1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "dwarf_reader.h"
36 #include "workqueue.h"
44 // Initialize fields in Symbol. This initializes everything except u_
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->needs_value_in_got_ = false;
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
80 demangle(const char* name)
82 // cplus_demangle allocates memory for the result it returns,
83 // and returns NULL if the name is already demangled.
84 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
85 if (demangled_name == NULL)
88 std::string retval(demangled_name);
94 Symbol::demangled_name() const
96 if (parameters->demangle())
97 return demangle(name());
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104 template<int size, bool big_endian>
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
149 // Initialize the fields in the base class Symbol for a symbol defined
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
162 // Initialize the fields in Sized_symbol for SYM in OBJECT.
165 template<bool big_endian>
167 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
168 const elfcpp::Sym<size, big_endian>& sym)
170 this->init_base(name, version, object, sym);
171 this->value_ = sym.get_st_value();
172 this->symsize_ = sym.get_st_size();
175 // Initialize the fields in Sized_symbol for a symbol defined in an
180 Sized_symbol<size>::init(const char* name, Output_data* od,
181 Value_type value, Size_type symsize,
182 elfcpp::STT type, elfcpp::STB binding,
183 elfcpp::STV visibility, unsigned char nonvis,
184 bool offset_is_from_end)
186 this->init_base(name, od, type, binding, visibility, nonvis,
188 this->value_ = value;
189 this->symsize_ = symsize;
192 // Initialize the fields in Sized_symbol for a symbol defined in an
197 Sized_symbol<size>::init(const char* name, Output_segment* os,
198 Value_type value, Size_type symsize,
199 elfcpp::STT type, elfcpp::STB binding,
200 elfcpp::STV visibility, unsigned char nonvis,
201 Segment_offset_base offset_base)
203 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
204 this->value_ = value;
205 this->symsize_ = symsize;
208 // Initialize the fields in Sized_symbol for a symbol defined as a
213 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
214 elfcpp::STT type, elfcpp::STB binding,
215 elfcpp::STV visibility, unsigned char nonvis)
217 this->init_base(name, type, binding, visibility, nonvis);
218 this->value_ = value;
219 this->symsize_ = symsize;
222 // Return true if this symbol should be added to the dynamic symbol
226 Symbol::should_add_dynsym_entry() const
228 // If the symbol is used by a dynamic relocation, we need to add it.
229 if (this->needs_dynsym_entry())
232 // If exporting all symbols or building a shared library,
233 // and the symbol is defined in a regular object and is
234 // externally visible, we need to add it.
235 if ((parameters->export_dynamic() || parameters->output_is_shared())
236 && !this->is_from_dynobj()
237 && this->is_externally_visible())
243 // Return true if the final value of this symbol is known at link
247 Symbol::final_value_is_known() const
249 // If we are not generating an executable, then no final values are
250 // known, since they will change at runtime.
251 if (!parameters->output_is_executable())
254 // If the symbol is not from an object file, then it is defined, and
256 if (this->source_ != FROM_OBJECT)
259 // If the symbol is from a dynamic object, then the final value is
261 if (this->object()->is_dynamic())
264 // If the symbol is not undefined (it is defined or common), then
265 // the final value is known.
266 if (!this->is_undefined())
269 // If the symbol is undefined, then whether the final value is known
270 // depends on whether we are doing a static link. If we are doing a
271 // dynamic link, then the final value could be filled in at runtime.
272 // This could reasonably be the case for a weak undefined symbol.
273 return parameters->doing_static_link();
276 // Class Symbol_table.
278 Symbol_table::Symbol_table()
279 : saw_undefined_(0), offset_(0), table_(), namepool_(),
280 forwarders_(), commons_(), warnings_()
284 Symbol_table::~Symbol_table()
288 // The hash function. The key is always canonicalized, so we use a
289 // simple combination of the pointers.
292 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
294 return key.first ^ key.second;
297 // The symbol table key equality function. This is only called with
298 // canonicalized name and version strings, so we can use pointer
302 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
303 const Symbol_table_key& k2) const
305 return k1.first == k2.first && k1.second == k2.second;
308 // Make TO a symbol which forwards to FROM.
311 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
313 gold_assert(from != to);
314 gold_assert(!from->is_forwarder() && !to->is_forwarder());
315 this->forwarders_[from] = to;
316 from->set_forwarder();
319 // Resolve the forwards from FROM, returning the real symbol.
322 Symbol_table::resolve_forwards(const Symbol* from) const
324 gold_assert(from->is_forwarder());
325 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
326 this->forwarders_.find(from);
327 gold_assert(p != this->forwarders_.end());
331 // Look up a symbol by name.
334 Symbol_table::lookup(const char* name, const char* version) const
336 Stringpool::Key name_key;
337 name = this->namepool_.find(name, &name_key);
341 Stringpool::Key version_key = 0;
344 version = this->namepool_.find(version, &version_key);
349 Symbol_table_key key(name_key, version_key);
350 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
351 if (p == this->table_.end())
356 // Resolve a Symbol with another Symbol. This is only used in the
357 // unusual case where there are references to both an unversioned
358 // symbol and a symbol with a version, and we then discover that that
359 // version is the default version. Because this is unusual, we do
360 // this the slow way, by converting back to an ELF symbol.
362 template<int size, bool big_endian>
364 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
365 const char* version ACCEPT_SIZE_ENDIAN)
367 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
368 elfcpp::Sym_write<size, big_endian> esym(buf);
369 // We don't bother to set the st_name field.
370 esym.put_st_value(from->value());
371 esym.put_st_size(from->symsize());
372 esym.put_st_info(from->binding(), from->type());
373 esym.put_st_other(from->visibility(), from->nonvis());
374 esym.put_st_shndx(from->shndx());
375 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
382 // Add one symbol from OBJECT to the symbol table. NAME is symbol
383 // name and VERSION is the version; both are canonicalized. DEF is
384 // whether this is the default version.
386 // If DEF is true, then this is the definition of a default version of
387 // a symbol. That means that any lookup of NAME/NULL and any lookup
388 // of NAME/VERSION should always return the same symbol. This is
389 // obvious for references, but in particular we want to do this for
390 // definitions: overriding NAME/NULL should also override
391 // NAME/VERSION. If we don't do that, it would be very hard to
392 // override functions in a shared library which uses versioning.
394 // We implement this by simply making both entries in the hash table
395 // point to the same Symbol structure. That is easy enough if this is
396 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
397 // that we have seen both already, in which case they will both have
398 // independent entries in the symbol table. We can't simply change
399 // the symbol table entry, because we have pointers to the entries
400 // attached to the object files. So we mark the entry attached to the
401 // object file as a forwarder, and record it in the forwarders_ map.
402 // Note that entries in the hash table will never be marked as
405 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
406 // symbol exactly as it existed in the input file. SYM is usually
407 // that as well, but can be modified, for instance if we determine
408 // it's in a to-be-discarded section.
410 template<int size, bool big_endian>
412 Symbol_table::add_from_object(Object* object,
414 Stringpool::Key name_key,
416 Stringpool::Key version_key,
418 const elfcpp::Sym<size, big_endian>& sym,
419 const elfcpp::Sym<size, big_endian>& orig_sym)
421 Symbol* const snull = NULL;
422 std::pair<typename Symbol_table_type::iterator, bool> ins =
423 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
426 std::pair<typename Symbol_table_type::iterator, bool> insdef =
427 std::make_pair(this->table_.end(), false);
430 const Stringpool::Key vnull_key = 0;
431 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
436 // ins.first: an iterator, which is a pointer to a pair.
437 // ins.first->first: the key (a pair of name and version).
438 // ins.first->second: the value (Symbol*).
439 // ins.second: true if new entry was inserted, false if not.
441 Sized_symbol<size>* ret;
446 // We already have an entry for NAME/VERSION.
447 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
449 gold_assert(ret != NULL);
451 was_undefined = ret->is_undefined();
452 was_common = ret->is_common();
454 this->resolve(ret, sym, orig_sym, object, version);
460 // This is the first time we have seen NAME/NULL. Make
461 // NAME/NULL point to NAME/VERSION.
462 insdef.first->second = ret;
464 else if (insdef.first->second != ret)
466 // This is the unfortunate case where we already have
467 // entries for both NAME/VERSION and NAME/NULL.
468 const Sized_symbol<size>* sym2;
469 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
472 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
473 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
474 this->make_forwarder(insdef.first->second, ret);
475 insdef.first->second = ret;
481 // This is the first time we have seen NAME/VERSION.
482 gold_assert(ins.first->second == NULL);
484 was_undefined = false;
487 if (def && !insdef.second)
489 // We already have an entry for NAME/NULL. If we override
490 // it, then change it to NAME/VERSION.
491 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
494 this->resolve(ret, sym, orig_sym, object, version);
495 ins.first->second = ret;
499 Sized_target<size, big_endian>* target =
500 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
501 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
502 if (!target->has_make_symbol())
503 ret = new Sized_symbol<size>();
506 ret = target->make_symbol();
509 // This means that we don't want a symbol table
512 this->table_.erase(ins.first);
515 this->table_.erase(insdef.first);
516 // Inserting insdef invalidated ins.
517 this->table_.erase(std::make_pair(name_key,
524 ret->init(name, version, object, sym);
526 ins.first->second = ret;
529 // This is the first time we have seen NAME/NULL. Point
530 // it at the new entry for NAME/VERSION.
531 gold_assert(insdef.second);
532 insdef.first->second = ret;
537 // Record every time we see a new undefined symbol, to speed up
539 if (!was_undefined && ret->is_undefined())
540 ++this->saw_undefined_;
542 // Keep track of common symbols, to speed up common symbol
544 if (!was_common && ret->is_common())
545 this->commons_.push_back(ret);
550 // Add all the symbols in a relocatable object to the hash table.
552 template<int size, bool big_endian>
554 Symbol_table::add_from_relobj(
555 Sized_relobj<size, big_endian>* relobj,
556 const unsigned char* syms,
558 const char* sym_names,
559 size_t sym_name_size,
560 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
562 gold_assert(size == relobj->target()->get_size());
563 gold_assert(size == parameters->get_size());
565 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
567 const unsigned char* p = syms;
568 for (size_t i = 0; i < count; ++i, p += sym_size)
570 elfcpp::Sym<size, big_endian> sym(p);
571 elfcpp::Sym<size, big_endian>* psym = &sym;
573 unsigned int st_name = psym->get_st_name();
574 if (st_name >= sym_name_size)
576 relobj->error(_("bad global symbol name offset %u at %zu"),
581 const char* name = sym_names + st_name;
583 // A symbol defined in a section which we are not including must
584 // be treated as an undefined symbol.
585 unsigned char symbuf[sym_size];
586 elfcpp::Sym<size, big_endian> sym2(symbuf);
587 unsigned int st_shndx = psym->get_st_shndx();
588 if (st_shndx != elfcpp::SHN_UNDEF
589 && st_shndx < elfcpp::SHN_LORESERVE
590 && !relobj->is_section_included(st_shndx))
592 memcpy(symbuf, p, sym_size);
593 elfcpp::Sym_write<size, big_endian> sw(symbuf);
594 sw.put_st_shndx(elfcpp::SHN_UNDEF);
598 // In an object file, an '@' in the name separates the symbol
599 // name from the version name. If there are two '@' characters,
600 // this is the default version.
601 const char* ver = strchr(name, '@');
603 Sized_symbol<size>* res;
606 Stringpool::Key name_key;
607 name = this->namepool_.add(name, true, &name_key);
608 res = this->add_from_object(relobj, name, name_key, NULL, 0,
613 Stringpool::Key name_key;
614 name = this->namepool_.add_prefix(name, ver - name, &name_key);
624 Stringpool::Key ver_key;
625 ver = this->namepool_.add(ver, true, &ver_key);
627 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
631 (*sympointers)[i] = res;
635 // Add all the symbols in a dynamic object to the hash table.
637 template<int size, bool big_endian>
639 Symbol_table::add_from_dynobj(
640 Sized_dynobj<size, big_endian>* dynobj,
641 const unsigned char* syms,
643 const char* sym_names,
644 size_t sym_name_size,
645 const unsigned char* versym,
647 const std::vector<const char*>* version_map)
649 gold_assert(size == dynobj->target()->get_size());
650 gold_assert(size == parameters->get_size());
652 if (versym != NULL && versym_size / 2 < count)
654 dynobj->error(_("too few symbol versions"));
658 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
660 // We keep a list of all STT_OBJECT symbols, so that we can resolve
661 // weak aliases. This is necessary because if the dynamic object
662 // provides the same variable under two names, one of which is a
663 // weak definition, and the regular object refers to the weak
664 // definition, we have to put both the weak definition and the
665 // strong definition into the dynamic symbol table. Given a weak
666 // definition, the only way that we can find the corresponding
667 // strong definition, if any, is to search the symbol table.
668 std::vector<Sized_symbol<size>*> object_symbols;
670 const unsigned char* p = syms;
671 const unsigned char* vs = versym;
672 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
674 elfcpp::Sym<size, big_endian> sym(p);
676 // Ignore symbols with local binding.
677 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
680 unsigned int st_name = sym.get_st_name();
681 if (st_name >= sym_name_size)
683 dynobj->error(_("bad symbol name offset %u at %zu"),
688 const char* name = sym_names + st_name;
690 Sized_symbol<size>* res;
694 Stringpool::Key name_key;
695 name = this->namepool_.add(name, true, &name_key);
696 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
701 // Read the version information.
703 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
705 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
706 v &= elfcpp::VERSYM_VERSION;
708 // The Sun documentation says that V can be VER_NDX_LOCAL,
709 // or VER_NDX_GLOBAL, or a version index. The meaning of
710 // VER_NDX_LOCAL is defined as "Symbol has local scope."
711 // The old GNU linker will happily generate VER_NDX_LOCAL
712 // for an undefined symbol. I don't know what the Sun
713 // linker will generate.
715 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
716 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
718 // This symbol should not be visible outside the object.
722 // At this point we are definitely going to add this symbol.
723 Stringpool::Key name_key;
724 name = this->namepool_.add(name, true, &name_key);
726 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
727 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
729 // This symbol does not have a version.
730 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
735 if (v >= version_map->size())
737 dynobj->error(_("versym for symbol %zu out of range: %u"),
742 const char* version = (*version_map)[v];
745 dynobj->error(_("versym for symbol %zu has no name: %u"),
750 Stringpool::Key version_key;
751 version = this->namepool_.add(version, true, &version_key);
753 // If this is an absolute symbol, and the version name
754 // and symbol name are the same, then this is the
755 // version definition symbol. These symbols exist to
756 // support using -u to pull in particular versions. We
757 // do not want to record a version for them.
758 if (sym.get_st_shndx() == elfcpp::SHN_ABS
759 && name_key == version_key)
760 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
764 const bool def = (!hidden
765 && (sym.get_st_shndx()
766 != elfcpp::SHN_UNDEF));
767 res = this->add_from_object(dynobj, name, name_key, version,
768 version_key, def, sym, sym);
773 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
774 && sym.get_st_type() == elfcpp::STT_OBJECT)
775 object_symbols.push_back(res);
778 this->record_weak_aliases(&object_symbols);
781 // This is used to sort weak aliases. We sort them first by section
782 // index, then by offset, then by weak ahead of strong.
785 class Weak_alias_sorter
788 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
793 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
794 const Sized_symbol<size>* s2) const
796 if (s1->shndx() != s2->shndx())
797 return s1->shndx() < s2->shndx();
798 if (s1->value() != s2->value())
799 return s1->value() < s2->value();
800 if (s1->binding() != s2->binding())
802 if (s1->binding() == elfcpp::STB_WEAK)
804 if (s2->binding() == elfcpp::STB_WEAK)
807 return std::string(s1->name()) < std::string(s2->name());
810 // SYMBOLS is a list of object symbols from a dynamic object. Look
811 // for any weak aliases, and record them so that if we add the weak
812 // alias to the dynamic symbol table, we also add the corresponding
817 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
819 // Sort the vector by section index, then by offset, then by weak
821 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
823 // Walk through the vector. For each weak definition, record
825 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
830 if ((*p)->binding() != elfcpp::STB_WEAK)
833 // Build a circular list of weak aliases. Each symbol points to
834 // the next one in the circular list.
836 Sized_symbol<size>* from_sym = *p;
837 typename std::vector<Sized_symbol<size>*>::const_iterator q;
838 for (q = p + 1; q != symbols->end(); ++q)
840 if ((*q)->shndx() != from_sym->shndx()
841 || (*q)->value() != from_sym->value())
844 this->weak_aliases_[from_sym] = *q;
845 from_sym->set_has_alias();
851 this->weak_aliases_[from_sym] = *p;
852 from_sym->set_has_alias();
859 // Create and return a specially defined symbol. If ONLY_IF_REF is
860 // true, then only create the symbol if there is a reference to it.
861 // If this does not return NULL, it sets *POLDSYM to the existing
862 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
864 template<int size, bool big_endian>
866 Symbol_table::define_special_symbol(const Target* target, const char** pname,
867 const char** pversion, bool only_if_ref,
868 Sized_symbol<size>** poldsym
872 Sized_symbol<size>* sym;
873 bool add_to_table = false;
874 typename Symbol_table_type::iterator add_loc = this->table_.end();
878 oldsym = this->lookup(*pname, *pversion);
879 if (oldsym == NULL || !oldsym->is_undefined())
882 *pname = oldsym->name();
883 *pversion = oldsym->version();
887 // Canonicalize NAME and VERSION.
888 Stringpool::Key name_key;
889 *pname = this->namepool_.add(*pname, true, &name_key);
891 Stringpool::Key version_key = 0;
892 if (*pversion != NULL)
893 *pversion = this->namepool_.add(*pversion, true, &version_key);
895 Symbol* const snull = NULL;
896 std::pair<typename Symbol_table_type::iterator, bool> ins =
897 this->table_.insert(std::make_pair(std::make_pair(name_key,
903 // We already have a symbol table entry for NAME/VERSION.
904 oldsym = ins.first->second;
905 gold_assert(oldsym != NULL);
909 // We haven't seen this symbol before.
910 gold_assert(ins.first->second == NULL);
917 if (!target->has_make_symbol())
918 sym = new Sized_symbol<size>();
921 gold_assert(target->get_size() == size);
922 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
923 typedef Sized_target<size, big_endian> My_target;
924 const My_target* sized_target =
925 static_cast<const My_target*>(target);
926 sym = sized_target->make_symbol();
932 add_loc->second = sym;
934 gold_assert(oldsym != NULL);
936 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
942 // Define a symbol based on an Output_data.
945 Symbol_table::define_in_output_data(const Target* target, const char* name,
946 const char* version, Output_data* od,
947 uint64_t value, uint64_t symsize,
948 elfcpp::STT type, elfcpp::STB binding,
949 elfcpp::STV visibility,
950 unsigned char nonvis,
951 bool offset_is_from_end,
954 if (parameters->get_size() == 32)
956 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
957 return this->do_define_in_output_data<32>(target, name, version, od,
958 value, symsize, type, binding,
966 else if (parameters->get_size() == 64)
968 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
969 return this->do_define_in_output_data<64>(target, name, version, od,
970 value, symsize, type, binding,
982 // Define a symbol in an Output_data, sized version.
986 Symbol_table::do_define_in_output_data(
987 const Target* target,
991 typename elfcpp::Elf_types<size>::Elf_Addr value,
992 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
995 elfcpp::STV visibility,
996 unsigned char nonvis,
997 bool offset_is_from_end,
1000 Sized_symbol<size>* sym;
1001 Sized_symbol<size>* oldsym;
1003 if (parameters->is_big_endian())
1005 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1006 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1007 target, &name, &version, only_if_ref, &oldsym
1008 SELECT_SIZE_ENDIAN(size, true));
1015 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1016 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1017 target, &name, &version, only_if_ref, &oldsym
1018 SELECT_SIZE_ENDIAN(size, false));
1027 gold_assert(version == NULL || oldsym != NULL);
1028 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1029 offset_is_from_end);
1032 && Symbol_table::should_override_with_special(oldsym))
1033 this->override_with_special(oldsym, sym);
1038 // Define a symbol based on an Output_segment.
1041 Symbol_table::define_in_output_segment(const Target* target, const char* name,
1042 const char* version, Output_segment* os,
1043 uint64_t value, uint64_t symsize,
1044 elfcpp::STT type, elfcpp::STB binding,
1045 elfcpp::STV visibility,
1046 unsigned char nonvis,
1047 Symbol::Segment_offset_base offset_base,
1050 if (parameters->get_size() == 32)
1052 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1053 return this->do_define_in_output_segment<32>(target, name, version, os,
1054 value, symsize, type,
1055 binding, visibility, nonvis,
1056 offset_base, only_if_ref);
1061 else if (parameters->get_size() == 64)
1063 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1064 return this->do_define_in_output_segment<64>(target, name, version, os,
1065 value, symsize, type,
1066 binding, visibility, nonvis,
1067 offset_base, only_if_ref);
1076 // Define a symbol in an Output_segment, sized version.
1080 Symbol_table::do_define_in_output_segment(
1081 const Target* target,
1083 const char* version,
1085 typename elfcpp::Elf_types<size>::Elf_Addr value,
1086 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1088 elfcpp::STB binding,
1089 elfcpp::STV visibility,
1090 unsigned char nonvis,
1091 Symbol::Segment_offset_base offset_base,
1094 Sized_symbol<size>* sym;
1095 Sized_symbol<size>* oldsym;
1097 if (parameters->is_big_endian())
1099 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1100 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1101 target, &name, &version, only_if_ref, &oldsym
1102 SELECT_SIZE_ENDIAN(size, true));
1109 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1110 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1111 target, &name, &version, only_if_ref, &oldsym
1112 SELECT_SIZE_ENDIAN(size, false));
1121 gold_assert(version == NULL || oldsym != NULL);
1122 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1126 && Symbol_table::should_override_with_special(oldsym))
1127 this->override_with_special(oldsym, sym);
1132 // Define a special symbol with a constant value. It is a multiple
1133 // definition error if this symbol is already defined.
1136 Symbol_table::define_as_constant(const Target* target, const char* name,
1137 const char* version, uint64_t value,
1138 uint64_t symsize, elfcpp::STT type,
1139 elfcpp::STB binding, elfcpp::STV visibility,
1140 unsigned char nonvis, bool only_if_ref)
1142 if (parameters->get_size() == 32)
1144 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1145 return this->do_define_as_constant<32>(target, name, version, value,
1146 symsize, type, binding,
1147 visibility, nonvis, only_if_ref);
1152 else if (parameters->get_size() == 64)
1154 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1155 return this->do_define_as_constant<64>(target, name, version, value,
1156 symsize, type, binding,
1157 visibility, nonvis, only_if_ref);
1166 // Define a symbol as a constant, sized version.
1170 Symbol_table::do_define_as_constant(
1171 const Target* target,
1173 const char* version,
1174 typename elfcpp::Elf_types<size>::Elf_Addr value,
1175 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1177 elfcpp::STB binding,
1178 elfcpp::STV visibility,
1179 unsigned char nonvis,
1182 Sized_symbol<size>* sym;
1183 Sized_symbol<size>* oldsym;
1185 if (parameters->is_big_endian())
1187 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1188 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1189 target, &name, &version, only_if_ref, &oldsym
1190 SELECT_SIZE_ENDIAN(size, true));
1197 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1198 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1199 target, &name, &version, only_if_ref, &oldsym
1200 SELECT_SIZE_ENDIAN(size, false));
1209 gold_assert(version == NULL || oldsym != NULL);
1210 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1213 && Symbol_table::should_override_with_special(oldsym))
1214 this->override_with_special(oldsym, sym);
1219 // Define a set of symbols in output sections.
1222 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1223 int count, const Define_symbol_in_section* p)
1225 for (int i = 0; i < count; ++i, ++p)
1227 Output_section* os = layout->find_output_section(p->output_section);
1229 this->define_in_output_data(target, p->name, NULL, os, p->value,
1230 p->size, p->type, p->binding,
1231 p->visibility, p->nonvis,
1232 p->offset_is_from_end, p->only_if_ref);
1234 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1235 p->binding, p->visibility, p->nonvis,
1240 // Define a set of symbols in output segments.
1243 Symbol_table::define_symbols(const Layout* layout, const Target* target,
1244 int count, const Define_symbol_in_segment* p)
1246 for (int i = 0; i < count; ++i, ++p)
1248 Output_segment* os = layout->find_output_segment(p->segment_type,
1249 p->segment_flags_set,
1250 p->segment_flags_clear);
1252 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1253 p->size, p->type, p->binding,
1254 p->visibility, p->nonvis,
1255 p->offset_base, p->only_if_ref);
1257 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
1258 p->binding, p->visibility, p->nonvis,
1263 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1264 // symbol should be defined--typically a .dyn.bss section. VALUE is
1265 // the offset within POSD.
1269 Symbol_table::define_with_copy_reloc(const Target* target,
1270 Sized_symbol<size>* csym,
1271 Output_data* posd, uint64_t value)
1273 gold_assert(csym->is_from_dynobj());
1274 gold_assert(!csym->is_copied_from_dynobj());
1275 Object* object = csym->object();
1276 gold_assert(object->is_dynamic());
1277 Dynobj* dynobj = static_cast<Dynobj*>(object);
1279 // Our copied variable has to override any variable in a shared
1281 elfcpp::STB binding = csym->binding();
1282 if (binding == elfcpp::STB_WEAK)
1283 binding = elfcpp::STB_GLOBAL;
1285 this->define_in_output_data(target, csym->name(), csym->version(),
1286 posd, value, csym->symsize(),
1287 csym->type(), binding,
1288 csym->visibility(), csym->nonvis(),
1291 csym->set_is_copied_from_dynobj();
1292 csym->set_needs_dynsym_entry();
1294 this->copied_symbol_dynobjs_[csym] = dynobj;
1296 // We have now defined all aliases, but we have not entered them all
1297 // in the copied_symbol_dynobjs_ map.
1298 if (csym->has_alias())
1303 sym = this->weak_aliases_[sym];
1306 gold_assert(sym->output_data() == posd);
1308 sym->set_is_copied_from_dynobj();
1309 this->copied_symbol_dynobjs_[sym] = dynobj;
1314 // SYM is defined using a COPY reloc. Return the dynamic object where
1315 // the original definition was found.
1318 Symbol_table::get_copy_source(const Symbol* sym) const
1320 gold_assert(sym->is_copied_from_dynobj());
1321 Copied_symbol_dynobjs::const_iterator p =
1322 this->copied_symbol_dynobjs_.find(sym);
1323 gold_assert(p != this->copied_symbol_dynobjs_.end());
1327 // Set the dynamic symbol indexes. INDEX is the index of the first
1328 // global dynamic symbol. Pointers to the symbols are stored into the
1329 // vector SYMS. The names are added to DYNPOOL. This returns an
1330 // updated dynamic symbol index.
1333 Symbol_table::set_dynsym_indexes(const Target* target,
1335 std::vector<Symbol*>* syms,
1336 Stringpool* dynpool,
1339 for (Symbol_table_type::iterator p = this->table_.begin();
1340 p != this->table_.end();
1343 Symbol* sym = p->second;
1345 // Note that SYM may already have a dynamic symbol index, since
1346 // some symbols appear more than once in the symbol table, with
1347 // and without a version.
1349 if (!sym->should_add_dynsym_entry())
1350 sym->set_dynsym_index(-1U);
1351 else if (!sym->has_dynsym_index())
1353 sym->set_dynsym_index(index);
1355 syms->push_back(sym);
1356 dynpool->add(sym->name(), false, NULL);
1358 // Record any version information.
1359 if (sym->version() != NULL)
1360 versions->record_version(this, dynpool, sym);
1364 // Finish up the versions. In some cases this may add new dynamic
1366 index = versions->finalize(target, this, index, syms);
1371 // Set the final values for all the symbols. The index of the first
1372 // global symbol in the output file is INDEX. Record the file offset
1373 // OFF. Add their names to POOL. Return the new file offset.
1376 Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1377 size_t dyn_global_index, size_t dyncount,
1382 gold_assert(index != 0);
1383 this->first_global_index_ = index;
1385 this->dynamic_offset_ = dynoff;
1386 this->first_dynamic_global_index_ = dyn_global_index;
1387 this->dynamic_count_ = dyncount;
1389 if (parameters->get_size() == 32)
1391 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1392 ret = this->sized_finalize<32>(index, off, pool);
1397 else if (parameters->get_size() == 64)
1399 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1400 ret = this->sized_finalize<64>(index, off, pool);
1408 // Now that we have the final symbol table, we can reliably note
1409 // which symbols should get warnings.
1410 this->warnings_.note_warnings(this);
1415 // Set the final value for all the symbols. This is called after
1416 // Layout::finalize, so all the output sections have their final
1421 Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
1423 off = align_address(off, size >> 3);
1424 this->offset_ = off;
1426 size_t orig_index = index;
1428 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1429 for (Symbol_table_type::iterator p = this->table_.begin();
1430 p != this->table_.end();
1433 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1435 // FIXME: Here we need to decide which symbols should go into
1436 // the output file, based on --strip.
1438 // The default version of a symbol may appear twice in the
1439 // symbol table. We only need to finalize it once.
1440 if (sym->has_symtab_index())
1445 gold_assert(!sym->has_symtab_index());
1446 sym->set_symtab_index(-1U);
1447 gold_assert(sym->dynsym_index() == -1U);
1451 typename Sized_symbol<size>::Value_type value;
1453 switch (sym->source())
1455 case Symbol::FROM_OBJECT:
1457 unsigned int shndx = sym->shndx();
1459 // FIXME: We need some target specific support here.
1460 if (shndx >= elfcpp::SHN_LORESERVE
1461 && shndx != elfcpp::SHN_ABS)
1463 gold_error(_("%s: unsupported symbol section 0x%x"),
1464 sym->demangled_name().c_str(), shndx);
1465 shndx = elfcpp::SHN_UNDEF;
1468 Object* symobj = sym->object();
1469 if (symobj->is_dynamic())
1472 shndx = elfcpp::SHN_UNDEF;
1474 else if (shndx == elfcpp::SHN_UNDEF)
1476 else if (shndx == elfcpp::SHN_ABS)
1477 value = sym->value();
1480 Relobj* relobj = static_cast<Relobj*>(symobj);
1482 Output_section* os = relobj->output_section(shndx, &secoff);
1486 sym->set_symtab_index(-1U);
1487 gold_assert(sym->dynsym_index() == -1U);
1491 value = sym->value() + os->address() + secoff;
1496 case Symbol::IN_OUTPUT_DATA:
1498 Output_data* od = sym->output_data();
1499 value = sym->value() + od->address();
1500 if (sym->offset_is_from_end())
1501 value += od->data_size();
1505 case Symbol::IN_OUTPUT_SEGMENT:
1507 Output_segment* os = sym->output_segment();
1508 value = sym->value() + os->vaddr();
1509 switch (sym->offset_base())
1511 case Symbol::SEGMENT_START:
1513 case Symbol::SEGMENT_END:
1514 value += os->memsz();
1516 case Symbol::SEGMENT_BSS:
1517 value += os->filesz();
1525 case Symbol::CONSTANT:
1526 value = sym->value();
1533 sym->set_value(value);
1535 if (parameters->strip_all())
1536 sym->set_symtab_index(-1U);
1539 sym->set_symtab_index(index);
1540 pool->add(sym->name(), false, NULL);
1546 this->output_count_ = index - orig_index;
1551 // Write out the global symbols.
1554 Symbol_table::write_globals(const Input_objects* input_objects,
1555 const Stringpool* sympool,
1556 const Stringpool* dynpool, Output_file* of) const
1558 if (parameters->get_size() == 32)
1560 if (parameters->is_big_endian())
1562 #ifdef HAVE_TARGET_32_BIG
1563 this->sized_write_globals<32, true>(input_objects, sympool,
1571 #ifdef HAVE_TARGET_32_LITTLE
1572 this->sized_write_globals<32, false>(input_objects, sympool,
1579 else if (parameters->get_size() == 64)
1581 if (parameters->is_big_endian())
1583 #ifdef HAVE_TARGET_64_BIG
1584 this->sized_write_globals<64, true>(input_objects, sympool,
1592 #ifdef HAVE_TARGET_64_LITTLE
1593 this->sized_write_globals<64, false>(input_objects, sympool,
1604 // Write out the global symbols.
1606 template<int size, bool big_endian>
1608 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1609 const Stringpool* sympool,
1610 const Stringpool* dynpool,
1611 Output_file* of) const
1613 const Target* const target = input_objects->target();
1615 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1616 unsigned int index = this->first_global_index_;
1617 const off_t oview_size = this->output_count_ * sym_size;
1618 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1620 unsigned int dynamic_count = this->dynamic_count_;
1621 off_t dynamic_size = dynamic_count * sym_size;
1622 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1623 unsigned char* dynamic_view;
1624 if (this->dynamic_offset_ == 0)
1625 dynamic_view = NULL;
1627 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1629 unsigned char* ps = psyms;
1630 for (Symbol_table_type::const_iterator p = this->table_.begin();
1631 p != this->table_.end();
1634 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1636 // Possibly warn about unresolved symbols in shared libraries.
1637 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1639 unsigned int sym_index = sym->symtab_index();
1640 unsigned int dynsym_index;
1641 if (dynamic_view == NULL)
1644 dynsym_index = sym->dynsym_index();
1646 if (sym_index == -1U && dynsym_index == -1U)
1648 // This symbol is not included in the output file.
1652 if (sym_index == index)
1654 else if (sym_index != -1U)
1656 // We have already seen this symbol, because it has a
1658 gold_assert(sym_index < index);
1659 if (dynsym_index == -1U)
1665 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
1666 switch (sym->source())
1668 case Symbol::FROM_OBJECT:
1670 unsigned int in_shndx = sym->shndx();
1672 // FIXME: We need some target specific support here.
1673 if (in_shndx >= elfcpp::SHN_LORESERVE
1674 && in_shndx != elfcpp::SHN_ABS)
1676 gold_error(_("%s: unsupported symbol section 0x%x"),
1677 sym->demangled_name().c_str(), in_shndx);
1682 Object* symobj = sym->object();
1683 if (symobj->is_dynamic())
1685 if (sym->needs_dynsym_value())
1686 value = target->dynsym_value(sym);
1687 shndx = elfcpp::SHN_UNDEF;
1689 else if (in_shndx == elfcpp::SHN_UNDEF
1690 || in_shndx == elfcpp::SHN_ABS)
1694 Relobj* relobj = static_cast<Relobj*>(symobj);
1696 Output_section* os = relobj->output_section(in_shndx,
1698 gold_assert(os != NULL);
1699 shndx = os->out_shndx();
1705 case Symbol::IN_OUTPUT_DATA:
1706 shndx = sym->output_data()->out_shndx();
1709 case Symbol::IN_OUTPUT_SEGMENT:
1710 shndx = elfcpp::SHN_ABS;
1713 case Symbol::CONSTANT:
1714 shndx = elfcpp::SHN_ABS;
1721 if (sym_index != -1U)
1723 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1724 sym, sym->value(), shndx, sympool, ps
1725 SELECT_SIZE_ENDIAN(size, big_endian));
1729 if (dynsym_index != -1U)
1731 dynsym_index -= first_dynamic_global_index;
1732 gold_assert(dynsym_index < dynamic_count);
1733 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1734 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
1735 sym, value, shndx, dynpool, pd
1736 SELECT_SIZE_ENDIAN(size, big_endian));
1740 gold_assert(ps - psyms == oview_size);
1742 of->write_output_view(this->offset_, oview_size, psyms);
1743 if (dynamic_view != NULL)
1744 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1747 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1748 // strtab holding the name.
1750 template<int size, bool big_endian>
1752 Symbol_table::sized_write_symbol(
1753 Sized_symbol<size>* sym,
1754 typename elfcpp::Elf_types<size>::Elf_Addr value,
1756 const Stringpool* pool,
1758 ACCEPT_SIZE_ENDIAN) const
1760 elfcpp::Sym_write<size, big_endian> osym(p);
1761 osym.put_st_name(pool->get_offset(sym->name()));
1762 osym.put_st_value(value);
1763 osym.put_st_size(sym->symsize());
1764 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1765 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1766 osym.put_st_shndx(shndx);
1769 // Check for unresolved symbols in shared libraries. This is
1770 // controlled by the --allow-shlib-undefined option.
1772 // We only warn about libraries for which we have seen all the
1773 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
1774 // which were not seen in this link. If we didn't see a DT_NEEDED
1775 // entry, we aren't going to be able to reliably report whether the
1776 // symbol is undefined.
1778 // We also don't warn about libraries found in the system library
1779 // directory (the directory were we find libc.so); we assume that
1780 // those libraries are OK. This heuristic avoids problems in
1781 // GNU/Linux, in which -ldl can have undefined references satisfied by
1785 Symbol_table::warn_about_undefined_dynobj_symbol(
1786 const Input_objects* input_objects,
1789 if (sym->source() == Symbol::FROM_OBJECT
1790 && sym->object()->is_dynamic()
1791 && sym->shndx() == elfcpp::SHN_UNDEF
1792 && sym->binding() != elfcpp::STB_WEAK
1793 && !parameters->allow_shlib_undefined()
1794 && !input_objects->target()->is_defined_by_abi(sym)
1795 && !input_objects->found_in_system_library_directory(sym->object()))
1797 // A very ugly cast.
1798 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
1799 if (!dynobj->has_unknown_needed_entries())
1800 gold_error(_("%s: undefined reference to '%s'"),
1801 sym->object()->name().c_str(),
1802 sym->demangled_name().c_str());
1806 // Write out a section symbol. Return the update offset.
1809 Symbol_table::write_section_symbol(const Output_section *os,
1813 if (parameters->get_size() == 32)
1815 if (parameters->is_big_endian())
1817 #ifdef HAVE_TARGET_32_BIG
1818 this->sized_write_section_symbol<32, true>(os, of, offset);
1825 #ifdef HAVE_TARGET_32_LITTLE
1826 this->sized_write_section_symbol<32, false>(os, of, offset);
1832 else if (parameters->get_size() == 64)
1834 if (parameters->is_big_endian())
1836 #ifdef HAVE_TARGET_64_BIG
1837 this->sized_write_section_symbol<64, true>(os, of, offset);
1844 #ifdef HAVE_TARGET_64_LITTLE
1845 this->sized_write_section_symbol<64, false>(os, of, offset);
1855 // Write out a section symbol, specialized for size and endianness.
1857 template<int size, bool big_endian>
1859 Symbol_table::sized_write_section_symbol(const Output_section* os,
1863 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1865 unsigned char* pov = of->get_output_view(offset, sym_size);
1867 elfcpp::Sym_write<size, big_endian> osym(pov);
1868 osym.put_st_name(0);
1869 osym.put_st_value(os->address());
1870 osym.put_st_size(0);
1871 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1872 elfcpp::STT_SECTION));
1873 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1874 osym.put_st_shndx(os->out_shndx());
1876 of->write_output_view(offset, sym_size, pov);
1879 // Check candidate_odr_violations_ to find symbols with the same name
1880 // but apparently different definitions (different source-file/line-no).
1883 Symbol_table::detect_odr_violations(const char* output_file_name) const
1885 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
1886 it != candidate_odr_violations_.end();
1889 const char* symbol_name = it->first;
1890 // We use a sorted set so the output is deterministic.
1891 std::set<std::string> line_nums;
1893 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
1894 locs = it->second.begin();
1895 locs != it->second.end();
1898 // We need to lock the object in order to read it. This
1899 // means that we can not run inside a Task. If we want to
1900 // run this in a Task for better performance, we will need
1901 // one Task for object, plus appropriate locking to ensure
1902 // that we don't conflict with other uses of the object.
1903 locs->object->lock();
1904 std::string lineno = Dwarf_line_info::one_addr2line(
1905 locs->object, locs->shndx, locs->offset);
1906 locs->object->unlock();
1907 if (!lineno.empty())
1908 line_nums.insert(lineno);
1911 if (line_nums.size() > 1)
1913 gold_warning(_("while linking %s: symbol %s defined in multiple "
1914 "places (possible ODR violation):"),
1915 output_file_name, demangle(symbol_name).c_str());
1916 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
1917 it2 != line_nums.end();
1919 fprintf(stderr, " %s\n", it2->c_str());
1924 // Warnings functions.
1926 // Add a new warning.
1929 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1932 name = symtab->canonicalize_name(name);
1933 this->warnings_[name].set(obj, shndx);
1936 // Look through the warnings and mark the symbols for which we should
1937 // warn. This is called during Layout::finalize when we know the
1938 // sources for all the symbols.
1941 Warnings::note_warnings(Symbol_table* symtab)
1943 for (Warning_table::iterator p = this->warnings_.begin();
1944 p != this->warnings_.end();
1947 Symbol* sym = symtab->lookup(p->first, NULL);
1949 && sym->source() == Symbol::FROM_OBJECT
1950 && sym->object() == p->second.object)
1952 sym->set_has_warning();
1954 // Read the section contents to get the warning text. It
1955 // would be nicer if we only did this if we have to actually
1956 // issue a warning. Unfortunately, warnings are issued as
1957 // we relocate sections. That means that we can not lock
1958 // the object then, as we might try to issue the same
1959 // warning multiple times simultaneously.
1961 Task_locker_obj<Object> tl(*p->second.object);
1962 const unsigned char* c;
1964 c = p->second.object->section_contents(p->second.shndx, &len,
1966 p->second.set_text(reinterpret_cast<const char*>(c), len);
1972 // Issue a warning. This is called when we see a relocation against a
1973 // symbol for which has a warning.
1975 template<int size, bool big_endian>
1977 Warnings::issue_warning(const Symbol* sym,
1978 const Relocate_info<size, big_endian>* relinfo,
1979 size_t relnum, off_t reloffset) const
1981 gold_assert(sym->has_warning());
1982 Warning_table::const_iterator p = this->warnings_.find(sym->name());
1983 gold_assert(p != this->warnings_.end());
1984 gold_warning_at_location(relinfo, relnum, reloffset,
1985 "%s", p->second.text.c_str());
1988 // Instantiate the templates we need. We could use the configure
1989 // script to restrict this to only the ones needed for implemented
1992 #ifdef HAVE_TARGET_32_LITTLE
1995 Symbol_table::add_from_relobj<32, false>(
1996 Sized_relobj<32, false>* relobj,
1997 const unsigned char* syms,
1999 const char* sym_names,
2000 size_t sym_name_size,
2001 Sized_relobj<32, true>::Symbols* sympointers);
2004 #ifdef HAVE_TARGET_32_BIG
2007 Symbol_table::add_from_relobj<32, true>(
2008 Sized_relobj<32, true>* relobj,
2009 const unsigned char* syms,
2011 const char* sym_names,
2012 size_t sym_name_size,
2013 Sized_relobj<32, false>::Symbols* sympointers);
2016 #ifdef HAVE_TARGET_64_LITTLE
2019 Symbol_table::add_from_relobj<64, false>(
2020 Sized_relobj<64, false>* relobj,
2021 const unsigned char* syms,
2023 const char* sym_names,
2024 size_t sym_name_size,
2025 Sized_relobj<64, true>::Symbols* sympointers);
2028 #ifdef HAVE_TARGET_64_BIG
2031 Symbol_table::add_from_relobj<64, true>(
2032 Sized_relobj<64, true>* relobj,
2033 const unsigned char* syms,
2035 const char* sym_names,
2036 size_t sym_name_size,
2037 Sized_relobj<64, false>::Symbols* sympointers);
2040 #ifdef HAVE_TARGET_32_LITTLE
2043 Symbol_table::add_from_dynobj<32, false>(
2044 Sized_dynobj<32, false>* dynobj,
2045 const unsigned char* syms,
2047 const char* sym_names,
2048 size_t sym_name_size,
2049 const unsigned char* versym,
2051 const std::vector<const char*>* version_map);
2054 #ifdef HAVE_TARGET_32_BIG
2057 Symbol_table::add_from_dynobj<32, true>(
2058 Sized_dynobj<32, true>* dynobj,
2059 const unsigned char* syms,
2061 const char* sym_names,
2062 size_t sym_name_size,
2063 const unsigned char* versym,
2065 const std::vector<const char*>* version_map);
2068 #ifdef HAVE_TARGET_64_LITTLE
2071 Symbol_table::add_from_dynobj<64, false>(
2072 Sized_dynobj<64, false>* dynobj,
2073 const unsigned char* syms,
2075 const char* sym_names,
2076 size_t sym_name_size,
2077 const unsigned char* versym,
2079 const std::vector<const char*>* version_map);
2082 #ifdef HAVE_TARGET_64_BIG
2085 Symbol_table::add_from_dynobj<64, true>(
2086 Sized_dynobj<64, true>* dynobj,
2087 const unsigned char* syms,
2089 const char* sym_names,
2090 size_t sym_name_size,
2091 const unsigned char* versym,
2093 const std::vector<const char*>* version_map);
2096 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2099 Symbol_table::define_with_copy_reloc<32>(const Target* target,
2100 Sized_symbol<32>* sym,
2101 Output_data* posd, uint64_t value);
2104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2107 Symbol_table::define_with_copy_reloc<64>(const Target* target,
2108 Sized_symbol<64>* sym,
2109 Output_data* posd, uint64_t value);
2112 #ifdef HAVE_TARGET_32_LITTLE
2115 Warnings::issue_warning<32, false>(const Symbol* sym,
2116 const Relocate_info<32, false>* relinfo,
2117 size_t relnum, off_t reloffset) const;
2120 #ifdef HAVE_TARGET_32_BIG
2123 Warnings::issue_warning<32, true>(const Symbol* sym,
2124 const Relocate_info<32, true>* relinfo,
2125 size_t relnum, off_t reloffset) const;
2128 #ifdef HAVE_TARGET_64_LITTLE
2131 Warnings::issue_warning<64, false>(const Symbol* sym,
2132 const Relocate_info<64, false>* relinfo,
2133 size_t relnum, off_t reloffset) const;
2136 #ifdef HAVE_TARGET_64_BIG
2139 Warnings::issue_warning<64, true>(const Symbol* sym,
2140 const Relocate_info<64, true>* relinfo,
2141 size_t relnum, off_t reloffset) const;
2144 } // End namespace gold.