1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
33 #include "target-float.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
39 #include "tracepoint.h"
41 #include "user-regs.h"
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46 #include "cli/cli-style.h"
50 /* Definition of a user function. */
51 struct internal_function
53 /* The name of the function. It is a bit odd to have this in the
54 function itself -- the user might use a differently-named
55 convenience variable to hold the function. */
59 internal_function_fn handler;
61 /* User data for the handler. */
65 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
69 /* Lowest offset in the range. */
72 /* Length of the range. */
75 /* Returns true if THIS is strictly less than OTHER, useful for
76 searching. We keep ranges sorted by offset and coalesce
77 overlapping and contiguous ranges, so this just compares the
80 bool operator< (const range &other) const
82 return offset < other.offset;
85 /* Returns true if THIS is equal to OTHER. */
86 bool operator== (const range &other) const
88 return offset == other.offset && length == other.length;
92 /* Returns true if the ranges defined by [offset1, offset1+len1) and
93 [offset2, offset2+len2) overlap. */
96 ranges_overlap (LONGEST offset1, LONGEST len1,
97 LONGEST offset2, LONGEST len2)
101 l = std::max (offset1, offset2);
102 h = std::min (offset1 + len1, offset2 + len2);
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
110 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
115 what.offset = offset;
116 what.length = length;
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
128 |---| |---| |------| ... |--|
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
138 Then we need to check if the I range overlaps the I range itself.
143 |---| |---| |-------| ... |--|
150 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
152 if (i > ranges.begin ())
154 const struct range &bef = *(i - 1);
156 if (ranges_overlap (bef.offset, bef.length, offset, length))
160 if (i < ranges.end ())
162 const struct range &r = *i;
164 if (ranges_overlap (r.offset, r.length, offset, length))
171 static struct cmd_list_element *functionlist;
173 /* Note that the fields in this structure are arranged to save a bit
178 explicit value (struct type *type_)
185 enclosing_type (type_)
191 if (VALUE_LVAL (this) == lval_computed)
193 const struct lval_funcs *funcs = location.computed.funcs;
195 if (funcs->free_closure)
196 funcs->free_closure (this);
198 else if (VALUE_LVAL (this) == lval_xcallable)
199 delete location.xm_worker;
202 DISABLE_COPY_AND_ASSIGN (value);
204 /* Type of value; either not an lval, or one of the various
205 different possible kinds of lval. */
206 enum lval_type lval = not_lval;
208 /* Is it modifiable? Only relevant if lval != not_lval. */
209 unsigned int modifiable : 1;
211 /* If zero, contents of this value are in the contents field. If
212 nonzero, contents are in inferior. If the lval field is lval_memory,
213 the contents are in inferior memory at location.address plus offset.
214 The lval field may also be lval_register.
216 WARNING: This field is used by the code which handles watchpoints
217 (see breakpoint.c) to decide whether a particular value can be
218 watched by hardware watchpoints. If the lazy flag is set for
219 some member of a value chain, it is assumed that this member of
220 the chain doesn't need to be watched as part of watching the
221 value itself. This is how GDB avoids watching the entire struct
222 or array when the user wants to watch a single struct member or
223 array element. If you ever change the way lazy flag is set and
224 reset, be sure to consider this use as well! */
225 unsigned int lazy : 1;
227 /* If value is a variable, is it initialized or not. */
228 unsigned int initialized : 1;
230 /* If value is from the stack. If this is set, read_stack will be
231 used instead of read_memory to enable extra caching. */
232 unsigned int stack : 1;
234 /* True if this is a zero value, created by 'value_zero'; false
238 /* Location of value (if lval). */
241 /* If lval == lval_memory, this is the address in the inferior */
244 /*If lval == lval_register, the value is from a register. */
247 /* Register number. */
249 /* Frame ID of "next" frame to which a register value is relative.
250 If the register value is found relative to frame F, then the
251 frame id of F->next will be stored in next_frame_id. */
252 struct frame_id next_frame_id;
255 /* Pointer to internal variable. */
256 struct internalvar *internalvar;
258 /* Pointer to xmethod worker. */
259 struct xmethod_worker *xm_worker;
261 /* If lval == lval_computed, this is a set of function pointers
262 to use to access and describe the value, and a closure pointer
266 /* Functions to call. */
267 const struct lval_funcs *funcs;
269 /* Closure for those functions to use. */
274 /* Describes offset of a value within lval of a structure in target
275 addressable memory units. Note also the member embedded_offset
279 /* Only used for bitfields; number of bits contained in them. */
282 /* Only used for bitfields; position of start of field. For
283 little-endian targets, it is the position of the LSB. For
284 big-endian targets, it is the position of the MSB. */
287 /* The number of references to this value. When a value is created,
288 the value chain holds a reference, so REFERENCE_COUNT is 1. If
289 release_value is called, this value is removed from the chain but
290 the caller of release_value now has a reference to this value.
291 The caller must arrange for a call to value_free later. */
292 int reference_count = 1;
294 /* Only used for bitfields; the containing value. This allows a
295 single read from the target when displaying multiple
297 value_ref_ptr parent;
299 /* Type of the value. */
302 /* If a value represents a C++ object, then the `type' field gives
303 the object's compile-time type. If the object actually belongs
304 to some class derived from `type', perhaps with other base
305 classes and additional members, then `type' is just a subobject
306 of the real thing, and the full object is probably larger than
307 `type' would suggest.
309 If `type' is a dynamic class (i.e. one with a vtable), then GDB
310 can actually determine the object's run-time type by looking at
311 the run-time type information in the vtable. When this
312 information is available, we may elect to read in the entire
313 object, for several reasons:
315 - When printing the value, the user would probably rather see the
316 full object, not just the limited portion apparent from the
319 - If `type' has virtual base classes, then even printing `type'
320 alone may require reaching outside the `type' portion of the
321 object to wherever the virtual base class has been stored.
323 When we store the entire object, `enclosing_type' is the run-time
324 type -- the complete object -- and `embedded_offset' is the
325 offset of `type' within that larger type, in target addressable memory
326 units. The value_contents() macro takes `embedded_offset' into account,
327 so most GDB code continues to see the `type' portion of the value, just
328 as the inferior would.
330 If `type' is a pointer to an object, then `enclosing_type' is a
331 pointer to the object's run-time type, and `pointed_to_offset' is
332 the offset in target addressable memory units from the full object
333 to the pointed-to object -- that is, the value `embedded_offset' would
334 have if we followed the pointer and fetched the complete object.
335 (I don't really see the point. Why not just determine the
336 run-time type when you indirect, and avoid the special case? The
337 contents don't matter until you indirect anyway.)
339 If we're not doing anything fancy, `enclosing_type' is equal to
340 `type', and `embedded_offset' is zero, so everything works
342 struct type *enclosing_type;
343 LONGEST embedded_offset = 0;
344 LONGEST pointed_to_offset = 0;
346 /* Actual contents of the value. Target byte-order. NULL or not
347 valid if lazy is nonzero. */
348 gdb::unique_xmalloc_ptr<gdb_byte> contents;
350 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
351 rather than available, since the common and default case is for a
352 value to be available. This is filled in at value read time.
353 The unavailable ranges are tracked in bits. Note that a contents
354 bit that has been optimized out doesn't really exist in the
355 program, so it can't be marked unavailable either. */
356 std::vector<range> unavailable;
358 /* Likewise, but for optimized out contents (a chunk of the value of
359 a variable that does not actually exist in the program). If LVAL
360 is lval_register, this is a register ($pc, $sp, etc., never a
361 program variable) that has not been saved in the frame. Not
362 saved registers and optimized-out program variables values are
363 treated pretty much the same, except not-saved registers have a
364 different string representation and related error strings. */
365 std::vector<range> optimized_out;
371 get_value_arch (const struct value *value)
373 return value_type (value)->arch ();
377 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
379 gdb_assert (!value->lazy);
381 return !ranges_contain (value->unavailable, offset, length);
385 value_bytes_available (const struct value *value,
386 LONGEST offset, LONGEST length)
388 return value_bits_available (value,
389 offset * TARGET_CHAR_BIT,
390 length * TARGET_CHAR_BIT);
394 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
396 gdb_assert (!value->lazy);
398 return ranges_contain (value->optimized_out, bit_offset, bit_length);
402 value_entirely_available (struct value *value)
404 /* We can only tell whether the whole value is available when we try
407 value_fetch_lazy (value);
409 if (value->unavailable.empty ())
414 /* Returns true if VALUE is entirely covered by RANGES. If the value
415 is lazy, it'll be read now. Note that RANGE is a pointer to
416 pointer because reading the value might change *RANGE. */
419 value_entirely_covered_by_range_vector (struct value *value,
420 const std::vector<range> &ranges)
422 /* We can only tell whether the whole value is optimized out /
423 unavailable when we try to read it. */
425 value_fetch_lazy (value);
427 if (ranges.size () == 1)
429 const struct range &t = ranges[0];
432 && t.length == (TARGET_CHAR_BIT
433 * TYPE_LENGTH (value_enclosing_type (value))))
441 value_entirely_unavailable (struct value *value)
443 return value_entirely_covered_by_range_vector (value, value->unavailable);
447 value_entirely_optimized_out (struct value *value)
449 return value_entirely_covered_by_range_vector (value, value->optimized_out);
452 /* Insert into the vector pointed to by VECTORP the bit range starting of
453 OFFSET bits, and extending for the next LENGTH bits. */
456 insert_into_bit_range_vector (std::vector<range> *vectorp,
457 LONGEST offset, LONGEST length)
461 /* Insert the range sorted. If there's overlap or the new range
462 would be contiguous with an existing range, merge. */
464 newr.offset = offset;
465 newr.length = length;
467 /* Do a binary search for the position the given range would be
468 inserted if we only considered the starting OFFSET of ranges.
469 Call that position I. Since we also have LENGTH to care for
470 (this is a range afterall), we need to check if the _previous_
471 range overlaps the I range. E.g., calling R the new range:
473 #1 - overlaps with previous
477 |---| |---| |------| ... |--|
482 In the case #1 above, the binary search would return `I=1',
483 meaning, this OFFSET should be inserted at position 1, and the
484 current position 1 should be pushed further (and become 2). But,
485 note that `0' overlaps with R, so we want to merge them.
487 A similar consideration needs to be taken if the new range would
488 be contiguous with the previous range:
490 #2 - contiguous with previous
494 |--| |---| |------| ... |--|
499 If there's no overlap with the previous range, as in:
501 #3 - not overlapping and not contiguous
505 |--| |---| |------| ... |--|
512 #4 - R is the range with lowest offset
516 |--| |---| |------| ... |--|
521 ... we just push the new range to I.
523 All the 4 cases above need to consider that the new range may
524 also overlap several of the ranges that follow, or that R may be
525 contiguous with the following range, and merge. E.g.,
527 #5 - overlapping following ranges
530 |------------------------|
531 |--| |---| |------| ... |--|
540 |--| |---| |------| ... |--|
547 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
548 if (i > vectorp->begin ())
550 struct range &bef = *(i - 1);
552 if (ranges_overlap (bef.offset, bef.length, offset, length))
555 ULONGEST l = std::min (bef.offset, offset);
556 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
562 else if (offset == bef.offset + bef.length)
565 bef.length += length;
571 i = vectorp->insert (i, newr);
577 i = vectorp->insert (i, newr);
580 /* Check whether the ranges following the one we've just added or
581 touched can be folded in (#5 above). */
582 if (i != vectorp->end () && i + 1 < vectorp->end ())
587 /* Get the range we just touched. */
588 struct range &t = *i;
592 for (; i < vectorp->end (); i++)
594 struct range &r = *i;
595 if (r.offset <= t.offset + t.length)
599 l = std::min (t.offset, r.offset);
600 h = std::max (t.offset + t.length, r.offset + r.length);
609 /* If we couldn't merge this one, we won't be able to
610 merge following ones either, since the ranges are
611 always sorted by OFFSET. */
617 vectorp->erase (next, next + removed);
622 mark_value_bits_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
625 insert_into_bit_range_vector (&value->unavailable, offset, length);
629 mark_value_bytes_unavailable (struct value *value,
630 LONGEST offset, LONGEST length)
632 mark_value_bits_unavailable (value,
633 offset * TARGET_CHAR_BIT,
634 length * TARGET_CHAR_BIT);
637 /* Find the first range in RANGES that overlaps the range defined by
638 OFFSET and LENGTH, starting at element POS in the RANGES vector,
639 Returns the index into RANGES where such overlapping range was
640 found, or -1 if none was found. */
643 find_first_range_overlap (const std::vector<range> *ranges, int pos,
644 LONGEST offset, LONGEST length)
648 for (i = pos; i < ranges->size (); i++)
650 const range &r = (*ranges)[i];
651 if (ranges_overlap (r.offset, r.length, offset, length))
658 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
659 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
662 It must always be the case that:
663 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
665 It is assumed that memory can be accessed from:
666 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
668 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
669 / TARGET_CHAR_BIT) */
671 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
672 const gdb_byte *ptr2, size_t offset2_bits,
675 gdb_assert (offset1_bits % TARGET_CHAR_BIT
676 == offset2_bits % TARGET_CHAR_BIT);
678 if (offset1_bits % TARGET_CHAR_BIT != 0)
681 gdb_byte mask, b1, b2;
683 /* The offset from the base pointers PTR1 and PTR2 is not a complete
684 number of bytes. A number of bits up to either the next exact
685 byte boundary, or LENGTH_BITS (which ever is sooner) will be
687 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
688 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
689 mask = (1 << bits) - 1;
691 if (length_bits < bits)
693 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
697 /* Now load the two bytes and mask off the bits we care about. */
698 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
699 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
704 /* Now update the length and offsets to take account of the bits
705 we've just compared. */
707 offset1_bits += bits;
708 offset2_bits += bits;
711 if (length_bits % TARGET_CHAR_BIT != 0)
715 gdb_byte mask, b1, b2;
717 /* The length is not an exact number of bytes. After the previous
718 IF.. block then the offsets are byte aligned, or the
719 length is zero (in which case this code is not reached). Compare
720 a number of bits at the end of the region, starting from an exact
722 bits = length_bits % TARGET_CHAR_BIT;
723 o1 = offset1_bits + length_bits - bits;
724 o2 = offset2_bits + length_bits - bits;
726 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
727 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
729 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
730 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
732 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
733 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
743 /* We've now taken care of any stray "bits" at the start, or end of
744 the region to compare, the remainder can be covered with a simple
746 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
747 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
748 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
750 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
751 ptr2 + offset2_bits / TARGET_CHAR_BIT,
752 length_bits / TARGET_CHAR_BIT);
755 /* Length is zero, regions match. */
759 /* Helper struct for find_first_range_overlap_and_match and
760 value_contents_bits_eq. Keep track of which slot of a given ranges
761 vector have we last looked at. */
763 struct ranges_and_idx
766 const std::vector<range> *ranges;
768 /* The range we've last found in RANGES. Given ranges are sorted,
769 we can start the next lookup here. */
773 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
774 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
775 ranges starting at OFFSET2 bits. Return true if the ranges match
776 and fill in *L and *H with the overlapping window relative to
777 (both) OFFSET1 or OFFSET2. */
780 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
781 struct ranges_and_idx *rp2,
782 LONGEST offset1, LONGEST offset2,
783 LONGEST length, ULONGEST *l, ULONGEST *h)
785 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
787 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
790 if (rp1->idx == -1 && rp2->idx == -1)
796 else if (rp1->idx == -1 || rp2->idx == -1)
800 const range *r1, *r2;
804 r1 = &(*rp1->ranges)[rp1->idx];
805 r2 = &(*rp2->ranges)[rp2->idx];
807 /* Get the unavailable windows intersected by the incoming
808 ranges. The first and last ranges that overlap the argument
809 range may be wider than said incoming arguments ranges. */
810 l1 = std::max (offset1, r1->offset);
811 h1 = std::min (offset1 + length, r1->offset + r1->length);
813 l2 = std::max (offset2, r2->offset);
814 h2 = std::min (offset2 + length, offset2 + r2->length);
816 /* Make them relative to the respective start offsets, so we can
817 compare them for equality. */
824 /* Different ranges, no match. */
825 if (l1 != l2 || h1 != h2)
834 /* Helper function for value_contents_eq. The only difference is that
835 this function is bit rather than byte based.
837 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
838 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
839 Return true if the available bits match. */
842 value_contents_bits_eq (const struct value *val1, int offset1,
843 const struct value *val2, int offset2,
846 /* Each array element corresponds to a ranges source (unavailable,
847 optimized out). '1' is for VAL1, '2' for VAL2. */
848 struct ranges_and_idx rp1[2], rp2[2];
850 /* See function description in value.h. */
851 gdb_assert (!val1->lazy && !val2->lazy);
853 /* We shouldn't be trying to compare past the end of the values. */
854 gdb_assert (offset1 + length
855 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
856 gdb_assert (offset2 + length
857 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
859 memset (&rp1, 0, sizeof (rp1));
860 memset (&rp2, 0, sizeof (rp2));
861 rp1[0].ranges = &val1->unavailable;
862 rp2[0].ranges = &val2->unavailable;
863 rp1[1].ranges = &val1->optimized_out;
864 rp2[1].ranges = &val2->optimized_out;
868 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
871 for (i = 0; i < 2; i++)
873 ULONGEST l_tmp, h_tmp;
875 /* The contents only match equal if the invalid/unavailable
876 contents ranges match as well. */
877 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
878 offset1, offset2, length,
882 /* We're interested in the lowest/first range found. */
883 if (i == 0 || l_tmp < l)
890 /* Compare the available/valid contents. */
891 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
892 val2->contents.get (), offset2, l) != 0)
904 value_contents_eq (const struct value *val1, LONGEST offset1,
905 const struct value *val2, LONGEST offset2,
908 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
909 val2, offset2 * TARGET_CHAR_BIT,
910 length * TARGET_CHAR_BIT);
914 /* The value-history records all the values printed by print commands
915 during this session. */
917 static std::vector<value_ref_ptr> value_history;
920 /* List of all value objects currently allocated
921 (except for those released by calls to release_value)
922 This is so they can be freed after each command. */
924 static std::vector<value_ref_ptr> all_values;
926 /* Allocate a lazy value for type TYPE. Its actual content is
927 "lazily" allocated too: the content field of the return value is
928 NULL; it will be allocated when it is fetched from the target. */
931 allocate_value_lazy (struct type *type)
935 /* Call check_typedef on our type to make sure that, if TYPE
936 is a TYPE_CODE_TYPEDEF, its length is set to the length
937 of the target type instead of zero. However, we do not
938 replace the typedef type by the target type, because we want
939 to keep the typedef in order to be able to set the VAL's type
940 description correctly. */
941 check_typedef (type);
943 val = new struct value (type);
945 /* Values start out on the all_values chain. */
946 all_values.emplace_back (val);
951 /* The maximum size, in bytes, that GDB will try to allocate for a value.
952 The initial value of 64k was not selected for any specific reason, it is
953 just a reasonable starting point. */
955 static int max_value_size = 65536; /* 64k bytes */
957 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
958 LONGEST, otherwise GDB will not be able to parse integer values from the
959 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
960 be unable to parse "set max-value-size 2".
962 As we want a consistent GDB experience across hosts with different sizes
963 of LONGEST, this arbitrary minimum value was selected, so long as this
964 is bigger than LONGEST on all GDB supported hosts we're fine. */
966 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
967 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
969 /* Implement the "set max-value-size" command. */
972 set_max_value_size (const char *args, int from_tty,
973 struct cmd_list_element *c)
975 gdb_assert (max_value_size == -1 || max_value_size >= 0);
977 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
979 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
980 error (_("max-value-size set too low, increasing to %d bytes"),
985 /* Implement the "show max-value-size" command. */
988 show_max_value_size (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c, const char *value)
991 if (max_value_size == -1)
992 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
994 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
998 /* Called before we attempt to allocate or reallocate a buffer for the
999 contents of a value. TYPE is the type of the value for which we are
1000 allocating the buffer. If the buffer is too large (based on the user
1001 controllable setting) then throw an error. If this function returns
1002 then we should attempt to allocate the buffer. */
1005 check_type_length_before_alloc (const struct type *type)
1007 ULONGEST length = TYPE_LENGTH (type);
1009 if (max_value_size > -1 && length > max_value_size)
1011 if (type->name () != NULL)
1012 error (_("value of type `%s' requires %s bytes, which is more "
1013 "than max-value-size"), type->name (), pulongest (length));
1015 error (_("value requires %s bytes, which is more than "
1016 "max-value-size"), pulongest (length));
1020 /* Allocate the contents of VAL if it has not been allocated yet. */
1023 allocate_value_contents (struct value *val)
1027 check_type_length_before_alloc (val->enclosing_type);
1029 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1033 /* Allocate a value and its contents for type TYPE. */
1036 allocate_value (struct type *type)
1038 struct value *val = allocate_value_lazy (type);
1040 allocate_value_contents (val);
1045 /* Allocate a value that has the correct length
1046 for COUNT repetitions of type TYPE. */
1049 allocate_repeat_value (struct type *type, int count)
1051 /* Despite the fact that we are really creating an array of TYPE here, we
1052 use the string lower bound as the array lower bound. This seems to
1053 work fine for now. */
1054 int low_bound = current_language->string_lower_bound ();
1055 /* FIXME-type-allocation: need a way to free this type when we are
1057 struct type *array_type
1058 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1060 return allocate_value (array_type);
1064 allocate_computed_value (struct type *type,
1065 const struct lval_funcs *funcs,
1068 struct value *v = allocate_value_lazy (type);
1070 VALUE_LVAL (v) = lval_computed;
1071 v->location.computed.funcs = funcs;
1072 v->location.computed.closure = closure;
1077 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1080 allocate_optimized_out_value (struct type *type)
1082 struct value *retval = allocate_value_lazy (type);
1084 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1085 set_value_lazy (retval, 0);
1089 /* Accessor methods. */
1092 value_type (const struct value *value)
1097 deprecated_set_value_type (struct value *value, struct type *type)
1103 value_offset (const struct value *value)
1105 return value->offset;
1108 set_value_offset (struct value *value, LONGEST offset)
1110 value->offset = offset;
1114 value_bitpos (const struct value *value)
1116 return value->bitpos;
1119 set_value_bitpos (struct value *value, LONGEST bit)
1121 value->bitpos = bit;
1125 value_bitsize (const struct value *value)
1127 return value->bitsize;
1130 set_value_bitsize (struct value *value, LONGEST bit)
1132 value->bitsize = bit;
1136 value_parent (const struct value *value)
1138 return value->parent.get ();
1144 set_value_parent (struct value *value, struct value *parent)
1146 value->parent = value_ref_ptr::new_reference (parent);
1150 value_contents_raw (struct value *value)
1152 struct gdbarch *arch = get_value_arch (value);
1153 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1155 allocate_value_contents (value);
1156 return value->contents.get () + value->embedded_offset * unit_size;
1160 value_contents_all_raw (struct value *value)
1162 allocate_value_contents (value);
1163 return value->contents.get ();
1167 value_enclosing_type (const struct value *value)
1169 return value->enclosing_type;
1172 /* Look at value.h for description. */
1175 value_actual_type (struct value *value, int resolve_simple_types,
1176 int *real_type_found)
1178 struct value_print_options opts;
1179 struct type *result;
1181 get_user_print_options (&opts);
1183 if (real_type_found)
1184 *real_type_found = 0;
1185 result = value_type (value);
1186 if (opts.objectprint)
1188 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1189 fetch its rtti type. */
1190 if (result->is_pointer_or_reference ()
1191 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1192 == TYPE_CODE_STRUCT)
1193 && !value_optimized_out (value))
1195 struct type *real_type;
1197 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1200 if (real_type_found)
1201 *real_type_found = 1;
1205 else if (resolve_simple_types)
1207 if (real_type_found)
1208 *real_type_found = 1;
1209 result = value_enclosing_type (value);
1217 error_value_optimized_out (void)
1219 error (_("value has been optimized out"));
1223 require_not_optimized_out (const struct value *value)
1225 if (!value->optimized_out.empty ())
1227 if (value->lval == lval_register)
1228 error (_("register has not been saved in frame"));
1230 error_value_optimized_out ();
1235 require_available (const struct value *value)
1237 if (!value->unavailable.empty ())
1238 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1242 value_contents_for_printing (struct value *value)
1245 value_fetch_lazy (value);
1246 return value->contents.get ();
1250 value_contents_for_printing_const (const struct value *value)
1252 gdb_assert (!value->lazy);
1253 return value->contents.get ();
1257 value_contents_all (struct value *value)
1259 const gdb_byte *result = value_contents_for_printing (value);
1260 require_not_optimized_out (value);
1261 require_available (value);
1265 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1266 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1269 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1270 const std::vector<range> &src_range, int src_bit_offset,
1273 for (const range &r : src_range)
1277 l = std::max (r.offset, (LONGEST) src_bit_offset);
1278 h = std::min (r.offset + r.length,
1279 (LONGEST) src_bit_offset + bit_length);
1282 insert_into_bit_range_vector (dst_range,
1283 dst_bit_offset + (l - src_bit_offset),
1288 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1289 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1292 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1293 const struct value *src, int src_bit_offset,
1296 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1297 src->unavailable, src_bit_offset,
1299 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1300 src->optimized_out, src_bit_offset,
1304 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1305 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1306 contents, starting at DST_OFFSET. If unavailable contents are
1307 being copied from SRC, the corresponding DST contents are marked
1308 unavailable accordingly. Neither DST nor SRC may be lazy
1311 It is assumed the contents of DST in the [DST_OFFSET,
1312 DST_OFFSET+LENGTH) range are wholly available. */
1315 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1316 struct value *src, LONGEST src_offset, LONGEST length)
1318 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1319 struct gdbarch *arch = get_value_arch (src);
1320 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1322 /* A lazy DST would make that this copy operation useless, since as
1323 soon as DST's contents were un-lazied (by a later value_contents
1324 call, say), the contents would be overwritten. A lazy SRC would
1325 mean we'd be copying garbage. */
1326 gdb_assert (!dst->lazy && !src->lazy);
1328 /* The overwritten DST range gets unavailability ORed in, not
1329 replaced. Make sure to remember to implement replacing if it
1330 turns out actually necessary. */
1331 gdb_assert (value_bytes_available (dst, dst_offset, length));
1332 gdb_assert (!value_bits_any_optimized_out (dst,
1333 TARGET_CHAR_BIT * dst_offset,
1334 TARGET_CHAR_BIT * length));
1336 /* Copy the data. */
1337 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1338 value_contents_all_raw (src) + src_offset * unit_size,
1339 length * unit_size);
1341 /* Copy the meta-data, adjusted. */
1342 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1343 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1344 bit_length = length * unit_size * HOST_CHAR_BIT;
1346 value_ranges_copy_adjusted (dst, dst_bit_offset,
1347 src, src_bit_offset,
1351 /* Copy LENGTH bytes of SRC value's (all) contents
1352 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1353 (all) contents, starting at DST_OFFSET. If unavailable contents
1354 are being copied from SRC, the corresponding DST contents are
1355 marked unavailable accordingly. DST must not be lazy. If SRC is
1356 lazy, it will be fetched now.
1358 It is assumed the contents of DST in the [DST_OFFSET,
1359 DST_OFFSET+LENGTH) range are wholly available. */
1362 value_contents_copy (struct value *dst, LONGEST dst_offset,
1363 struct value *src, LONGEST src_offset, LONGEST length)
1366 value_fetch_lazy (src);
1368 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1372 value_lazy (const struct value *value)
1378 set_value_lazy (struct value *value, int val)
1384 value_stack (const struct value *value)
1386 return value->stack;
1390 set_value_stack (struct value *value, int val)
1396 value_contents (struct value *value)
1398 const gdb_byte *result = value_contents_writeable (value);
1399 require_not_optimized_out (value);
1400 require_available (value);
1405 value_contents_writeable (struct value *value)
1408 value_fetch_lazy (value);
1409 return value_contents_raw (value);
1413 value_optimized_out (struct value *value)
1417 /* See if we can compute the result without fetching the
1419 if (VALUE_LVAL (value) == lval_memory)
1421 else if (VALUE_LVAL (value) == lval_computed)
1423 const struct lval_funcs *funcs = value->location.computed.funcs;
1425 if (funcs->is_optimized_out != nullptr)
1426 return funcs->is_optimized_out (value);
1429 /* Fall back to fetching. */
1432 value_fetch_lazy (value);
1434 catch (const gdb_exception_error &ex)
1439 case OPTIMIZED_OUT_ERROR:
1440 case NOT_AVAILABLE_ERROR:
1441 /* These can normally happen when we try to access an
1442 optimized out or unavailable register, either in a
1443 physical register or spilled to memory. */
1451 return !value->optimized_out.empty ();
1454 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1455 the following LENGTH bytes. */
1458 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1460 mark_value_bits_optimized_out (value,
1461 offset * TARGET_CHAR_BIT,
1462 length * TARGET_CHAR_BIT);
1468 mark_value_bits_optimized_out (struct value *value,
1469 LONGEST offset, LONGEST length)
1471 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1475 value_bits_synthetic_pointer (const struct value *value,
1476 LONGEST offset, LONGEST length)
1478 if (value->lval != lval_computed
1479 || !value->location.computed.funcs->check_synthetic_pointer)
1481 return value->location.computed.funcs->check_synthetic_pointer (value,
1487 value_embedded_offset (const struct value *value)
1489 return value->embedded_offset;
1493 set_value_embedded_offset (struct value *value, LONGEST val)
1495 value->embedded_offset = val;
1499 value_pointed_to_offset (const struct value *value)
1501 return value->pointed_to_offset;
1505 set_value_pointed_to_offset (struct value *value, LONGEST val)
1507 value->pointed_to_offset = val;
1510 const struct lval_funcs *
1511 value_computed_funcs (const struct value *v)
1513 gdb_assert (value_lval_const (v) == lval_computed);
1515 return v->location.computed.funcs;
1519 value_computed_closure (const struct value *v)
1521 gdb_assert (v->lval == lval_computed);
1523 return v->location.computed.closure;
1527 deprecated_value_lval_hack (struct value *value)
1529 return &value->lval;
1533 value_lval_const (const struct value *value)
1539 value_address (const struct value *value)
1541 if (value->lval != lval_memory)
1543 if (value->parent != NULL)
1544 return value_address (value->parent.get ()) + value->offset;
1545 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1547 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1548 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1551 return value->location.address + value->offset;
1555 value_raw_address (const struct value *value)
1557 if (value->lval != lval_memory)
1559 return value->location.address;
1563 set_value_address (struct value *value, CORE_ADDR addr)
1565 gdb_assert (value->lval == lval_memory);
1566 value->location.address = addr;
1569 struct internalvar **
1570 deprecated_value_internalvar_hack (struct value *value)
1572 return &value->location.internalvar;
1576 deprecated_value_next_frame_id_hack (struct value *value)
1578 gdb_assert (value->lval == lval_register);
1579 return &value->location.reg.next_frame_id;
1583 deprecated_value_regnum_hack (struct value *value)
1585 gdb_assert (value->lval == lval_register);
1586 return &value->location.reg.regnum;
1590 deprecated_value_modifiable (const struct value *value)
1592 return value->modifiable;
1595 /* Return a mark in the value chain. All values allocated after the
1596 mark is obtained (except for those released) are subject to being freed
1597 if a subsequent value_free_to_mark is passed the mark. */
1601 if (all_values.empty ())
1603 return all_values.back ().get ();
1609 value_incref (struct value *val)
1611 val->reference_count++;
1614 /* Release a reference to VAL, which was acquired with value_incref.
1615 This function is also called to deallocate values from the value
1619 value_decref (struct value *val)
1623 gdb_assert (val->reference_count > 0);
1624 val->reference_count--;
1625 if (val->reference_count == 0)
1630 /* Free all values allocated since MARK was obtained by value_mark
1631 (except for those released). */
1633 value_free_to_mark (const struct value *mark)
1635 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1636 if (iter == all_values.end ())
1637 all_values.clear ();
1639 all_values.erase (iter + 1, all_values.end ());
1642 /* Remove VAL from the chain all_values
1643 so it will not be freed automatically. */
1646 release_value (struct value *val)
1649 return value_ref_ptr ();
1651 std::vector<value_ref_ptr>::reverse_iterator iter;
1652 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1656 value_ref_ptr result = *iter;
1657 all_values.erase (iter.base () - 1);
1662 /* We must always return an owned reference. Normally this happens
1663 because we transfer the reference from the value chain, but in
1664 this case the value was not on the chain. */
1665 return value_ref_ptr::new_reference (val);
1670 std::vector<value_ref_ptr>
1671 value_release_to_mark (const struct value *mark)
1673 std::vector<value_ref_ptr> result;
1675 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1676 if (iter == all_values.end ())
1677 std::swap (result, all_values);
1680 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1681 all_values.erase (iter + 1, all_values.end ());
1683 std::reverse (result.begin (), result.end ());
1687 /* Return a copy of the value ARG.
1688 It contains the same contents, for same memory address,
1689 but it's a different block of storage. */
1692 value_copy (struct value *arg)
1694 struct type *encl_type = value_enclosing_type (arg);
1697 if (value_lazy (arg))
1698 val = allocate_value_lazy (encl_type);
1700 val = allocate_value (encl_type);
1701 val->type = arg->type;
1702 VALUE_LVAL (val) = VALUE_LVAL (arg);
1703 val->location = arg->location;
1704 val->offset = arg->offset;
1705 val->bitpos = arg->bitpos;
1706 val->bitsize = arg->bitsize;
1707 val->lazy = arg->lazy;
1708 val->embedded_offset = value_embedded_offset (arg);
1709 val->pointed_to_offset = arg->pointed_to_offset;
1710 val->modifiable = arg->modifiable;
1711 val->stack = arg->stack;
1712 val->is_zero = arg->is_zero;
1713 val->initialized = arg->initialized;
1714 if (!value_lazy (val))
1716 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1717 TYPE_LENGTH (value_enclosing_type (arg)));
1720 val->unavailable = arg->unavailable;
1721 val->optimized_out = arg->optimized_out;
1722 val->parent = arg->parent;
1723 if (VALUE_LVAL (val) == lval_computed)
1725 const struct lval_funcs *funcs = val->location.computed.funcs;
1727 if (funcs->copy_closure)
1728 val->location.computed.closure = funcs->copy_closure (val);
1733 /* Return a "const" and/or "volatile" qualified version of the value V.
1734 If CNST is true, then the returned value will be qualified with
1736 if VOLTL is true, then the returned value will be qualified with
1740 make_cv_value (int cnst, int voltl, struct value *v)
1742 struct type *val_type = value_type (v);
1743 struct type *enclosing_type = value_enclosing_type (v);
1744 struct value *cv_val = value_copy (v);
1746 deprecated_set_value_type (cv_val,
1747 make_cv_type (cnst, voltl, val_type, NULL));
1748 set_value_enclosing_type (cv_val,
1749 make_cv_type (cnst, voltl, enclosing_type, NULL));
1754 /* Return a version of ARG that is non-lvalue. */
1757 value_non_lval (struct value *arg)
1759 if (VALUE_LVAL (arg) != not_lval)
1761 struct type *enc_type = value_enclosing_type (arg);
1762 struct value *val = allocate_value (enc_type);
1764 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1765 TYPE_LENGTH (enc_type));
1766 val->type = arg->type;
1767 set_value_embedded_offset (val, value_embedded_offset (arg));
1768 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1774 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1777 value_force_lval (struct value *v, CORE_ADDR addr)
1779 gdb_assert (VALUE_LVAL (v) == not_lval);
1781 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1782 v->lval = lval_memory;
1783 v->location.address = addr;
1787 set_value_component_location (struct value *component,
1788 const struct value *whole)
1792 gdb_assert (whole->lval != lval_xcallable);
1794 if (whole->lval == lval_internalvar)
1795 VALUE_LVAL (component) = lval_internalvar_component;
1797 VALUE_LVAL (component) = whole->lval;
1799 component->location = whole->location;
1800 if (whole->lval == lval_computed)
1802 const struct lval_funcs *funcs = whole->location.computed.funcs;
1804 if (funcs->copy_closure)
1805 component->location.computed.closure = funcs->copy_closure (whole);
1808 /* If the WHOLE value has a dynamically resolved location property then
1809 update the address of the COMPONENT. */
1810 type = value_type (whole);
1811 if (NULL != TYPE_DATA_LOCATION (type)
1812 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1813 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1815 /* Similarly, if the COMPONENT value has a dynamically resolved location
1816 property then update its address. */
1817 type = value_type (component);
1818 if (NULL != TYPE_DATA_LOCATION (type)
1819 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1821 /* If the COMPONENT has a dynamic location, and is an
1822 lval_internalvar_component, then we change it to a lval_memory.
1824 Usually a component of an internalvar is created non-lazy, and has
1825 its content immediately copied from the parent internalvar.
1826 However, for components with a dynamic location, the content of
1827 the component is not contained within the parent, but is instead
1828 accessed indirectly. Further, the component will be created as a
1831 By changing the type of the component to lval_memory we ensure
1832 that value_fetch_lazy can successfully load the component.
1834 This solution isn't ideal, but a real fix would require values to
1835 carry around both the parent value contents, and the contents of
1836 any dynamic fields within the parent. This is a substantial
1837 change to how values work in GDB. */
1838 if (VALUE_LVAL (component) == lval_internalvar_component)
1840 gdb_assert (value_lazy (component));
1841 VALUE_LVAL (component) = lval_memory;
1844 gdb_assert (VALUE_LVAL (component) == lval_memory);
1845 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1849 /* Access to the value history. */
1851 /* Record a new value in the value history.
1852 Returns the absolute history index of the entry. */
1855 record_latest_value (struct value *val)
1857 /* We don't want this value to have anything to do with the inferior anymore.
1858 In particular, "set $1 = 50" should not affect the variable from which
1859 the value was taken, and fast watchpoints should be able to assume that
1860 a value on the value history never changes. */
1861 if (value_lazy (val))
1862 value_fetch_lazy (val);
1863 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1864 from. This is a bit dubious, because then *&$1 does not just return $1
1865 but the current contents of that location. c'est la vie... */
1866 val->modifiable = 0;
1868 value_history.push_back (release_value (val));
1870 return value_history.size ();
1873 /* Return a copy of the value in the history with sequence number NUM. */
1876 access_value_history (int num)
1881 absnum += value_history.size ();
1886 error (_("The history is empty."));
1888 error (_("There is only one value in the history."));
1890 error (_("History does not go back to $$%d."), -num);
1892 if (absnum > value_history.size ())
1893 error (_("History has not yet reached $%d."), absnum);
1897 return value_copy (value_history[absnum].get ());
1901 show_values (const char *num_exp, int from_tty)
1909 /* "show values +" should print from the stored position.
1910 "show values <exp>" should print around value number <exp>. */
1911 if (num_exp[0] != '+' || num_exp[1] != '\0')
1912 num = parse_and_eval_long (num_exp) - 5;
1916 /* "show values" means print the last 10 values. */
1917 num = value_history.size () - 9;
1923 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1925 struct value_print_options opts;
1927 val = access_value_history (i);
1928 printf_filtered (("$%d = "), i);
1929 get_user_print_options (&opts);
1930 value_print (val, gdb_stdout, &opts);
1931 printf_filtered (("\n"));
1934 /* The next "show values +" should start after what we just printed. */
1937 /* Hitting just return after this command should do the same thing as
1938 "show values +". If num_exp is null, this is unnecessary, since
1939 "show values +" is not useful after "show values". */
1940 if (from_tty && num_exp)
1941 set_repeat_arguments ("+");
1944 enum internalvar_kind
1946 /* The internal variable is empty. */
1949 /* The value of the internal variable is provided directly as
1950 a GDB value object. */
1953 /* A fresh value is computed via a call-back routine on every
1954 access to the internal variable. */
1955 INTERNALVAR_MAKE_VALUE,
1957 /* The internal variable holds a GDB internal convenience function. */
1958 INTERNALVAR_FUNCTION,
1960 /* The variable holds an integer value. */
1961 INTERNALVAR_INTEGER,
1963 /* The variable holds a GDB-provided string. */
1967 union internalvar_data
1969 /* A value object used with INTERNALVAR_VALUE. */
1970 struct value *value;
1972 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1975 /* The functions to call. */
1976 const struct internalvar_funcs *functions;
1978 /* The function's user-data. */
1982 /* The internal function used with INTERNALVAR_FUNCTION. */
1985 struct internal_function *function;
1986 /* True if this is the canonical name for the function. */
1990 /* An integer value used with INTERNALVAR_INTEGER. */
1993 /* If type is non-NULL, it will be used as the type to generate
1994 a value for this internal variable. If type is NULL, a default
1995 integer type for the architecture is used. */
2000 /* A string value used with INTERNALVAR_STRING. */
2004 /* Internal variables. These are variables within the debugger
2005 that hold values assigned by debugger commands.
2006 The user refers to them with a '$' prefix
2007 that does not appear in the variable names stored internally. */
2011 struct internalvar *next;
2014 /* We support various different kinds of content of an internal variable.
2015 enum internalvar_kind specifies the kind, and union internalvar_data
2016 provides the data associated with this particular kind. */
2018 enum internalvar_kind kind;
2020 union internalvar_data u;
2023 static struct internalvar *internalvars;
2025 /* If the variable does not already exist create it and give it the
2026 value given. If no value is given then the default is zero. */
2028 init_if_undefined_command (const char* args, int from_tty)
2030 struct internalvar *intvar = nullptr;
2032 /* Parse the expression - this is taken from set_command(). */
2033 expression_up expr = parse_expression (args);
2035 /* Validate the expression.
2036 Was the expression an assignment?
2037 Or even an expression at all? */
2038 if (expr->first_opcode () != BINOP_ASSIGN)
2039 error (_("Init-if-undefined requires an assignment expression."));
2041 /* Extract the variable from the parsed expression. */
2042 expr::assign_operation *assign
2043 = dynamic_cast<expr::assign_operation *> (expr->op.get ());
2044 if (assign != nullptr)
2046 expr::operation *lhs = assign->get_lhs ();
2047 expr::internalvar_operation *ivarop
2048 = dynamic_cast<expr::internalvar_operation *> (lhs);
2049 if (ivarop != nullptr)
2050 intvar = ivarop->get_internalvar ();
2053 if (intvar == nullptr)
2054 error (_("The first parameter to init-if-undefined "
2055 "should be a GDB variable."));
2057 /* Only evaluate the expression if the lvalue is void.
2058 This may still fail if the expression is invalid. */
2059 if (intvar->kind == INTERNALVAR_VOID)
2060 evaluate_expression (expr.get ());
2064 /* Look up an internal variable with name NAME. NAME should not
2065 normally include a dollar sign.
2067 If the specified internal variable does not exist,
2068 the return value is NULL. */
2070 struct internalvar *
2071 lookup_only_internalvar (const char *name)
2073 struct internalvar *var;
2075 for (var = internalvars; var; var = var->next)
2076 if (strcmp (var->name, name) == 0)
2082 /* Complete NAME by comparing it to the names of internal
2086 complete_internalvar (completion_tracker &tracker, const char *name)
2088 struct internalvar *var;
2091 len = strlen (name);
2093 for (var = internalvars; var; var = var->next)
2094 if (strncmp (var->name, name, len) == 0)
2095 tracker.add_completion (make_unique_xstrdup (var->name));
2098 /* Create an internal variable with name NAME and with a void value.
2099 NAME should not normally include a dollar sign. */
2101 struct internalvar *
2102 create_internalvar (const char *name)
2104 struct internalvar *var = XNEW (struct internalvar);
2106 var->name = xstrdup (name);
2107 var->kind = INTERNALVAR_VOID;
2108 var->next = internalvars;
2113 /* Create an internal variable with name NAME and register FUN as the
2114 function that value_of_internalvar uses to create a value whenever
2115 this variable is referenced. NAME should not normally include a
2116 dollar sign. DATA is passed uninterpreted to FUN when it is
2117 called. CLEANUP, if not NULL, is called when the internal variable
2118 is destroyed. It is passed DATA as its only argument. */
2120 struct internalvar *
2121 create_internalvar_type_lazy (const char *name,
2122 const struct internalvar_funcs *funcs,
2125 struct internalvar *var = create_internalvar (name);
2127 var->kind = INTERNALVAR_MAKE_VALUE;
2128 var->u.make_value.functions = funcs;
2129 var->u.make_value.data = data;
2133 /* See documentation in value.h. */
2136 compile_internalvar_to_ax (struct internalvar *var,
2137 struct agent_expr *expr,
2138 struct axs_value *value)
2140 if (var->kind != INTERNALVAR_MAKE_VALUE
2141 || var->u.make_value.functions->compile_to_ax == NULL)
2144 var->u.make_value.functions->compile_to_ax (var, expr, value,
2145 var->u.make_value.data);
2149 /* Look up an internal variable with name NAME. NAME should not
2150 normally include a dollar sign.
2152 If the specified internal variable does not exist,
2153 one is created, with a void value. */
2155 struct internalvar *
2156 lookup_internalvar (const char *name)
2158 struct internalvar *var;
2160 var = lookup_only_internalvar (name);
2164 return create_internalvar (name);
2167 /* Return current value of internal variable VAR. For variables that
2168 are not inherently typed, use a value type appropriate for GDBARCH. */
2171 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2174 struct trace_state_variable *tsv;
2176 /* If there is a trace state variable of the same name, assume that
2177 is what we really want to see. */
2178 tsv = find_trace_state_variable (var->name);
2181 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2183 if (tsv->value_known)
2184 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2187 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2193 case INTERNALVAR_VOID:
2194 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2197 case INTERNALVAR_FUNCTION:
2198 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2201 case INTERNALVAR_INTEGER:
2202 if (!var->u.integer.type)
2203 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2204 var->u.integer.val);
2206 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2209 case INTERNALVAR_STRING:
2210 val = value_cstring (var->u.string, strlen (var->u.string),
2211 builtin_type (gdbarch)->builtin_char);
2214 case INTERNALVAR_VALUE:
2215 val = value_copy (var->u.value);
2216 if (value_lazy (val))
2217 value_fetch_lazy (val);
2220 case INTERNALVAR_MAKE_VALUE:
2221 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2222 var->u.make_value.data);
2226 internal_error (__FILE__, __LINE__, _("bad kind"));
2229 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2230 on this value go back to affect the original internal variable.
2232 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2233 no underlying modifiable state in the internal variable.
2235 Likewise, if the variable's value is a computed lvalue, we want
2236 references to it to produce another computed lvalue, where
2237 references and assignments actually operate through the
2238 computed value's functions.
2240 This means that internal variables with computed values
2241 behave a little differently from other internal variables:
2242 assignments to them don't just replace the previous value
2243 altogether. At the moment, this seems like the behavior we
2246 if (var->kind != INTERNALVAR_MAKE_VALUE
2247 && val->lval != lval_computed)
2249 VALUE_LVAL (val) = lval_internalvar;
2250 VALUE_INTERNALVAR (val) = var;
2257 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2259 if (var->kind == INTERNALVAR_INTEGER)
2261 *result = var->u.integer.val;
2265 if (var->kind == INTERNALVAR_VALUE)
2267 struct type *type = check_typedef (value_type (var->u.value));
2269 if (type->code () == TYPE_CODE_INT)
2271 *result = value_as_long (var->u.value);
2280 get_internalvar_function (struct internalvar *var,
2281 struct internal_function **result)
2285 case INTERNALVAR_FUNCTION:
2286 *result = var->u.fn.function;
2295 set_internalvar_component (struct internalvar *var,
2296 LONGEST offset, LONGEST bitpos,
2297 LONGEST bitsize, struct value *newval)
2300 struct gdbarch *arch;
2305 case INTERNALVAR_VALUE:
2306 addr = value_contents_writeable (var->u.value);
2307 arch = get_value_arch (var->u.value);
2308 unit_size = gdbarch_addressable_memory_unit_size (arch);
2311 modify_field (value_type (var->u.value), addr + offset,
2312 value_as_long (newval), bitpos, bitsize);
2314 memcpy (addr + offset * unit_size, value_contents (newval),
2315 TYPE_LENGTH (value_type (newval)));
2319 /* We can never get a component of any other kind. */
2320 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2325 set_internalvar (struct internalvar *var, struct value *val)
2327 enum internalvar_kind new_kind;
2328 union internalvar_data new_data = { 0 };
2330 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2331 error (_("Cannot overwrite convenience function %s"), var->name);
2333 /* Prepare new contents. */
2334 switch (check_typedef (value_type (val))->code ())
2336 case TYPE_CODE_VOID:
2337 new_kind = INTERNALVAR_VOID;
2340 case TYPE_CODE_INTERNAL_FUNCTION:
2341 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2342 new_kind = INTERNALVAR_FUNCTION;
2343 get_internalvar_function (VALUE_INTERNALVAR (val),
2344 &new_data.fn.function);
2345 /* Copies created here are never canonical. */
2349 new_kind = INTERNALVAR_VALUE;
2350 struct value *copy = value_copy (val);
2351 copy->modifiable = 1;
2353 /* Force the value to be fetched from the target now, to avoid problems
2354 later when this internalvar is referenced and the target is gone or
2356 if (value_lazy (copy))
2357 value_fetch_lazy (copy);
2359 /* Release the value from the value chain to prevent it from being
2360 deleted by free_all_values. From here on this function should not
2361 call error () until new_data is installed into the var->u to avoid
2363 new_data.value = release_value (copy).release ();
2365 /* Internal variables which are created from values with a dynamic
2366 location don't need the location property of the origin anymore.
2367 The resolved dynamic location is used prior then any other address
2368 when accessing the value.
2369 If we keep it, we would still refer to the origin value.
2370 Remove the location property in case it exist. */
2371 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
2376 /* Clean up old contents. */
2377 clear_internalvar (var);
2380 var->kind = new_kind;
2382 /* End code which must not call error(). */
2386 set_internalvar_integer (struct internalvar *var, LONGEST l)
2388 /* Clean up old contents. */
2389 clear_internalvar (var);
2391 var->kind = INTERNALVAR_INTEGER;
2392 var->u.integer.type = NULL;
2393 var->u.integer.val = l;
2397 set_internalvar_string (struct internalvar *var, const char *string)
2399 /* Clean up old contents. */
2400 clear_internalvar (var);
2402 var->kind = INTERNALVAR_STRING;
2403 var->u.string = xstrdup (string);
2407 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2409 /* Clean up old contents. */
2410 clear_internalvar (var);
2412 var->kind = INTERNALVAR_FUNCTION;
2413 var->u.fn.function = f;
2414 var->u.fn.canonical = 1;
2415 /* Variables installed here are always the canonical version. */
2419 clear_internalvar (struct internalvar *var)
2421 /* Clean up old contents. */
2424 case INTERNALVAR_VALUE:
2425 value_decref (var->u.value);
2428 case INTERNALVAR_STRING:
2429 xfree (var->u.string);
2432 case INTERNALVAR_MAKE_VALUE:
2433 if (var->u.make_value.functions->destroy != NULL)
2434 var->u.make_value.functions->destroy (var->u.make_value.data);
2441 /* Reset to void kind. */
2442 var->kind = INTERNALVAR_VOID;
2446 internalvar_name (const struct internalvar *var)
2451 static struct internal_function *
2452 create_internal_function (const char *name,
2453 internal_function_fn handler, void *cookie)
2455 struct internal_function *ifn = XNEW (struct internal_function);
2457 ifn->name = xstrdup (name);
2458 ifn->handler = handler;
2459 ifn->cookie = cookie;
2464 value_internal_function_name (struct value *val)
2466 struct internal_function *ifn;
2469 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2470 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2471 gdb_assert (result);
2477 call_internal_function (struct gdbarch *gdbarch,
2478 const struct language_defn *language,
2479 struct value *func, int argc, struct value **argv)
2481 struct internal_function *ifn;
2484 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2485 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2486 gdb_assert (result);
2488 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2491 /* The 'function' command. This does nothing -- it is just a
2492 placeholder to let "help function NAME" work. This is also used as
2493 the implementation of the sub-command that is created when
2494 registering an internal function. */
2496 function_command (const char *command, int from_tty)
2501 /* Helper function that does the work for add_internal_function. */
2503 static struct cmd_list_element *
2504 do_add_internal_function (const char *name, const char *doc,
2505 internal_function_fn handler, void *cookie)
2507 struct internal_function *ifn;
2508 struct internalvar *var = lookup_internalvar (name);
2510 ifn = create_internal_function (name, handler, cookie);
2511 set_internalvar_function (var, ifn);
2513 return add_cmd (name, no_class, function_command, doc, &functionlist);
2519 add_internal_function (const char *name, const char *doc,
2520 internal_function_fn handler, void *cookie)
2522 do_add_internal_function (name, doc, handler, cookie);
2528 add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2529 gdb::unique_xmalloc_ptr<char> &&doc,
2530 internal_function_fn handler, void *cookie)
2532 struct cmd_list_element *cmd
2533 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
2535 cmd->doc_allocated = 1;
2537 cmd->name_allocated = 1;
2540 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2541 prevent cycles / duplicates. */
2544 preserve_one_value (struct value *value, struct objfile *objfile,
2545 htab_t copied_types)
2547 if (value->type->objfile_owner () == objfile)
2548 value->type = copy_type_recursive (objfile, value->type, copied_types);
2550 if (value->enclosing_type->objfile_owner () == objfile)
2551 value->enclosing_type = copy_type_recursive (objfile,
2552 value->enclosing_type,
2556 /* Likewise for internal variable VAR. */
2559 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2560 htab_t copied_types)
2564 case INTERNALVAR_INTEGER:
2565 if (var->u.integer.type
2566 && var->u.integer.type->objfile_owner () == objfile)
2568 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2571 case INTERNALVAR_VALUE:
2572 preserve_one_value (var->u.value, objfile, copied_types);
2577 /* Update the internal variables and value history when OBJFILE is
2578 discarded; we must copy the types out of the objfile. New global types
2579 will be created for every convenience variable which currently points to
2580 this objfile's types, and the convenience variables will be adjusted to
2581 use the new global types. */
2584 preserve_values (struct objfile *objfile)
2586 struct internalvar *var;
2588 /* Create the hash table. We allocate on the objfile's obstack, since
2589 it is soon to be deleted. */
2590 htab_up copied_types = create_copied_types_hash (objfile);
2592 for (const value_ref_ptr &item : value_history)
2593 preserve_one_value (item.get (), objfile, copied_types.get ());
2595 for (var = internalvars; var; var = var->next)
2596 preserve_one_internalvar (var, objfile, copied_types.get ());
2598 preserve_ext_lang_values (objfile, copied_types.get ());
2602 show_convenience (const char *ignore, int from_tty)
2604 struct gdbarch *gdbarch = get_current_arch ();
2605 struct internalvar *var;
2607 struct value_print_options opts;
2609 get_user_print_options (&opts);
2610 for (var = internalvars; var; var = var->next)
2617 printf_filtered (("$%s = "), var->name);
2623 val = value_of_internalvar (gdbarch, var);
2624 value_print (val, gdb_stdout, &opts);
2626 catch (const gdb_exception_error &ex)
2628 fprintf_styled (gdb_stdout, metadata_style.style (),
2629 _("<error: %s>"), ex.what ());
2632 printf_filtered (("\n"));
2636 /* This text does not mention convenience functions on purpose.
2637 The user can't create them except via Python, and if Python support
2638 is installed this message will never be printed ($_streq will
2640 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2641 "Convenience variables have "
2642 "names starting with \"$\";\n"
2643 "use \"set\" as in \"set "
2644 "$foo = 5\" to define them.\n"));
2652 value_from_xmethod (xmethod_worker_up &&worker)
2656 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2657 v->lval = lval_xcallable;
2658 v->location.xm_worker = worker.release ();
2664 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2667 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2669 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2670 && method->lval == lval_xcallable && !argv.empty ());
2672 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2675 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2678 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2680 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2681 && method->lval == lval_xcallable && !argv.empty ());
2683 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2686 /* Extract a value as a C number (either long or double).
2687 Knows how to convert fixed values to double, or
2688 floating values to long.
2689 Does not deallocate the value. */
2692 value_as_long (struct value *val)
2694 /* This coerces arrays and functions, which is necessary (e.g.
2695 in disassemble_command). It also dereferences references, which
2696 I suspect is the most logical thing to do. */
2697 val = coerce_array (val);
2698 return unpack_long (value_type (val), value_contents (val));
2701 /* Extract a value as a C pointer. Does not deallocate the value.
2702 Note that val's type may not actually be a pointer; value_as_long
2703 handles all the cases. */
2705 value_as_address (struct value *val)
2707 struct gdbarch *gdbarch = value_type (val)->arch ();
2709 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2710 whether we want this to be true eventually. */
2712 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2713 non-address (e.g. argument to "signal", "info break", etc.), or
2714 for pointers to char, in which the low bits *are* significant. */
2715 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2718 /* There are several targets (IA-64, PowerPC, and others) which
2719 don't represent pointers to functions as simply the address of
2720 the function's entry point. For example, on the IA-64, a
2721 function pointer points to a two-word descriptor, generated by
2722 the linker, which contains the function's entry point, and the
2723 value the IA-64 "global pointer" register should have --- to
2724 support position-independent code. The linker generates
2725 descriptors only for those functions whose addresses are taken.
2727 On such targets, it's difficult for GDB to convert an arbitrary
2728 function address into a function pointer; it has to either find
2729 an existing descriptor for that function, or call malloc and
2730 build its own. On some targets, it is impossible for GDB to
2731 build a descriptor at all: the descriptor must contain a jump
2732 instruction; data memory cannot be executed; and code memory
2735 Upon entry to this function, if VAL is a value of type `function'
2736 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2737 value_address (val) is the address of the function. This is what
2738 you'll get if you evaluate an expression like `main'. The call
2739 to COERCE_ARRAY below actually does all the usual unary
2740 conversions, which includes converting values of type `function'
2741 to `pointer to function'. This is the challenging conversion
2742 discussed above. Then, `unpack_long' will convert that pointer
2743 back into an address.
2745 So, suppose the user types `disassemble foo' on an architecture
2746 with a strange function pointer representation, on which GDB
2747 cannot build its own descriptors, and suppose further that `foo'
2748 has no linker-built descriptor. The address->pointer conversion
2749 will signal an error and prevent the command from running, even
2750 though the next step would have been to convert the pointer
2751 directly back into the same address.
2753 The following shortcut avoids this whole mess. If VAL is a
2754 function, just return its address directly. */
2755 if (value_type (val)->code () == TYPE_CODE_FUNC
2756 || value_type (val)->code () == TYPE_CODE_METHOD)
2757 return value_address (val);
2759 val = coerce_array (val);
2761 /* Some architectures (e.g. Harvard), map instruction and data
2762 addresses onto a single large unified address space. For
2763 instance: An architecture may consider a large integer in the
2764 range 0x10000000 .. 0x1000ffff to already represent a data
2765 addresses (hence not need a pointer to address conversion) while
2766 a small integer would still need to be converted integer to
2767 pointer to address. Just assume such architectures handle all
2768 integer conversions in a single function. */
2772 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2773 must admonish GDB hackers to make sure its behavior matches the
2774 compiler's, whenever possible.
2776 In general, I think GDB should evaluate expressions the same way
2777 the compiler does. When the user copies an expression out of
2778 their source code and hands it to a `print' command, they should
2779 get the same value the compiler would have computed. Any
2780 deviation from this rule can cause major confusion and annoyance,
2781 and needs to be justified carefully. In other words, GDB doesn't
2782 really have the freedom to do these conversions in clever and
2785 AndrewC pointed out that users aren't complaining about how GDB
2786 casts integers to pointers; they are complaining that they can't
2787 take an address from a disassembly listing and give it to `x/i'.
2788 This is certainly important.
2790 Adding an architecture method like integer_to_address() certainly
2791 makes it possible for GDB to "get it right" in all circumstances
2792 --- the target has complete control over how things get done, so
2793 people can Do The Right Thing for their target without breaking
2794 anyone else. The standard doesn't specify how integers get
2795 converted to pointers; usually, the ABI doesn't either, but
2796 ABI-specific code is a more reasonable place to handle it. */
2798 if (!value_type (val)->is_pointer_or_reference ()
2799 && gdbarch_integer_to_address_p (gdbarch))
2800 return gdbarch_integer_to_address (gdbarch, value_type (val),
2801 value_contents (val));
2803 return unpack_long (value_type (val), value_contents (val));
2807 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2808 as a long, or as a double, assuming the raw data is described
2809 by type TYPE. Knows how to convert different sizes of values
2810 and can convert between fixed and floating point. We don't assume
2811 any alignment for the raw data. Return value is in host byte order.
2813 If you want functions and arrays to be coerced to pointers, and
2814 references to be dereferenced, call value_as_long() instead.
2816 C++: It is assumed that the front-end has taken care of
2817 all matters concerning pointers to members. A pointer
2818 to member which reaches here is considered to be equivalent
2819 to an INT (or some size). After all, it is only an offset. */
2822 unpack_long (struct type *type, const gdb_byte *valaddr)
2824 if (is_fixed_point_type (type))
2825 type = type->fixed_point_type_base_type ();
2827 enum bfd_endian byte_order = type_byte_order (type);
2828 enum type_code code = type->code ();
2829 int len = TYPE_LENGTH (type);
2830 int nosign = type->is_unsigned ();
2834 case TYPE_CODE_TYPEDEF:
2835 return unpack_long (check_typedef (type), valaddr);
2836 case TYPE_CODE_ENUM:
2837 case TYPE_CODE_FLAGS:
2838 case TYPE_CODE_BOOL:
2840 case TYPE_CODE_CHAR:
2841 case TYPE_CODE_RANGE:
2842 case TYPE_CODE_MEMBERPTR:
2846 if (type->bit_size_differs_p ())
2848 unsigned bit_off = type->bit_offset ();
2849 unsigned bit_size = type->bit_size ();
2852 /* unpack_bits_as_long doesn't handle this case the
2853 way we'd like, so handle it here. */
2857 result = unpack_bits_as_long (type, valaddr, bit_off, bit_size);
2862 result = extract_unsigned_integer (valaddr, len, byte_order);
2864 result = extract_signed_integer (valaddr, len, byte_order);
2866 if (code == TYPE_CODE_RANGE)
2867 result += type->bounds ()->bias;
2872 case TYPE_CODE_DECFLOAT:
2873 return target_float_to_longest (valaddr, type);
2875 case TYPE_CODE_FIXED_POINT:
2878 vq.read_fixed_point (gdb::make_array_view (valaddr, len),
2880 type->fixed_point_scaling_factor ());
2883 mpz_tdiv_q (vz.val, mpq_numref (vq.val), mpq_denref (vq.val));
2884 return vz.as_integer<LONGEST> ();
2889 case TYPE_CODE_RVALUE_REF:
2890 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2891 whether we want this to be true eventually. */
2892 return extract_typed_address (valaddr, type);
2895 error (_("Value can't be converted to integer."));
2899 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2900 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2901 We don't assume any alignment for the raw data. Return value is in
2904 If you want functions and arrays to be coerced to pointers, and
2905 references to be dereferenced, call value_as_address() instead.
2907 C++: It is assumed that the front-end has taken care of
2908 all matters concerning pointers to members. A pointer
2909 to member which reaches here is considered to be equivalent
2910 to an INT (or some size). After all, it is only an offset. */
2913 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2915 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2916 whether we want this to be true eventually. */
2917 return unpack_long (type, valaddr);
2921 is_floating_value (struct value *val)
2923 struct type *type = check_typedef (value_type (val));
2925 if (is_floating_type (type))
2927 if (!target_float_is_valid (value_contents (val), type))
2928 error (_("Invalid floating value found in program."));
2936 /* Get the value of the FIELDNO'th field (which must be static) of
2940 value_static_field (struct type *type, int fieldno)
2942 struct value *retval;
2944 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2946 case FIELD_LOC_KIND_PHYSADDR:
2947 retval = value_at_lazy (type->field (fieldno).type (),
2948 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2950 case FIELD_LOC_KIND_PHYSNAME:
2952 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2953 /* type->field (fieldno).name (); */
2954 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2956 if (sym.symbol == NULL)
2958 /* With some compilers, e.g. HP aCC, static data members are
2959 reported as non-debuggable symbols. */
2960 struct bound_minimal_symbol msym
2961 = lookup_minimal_symbol (phys_name, NULL, NULL);
2962 struct type *field_type = type->field (fieldno).type ();
2965 retval = allocate_optimized_out_value (field_type);
2967 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2970 retval = value_of_variable (sym.symbol, sym.block);
2974 gdb_assert_not_reached ("unexpected field location kind");
2980 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2981 You have to be careful here, since the size of the data area for the value
2982 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2983 than the old enclosing type, you have to allocate more space for the
2987 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2989 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2991 check_type_length_before_alloc (new_encl_type);
2993 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2994 TYPE_LENGTH (new_encl_type)));
2997 val->enclosing_type = new_encl_type;
3000 /* Given a value ARG1 (offset by OFFSET bytes)
3001 of a struct or union type ARG_TYPE,
3002 extract and return the value of one of its (non-static) fields.
3003 FIELDNO says which field. */
3006 value_primitive_field (struct value *arg1, LONGEST offset,
3007 int fieldno, struct type *arg_type)
3011 struct gdbarch *arch = get_value_arch (arg1);
3012 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3014 arg_type = check_typedef (arg_type);
3015 type = arg_type->field (fieldno).type ();
3017 /* Call check_typedef on our type to make sure that, if TYPE
3018 is a TYPE_CODE_TYPEDEF, its length is set to the length
3019 of the target type instead of zero. However, we do not
3020 replace the typedef type by the target type, because we want
3021 to keep the typedef in order to be able to print the type
3022 description correctly. */
3023 check_typedef (type);
3025 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3027 /* Handle packed fields.
3029 Create a new value for the bitfield, with bitpos and bitsize
3030 set. If possible, arrange offset and bitpos so that we can
3031 do a single aligned read of the size of the containing type.
3032 Otherwise, adjust offset to the byte containing the first
3033 bit. Assume that the address, offset, and embedded offset
3034 are sufficiently aligned. */
3036 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3037 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3039 v = allocate_value_lazy (type);
3040 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3041 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3042 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3043 v->bitpos = bitpos % container_bitsize;
3045 v->bitpos = bitpos % 8;
3046 v->offset = (value_embedded_offset (arg1)
3048 + (bitpos - v->bitpos) / 8);
3049 set_value_parent (v, arg1);
3050 if (!value_lazy (arg1))
3051 value_fetch_lazy (v);
3053 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3055 /* This field is actually a base subobject, so preserve the
3056 entire object's contents for later references to virtual
3060 /* Lazy register values with offsets are not supported. */
3061 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3062 value_fetch_lazy (arg1);
3064 /* We special case virtual inheritance here because this
3065 requires access to the contents, which we would rather avoid
3066 for references to ordinary fields of unavailable values. */
3067 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3068 boffset = baseclass_offset (arg_type, fieldno,
3069 value_contents (arg1),
3070 value_embedded_offset (arg1),
3071 value_address (arg1),
3074 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3076 if (value_lazy (arg1))
3077 v = allocate_value_lazy (value_enclosing_type (arg1));
3080 v = allocate_value (value_enclosing_type (arg1));
3081 value_contents_copy_raw (v, 0, arg1, 0,
3082 TYPE_LENGTH (value_enclosing_type (arg1)));
3085 v->offset = value_offset (arg1);
3086 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3088 else if (NULL != TYPE_DATA_LOCATION (type))
3090 /* Field is a dynamic data member. */
3092 gdb_assert (0 == offset);
3093 /* We expect an already resolved data location. */
3094 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3095 /* For dynamic data types defer memory allocation
3096 until we actual access the value. */
3097 v = allocate_value_lazy (type);
3101 /* Plain old data member */
3102 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3103 / (HOST_CHAR_BIT * unit_size));
3105 /* Lazy register values with offsets are not supported. */
3106 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3107 value_fetch_lazy (arg1);
3109 if (value_lazy (arg1))
3110 v = allocate_value_lazy (type);
3113 v = allocate_value (type);
3114 value_contents_copy_raw (v, value_embedded_offset (v),
3115 arg1, value_embedded_offset (arg1) + offset,
3116 type_length_units (type));
3118 v->offset = (value_offset (arg1) + offset
3119 + value_embedded_offset (arg1));
3121 set_value_component_location (v, arg1);
3125 /* Given a value ARG1 of a struct or union type,
3126 extract and return the value of one of its (non-static) fields.
3127 FIELDNO says which field. */
3130 value_field (struct value *arg1, int fieldno)
3132 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3135 /* Return a non-virtual function as a value.
3136 F is the list of member functions which contains the desired method.
3137 J is an index into F which provides the desired method.
3139 We only use the symbol for its address, so be happy with either a
3140 full symbol or a minimal symbol. */
3143 value_fn_field (struct value **arg1p, struct fn_field *f,
3144 int j, struct type *type,
3148 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3149 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3151 struct bound_minimal_symbol msym;
3153 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3156 memset (&msym, 0, sizeof (msym));
3160 gdb_assert (sym == NULL);
3161 msym = lookup_bound_minimal_symbol (physname);
3162 if (msym.minsym == NULL)
3166 v = allocate_value (ftype);
3167 VALUE_LVAL (v) = lval_memory;
3170 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3174 /* The minimal symbol might point to a function descriptor;
3175 resolve it to the actual code address instead. */
3176 struct objfile *objfile = msym.objfile;
3177 struct gdbarch *gdbarch = objfile->arch ();
3179 set_value_address (v,
3180 gdbarch_convert_from_func_ptr_addr
3181 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym),
3182 current_inferior ()->top_target ()));
3187 if (type != value_type (*arg1p))
3188 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3189 value_addr (*arg1p)));
3191 /* Move the `this' pointer according to the offset.
3192 VALUE_OFFSET (*arg1p) += offset; */
3203 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3204 LONGEST bitpos, LONGEST bitsize)
3206 enum bfd_endian byte_order = type_byte_order (field_type);
3211 LONGEST read_offset;
3213 /* Read the minimum number of bytes required; there may not be
3214 enough bytes to read an entire ULONGEST. */
3215 field_type = check_typedef (field_type);
3217 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3220 bytes_read = TYPE_LENGTH (field_type);
3221 bitsize = 8 * bytes_read;
3224 read_offset = bitpos / 8;
3226 val = extract_unsigned_integer (valaddr + read_offset,
3227 bytes_read, byte_order);
3229 /* Extract bits. See comment above. */
3231 if (byte_order == BFD_ENDIAN_BIG)
3232 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3234 lsbcount = (bitpos % 8);
3237 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3238 If the field is signed, and is negative, then sign extend. */
3240 if (bitsize < 8 * (int) sizeof (val))
3242 valmask = (((ULONGEST) 1) << bitsize) - 1;
3244 if (!field_type->is_unsigned ())
3246 if (val & (valmask ^ (valmask >> 1)))
3256 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3257 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3258 ORIGINAL_VALUE, which must not be NULL. See
3259 unpack_value_bits_as_long for more details. */
3262 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3263 LONGEST embedded_offset, int fieldno,
3264 const struct value *val, LONGEST *result)
3266 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3267 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3268 struct type *field_type = type->field (fieldno).type ();
3271 gdb_assert (val != NULL);
3273 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3274 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3275 || !value_bits_available (val, bit_offset, bitsize))
3278 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3283 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3284 object at VALADDR. See unpack_bits_as_long for more details. */
3287 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3289 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3290 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3291 struct type *field_type = type->field (fieldno).type ();
3293 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3296 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3297 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3298 the contents in DEST_VAL, zero or sign extending if the type of
3299 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3300 VAL. If the VAL's contents required to extract the bitfield from
3301 are unavailable/optimized out, DEST_VAL is correspondingly
3302 marked unavailable/optimized out. */
3305 unpack_value_bitfield (struct value *dest_val,
3306 LONGEST bitpos, LONGEST bitsize,
3307 const gdb_byte *valaddr, LONGEST embedded_offset,
3308 const struct value *val)
3310 enum bfd_endian byte_order;
3313 struct type *field_type = value_type (dest_val);
3315 byte_order = type_byte_order (field_type);
3317 /* First, unpack and sign extend the bitfield as if it was wholly
3318 valid. Optimized out/unavailable bits are read as zero, but
3319 that's OK, as they'll end up marked below. If the VAL is
3320 wholly-invalid we may have skipped allocating its contents,
3321 though. See allocate_optimized_out_value. */
3322 if (valaddr != NULL)
3326 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3328 store_signed_integer (value_contents_raw (dest_val),
3329 TYPE_LENGTH (field_type), byte_order, num);
3332 /* Now copy the optimized out / unavailability ranges to the right
3334 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3335 if (byte_order == BFD_ENDIAN_BIG)
3336 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3339 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3340 val, src_bit_offset, bitsize);
3343 /* Return a new value with type TYPE, which is FIELDNO field of the
3344 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3345 of VAL. If the VAL's contents required to extract the bitfield
3346 from are unavailable/optimized out, the new value is
3347 correspondingly marked unavailable/optimized out. */
3350 value_field_bitfield (struct type *type, int fieldno,
3351 const gdb_byte *valaddr,
3352 LONGEST embedded_offset, const struct value *val)
3354 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3355 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3356 struct value *res_val = allocate_value (type->field (fieldno).type ());
3358 unpack_value_bitfield (res_val, bitpos, bitsize,
3359 valaddr, embedded_offset, val);
3364 /* Modify the value of a bitfield. ADDR points to a block of memory in
3365 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3366 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3367 indicate which bits (in target bit order) comprise the bitfield.
3368 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3369 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3372 modify_field (struct type *type, gdb_byte *addr,
3373 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3375 enum bfd_endian byte_order = type_byte_order (type);
3377 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3380 /* Normalize BITPOS. */
3384 /* If a negative fieldval fits in the field in question, chop
3385 off the sign extension bits. */
3386 if ((~fieldval & ~(mask >> 1)) == 0)
3389 /* Warn if value is too big to fit in the field in question. */
3390 if (0 != (fieldval & ~mask))
3392 /* FIXME: would like to include fieldval in the message, but
3393 we don't have a sprintf_longest. */
3394 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3396 /* Truncate it, otherwise adjoining fields may be corrupted. */
3400 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3401 false valgrind reports. */
3403 bytesize = (bitpos + bitsize + 7) / 8;
3404 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3406 /* Shifting for bit field depends on endianness of the target machine. */
3407 if (byte_order == BFD_ENDIAN_BIG)
3408 bitpos = bytesize * 8 - bitpos - bitsize;
3410 oword &= ~(mask << bitpos);
3411 oword |= fieldval << bitpos;
3413 store_unsigned_integer (addr, bytesize, byte_order, oword);
3416 /* Pack NUM into BUF using a target format of TYPE. */
3419 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3421 enum bfd_endian byte_order = type_byte_order (type);
3424 type = check_typedef (type);
3425 len = TYPE_LENGTH (type);
3427 switch (type->code ())
3429 case TYPE_CODE_RANGE:
3430 num -= type->bounds ()->bias;
3433 case TYPE_CODE_CHAR:
3434 case TYPE_CODE_ENUM:
3435 case TYPE_CODE_FLAGS:
3436 case TYPE_CODE_BOOL:
3437 case TYPE_CODE_MEMBERPTR:
3438 if (type->bit_size_differs_p ())
3440 unsigned bit_off = type->bit_offset ();
3441 unsigned bit_size = type->bit_size ();
3442 num &= ((ULONGEST) 1 << bit_size) - 1;
3445 store_signed_integer (buf, len, byte_order, num);
3449 case TYPE_CODE_RVALUE_REF:
3451 store_typed_address (buf, type, (CORE_ADDR) num);
3455 case TYPE_CODE_DECFLOAT:
3456 target_float_from_longest (buf, type, num);
3460 error (_("Unexpected type (%d) encountered for integer constant."),
3466 /* Pack NUM into BUF using a target format of TYPE. */
3469 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3472 enum bfd_endian byte_order;
3474 type = check_typedef (type);
3475 len = TYPE_LENGTH (type);
3476 byte_order = type_byte_order (type);
3478 switch (type->code ())
3481 case TYPE_CODE_CHAR:
3482 case TYPE_CODE_ENUM:
3483 case TYPE_CODE_FLAGS:
3484 case TYPE_CODE_BOOL:
3485 case TYPE_CODE_RANGE:
3486 case TYPE_CODE_MEMBERPTR:
3487 if (type->bit_size_differs_p ())
3489 unsigned bit_off = type->bit_offset ();
3490 unsigned bit_size = type->bit_size ();
3491 num &= ((ULONGEST) 1 << bit_size) - 1;
3494 store_unsigned_integer (buf, len, byte_order, num);
3498 case TYPE_CODE_RVALUE_REF:
3500 store_typed_address (buf, type, (CORE_ADDR) num);
3504 case TYPE_CODE_DECFLOAT:
3505 target_float_from_ulongest (buf, type, num);
3509 error (_("Unexpected type (%d) encountered "
3510 "for unsigned integer constant."),
3516 /* Create a value of type TYPE that is zero, and return it. */
3519 value_zero (struct type *type, enum lval_type lv)
3521 struct value *val = allocate_value_lazy (type);
3523 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
3524 val->is_zero = true;
3528 /* Convert C numbers into newly allocated values. */
3531 value_from_longest (struct type *type, LONGEST num)
3533 struct value *val = allocate_value (type);
3535 pack_long (value_contents_raw (val), type, num);
3540 /* Convert C unsigned numbers into newly allocated values. */
3543 value_from_ulongest (struct type *type, ULONGEST num)
3545 struct value *val = allocate_value (type);
3547 pack_unsigned_long (value_contents_raw (val), type, num);
3553 /* Create a value representing a pointer of type TYPE to the address
3557 value_from_pointer (struct type *type, CORE_ADDR addr)
3559 struct value *val = allocate_value (type);
3561 store_typed_address (value_contents_raw (val),
3562 check_typedef (type), addr);
3566 /* Create and return a value object of TYPE containing the value D. The
3567 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3568 it is converted to target format. */
3571 value_from_host_double (struct type *type, double d)
3573 struct value *value = allocate_value (type);
3574 gdb_assert (type->code () == TYPE_CODE_FLT);
3575 target_float_from_host_double (value_contents_raw (value),
3576 value_type (value), d);
3580 /* Create a value of type TYPE whose contents come from VALADDR, if it
3581 is non-null, and whose memory address (in the inferior) is
3582 ADDRESS. The type of the created value may differ from the passed
3583 type TYPE. Make sure to retrieve values new type after this call.
3584 Note that TYPE is not passed through resolve_dynamic_type; this is
3585 a special API intended for use only by Ada. */
3588 value_from_contents_and_address_unresolved (struct type *type,
3589 const gdb_byte *valaddr,
3594 if (valaddr == NULL)
3595 v = allocate_value_lazy (type);
3597 v = value_from_contents (type, valaddr);
3598 VALUE_LVAL (v) = lval_memory;
3599 set_value_address (v, address);
3603 /* Create a value of type TYPE whose contents come from VALADDR, if it
3604 is non-null, and whose memory address (in the inferior) is
3605 ADDRESS. The type of the created value may differ from the passed
3606 type TYPE. Make sure to retrieve values new type after this call. */
3609 value_from_contents_and_address (struct type *type,
3610 const gdb_byte *valaddr,
3613 gdb::array_view<const gdb_byte> view;
3614 if (valaddr != nullptr)
3615 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3616 struct type *resolved_type = resolve_dynamic_type (type, view, address);
3617 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3620 if (valaddr == NULL)
3621 v = allocate_value_lazy (resolved_type);
3623 v = value_from_contents (resolved_type, valaddr);
3624 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3625 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3626 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3627 VALUE_LVAL (v) = lval_memory;
3628 set_value_address (v, address);
3632 /* Create a value of type TYPE holding the contents CONTENTS.
3633 The new value is `not_lval'. */
3636 value_from_contents (struct type *type, const gdb_byte *contents)
3638 struct value *result;
3640 result = allocate_value (type);
3641 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3645 /* Extract a value from the history file. Input will be of the form
3646 $digits or $$digits. See block comment above 'write_dollar_variable'
3650 value_from_history_ref (const char *h, const char **endp)
3662 /* Find length of numeral string. */
3663 for (; isdigit (h[len]); len++)
3666 /* Make sure numeral string is not part of an identifier. */
3667 if (h[len] == '_' || isalpha (h[len]))
3670 /* Now collect the index value. */
3675 /* For some bizarre reason, "$$" is equivalent to "$$1",
3676 rather than to "$$0" as it ought to be! */
3684 index = -strtol (&h[2], &local_end, 10);
3692 /* "$" is equivalent to "$0". */
3700 index = strtol (&h[1], &local_end, 10);
3705 return access_value_history (index);
3708 /* Get the component value (offset by OFFSET bytes) of a struct or
3709 union WHOLE. Component's type is TYPE. */
3712 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3716 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3717 v = allocate_value_lazy (type);
3720 v = allocate_value (type);
3721 value_contents_copy (v, value_embedded_offset (v),
3722 whole, value_embedded_offset (whole) + offset,
3723 type_length_units (type));
3725 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3726 set_value_component_location (v, whole);
3732 coerce_ref_if_computed (const struct value *arg)
3734 const struct lval_funcs *funcs;
3736 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3739 if (value_lval_const (arg) != lval_computed)
3742 funcs = value_computed_funcs (arg);
3743 if (funcs->coerce_ref == NULL)
3746 return funcs->coerce_ref (arg);
3749 /* Look at value.h for description. */
3752 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3753 const struct type *original_type,
3754 struct value *original_value,
3755 CORE_ADDR original_value_address)
3757 gdb_assert (original_type->is_pointer_or_reference ());
3759 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3760 gdb::array_view<const gdb_byte> view;
3761 struct type *resolved_original_target_type
3762 = resolve_dynamic_type (original_target_type, view,
3763 original_value_address);
3765 /* Re-adjust type. */
3766 deprecated_set_value_type (value, resolved_original_target_type);
3768 /* Add embedding info. */
3769 set_value_enclosing_type (value, enc_type);
3770 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3772 /* We may be pointing to an object of some derived type. */
3773 return value_full_object (value, NULL, 0, 0, 0);
3777 coerce_ref (struct value *arg)
3779 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3780 struct value *retval;
3781 struct type *enc_type;
3783 retval = coerce_ref_if_computed (arg);
3787 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3790 enc_type = check_typedef (value_enclosing_type (arg));
3791 enc_type = TYPE_TARGET_TYPE (enc_type);
3793 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3794 retval = value_at_lazy (enc_type, addr);
3795 enc_type = value_type (retval);
3796 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3801 coerce_array (struct value *arg)
3805 arg = coerce_ref (arg);
3806 type = check_typedef (value_type (arg));
3808 switch (type->code ())
3810 case TYPE_CODE_ARRAY:
3811 if (!type->is_vector () && current_language->c_style_arrays_p ())
3812 arg = value_coerce_array (arg);
3814 case TYPE_CODE_FUNC:
3815 arg = value_coerce_function (arg);
3822 /* Return the return value convention that will be used for the
3825 enum return_value_convention
3826 struct_return_convention (struct gdbarch *gdbarch,
3827 struct value *function, struct type *value_type)
3829 enum type_code code = value_type->code ();
3831 if (code == TYPE_CODE_ERROR)
3832 error (_("Function return type unknown."));
3834 /* Probe the architecture for the return-value convention. */
3835 return gdbarch_return_value (gdbarch, function, value_type,
3839 /* Return true if the function returning the specified type is using
3840 the convention of returning structures in memory (passing in the
3841 address as a hidden first parameter). */
3844 using_struct_return (struct gdbarch *gdbarch,
3845 struct value *function, struct type *value_type)
3847 if (value_type->code () == TYPE_CODE_VOID)
3848 /* A void return value is never in memory. See also corresponding
3849 code in "print_return_value". */
3852 return (struct_return_convention (gdbarch, function, value_type)
3853 != RETURN_VALUE_REGISTER_CONVENTION);
3856 /* Set the initialized field in a value struct. */
3859 set_value_initialized (struct value *val, int status)
3861 val->initialized = status;
3864 /* Return the initialized field in a value struct. */
3867 value_initialized (const struct value *val)
3869 return val->initialized;
3872 /* Helper for value_fetch_lazy when the value is a bitfield. */
3875 value_fetch_lazy_bitfield (struct value *val)
3877 gdb_assert (value_bitsize (val) != 0);
3879 /* To read a lazy bitfield, read the entire enclosing value. This
3880 prevents reading the same block of (possibly volatile) memory once
3881 per bitfield. It would be even better to read only the containing
3882 word, but we have no way to record that just specific bits of a
3883 value have been fetched. */
3884 struct value *parent = value_parent (val);
3886 if (value_lazy (parent))
3887 value_fetch_lazy (parent);
3889 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3890 value_contents_for_printing (parent),
3891 value_offset (val), parent);
3894 /* Helper for value_fetch_lazy when the value is in memory. */
3897 value_fetch_lazy_memory (struct value *val)
3899 gdb_assert (VALUE_LVAL (val) == lval_memory);
3901 CORE_ADDR addr = value_address (val);
3902 struct type *type = check_typedef (value_enclosing_type (val));
3904 if (TYPE_LENGTH (type))
3905 read_value_memory (val, 0, value_stack (val),
3906 addr, value_contents_all_raw (val),
3907 type_length_units (type));
3910 /* Helper for value_fetch_lazy when the value is in a register. */
3913 value_fetch_lazy_register (struct value *val)
3915 struct frame_info *next_frame;
3917 struct type *type = check_typedef (value_type (val));
3918 struct value *new_val = val, *mark = value_mark ();
3920 /* Offsets are not supported here; lazy register values must
3921 refer to the entire register. */
3922 gdb_assert (value_offset (val) == 0);
3924 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3926 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3928 next_frame = frame_find_by_id (next_frame_id);
3929 regnum = VALUE_REGNUM (new_val);
3931 gdb_assert (next_frame != NULL);
3933 /* Convertible register routines are used for multi-register
3934 values and for interpretation in different types
3935 (e.g. float or int from a double register). Lazy
3936 register values should have the register's natural type,
3937 so they do not apply. */
3938 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3941 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3942 Since a "->next" operation was performed when setting
3943 this field, we do not need to perform a "next" operation
3944 again when unwinding the register. That's why
3945 frame_unwind_register_value() is called here instead of
3946 get_frame_register_value(). */
3947 new_val = frame_unwind_register_value (next_frame, regnum);
3949 /* If we get another lazy lval_register value, it means the
3950 register is found by reading it from NEXT_FRAME's next frame.
3951 frame_unwind_register_value should never return a value with
3952 the frame id pointing to NEXT_FRAME. If it does, it means we
3953 either have two consecutive frames with the same frame id
3954 in the frame chain, or some code is trying to unwind
3955 behind get_prev_frame's back (e.g., a frame unwind
3956 sniffer trying to unwind), bypassing its validations. In
3957 any case, it should always be an internal error to end up
3958 in this situation. */
3959 if (VALUE_LVAL (new_val) == lval_register
3960 && value_lazy (new_val)
3961 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3962 internal_error (__FILE__, __LINE__,
3963 _("infinite loop while fetching a register"));
3966 /* If it's still lazy (for instance, a saved register on the
3967 stack), fetch it. */
3968 if (value_lazy (new_val))
3969 value_fetch_lazy (new_val);
3971 /* Copy the contents and the unavailability/optimized-out
3972 meta-data from NEW_VAL to VAL. */
3973 set_value_lazy (val, 0);
3974 value_contents_copy (val, value_embedded_offset (val),
3975 new_val, value_embedded_offset (new_val),
3976 type_length_units (type));
3980 struct gdbarch *gdbarch;
3981 struct frame_info *frame;
3982 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
3983 frame = get_prev_frame_always (frame);
3984 regnum = VALUE_REGNUM (val);
3985 gdbarch = get_frame_arch (frame);
3987 string_file debug_file;
3988 fprintf_unfiltered (&debug_file,
3989 "(frame=%d, regnum=%d(%s), ...) ",
3990 frame_relative_level (frame), regnum,
3991 user_reg_map_regnum_to_name (gdbarch, regnum));
3993 fprintf_unfiltered (&debug_file, "->");
3994 if (value_optimized_out (new_val))
3996 fprintf_unfiltered (&debug_file, " ");
3997 val_print_optimized_out (new_val, &debug_file);
4002 const gdb_byte *buf = value_contents (new_val);
4004 if (VALUE_LVAL (new_val) == lval_register)
4005 fprintf_unfiltered (&debug_file, " register=%d",
4006 VALUE_REGNUM (new_val));
4007 else if (VALUE_LVAL (new_val) == lval_memory)
4008 fprintf_unfiltered (&debug_file, " address=%s",
4010 value_address (new_val)));
4012 fprintf_unfiltered (&debug_file, " computed");
4014 fprintf_unfiltered (&debug_file, " bytes=");
4015 fprintf_unfiltered (&debug_file, "[");
4016 for (i = 0; i < register_size (gdbarch, regnum); i++)
4017 fprintf_unfiltered (&debug_file, "%02x", buf[i]);
4018 fprintf_unfiltered (&debug_file, "]");
4021 frame_debug_printf ("%s", debug_file.c_str ());
4024 /* Dispose of the intermediate values. This prevents
4025 watchpoints from trying to watch the saved frame pointer. */
4026 value_free_to_mark (mark);
4029 /* Load the actual content of a lazy value. Fetch the data from the
4030 user's process and clear the lazy flag to indicate that the data in
4031 the buffer is valid.
4033 If the value is zero-length, we avoid calling read_memory, which
4034 would abort. We mark the value as fetched anyway -- all 0 bytes of
4038 value_fetch_lazy (struct value *val)
4040 gdb_assert (value_lazy (val));
4041 allocate_value_contents (val);
4042 /* A value is either lazy, or fully fetched. The
4043 availability/validity is only established as we try to fetch a
4045 gdb_assert (val->optimized_out.empty ());
4046 gdb_assert (val->unavailable.empty ());
4051 else if (value_bitsize (val))
4052 value_fetch_lazy_bitfield (val);
4053 else if (VALUE_LVAL (val) == lval_memory)
4054 value_fetch_lazy_memory (val);
4055 else if (VALUE_LVAL (val) == lval_register)
4056 value_fetch_lazy_register (val);
4057 else if (VALUE_LVAL (val) == lval_computed
4058 && value_computed_funcs (val)->read != NULL)
4059 value_computed_funcs (val)->read (val);
4061 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4063 set_value_lazy (val, 0);
4066 /* Implementation of the convenience function $_isvoid. */
4068 static struct value *
4069 isvoid_internal_fn (struct gdbarch *gdbarch,
4070 const struct language_defn *language,
4071 void *cookie, int argc, struct value **argv)
4076 error (_("You must provide one argument for $_isvoid."));
4078 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
4080 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4083 /* Implementation of the convenience function $_creal. Extracts the
4084 real part from a complex number. */
4086 static struct value *
4087 creal_internal_fn (struct gdbarch *gdbarch,
4088 const struct language_defn *language,
4089 void *cookie, int argc, struct value **argv)
4092 error (_("You must provide one argument for $_creal."));
4094 value *cval = argv[0];
4095 type *ctype = check_typedef (value_type (cval));
4096 if (ctype->code () != TYPE_CODE_COMPLEX)
4097 error (_("expected a complex number"));
4098 return value_real_part (cval);
4101 /* Implementation of the convenience function $_cimag. Extracts the
4102 imaginary part from a complex number. */
4104 static struct value *
4105 cimag_internal_fn (struct gdbarch *gdbarch,
4106 const struct language_defn *language,
4107 void *cookie, int argc,
4108 struct value **argv)
4111 error (_("You must provide one argument for $_cimag."));
4113 value *cval = argv[0];
4114 type *ctype = check_typedef (value_type (cval));
4115 if (ctype->code () != TYPE_CODE_COMPLEX)
4116 error (_("expected a complex number"));
4117 return value_imaginary_part (cval);
4124 /* Test the ranges_contain function. */
4127 test_ranges_contain ()
4129 std::vector<range> ranges;
4135 ranges.push_back (r);
4140 ranges.push_back (r);
4143 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4145 SELF_CHECK (ranges_contain (ranges, 9, 5));
4147 SELF_CHECK (ranges_contain (ranges, 10, 2));
4149 SELF_CHECK (ranges_contain (ranges, 10, 5));
4151 SELF_CHECK (ranges_contain (ranges, 13, 6));
4153 SELF_CHECK (ranges_contain (ranges, 14, 5));
4155 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4157 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4159 SELF_CHECK (ranges_contain (ranges, 16, 6));
4161 SELF_CHECK (ranges_contain (ranges, 21, 1));
4163 SELF_CHECK (ranges_contain (ranges, 21, 5));
4165 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4168 /* Check that RANGES contains the same ranges as EXPECTED. */
4171 check_ranges_vector (gdb::array_view<const range> ranges,
4172 gdb::array_view<const range> expected)
4174 return ranges == expected;
4177 /* Test the insert_into_bit_range_vector function. */
4180 test_insert_into_bit_range_vector ()
4182 std::vector<range> ranges;
4186 insert_into_bit_range_vector (&ranges, 10, 5);
4187 static const range expected[] = {
4190 SELF_CHECK (check_ranges_vector (ranges, expected));
4195 insert_into_bit_range_vector (&ranges, 11, 4);
4196 static const range expected = {10, 5};
4197 SELF_CHECK (check_ranges_vector (ranges, expected));
4200 /* [10, 14] [20, 24] */
4202 insert_into_bit_range_vector (&ranges, 20, 5);
4203 static const range expected[] = {
4207 SELF_CHECK (check_ranges_vector (ranges, expected));
4210 /* [10, 14] [17, 24] */
4212 insert_into_bit_range_vector (&ranges, 17, 5);
4213 static const range expected[] = {
4217 SELF_CHECK (check_ranges_vector (ranges, expected));
4220 /* [2, 8] [10, 14] [17, 24] */
4222 insert_into_bit_range_vector (&ranges, 2, 7);
4223 static const range expected[] = {
4228 SELF_CHECK (check_ranges_vector (ranges, expected));
4231 /* [2, 14] [17, 24] */
4233 insert_into_bit_range_vector (&ranges, 9, 1);
4234 static const range expected[] = {
4238 SELF_CHECK (check_ranges_vector (ranges, expected));
4241 /* [2, 14] [17, 24] */
4243 insert_into_bit_range_vector (&ranges, 9, 1);
4244 static const range expected[] = {
4248 SELF_CHECK (check_ranges_vector (ranges, expected));
4253 insert_into_bit_range_vector (&ranges, 4, 30);
4254 static const range expected = {2, 32};
4255 SELF_CHECK (check_ranges_vector (ranges, expected));
4259 } /* namespace selftests */
4260 #endif /* GDB_SELF_TEST */
4262 void _initialize_values ();
4264 _initialize_values ()
4266 cmd_list_element *show_convenience_cmd
4267 = add_cmd ("convenience", no_class, show_convenience, _("\
4268 Debugger convenience (\"$foo\") variables and functions.\n\
4269 Convenience variables are created when you assign them values;\n\
4270 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4272 A few convenience variables are given values automatically:\n\
4273 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4274 \"$__\" holds the contents of the last address examined with \"x\"."
4277 Convenience functions are defined via the Python API."
4280 add_alias_cmd ("conv", show_convenience_cmd, no_class, 1, &showlist);
4282 add_cmd ("values", no_set_class, show_values, _("\
4283 Elements of value history around item number IDX (or last ten)."),
4286 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4287 Initialize a convenience variable if necessary.\n\
4288 init-if-undefined VARIABLE = EXPRESSION\n\
4289 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4290 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4291 VARIABLE is already initialized."));
4293 add_prefix_cmd ("function", no_class, function_command, _("\
4294 Placeholder command for showing help on convenience functions."),
4295 &functionlist, 0, &cmdlist);
4297 add_internal_function ("_isvoid", _("\
4298 Check whether an expression is void.\n\
4299 Usage: $_isvoid (expression)\n\
4300 Return 1 if the expression is void, zero otherwise."),
4301 isvoid_internal_fn, NULL);
4303 add_internal_function ("_creal", _("\
4304 Extract the real part of a complex number.\n\
4305 Usage: $_creal (expression)\n\
4306 Return the real part of a complex number, the type depends on the\n\
4307 type of a complex number."),
4308 creal_internal_fn, NULL);
4310 add_internal_function ("_cimag", _("\
4311 Extract the imaginary part of a complex number.\n\
4312 Usage: $_cimag (expression)\n\
4313 Return the imaginary part of a complex number, the type depends on the\n\
4314 type of a complex number."),
4315 cimag_internal_fn, NULL);
4317 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4318 class_support, &max_value_size, _("\
4319 Set maximum sized value gdb will load from the inferior."), _("\
4320 Show maximum sized value gdb will load from the inferior."), _("\
4321 Use this to control the maximum size, in bytes, of a value that gdb\n\
4322 will load from the inferior. Setting this value to 'unlimited'\n\
4323 disables checking.\n\
4324 Setting this does not invalidate already allocated values, it only\n\
4325 prevents future values, larger than this size, from being allocated."),
4327 show_max_value_size,
4328 &setlist, &showlist);
4329 set_show_commands vsize_limit
4330 = add_setshow_zuinteger_unlimited_cmd ("varsize-limit", class_support,
4331 &max_value_size, _("\
4332 Set the maximum number of bytes allowed in a variable-size object."), _("\
4333 Show the maximum number of bytes allowed in a variable-size object."), _("\
4334 Attempts to access an object whose size is not a compile-time constant\n\
4335 and exceeds this limit will cause an error."),
4336 NULL, NULL, &setlist, &showlist);
4337 deprecate_cmd (vsize_limit.set, "set max-value-size");
4340 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4341 selftests::register_test ("insert_into_bit_range_vector",
4342 selftests::test_insert_into_bit_range_vector);
4351 all_values.clear ();