1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include "ieee-float.h"
28 #include <sys/procfs.h>
30 #include <sys/ptrace.h>
36 extern int stop_after_trap;
38 /* We don't store all registers immediately when requested, since they
39 get sent over in large chunks anyway. Instead, we accumulate most
40 of the changes and send them over once. "deferred_stores" keeps
41 track of which sets of registers we have locally-changed copies of,
42 so we only need send the groups that have changed. */
44 int deferred_stores = 0; /* Cumulates stores we want to do eventually. */
48 Error, not_branch, bicc, bicca, ba, baa, ticc, ta
51 /* Simulate single-step ptrace call for sun4. Code written by Gary
54 /* npc4 and next_pc describe the situation at the time that the
55 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
56 static CORE_ADDR next_pc, npc4, target;
57 static int brknpc4, brktrg;
58 typedef char binsn_quantum[BREAKPOINT_MAX];
59 static binsn_quantum break_mem[3];
61 /* Non-zero if we just simulated a single-step ptrace call. This is
62 needed because we cannot remove the breakpoints in the inferior
63 process until after the `wait' in `wait_for_inferior'. Used for
68 /* single_step() is called just before we want to resume the inferior,
69 if we want to single-step it but there is no hardware or kernel single-step
70 support (as on all SPARCs). We find all the possible targets of the
71 coming instruction and breakpoint them.
73 single_step is also called just after the inferior stops. If we had
74 set up a simulated single-step, we undo our damage. */
78 int ignore; /* pid, but we don't need it */
80 branch_type br, isannulled();
86 /* Always set breakpoint for NPC. */
87 next_pc = read_register (NPC_REGNUM);
88 npc4 = next_pc + 4; /* branch not taken */
90 target_insert_breakpoint (next_pc, break_mem[0]);
91 /* printf ("set break at %x\n",next_pc); */
93 pc = read_register (PC_REGNUM);
94 pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
95 br = isannulled (pc_instruction, pc, &target);
100 /* Conditional annulled branch will either end up at
101 npc (if taken) or at npc+4 (if not taken).
104 target_insert_breakpoint (npc4, break_mem[1]);
106 else if (br == baa && target != next_pc)
108 /* Unconditional annulled branch will always end up at
111 target_insert_breakpoint (target, break_mem[2]);
114 /* We are ready to let it go */
120 /* Remove breakpoints */
121 target_remove_breakpoint (next_pc, break_mem[0]);
124 target_remove_breakpoint (npc4, break_mem[1]);
127 target_remove_breakpoint (target, break_mem[2]);
133 #define FRAME_SAVED_L0 0 /* Byte offset from SP */
134 #define FRAME_SAVED_I0 32 /* Byte offset from SP */
137 sparc_frame_chain (thisframe)
144 addr = thisframe->frame + FRAME_SAVED_I0 +
145 REGISTER_RAW_SIZE(FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
146 err = target_read_memory (addr, (char *) &retval, sizeof (CORE_ADDR));
149 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
154 sparc_extract_struct_value_address (regbuf)
155 char regbuf[REGISTER_BYTES];
157 /* FIXME, handle byte swapping */
158 return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4),
162 /* Find the pc saved in frame FRAME. */
165 frame_saved_pc (frame)
170 if (get_current_frame () == frame) /* FIXME, debug check. Remove >=gdb-4.6 */
172 if (read_register (SP_REGNUM) != frame->bottom) abort();
175 read_memory ((CORE_ADDR) (frame->bottom + FRAME_SAVED_I0 +
176 REGISTER_RAW_SIZE(I7_REGNUM) * (I7_REGNUM - I0_REGNUM)),
180 SWAP_TARGET_AND_HOST (&prev_pc, sizeof (prev_pc));
181 return PC_ADJUST (prev_pc);
185 * Since an individual frame in the frame cache is defined by two
186 * arguments (a frame pointer and a stack pointer), we need two
187 * arguments to get info for an arbitrary stack frame. This routine
188 * takes two arguments and makes the cached frames look as if these
189 * two arguments defined a frame on the cache. This allows the rest
190 * of info frame to extract the important arguments without
194 setup_arbitrary_frame (frame, stack)
195 FRAME_ADDR frame, stack;
197 FRAME fid = create_new_frame (frame, 0);
200 fatal ("internal: create_new_frame returned invalid frame id");
203 fid->pc = FRAME_SAVED_PC (fid);
211 * This routine appears to be passed a size by which to increase the
212 * stack. It then executes a save instruction in the inferior to
213 * increase the stack by this amount. Only the register window system
214 * should be affected by this; the program counter & etc. will not be.
216 * This instructions used for this purpose are:
218 * sethi %hi(0x0),g1 *
221 * sethi %hi(0x0),g1 *
224 * sethi %hi(0x0),g0 (nop)
226 * I presume that these set g1 to be the negative of the size, do a
227 * save (putting the stack pointer at sp - size) and restore the
228 * original contents of g1. A * indicates that the actual value of
229 * the instruction is modified below.
231 static int save_insn_opcodes[] = {
232 0x03000000, 0x82007ee0, 0x9de38001, 0x03000000,
233 0x82007ee0, 0x91d02001, 0x01000000 };
235 /* Neither do_save_insn or do_restore_insn save stack configuration
236 (current_frame, etc),
237 since the stack is in an indeterminate state through the call to
238 each of them. That is the responsibility of the routine which calls them. */
244 int g1 = read_register (G1_REGNUM);
245 CORE_ADDR sp = read_register (SP_REGNUM);
246 CORE_ADDR pc = read_register (PC_REGNUM);
247 CORE_ADDR npc = read_register (NPC_REGNUM);
248 CORE_ADDR fake_pc = sp - sizeof (save_insn_opcodes);
249 struct inferior_status inf_status;
251 save_inferior_status (&inf_status, 0); /* Don't restore stack info */
255 save_insn_opcodes[0] = 0x03000000 | ((-size >> 10) & 0x3fffff);
256 save_insn_opcodes[1] = 0x82006000 | (-size & 0x3ff);
257 save_insn_opcodes[3] = 0x03000000 | ((g1 >> 10) & 0x3fffff);
258 save_insn_opcodes[4] = 0x82006000 | (g1 & 0x3ff);
259 write_memory (fake_pc, (char *)save_insn_opcodes, sizeof (save_insn_opcodes));
261 clear_proceed_status ();
263 proceed (fake_pc, 0, 0);
265 write_register (PC_REGNUM, pc);
266 write_register (NPC_REGNUM, npc);
267 restore_inferior_status (&inf_status);
271 * This routine takes a program counter value. It restores the
272 * register window system to the frame above the current one.
273 * THIS ROUTINE CLOBBERS PC AND NPC IN THE TARGET!
276 /* The following insns translate to:
282 static int restore_insn_opcodes[] = { 0x81e80000, 0x91d02001, 0x01000000 };
287 CORE_ADDR sp = read_register (SP_REGNUM);
288 CORE_ADDR fake_pc = sp - sizeof (restore_insn_opcodes);
289 struct inferior_status inf_status;
291 save_inferior_status (&inf_status, 0); /* Don't restore stack info */
293 write_memory (fake_pc, (char *)restore_insn_opcodes,
294 sizeof (restore_insn_opcodes));
296 clear_proceed_status ();
298 proceed (fake_pc, 0, 0);
300 restore_inferior_status (&inf_status);
303 /* Given a pc value, skip it forward past the function prologue by
304 disassembling instructions that appear to be a prologue.
306 If FRAMELESS_P is set, we are only testing to see if the function
307 is frameless. This allows a quicker answer.
309 This routine should be more specific in its actions; making sure
310 that it uses the same register in the initial prologue section. */
312 skip_prologue (start_pc, frameless_p)
318 unsigned long int code;
324 unsigned int imm22:22;
333 unsigned int simm13:13;
338 CORE_ADDR pc = start_pc;
340 x.i = read_memory_integer (pc, 4);
342 /* Recognize the `sethi' insn and record its destination. */
343 if (x.sethi.op == 0 && x.sethi.op2 == 4)
347 x.i = read_memory_integer (pc, 4);
350 /* Recognize an add immediate value to register to either %g1 or
351 the destination register recorded above. Actually, this might
352 well recognize several different arithmetic operations.
353 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
354 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
355 I imagine any compiler really does that, however). */
356 if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
359 x.i = read_memory_integer (pc, 4);
362 /* This recognizes any SAVE insn. But why do the XOR and then
363 the compare? That's identical to comparing against 60 (as long
364 as there isn't any sign extension). */
365 if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
368 if (frameless_p) /* If the save is all we care about, */
369 return pc; /* return before doing more work */
370 x.i = read_memory_integer (pc, 4);
374 /* Without a save instruction, it's not a prologue. */
378 /* Now we need to recognize stores into the frame from the input
379 registers. This recognizes all non alternate stores of input
380 register, into a location offset from the frame pointer. */
382 && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate. */
383 && (x.add.rd & 0x18) == 0x18 /* Input register. */
384 && x.add.i /* Immediate mode. */
385 && x.add.rs1 == 30 /* Off of frame pointer. */
386 /* Into reserved stack space. */
387 && x.add.simm13 >= 0x44
388 && x.add.simm13 < 0x5b)
391 x.i = read_memory_integer (pc, 4);
396 /* Check instruction at ADDR to see if it is an annulled branch.
397 All other instructions will go to NPC or will trap.
398 Set *TARGET if we find a canidate branch; set to zero if not. */
401 isannulled (instruction, addr, target)
403 CORE_ADDR addr, *target;
405 branch_type val = not_branch;
406 long int offset; /* Must be signed for sign-extend. */
409 unsigned long int code;
416 unsigned int disp22:22;
421 insn.code = instruction;
424 && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
426 if (insn.b.cond == 8)
427 val = insn.b.a ? baa : ba;
429 val = insn.b.a ? bicca : bicc;
430 offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
431 *target = addr + offset;
437 /* sparc_frame_find_saved_regs ()
439 Stores, into a struct frame_saved_regs,
440 the addresses of the saved registers of frame described by FRAME_INFO.
441 This includes special registers such as pc and fp saved in special
442 ways in the stack frame. sp is even more special:
443 the address we return for it IS the sp for the next frame.
445 Note that on register window machines, we are currently making the
446 assumption that window registers are being saved somewhere in the
447 frame in which they are being used. If they are stored in an
448 inferior frame, find_saved_register will break.
450 On the Sun 4, the only time all registers are saved is when
451 a dummy frame is involved. Otherwise, the only saved registers
452 are the LOCAL and IN registers which are saved as a result
453 of the "save/restore" opcodes. This condition is determined
454 by address rather than by value.
456 The "pc" is not stored in a frame on the SPARC. (What is stored
457 is a return address minus 8.) sparc_pop_frame knows how to
458 deal with that. Other routines might or might not.
460 See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
461 about how this works. */
464 sparc_frame_find_saved_regs (fi, saved_regs_addr)
465 struct frame_info *fi;
466 struct frame_saved_regs *saved_regs_addr;
469 FRAME_ADDR frame = read_register (FP_REGNUM);
470 FRAME fid = FRAME_INFO_ID (fi);
473 fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");
475 memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));
478 if (fi->pc >= frame - CALL_DUMMY_LENGTH - 0x140
479 && fi->pc <= frame) */
481 if (fi->pc >= (fi->bottom ? fi->bottom :
482 read_register (SP_REGNUM))
483 && fi->pc <= FRAME_FP(fi))
485 /* Dummy frame. All but the window regs are in there somewhere. */
486 for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
487 saved_regs_addr->regs[regnum] =
488 frame + (regnum - G0_REGNUM) * 4 - 0xa0;
489 for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
490 saved_regs_addr->regs[regnum] =
491 frame + (regnum - I0_REGNUM) * 4 - 0xc0;
492 for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
493 saved_regs_addr->regs[regnum] =
494 frame + (regnum - FP0_REGNUM) * 4 - 0x80;
495 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
496 saved_regs_addr->regs[regnum] =
497 frame + (regnum - Y_REGNUM) * 4 - 0xe0;
499 fi->bottom : read_register (SP_REGNUM);
503 /* Normal frame. Just Local and In registers */
505 fi->bottom : read_register (SP_REGNUM);
506 for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
507 saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
511 /* Pull off either the next frame pointer or the stack pointer */
512 FRAME_ADDR next_next_frame =
515 read_register (SP_REGNUM));
516 for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
517 saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
519 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
520 saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
523 /* Push an empty stack frame, and record in it the current PC, regs, etc.
525 Note that the write's are of registers in the context of the newly
526 pushed frame. Thus the the fp*'s, the g*'s, the i*'s, and
527 the randoms, of the new frame, are being saved. The locals and outs
528 are new; they don't need to be saved. The i's and l's of
529 the last frame were saved by the do_save_insn in the register
530 file (now on the stack, since a context switch happended imm after).
532 The return pointer register %i7 does not have
533 the pc saved into it (return from this frame will be accomplished
534 by a POP_FRAME). In fact, we must leave it unclobbered, since we
535 must preserve it in the calling routine except across call instructions. */
537 /* Definitely see tm-sparc.h for more doc of the frame format here. */
540 sparc_push_dummy_frame ()
543 char register_temp[REGISTER_BYTES];
545 do_save_insn (0x140); /* FIXME where does this value come from? */
546 fp = read_register (FP_REGNUM);
548 read_register_bytes (REGISTER_BYTE (FP0_REGNUM), register_temp, 32 * 4);
549 write_memory (fp - 0x80, register_temp, 32 * 4);
551 read_register_bytes (REGISTER_BYTE (G0_REGNUM), register_temp, 8 * 4);
552 write_memory (fp - 0xa0, register_temp, 8 * 4);
554 read_register_bytes (REGISTER_BYTE (I0_REGNUM), register_temp, 8 * 4);
555 write_memory (fp - 0xc0, register_temp, 8 * 4);
557 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
558 read_register_bytes (REGISTER_BYTE (Y_REGNUM), register_temp, 8 * 4);
559 write_memory (fp - 0xe0, register_temp, 8 * 4);
562 /* Discard from the stack the innermost frame, restoring all saved registers.
564 Note that the values stored in fsr by get_frame_saved_regs are *in
565 the context of the called frame*. What this means is that the i
566 regs of fsr must be restored into the o regs of the (calling) frame that
567 we pop into. We don't care about the output regs of the calling frame,
568 since unless it's a dummy frame, it won't have any output regs in it.
570 We never have to bother with %l (local) regs, since the called routine's
571 locals get tossed, and the calling routine's locals are already saved
574 /* Definitely see tm-sparc.h for more doc of the frame format here. */
579 register FRAME frame = get_current_frame ();
580 register CORE_ADDR pc;
581 struct frame_saved_regs fsr;
582 struct frame_info *fi;
583 char raw_buffer[REGISTER_BYTES];
585 fi = get_frame_info (frame);
586 get_frame_saved_regs (fi, &fsr);
588 if (fsr.regs[FP0_REGNUM])
590 read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
591 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
593 if (fsr.regs[G1_REGNUM])
595 read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
596 write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
598 if (fsr.regs[I0_REGNUM])
600 read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);
601 write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, 8 * 4);
603 if (fsr.regs[PS_REGNUM])
604 write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
605 if (fsr.regs[Y_REGNUM])
606 write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
607 if (fsr.regs[PC_REGNUM])
609 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
610 write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
611 if (fsr.regs[NPC_REGNUM])
612 write_register (NPC_REGNUM,
613 read_memory_integer (fsr.regs[NPC_REGNUM], 4));
615 else if (fsr.regs[I7_REGNUM])
617 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
618 pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
619 write_register (PC_REGNUM, pc);
620 write_register (NPC_REGNUM, pc + 4);
622 flush_cached_frames ();
623 set_current_frame ( create_new_frame (read_register (FP_REGNUM),
627 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
628 encodes the structure size being returned. If we detect such
629 a fake insn, step past it. */
638 err = target_read_memory (pc + 8, (char *)&insn, sizeof(long));
639 SWAP_TARGET_AND_HOST (&insn, sizeof(long));
640 if ((err == 0) && (insn & 0xfffffe00) == 0)
647 /* Structure of SPARC extended floating point numbers.
648 This information is not currently used by GDB, since no current SPARC
649 implementations support extended float. */
651 const struct ext_format ext_format_sparc = {
652 /* tot sbyte smask expbyte manbyte */
653 16, 0, 0x80, 0,1, 4,8, /* sparc */
656 #ifdef USE_PROC_FS /* Target dependent support for /proc */
658 /* The /proc interface divides the target machine's register set up into
659 two different sets, the general register set (gregset) and the floating
660 point register set (fpregset). For each set, there is an ioctl to get
661 the current register set and another ioctl to set the current values.
663 The actual structure passed through the ioctl interface is, of course,
664 naturally machine dependent, and is different for each set of registers.
665 For the sparc for example, the general register set is typically defined
668 typedef int gregset_t[38];
674 and the floating point set by:
676 typedef struct prfpregset {
684 u_char pr_q_entrysize;
689 These routines provide the packing and unpacking of gregset_t and
690 fpregset_t formatted data.
695 /* Given a pointer to a general register set in /proc format (gregset_t *),
696 unpack the register contents and supply them as gdb's idea of the current
700 supply_gregset (gregsetp)
701 prgregset_t *gregsetp;
704 register prgreg_t *regp = (prgreg_t *) gregsetp;
706 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
707 for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
709 supply_register (regi, (char *) (regp + regi));
712 /* These require a bit more care. */
713 supply_register (PS_REGNUM, (char *) (regp + R_PS));
714 supply_register (PC_REGNUM, (char *) (regp + R_PC));
715 supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
716 supply_register (Y_REGNUM, (char *) (regp + R_Y));
720 fill_gregset (gregsetp, regno)
721 prgregset_t *gregsetp;
725 register prgreg_t *regp = (prgreg_t *) gregsetp;
726 extern char registers[];
728 for (regi = 0 ; regi <= R_I7 ; regi++)
730 if ((regno == -1) || (regno == regi))
732 *(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
735 if ((regno == -1) || (regno == PS_REGNUM))
737 *(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
739 if ((regno == -1) || (regno == PC_REGNUM))
741 *(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
743 if ((regno == -1) || (regno == NPC_REGNUM))
745 *(regp + R_nPC) = *(int *) ®isters[REGISTER_BYTE (NPC_REGNUM)];
747 if ((regno == -1) || (regno == Y_REGNUM))
749 *(regp + R_Y) = *(int *) ®isters[REGISTER_BYTE (Y_REGNUM)];
753 #if defined (FP0_REGNUM)
755 /* Given a pointer to a floating point register set in /proc format
756 (fpregset_t *), unpack the register contents and supply them as gdb's
757 idea of the current floating point register values. */
760 supply_fpregset (fpregsetp)
761 prfpregset_t *fpregsetp;
766 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
768 from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
769 supply_register (regi, from);
771 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
774 /* Given a pointer to a floating point register set in /proc format
775 (fpregset_t *), update the register specified by REGNO from gdb's idea
776 of the current floating point register set. If REGNO is -1, update
780 fill_fpregset (fpregsetp, regno)
781 prfpregset_t *fpregsetp;
787 extern char registers[];
789 for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
791 if ((regno == -1) || (regno == regi))
793 from = (char *) ®isters[REGISTER_BYTE (regi)];
794 to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
795 memcpy (to, from, REGISTER_RAW_SIZE (regi));
798 if ((regno == -1) || (regno == FPS_REGNUM))
800 fpregsetp->pr_fsr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
804 #endif /* defined (FP0_REGNUM) */
806 #endif /* USE_PROC_FS */
809 #ifdef GET_LONGJMP_TARGET
811 /* Figure out where the longjmp will land. We expect that we have just entered
812 longjmp and haven't yet setup the stack frame, so the args are still in the
813 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
814 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
815 This routine returns true on success */
818 get_longjmp_target(pc)
823 jb_addr = read_register(O0_REGNUM);
825 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) pc,
829 SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
833 #endif /* GET_LONGJMP_TARGET */