating a procedure linkage table entry. */
2761 /* This symbol requires a procedure linkage table entry. */
2765 /* It does not make sense to have this relocation for a
2766 local symbol. FIXME: does it? How to handle it if
2767 it does make sense? */
2768 bfd_set_error (bfd_error_bad_value);
2772 /* Make sure this symbol is output as a dynamic symbol. */
2773 if (h->dynindx == -1
2774 && !h->forced_local)
2776 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2787 /* If we are creating a shared library and this is not a local
2788 symbol, we need to copy the reloc into the shared library.
2789 However when linking with -Bsymbolic and this is a global
2790 symbol which is defined in an object we are including in the
2791 link (i.e., DEF_REGULAR is set), then we can resolve the
2792 reloc directly. At this point we have not seen all the input
2793 files, so it is possible that DEF_REGULAR is not set now but
2794 will be set later (it is never cleared). We account for that
2795 possibility below by storing information in the
2796 pcrel_relocs_copied field of the hash table entry. */
2798 && (sec->flags & SEC_ALLOC) != 0
2801 || h->root.type == bfd_link_hash_defweak
2802 || !h->def_regular)))
2806 /* Make sure a plt entry is created for this symbol if
2807 it turns out to be a function defined by a dynamic
2819 /* Make sure a plt entry is created for this symbol if it
2820 turns out to be a function defined by a dynamic object. */
2824 /* This symbol needs a non-GOT reference. */
2828 /* If we are creating a shared library, we need to copy the
2829 reloc into the shared library. */
2831 && (sec->flags & SEC_ALLOC) != 0)
2833 /* When creating a shared object, we must copy these
2834 reloc types into the output file. We create a reloc
2835 section in dynobj and make room for this reloc. */
2838 sreloc = _bfd_elf_make_dynamic_reloc_section
2839 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2845 if (sec->flags & SEC_READONLY
2846 /* Don't set DF_TEXTREL yet for PC relative
2847 relocations, they might be discarded later. */
2848 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2849 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2850 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2851 info->flags |= DF_TEXTREL;
2853 sreloc->size += sizeof (Elf32_External_Rela);
2855 /* We count the number of PC relative relocations we have
2856 entered for this symbol, so that we can discard them
2857 again if, in the -Bsymbolic case, the symbol is later
2858 defined by a regular object, or, in the normal shared
2859 case, the symbol is forced to be local. Note that this
2860 function is only called if we are using an m68kelf linker
2861 hash table, which means that h is really a pointer to an
2862 elf_m68k_link_hash_entry. */
2863 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2864 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2865 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2867 struct elf_m68k_pcrel_relocs_copied *p;
2868 struct elf_m68k_pcrel_relocs_copied **head;
2872 struct elf_m68k_link_hash_entry *eh
2873 = elf_m68k_hash_entry (h);
2874 head = &eh->pcrel_relocs_copied;
2880 Elf_Internal_Sym *isym;
2882 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2887 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2891 vpp = &elf_section_data (s)->local_dynrel;
2892 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2895 for (p = *head; p != NULL; p = p->next)
2896 if (p->section == sreloc)
2901 p = ((struct elf_m68k_pcrel_relocs_copied *)
2902 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2907 p->section = sreloc;
2917 /* This relocation describes the C++ object vtable hierarchy.
2918 Reconstruct it for later use during GC. */
2919 case R_68K_GNU_VTINHERIT:
2920 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2924 /* This relocation describes which C++ vtable entries are actually
2925 used. Record for later use during GC. */
2926 case R_68K_GNU_VTENTRY:
2927 BFD_ASSERT (h != NULL);
2929 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2941 /* Return the section that should be marked against GC for a given
2945 elf_m68k_gc_mark_hook (asection *sec,
2946 struct bfd_link_info *info,
2947 Elf_Internal_Rela *rel,
2948 struct elf_link_hash_entry *h,
2949 Elf_Internal_Sym *sym)
2952 switch (ELF32_R_TYPE (rel->r_info))
2954 case R_68K_GNU_VTINHERIT:
2955 case R_68K_GNU_VTENTRY:
2959 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2962 /* Update the got entry reference counts for the section being removed. */
2965 elf_m68k_gc_sweep_hook (bfd *abfd,
2966 struct bfd_link_info *info,
2968 const Elf_Internal_Rela *relocs)
2970 Elf_Internal_Shdr *symtab_hdr;
2971 struct elf_link_hash_entry **sym_hashes;
2972 const Elf_Internal_Rela *rel, *relend;
2974 struct elf_m68k_got *got;
2976 if (info->relocatable)
2979 dynobj = elf_hash_table (info)->dynobj;
2983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2984 sym_hashes = elf_sym_hashes (abfd);
2987 relend = relocs + sec->reloc_count;
2988 for (rel = relocs; rel < relend; rel++)
2990 unsigned long r_symndx;
2991 struct elf_link_hash_entry *h = NULL;
2993 r_symndx = ELF32_R_SYM (rel->r_info);
2994 if (r_symndx >= symtab_hdr->sh_info)
2996 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2997 while (h->root.type == bfd_link_hash_indirect
2998 || h->root.type == bfd_link_hash_warning)
2999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3002 switch (ELF32_R_TYPE (rel->r_info))
3008 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3017 /* TLS relocations. */
3019 case R_68K_TLS_GD16:
3020 case R_68K_TLS_GD32:
3021 case R_68K_TLS_LDM8:
3022 case R_68K_TLS_LDM16:
3023 case R_68K_TLS_LDM32:
3025 case R_68K_TLS_IE16:
3026 case R_68K_TLS_IE32:
3028 case R_68K_TLS_TPREL32:
3029 case R_68K_TLS_DTPREL32:
3033 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3034 abfd, MUST_FIND, NULL)->got;
3035 BFD_ASSERT (got != NULL);
3039 struct elf_m68k_got_entry_key key_;
3040 struct elf_m68k_got_entry **got_entry_ptr;
3041 struct elf_m68k_got_entry *got_entry;
3043 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
3044 ELF32_R_TYPE (rel->r_info));
3045 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
3047 got_entry = *got_entry_ptr;
3049 if (got_entry->u.s1.refcount > 0)
3051 --got_entry->u.s1.refcount;
3053 if (got_entry->u.s1.refcount == 0)
3054 /* We don't need the .got entry any more. */
3055 elf_m68k_remove_got_entry (got, got_entry_ptr);
3074 if (h->plt.refcount > 0)
3087 /* Return the type of PLT associated with OUTPUT_BFD. */
3089 static const struct elf_m68k_plt_info *
3090 elf_m68k_get_plt_info (bfd *output_bfd)
3092 unsigned int features;
3094 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3095 if (features & cpu32)
3096 return &elf_cpu32_plt_info;
3097 if (features & mcfisa_b)
3098 return &elf_isab_plt_info;
3099 if (features & mcfisa_c)
3100 return &elf_isac_plt_info;
3101 return &elf_m68k_plt_info;
3104 /* This function is called after all the input files have been read,
3105 and the input sections have been assigned to output sections.
3106 It's a convenient place to determine the PLT style. */
3109 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3111 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3113 if (!elf_m68k_partition_multi_got (info))
3116 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3120 /* Adjust a symbol defined by a dynamic object and referenced by a
3121 regular object. The current definition is in some section of the
3122 dynamic object, but we're not including those sections. We have to
3123 change the definition to something the rest of the link can
3127 elf_m68k_adjust_dynamic_symbol (info, h)
3128 struct bfd_link_info *info;
3129 struct elf_link_hash_entry *h;
3131 struct elf_m68k_link_hash_table *htab;
3135 htab = elf_m68k_hash_table (info);
3136 dynobj = elf_hash_table (info)->dynobj;
3138 /* Make sure we know what is going on here. */
3139 BFD_ASSERT (dynobj != NULL
3141 || h->u.weakdef != NULL
3144 && !h->def_regular)));
3146 /* If this is a function, put it in the procedure linkage table. We
3147 will fill in the contents of the procedure linkage table later,
3148 when we know the address of the .got section. */
3149 if (h->type == STT_FUNC
3152 if ((h->plt.refcount <= 0
3153 || SYMBOL_CALLS_LOCAL (info, h)
3154 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3155 && h->root.type == bfd_link_hash_undefweak))
3156 /* We must always create the plt entry if it was referenced
3157 by a PLTxxO relocation. In this case we already recorded
3158 it as a dynamic symbol. */
3159 && h->dynindx == -1)
3161 /* This case can occur if we saw a PLTxx reloc in an input
3162 file, but the symbol was never referred to by a dynamic
3163 object, or if all references were garbage collected. In
3164 such a case, we don't actually need to build a procedure
3165 linkage table, and we can just do a PCxx reloc instead. */
3166 h->plt.offset = (bfd_vma) -1;
3171 /* Make sure this symbol is output as a dynamic symbol. */
3172 if (h->dynindx == -1
3173 && !h->forced_local)
3175 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3179 s = bfd_get_section_by_name (dynobj, ".plt");
3180 BFD_ASSERT (s != NULL);
3182 /* If this is the first .plt entry, make room for the special
3185 s->size = htab->plt_info->size;
3187 /* If this symbol is not defined in a regular file, and we are
3188 not generating a shared library, then set the symbol to this
3189 location in the .plt. This is required to make function
3190 pointers compare as equal between the normal executable and
3191 the shared library. */
3195 h->root.u.def.section = s;
3196 h->root.u.def.value = s->size;
3199 h->plt.offset = s->size;
3201 /* Make room for this entry. */
3202 s->size += htab->plt_info->size;
3204 /* We also need to make an entry in the .got.plt section, which
3205 will be placed in the .got section by the linker script. */
3206 s = bfd_get_section_by_name (dynobj, ".got.plt");
3207 BFD_ASSERT (s != NULL);
3210 /* We also need to make an entry in the .rela.plt section. */
3211 s = bfd_get_section_by_name (dynobj, ".rela.plt");
3212 BFD_ASSERT (s != NULL);
3213 s->size += sizeof (Elf32_External_Rela);
3218 /* Reinitialize the plt offset now that it is not used as a reference
3220 h->plt.offset = (bfd_vma) -1;
3222 /* If this is a weak symbol, and there is a real definition, the
3223 processor independent code will have arranged for us to see the
3224 real definition first, and we can just use the same value. */
3225 if (h->u.weakdef != NULL)
3227 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3228 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3229 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3230 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3234 /* This is a reference to a symbol defined by a dynamic object which
3235 is not a function. */
3237 /* If we are creating a shared library, we must presume that the
3238 only references to the symbol are via the global offset table.
3239 For such cases we need not do anything here; the relocations will
3240 be handled correctly by relocate_section. */
3244 /* If there are no references to this symbol that do not use the
3245 GOT, we don't need to generate a copy reloc. */
3246 if (!h->non_got_ref)
3251 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
3252 h->root.root.string);
3256 /* We must allocate the symbol in our .dynbss section, which will
3257 become part of the .bss section of the executable. There will be
3258 an entry for this symbol in the .dynsym section. The dynamic
3259 object will contain position independent code, so all references
3260 from the dynamic object to this symbol will go through the global
3261 offset table. The dynamic linker will use the .dynsym entry to
3262 determine the address it must put in the global offset table, so
3263 both the dynamic object and the regular object will refer to the
3264 same memory location for the variable. */
3266 s = bfd_get_section_by_name (dynobj, ".dynbss");
3267 BFD_ASSERT (s != NULL);
3269 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3270 copy the initial value out of the dynamic object and into the
3271 runtime process image. We need to remember the offset into the
3272 .rela.bss section we are going to use. */
3273 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3277 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
3278 BFD_ASSERT (srel != NULL);
3279 srel->size += sizeof (Elf32_External_Rela);
3283 return _bfd_elf_adjust_dynamic_copy (h, s);
3286 /* Set the sizes of the dynamic sections. */
3289 elf_m68k_size_dynamic_sections (output_bfd, info)
3290 bfd *output_bfd ATTRIBUTE_UNUSED;
3291 struct bfd_link_info *info;
3298 dynobj = elf_hash_table (info)->dynobj;
3299 BFD_ASSERT (dynobj != NULL);
3301 if (elf_hash_table (info)->dynamic_sections_created)
3303 /* Set the contents of the .interp section to the interpreter. */
3304 if (info->executable)
3306 s = bfd_get_section_by_name (dynobj, ".interp");
3307 BFD_ASSERT (s != NULL);
3308 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3309 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3314 /* We may have created entries in the .rela.got section.
3315 However, if we are not creating the dynamic sections, we will
3316 not actually use these entries. Reset the size of .rela.got,
3317 which will cause it to get stripped from the output file
3319 s = bfd_get_section_by_name (dynobj, ".rela.got");
3324 /* If this is a -Bsymbolic shared link, then we need to discard all
3325 PC relative relocs against symbols defined in a regular object.
3326 For the normal shared case we discard the PC relative relocs
3327 against symbols that have become local due to visibility changes.
3328 We allocated space for them in the check_relocs routine, but we
3329 will not fill them in in the relocate_section routine. */
3331 elf_link_hash_traverse (elf_hash_table (info),
3332 elf_m68k_discard_copies,
3335 /* The check_relocs and adjust_dynamic_symbol entry points have
3336 determined the sizes of the various dynamic sections. Allocate
3340 for (s = dynobj->sections; s != NULL; s = s->next)
3344 if ((s->flags & SEC_LINKER_CREATED) == 0)
3347 /* It's OK to base decisions on the section name, because none
3348 of the dynobj section names depend upon the input files. */
3349 name = bfd_get_section_name (dynobj, s);
3351 if (strcmp (name, ".plt") == 0)
3353 /* Remember whether there is a PLT. */
3356 else if (CONST_STRNEQ (name, ".rela"))
3362 /* We use the reloc_count field as a counter if we need
3363 to copy relocs into the output file. */
3367 else if (! CONST_STRNEQ (name, ".got")
3368 && strcmp (name, ".dynbss") != 0)
3370 /* It's not one of our sections, so don't allocate space. */
3376 /* If we don't need this section, strip it from the
3377 output file. This is mostly to handle .rela.bss and
3378 .rela.plt. We must create both sections in
3379 create_dynamic_sections, because they must be created
3380 before the linker maps input sections to output
3381 sections. The linker does that before
3382 adjust_dynamic_symbol is called, and it is that
3383 function which decides whether anything needs to go
3384 into these sections. */
3385 s->flags |= SEC_EXCLUDE;
3389 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3392 /* Allocate memory for the section contents. */
3393 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3394 Unused entries should be reclaimed before the section's contents
3395 are written out, but at the moment this does not happen. Thus in
3396 order to prevent writing out garbage, we initialise the section's
3397 contents to zero. */
3398 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3399 if (s->contents == NULL)
3403 if (elf_hash_table (info)->dynamic_sections_created)
3405 /* Add some entries to the .dynamic section. We fill in the
3406 values later, in elf_m68k_finish_dynamic_sections, but we
3407 must add the entries now so that we get the correct size for
3408 the .dynamic section. The DT_DEBUG entry is filled in by the
3409 dynamic linker and used by the debugger. */
3410 #define add_dynamic_entry(TAG, VAL) \
3411 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3415 if (!add_dynamic_entry (DT_DEBUG, 0))
3421 if (!add_dynamic_entry (DT_PLTGOT, 0)
3422 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3423 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3424 || !add_dynamic_entry (DT_JMPREL, 0))
3430 if (!add_dynamic_entry (DT_RELA, 0)
3431 || !add_dynamic_entry (DT_RELASZ, 0)
3432 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3436 if ((info->flags & DF_TEXTREL) != 0)
3438 if (!add_dynamic_entry (DT_TEXTREL, 0))
3442 #undef add_dynamic_entry
3447 /* This function is called via elf_link_hash_traverse if we are
3448 creating a shared object. In the -Bsymbolic case it discards the
3449 space allocated to copy PC relative relocs against symbols which
3450 are defined in regular objects. For the normal shared case, it
3451 discards space for pc-relative relocs that have become local due to
3452 symbol visibility changes. We allocated space for them in the
3453 check_relocs routine, but we won't fill them in in the
3454 relocate_section routine.
3456 We also check whether any of the remaining relocations apply
3457 against a readonly section, and set the DF_TEXTREL flag in this
3461 elf_m68k_discard_copies (h, inf)
3462 struct elf_link_hash_entry *h;
3465 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3466 struct elf_m68k_pcrel_relocs_copied *s;
3468 if (h->root.type == bfd_link_hash_warning)
3469 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3471 if (!SYMBOL_CALLS_LOCAL (info, h))
3473 if ((info->flags & DF_TEXTREL) == 0)
3475 /* Look for relocations against read-only sections. */
3476 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3479 if ((s->section->flags & SEC_READONLY) != 0)
3481 info->flags |= DF_TEXTREL;
3489 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3492 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3498 /* Install relocation RELA. */
3501 elf_m68k_install_rela (bfd *output_bfd,
3503 Elf_Internal_Rela *rela)
3507 loc = srela->contents;
3508 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3509 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3512 /* Find the base offsets for thread-local storage in this object,
3513 for GD/LD and IE/LE respectively. */
3515 #define DTP_OFFSET 0x8000
3516 #define TP_OFFSET 0x7000
3519 dtpoff_base (struct bfd_link_info *info)
3521 /* If tls_sec is NULL, we should have signalled an error already. */
3522 if (elf_hash_table (info)->tls_sec == NULL)
3524 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3528 tpoff_base (struct bfd_link_info *info)
3530 /* If tls_sec is NULL, we should have signalled an error already. */
3531 if (elf_hash_table (info)->tls_sec == NULL)
3533 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3536 /* Output necessary relocation to handle a symbol during static link.
3537 This function is called from elf_m68k_relocate_section. */
3540 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3542 enum elf_m68k_reloc_type r_type,
3544 bfd_vma got_entry_offset,
3547 switch (elf_m68k_reloc_got_type (r_type))
3550 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3553 case R_68K_TLS_GD32:
3554 /* We know the offset within the module,
3555 put it into the second GOT slot. */
3556 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3557 sgot->contents + got_entry_offset + 4);
3560 case R_68K_TLS_LDM32:
3561 /* Mark it as belonging to module 1, the executable. */
3562 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3565 case R_68K_TLS_IE32:
3566 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3567 sgot->contents + got_entry_offset);
3575 /* Output necessary relocation to handle a local symbol
3576 during dynamic link.
3577 This function is called either from elf_m68k_relocate_section
3578 or from elf_m68k_finish_dynamic_symbol. */
3581 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3583 enum elf_m68k_reloc_type r_type,
3585 bfd_vma got_entry_offset,
3589 Elf_Internal_Rela outrel;
3591 switch (elf_m68k_reloc_got_type (r_type))
3594 /* Emit RELATIVE relocation to initialize GOT slot
3596 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3597 outrel.r_addend = relocation;
3600 case R_68K_TLS_GD32:
3601 /* We know the offset within the module,
3602 put it into the second GOT slot. */
3603 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3604 sgot->contents + got_entry_offset + 4);
3607 case R_68K_TLS_LDM32:
3608 /* We don't know the module number,
3609 create a relocation for it. */
3610 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3611 outrel.r_addend = 0;
3614 case R_68K_TLS_IE32:
3615 /* Emit TPREL relocation to initialize GOT slot
3617 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3618 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3625 /* Offset of the GOT entry. */
3626 outrel.r_offset = (sgot->output_section->vma
3627 + sgot->output_offset
3628 + got_entry_offset);
3630 /* Install one of the above relocations. */
3631 elf_m68k_install_rela (output_bfd, srela, &outrel);
3633 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3636 /* Relocate an M68K ELF section. */
3639 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3640 contents, relocs, local_syms, local_sections)
3642 struct bfd_link_info *info;
3644 asection *input_section;
3646 Elf_Internal_Rela *relocs;
3647 Elf_Internal_Sym *local_syms;
3648 asection **local_sections;
3651 Elf_Internal_Shdr *symtab_hdr;
3652 struct elf_link_hash_entry **sym_hashes;
3657 struct elf_m68k_got *got;
3658 Elf_Internal_Rela *rel;
3659 Elf_Internal_Rela *relend;
3661 dynobj = elf_hash_table (info)->dynobj;
3662 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3663 sym_hashes = elf_sym_hashes (input_bfd);
3673 relend = relocs + input_section->reloc_count;
3674 for (; rel < relend; rel++)
3677 reloc_howto_type *howto;
3678 unsigned long r_symndx;
3679 struct elf_link_hash_entry *h;
3680 Elf_Internal_Sym *sym;
3683 bfd_boolean unresolved_reloc;
3684 bfd_reloc_status_type r;
3686 r_type = ELF32_R_TYPE (rel->r_info);
3687 if (r_type < 0 || r_type >= (int) R_68K_max)
3689 bfd_set_error (bfd_error_bad_value);
3692 howto = howto_table + r_type;
3694 r_symndx = ELF32_R_SYM (rel->r_info);
3699 unresolved_reloc = FALSE;
3701 if (r_symndx < symtab_hdr->sh_info)
3703 sym = local_syms + r_symndx;
3704 sec = local_sections[r_symndx];
3705 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3711 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3712 r_symndx, symtab_hdr, sym_hashes,
3714 unresolved_reloc, warned);
3717 if (sec != NULL && elf_discarded_section (sec))
3719 /* For relocs against symbols from removed linkonce sections,
3720 or sections discarded by a linker script, we just want the
3721 section contents zeroed. Avoid any special processing. */
3722 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3728 if (info->relocatable)
3736 /* Relocation is to the address of the entry for this symbol
3737 in the global offset table. */
3739 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3741 if (elf_m68k_hash_table (info)->local_gp_p)
3743 bfd_vma sgot_output_offset;
3748 sgot = bfd_get_section_by_name (dynobj, ".got");
3751 sgot_output_offset = sgot->output_offset;
3753 /* In this case we have a reference to
3754 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3756 ??? Issue a warning? */
3757 sgot_output_offset = 0;
3760 sgot_output_offset = sgot->output_offset;
3764 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3767 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3768 input_bfd, SEARCH, NULL);
3770 if (bfd2got_entry != NULL)
3772 got = bfd2got_entry->got;
3773 BFD_ASSERT (got != NULL);
3775 got_offset = got->offset;
3778 /* In this case we have a reference to
3779 _GLOBAL_OFFSET_TABLE_, but no other references
3780 accessing any GOT entries.
3781 ??? Issue a warning? */
3785 got_offset = got->offset;
3787 /* Adjust GOT pointer to point to the GOT
3788 assigned to input_bfd. */
3789 rel->r_addend += sgot_output_offset + got_offset;
3792 BFD_ASSERT (got == NULL || got->offset == 0);
3801 case R_68K_TLS_LDM32:
3802 case R_68K_TLS_LDM16:
3803 case R_68K_TLS_LDM8:
3806 case R_68K_TLS_GD16:
3807 case R_68K_TLS_GD32:
3810 case R_68K_TLS_IE16:
3811 case R_68K_TLS_IE32:
3813 /* Relocation is the offset of the entry for this symbol in
3814 the global offset table. */
3817 struct elf_m68k_got_entry_key key_;
3823 sgot = bfd_get_section_by_name (dynobj, ".got");
3824 BFD_ASSERT (sgot != NULL);
3829 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3830 input_bfd, MUST_FIND,
3832 BFD_ASSERT (got != NULL);
3835 /* Get GOT offset for this symbol. */
3836 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3838 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3842 /* The offset must always be a multiple of 4. We use
3843 the least significant bit to record whether we have
3844 already generated the necessary reloc. */
3850 /* @TLSLDM relocations are bounded to the module, in
3851 which the symbol is defined -- not to the symbol
3853 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3857 dyn = elf_hash_table (info)->dynamic_sections_created;
3858 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3860 && SYMBOL_REFERENCES_LOCAL (info, h))
3861 || (ELF_ST_VISIBILITY (h->other)
3862 && h->root.type == bfd_link_hash_undefweak))
3864 /* This is actually a static link, or it is a
3865 -Bsymbolic link and the symbol is defined
3866 locally, or the symbol was forced to be local
3867 because of a version file. We must initialize
3868 this entry in the global offset table. Since
3869 the offset must always be a multiple of 4, we
3870 use the least significant bit to record whether
3871 we have initialized it already.
3873 When doing a dynamic link, we create a .rela.got
3874 relocation entry to initialize the value. This
3875 is done in the finish_dynamic_symbol routine. */
3877 elf_m68k_init_got_entry_static (info,
3887 unresolved_reloc = FALSE;
3889 else if (info->shared) /* && h == NULL */
3890 /* Process local symbol during dynamic link. */
3894 srela = bfd_get_section_by_name (dynobj, ".rela.got");
3895 BFD_ASSERT (srela != NULL);
3898 elf_m68k_init_got_entry_local_shared (info,
3908 else /* h == NULL && !info->shared */
3910 elf_m68k_init_got_entry_static (info,
3921 /* We don't use elf_m68k_reloc_got_type in the condition below
3922 because this is the only place where difference between
3923 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3924 if (r_type == R_68K_GOT32O
3925 || r_type == R_68K_GOT16O
3926 || r_type == R_68K_GOT8O
3927 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3928 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3929 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3931 /* GOT pointer is adjusted to point to the start/middle
3932 of local GOT. Adjust the offset accordingly. */
3933 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3934 || off >= got->offset);
3936 if (elf_m68k_hash_table (info)->local_gp_p)
3937 relocation = off - got->offset;
3940 BFD_ASSERT (got->offset == 0);
3941 relocation = sgot->output_offset + off;
3944 /* This relocation does not use the addend. */
3948 relocation = (sgot->output_section->vma + sgot->output_offset
3953 case R_68K_TLS_LDO32:
3954 case R_68K_TLS_LDO16:
3955 case R_68K_TLS_LDO8:
3956 relocation -= dtpoff_base (info);
3959 case R_68K_TLS_LE32:
3960 case R_68K_TLS_LE16:
3964 (*_bfd_error_handler)
3965 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3966 "in shared object"),
3967 input_bfd, input_section, (long) rel->r_offset, howto->name);
3972 relocation -= tpoff_base (info);
3979 /* Relocation is to the entry for this symbol in the
3980 procedure linkage table. */
3982 /* Resolve a PLTxx reloc against a local symbol directly,
3983 without using the procedure linkage table. */
3987 if (h->plt.offset == (bfd_vma) -1
3988 || !elf_hash_table (info)->dynamic_sections_created)
3990 /* We didn't make a PLT entry for this symbol. This
3991 happens when statically linking PIC code, or when
3992 using -Bsymbolic. */
3998 splt = bfd_get_section_by_name (dynobj, ".plt");
3999 BFD_ASSERT (splt != NULL);
4002 relocation = (splt->output_section->vma
4003 + splt->output_offset
4005 unresolved_reloc = FALSE;
4011 /* Relocation is the offset of the entry for this symbol in
4012 the procedure linkage table. */
4013 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
4017 splt = bfd_get_section_by_name (dynobj, ".plt");
4018 BFD_ASSERT (splt != NULL);
4021 relocation = h->plt.offset;
4022 unresolved_reloc = FALSE;
4024 /* This relocation does not use the addend. */
4037 && (input_section->flags & SEC_ALLOC) != 0
4039 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4040 || h->root.type != bfd_link_hash_undefweak)
4041 && ((r_type != R_68K_PC8
4042 && r_type != R_68K_PC16
4043 && r_type != R_68K_PC32)
4044 || !SYMBOL_CALLS_LOCAL (info, h)))
4046 Elf_Internal_Rela outrel;
4048 bfd_boolean skip, relocate;
4050 /* When generating a shared object, these relocations
4051 are copied into the output file to be resolved at run
4058 _bfd_elf_section_offset (output_bfd, info, input_section,
4060 if (outrel.r_offset == (bfd_vma) -1)
4062 else if (outrel.r_offset == (bfd_vma) -2)
4063 skip = TRUE, relocate = TRUE;
4064 outrel.r_offset += (input_section->output_section->vma
4065 + input_section->output_offset);
4068 memset (&outrel, 0, sizeof outrel);
4071 && (r_type == R_68K_PC8
4072 || r_type == R_68K_PC16
4073 || r_type == R_68K_PC32
4076 || !h->def_regular))
4078 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4079 outrel.r_addend = rel->r_addend;
4083 /* This symbol is local, or marked to become local. */
4084 outrel.r_addend = relocation + rel->r_addend;
4086 if (r_type == R_68K_32)
4089 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4095 if (bfd_is_abs_section (sec))
4097 else if (sec == NULL || sec->owner == NULL)
4099 bfd_set_error (bfd_error_bad_value);
4106 /* We are turning this relocation into one
4107 against a section symbol. It would be
4108 proper to subtract the symbol's value,
4109 osec->vma, from the emitted reloc addend,
4110 but ld.so expects buggy relocs. */
4111 osec = sec->output_section;
4112 indx = elf_section_data (osec)->dynindx;
4115 struct elf_link_hash_table *htab;
4116 htab = elf_hash_table (info);
4117 osec = htab->text_index_section;
4118 indx = elf_section_data (osec)->dynindx;
4120 BFD_ASSERT (indx != 0);
4123 outrel.r_info = ELF32_R_INFO (indx, r_type);
4127 sreloc = elf_section_data (input_section)->sreloc;
4131 loc = sreloc->contents;
4132 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4133 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4135 /* This reloc will be computed at runtime, so there's no
4136 need to do anything now, except for R_68K_32
4137 relocations that have been turned into
4145 case R_68K_GNU_VTINHERIT:
4146 case R_68K_GNU_VTENTRY:
4147 /* These are no-ops in the end. */
4154 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4155 because such sections are not SEC_ALLOC and thus ld.so will
4156 not process them. */
4157 if (unresolved_reloc
4158 && !((input_section->flags & SEC_DEBUGGING) != 0
4161 (*_bfd_error_handler)
4162 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4165 (long) rel->r_offset,
4167 h->root.root.string);
4172 && r_type != R_68K_NONE
4174 || h->root.type == bfd_link_hash_defined
4175 || h->root.type == bfd_link_hash_defweak))
4179 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4181 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4186 name = h->root.root.string;
4189 name = (bfd_elf_string_from_elf_section
4190 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4191 if (name == NULL || *name == '\0')
4192 name = bfd_section_name (input_bfd, sec);
4195 (*_bfd_error_handler)
4196 ((sym_type == STT_TLS
4197 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4198 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4201 (long) rel->r_offset,
4207 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4208 contents, rel->r_offset,
4209 relocation, rel->r_addend);
4211 if (r != bfd_reloc_ok)
4216 name = h->root.root.string;
4219 name = bfd_elf_string_from_elf_section (input_bfd,
4220 symtab_hdr->sh_link,
4225 name = bfd_section_name (input_bfd, sec);
4228 if (r == bfd_reloc_overflow)
4230 if (!(info->callbacks->reloc_overflow
4231 (info, (h ? &h->root : NULL), name, howto->name,
4232 (bfd_vma) 0, input_bfd, input_section,
4238 (*_bfd_error_handler)
4239 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
4240 input_bfd, input_section,
4241 (long) rel->r_offset, name, (int) r);
4250 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4251 into section SEC. */
4254 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4256 /* Make VALUE PC-relative. */
4257 value -= sec->output_section->vma + offset;
4259 /* Apply any in-place addend. */
4260 value += bfd_get_32 (sec->owner, sec->contents + offset);
4262 bfd_put_32 (sec->owner, value, sec->contents + offset);
4265 /* Finish up dynamic symbol handling. We set the contents of various
4266 dynamic sections here. */
4269 elf_m68k_finish_dynamic_symbol (output_bfd, info, h, sym)
4271 struct bfd_link_info *info;
4272 struct elf_link_hash_entry *h;
4273 Elf_Internal_Sym *sym;
4277 dynobj = elf_hash_table (info)->dynobj;
4279 if (h->plt.offset != (bfd_vma) -1)
4281 const struct elf_m68k_plt_info *plt_info;
4287 Elf_Internal_Rela rela;
4290 /* This symbol has an entry in the procedure linkage table. Set
4293 BFD_ASSERT (h->dynindx != -1);
4295 plt_info = elf_m68k_hash_table (info)->plt_info;
4296 splt = bfd_get_section_by_name (dynobj, ".plt");
4297 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4298 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
4299 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4301 /* Get the index in the procedure linkage table which
4302 corresponds to this symbol. This is the index of this symbol
4303 in all the symbols for which we are making plt entries. The
4304 first entry in the procedure linkage table is reserved. */
4305 plt_index = (h->plt.offset / plt_info->size) - 1;
4307 /* Get the offset into the .got table of the entry that
4308 corresponds to this function. Each .got entry is 4 bytes.
4309 The first three are reserved. */
4310 got_offset = (plt_index + 3) * 4;
4312 memcpy (splt->contents + h->plt.offset,
4313 plt_info->symbol_entry,
4316 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4317 (sgot->output_section->vma
4318 + sgot->output_offset
4321 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4324 + plt_info->symbol_resolve_entry + 2);
4326 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4327 splt->output_section->vma);
4329 /* Fill in the entry in the global offset table. */
4330 bfd_put_32 (output_bfd,
4331 (splt->output_section->vma
4332 + splt->output_offset
4334 + plt_info->symbol_resolve_entry),
4335 sgot->contents + got_offset);
4337 /* Fill in the entry in the .rela.plt section. */
4338 rela.r_offset = (sgot->output_section->vma
4339 + sgot->output_offset
4341 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4343 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4344 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4346 if (!h->def_regular)
4348 /* Mark the symbol as undefined, rather than as defined in
4349 the .plt section. Leave the value alone. */
4350 sym->st_shndx = SHN_UNDEF;
4354 if (elf_m68k_hash_entry (h)->glist != NULL)
4358 struct elf_m68k_got_entry *got_entry;
4360 /* This symbol has an entry in the global offset table. Set it
4363 sgot = bfd_get_section_by_name (dynobj, ".got");
4364 srela = bfd_get_section_by_name (dynobj, ".rela.got");
4365 BFD_ASSERT (sgot != NULL && srela != NULL);
4367 got_entry = elf_m68k_hash_entry (h)->glist;
4369 while (got_entry != NULL)
4371 enum elf_m68k_reloc_type r_type;
4372 bfd_vma got_entry_offset;
4374 r_type = got_entry->key_.type;
4375 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4377 /* If this is a -Bsymbolic link, and the symbol is defined
4378 locally, we just want to emit a RELATIVE reloc. Likewise if
4379 the symbol was forced to be local because of a version file.
4380 The entry in the global offset table already have been
4381 initialized in the relocate_section function. */
4383 && SYMBOL_REFERENCES_LOCAL (info, h))
4387 relocation = bfd_get_signed_32 (output_bfd,
4389 + got_entry_offset));
4392 switch (elf_m68k_reloc_got_type (r_type))
4395 case R_68K_TLS_LDM32:
4398 case R_68K_TLS_GD32:
4399 relocation += dtpoff_base (info);
4402 case R_68K_TLS_IE32:
4403 relocation += tpoff_base (info);
4410 elf_m68k_init_got_entry_local_shared (info,
4420 Elf_Internal_Rela rela;
4422 /* Put zeros to GOT slots that will be initialized
4427 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4429 bfd_put_32 (output_bfd, (bfd_vma) 0,
4430 (sgot->contents + got_entry_offset
4435 rela.r_offset = (sgot->output_section->vma
4436 + sgot->output_offset
4437 + got_entry_offset);
4439 switch (elf_m68k_reloc_got_type (r_type))
4442 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4443 elf_m68k_install_rela (output_bfd, srela, &rela);
4446 case R_68K_TLS_GD32:
4447 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4448 elf_m68k_install_rela (output_bfd, srela, &rela);
4451 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4452 elf_m68k_install_rela (output_bfd, srela, &rela);
4455 case R_68K_TLS_IE32:
4456 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4457 elf_m68k_install_rela (output_bfd, srela, &rela);
4466 got_entry = got_entry->u.s2.next;
4473 Elf_Internal_Rela rela;
4476 /* This symbol needs a copy reloc. Set it up. */
4478 BFD_ASSERT (h->dynindx != -1
4479 && (h->root.type == bfd_link_hash_defined
4480 || h->root.type == bfd_link_hash_defweak));
4482 s = bfd_get_section_by_name (h->root.u.def.section->owner,
4484 BFD_ASSERT (s != NULL);
4486 rela.r_offset = (h->root.u.def.value
4487 + h->root.u.def.section->output_section->vma
4488 + h->root.u.def.section->output_offset);
4489 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4491 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4492 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4495 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4496 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4497 || h == elf_hash_table (info)->hgot)
4498 sym->st_shndx = SHN_ABS;
4503 /* Finish up the dynamic sections. */
4506 elf_m68k_finish_dynamic_sections (output_bfd, info)
4508 struct bfd_link_info *info;
4514 dynobj = elf_hash_table (info)->dynobj;
4516 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
4517 BFD_ASSERT (sgot != NULL);
4518 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4520 if (elf_hash_table (info)->dynamic_sections_created)
4523 Elf32_External_Dyn *dyncon, *dynconend;
4525 splt = bfd_get_section_by_name (dynobj, ".plt");
4526 BFD_ASSERT (splt != NULL && sdyn != NULL);
4528 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4529 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4530 for (; dyncon < dynconend; dyncon++)
4532 Elf_Internal_Dyn dyn;
4536 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4549 s = bfd_get_section_by_name (output_bfd, name);
4550 BFD_ASSERT (s != NULL);
4551 dyn.d_un.d_ptr = s->vma;
4552 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4556 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4557 BFD_ASSERT (s != NULL);
4558 dyn.d_un.d_val = s->size;
4559 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4563 /* The procedure linkage table relocs (DT_JMPREL) should
4564 not be included in the overall relocs (DT_RELA).
4565 Therefore, we override the DT_RELASZ entry here to
4566 make it not include the JMPREL relocs. Since the
4567 linker script arranges for .rela.plt to follow all
4568 other relocation sections, we don't have to worry
4569 about changing the DT_RELA entry. */
4570 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4572 dyn.d_un.d_val -= s->size;
4573 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4578 /* Fill in the first entry in the procedure linkage table. */
4581 const struct elf_m68k_plt_info *plt_info;
4583 plt_info = elf_m68k_hash_table (info)->plt_info;
4584 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4586 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4587 (sgot->output_section->vma
4588 + sgot->output_offset
4591 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4592 (sgot->output_section->vma
4593 + sgot->output_offset
4596 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4601 /* Fill in the first three entries in the global offset table. */
4605 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4607 bfd_put_32 (output_bfd,
4608 sdyn->output_section->vma + sdyn->output_offset,
4610 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4611 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4614 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4619 /* Given a .data section and a .emreloc in-memory section, store
4620 relocation information into the .emreloc section which can be
4621 used at runtime to relocate the section. This is called by the
4622 linker when the --embedded-relocs switch is used. This is called
4623 after the add_symbols entry point has been called for all the
4624 objects, and before the final_link entry point is called. */
4627 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4629 struct bfd_link_info *info;
4634 Elf_Internal_Shdr *symtab_hdr;
4635 Elf_Internal_Sym *isymbuf = NULL;
4636 Elf_Internal_Rela *internal_relocs = NULL;
4637 Elf_Internal_Rela *irel, *irelend;
4641 BFD_ASSERT (! info->relocatable);
4645 if (datasec->reloc_count == 0)
4648 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4650 /* Get a copy of the native relocations. */
4651 internal_relocs = (_bfd_elf_link_read_relocs
4652 (abfd, datasec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
4653 info->keep_memory));
4654 if (internal_relocs == NULL)
4657 amt = (bfd_size_type) datasec->reloc_count * 12;
4658 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4659 if (relsec->contents == NULL)
4662 p = relsec->contents;
4664 irelend = internal_relocs + datasec->reloc_count;
4665 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4667 asection *targetsec;
4669 /* We are going to write a four byte longword into the runtime
4670 reloc section. The longword will be the address in the data
4671 section which must be relocated. It is followed by the name
4672 of the target section NUL-padded or truncated to 8
4675 /* We can only relocate absolute longword relocs at run time. */
4676 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4678 *errmsg = _("unsupported reloc type");
4679 bfd_set_error (bfd_error_bad_value);
4683 /* Get the target section referred to by the reloc. */
4684 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4686 /* A local symbol. */
4687 Elf_Internal_Sym *isym;
4689 /* Read this BFD's local symbols if we haven't done so already. */
4690 if (isymbuf == NULL)
4692 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4693 if (isymbuf == NULL)
4694 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4695 symtab_hdr->sh_info, 0,
4697 if (isymbuf == NULL)
4701 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4702 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4707 struct elf_link_hash_entry *h;
4709 /* An external symbol. */
4710 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4711 h = elf_sym_hashes (abfd)[indx];
4712 BFD_ASSERT (h != NULL);
4713 if (h->root.type == bfd_link_hash_defined
4714 || h->root.type == bfd_link_hash_defweak)
4715 targetsec = h->root.u.def.section;
4720 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4721 memset (p + 4, 0, 8);
4722 if (targetsec != NULL)
4723 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4726 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4728 if (internal_relocs != NULL
4729 && elf_section_data (datasec)->relocs != internal_relocs)
4730 free (internal_relocs);
4734 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4736 if (internal_relocs != NULL
4737 && elf_section_data (datasec)->relocs != internal_relocs)
4738 free (internal_relocs);
4742 /* Set target options. */
4745 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4747 struct elf_m68k_link_hash_table *htab;
4748 bfd_boolean use_neg_got_offsets_p;
4749 bfd_boolean allow_multigot_p;
4750 bfd_boolean local_gp_p;
4752 switch (got_handling)
4757 use_neg_got_offsets_p = FALSE;
4758 allow_multigot_p = FALSE;
4762 /* --got=negative. */
4764 use_neg_got_offsets_p = TRUE;
4765 allow_multigot_p = FALSE;
4769 /* --got=multigot. */
4771 use_neg_got_offsets_p = TRUE;
4772 allow_multigot_p = TRUE;
4780 htab = elf_m68k_hash_table (info);
4783 htab->local_gp_p = local_gp_p;
4784 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4785 htab->allow_multigot_p = allow_multigot_p;
4789 static enum elf_reloc_type_class
4790 elf32_m68k_reloc_type_class (rela)
4791 const Elf_Internal_Rela *rela;
4793 switch ((int) ELF32_R_TYPE (rela->r_info))
4795 case R_68K_RELATIVE:
4796 return reloc_class_relative;
4797 case R_68K_JMP_SLOT:
4798 return reloc_class_plt;
4800 return reloc_class_copy;
4802 return reloc_class_normal;
4806 /* Return address for Ith PLT stub in section PLT, for relocation REL
4807 or (bfd_vma) -1 if it should not be included. */
4810 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4811 const arelent *rel ATTRIBUTE_UNUSED)
4813 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4816 #define TARGET_BIG_SYM bfd_elf32_m68k_vec
4817 #define TARGET_BIG_NAME "elf32-m68k"
4818 #define ELF_MACHINE_CODE EM_68K
4819 #define ELF_MAXPAGESIZE 0x2000
4820 #define elf_backend_create_dynamic_sections \
4821 _bfd_elf_create_dynamic_sections
4822 #define bfd_elf32_bfd_link_hash_table_create \
4823 elf_m68k_link_hash_table_create
4824 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */
4825 #define bfd_elf32_bfd_link_hash_table_free \
4826 elf_m68k_link_hash_table_free
4827 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4829 #define elf_backend_check_relocs elf_m68k_check_relocs
4830 #define elf_backend_always_size_sections \
4831 elf_m68k_always_size_sections
4832 #define elf_backend_adjust_dynamic_symbol \
4833 elf_m68k_adjust_dynamic_symbol
4834 #define elf_backend_size_dynamic_sections \
4835 elf_m68k_size_dynamic_sections
4836 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4837 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4838 #define elf_backend_relocate_section elf_m68k_relocate_section
4839 #define elf_backend_finish_dynamic_symbol \
4840 elf_m68k_finish_dynamic_symbol
4841 #define elf_backend_finish_dynamic_sections \
4842 elf_m68k_finish_dynamic_sections
4843 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4844 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook
4845 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4846 #define bfd_elf32_bfd_merge_private_bfd_data \
4847 elf32_m68k_merge_private_bfd_data
4848 #define bfd_elf32_bfd_set_private_flags \
4849 elf32_m68k_set_private_flags
4850 #define bfd_elf32_bfd_print_private_bfd_data \
4851 elf32_m68k_print_private_bfd_data
4852 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4853 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4854 #define elf_backend_object_p elf32_m68k_object_p
4856 #define elf_backend_can_gc_sections 1
4857 #define elf_backend_can_refcount 1
4858 #define elf_backend_want_got_plt 1
4859 #define elf_backend_plt_readonly 1
4860 #define elf_backend_want_plt_sym 0
4861 #define elf_backend_got_header_size 12
4862 #define elf_backend_rela_normal 1
4864 #include "elf32-target.h"