]> Git Repo - binutils.git/blob - gdb/avr-tdep.c
Do not include parser-defs.h from c-lang.h
[binutils.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3    Copyright (C) 1996-2020 Free Software Foundation, Inc.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 /* Contributed by Theodore A. Roth, [email protected] */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23    by Denis Chertykov, [email protected] */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40
41 /* AVR Background:
42
43    (AVR micros are pure Harvard Architecture processors.)
44
45    The AVR family of microcontrollers have three distinctly different memory
46    spaces: flash, sram and eeprom.  The flash is 16 bits wide and is used for
47    the most part to store program instructions.  The sram is 8 bits wide and is
48    used for the stack and the heap.  Some devices lack sram and some can have
49    an additional external sram added on as a peripheral.
50
51    The eeprom is 8 bits wide and is used to store data when the device is
52    powered down.  Eeprom is not directly accessible, it can only be accessed
53    via io-registers using a special algorithm.  Accessing eeprom via gdb's
54    remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55    not included at this time.
56
57    [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58    written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
59    work, the remote target must be able to handle eeprom accesses and perform
60    the address translation.]
61
62    All three memory spaces have physical addresses beginning at 0x0.  In
63    addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64    bytes instead of the 16 bit wide words used by the real device for the
65    Program Counter.
66
67    In order for remote targets to work correctly, extra bits must be added to
68    addresses before they are send to the target or received from the target
69    via the remote serial protocol.  The extra bits are the MSBs and are used to
70    decode which memory space the address is referring to.  */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 /* Address space flags */
75
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77    space.  */
78
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH  \
81   TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
84 enum
85 {
86   AVR_REG_W = 24,
87   AVR_REG_X = 26,
88   AVR_REG_Y = 28,
89   AVR_FP_REGNUM = 28,
90   AVR_REG_Z = 30,
91
92   AVR_SREG_REGNUM = 32,
93   AVR_SP_REGNUM = 33,
94   AVR_PC_REGNUM = 34,
95
96   AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97   AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
99   /* Pseudo registers.  */
100   AVR_PSEUDO_PC_REGNUM = 35,
101   AVR_NUM_PSEUDO_REGS = 1,
102
103   AVR_PC_REG_INDEX = 35,        /* index into array of registers */
104
105   AVR_MAX_PROLOGUE_SIZE = 64,   /* bytes */
106
107   /* Count of pushed registers.  From r2 to r17 (inclusively), r28, r29 */
108   AVR_MAX_PUSHES = 18,
109
110   /* Number of the last pushed register.  r17 for current avr-gcc */
111   AVR_LAST_PUSHED_REGNUM = 17,
112
113   AVR_ARG1_REGNUM = 24,         /* Single byte argument */
114   AVR_ARGN_REGNUM = 25,         /* Multi byte argments */
115   AVR_LAST_ARG_REGNUM = 8,      /* Last argument register */
116
117   AVR_RET1_REGNUM = 24,         /* Single byte return value */
118   AVR_RETN_REGNUM = 25,         /* Multi byte return value */
119
120   /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121      bits?  Do these have to match the bfd vma values?  It sure would make
122      things easier in the future if they didn't need to match.
123
124      Note: I chose these values so as to be consistent with bfd vma
125      addresses.
126
127      TRoth/2002-04-08: There is already a conflict with very large programs
128      in the mega128.  The mega128 has 128K instruction bytes (64K words),
129      thus the Most Significant Bit is 0x10000 which gets masked off my
130      AVR_MEM_MASK.
131
132      The problem manifests itself when trying to set a breakpoint in a
133      function which resides in the upper half of the instruction space and
134      thus requires a 17-bit address.
135
136      For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137      from 0x00ff0000 to 0x00f00000.  Eeprom is not accessible from gdb yet,
138      but could be for some remote targets by just adding the correct offset
139      to the address and letting the remote target handle the low-level
140      details of actually accessing the eeprom.  */
141
142   AVR_IMEM_START = 0x00000000,  /* INSN memory */
143   AVR_SMEM_START = 0x00800000,  /* SRAM memory */
144 #if 1
145   /* No eeprom mask defined */
146   AVR_MEM_MASK = 0x00f00000,    /* mask to determine memory space */
147 #else
148   AVR_EMEM_START = 0x00810000,  /* EEPROM memory */
149   AVR_MEM_MASK = 0x00ff0000,    /* mask to determine memory space */
150 #endif
151 };
152
153 /* Prologue types:
154
155    NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156    causes the generation of the CALL type prologues).  */
157
158 enum {
159     AVR_PROLOGUE_NONE,              /* No prologue */
160     AVR_PROLOGUE_NORMAL,
161     AVR_PROLOGUE_CALL,              /* -mcall-prologues */
162     AVR_PROLOGUE_MAIN,
163     AVR_PROLOGUE_INTR,              /* interrupt handler */
164     AVR_PROLOGUE_SIG,               /* signal handler */
165 };
166
167 /* Any function with a frame looks like this
168    .......    <-SP POINTS HERE
169    LOCALS1    <-FP POINTS HERE
170    LOCALS0
171    SAVED FP
172    SAVED R3
173    SAVED R2
174    RET PC
175    FIRST ARG
176    SECOND ARG */
177
178 struct avr_unwind_cache
179 {
180   /* The previous frame's inner most stack address.  Used as this
181      frame ID's stack_addr.  */
182   CORE_ADDR prev_sp;
183   /* The frame's base, optionally used by the high-level debug info.  */
184   CORE_ADDR base;
185   int size;
186   int prologue_type;
187   /* Table indicating the location of each and every register.  */
188   struct trad_frame_saved_reg *saved_regs;
189 };
190
191 struct gdbarch_tdep
192 {
193   /* Number of bytes stored to the stack by call instructions.
194      2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7.  */
195   int call_length;
196
197   /* Type for void.  */
198   struct type *void_type;
199   /* Type for a function returning void.  */
200   struct type *func_void_type;
201   /* Type for a pointer to a function.  Used for the type of PC.  */
202   struct type *pc_type;
203 };
204
205 /* Lookup the name of a register given it's number.  */
206
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210   static const char * const register_names[] = {
211     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215     "SREG", "SP", "PC2",
216     "pc"
217   };
218   if (regnum < 0)
219     return NULL;
220   if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221     return NULL;
222   return register_names[regnum];
223 }
224
225 /* Return the GDB type object for the "standard" data type
226    of data in register N.  */
227
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231   if (reg_nr == AVR_PC_REGNUM)
232     return builtin_type (gdbarch)->builtin_uint32;
233   if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234     return gdbarch_tdep (gdbarch)->pc_type;
235   if (reg_nr == AVR_SP_REGNUM)
236     return builtin_type (gdbarch)->builtin_data_ptr;
237   return builtin_type (gdbarch)->builtin_uint8;
238 }
239
240 /* Instruction address checks and convertions.  */
241
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245   return ((x) | AVR_IMEM_START);
246 }
247
248 /* FIXME: TRoth: Really need to use a larger mask for instructions.  Some
249    devices are already up to 128KBytes of flash space.
250
251    TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined.  */
252
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256   return ((x) & 0xffffffff);
257 }
258
259 /* SRAM address checks and convertions.  */
260
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264   /* Return 0 for NULL.  */
265   if (x == 0)
266     return 0;
267
268   return ((x) | AVR_SMEM_START);
269 }
270
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274   return ((x) & 0xffffffff);
275 }
276
277 /* EEPROM address checks and convertions.  I don't know if these will ever
278    actually be used, but I've added them just the same.  TRoth */
279
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281    programs in the mega128.  */
282
283 /*  static CORE_ADDR */
284 /*  avr_make_eaddr (CORE_ADDR x) */
285 /*  { */
286 /*    return ((x) | AVR_EMEM_START); */
287 /*  } */
288
289 /*  static int */
290 /*  avr_eaddr_p (CORE_ADDR x) */
291 /*  { */
292 /*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /*  } */
294
295 /*  static CORE_ADDR */
296 /*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /*  { */
298 /*    return ((x) & 0xffffffff); */
299 /*  } */
300
301 /* Convert from address to pointer and vice-versa.  */
302
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305                         struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
309   /* Is it a data address in flash?  */
310   if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311     {
312       /* A data pointer in flash is byte addressed.  */
313       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314                               avr_convert_iaddr_to_raw (addr));
315     }
316   /* Is it a code address?  */
317   else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
318            || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD)
319     {
320       /* A code pointer is word (16 bits) addressed.  We shift the address down
321          by 1 bit to convert it to a pointer.  */
322       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323                               avr_convert_iaddr_to_raw (addr >> 1));
324     }
325   else
326     {
327       /* Strip off any upper segment bits.  */
328       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329                               avr_convert_saddr_to_raw (addr));
330     }
331 }
332
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335                         struct type *type, const gdb_byte *buf)
336 {
337   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338   CORE_ADDR addr
339     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340
341   /* Is it a data address in flash?  */
342   if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343     {
344       /* A data pointer in flash is already byte addressed.  */
345       return avr_make_iaddr (addr);
346     }
347   /* Is it a code address?  */
348   else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
349            || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
350            || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351     {
352       /* A code pointer is word (16 bits) addressed so we shift it up
353          by 1 bit to convert it to an address.  */
354       return avr_make_iaddr (addr << 1);
355     }
356   else
357     return avr_make_saddr (addr);
358 }
359
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362                         struct type *type, const gdb_byte *buf)
363 {
364   ULONGEST addr = unpack_long (type, buf);
365
366   if (TYPE_DATA_SPACE (type))
367     return avr_make_saddr (addr);
368   else
369     return avr_make_iaddr (addr);
370 }
371
372 static CORE_ADDR
373 avr_read_pc (readable_regcache *regcache)
374 {
375   ULONGEST pc;
376
377   regcache->cooked_read (AVR_PC_REGNUM, &pc);
378   return avr_make_iaddr (pc);
379 }
380
381 static void
382 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
383 {
384   regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
385                                   avr_convert_iaddr_to_raw (val));
386 }
387
388 static enum register_status
389 avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
390                           int regnum, gdb_byte *buf)
391 {
392   ULONGEST val;
393   enum register_status status;
394
395   switch (regnum)
396     {
397     case AVR_PSEUDO_PC_REGNUM:
398       status = regcache->raw_read (AVR_PC_REGNUM, &val);
399       if (status != REG_VALID)
400         return status;
401       val >>= 1;
402       store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
403       return status;
404     default:
405       internal_error (__FILE__, __LINE__, _("invalid regnum"));
406     }
407 }
408
409 static void
410 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
411                            int regnum, const gdb_byte *buf)
412 {
413   ULONGEST val;
414
415   switch (regnum)
416     {
417     case AVR_PSEUDO_PC_REGNUM:
418       val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
419       val <<= 1;
420       regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
421       break;
422     default:
423       internal_error (__FILE__, __LINE__, _("invalid regnum"));
424     }
425 }
426
427 /* Function: avr_scan_prologue
428
429    This function decodes an AVR function prologue to determine:
430      1) the size of the stack frame
431      2) which registers are saved on it
432      3) the offsets of saved regs
433    This information is stored in the avr_unwind_cache structure.
434
435    Some devices lack the sbiw instruction, so on those replace this:
436         sbiw    r28, XX
437    with this:
438         subi    r28,lo8(XX)
439         sbci    r29,hi8(XX)
440
441    A typical AVR function prologue with a frame pointer might look like this:
442         push    rXX        ; saved regs
443         ...
444         push    r28
445         push    r29
446         in      r28,__SP_L__
447         in      r29,__SP_H__
448         sbiw    r28,<LOCALS_SIZE>
449         in      __tmp_reg__,__SREG__
450         cli
451         out     __SP_H__,r29
452         out     __SREG__,__tmp_reg__
453         out     __SP_L__,r28
454
455    A typical AVR function prologue without a frame pointer might look like
456    this:
457         push    rXX        ; saved regs
458         ...
459
460    A main function prologue looks like this:
461         ldi     r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
462         ldi     r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
463         out     __SP_H__,r29
464         out     __SP_L__,r28
465
466    A signal handler prologue looks like this:
467         push    __zero_reg__
468         push    __tmp_reg__
469         in      __tmp_reg__, __SREG__
470         push    __tmp_reg__
471         clr     __zero_reg__
472         push    rXX             ; save registers r18:r27, r30:r31
473         ...
474         push    r28             ; save frame pointer
475         push    r29
476         in      r28, __SP_L__
477         in      r29, __SP_H__
478         sbiw    r28, <LOCALS_SIZE>
479         out     __SP_H__, r29
480         out     __SP_L__, r28
481         
482    A interrupt handler prologue looks like this:
483         sei
484         push    __zero_reg__
485         push    __tmp_reg__
486         in      __tmp_reg__, __SREG__
487         push    __tmp_reg__
488         clr     __zero_reg__
489         push    rXX             ; save registers r18:r27, r30:r31
490         ...
491         push    r28             ; save frame pointer
492         push    r29
493         in      r28, __SP_L__
494         in      r29, __SP_H__
495         sbiw    r28, <LOCALS_SIZE>
496         cli
497         out     __SP_H__, r29
498         sei     
499         out     __SP_L__, r28
500
501    A `-mcall-prologues' prologue looks like this (Note that the megas use a
502    jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
503    32 bit insn and rjmp is a 16 bit insn):
504         ldi     r26,lo8(<LOCALS_SIZE>)
505         ldi     r27,hi8(<LOCALS_SIZE>)
506         ldi     r30,pm_lo8(.L_foo_body)
507         ldi     r31,pm_hi8(.L_foo_body)
508         rjmp    __prologue_saves__+RRR
509         .L_foo_body:  */
510
511 /* Not really part of a prologue, but still need to scan for it, is when a
512    function prologue moves values passed via registers as arguments to new
513    registers.  In this case, all local variables live in registers, so there
514    may be some register saves.  This is what it looks like:
515         movw    rMM, rNN
516         ...
517
518    There could be multiple movw's.  If the target doesn't have a movw insn, it
519    will use two mov insns.  This could be done after any of the above prologue
520    types.  */
521
522 static CORE_ADDR
523 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
524                    struct avr_unwind_cache *info)
525 {
526   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
527   int i;
528   unsigned short insn;
529   int scan_stage = 0;
530   struct bound_minimal_symbol msymbol;
531   unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
532   int vpc = 0;
533   int len;
534
535   len = pc_end - pc_beg;
536   if (len > AVR_MAX_PROLOGUE_SIZE)
537     len = AVR_MAX_PROLOGUE_SIZE;
538
539   /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
540      reading in the bytes of the prologue.  The problem is that the figuring
541      out where the end of the prologue is is a bit difficult.  The old code 
542      tried to do that, but failed quite often.  */
543   read_memory (pc_beg, prologue, len);
544
545   /* Scanning main()'s prologue
546      ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
547      ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
548      out __SP_H__,r29
549      out __SP_L__,r28 */
550
551   if (len >= 4)
552     {
553       CORE_ADDR locals;
554       static const unsigned char img[] = {
555         0xde, 0xbf,             /* out __SP_H__,r29 */
556         0xcd, 0xbf              /* out __SP_L__,r28 */
557       };
558
559       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
560       /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
561       if ((insn & 0xf0f0) == 0xe0c0)
562         {
563           locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
564           insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
565           /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
566           if ((insn & 0xf0f0) == 0xe0d0)
567             {
568               locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
569               if (vpc + 4 + sizeof (img) < len
570                   && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
571                 {
572                   info->prologue_type = AVR_PROLOGUE_MAIN;
573                   info->base = locals;
574                   return pc_beg + 4;
575                 }
576             }
577         }
578     }
579
580   /* Scanning `-mcall-prologues' prologue
581      Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
582
583   while (1)     /* Using a while to avoid many goto's */
584     {
585       int loc_size;
586       int body_addr;
587       unsigned num_pushes;
588       int pc_offset = 0;
589
590       /* At least the fifth instruction must have been executed to
591          modify frame shape.  */
592       if (len < 10)
593         break;
594
595       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
596       /* ldi r26,<LOCALS_SIZE> */
597       if ((insn & 0xf0f0) != 0xe0a0)
598         break;
599       loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
600       pc_offset += 2;
601
602       insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
603       /* ldi r27,<LOCALS_SIZE> / 256 */
604       if ((insn & 0xf0f0) != 0xe0b0)
605         break;
606       loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
607       pc_offset += 2;
608
609       insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
610       /* ldi r30,pm_lo8(.L_foo_body) */
611       if ((insn & 0xf0f0) != 0xe0e0)
612         break;
613       body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
614       pc_offset += 2;
615
616       insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
617       /* ldi r31,pm_hi8(.L_foo_body) */
618       if ((insn & 0xf0f0) != 0xe0f0)
619         break;
620       body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
621       pc_offset += 2;
622
623       msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
624       if (!msymbol.minsym)
625         break;
626
627       insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
628       /* rjmp __prologue_saves__+RRR */
629       if ((insn & 0xf000) == 0xc000)
630         {
631           /* Extract PC relative offset from RJMP */
632           i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
633           /* Convert offset to byte addressable mode */
634           i *= 2;
635           /* Destination address */
636           i += pc_beg + 10;
637
638           if (body_addr != (pc_beg + 10)/2)
639             break;
640
641           pc_offset += 2;
642         }
643       else if ((insn & 0xfe0e) == 0x940c)
644         {
645           /* Extract absolute PC address from JMP */
646           i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
647                | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
648                   & 0xffff));
649           /* Convert address to byte addressable mode */
650           i *= 2;
651
652           if (body_addr != (pc_beg + 12)/2)
653             break;
654
655           pc_offset += 4;
656         }
657       else
658         break;
659
660       /* Resolve offset (in words) from __prologue_saves__ symbol.
661          Which is a pushes count in `-mcall-prologues' mode */
662       num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
663
664       if (num_pushes > AVR_MAX_PUSHES)
665         {
666           fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
667                               num_pushes);
668           num_pushes = 0;
669         }
670
671       if (num_pushes)
672         {
673           int from;
674
675           info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
676           if (num_pushes >= 2)
677             info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
678
679           i = 0;
680           for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
681                from <= AVR_LAST_PUSHED_REGNUM; ++from)
682             info->saved_regs [from].addr = ++i;
683         }
684       info->size = loc_size + num_pushes;
685       info->prologue_type = AVR_PROLOGUE_CALL;
686
687       return pc_beg + pc_offset;
688     }
689
690   /* Scan for the beginning of the prologue for an interrupt or signal
691      function.  Note that we have to set the prologue type here since the
692      third stage of the prologue may not be present (e.g. no saved registered
693      or changing of the SP register).  */
694
695   if (1)
696     {
697       static const unsigned char img[] = {
698         0x78, 0x94,             /* sei */
699         0x1f, 0x92,             /* push r1 */
700         0x0f, 0x92,             /* push r0 */
701         0x0f, 0xb6,             /* in r0,0x3f SREG */
702         0x0f, 0x92,             /* push r0 */
703         0x11, 0x24              /* clr r1 */
704       };
705       if (len >= sizeof (img)
706           && memcmp (prologue, img, sizeof (img)) == 0)
707         {
708           info->prologue_type = AVR_PROLOGUE_INTR;
709           vpc += sizeof (img);
710           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
711           info->saved_regs[0].addr = 2;
712           info->saved_regs[1].addr = 1;
713           info->size += 3;
714         }
715       else if (len >= sizeof (img) - 2
716                && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
717         {
718           info->prologue_type = AVR_PROLOGUE_SIG;
719           vpc += sizeof (img) - 2;
720           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
721           info->saved_regs[0].addr = 2;
722           info->saved_regs[1].addr = 1;
723           info->size += 2;
724         }
725     }
726
727   /* First stage of the prologue scanning.
728      Scan pushes (saved registers) */
729
730   for (; vpc < len; vpc += 2)
731     {
732       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
733       if ((insn & 0xfe0f) == 0x920f)    /* push rXX */
734         {
735           /* Bits 4-9 contain a mask for registers R0-R32.  */
736           int regno = (insn & 0x1f0) >> 4;
737           info->size++;
738           info->saved_regs[regno].addr = info->size;
739           scan_stage = 1;
740         }
741       else
742         break;
743     }
744
745   gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
746
747   /* Handle static small stack allocation using rcall or push.  */
748
749   while (scan_stage == 1 && vpc < len)
750     {
751       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
752       if (insn == 0xd000)       /* rcall .+0 */
753         {
754           info->size += gdbarch_tdep (gdbarch)->call_length;
755           vpc += 2;
756         }
757       else if (insn == 0x920f || insn == 0x921f)  /* push r0 or push r1 */
758         {
759           info->size += 1;
760           vpc += 2;
761         }
762       else
763         break;
764     }
765
766   /* Second stage of the prologue scanning.
767      Scan:
768      in r28,__SP_L__
769      in r29,__SP_H__ */
770
771   if (scan_stage == 1 && vpc < len)
772     {
773       static const unsigned char img[] = {
774         0xcd, 0xb7,             /* in r28,__SP_L__ */
775         0xde, 0xb7              /* in r29,__SP_H__ */
776       };
777
778       if (vpc + sizeof (img) < len
779           && memcmp (prologue + vpc, img, sizeof (img)) == 0)
780         {
781           vpc += 4;
782           scan_stage = 2;
783         }
784     }
785
786   /* Third stage of the prologue scanning.  (Really two stages).
787      Scan for:
788      sbiw r28,XX or subi r28,lo8(XX)
789                     sbci r29,hi8(XX)
790      in __tmp_reg__,__SREG__
791      cli
792      out __SP_H__,r29
793      out __SREG__,__tmp_reg__
794      out __SP_L__,r28 */
795
796   if (scan_stage == 2 && vpc < len)
797     {
798       int locals_size = 0;
799       static const unsigned char img[] = {
800         0x0f, 0xb6,             /* in r0,0x3f */
801         0xf8, 0x94,             /* cli */
802         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
803         0x0f, 0xbe,             /* out 0x3f,r0  ; SREG */
804         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
805       };
806       static const unsigned char img_sig[] = {
807         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
808         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
809       };
810       static const unsigned char img_int[] = {
811         0xf8, 0x94,             /* cli */
812         0xde, 0xbf,             /* out 0x3e,r29 ; SPH */
813         0x78, 0x94,             /* sei */
814         0xcd, 0xbf              /* out 0x3d,r28 ; SPL */
815       };
816
817       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
818       if ((insn & 0xff30) == 0x9720)    /* sbiw r28,XXX */
819         {
820           locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
821           vpc += 2;
822         }
823       else if ((insn & 0xf0f0) == 0x50c0)       /* subi r28,lo8(XX) */
824         {
825           locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
826           vpc += 2;
827           insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
828           vpc += 2;
829           locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
830         }
831       else
832         return pc_beg + vpc;
833
834       /* Scan the last part of the prologue.  May not be present for interrupt
835          or signal handler functions, which is why we set the prologue type
836          when we saw the beginning of the prologue previously.  */
837
838       if (vpc + sizeof (img_sig) < len
839           && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
840         {
841           vpc += sizeof (img_sig);
842         }
843       else if (vpc + sizeof (img_int) < len 
844                && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
845         {
846           vpc += sizeof (img_int);
847         }
848       if (vpc + sizeof (img) < len
849           && memcmp (prologue + vpc, img, sizeof (img)) == 0)
850         {
851           info->prologue_type = AVR_PROLOGUE_NORMAL;
852           vpc += sizeof (img);
853         }
854
855       info->size += locals_size;
856
857       /* Fall through.  */
858     }
859
860   /* If we got this far, we could not scan the prologue, so just return the pc
861      of the frame plus an adjustment for argument move insns.  */
862
863   for (; vpc < len; vpc += 2)
864     {
865       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
866       if ((insn & 0xff00) == 0x0100)    /* movw rXX, rYY */
867         continue;
868       else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
869         continue;
870       else
871           break;
872     }
873     
874   return pc_beg + vpc;
875 }
876
877 static CORE_ADDR
878 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880   CORE_ADDR func_addr, func_end;
881   CORE_ADDR post_prologue_pc;
882
883   /* See what the symbol table says */
884
885   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
886     return pc;
887
888   post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
889   if (post_prologue_pc != 0)
890     return std::max (pc, post_prologue_pc);
891
892   {
893     CORE_ADDR prologue_end = pc;
894     struct avr_unwind_cache info = {0};
895     struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
896
897     info.saved_regs = saved_regs;
898     
899     /* Need to run the prologue scanner to figure out if the function has a
900        prologue and possibly skip over moving arguments passed via registers
901        to other registers.  */
902     
903     prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
904     
905     if (info.prologue_type != AVR_PROLOGUE_NONE)
906       return prologue_end;
907   }
908
909   /* Either we didn't find the start of this function (nothing we can do),
910      or there's no line info, or the line after the prologue is after
911      the end of the function (there probably isn't a prologue).  */
912
913   return pc;
914 }
915
916 /* Not all avr devices support the BREAK insn.  Those that don't should treat
917    it as a NOP.  Thus, it should be ok.  Since the avr is currently a remote
918    only target, this shouldn't be a problem (I hope).  TRoth/2003-05-14  */
919
920 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
921
922 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
923
924 /* Determine, for architecture GDBARCH, how a return value of TYPE
925    should be returned.  If it is supposed to be returned in registers,
926    and READBUF is non-zero, read the appropriate value from REGCACHE,
927    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
928    from WRITEBUF into REGCACHE.  */
929
930 static enum return_value_convention
931 avr_return_value (struct gdbarch *gdbarch, struct value *function,
932                   struct type *valtype, struct regcache *regcache,
933                   gdb_byte *readbuf, const gdb_byte *writebuf)
934 {
935   int i;
936   /* Single byte are returned in r24.
937      Otherwise, the MSB of the return value is always in r25, calculate which
938      register holds the LSB.  */
939   int lsb_reg;
940
941   if ((valtype->code () == TYPE_CODE_STRUCT
942        || valtype->code () == TYPE_CODE_UNION
943        || valtype->code () == TYPE_CODE_ARRAY)
944       && TYPE_LENGTH (valtype) > 8)
945     return RETURN_VALUE_STRUCT_CONVENTION;
946
947   if (TYPE_LENGTH (valtype) <= 2)
948     lsb_reg = 24;
949   else if (TYPE_LENGTH (valtype) <= 4)
950     lsb_reg = 22;
951   else if (TYPE_LENGTH (valtype) <= 8)
952     lsb_reg = 18;
953   else
954     gdb_assert_not_reached ("unexpected type length");
955
956   if (writebuf != NULL)
957     {
958       for (i = 0; i < TYPE_LENGTH (valtype); i++)
959         regcache->cooked_write (lsb_reg + i, writebuf + i);
960     }
961
962   if (readbuf != NULL)
963     {
964       for (i = 0; i < TYPE_LENGTH (valtype); i++)
965         regcache->cooked_read (lsb_reg + i, readbuf + i);
966     }
967
968   return RETURN_VALUE_REGISTER_CONVENTION;
969 }
970
971
972 /* Put here the code to store, into fi->saved_regs, the addresses of
973    the saved registers of frame described by FRAME_INFO.  This
974    includes special registers such as pc and fp saved in special ways
975    in the stack frame.  sp is even more special: the address we return
976    for it IS the sp for the next frame.  */
977
978 static struct avr_unwind_cache *
979 avr_frame_unwind_cache (struct frame_info *this_frame,
980                         void **this_prologue_cache)
981 {
982   CORE_ADDR start_pc, current_pc;
983   ULONGEST prev_sp;
984   ULONGEST this_base;
985   struct avr_unwind_cache *info;
986   struct gdbarch *gdbarch;
987   struct gdbarch_tdep *tdep;
988   int i;
989
990   if (*this_prologue_cache)
991     return (struct avr_unwind_cache *) *this_prologue_cache;
992
993   info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
994   *this_prologue_cache = info;
995   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
996
997   info->size = 0;
998   info->prologue_type = AVR_PROLOGUE_NONE;
999
1000   start_pc = get_frame_func (this_frame);
1001   current_pc = get_frame_pc (this_frame);
1002   if ((start_pc > 0) && (start_pc <= current_pc))
1003     avr_scan_prologue (get_frame_arch (this_frame),
1004                        start_pc, current_pc, info);
1005
1006   if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007       && (info->prologue_type != AVR_PROLOGUE_MAIN))
1008     {
1009       ULONGEST high_base;       /* High byte of FP */
1010
1011       /* The SP was moved to the FP.  This indicates that a new frame
1012          was created.  Get THIS frame's FP value by unwinding it from
1013          the next frame.  */
1014       this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1015       high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1016       this_base += (high_base << 8);
1017       
1018       /* The FP points at the last saved register.  Adjust the FP back
1019          to before the first saved register giving the SP.  */
1020       prev_sp = this_base + info->size; 
1021    }
1022   else
1023     {
1024       /* Assume that the FP is this frame's SP but with that pushed
1025          stack space added back.  */
1026       this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1027       prev_sp = this_base + info->size;
1028     }
1029
1030   /* Add 1 here to adjust for the post-decrement nature of the push
1031      instruction.*/
1032   info->prev_sp = avr_make_saddr (prev_sp + 1);
1033   info->base = avr_make_saddr (this_base);
1034
1035   gdbarch = get_frame_arch (this_frame);
1036
1037   /* Adjust all the saved registers so that they contain addresses and not
1038      offsets.  */
1039   for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040     if (info->saved_regs[i].addr > 0)
1041       info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1042
1043   /* Except for the main and startup code, the return PC is always saved on
1044      the stack and is at the base of the frame.  */
1045
1046   if (info->prologue_type != AVR_PROLOGUE_MAIN)
1047     info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1048
1049   /* The previous frame's SP needed to be computed.  Save the computed
1050      value.  */
1051   tdep = gdbarch_tdep (gdbarch);
1052   trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1053                         info->prev_sp - 1 + tdep->call_length);
1054
1055   return info;
1056 }
1057
1058 static CORE_ADDR
1059 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1060 {
1061   ULONGEST pc;
1062
1063   pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1064
1065   return avr_make_iaddr (pc);
1066 }
1067
1068 static CORE_ADDR
1069 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1070 {
1071   ULONGEST sp;
1072
1073   sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1074
1075   return avr_make_saddr (sp);
1076 }
1077
1078 /* Given a GDB frame, determine the address of the calling function's
1079    frame.  This will be used to create a new GDB frame struct.  */
1080
1081 static void
1082 avr_frame_this_id (struct frame_info *this_frame,
1083                    void **this_prologue_cache,
1084                    struct frame_id *this_id)
1085 {
1086   struct avr_unwind_cache *info
1087     = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1088   CORE_ADDR base;
1089   CORE_ADDR func;
1090   struct frame_id id;
1091
1092   /* The FUNC is easy.  */
1093   func = get_frame_func (this_frame);
1094
1095   /* Hopefully the prologue analysis either correctly determined the
1096      frame's base (which is the SP from the previous frame), or set
1097      that base to "NULL".  */
1098   base = info->prev_sp;
1099   if (base == 0)
1100     return;
1101
1102   id = frame_id_build (base, func);
1103   (*this_id) = id;
1104 }
1105
1106 static struct value *
1107 avr_frame_prev_register (struct frame_info *this_frame,
1108                          void **this_prologue_cache, int regnum)
1109 {
1110   struct avr_unwind_cache *info
1111     = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1112
1113   if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1114     {
1115       if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1116         {
1117           /* Reading the return PC from the PC register is slightly
1118              abnormal.  register_size(AVR_PC_REGNUM) says it is 4 bytes,
1119              but in reality, only two bytes (3 in upcoming mega256) are
1120              stored on the stack.
1121
1122              Also, note that the value on the stack is an addr to a word
1123              not a byte, so we will need to multiply it by two at some
1124              point. 
1125
1126              And to confuse matters even more, the return address stored
1127              on the stack is in big endian byte order, even though most
1128              everything else about the avr is little endian.  Ick!  */
1129           ULONGEST pc;
1130           int i;
1131           gdb_byte buf[3];
1132           struct gdbarch *gdbarch = get_frame_arch (this_frame);
1133           struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1134
1135           read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1136                        buf, tdep->call_length);
1137
1138           /* Extract the PC read from memory as a big-endian.  */
1139           pc = 0;
1140           for (i = 0; i < tdep->call_length; i++)
1141             pc = (pc << 8) | buf[i];
1142
1143           if (regnum == AVR_PC_REGNUM)
1144             pc <<= 1;
1145
1146           return frame_unwind_got_constant (this_frame, regnum, pc);
1147         }
1148
1149       return frame_unwind_got_optimized (this_frame, regnum);
1150     }
1151
1152   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1153 }
1154
1155 static const struct frame_unwind avr_frame_unwind = {
1156   NORMAL_FRAME,
1157   default_frame_unwind_stop_reason,
1158   avr_frame_this_id,
1159   avr_frame_prev_register,
1160   NULL,
1161   default_frame_sniffer
1162 };
1163
1164 static CORE_ADDR
1165 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1166 {
1167   struct avr_unwind_cache *info
1168     = avr_frame_unwind_cache (this_frame, this_cache);
1169
1170   return info->base;
1171 }
1172
1173 static const struct frame_base avr_frame_base = {
1174   &avr_frame_unwind,
1175   avr_frame_base_address,
1176   avr_frame_base_address,
1177   avr_frame_base_address
1178 };
1179
1180 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1181    frame.  The frame ID's base needs to match the TOS value saved by
1182    save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
1183
1184 static struct frame_id
1185 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1186 {
1187   ULONGEST base;
1188
1189   base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1190   return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1191 }
1192
1193 /* When arguments must be pushed onto the stack, they go on in reverse
1194    order.  The below implements a FILO (stack) to do this.  */
1195
1196 struct stack_item
1197 {
1198   int len;
1199   struct stack_item *prev;
1200   gdb_byte *data;
1201 };
1202
1203 static struct stack_item *
1204 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1205 {
1206   struct stack_item *si;
1207   si = XNEW (struct stack_item);
1208   si->data = (gdb_byte *) xmalloc (len);
1209   si->len = len;
1210   si->prev = prev;
1211   memcpy (si->data, contents, len);
1212   return si;
1213 }
1214
1215 static struct stack_item *pop_stack_item (struct stack_item *si);
1216 static struct stack_item *
1217 pop_stack_item (struct stack_item *si)
1218 {
1219   struct stack_item *dead = si;
1220   si = si->prev;
1221   xfree (dead->data);
1222   xfree (dead);
1223   return si;
1224 }
1225
1226 /* Setup the function arguments for calling a function in the inferior.
1227
1228    On the AVR architecture, there are 18 registers (R25 to R8) which are
1229    dedicated for passing function arguments.  Up to the first 18 arguments
1230    (depending on size) may go into these registers.  The rest go on the stack.
1231
1232    All arguments are aligned to start in even-numbered registers (odd-sized
1233    arguments, including char, have one free register above them).  For example,
1234    an int in arg1 and a char in arg2 would be passed as such:
1235
1236       arg1 -> r25:r24
1237       arg2 -> r22
1238
1239    Arguments that are larger than 2 bytes will be split between two or more
1240    registers as available, but will NOT be split between a register and the
1241    stack.  Arguments that go onto the stack are pushed last arg first (this is
1242    similar to the d10v).  */
1243
1244 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1245    inaccurate.
1246
1247    An exceptional case exists for struct arguments (and possibly other
1248    aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1249    not a multiple of WORDSIZE bytes.  In this case the argument is never split
1250    between the registers and the stack, but instead is copied in its entirety
1251    onto the stack, AND also copied into as many registers as there is room
1252    for.  In other words, space in registers permitting, two copies of the same
1253    argument are passed in.  As far as I can tell, only the one on the stack is
1254    used, although that may be a function of the level of compiler
1255    optimization.  I suspect this is a compiler bug.  Arguments of these odd
1256    sizes are left-justified within the word (as opposed to arguments smaller
1257    than WORDSIZE bytes, which are right-justified).
1258  
1259    If the function is to return an aggregate type such as a struct, the caller
1260    must allocate space into which the callee will copy the return value.  In
1261    this case, a pointer to the return value location is passed into the callee
1262    in register R0, which displaces one of the other arguments passed in via
1263    registers R0 to R2.  */
1264
1265 static CORE_ADDR
1266 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1267                      struct regcache *regcache, CORE_ADDR bp_addr,
1268                      int nargs, struct value **args, CORE_ADDR sp,
1269                      function_call_return_method return_method,
1270                      CORE_ADDR struct_addr)
1271 {
1272   int i;
1273   gdb_byte buf[3];
1274   int call_length = gdbarch_tdep (gdbarch)->call_length;
1275   CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1276   int regnum = AVR_ARGN_REGNUM;
1277   struct stack_item *si = NULL;
1278
1279   if (return_method == return_method_struct)
1280     {
1281       regcache_cooked_write_unsigned
1282         (regcache, regnum--, (struct_addr >> 8) & 0xff);
1283       regcache_cooked_write_unsigned
1284         (regcache, regnum--, struct_addr & 0xff);
1285       /* SP being post decremented, we need to reserve one byte so that the
1286          return address won't overwrite the result (or vice-versa).  */
1287       if (sp == struct_addr)
1288         sp--;
1289     }
1290
1291   for (i = 0; i < nargs; i++)
1292     {
1293       int last_regnum;
1294       int j;
1295       struct value *arg = args[i];
1296       struct type *type = check_typedef (value_type (arg));
1297       const bfd_byte *contents = value_contents (arg);
1298       int len = TYPE_LENGTH (type);
1299
1300       /* Calculate the potential last register needed.
1301          E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1302          shall be used. So, last needed register will be regnum-1(24).  */
1303       last_regnum = regnum - (len + (len & 1)) + 1;
1304
1305       /* If there are registers available, use them.  Once we start putting
1306          stuff on the stack, all subsequent args go on stack.  */
1307       if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1308         {
1309           /* Skip a register for odd length args.  */
1310           if (len & 1)
1311             regnum--;
1312
1313           /* Write MSB of argument into register and subsequent bytes in
1314              decreasing register numbers.  */
1315           for (j = 0; j < len; j++)
1316             regcache_cooked_write_unsigned
1317               (regcache, regnum--, contents[len - j - 1]);
1318         }
1319       /* No registers available, push the args onto the stack.  */
1320       else
1321         {
1322           /* From here on, we don't care about regnum.  */
1323           si = push_stack_item (si, contents, len);
1324         }
1325     }
1326
1327   /* Push args onto the stack.  */
1328   while (si)
1329     {
1330       sp -= si->len;
1331       /* Add 1 to sp here to account for post decr nature of pushes.  */
1332       write_memory (sp + 1, si->data, si->len);
1333       si = pop_stack_item (si);
1334     }
1335
1336   /* Set the return address.  For the avr, the return address is the BP_ADDR.
1337      Need to push the return address onto the stack noting that it needs to be
1338      in big-endian order on the stack.  */
1339   for (i = 1; i <= call_length; i++)
1340     {
1341       buf[call_length - i] = return_pc & 0xff;
1342       return_pc >>= 8;
1343     }
1344
1345   sp -= call_length;
1346   /* Use 'sp + 1' since pushes are post decr ops.  */
1347   write_memory (sp + 1, buf, call_length);
1348
1349   /* Finally, update the SP register.  */
1350   regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351                                   avr_convert_saddr_to_raw (sp));
1352
1353   /* Return SP value for the dummy frame, where the return address hasn't been
1354      pushed.  */
1355   return sp + call_length;
1356 }
1357
1358 /* Unfortunately dwarf2 register for SP is 32.  */
1359
1360 static int
1361 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362 {
1363   if (reg >= 0 && reg < 32)
1364     return reg;
1365   if (reg == 32)
1366     return AVR_SP_REGNUM;
1367   return -1;
1368 }
1369
1370 /* Implementation of `address_class_type_flags' gdbarch method.
1371
1372    This method maps DW_AT_address_class attributes to a
1373    type_instance_flag_value.  */
1374
1375 static type_instance_flags
1376 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1377 {
1378   /* The value 1 of the DW_AT_address_class attribute corresponds to the
1379      __flash qualifier.  Note that this attribute is only valid with
1380      pointer types and therefore the flag is set to the pointer type and
1381      not its target type.  */
1382   if (dwarf2_addr_class == 1 && byte_size == 2)
1383     return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1384   return 0;
1385 }
1386
1387 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1388
1389    Convert a type_instance_flag_value to an address space qualifier.  */
1390
1391 static const char*
1392 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch,
1393                                       type_instance_flags type_flags)
1394 {
1395   if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1396     return "flash";
1397   else
1398     return NULL;
1399 }
1400
1401 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1402
1403    Convert an address space qualifier to a type_instance_flag_value.  */
1404
1405 static bool
1406 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1407                                       const char* name,
1408                                       type_instance_flags *type_flags_ptr)
1409 {
1410   if (strcmp (name, "flash") == 0)
1411     {
1412       *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1413       return true;
1414     }
1415   else
1416     return false;
1417 }
1418
1419 /* Initialize the gdbarch structure for the AVR's.  */
1420
1421 static struct gdbarch *
1422 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1423 {
1424   struct gdbarch *gdbarch;
1425   struct gdbarch_tdep *tdep;
1426   struct gdbarch_list *best_arch;
1427   int call_length;
1428
1429   /* Avr-6 call instructions save 3 bytes.  */
1430   switch (info.bfd_arch_info->mach)
1431     {
1432     case bfd_mach_avr1:
1433     case bfd_mach_avrxmega1:
1434     case bfd_mach_avr2:
1435     case bfd_mach_avrxmega2:
1436     case bfd_mach_avr3:
1437     case bfd_mach_avrxmega3:
1438     case bfd_mach_avr4:
1439     case bfd_mach_avrxmega4:
1440     case bfd_mach_avr5:
1441     case bfd_mach_avrxmega5:
1442     default:
1443       call_length = 2;
1444       break;
1445     case bfd_mach_avr6:
1446     case bfd_mach_avrxmega6:
1447     case bfd_mach_avrxmega7:
1448       call_length = 3;
1449       break;
1450     }
1451
1452   /* If there is already a candidate, use it.  */
1453   for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1454        best_arch != NULL;
1455        best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1456     {
1457       if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1458         return best_arch->gdbarch;
1459     }
1460
1461   /* None found, create a new architecture from the information provided.  */
1462   tdep = XCNEW (struct gdbarch_tdep);
1463   gdbarch = gdbarch_alloc (&info, tdep);
1464   
1465   tdep->call_length = call_length;
1466
1467   /* Create a type for PC.  We can't use builtin types here, as they may not
1468      be defined.  */
1469   tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1470                                "void");
1471   tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1472   tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1473                                      tdep->func_void_type);
1474
1475   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1477   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1478   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1479   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1480   set_gdbarch_addr_bit (gdbarch, 32);
1481
1482   set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1483   set_gdbarch_wchar_signed (gdbarch, 1);
1484
1485   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1488
1489   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1490   set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1491   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1492
1493   set_gdbarch_read_pc (gdbarch, avr_read_pc);
1494   set_gdbarch_write_pc (gdbarch, avr_write_pc);
1495
1496   set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1497
1498   set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1499   set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1500
1501   set_gdbarch_register_name (gdbarch, avr_register_name);
1502   set_gdbarch_register_type (gdbarch, avr_register_type);
1503
1504   set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1505   set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1506   set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1507
1508   set_gdbarch_return_value (gdbarch, avr_return_value);
1509
1510   set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1511
1512   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1513
1514   set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1515   set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1516   set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1517
1518   set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1519   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520
1521   set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1522   set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1523
1524   frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1525   frame_base_set_default (gdbarch, &avr_frame_base);
1526
1527   set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1528
1529   set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1530   set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1531
1532   set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1533   set_gdbarch_address_class_name_to_type_flags
1534     (gdbarch, avr_address_class_name_to_type_flags);
1535   set_gdbarch_address_class_type_flags_to_name
1536     (gdbarch, avr_address_class_type_flags_to_name);
1537
1538   return gdbarch;
1539 }
1540
1541 /* Send a query request to the avr remote target asking for values of the io
1542    registers.  If args parameter is not NULL, then the user has requested info
1543    on a specific io register [This still needs implemented and is ignored for
1544    now].  The query string should be one of these forms:
1545
1546    "Ravr.io_reg" -> reply is "NN" number of io registers
1547
1548    "Ravr.io_reg:addr,len" where addr is first register and len is number of
1549    registers to be read.  The reply should be "<NAME>,VV;" for each io register
1550    where, <NAME> is a string, and VV is the hex value of the register.
1551
1552    All io registers are 8-bit.  */
1553
1554 static void
1555 avr_io_reg_read_command (const char *args, int from_tty)
1556 {
1557   char query[400];
1558   unsigned int nreg = 0;
1559   unsigned int val;
1560
1561   /* Find out how many io registers the target has.  */
1562   gdb::optional<gdb::byte_vector> buf
1563     = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, "avr.io_reg");
1564
1565   if (!buf)
1566     {
1567       fprintf_unfiltered (gdb_stderr,
1568                           _("ERR: info io_registers NOT supported "
1569                             "by current target\n"));
1570       return;
1571     }
1572
1573   const char *bufstr = (const char *) buf->data ();
1574
1575   if (sscanf (bufstr, "%x", &nreg) != 1)
1576     {
1577       fprintf_unfiltered (gdb_stderr,
1578                           _("Error fetching number of io registers\n"));
1579       return;
1580     }
1581
1582   reinitialize_more_filter ();
1583
1584   printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1585
1586   /* only fetch up to 8 registers at a time to keep the buffer small */
1587   int step = 8;
1588
1589   for (int i = 0; i < nreg; i += step)
1590     {
1591       /* how many registers this round? */
1592       int j = step;
1593       if ((i+j) >= nreg)
1594         j = nreg - i;           /* last block is less than 8 registers */
1595
1596       snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1597       buf = target_read_alloc (current_top_target (), TARGET_OBJECT_AVR, query);
1598
1599       if (!buf)
1600         {
1601           fprintf_unfiltered (gdb_stderr,
1602                               _("ERR: error reading avr.io_reg:%x,%x\n"),
1603                               i, j);
1604           return;
1605         }
1606
1607       const char *p = (const char *) buf->data ();
1608       for (int k = i; k < (i + j); k++)
1609         {
1610           if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1611             {
1612               printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1613               while ((*p != ';') && (*p != '\0'))
1614                 p++;
1615               p++;              /* skip over ';' */
1616               if (*p == '\0')
1617                 break;
1618             }
1619         }
1620     }
1621 }
1622
1623 void _initialize_avr_tdep ();
1624 void
1625 _initialize_avr_tdep ()
1626 {
1627   register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1628
1629   /* Add a new command to allow the user to query the avr remote target for
1630      the values of the io space registers in a saner way than just using
1631      `x/NNNb ADDR`.  */
1632
1633   /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1634      io_registers' to signify it is not available on other platforms.  */
1635
1636   add_info ("io_registers", avr_io_reg_read_command,
1637             _("Query remote AVR target for I/O space register values."));
1638 }
This page took 0.116687 seconds and 4 git commands to generate.