1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
27 #include "xcoffsolib.h"
29 #include <sys/param.h>
33 #include <sys/ioctl.h>
43 extern struct obstack frame_cache_obstack;
47 /* Nonzero if we just simulated a single step break. */
50 /* Breakpoint shadows for the single step instructions will be kept here. */
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
55 /* Shadow contents. */
59 /* Static function prototypes */
62 find_toc_address PARAMS ((CORE_ADDR pc));
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
75 branch_dest (opcode, instr, pc, safety)
87 absolute = (int) ((instr >> 1) & 1);
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
99 dest = pc + immediate;
103 ext_op = (instr>>1) & 0x3ff;
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
108 else if (ext_op == 528) /* br cond to count reg */
109 dest = read_register (CTR_REGNUM) & ~3;
116 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
121 /* AIX does not support PT_STEP. Simulate it. */
127 #define INSNLEN(OPCODE) 4
129 static char breakp[] = BREAKPOINT;
138 read_memory (loc, (char *) &insn, 4);
140 breaks[0] = loc + INSNLEN(insn);
142 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
144 /* Don't put two breakpoints on the same address. */
145 if (breaks[1] == breaks[0])
148 stepBreaks[1].address = 0;
150 for (ii=0; ii < 2; ++ii) {
152 /* ignore invalid breakpoint. */
153 if ( breaks[ii] == -1)
156 read_memory (breaks[ii], stepBreaks[ii].data, 4);
158 write_memory (breaks[ii], breakp, 4);
159 stepBreaks[ii].address = breaks[ii];
165 /* remove step breakpoints. */
166 for (ii=0; ii < 2; ++ii)
167 if (stepBreaks[ii].address != 0)
169 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
173 errno = 0; /* FIXME, don't ignore errors! */
174 /* What errors? {read,write}_memory call error(). */
178 /* return pc value after skipping a function prologue. */
184 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
186 if (target_read_memory (pc, (char *)&op, sizeof (op)))
187 return pc; /* Can't access it -- assume no prologue. */
188 SWAP_TARGET_AND_HOST (&op, sizeof (op));
190 /* Assume that subsequent fetches can fail with low probability. */
192 if (op == 0x7c0802a6) { /* mflr r0 */
194 op = read_memory_integer (pc, 4);
197 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
199 op = read_memory_integer (pc, 4);
202 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
204 op = read_memory_integer (pc, 4);
206 /* At this point, make sure this is not a trampoline function
207 (a function that simply calls another functions, and nothing else).
208 If the next is not a nop, this branch was part of the function
211 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
213 return pc - 4; /* don't skip over this branch */
216 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
217 pc += 4; /* store floating register double */
218 op = read_memory_integer (pc, 4);
221 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
223 op = read_memory_integer (pc, 4);
226 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
227 (tmp == 0x9421) || /* stu r1, NUM(r1) */
228 (tmp == 0x93e1)) /* st r31,NUM(r1) */
231 op = read_memory_integer (pc, 4);
234 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
235 pc += 4; /* l r30, ... */
236 op = read_memory_integer (pc, 4);
239 /* store parameters into stack */
241 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
242 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
243 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
244 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
246 pc += 4; /* store fpr double */
247 op = read_memory_integer (pc, 4);
250 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
251 pc += 4; /* this happens if r31 is used as */
252 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
255 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
256 pc += 4; /* st r4, NUM(r31), ... */
257 op = read_memory_integer (pc, 4);
262 /* I have problems with skipping over __main() that I need to address
263 * sometime. Previously, I used to use misc_function_vector which
264 * didn't work as well as I wanted to be. -MGO */
266 /* If the first thing after skipping a prolog is a branch to a function,
267 this might be a call to an initializer in main(), introduced by gcc2.
268 We'd like to skip over it as well. Fortunately, xlc does some extra
269 work before calling a function right after a prologue, thus we can
270 single out such gcc2 behaviour. */
273 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
274 op = read_memory_integer (pc+4, 4);
276 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
278 /* check and see if we are in main. If so, skip over this initializer
281 tmp = find_pc_misc_function (pc);
282 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
292 /*************************************************************************
293 Support for creating pushind a dummy frame into the stack, and popping
295 *************************************************************************/
297 /* The total size of dummy frame is 436, which is;
302 and 24 extra bytes for the callee's link area. The last 24 bytes
303 for the link area might not be necessary, since it will be taken
304 care of by push_arguments(). */
306 #define DUMMY_FRAME_SIZE 436
308 #define DUMMY_FRAME_ADDR_SIZE 10
310 /* Make sure you initialize these in somewhere, in case gdb gives up what it
311 was debugging and starts debugging something else. FIXMEibm */
313 static int dummy_frame_count = 0;
314 static int dummy_frame_size = 0;
315 static CORE_ADDR *dummy_frame_addr = 0;
317 extern int stop_stack_dummy;
319 /* push a dummy frame into stack, save all register. Currently we are saving
320 only gpr's and fpr's, which is not good enough! FIXMEmgo */
330 /* Same thing, target byte order. */
335 target_fetch_registers (-1);
337 if (dummy_frame_count >= dummy_frame_size) {
338 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
339 if (dummy_frame_addr)
340 dummy_frame_addr = (CORE_ADDR*) xrealloc
341 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
343 dummy_frame_addr = (CORE_ADDR*)
344 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
347 sp = read_register(SP_REGNUM);
348 pc = read_register(PC_REGNUM);
349 memcpy (pc_targ, (char *) &pc, 4);
351 dummy_frame_addr [dummy_frame_count++] = sp;
353 /* Be careful! If the stack pointer is not decremented first, then kernel
354 thinks he is free to use the space underneath it. And kernel actually
355 uses that area for IPC purposes when executing ptrace(2) calls. So
356 before writing register values into the new frame, decrement and update
357 %sp first in order to secure your frame. */
359 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
361 /* gdb relies on the state of current_frame. We'd better update it,
362 otherwise things like do_registers_info() wouldn't work properly! */
364 flush_cached_frames ();
365 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
367 /* save program counter in link register's space. */
368 write_memory (sp+8, pc_targ, 4);
370 /* save all floating point and general purpose registers here. */
373 for (ii = 0; ii < 32; ++ii)
374 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
377 for (ii=1; ii <=32; ++ii)
378 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
380 /* so far, 32*2 + 32 words = 384 bytes have been written.
381 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
383 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
384 write_memory (sp-384-(ii*4),
385 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
388 /* Save sp or so called back chain right here. */
389 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
390 sp -= DUMMY_FRAME_SIZE;
392 /* And finally, this is the back chain. */
393 write_memory (sp+8, pc_targ, 4);
397 /* Pop a dummy frame.
399 In rs6000 when we push a dummy frame, we save all of the registers. This
400 is usually done before user calls a function explicitly.
402 After a dummy frame is pushed, some instructions are copied into stack,
403 and stack pointer is decremented even more. Since we don't have a frame
404 pointer to get back to the parent frame of the dummy, we start having
405 trouble poping it. Therefore, we keep a dummy frame stack, keeping
406 addresses of dummy frames as such. When poping happens and when we
407 detect that was a dummy frame, we pop it back to its parent by using
408 dummy frame stack (`dummy_frame_addr' array).
410 FIXME: This whole concept is broken. You should be able to detect
411 a dummy stack frame *on the user's stack itself*. When you do,
412 then you know the format of that stack frame -- including its
413 saved SP register! There should *not* be a separate stack in the
421 sp = dummy_frame_addr [--dummy_frame_count];
423 /* restore all fpr's. */
424 for (ii = 1; ii <= 32; ++ii)
425 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
427 /* restore all gpr's */
428 for (ii=1; ii <= 32; ++ii) {
429 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
432 /* restore the rest of the registers. */
433 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
434 read_memory (sp-384-(ii*4),
435 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
437 read_memory (sp-(DUMMY_FRAME_SIZE-8),
438 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
440 /* when a dummy frame was being pushed, we had to decrement %sp first, in
441 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
442 one we should restore. Change it with the one we need. */
444 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
446 /* Now we can restore all registers. */
448 target_store_registers (-1);
450 flush_cached_frames ();
451 set_current_frame (create_new_frame (sp, pc));
455 /* pop the innermost frame, go back to the caller. */
460 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
461 struct aix_framedata fdata;
462 FRAME fr = get_current_frame ();
468 if (stop_stack_dummy && dummy_frame_count) {
473 /* figure out previous %pc value. If the function is frameless, it is
474 still in the link register, otherwise walk the frames and retrieve the
475 saved %pc value in the previous frame. */
477 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
478 function_frame_info (addr, &fdata);
480 prev_sp = read_memory_integer (sp, 4);
482 lr = read_register (LR_REGNUM);
484 lr = read_memory_integer (prev_sp+8, 4);
486 /* reset %pc value. */
487 write_register (PC_REGNUM, lr);
489 /* reset register values if any was saved earlier. */
490 addr = prev_sp - fdata.offset;
492 if (fdata.saved_gpr != -1)
493 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
494 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
498 if (fdata.saved_fpr != -1)
499 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
500 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
504 write_register (SP_REGNUM, prev_sp);
505 target_store_registers (-1);
506 flush_cached_frames ();
507 set_current_frame (create_new_frame (prev_sp, lr));
511 /* fixup the call sequence of a dummy function, with the real function address.
512 its argumets will be passed by gdb. */
515 fix_call_dummy(dummyname, pc, fun, nargs, type)
519 int nargs; /* not used */
520 int type; /* not used */
522 #define TOC_ADDR_OFFSET 20
523 #define TARGET_ADDR_OFFSET 28
526 CORE_ADDR target_addr;
530 tocvalue = find_toc_address (target_addr);
532 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (tocvalue >> 16);
534 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
536 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
538 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
540 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
541 ii = (ii & 0xffff0000) | (target_addr >> 16);
542 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
544 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
545 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
546 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
550 /* return information about a function frame.
551 in struct aix_frameinfo fdata:
552 - frameless is TRUE, if function does not have a frame.
553 - nosavedpc is TRUE, if function does not save %pc value in its frame.
554 - offset is the number of bytes used in the frame to save registers.
555 - saved_gpr is the number of the first saved gpr.
556 - saved_fpr is the number of the first saved fpr.
557 - alloca_reg is the number of the register used for alloca() handling.
561 function_frame_info (pc, fdata)
563 struct aix_framedata *fdata;
566 register unsigned int op;
569 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
570 fdata->frameless = 1;
572 op = read_memory_integer (pc, 4);
573 if (op == 0x7c0802a6) { /* mflr r0 */
575 op = read_memory_integer (pc, 4);
576 fdata->nosavedpc = 0;
577 fdata->frameless = 0;
579 else /* else, pc is not saved */
580 fdata->nosavedpc = 1;
582 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
584 op = read_memory_integer (pc, 4);
585 fdata->frameless = 0;
588 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
590 op = read_memory_integer (pc, 4);
591 /* At this point, make sure this is not a trampoline function
592 (a function that simply calls another functions, and nothing else).
593 If the next is not a nop, this branch was part of the function
596 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
598 return; /* prologue is over */
599 fdata->frameless = 0;
602 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
603 pc += 4; /* store floating register double */
604 op = read_memory_integer (pc, 4);
605 fdata->frameless = 0;
608 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
610 fdata->saved_gpr = (op >> 21) & 0x1f;
613 tmp2 = (~0 &~ 0xffff) | tmp2;
617 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
618 if ( fdata->saved_fpr > 0)
619 fdata->saved_fpr = 32 - fdata->saved_fpr;
621 fdata->saved_fpr = -1;
623 fdata->offset = tmp2;
625 op = read_memory_integer (pc, 4);
626 fdata->frameless = 0;
629 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
630 (tmp == 0x9421) || /* stu r1, NUM(r1) */
631 (tmp == 0x93e1)) /* st r31, NUM(r1) */
635 /* gcc takes a short cut and uses this instruction to save r31 only. */
639 /* fatal ("Unrecognized prolog."); */
640 printf ("Unrecognized prolog!\n");
642 fdata->saved_gpr = 31;
645 tmp2 = - ((~0 &~ 0xffff) | tmp2);
646 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
647 if ( fdata->saved_fpr > 0)
648 fdata->saved_fpr = 32 - fdata->saved_fpr;
650 fdata->saved_fpr = -1;
652 fdata->offset = tmp2;
655 op = read_memory_integer (pc, 4);
656 fdata->frameless = 0;
659 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
660 pc += 4; /* l r30, ... */
661 op = read_memory_integer (pc, 4);
662 fdata->frameless = 0;
665 /* store parameters into stack */
667 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
669 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
670 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
672 pc += 4; /* store fpr double */
673 op = read_memory_integer (pc, 4);
674 fdata->frameless = 0;
677 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
678 fdata->alloca_reg = 31;
679 fdata->frameless = 0;
684 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
685 eight words of the argument list (that might be less than eight parameters if
686 some parameters occupy more than one word) are passed in r3..r11 registers.
687 float and double parameters are passed in fpr's, in addition to that. Rest of
688 the parameters if any are passed in user stack. There might be cases in which
689 half of the parameter is copied into registers, the other half is pushed into
692 If the function is returning a structure, then the return address is passed
693 in r3, then the first 7 words of the parametes can be passed in registers,
697 push_arguments (nargs, args, sp, struct_return, struct_addr)
702 CORE_ADDR struct_addr;
705 int argno; /* current argument number */
706 int argbytes; /* current argument byte */
707 char tmp_buffer [50];
709 int f_argno = 0; /* current floating point argno */
711 CORE_ADDR saved_sp, pc;
713 if ( dummy_frame_count <= 0)
714 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
716 /* The first eight words of ther arguments are passed in registers. Copy
719 If the function is returning a `struct', then the first word (which
720 will be passed in r3) is used for struct return address. In that
721 case we should advance one word and start from r4 register to copy
724 ii = struct_return ? 1 : 0;
726 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
728 arg = value_arg_coerce (args[argno]);
729 len = TYPE_LENGTH (VALUE_TYPE (arg));
731 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
733 /* floating point arguments are passed in fpr's, as well as gpr's.
734 There are 13 fpr's reserved for passing parameters. At this point
735 there is no way we would run out of them. */
739 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
741 bcopy (VALUE_CONTENTS (arg),
742 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
748 /* Argument takes more than one register. */
749 while (argbytes < len) {
751 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
752 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
753 ®isters[REGISTER_BYTE(ii+3)],
754 (len - argbytes) > 4 ? 4 : len - argbytes);
758 goto ran_out_of_registers_for_arguments;
763 else { /* Argument can fit in one register. No problem. */
764 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
765 bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
770 ran_out_of_registers_for_arguments:
772 /* location for 8 parameters are always reserved. */
775 /* another six words for back chain, TOC register, link register, etc. */
778 /* if there are more arguments, allocate space for them in
779 the stack, then push them starting from the ninth one. */
781 if ((argno < nargs) || argbytes) {
786 space += ((len - argbytes + 3) & -4);
792 for (; jj < nargs; ++jj) {
793 val = value_arg_coerce (args[jj]);
794 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
797 /* add location required for the rest of the parameters */
798 space = (space + 7) & -8;
801 /* This is another instance we need to be concerned about securing our
802 stack space. If we write anything underneath %sp (r1), we might conflict
803 with the kernel who thinks he is free to use this area. So, update %sp
804 first before doing anything else. */
806 write_register (SP_REGNUM, sp);
808 /* if the last argument copied into the registers didn't fit there
809 completely, push the rest of it into stack. */
813 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
815 ii += ((len - argbytes + 3) & -4) / 4;
818 /* push the rest of the arguments into stack. */
819 for (; argno < nargs; ++argno) {
821 arg = value_arg_coerce (args[argno]);
822 len = TYPE_LENGTH (VALUE_TYPE (arg));
825 /* float types should be passed in fpr's, as well as in the stack. */
826 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
830 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
832 bcopy (VALUE_CONTENTS (arg),
833 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
837 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
838 ii += ((len + 3) & -4) / 4;
842 /* Secure stack areas first, before doing anything else. */
843 write_register (SP_REGNUM, sp);
845 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
846 read_memory (saved_sp, tmp_buffer, 24);
847 write_memory (sp, tmp_buffer, 24);
849 write_memory (sp, &saved_sp, 4); /* set back chain properly */
851 target_store_registers (-1);
855 /* a given return value in `regbuf' with a type `valtype', extract and copy its
856 value into `valbuf' */
859 extract_return_value (valtype, regbuf, valbuf)
860 struct type *valtype;
861 char regbuf[REGISTER_BYTES];
865 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
868 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
869 We need to truncate the return value into float size (4 byte) if
872 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
873 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
874 TYPE_LENGTH (valtype));
876 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
878 bcopy (&ff, valbuf, sizeof(float));
882 /* return value is copied starting from r3. */
883 bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
887 /* keep structure return address in this variable.
888 FIXME: This is a horrid kludge which should not be allowed to continue
889 living. This only allows a single nested call to a structure-returning
892 CORE_ADDR rs6000_struct_return_address;
895 /* Throw away this debugging code. FIXMEmgo. */
901 for (ii=0; ii<40; ++ii) {
904 val = read_memory_integer (fram + ii * 4, 4);
905 printf ("0x%08x\t", val);
912 /* Indirect function calls use a piece of trampoline code to do context
913 switching, i.e. to set the new TOC table. Skip such code if we are on
914 its first instruction (as when we have single-stepped to here).
915 Result is desired PC to step until, or NULL if we are not in
919 skip_trampoline_code (pc)
922 register unsigned int ii, op;
924 static unsigned trampoline_code[] = {
925 0x800b0000, /* l r0,0x0(r11) */
926 0x90410014, /* st r2,0x14(r1) */
927 0x7c0903a6, /* mtctr r0 */
928 0x804b0004, /* l r2,0x4(r11) */
929 0x816b0008, /* l r11,0x8(r11) */
930 0x4e800420, /* bctr */
935 for (ii=0; trampoline_code[ii]; ++ii) {
936 op = read_memory_integer (pc + (ii*4), 4);
937 if (op != trampoline_code [ii])
940 ii = read_register (11); /* r11 holds destination addr */
941 pc = read_memory_integer (ii, 4); /* (r11) value */
946 /* Determines whether the function FI has a frame on the stack or not.
947 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
948 second argument of 0, and from the FRAME_SAVED_PC macro with a
949 second argument of 1. */
952 frameless_function_invocation (fi, pcsaved)
953 struct frame_info *fi;
956 CORE_ADDR func_start;
957 struct aix_framedata fdata;
959 if (fi->next != NULL)
960 /* Don't even think about framelessness except on the innermost frame. */
963 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
965 /* If we failed to find the start of the function, it is a mistake
966 to inspect the instructions. */
971 function_frame_info (func_start, &fdata);
972 return pcsaved ? fdata.nosavedpc : fdata.frameless;
976 /* If saved registers of frame FI are not known yet, read and cache them.
977 &FDATAP contains aix_framedata; TDATAP can be NULL,
978 in which case the framedata are read. */
981 frame_get_cache_fsr (fi, fdatap)
982 struct frame_info *fi;
983 struct aix_framedata *fdatap;
986 CORE_ADDR frame_addr;
987 struct aix_framedata work_fdata;
992 if (fdatap == NULL) {
993 fdatap = &work_fdata;
994 function_frame_info (get_pc_function_start (fi->pc), fdatap);
997 fi->cache_fsr = (struct frame_saved_regs *)
998 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
999 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
1001 if (fi->prev && fi->prev->frame)
1002 frame_addr = fi->prev->frame;
1004 frame_addr = read_memory_integer (fi->frame, 4);
1006 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1007 All fpr's from saved_fpr to fp31 are saved right underneath caller
1008 stack pointer, starting from fp31 first. */
1010 if (fdatap->saved_fpr >= 0) {
1011 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1012 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1013 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1016 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1017 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1018 starting from r31 first. */
1020 if (fdatap->saved_gpr >= 0)
1021 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1022 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1025 /* Return the address of a frame. This is the inital %sp value when the frame
1026 was first allocated. For functions calling alloca(), it might be saved in
1027 an alloca register. */
1030 frame_initial_stack_address (fi)
1031 struct frame_info *fi;
1034 struct aix_framedata fdata;
1035 struct frame_info *callee_fi;
1037 /* if the initial stack pointer (frame address) of this frame is known,
1041 return fi->initial_sp;
1043 /* find out if this function is using an alloca register.. */
1045 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1047 /* if saved registers of this frame are not known yet, read and cache them. */
1050 frame_get_cache_fsr (fi, &fdata);
1052 /* If no alloca register used, then fi->frame is the value of the %sp for
1053 this frame, and it is good enough. */
1055 if (fdata.alloca_reg < 0) {
1056 fi->initial_sp = fi->frame;
1057 return fi->initial_sp;
1060 /* This function has an alloca register. If this is the top-most frame
1061 (with the lowest address), the value in alloca register is good. */
1064 return fi->initial_sp = read_register (fdata.alloca_reg);
1066 /* Otherwise, this is a caller frame. Callee has usually already saved
1067 registers, but there are exceptions (such as when the callee
1068 has no parameters). Find the address in which caller's alloca
1069 register is saved. */
1071 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1073 if (!callee_fi->cache_fsr)
1074 frame_get_cache_fsr (callee_fi, NULL);
1076 /* this is the address in which alloca register is saved. */
1078 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1080 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1081 return fi->initial_sp;
1084 /* Go look into deeper levels of the frame chain to see if any one of
1085 the callees has saved alloca register. */
1088 /* If alloca register was not saved, by the callee (or any of its callees)
1089 then the value in the register is still good. */
1091 return fi->initial_sp = read_register (fdata.alloca_reg);
1094 /* xcoff_relocate_symtab - hook for symbol table relocation.
1095 also reads shared libraries.. */
1097 xcoff_relocate_symtab (pid)
1100 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1102 struct ld_info *ldi;
1105 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1107 /* According to my humble theory, AIX has some timing problems and
1108 when the user stack grows, kernel doesn't update stack info in time
1109 and ptrace calls step on user stack. That is why we sleep here a little,
1110 and give kernel to update its internals. */
1115 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1116 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1118 perror_with_name ("ptrace ldinfo");
1125 /* We are allowed to assume CORE_ADDR == pointer. This code is
1127 add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg,
1128 (CORE_ADDR) ldi->ldinfo_dataorg);
1129 } while (ldi->ldinfo_next
1130 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1133 /* Now that we've jumbled things around, re-sort them. */
1134 sort_minimal_symbols ();
1137 /* relocate the exec and core sections as well. */
1141 /* Keep an array of load segment information and their TOC table addresses.
1142 This info will be useful when calling a shared library function by hand. */
1145 CORE_ADDR textorg, dataorg;
1146 unsigned long toc_offset;
1149 #define LOADINFOLEN 10
1151 static struct loadinfo *loadinfo = NULL;
1152 static int loadinfolen = 0;
1153 static int loadinfotocindex = 0;
1154 static int loadinfotextindex = 0;
1158 xcoff_init_loadinfo ()
1160 loadinfotocindex = 0;
1161 loadinfotextindex = 0;
1163 if (loadinfolen == 0) {
1164 loadinfo = (struct loadinfo *)
1165 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1166 loadinfolen = LOADINFOLEN;
1171 /* FIXME -- this is never called! */
1179 loadinfotocindex = 0;
1180 loadinfotextindex = 0;
1183 /* this is called from xcoffread.c */
1186 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1188 while (loadinfotocindex >= loadinfolen) {
1189 loadinfolen += LOADINFOLEN;
1190 loadinfo = (struct loadinfo *)
1191 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1193 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1198 add_text_to_loadinfo (textaddr, dataaddr)
1202 while (loadinfotextindex >= loadinfolen) {
1203 loadinfolen += LOADINFOLEN;
1204 loadinfo = (struct loadinfo *)
1205 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1207 loadinfo [loadinfotextindex].textorg = textaddr;
1208 loadinfo [loadinfotextindex].dataorg = dataaddr;
1209 ++loadinfotextindex;
1213 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1214 of a member of this array are correlated with the "toc_offset"
1215 element of the same member. But they are sequentially assigned in wildly
1216 different places, and probably there is no correlation. FIXME! */
1219 find_toc_address (pc)
1222 int ii, toc_entry, tocbase = 0;
1224 for (ii=0; ii < loadinfotextindex; ++ii)
1225 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1227 tocbase = loadinfo[ii].textorg;
1230 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;