1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 static struct type *desc_base_type (struct type *);
73 static struct type *desc_bounds_type (struct type *);
75 static struct value *desc_bounds (struct value *);
77 static int fat_pntr_bounds_bitpos (struct type *);
79 static int fat_pntr_bounds_bitsize (struct type *);
81 static struct type *desc_data_target_type (struct type *);
83 static struct value *desc_data (struct value *);
85 static int fat_pntr_data_bitpos (struct type *);
87 static int fat_pntr_data_bitsize (struct type *);
89 static struct value *desc_one_bound (struct value *, int, int);
91 static int desc_bound_bitpos (struct type *, int, int);
93 static int desc_bound_bitsize (struct type *, int, int);
95 static struct type *desc_index_type (struct type *, int);
97 static int desc_arity (struct type *);
99 static int ada_args_match (struct symbol *, struct value **, int);
101 static struct value *make_array_descriptor (struct type *, struct value *);
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 const struct block *);
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
121 static const char *ada_decoded_op_name (enum exp_opcode);
123 static int numeric_type_p (struct type *);
125 static int integer_type_p (struct type *);
127 static int scalar_type_p (struct type *);
129 static int discrete_type_p (struct type *);
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
134 static struct type *ada_find_parallel_type_with_name (struct type *,
137 static int is_dynamic_field (struct type *, int);
139 static struct type *to_fixed_variant_branch_type (struct type *,
141 CORE_ADDR, struct value *);
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145 static struct type *to_fixed_range_type (struct type *, struct value *);
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
150 static struct value *unwrap_value (struct value *);
152 static struct type *constrained_packed_array_type (struct type *, long *);
154 static struct type *decode_constrained_packed_array_type (struct type *);
156 static long decode_packed_array_bitsize (struct type *);
158 static struct value *decode_constrained_packed_array (struct value *);
160 static int ada_is_unconstrained_packed_array_type (struct type *);
162 static struct value *value_subscript_packed (struct value *, int,
165 static struct value *coerce_unspec_val_to_type (struct value *,
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
170 static int equiv_types (struct type *, struct type *);
172 static int is_name_suffix (const char *);
174 static int advance_wild_match (const char **, const char *, char);
176 static bool wild_match (const char *name, const char *patn);
178 static struct value *ada_coerce_ref (struct value *);
180 static LONGEST pos_atr (struct value *);
182 static struct value *val_atr (struct type *, LONGEST);
184 static struct symbol *standard_lookup (const char *, const struct block *,
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
197 static int ada_is_direct_array_type (struct type *);
199 static struct value *ada_index_struct_field (int, struct value *, int,
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
205 static struct type *ada_find_any_type (const char *name);
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
212 /* The result of a symbol lookup to be stored in our symbol cache. */
216 /* The name used to perform the lookup. */
218 /* The namespace used during the lookup. */
220 /* The symbol returned by the lookup, or NULL if no matching symbol
223 /* The block where the symbol was found, or NULL if no matching
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
239 #define HASH_SIZE 1009
241 struct ada_symbol_cache
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
250 static const char ada_completer_word_break_characters[] =
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
257 /* The name of the symbol to use to get the name of the main subprogram. */
258 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
259 = "__gnat_ada_main_program_name";
261 /* Limit on the number of warnings to raise per expression evaluation. */
262 static int warning_limit = 2;
264 /* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266 static int warnings_issued = 0;
268 static const char * const known_runtime_file_name_patterns[] = {
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
272 static const char * const known_auxiliary_function_name_patterns[] = {
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
276 /* Maintenance-related settings for this module. */
278 static struct cmd_list_element *maint_set_ada_cmdlist;
279 static struct cmd_list_element *maint_show_ada_cmdlist;
281 /* The "maintenance ada set/show ignore-descriptive-type" value. */
283 static bool ada_ignore_descriptive_types_p = false;
285 /* Inferior-specific data. */
287 /* Per-inferior data for this module. */
289 struct ada_inferior_data
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
295 struct type *tsd_type = nullptr;
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
300 const struct exception_support_info *exception_info = nullptr;
303 /* Our key to this module's inferior data. */
304 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
306 /* Return our inferior data for the given inferior (INF).
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
314 static struct ada_inferior_data *
315 get_ada_inferior_data (struct inferior *inf)
317 struct ada_inferior_data *data;
319 data = ada_inferior_data.get (inf);
321 data = ada_inferior_data.emplace (inf);
326 /* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
330 ada_inferior_exit (struct inferior *inf)
332 ada_inferior_data.clear (inf);
336 /* program-space-specific data. */
338 /* This module's per-program-space data. */
339 struct ada_pspace_data
341 /* The Ada symbol cache. */
342 std::unique_ptr<ada_symbol_cache> sym_cache;
345 /* Key to our per-program-space data. */
346 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
348 /* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
351 This function always returns a valid object. */
353 static struct ada_pspace_data *
354 get_ada_pspace_data (struct program_space *pspace)
356 struct ada_pspace_data *data;
358 data = ada_pspace_data_handle.get (pspace);
360 data = ada_pspace_data_handle.emplace (pspace);
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
395 ada_typedef_target_type (struct type *type)
397 while (type->code () == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
407 ada_unqualified_name (const char *decoded_name)
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
418 result = strrchr (decoded_name, '.');
420 result++; /* Skip the dot... */
422 result = decoded_name;
427 /* Return a string starting with '<', followed by STR, and '>'. */
430 add_angle_brackets (const char *str)
432 return string_printf ("<%s>", str);
435 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
436 suffix of FIELD_NAME beginning "___". */
439 field_name_match (const char *field_name, const char *target)
441 int len = strlen (target);
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
452 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
461 ada_get_field_index (const struct type *type, const char *field_name,
465 struct type *struct_type = check_typedef ((struct type *) type);
467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
472 error (_("Unable to find field %s in struct %s. Aborting"),
473 field_name, struct_type->name ());
478 /* The length of the prefix of NAME prior to any "___" suffix. */
481 ada_name_prefix_len (const char *name)
487 const char *p = strstr (name, "___");
490 return strlen (name);
496 /* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
500 is_suffix (const char *str, const char *suffix)
507 len2 = strlen (suffix);
508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
511 /* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
514 static struct value *
515 coerce_unspec_val_to_type (struct value *val, struct type *type)
517 type = ada_check_typedef (type);
518 if (value_type (val) == type)
522 struct value *result;
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
530 result = allocate_value_lazy (type);
533 result = allocate_value (type);
534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
536 set_value_component_location (result, val);
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
545 static const gdb_byte *
546 cond_offset_host (const gdb_byte *valaddr, long offset)
551 return valaddr + offset;
555 cond_offset_target (CORE_ADDR address, long offset)
560 return address + offset;
563 /* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
568 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
570 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
573 lim_warning (const char *format, ...)
577 va_start (args, format);
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
580 vwarning (format, args);
585 /* Maximum value of a SIZE-byte signed integer type. */
587 max_of_size (int size)
589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
591 return top_bit | (top_bit - 1);
594 /* Minimum value of a SIZE-byte signed integer type. */
596 min_of_size (int size)
598 return -max_of_size (size) - 1;
601 /* Maximum value of a SIZE-byte unsigned integer type. */
603 umax_of_size (int size)
605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
607 return top_bit | (top_bit - 1);
610 /* Maximum value of integral type T, as a signed quantity. */
612 max_of_type (struct type *t)
614 if (t->is_unsigned ())
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
617 return max_of_size (TYPE_LENGTH (t));
620 /* Minimum value of integral type T, as a signed quantity. */
622 min_of_type (struct type *t)
624 if (t->is_unsigned ())
627 return min_of_size (TYPE_LENGTH (t));
630 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
632 ada_discrete_type_high_bound (struct type *type)
634 type = resolve_dynamic_type (type, {}, 0);
635 switch (type->code ())
637 case TYPE_CODE_RANGE:
639 const dynamic_prop &high = type->bounds ()->high;
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
645 gdb_assert (high.kind () == PROP_UNDEFINED);
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
654 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
659 return max_of_type (type);
661 error (_("Unexpected type in ada_discrete_type_high_bound."));
665 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
667 ada_discrete_type_low_bound (struct type *type)
669 type = resolve_dynamic_type (type, {}, 0);
670 switch (type->code ())
672 case TYPE_CODE_RANGE:
674 const dynamic_prop &low = type->bounds ()->low;
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
680 gdb_assert (low.kind () == PROP_UNDEFINED);
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
689 return TYPE_FIELD_ENUMVAL (type, 0);
694 return min_of_type (type);
696 error (_("Unexpected type in ada_discrete_type_low_bound."));
700 /* The identity on non-range types. For range types, the underlying
701 non-range scalar type. */
704 get_base_type (struct type *type)
706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
710 type = TYPE_TARGET_TYPE (type);
715 /* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
717 encodings, making the resulting type a static but standard description
718 of the initial type. */
721 ada_get_decoded_value (struct value *value)
723 struct type *type = ada_check_typedef (value_type (value));
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
727 && type->code () != TYPE_CODE_PTR))
729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
730 value = ada_coerce_to_simple_array_ptr (value);
732 value = ada_coerce_to_simple_array (value);
735 value = ada_to_fixed_value (value);
740 /* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
746 ada_get_decoded_type (struct type *type)
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
756 /* Language Selection */
758 /* If the main program is in Ada, return language_ada, otherwise return LANG
759 (the main program is in Ada iif the adainit symbol is found). */
762 ada_update_initial_language (enum language lang)
764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
770 /* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
777 struct bound_minimal_symbol msym;
778 static gdb::unique_xmalloc_ptr<char> main_program_name;
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
787 if (msym.minsym != NULL)
789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
790 if (main_program_name_addr == 0)
791 error (_("Invalid address for Ada main program name."));
793 main_program_name = target_read_string (main_program_name_addr, 1024);
794 return main_program_name.get ();
797 /* The main procedure doesn't seem to be in Ada. */
803 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
806 const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
831 /* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
836 is_compiler_suffix (const char *str)
838 gdb_assert (*str == '[');
840 while (*str != '\0' && isalpha (*str))
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
846 /* The "encoded" form of DECODED, according to GNAT conventions. If
847 THROW_ERRORS, throw an error if invalid operator name is found.
848 Otherwise, return the empty string in that case. */
851 ada_encode_1 (const char *decoded, bool throw_errors)
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
860 encoding_buffer.append ("__");
861 else if (*p == '[' && is_compiler_suffix (p))
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
870 const struct ada_opname_map *mapping;
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
876 if (mapping->encoded == NULL)
879 error (_("invalid Ada operator name: %s"), p);
883 encoding_buffer.append (mapping->encoded);
887 encoding_buffer.push_back (*p);
890 return encoding_buffer;
893 /* The "encoded" form of DECODED, according to GNAT conventions. */
896 ada_encode (const char *decoded)
898 return ada_encode_1 (decoded, true);
901 /* Return NAME folded to lower case, or, if surrounded by single
902 quotes, unfolded, but with the quotes stripped away. Result good
906 ada_fold_name (gdb::string_view name)
908 static std::string fold_storage;
910 if (!name.empty () && name[0] == '\'')
911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
914 fold_storage = gdb::to_string (name);
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
919 return fold_storage.c_str ();
922 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
925 is_lower_alphanum (const char c)
927 return (isdigit (c) || (isalpha (c) && islower (c)));
930 /* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
943 ada_remove_trailing_digits (const char *encoded, int *len)
945 if (*len > 1 && isdigit (encoded[*len - 1]))
949 while (i > 0 && isdigit (encoded[i]))
951 if (i >= 0 && encoded[i] == '.')
953 else if (i >= 0 && encoded[i] == '$')
955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
962 /* Remove the suffix introduced by the compiler for protected object
966 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
968 /* Remove trailing N. */
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
973 the 'P' suffix. The second calls the first one after handling
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
984 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
989 remove_compiler_suffix (const char *encoded, int *len)
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
994 if (offset > 0 && encoded[offset] == '.')
1002 /* See ada-lang.h. */
1005 ada_decode (const char *encoded, bool wrap)
1011 std::string decoded;
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
1022 if (startswith (encoded, "_ada_"))
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
1028 if (encoded[0] == '_' || encoded[0] == '<')
1031 len0 = strlen (encoded);
1033 suffix = remove_compiler_suffix (encoded, &len0);
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1071 /* Make decoded big enough for possible expansion by operator name. */
1073 decoded.resize (2 * len0 + 1, 'X');
1075 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1077 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1080 while ((i >= 0 && isdigit (encoded[i]))
1081 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1083 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1085 else if (encoded[i] == '$')
1089 /* The first few characters that are not alphabetic are not part
1090 of any encoding we use, so we can copy them over verbatim. */
1092 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1093 decoded[j] = encoded[i];
1098 /* Is this a symbol function? */
1099 if (at_start_name && encoded[i] == 'O')
1103 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1105 int op_len = strlen (ada_opname_table[k].encoded);
1106 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1108 && !isalnum (encoded[i + op_len]))
1110 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1113 j += strlen (ada_opname_table[k].decoded);
1117 if (ada_opname_table[k].encoded != NULL)
1122 /* Replace "TK__" with "__", which will eventually be translated
1123 into "." (just below). */
1125 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1128 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1129 be translated into "." (just below). These are internal names
1130 generated for anonymous blocks inside which our symbol is nested. */
1132 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1133 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1134 && isdigit (encoded [i+4]))
1138 while (k < len0 && isdigit (encoded[k]))
1139 k++; /* Skip any extra digit. */
1141 /* Double-check that the "__B_{DIGITS}+" sequence we found
1142 is indeed followed by "__". */
1143 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1147 /* Remove _E{DIGITS}+[sb] */
1149 /* Just as for protected object subprograms, there are 2 categories
1150 of subprograms created by the compiler for each entry. The first
1151 one implements the actual entry code, and has a suffix following
1152 the convention above; the second one implements the barrier and
1153 uses the same convention as above, except that the 'E' is replaced
1156 Just as above, we do not decode the name of barrier functions
1157 to give the user a clue that the code he is debugging has been
1158 internally generated. */
1160 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1161 && isdigit (encoded[i+2]))
1165 while (k < len0 && isdigit (encoded[k]))
1169 && (encoded[k] == 'b' || encoded[k] == 's'))
1172 /* Just as an extra precaution, make sure that if this
1173 suffix is followed by anything else, it is a '_'.
1174 Otherwise, we matched this sequence by accident. */
1176 || (k < len0 && encoded[k] == '_'))
1181 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1182 the GNAT front-end in protected object subprograms. */
1185 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1187 /* Backtrack a bit up until we reach either the begining of
1188 the encoded name, or "__". Make sure that we only find
1189 digits or lowercase characters. */
1190 const char *ptr = encoded + i - 1;
1192 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1195 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1199 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1201 /* This is a X[bn]* sequence not separated from the previous
1202 part of the name with a non-alpha-numeric character (in other
1203 words, immediately following an alpha-numeric character), then
1204 verify that it is placed at the end of the encoded name. If
1205 not, then the encoding is not valid and we should abort the
1206 decoding. Otherwise, just skip it, it is used in body-nested
1210 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1214 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1216 /* Replace '__' by '.'. */
1224 /* It's a character part of the decoded name, so just copy it
1226 decoded[j] = encoded[i];
1233 /* Decoded names should never contain any uppercase character.
1234 Double-check this, and abort the decoding if we find one. */
1236 for (i = 0; i < decoded.length(); ++i)
1237 if (isupper (decoded[i]) || decoded[i] == ' ')
1240 /* If the compiler added a suffix, append it now. */
1242 decoded = decoded + "[" + &encoded[suffix] + "]";
1250 if (encoded[0] == '<')
1253 decoded = '<' + std::string(encoded) + '>';
1257 /* Table for keeping permanent unique copies of decoded names. Once
1258 allocated, names in this table are never released. While this is a
1259 storage leak, it should not be significant unless there are massive
1260 changes in the set of decoded names in successive versions of a
1261 symbol table loaded during a single session. */
1262 static struct htab *decoded_names_store;
1264 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1265 in the language-specific part of GSYMBOL, if it has not been
1266 previously computed. Tries to save the decoded name in the same
1267 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1268 in any case, the decoded symbol has a lifetime at least that of
1270 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1271 const, but nevertheless modified to a semantically equivalent form
1272 when a decoded name is cached in it. */
1275 ada_decode_symbol (const struct general_symbol_info *arg)
1277 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1278 const char **resultp =
1279 &gsymbol->language_specific.demangled_name;
1281 if (!gsymbol->ada_mangled)
1283 std::string decoded = ada_decode (gsymbol->linkage_name ());
1284 struct obstack *obstack = gsymbol->language_specific.obstack;
1286 gsymbol->ada_mangled = 1;
1288 if (obstack != NULL)
1289 *resultp = obstack_strdup (obstack, decoded.c_str ());
1292 /* Sometimes, we can't find a corresponding objfile, in
1293 which case, we put the result on the heap. Since we only
1294 decode when needed, we hope this usually does not cause a
1295 significant memory leak (FIXME). */
1297 char **slot = (char **) htab_find_slot (decoded_names_store,
1298 decoded.c_str (), INSERT);
1301 *slot = xstrdup (decoded.c_str ());
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1320 The GNAT encoding used to describe the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1341 if (index_desc_type == NULL)
1343 gdb_assert (index_desc_type->num_fields () > 0);
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (index_desc_type->field (0).type ()->name () != NULL
1353 && strcmp (index_desc_type->field (0).type ()->name (),
1354 index_desc_type->field (0).name ()) == 0)
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < index_desc_type->num_fields (); i++)
1360 const char *name = index_desc_type->field (i).name ();
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1364 index_desc_type->field (i).set_type (raw_type);
1368 /* The desc_* routines return primitive portions of array descriptors
1371 /* The descriptor or array type, if any, indicated by TYPE; removes
1372 level of indirection, if needed. */
1374 static struct type *
1375 desc_base_type (struct type *type)
1379 type = ada_check_typedef (type);
1380 if (type->code () == TYPE_CODE_TYPEDEF)
1381 type = ada_typedef_target_type (type);
1384 && (type->code () == TYPE_CODE_PTR
1385 || type->code () == TYPE_CODE_REF))
1386 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1391 /* True iff TYPE indicates a "thin" array pointer type. */
1394 is_thin_pntr (struct type *type)
1397 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1398 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1401 /* The descriptor type for thin pointer type TYPE. */
1403 static struct type *
1404 thin_descriptor_type (struct type *type)
1406 struct type *base_type = desc_base_type (type);
1408 if (base_type == NULL)
1410 if (is_suffix (ada_type_name (base_type), "___XVE"))
1414 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1416 if (alt_type == NULL)
1423 /* A pointer to the array data for thin-pointer value VAL. */
1425 static struct value *
1426 thin_data_pntr (struct value *val)
1428 struct type *type = ada_check_typedef (value_type (val));
1429 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1431 data_type = lookup_pointer_type (data_type);
1433 if (type->code () == TYPE_CODE_PTR)
1434 return value_cast (data_type, value_copy (val));
1436 return value_from_longest (data_type, value_address (val));
1439 /* True iff TYPE indicates a "thick" array pointer type. */
1442 is_thick_pntr (struct type *type)
1444 type = desc_base_type (type);
1445 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1446 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1449 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1450 pointer to one, the type of its bounds data; otherwise, NULL. */
1452 static struct type *
1453 desc_bounds_type (struct type *type)
1457 type = desc_base_type (type);
1461 else if (is_thin_pntr (type))
1463 type = thin_descriptor_type (type);
1466 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1468 return ada_check_typedef (r);
1470 else if (type->code () == TYPE_CODE_STRUCT)
1472 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1474 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1479 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1480 one, a pointer to its bounds data. Otherwise NULL. */
1482 static struct value *
1483 desc_bounds (struct value *arr)
1485 struct type *type = ada_check_typedef (value_type (arr));
1487 if (is_thin_pntr (type))
1489 struct type *bounds_type =
1490 desc_bounds_type (thin_descriptor_type (type));
1493 if (bounds_type == NULL)
1494 error (_("Bad GNAT array descriptor"));
1496 /* NOTE: The following calculation is not really kosher, but
1497 since desc_type is an XVE-encoded type (and shouldn't be),
1498 the correct calculation is a real pain. FIXME (and fix GCC). */
1499 if (type->code () == TYPE_CODE_PTR)
1500 addr = value_as_long (arr);
1502 addr = value_address (arr);
1505 value_from_longest (lookup_pointer_type (bounds_type),
1506 addr - TYPE_LENGTH (bounds_type));
1509 else if (is_thick_pntr (type))
1511 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1512 _("Bad GNAT array descriptor"));
1513 struct type *p_bounds_type = value_type (p_bounds);
1516 && p_bounds_type->code () == TYPE_CODE_PTR)
1518 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1520 if (target_type->is_stub ())
1521 p_bounds = value_cast (lookup_pointer_type
1522 (ada_check_typedef (target_type)),
1526 error (_("Bad GNAT array descriptor"));
1534 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1535 position of the field containing the address of the bounds data. */
1538 fat_pntr_bounds_bitpos (struct type *type)
1540 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1543 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1544 size of the field containing the address of the bounds data. */
1547 fat_pntr_bounds_bitsize (struct type *type)
1549 type = desc_base_type (type);
1551 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1552 return TYPE_FIELD_BITSIZE (type, 1);
1554 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1557 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1558 pointer to one, the type of its array data (a array-with-no-bounds type);
1559 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1562 static struct type *
1563 desc_data_target_type (struct type *type)
1565 type = desc_base_type (type);
1567 /* NOTE: The following is bogus; see comment in desc_bounds. */
1568 if (is_thin_pntr (type))
1569 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1570 else if (is_thick_pntr (type))
1572 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1575 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1576 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1582 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1585 static struct value *
1586 desc_data (struct value *arr)
1588 struct type *type = value_type (arr);
1590 if (is_thin_pntr (type))
1591 return thin_data_pntr (arr);
1592 else if (is_thick_pntr (type))
1593 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1594 _("Bad GNAT array descriptor"));
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 position of the field containing the address of the data. */
1604 fat_pntr_data_bitpos (struct type *type)
1606 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1609 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1610 size of the field containing the address of the data. */
1613 fat_pntr_data_bitsize (struct type *type)
1615 type = desc_base_type (type);
1617 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1618 return TYPE_FIELD_BITSIZE (type, 0);
1620 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1623 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1624 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1625 bound, if WHICH is 1. The first bound is I=1. */
1627 static struct value *
1628 desc_one_bound (struct value *bounds, int i, int which)
1630 char bound_name[20];
1631 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1632 which ? 'U' : 'L', i - 1);
1633 return value_struct_elt (&bounds, {}, bound_name, NULL,
1634 _("Bad GNAT array descriptor bounds"));
1637 /* If BOUNDS is an array-bounds structure type, return the bit position
1638 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1639 bound, if WHICH is 1. The first bound is I=1. */
1642 desc_bound_bitpos (struct type *type, int i, int which)
1644 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1647 /* If BOUNDS is an array-bounds structure type, return the bit field size
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1652 desc_bound_bitsize (struct type *type, int i, int which)
1654 type = desc_base_type (type);
1656 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1657 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1659 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1662 /* If TYPE is the type of an array-bounds structure, the type of its
1663 Ith bound (numbering from 1). Otherwise, NULL. */
1665 static struct type *
1666 desc_index_type (struct type *type, int i)
1668 type = desc_base_type (type);
1670 if (type->code () == TYPE_CODE_STRUCT)
1672 char bound_name[20];
1673 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1674 return lookup_struct_elt_type (type, bound_name, 1);
1680 /* The number of index positions in the array-bounds type TYPE.
1681 Return 0 if TYPE is NULL. */
1684 desc_arity (struct type *type)
1686 type = desc_base_type (type);
1689 return type->num_fields () / 2;
1693 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1694 an array descriptor type (representing an unconstrained array
1698 ada_is_direct_array_type (struct type *type)
1702 type = ada_check_typedef (type);
1703 return (type->code () == TYPE_CODE_ARRAY
1704 || ada_is_array_descriptor_type (type));
1707 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1711 ada_is_array_type (struct type *type)
1714 && (type->code () == TYPE_CODE_PTR
1715 || type->code () == TYPE_CODE_REF))
1716 type = TYPE_TARGET_TYPE (type);
1717 return ada_is_direct_array_type (type);
1720 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1723 ada_is_simple_array_type (struct type *type)
1727 type = ada_check_typedef (type);
1728 return (type->code () == TYPE_CODE_ARRAY
1729 || (type->code () == TYPE_CODE_PTR
1730 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1731 == TYPE_CODE_ARRAY)));
1734 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1737 ada_is_array_descriptor_type (struct type *type)
1739 struct type *data_type = desc_data_target_type (type);
1743 type = ada_check_typedef (type);
1744 return (data_type != NULL
1745 && data_type->code () == TYPE_CODE_ARRAY
1746 && desc_arity (desc_bounds_type (type)) > 0);
1749 /* Non-zero iff type is a partially mal-formed GNAT array
1750 descriptor. FIXME: This is to compensate for some problems with
1751 debugging output from GNAT. Re-examine periodically to see if it
1755 ada_is_bogus_array_descriptor (struct type *type)
1759 && type->code () == TYPE_CODE_STRUCT
1760 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1761 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1762 && !ada_is_array_descriptor_type (type);
1766 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1767 (fat pointer) returns the type of the array data described---specifically,
1768 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1769 in from the descriptor; otherwise, they are left unspecified. If
1770 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1771 returns NULL. The result is simply the type of ARR if ARR is not
1774 static struct type *
1775 ada_type_of_array (struct value *arr, int bounds)
1777 if (ada_is_constrained_packed_array_type (value_type (arr)))
1778 return decode_constrained_packed_array_type (value_type (arr));
1780 if (!ada_is_array_descriptor_type (value_type (arr)))
1781 return value_type (arr);
1785 struct type *array_type =
1786 ada_check_typedef (desc_data_target_type (value_type (arr)));
1788 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1789 TYPE_FIELD_BITSIZE (array_type, 0) =
1790 decode_packed_array_bitsize (value_type (arr));
1796 struct type *elt_type;
1798 struct value *descriptor;
1800 elt_type = ada_array_element_type (value_type (arr), -1);
1801 arity = ada_array_arity (value_type (arr));
1803 if (elt_type == NULL || arity == 0)
1804 return ada_check_typedef (value_type (arr));
1806 descriptor = desc_bounds (arr);
1807 if (value_as_long (descriptor) == 0)
1811 struct type *range_type = alloc_type_copy (value_type (arr));
1812 struct type *array_type = alloc_type_copy (value_type (arr));
1813 struct value *low = desc_one_bound (descriptor, arity, 0);
1814 struct value *high = desc_one_bound (descriptor, arity, 1);
1817 create_static_range_type (range_type, value_type (low),
1818 longest_to_int (value_as_long (low)),
1819 longest_to_int (value_as_long (high)));
1820 elt_type = create_array_type (array_type, elt_type, range_type);
1822 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1824 /* We need to store the element packed bitsize, as well as
1825 recompute the array size, because it was previously
1826 computed based on the unpacked element size. */
1827 LONGEST lo = value_as_long (low);
1828 LONGEST hi = value_as_long (high);
1830 TYPE_FIELD_BITSIZE (elt_type, 0) =
1831 decode_packed_array_bitsize (value_type (arr));
1832 /* If the array has no element, then the size is already
1833 zero, and does not need to be recomputed. */
1837 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1839 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1844 return lookup_pointer_type (elt_type);
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns either a standard GDB array with bounds set
1850 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1851 GDB array. Returns NULL if ARR is a null fat pointer. */
1854 ada_coerce_to_simple_array_ptr (struct value *arr)
1856 if (ada_is_array_descriptor_type (value_type (arr)))
1858 struct type *arrType = ada_type_of_array (arr, 1);
1860 if (arrType == NULL)
1862 return value_cast (arrType, value_copy (desc_data (arr)));
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1870 /* If ARR does not represent an array, returns ARR unchanged.
1871 Otherwise, returns a standard GDB array describing ARR (which may
1872 be ARR itself if it already is in the proper form). */
1875 ada_coerce_to_simple_array (struct value *arr)
1877 if (ada_is_array_descriptor_type (value_type (arr)))
1879 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1882 error (_("Bounds unavailable for null array pointer."));
1883 return value_ind (arrVal);
1885 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1886 return decode_constrained_packed_array (arr);
1891 /* If TYPE represents a GNAT array type, return it translated to an
1892 ordinary GDB array type (possibly with BITSIZE fields indicating
1893 packing). For other types, is the identity. */
1896 ada_coerce_to_simple_array_type (struct type *type)
1898 if (ada_is_constrained_packed_array_type (type))
1899 return decode_constrained_packed_array_type (type);
1901 if (ada_is_array_descriptor_type (type))
1902 return ada_check_typedef (desc_data_target_type (type));
1907 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1910 ada_is_gnat_encoded_packed_array_type (struct type *type)
1914 type = desc_base_type (type);
1915 type = ada_check_typedef (type);
1917 ada_type_name (type) != NULL
1918 && strstr (ada_type_name (type), "___XP") != NULL;
1921 /* Non-zero iff TYPE represents a standard GNAT constrained
1922 packed-array type. */
1925 ada_is_constrained_packed_array_type (struct type *type)
1927 return ada_is_gnat_encoded_packed_array_type (type)
1928 && !ada_is_array_descriptor_type (type);
1931 /* Non-zero iff TYPE represents an array descriptor for a
1932 unconstrained packed-array type. */
1935 ada_is_unconstrained_packed_array_type (struct type *type)
1937 if (!ada_is_array_descriptor_type (type))
1940 if (ada_is_gnat_encoded_packed_array_type (type))
1943 /* If we saw GNAT encodings, then the above code is sufficient.
1944 However, with minimal encodings, we will just have a thick
1946 if (is_thick_pntr (type))
1948 type = desc_base_type (type);
1949 /* The structure's first field is a pointer to an array, so this
1950 fetches the array type. */
1951 type = TYPE_TARGET_TYPE (type->field (0).type ());
1952 /* Now we can see if the array elements are packed. */
1953 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1959 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1960 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1963 ada_is_any_packed_array_type (struct type *type)
1965 return (ada_is_constrained_packed_array_type (type)
1966 || (type->code () == TYPE_CODE_ARRAY
1967 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1970 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1971 return the size of its elements in bits. */
1974 decode_packed_array_bitsize (struct type *type)
1976 const char *raw_name;
1980 /* Access to arrays implemented as fat pointers are encoded as a typedef
1981 of the fat pointer type. We need the name of the fat pointer type
1982 to do the decoding, so strip the typedef layer. */
1983 if (type->code () == TYPE_CODE_TYPEDEF)
1984 type = ada_typedef_target_type (type);
1986 raw_name = ada_type_name (ada_check_typedef (type));
1988 raw_name = ada_type_name (desc_base_type (type));
1993 tail = strstr (raw_name, "___XP");
1994 if (tail == nullptr)
1996 gdb_assert (is_thick_pntr (type));
1997 /* The structure's first field is a pointer to an array, so this
1998 fetches the array type. */
1999 type = TYPE_TARGET_TYPE (type->field (0).type ());
2000 /* Now we can see if the array elements are packed. */
2001 return TYPE_FIELD_BITSIZE (type, 0);
2004 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2007 (_("could not understand bit size information on packed array"));
2014 /* Given that TYPE is a standard GDB array type with all bounds filled
2015 in, and that the element size of its ultimate scalar constituents
2016 (that is, either its elements, or, if it is an array of arrays, its
2017 elements' elements, etc.) is *ELT_BITS, return an identical type,
2018 but with the bit sizes of its elements (and those of any
2019 constituent arrays) recorded in the BITSIZE components of its
2020 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2023 Note that, for arrays whose index type has an XA encoding where
2024 a bound references a record discriminant, getting that discriminant,
2025 and therefore the actual value of that bound, is not possible
2026 because none of the given parameters gives us access to the record.
2027 This function assumes that it is OK in the context where it is being
2028 used to return an array whose bounds are still dynamic and where
2029 the length is arbitrary. */
2031 static struct type *
2032 constrained_packed_array_type (struct type *type, long *elt_bits)
2034 struct type *new_elt_type;
2035 struct type *new_type;
2036 struct type *index_type_desc;
2037 struct type *index_type;
2038 LONGEST low_bound, high_bound;
2040 type = ada_check_typedef (type);
2041 if (type->code () != TYPE_CODE_ARRAY)
2044 index_type_desc = ada_find_parallel_type (type, "___XA");
2045 if (index_type_desc)
2046 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2049 index_type = type->index_type ();
2051 new_type = alloc_type_copy (type);
2053 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2055 create_array_type (new_type, new_elt_type, index_type);
2056 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2057 new_type->set_name (ada_type_name (type));
2059 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2060 && is_dynamic_type (check_typedef (index_type)))
2061 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2062 low_bound = high_bound = 0;
2063 if (high_bound < low_bound)
2064 *elt_bits = TYPE_LENGTH (new_type) = 0;
2067 *elt_bits *= (high_bound - low_bound + 1);
2068 TYPE_LENGTH (new_type) =
2069 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2072 new_type->set_is_fixed_instance (true);
2076 /* The array type encoded by TYPE, where
2077 ada_is_constrained_packed_array_type (TYPE). */
2079 static struct type *
2080 decode_constrained_packed_array_type (struct type *type)
2082 const char *raw_name = ada_type_name (ada_check_typedef (type));
2085 struct type *shadow_type;
2089 raw_name = ada_type_name (desc_base_type (type));
2094 name = (char *) alloca (strlen (raw_name) + 1);
2095 tail = strstr (raw_name, "___XP");
2096 type = desc_base_type (type);
2098 memcpy (name, raw_name, tail - raw_name);
2099 name[tail - raw_name] = '\000';
2101 shadow_type = ada_find_parallel_type_with_name (type, name);
2103 if (shadow_type == NULL)
2105 lim_warning (_("could not find bounds information on packed array"));
2108 shadow_type = check_typedef (shadow_type);
2110 if (shadow_type->code () != TYPE_CODE_ARRAY)
2112 lim_warning (_("could not understand bounds "
2113 "information on packed array"));
2117 bits = decode_packed_array_bitsize (type);
2118 return constrained_packed_array_type (shadow_type, &bits);
2121 /* Helper function for decode_constrained_packed_array. Set the field
2122 bitsize on a series of packed arrays. Returns the number of
2123 elements in TYPE. */
2126 recursively_update_array_bitsize (struct type *type)
2128 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2131 if (!get_discrete_bounds (type->index_type (), &low, &high)
2134 LONGEST our_len = high - low + 1;
2136 struct type *elt_type = TYPE_TARGET_TYPE (type);
2137 if (elt_type->code () == TYPE_CODE_ARRAY)
2139 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2140 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2141 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2143 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2150 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2151 array, returns a simple array that denotes that array. Its type is a
2152 standard GDB array type except that the BITSIZEs of the array
2153 target types are set to the number of bits in each element, and the
2154 type length is set appropriately. */
2156 static struct value *
2157 decode_constrained_packed_array (struct value *arr)
2161 /* If our value is a pointer, then dereference it. Likewise if
2162 the value is a reference. Make sure that this operation does not
2163 cause the target type to be fixed, as this would indirectly cause
2164 this array to be decoded. The rest of the routine assumes that
2165 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2166 and "value_ind" routines to perform the dereferencing, as opposed
2167 to using "ada_coerce_ref" or "ada_value_ind". */
2168 arr = coerce_ref (arr);
2169 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2170 arr = value_ind (arr);
2172 type = decode_constrained_packed_array_type (value_type (arr));
2175 error (_("can't unpack array"));
2179 /* Decoding the packed array type could not correctly set the field
2180 bitsizes for any dimension except the innermost, because the
2181 bounds may be variable and were not passed to that function. So,
2182 we further resolve the array bounds here and then update the
2184 const gdb_byte *valaddr = value_contents_for_printing (arr);
2185 CORE_ADDR address = value_address (arr);
2186 gdb::array_view<const gdb_byte> view
2187 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2188 type = resolve_dynamic_type (type, view, address);
2189 recursively_update_array_bitsize (type);
2191 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2192 && ada_is_modular_type (value_type (arr)))
2194 /* This is a (right-justified) modular type representing a packed
2195 array with no wrapper. In order to interpret the value through
2196 the (left-justified) packed array type we just built, we must
2197 first left-justify it. */
2198 int bit_size, bit_pos;
2201 mod = ada_modulus (value_type (arr)) - 1;
2208 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2209 arr = ada_value_primitive_packed_val (arr, NULL,
2210 bit_pos / HOST_CHAR_BIT,
2211 bit_pos % HOST_CHAR_BIT,
2216 return coerce_unspec_val_to_type (arr, type);
2220 /* The value of the element of packed array ARR at the ARITY indices
2221 given in IND. ARR must be a simple array. */
2223 static struct value *
2224 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2227 int bits, elt_off, bit_off;
2228 long elt_total_bit_offset;
2229 struct type *elt_type;
2233 elt_total_bit_offset = 0;
2234 elt_type = ada_check_typedef (value_type (arr));
2235 for (i = 0; i < arity; i += 1)
2237 if (elt_type->code () != TYPE_CODE_ARRAY
2238 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2240 (_("attempt to do packed indexing of "
2241 "something other than a packed array"));
2244 struct type *range_type = elt_type->index_type ();
2245 LONGEST lowerbound, upperbound;
2248 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2250 lim_warning (_("don't know bounds of array"));
2251 lowerbound = upperbound = 0;
2254 idx = pos_atr (ind[i]);
2255 if (idx < lowerbound || idx > upperbound)
2256 lim_warning (_("packed array index %ld out of bounds"),
2258 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2259 elt_total_bit_offset += (idx - lowerbound) * bits;
2260 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2263 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2264 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2266 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2271 /* Non-zero iff TYPE includes negative integer values. */
2274 has_negatives (struct type *type)
2276 switch (type->code ())
2281 return !type->is_unsigned ();
2282 case TYPE_CODE_RANGE:
2283 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2287 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2288 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2289 the unpacked buffer.
2291 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2292 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2294 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2297 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2299 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2302 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2303 gdb_byte *unpacked, int unpacked_len,
2304 int is_big_endian, int is_signed_type,
2307 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2308 int src_idx; /* Index into the source area */
2309 int src_bytes_left; /* Number of source bytes left to process. */
2310 int srcBitsLeft; /* Number of source bits left to move */
2311 int unusedLS; /* Number of bits in next significant
2312 byte of source that are unused */
2314 int unpacked_idx; /* Index into the unpacked buffer */
2315 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2317 unsigned long accum; /* Staging area for bits being transferred */
2318 int accumSize; /* Number of meaningful bits in accum */
2321 /* Transmit bytes from least to most significant; delta is the direction
2322 the indices move. */
2323 int delta = is_big_endian ? -1 : 1;
2325 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2327 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2328 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2329 bit_size, unpacked_len);
2331 srcBitsLeft = bit_size;
2332 src_bytes_left = src_len;
2333 unpacked_bytes_left = unpacked_len;
2338 src_idx = src_len - 1;
2340 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2344 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2350 unpacked_idx = unpacked_len - 1;
2354 /* Non-scalar values must be aligned at a byte boundary... */
2356 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2357 /* ... And are placed at the beginning (most-significant) bytes
2359 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2360 unpacked_bytes_left = unpacked_idx + 1;
2365 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2367 src_idx = unpacked_idx = 0;
2368 unusedLS = bit_offset;
2371 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2376 while (src_bytes_left > 0)
2378 /* Mask for removing bits of the next source byte that are not
2379 part of the value. */
2380 unsigned int unusedMSMask =
2381 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2383 /* Sign-extend bits for this byte. */
2384 unsigned int signMask = sign & ~unusedMSMask;
2387 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2388 accumSize += HOST_CHAR_BIT - unusedLS;
2389 if (accumSize >= HOST_CHAR_BIT)
2391 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2392 accumSize -= HOST_CHAR_BIT;
2393 accum >>= HOST_CHAR_BIT;
2394 unpacked_bytes_left -= 1;
2395 unpacked_idx += delta;
2397 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2399 src_bytes_left -= 1;
2402 while (unpacked_bytes_left > 0)
2404 accum |= sign << accumSize;
2405 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2406 accumSize -= HOST_CHAR_BIT;
2409 accum >>= HOST_CHAR_BIT;
2410 unpacked_bytes_left -= 1;
2411 unpacked_idx += delta;
2415 /* Create a new value of type TYPE from the contents of OBJ starting
2416 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2417 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2418 assigning through the result will set the field fetched from.
2419 VALADDR is ignored unless OBJ is NULL, in which case,
2420 VALADDR+OFFSET must address the start of storage containing the
2421 packed value. The value returned in this case is never an lval.
2422 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2425 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2426 long offset, int bit_offset, int bit_size,
2430 const gdb_byte *src; /* First byte containing data to unpack */
2432 const int is_scalar = is_scalar_type (type);
2433 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2434 gdb::byte_vector staging;
2436 type = ada_check_typedef (type);
2439 src = valaddr + offset;
2441 src = value_contents (obj) + offset;
2443 if (is_dynamic_type (type))
2445 /* The length of TYPE might by dynamic, so we need to resolve
2446 TYPE in order to know its actual size, which we then use
2447 to create the contents buffer of the value we return.
2448 The difficulty is that the data containing our object is
2449 packed, and therefore maybe not at a byte boundary. So, what
2450 we do, is unpack the data into a byte-aligned buffer, and then
2451 use that buffer as our object's value for resolving the type. */
2452 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2453 staging.resize (staging_len);
2455 ada_unpack_from_contents (src, bit_offset, bit_size,
2456 staging.data (), staging.size (),
2457 is_big_endian, has_negatives (type),
2459 type = resolve_dynamic_type (type, staging, 0);
2460 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2462 /* This happens when the length of the object is dynamic,
2463 and is actually smaller than the space reserved for it.
2464 For instance, in an array of variant records, the bit_size
2465 we're given is the array stride, which is constant and
2466 normally equal to the maximum size of its element.
2467 But, in reality, each element only actually spans a portion
2469 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2475 v = allocate_value (type);
2476 src = valaddr + offset;
2478 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2480 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2483 v = value_at (type, value_address (obj) + offset);
2484 buf = (gdb_byte *) alloca (src_len);
2485 read_memory (value_address (v), buf, src_len);
2490 v = allocate_value (type);
2491 src = value_contents (obj) + offset;
2496 long new_offset = offset;
2498 set_value_component_location (v, obj);
2499 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2500 set_value_bitsize (v, bit_size);
2501 if (value_bitpos (v) >= HOST_CHAR_BIT)
2504 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2506 set_value_offset (v, new_offset);
2508 /* Also set the parent value. This is needed when trying to
2509 assign a new value (in inferior memory). */
2510 set_value_parent (v, obj);
2513 set_value_bitsize (v, bit_size);
2514 unpacked = value_contents_writeable (v);
2518 memset (unpacked, 0, TYPE_LENGTH (type));
2522 if (staging.size () == TYPE_LENGTH (type))
2524 /* Small short-cut: If we've unpacked the data into a buffer
2525 of the same size as TYPE's length, then we can reuse that,
2526 instead of doing the unpacking again. */
2527 memcpy (unpacked, staging.data (), staging.size ());
2530 ada_unpack_from_contents (src, bit_offset, bit_size,
2531 unpacked, TYPE_LENGTH (type),
2532 is_big_endian, has_negatives (type), is_scalar);
2537 /* Store the contents of FROMVAL into the location of TOVAL.
2538 Return a new value with the location of TOVAL and contents of
2539 FROMVAL. Handles assignment into packed fields that have
2540 floating-point or non-scalar types. */
2542 static struct value *
2543 ada_value_assign (struct value *toval, struct value *fromval)
2545 struct type *type = value_type (toval);
2546 int bits = value_bitsize (toval);
2548 toval = ada_coerce_ref (toval);
2549 fromval = ada_coerce_ref (fromval);
2551 if (ada_is_direct_array_type (value_type (toval)))
2552 toval = ada_coerce_to_simple_array (toval);
2553 if (ada_is_direct_array_type (value_type (fromval)))
2554 fromval = ada_coerce_to_simple_array (fromval);
2556 if (!deprecated_value_modifiable (toval))
2557 error (_("Left operand of assignment is not a modifiable lvalue."));
2559 if (VALUE_LVAL (toval) == lval_memory
2561 && (type->code () == TYPE_CODE_FLT
2562 || type->code () == TYPE_CODE_STRUCT))
2564 int len = (value_bitpos (toval)
2565 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2567 gdb_byte *buffer = (gdb_byte *) alloca (len);
2569 CORE_ADDR to_addr = value_address (toval);
2571 if (type->code () == TYPE_CODE_FLT)
2572 fromval = value_cast (type, fromval);
2574 read_memory (to_addr, buffer, len);
2575 from_size = value_bitsize (fromval);
2577 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2579 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2580 ULONGEST from_offset = 0;
2581 if (is_big_endian && is_scalar_type (value_type (fromval)))
2582 from_offset = from_size - bits;
2583 copy_bitwise (buffer, value_bitpos (toval),
2584 value_contents (fromval), from_offset,
2585 bits, is_big_endian);
2586 write_memory_with_notification (to_addr, buffer, len);
2588 val = value_copy (toval);
2589 memcpy (value_contents_raw (val), value_contents (fromval),
2590 TYPE_LENGTH (type));
2591 deprecated_set_value_type (val, type);
2596 return value_assign (toval, fromval);
2600 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2601 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2602 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2603 COMPONENT, and not the inferior's memory. The current contents
2604 of COMPONENT are ignored.
2606 Although not part of the initial design, this function also works
2607 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2608 had a null address, and COMPONENT had an address which is equal to
2609 its offset inside CONTAINER. */
2612 value_assign_to_component (struct value *container, struct value *component,
2615 LONGEST offset_in_container =
2616 (LONGEST) (value_address (component) - value_address (container));
2617 int bit_offset_in_container =
2618 value_bitpos (component) - value_bitpos (container);
2621 val = value_cast (value_type (component), val);
2623 if (value_bitsize (component) == 0)
2624 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2626 bits = value_bitsize (component);
2628 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2632 if (is_scalar_type (check_typedef (value_type (component))))
2634 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2637 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2638 value_bitpos (container) + bit_offset_in_container,
2639 value_contents (val), src_offset, bits, 1);
2642 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2643 value_bitpos (container) + bit_offset_in_container,
2644 value_contents (val), 0, bits, 0);
2647 /* Determine if TYPE is an access to an unconstrained array. */
2650 ada_is_access_to_unconstrained_array (struct type *type)
2652 return (type->code () == TYPE_CODE_TYPEDEF
2653 && is_thick_pntr (ada_typedef_target_type (type)));
2656 /* The value of the element of array ARR at the ARITY indices given in IND.
2657 ARR may be either a simple array, GNAT array descriptor, or pointer
2661 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2665 struct type *elt_type;
2667 elt = ada_coerce_to_simple_array (arr);
2669 elt_type = ada_check_typedef (value_type (elt));
2670 if (elt_type->code () == TYPE_CODE_ARRAY
2671 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2672 return value_subscript_packed (elt, arity, ind);
2674 for (k = 0; k < arity; k += 1)
2676 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2678 if (elt_type->code () != TYPE_CODE_ARRAY)
2679 error (_("too many subscripts (%d expected)"), k);
2681 elt = value_subscript (elt, pos_atr (ind[k]));
2683 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2684 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2686 /* The element is a typedef to an unconstrained array,
2687 except that the value_subscript call stripped the
2688 typedef layer. The typedef layer is GNAT's way to
2689 specify that the element is, at the source level, an
2690 access to the unconstrained array, rather than the
2691 unconstrained array. So, we need to restore that
2692 typedef layer, which we can do by forcing the element's
2693 type back to its original type. Otherwise, the returned
2694 value is going to be printed as the array, rather
2695 than as an access. Another symptom of the same issue
2696 would be that an expression trying to dereference the
2697 element would also be improperly rejected. */
2698 deprecated_set_value_type (elt, saved_elt_type);
2701 elt_type = ada_check_typedef (value_type (elt));
2707 /* Assuming ARR is a pointer to a GDB array, the value of the element
2708 of *ARR at the ARITY indices given in IND.
2709 Does not read the entire array into memory.
2711 Note: Unlike what one would expect, this function is used instead of
2712 ada_value_subscript for basically all non-packed array types. The reason
2713 for this is that a side effect of doing our own pointer arithmetics instead
2714 of relying on value_subscript is that there is no implicit typedef peeling.
2715 This is important for arrays of array accesses, where it allows us to
2716 preserve the fact that the array's element is an array access, where the
2717 access part os encoded in a typedef layer. */
2719 static struct value *
2720 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2723 struct value *array_ind = ada_value_ind (arr);
2725 = check_typedef (value_enclosing_type (array_ind));
2727 if (type->code () == TYPE_CODE_ARRAY
2728 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2729 return value_subscript_packed (array_ind, arity, ind);
2731 for (k = 0; k < arity; k += 1)
2735 if (type->code () != TYPE_CODE_ARRAY)
2736 error (_("too many subscripts (%d expected)"), k);
2737 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2739 get_discrete_bounds (type->index_type (), &lwb, &upb);
2740 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2741 type = TYPE_TARGET_TYPE (type);
2744 return value_ind (arr);
2747 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2748 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2749 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2750 this array is LOW, as per Ada rules. */
2751 static struct value *
2752 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2755 struct type *type0 = ada_check_typedef (type);
2756 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2757 struct type *index_type
2758 = create_static_range_type (NULL, base_index_type, low, high);
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2761 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2762 TYPE_FIELD_BITSIZE (type0, 0));
2763 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2764 gdb::optional<LONGEST> base_low_pos, low_pos;
2767 low_pos = discrete_position (base_index_type, low);
2768 base_low_pos = discrete_position (base_index_type, base_low);
2770 if (!low_pos.has_value () || !base_low_pos.has_value ())
2772 warning (_("unable to get positions in slice, use bounds instead"));
2774 base_low_pos = base_low;
2777 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2779 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2781 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2782 return value_at_lazy (slice_type, base);
2786 static struct value *
2787 ada_value_slice (struct value *array, int low, int high)
2789 struct type *type = ada_check_typedef (value_type (array));
2790 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2791 struct type *index_type
2792 = create_static_range_type (NULL, type->index_type (), low, high);
2793 struct type *slice_type = create_array_type_with_stride
2794 (NULL, TYPE_TARGET_TYPE (type), index_type,
2795 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2796 TYPE_FIELD_BITSIZE (type, 0));
2797 gdb::optional<LONGEST> low_pos, high_pos;
2800 low_pos = discrete_position (base_index_type, low);
2801 high_pos = discrete_position (base_index_type, high);
2803 if (!low_pos.has_value () || !high_pos.has_value ())
2805 warning (_("unable to get positions in slice, use bounds instead"));
2810 return value_cast (slice_type,
2811 value_slice (array, low, *high_pos - *low_pos + 1));
2814 /* If type is a record type in the form of a standard GNAT array
2815 descriptor, returns the number of dimensions for type. If arr is a
2816 simple array, returns the number of "array of"s that prefix its
2817 type designation. Otherwise, returns 0. */
2820 ada_array_arity (struct type *type)
2827 type = desc_base_type (type);
2830 if (type->code () == TYPE_CODE_STRUCT)
2831 return desc_arity (desc_bounds_type (type));
2833 while (type->code () == TYPE_CODE_ARRAY)
2836 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2842 /* If TYPE is a record type in the form of a standard GNAT array
2843 descriptor or a simple array type, returns the element type for
2844 TYPE after indexing by NINDICES indices, or by all indices if
2845 NINDICES is -1. Otherwise, returns NULL. */
2848 ada_array_element_type (struct type *type, int nindices)
2850 type = desc_base_type (type);
2852 if (type->code () == TYPE_CODE_STRUCT)
2855 struct type *p_array_type;
2857 p_array_type = desc_data_target_type (type);
2859 k = ada_array_arity (type);
2863 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2864 if (nindices >= 0 && k > nindices)
2866 while (k > 0 && p_array_type != NULL)
2868 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2871 return p_array_type;
2873 else if (type->code () == TYPE_CODE_ARRAY)
2875 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2877 type = TYPE_TARGET_TYPE (type);
2886 /* See ada-lang.h. */
2889 ada_index_type (struct type *type, int n, const char *name)
2891 struct type *result_type;
2893 type = desc_base_type (type);
2895 if (n < 0 || n > ada_array_arity (type))
2896 error (_("invalid dimension number to '%s"), name);
2898 if (ada_is_simple_array_type (type))
2902 for (i = 1; i < n; i += 1)
2904 type = ada_check_typedef (type);
2905 type = TYPE_TARGET_TYPE (type);
2907 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2908 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2909 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2910 perhaps stabsread.c would make more sense. */
2911 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2916 result_type = desc_index_type (desc_bounds_type (type), n);
2917 if (result_type == NULL)
2918 error (_("attempt to take bound of something that is not an array"));
2924 /* Given that arr is an array type, returns the lower bound of the
2925 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2926 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2927 array-descriptor type. It works for other arrays with bounds supplied
2928 by run-time quantities other than discriminants. */
2931 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2933 struct type *type, *index_type_desc, *index_type;
2936 gdb_assert (which == 0 || which == 1);
2938 if (ada_is_constrained_packed_array_type (arr_type))
2939 arr_type = decode_constrained_packed_array_type (arr_type);
2941 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2942 return (LONGEST) - which;
2944 if (arr_type->code () == TYPE_CODE_PTR)
2945 type = TYPE_TARGET_TYPE (arr_type);
2949 if (type->is_fixed_instance ())
2951 /* The array has already been fixed, so we do not need to
2952 check the parallel ___XA type again. That encoding has
2953 already been applied, so ignore it now. */
2954 index_type_desc = NULL;
2958 index_type_desc = ada_find_parallel_type (type, "___XA");
2959 ada_fixup_array_indexes_type (index_type_desc);
2962 if (index_type_desc != NULL)
2963 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2967 struct type *elt_type = check_typedef (type);
2969 for (i = 1; i < n; i++)
2970 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2972 index_type = elt_type->index_type ();
2976 (LONGEST) (which == 0
2977 ? ada_discrete_type_low_bound (index_type)
2978 : ada_discrete_type_high_bound (index_type));
2981 /* Given that arr is an array value, returns the lower bound of the
2982 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2983 WHICH is 1. This routine will also work for arrays with bounds
2984 supplied by run-time quantities other than discriminants. */
2987 ada_array_bound (struct value *arr, int n, int which)
2989 struct type *arr_type;
2991 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2992 arr = value_ind (arr);
2993 arr_type = value_enclosing_type (arr);
2995 if (ada_is_constrained_packed_array_type (arr_type))
2996 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2997 else if (ada_is_simple_array_type (arr_type))
2998 return ada_array_bound_from_type (arr_type, n, which);
3000 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3003 /* Given that arr is an array value, returns the length of the
3004 nth index. This routine will also work for arrays with bounds
3005 supplied by run-time quantities other than discriminants.
3006 Does not work for arrays indexed by enumeration types with representation
3007 clauses at the moment. */
3010 ada_array_length (struct value *arr, int n)
3012 struct type *arr_type, *index_type;
3015 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3016 arr = value_ind (arr);
3017 arr_type = value_enclosing_type (arr);
3019 if (ada_is_constrained_packed_array_type (arr_type))
3020 return ada_array_length (decode_constrained_packed_array (arr), n);
3022 if (ada_is_simple_array_type (arr_type))
3024 low = ada_array_bound_from_type (arr_type, n, 0);
3025 high = ada_array_bound_from_type (arr_type, n, 1);
3029 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3030 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3033 arr_type = check_typedef (arr_type);
3034 index_type = ada_index_type (arr_type, n, "length");
3035 if (index_type != NULL)
3037 struct type *base_type;
3038 if (index_type->code () == TYPE_CODE_RANGE)
3039 base_type = TYPE_TARGET_TYPE (index_type);
3041 base_type = index_type;
3043 low = pos_atr (value_from_longest (base_type, low));
3044 high = pos_atr (value_from_longest (base_type, high));
3046 return high - low + 1;
3049 /* An array whose type is that of ARR_TYPE (an array type), with
3050 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3051 less than LOW, then LOW-1 is used. */
3053 static struct value *
3054 empty_array (struct type *arr_type, int low, int high)
3056 struct type *arr_type0 = ada_check_typedef (arr_type);
3057 struct type *index_type
3058 = create_static_range_type
3059 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3060 high < low ? low - 1 : high);
3061 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3063 return allocate_value (create_array_type (NULL, elt_type, index_type));
3067 /* Name resolution */
3069 /* The "decoded" name for the user-definable Ada operator corresponding
3073 ada_decoded_op_name (enum exp_opcode op)
3077 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3079 if (ada_opname_table[i].op == op)
3080 return ada_opname_table[i].decoded;
3082 error (_("Could not find operator name for opcode"));
3085 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3086 in a listing of choices during disambiguation (see sort_choices, below).
3087 The idea is that overloadings of a subprogram name from the
3088 same package should sort in their source order. We settle for ordering
3089 such symbols by their trailing number (__N or $N). */
3092 encoded_ordered_before (const char *N0, const char *N1)
3096 else if (N0 == NULL)
3102 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3104 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3106 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3107 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3112 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3115 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3117 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3118 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3120 return (strcmp (N0, N1) < 0);
3124 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3128 sort_choices (struct block_symbol syms[], int nsyms)
3132 for (i = 1; i < nsyms; i += 1)
3134 struct block_symbol sym = syms[i];
3137 for (j = i - 1; j >= 0; j -= 1)
3139 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3140 sym.symbol->linkage_name ()))
3142 syms[j + 1] = syms[j];
3148 /* Whether GDB should display formals and return types for functions in the
3149 overloads selection menu. */
3150 static bool print_signatures = true;
3152 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3153 all but functions, the signature is just the name of the symbol. For
3154 functions, this is the name of the function, the list of types for formals
3155 and the return type (if any). */
3158 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3159 const struct type_print_options *flags)
3161 struct type *type = SYMBOL_TYPE (sym);
3163 fprintf_filtered (stream, "%s", sym->print_name ());
3164 if (!print_signatures
3166 || type->code () != TYPE_CODE_FUNC)
3169 if (type->num_fields () > 0)
3173 fprintf_filtered (stream, " (");
3174 for (i = 0; i < type->num_fields (); ++i)
3177 fprintf_filtered (stream, "; ");
3178 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3181 fprintf_filtered (stream, ")");
3183 if (TYPE_TARGET_TYPE (type) != NULL
3184 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3186 fprintf_filtered (stream, " return ");
3187 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3191 /* Read and validate a set of numeric choices from the user in the
3192 range 0 .. N_CHOICES-1. Place the results in increasing
3193 order in CHOICES[0 .. N-1], and return N.
3195 The user types choices as a sequence of numbers on one line
3196 separated by blanks, encoding them as follows:
3198 + A choice of 0 means to cancel the selection, throwing an error.
3199 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3200 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3202 The user is not allowed to choose more than MAX_RESULTS values.
3204 ANNOTATION_SUFFIX, if present, is used to annotate the input
3205 prompts (for use with the -f switch). */
3208 get_selections (int *choices, int n_choices, int max_results,
3209 int is_all_choice, const char *annotation_suffix)
3214 int first_choice = is_all_choice ? 2 : 1;
3216 prompt = getenv ("PS2");
3220 args = command_line_input (prompt, annotation_suffix);
3223 error_no_arg (_("one or more choice numbers"));
3227 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3228 order, as given in args. Choices are validated. */
3234 args = skip_spaces (args);
3235 if (*args == '\0' && n_chosen == 0)
3236 error_no_arg (_("one or more choice numbers"));
3237 else if (*args == '\0')
3240 choice = strtol (args, &args2, 10);
3241 if (args == args2 || choice < 0
3242 || choice > n_choices + first_choice - 1)
3243 error (_("Argument must be choice number"));
3247 error (_("cancelled"));
3249 if (choice < first_choice)
3251 n_chosen = n_choices;
3252 for (j = 0; j < n_choices; j += 1)
3256 choice -= first_choice;
3258 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3262 if (j < 0 || choice != choices[j])
3266 for (k = n_chosen - 1; k > j; k -= 1)
3267 choices[k + 1] = choices[k];
3268 choices[j + 1] = choice;
3273 if (n_chosen > max_results)
3274 error (_("Select no more than %d of the above"), max_results);
3279 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3280 by asking the user (if necessary), returning the number selected,
3281 and setting the first elements of SYMS items. Error if no symbols
3284 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3285 to be re-integrated one of these days. */
3288 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3291 int *chosen = XALLOCAVEC (int , nsyms);
3293 int first_choice = (max_results == 1) ? 1 : 2;
3294 const char *select_mode = multiple_symbols_select_mode ();
3296 if (max_results < 1)
3297 error (_("Request to select 0 symbols!"));
3301 if (select_mode == multiple_symbols_cancel)
3303 canceled because the command is ambiguous\n\
3304 See set/show multiple-symbol."));
3306 /* If select_mode is "all", then return all possible symbols.
3307 Only do that if more than one symbol can be selected, of course.
3308 Otherwise, display the menu as usual. */
3309 if (select_mode == multiple_symbols_all && max_results > 1)
3312 printf_filtered (_("[0] cancel\n"));
3313 if (max_results > 1)
3314 printf_filtered (_("[1] all\n"));
3316 sort_choices (syms, nsyms);
3318 for (i = 0; i < nsyms; i += 1)
3320 if (syms[i].symbol == NULL)
3323 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3325 struct symtab_and_line sal =
3326 find_function_start_sal (syms[i].symbol, 1);
3328 printf_filtered ("[%d] ", i + first_choice);
3329 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3330 &type_print_raw_options);
3331 if (sal.symtab == NULL)
3332 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3333 metadata_style.style ().ptr (), nullptr, sal.line);
3337 styled_string (file_name_style.style (),
3338 symtab_to_filename_for_display (sal.symtab)),
3345 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3346 && SYMBOL_TYPE (syms[i].symbol) != NULL
3347 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3348 struct symtab *symtab = NULL;
3350 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3351 symtab = symbol_symtab (syms[i].symbol);
3353 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3355 printf_filtered ("[%d] ", i + first_choice);
3356 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3357 &type_print_raw_options);
3358 printf_filtered (_(" at %s:%d\n"),
3359 symtab_to_filename_for_display (symtab),
3360 SYMBOL_LINE (syms[i].symbol));
3362 else if (is_enumeral
3363 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3365 printf_filtered (("[%d] "), i + first_choice);
3366 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3367 gdb_stdout, -1, 0, &type_print_raw_options);
3368 printf_filtered (_("'(%s) (enumeral)\n"),
3369 syms[i].symbol->print_name ());
3373 printf_filtered ("[%d] ", i + first_choice);
3374 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3375 &type_print_raw_options);
3378 printf_filtered (is_enumeral
3379 ? _(" in %s (enumeral)\n")
3381 symtab_to_filename_for_display (symtab));
3383 printf_filtered (is_enumeral
3384 ? _(" (enumeral)\n")
3390 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3393 for (i = 0; i < n_chosen; i += 1)
3394 syms[i] = syms[chosen[i]];
3399 /* See ada-lang.h. */
3402 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3403 int nargs, value *argvec[])
3405 if (possible_user_operator_p (op, argvec))
3407 std::vector<struct block_symbol> candidates
3408 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3411 int i = ada_resolve_function (candidates, argvec,
3412 nargs, ada_decoded_op_name (op), NULL,
3415 return candidates[i];
3420 /* See ada-lang.h. */
3423 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3424 struct type *context_type,
3425 bool parse_completion,
3426 int nargs, value *argvec[],
3427 innermost_block_tracker *tracker)
3429 std::vector<struct block_symbol> candidates
3430 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3433 if (candidates.size () == 1)
3437 i = ada_resolve_function
3440 sym->linkage_name (),
3441 context_type, parse_completion);
3443 error (_("Could not find a match for %s"), sym->print_name ());
3446 tracker->update (candidates[i]);
3447 return candidates[i];
3450 /* Resolve a mention of a name where the context type is an
3451 enumeration type. */
3454 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3455 const char *name, struct type *context_type,
3456 bool parse_completion)
3458 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3459 context_type = ada_check_typedef (context_type);
3461 for (int i = 0; i < syms.size (); ++i)
3463 /* We already know the name matches, so we're just looking for
3464 an element of the correct enum type. */
3465 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3469 error (_("No name '%s' in enumeration type '%s'"), name,
3470 ada_type_name (context_type));
3473 /* See ada-lang.h. */
3476 ada_resolve_variable (struct symbol *sym, const struct block *block,
3477 struct type *context_type,
3478 bool parse_completion,
3480 innermost_block_tracker *tracker)
3482 std::vector<struct block_symbol> candidates
3483 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3485 if (std::any_of (candidates.begin (),
3487 [] (block_symbol &bsym)
3489 switch (SYMBOL_CLASS (bsym.symbol))
3494 case LOC_REGPARM_ADDR:
3503 /* Types tend to get re-introduced locally, so if there
3504 are any local symbols that are not types, first filter
3508 (candidates.begin (),
3510 [] (block_symbol &bsym)
3512 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3517 /* Filter out artificial symbols. */
3520 (candidates.begin (),
3522 [] (block_symbol &bsym)
3524 return bsym.symbol->artificial;
3529 if (candidates.empty ())
3530 error (_("No definition found for %s"), sym->print_name ());
3531 else if (candidates.size () == 1)
3533 else if (context_type != nullptr
3534 && context_type->code () == TYPE_CODE_ENUM)
3535 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3537 else if (deprocedure_p && !is_nonfunction (candidates))
3539 i = ada_resolve_function
3540 (candidates, NULL, 0,
3541 sym->linkage_name (),
3542 context_type, parse_completion);
3544 error (_("Could not find a match for %s"), sym->print_name ());
3548 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3549 user_select_syms (candidates.data (), candidates.size (), 1);
3553 tracker->update (candidates[i]);
3554 return candidates[i];
3557 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3558 /* The term "match" here is rather loose. The match is heuristic and
3562 ada_type_match (struct type *ftype, struct type *atype)
3564 ftype = ada_check_typedef (ftype);
3565 atype = ada_check_typedef (atype);
3567 if (ftype->code () == TYPE_CODE_REF)
3568 ftype = TYPE_TARGET_TYPE (ftype);
3569 if (atype->code () == TYPE_CODE_REF)
3570 atype = TYPE_TARGET_TYPE (atype);
3572 switch (ftype->code ())
3575 return ftype->code () == atype->code ();
3577 if (atype->code () != TYPE_CODE_PTR)
3579 atype = TYPE_TARGET_TYPE (atype);
3580 /* This can only happen if the actual argument is 'null'. */
3581 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3583 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_RANGE:
3587 switch (atype->code ())
3590 case TYPE_CODE_ENUM:
3591 case TYPE_CODE_RANGE:
3597 case TYPE_CODE_ARRAY:
3598 return (atype->code () == TYPE_CODE_ARRAY
3599 || ada_is_array_descriptor_type (atype));
3601 case TYPE_CODE_STRUCT:
3602 if (ada_is_array_descriptor_type (ftype))
3603 return (atype->code () == TYPE_CODE_ARRAY
3604 || ada_is_array_descriptor_type (atype));
3606 return (atype->code () == TYPE_CODE_STRUCT
3607 && !ada_is_array_descriptor_type (atype));
3609 case TYPE_CODE_UNION:
3611 return (atype->code () == ftype->code ());
3615 /* Return non-zero if the formals of FUNC "sufficiently match" the
3616 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3617 may also be an enumeral, in which case it is treated as a 0-
3618 argument function. */
3621 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3624 struct type *func_type = SYMBOL_TYPE (func);
3626 if (SYMBOL_CLASS (func) == LOC_CONST
3627 && func_type->code () == TYPE_CODE_ENUM)
3628 return (n_actuals == 0);
3629 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3632 if (func_type->num_fields () != n_actuals)
3635 for (i = 0; i < n_actuals; i += 1)
3637 if (actuals[i] == NULL)
3641 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3642 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3644 if (!ada_type_match (ftype, atype))
3651 /* False iff function type FUNC_TYPE definitely does not produce a value
3652 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3653 FUNC_TYPE is not a valid function type with a non-null return type
3654 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3657 return_match (struct type *func_type, struct type *context_type)
3659 struct type *return_type;
3661 if (func_type == NULL)
3664 if (func_type->code () == TYPE_CODE_FUNC)
3665 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3667 return_type = get_base_type (func_type);
3668 if (return_type == NULL)
3671 context_type = get_base_type (context_type);
3673 if (return_type->code () == TYPE_CODE_ENUM)
3674 return context_type == NULL || return_type == context_type;
3675 else if (context_type == NULL)
3676 return return_type->code () != TYPE_CODE_VOID;
3678 return return_type->code () == context_type->code ();
3682 /* Returns the index in SYMS that contains the symbol for the
3683 function (if any) that matches the types of the NARGS arguments in
3684 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3685 that returns that type, then eliminate matches that don't. If
3686 CONTEXT_TYPE is void and there is at least one match that does not
3687 return void, eliminate all matches that do.
3689 Asks the user if there is more than one match remaining. Returns -1
3690 if there is no such symbol or none is selected. NAME is used
3691 solely for messages. May re-arrange and modify SYMS in
3692 the process; the index returned is for the modified vector. */
3695 ada_resolve_function (std::vector<struct block_symbol> &syms,
3696 struct value **args, int nargs,
3697 const char *name, struct type *context_type,
3698 bool parse_completion)
3702 int m; /* Number of hits */
3705 /* In the first pass of the loop, we only accept functions matching
3706 context_type. If none are found, we add a second pass of the loop
3707 where every function is accepted. */
3708 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3710 for (k = 0; k < syms.size (); k += 1)
3712 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3714 if (ada_args_match (syms[k].symbol, args, nargs)
3715 && (fallback || return_match (type, context_type)))
3723 /* If we got multiple matches, ask the user which one to use. Don't do this
3724 interactive thing during completion, though, as the purpose of the
3725 completion is providing a list of all possible matches. Prompting the
3726 user to filter it down would be completely unexpected in this case. */
3729 else if (m > 1 && !parse_completion)
3731 printf_filtered (_("Multiple matches for %s\n"), name);
3732 user_select_syms (syms.data (), m, 1);
3738 /* Type-class predicates */
3740 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3744 numeric_type_p (struct type *type)
3750 switch (type->code ())
3754 case TYPE_CODE_FIXED_POINT:
3756 case TYPE_CODE_RANGE:
3757 return (type == TYPE_TARGET_TYPE (type)
3758 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3768 integer_type_p (struct type *type)
3774 switch (type->code ())
3778 case TYPE_CODE_RANGE:
3779 return (type == TYPE_TARGET_TYPE (type)
3780 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3790 scalar_type_p (struct type *type)
3796 switch (type->code ())
3799 case TYPE_CODE_RANGE:
3800 case TYPE_CODE_ENUM:
3802 case TYPE_CODE_FIXED_POINT:
3810 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3813 discrete_type_p (struct type *type)
3819 switch (type->code ())
3822 case TYPE_CODE_RANGE:
3823 case TYPE_CODE_ENUM:
3824 case TYPE_CODE_BOOL:
3832 /* Returns non-zero if OP with operands in the vector ARGS could be
3833 a user-defined function. Errs on the side of pre-defined operators
3834 (i.e., result 0). */
3837 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3839 struct type *type0 =
3840 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3841 struct type *type1 =
3842 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3856 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3860 case BINOP_BITWISE_AND:
3861 case BINOP_BITWISE_IOR:
3862 case BINOP_BITWISE_XOR:
3863 return (!(integer_type_p (type0) && integer_type_p (type1)));
3866 case BINOP_NOTEQUAL:
3871 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3874 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3877 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3881 case UNOP_LOGICAL_NOT:
3883 return (!numeric_type_p (type0));
3892 1. In the following, we assume that a renaming type's name may
3893 have an ___XD suffix. It would be nice if this went away at some
3895 2. We handle both the (old) purely type-based representation of
3896 renamings and the (new) variable-based encoding. At some point,
3897 it is devoutly to be hoped that the former goes away
3898 (FIXME: hilfinger-2007-07-09).
3899 3. Subprogram renamings are not implemented, although the XRS
3900 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3902 /* If SYM encodes a renaming,
3904 <renaming> renames <renamed entity>,
3906 sets *LEN to the length of the renamed entity's name,
3907 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3908 the string describing the subcomponent selected from the renamed
3909 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3910 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3911 are undefined). Otherwise, returns a value indicating the category
3912 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3913 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3914 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3915 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3916 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3917 may be NULL, in which case they are not assigned.
3919 [Currently, however, GCC does not generate subprogram renamings.] */
3921 enum ada_renaming_category
3922 ada_parse_renaming (struct symbol *sym,
3923 const char **renamed_entity, int *len,
3924 const char **renaming_expr)
3926 enum ada_renaming_category kind;
3931 return ADA_NOT_RENAMING;
3932 switch (SYMBOL_CLASS (sym))
3935 return ADA_NOT_RENAMING;
3939 case LOC_OPTIMIZED_OUT:
3940 info = strstr (sym->linkage_name (), "___XR");
3942 return ADA_NOT_RENAMING;
3946 kind = ADA_OBJECT_RENAMING;
3950 kind = ADA_EXCEPTION_RENAMING;
3954 kind = ADA_PACKAGE_RENAMING;
3958 kind = ADA_SUBPROGRAM_RENAMING;
3962 return ADA_NOT_RENAMING;
3966 if (renamed_entity != NULL)
3967 *renamed_entity = info;
3968 suffix = strstr (info, "___XE");
3969 if (suffix == NULL || suffix == info)
3970 return ADA_NOT_RENAMING;
3972 *len = strlen (info) - strlen (suffix);
3974 if (renaming_expr != NULL)
3975 *renaming_expr = suffix;
3979 /* Compute the value of the given RENAMING_SYM, which is expected to
3980 be a symbol encoding a renaming expression. BLOCK is the block
3981 used to evaluate the renaming. */
3983 static struct value *
3984 ada_read_renaming_var_value (struct symbol *renaming_sym,
3985 const struct block *block)
3987 const char *sym_name;
3989 sym_name = renaming_sym->linkage_name ();
3990 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3991 return evaluate_expression (expr.get ());
3995 /* Evaluation: Function Calls */
3997 /* Return an lvalue containing the value VAL. This is the identity on
3998 lvalues, and otherwise has the side-effect of allocating memory
3999 in the inferior where a copy of the value contents is copied. */
4001 static struct value *
4002 ensure_lval (struct value *val)
4004 if (VALUE_LVAL (val) == not_lval
4005 || VALUE_LVAL (val) == lval_internalvar)
4007 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4008 const CORE_ADDR addr =
4009 value_as_long (value_allocate_space_in_inferior (len));
4011 VALUE_LVAL (val) = lval_memory;
4012 set_value_address (val, addr);
4013 write_memory (addr, value_contents (val), len);
4019 /* Given ARG, a value of type (pointer or reference to a)*
4020 structure/union, extract the component named NAME from the ultimate
4021 target structure/union and return it as a value with its
4024 The routine searches for NAME among all members of the structure itself
4025 and (recursively) among all members of any wrapper members
4028 If NO_ERR, then simply return NULL in case of error, rather than
4031 static struct value *
4032 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4034 struct type *t, *t1;
4039 t1 = t = ada_check_typedef (value_type (arg));
4040 if (t->code () == TYPE_CODE_REF)
4042 t1 = TYPE_TARGET_TYPE (t);
4045 t1 = ada_check_typedef (t1);
4046 if (t1->code () == TYPE_CODE_PTR)
4048 arg = coerce_ref (arg);
4053 while (t->code () == TYPE_CODE_PTR)
4055 t1 = TYPE_TARGET_TYPE (t);
4058 t1 = ada_check_typedef (t1);
4059 if (t1->code () == TYPE_CODE_PTR)
4061 arg = value_ind (arg);
4068 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4072 v = ada_search_struct_field (name, arg, 0, t);
4075 int bit_offset, bit_size, byte_offset;
4076 struct type *field_type;
4079 if (t->code () == TYPE_CODE_PTR)
4080 address = value_address (ada_value_ind (arg));
4082 address = value_address (ada_coerce_ref (arg));
4084 /* Check to see if this is a tagged type. We also need to handle
4085 the case where the type is a reference to a tagged type, but
4086 we have to be careful to exclude pointers to tagged types.
4087 The latter should be shown as usual (as a pointer), whereas
4088 a reference should mostly be transparent to the user. */
4090 if (ada_is_tagged_type (t1, 0)
4091 || (t1->code () == TYPE_CODE_REF
4092 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4094 /* We first try to find the searched field in the current type.
4095 If not found then let's look in the fixed type. */
4097 if (!find_struct_field (name, t1, 0,
4098 &field_type, &byte_offset, &bit_offset,
4107 /* Convert to fixed type in all cases, so that we have proper
4108 offsets to each field in unconstrained record types. */
4109 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4110 address, NULL, check_tag);
4112 /* Resolve the dynamic type as well. */
4113 arg = value_from_contents_and_address (t1, nullptr, address);
4114 t1 = value_type (arg);
4116 if (find_struct_field (name, t1, 0,
4117 &field_type, &byte_offset, &bit_offset,
4122 if (t->code () == TYPE_CODE_REF)
4123 arg = ada_coerce_ref (arg);
4125 arg = ada_value_ind (arg);
4126 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4127 bit_offset, bit_size,
4131 v = value_at_lazy (field_type, address + byte_offset);
4135 if (v != NULL || no_err)
4138 error (_("There is no member named %s."), name);
4144 error (_("Attempt to extract a component of "
4145 "a value that is not a record."));
4148 /* Return the value ACTUAL, converted to be an appropriate value for a
4149 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4150 allocating any necessary descriptors (fat pointers), or copies of
4151 values not residing in memory, updating it as needed. */
4154 ada_convert_actual (struct value *actual, struct type *formal_type0)
4156 struct type *actual_type = ada_check_typedef (value_type (actual));
4157 struct type *formal_type = ada_check_typedef (formal_type0);
4158 struct type *formal_target =
4159 formal_type->code () == TYPE_CODE_PTR
4160 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4161 struct type *actual_target =
4162 actual_type->code () == TYPE_CODE_PTR
4163 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4165 if (ada_is_array_descriptor_type (formal_target)
4166 && actual_target->code () == TYPE_CODE_ARRAY)
4167 return make_array_descriptor (formal_type, actual);
4168 else if (formal_type->code () == TYPE_CODE_PTR
4169 || formal_type->code () == TYPE_CODE_REF)
4171 struct value *result;
4173 if (formal_target->code () == TYPE_CODE_ARRAY
4174 && ada_is_array_descriptor_type (actual_target))
4175 result = desc_data (actual);
4176 else if (formal_type->code () != TYPE_CODE_PTR)
4178 if (VALUE_LVAL (actual) != lval_memory)
4182 actual_type = ada_check_typedef (value_type (actual));
4183 val = allocate_value (actual_type);
4184 memcpy ((char *) value_contents_raw (val),
4185 (char *) value_contents (actual),
4186 TYPE_LENGTH (actual_type));
4187 actual = ensure_lval (val);
4189 result = value_addr (actual);
4193 return value_cast_pointers (formal_type, result, 0);
4195 else if (actual_type->code () == TYPE_CODE_PTR)
4196 return ada_value_ind (actual);
4197 else if (ada_is_aligner_type (formal_type))
4199 /* We need to turn this parameter into an aligner type
4201 struct value *aligner = allocate_value (formal_type);
4202 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4204 value_assign_to_component (aligner, component, actual);
4211 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4212 type TYPE. This is usually an inefficient no-op except on some targets
4213 (such as AVR) where the representation of a pointer and an address
4217 value_pointer (struct value *value, struct type *type)
4219 unsigned len = TYPE_LENGTH (type);
4220 gdb_byte *buf = (gdb_byte *) alloca (len);
4223 addr = value_address (value);
4224 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4225 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4230 /* Push a descriptor of type TYPE for array value ARR on the stack at
4231 *SP, updating *SP to reflect the new descriptor. Return either
4232 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4233 to-descriptor type rather than a descriptor type), a struct value *
4234 representing a pointer to this descriptor. */
4236 static struct value *
4237 make_array_descriptor (struct type *type, struct value *arr)
4239 struct type *bounds_type = desc_bounds_type (type);
4240 struct type *desc_type = desc_base_type (type);
4241 struct value *descriptor = allocate_value (desc_type);
4242 struct value *bounds = allocate_value (bounds_type);
4245 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4248 modify_field (value_type (bounds), value_contents_writeable (bounds),
4249 ada_array_bound (arr, i, 0),
4250 desc_bound_bitpos (bounds_type, i, 0),
4251 desc_bound_bitsize (bounds_type, i, 0));
4252 modify_field (value_type (bounds), value_contents_writeable (bounds),
4253 ada_array_bound (arr, i, 1),
4254 desc_bound_bitpos (bounds_type, i, 1),
4255 desc_bound_bitsize (bounds_type, i, 1));
4258 bounds = ensure_lval (bounds);
4260 modify_field (value_type (descriptor),
4261 value_contents_writeable (descriptor),
4262 value_pointer (ensure_lval (arr),
4263 desc_type->field (0).type ()),
4264 fat_pntr_data_bitpos (desc_type),
4265 fat_pntr_data_bitsize (desc_type));
4267 modify_field (value_type (descriptor),
4268 value_contents_writeable (descriptor),
4269 value_pointer (bounds,
4270 desc_type->field (1).type ()),
4271 fat_pntr_bounds_bitpos (desc_type),
4272 fat_pntr_bounds_bitsize (desc_type));
4274 descriptor = ensure_lval (descriptor);
4276 if (type->code () == TYPE_CODE_PTR)
4277 return value_addr (descriptor);
4282 /* Symbol Cache Module */
4284 /* Performance measurements made as of 2010-01-15 indicate that
4285 this cache does bring some noticeable improvements. Depending
4286 on the type of entity being printed, the cache can make it as much
4287 as an order of magnitude faster than without it.
4289 The descriptive type DWARF extension has significantly reduced
4290 the need for this cache, at least when DWARF is being used. However,
4291 even in this case, some expensive name-based symbol searches are still
4292 sometimes necessary - to find an XVZ variable, mostly. */
4294 /* Return the symbol cache associated to the given program space PSPACE.
4295 If not allocated for this PSPACE yet, allocate and initialize one. */
4297 static struct ada_symbol_cache *
4298 ada_get_symbol_cache (struct program_space *pspace)
4300 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4302 if (pspace_data->sym_cache == nullptr)
4303 pspace_data->sym_cache.reset (new ada_symbol_cache);
4305 return pspace_data->sym_cache.get ();
4308 /* Clear all entries from the symbol cache. */
4311 ada_clear_symbol_cache ()
4313 struct ada_pspace_data *pspace_data
4314 = get_ada_pspace_data (current_program_space);
4316 if (pspace_data->sym_cache != nullptr)
4317 pspace_data->sym_cache.reset ();
4320 /* Search our cache for an entry matching NAME and DOMAIN.
4321 Return it if found, or NULL otherwise. */
4323 static struct cache_entry **
4324 find_entry (const char *name, domain_enum domain)
4326 struct ada_symbol_cache *sym_cache
4327 = ada_get_symbol_cache (current_program_space);
4328 int h = msymbol_hash (name) % HASH_SIZE;
4329 struct cache_entry **e;
4331 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4333 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4339 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4340 Return 1 if found, 0 otherwise.
4342 If an entry was found and SYM is not NULL, set *SYM to the entry's
4343 SYM. Same principle for BLOCK if not NULL. */
4346 lookup_cached_symbol (const char *name, domain_enum domain,
4347 struct symbol **sym, const struct block **block)
4349 struct cache_entry **e = find_entry (name, domain);
4356 *block = (*e)->block;
4360 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4361 in domain DOMAIN, save this result in our symbol cache. */
4364 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4365 const struct block *block)
4367 struct ada_symbol_cache *sym_cache
4368 = ada_get_symbol_cache (current_program_space);
4370 struct cache_entry *e;
4372 /* Symbols for builtin types don't have a block.
4373 For now don't cache such symbols. */
4374 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4377 /* If the symbol is a local symbol, then do not cache it, as a search
4378 for that symbol depends on the context. To determine whether
4379 the symbol is local or not, we check the block where we found it
4380 against the global and static blocks of its associated symtab. */
4382 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4383 GLOBAL_BLOCK) != block
4384 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4385 STATIC_BLOCK) != block)
4388 h = msymbol_hash (name) % HASH_SIZE;
4389 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4390 e->next = sym_cache->root[h];
4391 sym_cache->root[h] = e;
4392 e->name = obstack_strdup (&sym_cache->cache_space, name);
4400 /* Return the symbol name match type that should be used used when
4401 searching for all symbols matching LOOKUP_NAME.
4403 LOOKUP_NAME is expected to be a symbol name after transformation
4406 static symbol_name_match_type
4407 name_match_type_from_name (const char *lookup_name)
4409 return (strstr (lookup_name, "__") == NULL
4410 ? symbol_name_match_type::WILD
4411 : symbol_name_match_type::FULL);
4414 /* Return the result of a standard (literal, C-like) lookup of NAME in
4415 given DOMAIN, visible from lexical block BLOCK. */
4417 static struct symbol *
4418 standard_lookup (const char *name, const struct block *block,
4421 /* Initialize it just to avoid a GCC false warning. */
4422 struct block_symbol sym = {};
4424 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4426 ada_lookup_encoded_symbol (name, block, domain, &sym);
4427 cache_symbol (name, domain, sym.symbol, sym.block);
4432 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4433 in the symbol fields of SYMS. We treat enumerals as functions,
4434 since they contend in overloading in the same way. */
4436 is_nonfunction (const std::vector<struct block_symbol> &syms)
4438 for (const block_symbol &sym : syms)
4439 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4440 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4441 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4447 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4448 struct types. Otherwise, they may not. */
4451 equiv_types (struct type *type0, struct type *type1)
4455 if (type0 == NULL || type1 == NULL
4456 || type0->code () != type1->code ())
4458 if ((type0->code () == TYPE_CODE_STRUCT
4459 || type0->code () == TYPE_CODE_ENUM)
4460 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4461 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4467 /* True iff SYM0 represents the same entity as SYM1, or one that is
4468 no more defined than that of SYM1. */
4471 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4475 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4476 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4479 switch (SYMBOL_CLASS (sym0))
4485 struct type *type0 = SYMBOL_TYPE (sym0);
4486 struct type *type1 = SYMBOL_TYPE (sym1);
4487 const char *name0 = sym0->linkage_name ();
4488 const char *name1 = sym1->linkage_name ();
4489 int len0 = strlen (name0);
4492 type0->code () == type1->code ()
4493 && (equiv_types (type0, type1)
4494 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4495 && startswith (name1 + len0, "___XV")));
4498 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4499 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4503 const char *name0 = sym0->linkage_name ();
4504 const char *name1 = sym1->linkage_name ();
4505 return (strcmp (name0, name1) == 0
4506 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4514 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4515 records in RESULT. Do nothing if SYM is a duplicate. */
4518 add_defn_to_vec (std::vector<struct block_symbol> &result,
4520 const struct block *block)
4522 /* Do not try to complete stub types, as the debugger is probably
4523 already scanning all symbols matching a certain name at the
4524 time when this function is called. Trying to replace the stub
4525 type by its associated full type will cause us to restart a scan
4526 which may lead to an infinite recursion. Instead, the client
4527 collecting the matching symbols will end up collecting several
4528 matches, with at least one of them complete. It can then filter
4529 out the stub ones if needed. */
4531 for (int i = result.size () - 1; i >= 0; i -= 1)
4533 if (lesseq_defined_than (sym, result[i].symbol))
4535 else if (lesseq_defined_than (result[i].symbol, sym))
4537 result[i].symbol = sym;
4538 result[i].block = block;
4543 struct block_symbol info;
4546 result.push_back (info);
4549 /* Return a bound minimal symbol matching NAME according to Ada
4550 decoding rules. Returns an invalid symbol if there is no such
4551 minimal symbol. Names prefixed with "standard__" are handled
4552 specially: "standard__" is first stripped off, and only static and
4553 global symbols are searched. */
4555 struct bound_minimal_symbol
4556 ada_lookup_simple_minsym (const char *name)
4558 struct bound_minimal_symbol result;
4560 memset (&result, 0, sizeof (result));
4562 symbol_name_match_type match_type = name_match_type_from_name (name);
4563 lookup_name_info lookup_name (name, match_type);
4565 symbol_name_matcher_ftype *match_name
4566 = ada_get_symbol_name_matcher (lookup_name);
4568 for (objfile *objfile : current_program_space->objfiles ())
4570 for (minimal_symbol *msymbol : objfile->msymbols ())
4572 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4573 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4575 result.minsym = msymbol;
4576 result.objfile = objfile;
4585 /* True if TYPE is definitely an artificial type supplied to a symbol
4586 for which no debugging information was given in the symbol file. */
4589 is_nondebugging_type (struct type *type)
4591 const char *name = ada_type_name (type);
4593 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4596 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4597 that are deemed "identical" for practical purposes.
4599 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4600 types and that their number of enumerals is identical (in other
4601 words, type1->num_fields () == type2->num_fields ()). */
4604 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4608 /* The heuristic we use here is fairly conservative. We consider
4609 that 2 enumerate types are identical if they have the same
4610 number of enumerals and that all enumerals have the same
4611 underlying value and name. */
4613 /* All enums in the type should have an identical underlying value. */
4614 for (i = 0; i < type1->num_fields (); i++)
4615 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4618 /* All enumerals should also have the same name (modulo any numerical
4620 for (i = 0; i < type1->num_fields (); i++)
4622 const char *name_1 = type1->field (i).name ();
4623 const char *name_2 = type2->field (i).name ();
4624 int len_1 = strlen (name_1);
4625 int len_2 = strlen (name_2);
4627 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4628 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4630 || strncmp (type1->field (i).name (),
4631 type2->field (i).name (),
4639 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4640 that are deemed "identical" for practical purposes. Sometimes,
4641 enumerals are not strictly identical, but their types are so similar
4642 that they can be considered identical.
4644 For instance, consider the following code:
4646 type Color is (Black, Red, Green, Blue, White);
4647 type RGB_Color is new Color range Red .. Blue;
4649 Type RGB_Color is a subrange of an implicit type which is a copy
4650 of type Color. If we call that implicit type RGB_ColorB ("B" is
4651 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4652 As a result, when an expression references any of the enumeral
4653 by name (Eg. "print green"), the expression is technically
4654 ambiguous and the user should be asked to disambiguate. But
4655 doing so would only hinder the user, since it wouldn't matter
4656 what choice he makes, the outcome would always be the same.
4657 So, for practical purposes, we consider them as the same. */
4660 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4664 /* Before performing a thorough comparison check of each type,
4665 we perform a series of inexpensive checks. We expect that these
4666 checks will quickly fail in the vast majority of cases, and thus
4667 help prevent the unnecessary use of a more expensive comparison.
4668 Said comparison also expects us to make some of these checks
4669 (see ada_identical_enum_types_p). */
4671 /* Quick check: All symbols should have an enum type. */
4672 for (i = 0; i < syms.size (); i++)
4673 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4676 /* Quick check: They should all have the same value. */
4677 for (i = 1; i < syms.size (); i++)
4678 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4681 /* Quick check: They should all have the same number of enumerals. */
4682 for (i = 1; i < syms.size (); i++)
4683 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4684 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4687 /* All the sanity checks passed, so we might have a set of
4688 identical enumeration types. Perform a more complete
4689 comparison of the type of each symbol. */
4690 for (i = 1; i < syms.size (); i++)
4691 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4692 SYMBOL_TYPE (syms[0].symbol)))
4698 /* Remove any non-debugging symbols in SYMS that definitely
4699 duplicate other symbols in the list (The only case I know of where
4700 this happens is when object files containing stabs-in-ecoff are
4701 linked with files containing ordinary ecoff debugging symbols (or no
4702 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4705 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4709 /* We should never be called with less than 2 symbols, as there
4710 cannot be any extra symbol in that case. But it's easy to
4711 handle, since we have nothing to do in that case. */
4712 if (syms->size () < 2)
4716 while (i < syms->size ())
4720 /* If two symbols have the same name and one of them is a stub type,
4721 the get rid of the stub. */
4723 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4724 && (*syms)[i].symbol->linkage_name () != NULL)
4726 for (j = 0; j < syms->size (); j++)
4729 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4730 && (*syms)[j].symbol->linkage_name () != NULL
4731 && strcmp ((*syms)[i].symbol->linkage_name (),
4732 (*syms)[j].symbol->linkage_name ()) == 0)
4737 /* Two symbols with the same name, same class and same address
4738 should be identical. */
4740 else if ((*syms)[i].symbol->linkage_name () != NULL
4741 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4742 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4744 for (j = 0; j < syms->size (); j += 1)
4747 && (*syms)[j].symbol->linkage_name () != NULL
4748 && strcmp ((*syms)[i].symbol->linkage_name (),
4749 (*syms)[j].symbol->linkage_name ()) == 0
4750 && SYMBOL_CLASS ((*syms)[i].symbol)
4751 == SYMBOL_CLASS ((*syms)[j].symbol)
4752 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4753 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4759 syms->erase (syms->begin () + i);
4764 /* If all the remaining symbols are identical enumerals, then
4765 just keep the first one and discard the rest.
4767 Unlike what we did previously, we do not discard any entry
4768 unless they are ALL identical. This is because the symbol
4769 comparison is not a strict comparison, but rather a practical
4770 comparison. If all symbols are considered identical, then
4771 we can just go ahead and use the first one and discard the rest.
4772 But if we cannot reduce the list to a single element, we have
4773 to ask the user to disambiguate anyways. And if we have to
4774 present a multiple-choice menu, it's less confusing if the list
4775 isn't missing some choices that were identical and yet distinct. */
4776 if (symbols_are_identical_enums (*syms))
4780 /* Given a type that corresponds to a renaming entity, use the type name
4781 to extract the scope (package name or function name, fully qualified,
4782 and following the GNAT encoding convention) where this renaming has been
4786 xget_renaming_scope (struct type *renaming_type)
4788 /* The renaming types adhere to the following convention:
4789 <scope>__<rename>___<XR extension>.
4790 So, to extract the scope, we search for the "___XR" extension,
4791 and then backtrack until we find the first "__". */
4793 const char *name = renaming_type->name ();
4794 const char *suffix = strstr (name, "___XR");
4797 /* Now, backtrack a bit until we find the first "__". Start looking
4798 at suffix - 3, as the <rename> part is at least one character long. */
4800 for (last = suffix - 3; last > name; last--)
4801 if (last[0] == '_' && last[1] == '_')
4804 /* Make a copy of scope and return it. */
4805 return std::string (name, last);
4808 /* Return nonzero if NAME corresponds to a package name. */
4811 is_package_name (const char *name)
4813 /* Here, We take advantage of the fact that no symbols are generated
4814 for packages, while symbols are generated for each function.
4815 So the condition for NAME represent a package becomes equivalent
4816 to NAME not existing in our list of symbols. There is only one
4817 small complication with library-level functions (see below). */
4819 /* If it is a function that has not been defined at library level,
4820 then we should be able to look it up in the symbols. */
4821 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4824 /* Library-level function names start with "_ada_". See if function
4825 "_ada_" followed by NAME can be found. */
4827 /* Do a quick check that NAME does not contain "__", since library-level
4828 functions names cannot contain "__" in them. */
4829 if (strstr (name, "__") != NULL)
4832 std::string fun_name = string_printf ("_ada_%s", name);
4834 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4837 /* Return nonzero if SYM corresponds to a renaming entity that is
4838 not visible from FUNCTION_NAME. */
4841 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4843 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4846 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4848 /* If the rename has been defined in a package, then it is visible. */
4849 if (is_package_name (scope.c_str ()))
4852 /* Check that the rename is in the current function scope by checking
4853 that its name starts with SCOPE. */
4855 /* If the function name starts with "_ada_", it means that it is
4856 a library-level function. Strip this prefix before doing the
4857 comparison, as the encoding for the renaming does not contain
4859 if (startswith (function_name, "_ada_"))
4862 return !startswith (function_name, scope.c_str ());
4865 /* Remove entries from SYMS that corresponds to a renaming entity that
4866 is not visible from the function associated with CURRENT_BLOCK or
4867 that is superfluous due to the presence of more specific renaming
4868 information. Places surviving symbols in the initial entries of
4872 First, in cases where an object renaming is implemented as a
4873 reference variable, GNAT may produce both the actual reference
4874 variable and the renaming encoding. In this case, we discard the
4877 Second, GNAT emits a type following a specified encoding for each renaming
4878 entity. Unfortunately, STABS currently does not support the definition
4879 of types that are local to a given lexical block, so all renamings types
4880 are emitted at library level. As a consequence, if an application
4881 contains two renaming entities using the same name, and a user tries to
4882 print the value of one of these entities, the result of the ada symbol
4883 lookup will also contain the wrong renaming type.
4885 This function partially covers for this limitation by attempting to
4886 remove from the SYMS list renaming symbols that should be visible
4887 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4888 method with the current information available. The implementation
4889 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4891 - When the user tries to print a rename in a function while there
4892 is another rename entity defined in a package: Normally, the
4893 rename in the function has precedence over the rename in the
4894 package, so the latter should be removed from the list. This is
4895 currently not the case.
4897 - This function will incorrectly remove valid renames if
4898 the CURRENT_BLOCK corresponds to a function which symbol name
4899 has been changed by an "Export" pragma. As a consequence,
4900 the user will be unable to print such rename entities. */
4903 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4904 const struct block *current_block)
4906 struct symbol *current_function;
4907 const char *current_function_name;
4909 int is_new_style_renaming;
4911 /* If there is both a renaming foo___XR... encoded as a variable and
4912 a simple variable foo in the same block, discard the latter.
4913 First, zero out such symbols, then compress. */
4914 is_new_style_renaming = 0;
4915 for (i = 0; i < syms->size (); i += 1)
4917 struct symbol *sym = (*syms)[i].symbol;
4918 const struct block *block = (*syms)[i].block;
4922 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4924 name = sym->linkage_name ();
4925 suffix = strstr (name, "___XR");
4929 int name_len = suffix - name;
4932 is_new_style_renaming = 1;
4933 for (j = 0; j < syms->size (); j += 1)
4934 if (i != j && (*syms)[j].symbol != NULL
4935 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4937 && block == (*syms)[j].block)
4938 (*syms)[j].symbol = NULL;
4941 if (is_new_style_renaming)
4945 for (j = k = 0; j < syms->size (); j += 1)
4946 if ((*syms)[j].symbol != NULL)
4948 (*syms)[k] = (*syms)[j];
4955 /* Extract the function name associated to CURRENT_BLOCK.
4956 Abort if unable to do so. */
4958 if (current_block == NULL)
4961 current_function = block_linkage_function (current_block);
4962 if (current_function == NULL)
4965 current_function_name = current_function->linkage_name ();
4966 if (current_function_name == NULL)
4969 /* Check each of the symbols, and remove it from the list if it is
4970 a type corresponding to a renaming that is out of the scope of
4971 the current block. */
4974 while (i < syms->size ())
4976 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4977 == ADA_OBJECT_RENAMING
4978 && old_renaming_is_invisible ((*syms)[i].symbol,
4979 current_function_name))
4980 syms->erase (syms->begin () + i);
4986 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4987 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4989 Note: This function assumes that RESULT is empty. */
4992 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4993 const lookup_name_info &lookup_name,
4994 const struct block *block, domain_enum domain)
4996 while (block != NULL)
4998 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5000 /* If we found a non-function match, assume that's the one. We
5001 only check this when finding a function boundary, so that we
5002 can accumulate all results from intervening blocks first. */
5003 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5006 block = BLOCK_SUPERBLOCK (block);
5010 /* An object of this type is used as the callback argument when
5011 calling the map_matching_symbols method. */
5015 explicit match_data (std::vector<struct block_symbol> *rp)
5019 DISABLE_COPY_AND_ASSIGN (match_data);
5021 bool operator() (struct block_symbol *bsym);
5023 struct objfile *objfile = nullptr;
5024 std::vector<struct block_symbol> *resultp;
5025 struct symbol *arg_sym = nullptr;
5026 bool found_sym = false;
5029 /* A callback for add_nonlocal_symbols that adds symbol, found in
5030 BSYM, to a list of symbols. */
5033 match_data::operator() (struct block_symbol *bsym)
5035 const struct block *block = bsym->block;
5036 struct symbol *sym = bsym->symbol;
5040 if (!found_sym && arg_sym != NULL)
5041 add_defn_to_vec (*resultp,
5042 fixup_symbol_section (arg_sym, objfile),
5049 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5051 else if (SYMBOL_IS_ARGUMENT (sym))
5056 add_defn_to_vec (*resultp,
5057 fixup_symbol_section (sym, objfile),
5064 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5065 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5066 symbols to RESULT. Return whether we found such symbols. */
5069 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5070 const struct block *block,
5071 const lookup_name_info &lookup_name,
5074 struct using_direct *renaming;
5075 int defns_mark = result.size ();
5077 symbol_name_matcher_ftype *name_match
5078 = ada_get_symbol_name_matcher (lookup_name);
5080 for (renaming = block_using (block);
5082 renaming = renaming->next)
5086 /* Avoid infinite recursions: skip this renaming if we are actually
5087 already traversing it.
5089 Currently, symbol lookup in Ada don't use the namespace machinery from
5090 C++/Fortran support: skip namespace imports that use them. */
5091 if (renaming->searched
5092 || (renaming->import_src != NULL
5093 && renaming->import_src[0] != '\0')
5094 || (renaming->import_dest != NULL
5095 && renaming->import_dest[0] != '\0'))
5097 renaming->searched = 1;
5099 /* TODO: here, we perform another name-based symbol lookup, which can
5100 pull its own multiple overloads. In theory, we should be able to do
5101 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5102 not a simple name. But in order to do this, we would need to enhance
5103 the DWARF reader to associate a symbol to this renaming, instead of a
5104 name. So, for now, we do something simpler: re-use the C++/Fortran
5105 namespace machinery. */
5106 r_name = (renaming->alias != NULL
5108 : renaming->declaration);
5109 if (name_match (r_name, lookup_name, NULL))
5111 lookup_name_info decl_lookup_name (renaming->declaration,
5112 lookup_name.match_type ());
5113 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5116 renaming->searched = 0;
5118 return result.size () != defns_mark;
5121 /* Implements compare_names, but only applying the comparision using
5122 the given CASING. */
5125 compare_names_with_case (const char *string1, const char *string2,
5126 enum case_sensitivity casing)
5128 while (*string1 != '\0' && *string2 != '\0')
5132 if (isspace (*string1) || isspace (*string2))
5133 return strcmp_iw_ordered (string1, string2);
5135 if (casing == case_sensitive_off)
5137 c1 = tolower (*string1);
5138 c2 = tolower (*string2);
5155 return strcmp_iw_ordered (string1, string2);
5157 if (*string2 == '\0')
5159 if (is_name_suffix (string1))
5166 if (*string2 == '(')
5167 return strcmp_iw_ordered (string1, string2);
5170 if (casing == case_sensitive_off)
5171 return tolower (*string1) - tolower (*string2);
5173 return *string1 - *string2;
5178 /* Compare STRING1 to STRING2, with results as for strcmp.
5179 Compatible with strcmp_iw_ordered in that...
5181 strcmp_iw_ordered (STRING1, STRING2) <= 0
5185 compare_names (STRING1, STRING2) <= 0
5187 (they may differ as to what symbols compare equal). */
5190 compare_names (const char *string1, const char *string2)
5194 /* Similar to what strcmp_iw_ordered does, we need to perform
5195 a case-insensitive comparison first, and only resort to
5196 a second, case-sensitive, comparison if the first one was
5197 not sufficient to differentiate the two strings. */
5199 result = compare_names_with_case (string1, string2, case_sensitive_off);
5201 result = compare_names_with_case (string1, string2, case_sensitive_on);
5206 /* Convenience function to get at the Ada encoded lookup name for
5207 LOOKUP_NAME, as a C string. */
5210 ada_lookup_name (const lookup_name_info &lookup_name)
5212 return lookup_name.ada ().lookup_name ().c_str ();
5215 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5216 for OBJFILE, then walk the objfile's symtabs and update the
5220 map_matching_symbols (struct objfile *objfile,
5221 const lookup_name_info &lookup_name,
5227 data.objfile = objfile;
5228 objfile->expand_matching_symbols (lookup_name, domain, global,
5229 is_wild_match ? nullptr : compare_names);
5231 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5232 for (compunit_symtab *symtab : objfile->compunits ())
5234 const struct block *block
5235 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5236 if (!iterate_over_symbols_terminated (block, lookup_name,
5242 /* Add to RESULT all non-local symbols whose name and domain match
5243 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5244 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5245 symbols otherwise. */
5248 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5249 const lookup_name_info &lookup_name,
5250 domain_enum domain, int global)
5252 struct match_data data (&result);
5254 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5256 for (objfile *objfile : current_program_space->objfiles ())
5258 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5261 for (compunit_symtab *cu : objfile->compunits ())
5263 const struct block *global_block
5264 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5266 if (ada_add_block_renamings (result, global_block, lookup_name,
5268 data.found_sym = true;
5272 if (result.empty () && global && !is_wild_match)
5274 const char *name = ada_lookup_name (lookup_name);
5275 std::string bracket_name = std::string ("<_ada_") + name + '>';
5276 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5278 for (objfile *objfile : current_program_space->objfiles ())
5279 map_matching_symbols (objfile, name1, false, domain, global, data);
5283 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5284 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5285 returning the number of matches. Add these to RESULT.
5287 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5288 symbol match within the nest of blocks whose innermost member is BLOCK,
5289 is the one match returned (no other matches in that or
5290 enclosing blocks is returned). If there are any matches in or
5291 surrounding BLOCK, then these alone are returned.
5293 Names prefixed with "standard__" are handled specially:
5294 "standard__" is first stripped off (by the lookup_name
5295 constructor), and only static and global symbols are searched.
5297 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5298 to lookup global symbols. */
5301 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5302 const struct block *block,
5303 const lookup_name_info &lookup_name,
5306 int *made_global_lookup_p)
5310 if (made_global_lookup_p)
5311 *made_global_lookup_p = 0;
5313 /* Special case: If the user specifies a symbol name inside package
5314 Standard, do a non-wild matching of the symbol name without
5315 the "standard__" prefix. This was primarily introduced in order
5316 to allow the user to specifically access the standard exceptions
5317 using, for instance, Standard.Constraint_Error when Constraint_Error
5318 is ambiguous (due to the user defining its own Constraint_Error
5319 entity inside its program). */
5320 if (lookup_name.ada ().standard_p ())
5323 /* Check the non-global symbols. If we have ANY match, then we're done. */
5328 ada_add_local_symbols (result, lookup_name, block, domain);
5331 /* In the !full_search case we're are being called by
5332 iterate_over_symbols, and we don't want to search
5334 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5336 if (!result.empty () || !full_search)
5340 /* No non-global symbols found. Check our cache to see if we have
5341 already performed this search before. If we have, then return
5344 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5345 domain, &sym, &block))
5348 add_defn_to_vec (result, sym, block);
5352 if (made_global_lookup_p)
5353 *made_global_lookup_p = 1;
5355 /* Search symbols from all global blocks. */
5357 add_nonlocal_symbols (result, lookup_name, domain, 1);
5359 /* Now add symbols from all per-file blocks if we've gotten no hits
5360 (not strictly correct, but perhaps better than an error). */
5362 if (result.empty ())
5363 add_nonlocal_symbols (result, lookup_name, domain, 0);
5366 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5367 is non-zero, enclosing scope and in global scopes.
5369 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5370 blocks and symbol tables (if any) in which they were found.
5372 When full_search is non-zero, any non-function/non-enumeral
5373 symbol match within the nest of blocks whose innermost member is BLOCK,
5374 is the one match returned (no other matches in that or
5375 enclosing blocks is returned). If there are any matches in or
5376 surrounding BLOCK, then these alone are returned.
5378 Names prefixed with "standard__" are handled specially: "standard__"
5379 is first stripped off, and only static and global symbols are searched. */
5381 static std::vector<struct block_symbol>
5382 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5383 const struct block *block,
5387 int syms_from_global_search;
5388 std::vector<struct block_symbol> results;
5390 ada_add_all_symbols (results, block, lookup_name,
5391 domain, full_search, &syms_from_global_search);
5393 remove_extra_symbols (&results);
5395 if (results.empty () && full_search && syms_from_global_search)
5396 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5398 if (results.size () == 1 && full_search && syms_from_global_search)
5399 cache_symbol (ada_lookup_name (lookup_name), domain,
5400 results[0].symbol, results[0].block);
5402 remove_irrelevant_renamings (&results, block);
5406 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5407 in global scopes, returning (SYM,BLOCK) tuples.
5409 See ada_lookup_symbol_list_worker for further details. */
5411 std::vector<struct block_symbol>
5412 ada_lookup_symbol_list (const char *name, const struct block *block,
5415 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5416 lookup_name_info lookup_name (name, name_match_type);
5418 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5421 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5422 to 1, but choosing the first symbol found if there are multiple
5425 The result is stored in *INFO, which must be non-NULL.
5426 If no match is found, INFO->SYM is set to NULL. */
5429 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5431 struct block_symbol *info)
5433 /* Since we already have an encoded name, wrap it in '<>' to force a
5434 verbatim match. Otherwise, if the name happens to not look like
5435 an encoded name (because it doesn't include a "__"),
5436 ada_lookup_name_info would re-encode/fold it again, and that
5437 would e.g., incorrectly lowercase object renaming names like
5438 "R28b" -> "r28b". */
5439 std::string verbatim = add_angle_brackets (name);
5441 gdb_assert (info != NULL);
5442 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5445 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5446 scope and in global scopes, or NULL if none. NAME is folded and
5447 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5448 choosing the first symbol if there are multiple choices. */
5451 ada_lookup_symbol (const char *name, const struct block *block0,
5454 std::vector<struct block_symbol> candidates
5455 = ada_lookup_symbol_list (name, block0, domain);
5457 if (candidates.empty ())
5460 block_symbol info = candidates[0];
5461 info.symbol = fixup_symbol_section (info.symbol, NULL);
5466 /* True iff STR is a possible encoded suffix of a normal Ada name
5467 that is to be ignored for matching purposes. Suffixes of parallel
5468 names (e.g., XVE) are not included here. Currently, the possible suffixes
5469 are given by any of the regular expressions:
5471 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5472 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5473 TKB [subprogram suffix for task bodies]
5474 _E[0-9]+[bs]$ [protected object entry suffixes]
5475 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5477 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5478 match is performed. This sequence is used to differentiate homonyms,
5479 is an optional part of a valid name suffix. */
5482 is_name_suffix (const char *str)
5485 const char *matching;
5486 const int len = strlen (str);
5488 /* Skip optional leading __[0-9]+. */
5490 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5493 while (isdigit (str[0]))
5499 if (str[0] == '.' || str[0] == '$')
5502 while (isdigit (matching[0]))
5504 if (matching[0] == '\0')
5510 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5513 while (isdigit (matching[0]))
5515 if (matching[0] == '\0')
5519 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5521 if (strcmp (str, "TKB") == 0)
5525 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5526 with a N at the end. Unfortunately, the compiler uses the same
5527 convention for other internal types it creates. So treating
5528 all entity names that end with an "N" as a name suffix causes
5529 some regressions. For instance, consider the case of an enumerated
5530 type. To support the 'Image attribute, it creates an array whose
5532 Having a single character like this as a suffix carrying some
5533 information is a bit risky. Perhaps we should change the encoding
5534 to be something like "_N" instead. In the meantime, do not do
5535 the following check. */
5536 /* Protected Object Subprograms */
5537 if (len == 1 && str [0] == 'N')
5542 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5545 while (isdigit (matching[0]))
5547 if ((matching[0] == 'b' || matching[0] == 's')
5548 && matching [1] == '\0')
5552 /* ??? We should not modify STR directly, as we are doing below. This
5553 is fine in this case, but may become problematic later if we find
5554 that this alternative did not work, and want to try matching
5555 another one from the begining of STR. Since we modified it, we
5556 won't be able to find the begining of the string anymore! */
5560 while (str[0] != '_' && str[0] != '\0')
5562 if (str[0] != 'n' && str[0] != 'b')
5568 if (str[0] == '\000')
5573 if (str[1] != '_' || str[2] == '\000')
5577 if (strcmp (str + 3, "JM") == 0)
5579 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5580 the LJM suffix in favor of the JM one. But we will
5581 still accept LJM as a valid suffix for a reasonable
5582 amount of time, just to allow ourselves to debug programs
5583 compiled using an older version of GNAT. */
5584 if (strcmp (str + 3, "LJM") == 0)
5588 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5589 || str[4] == 'U' || str[4] == 'P')
5591 if (str[4] == 'R' && str[5] != 'T')
5595 if (!isdigit (str[2]))
5597 for (k = 3; str[k] != '\0'; k += 1)
5598 if (!isdigit (str[k]) && str[k] != '_')
5602 if (str[0] == '$' && isdigit (str[1]))
5604 for (k = 2; str[k] != '\0'; k += 1)
5605 if (!isdigit (str[k]) && str[k] != '_')
5612 /* Return non-zero if the string starting at NAME and ending before
5613 NAME_END contains no capital letters. */
5616 is_valid_name_for_wild_match (const char *name0)
5618 std::string decoded_name = ada_decode (name0);
5621 /* If the decoded name starts with an angle bracket, it means that
5622 NAME0 does not follow the GNAT encoding format. It should then
5623 not be allowed as a possible wild match. */
5624 if (decoded_name[0] == '<')
5627 for (i=0; decoded_name[i] != '\0'; i++)
5628 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5634 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5635 character which could start a simple name. Assumes that *NAMEP points
5636 somewhere inside the string beginning at NAME0. */
5639 advance_wild_match (const char **namep, const char *name0, char target0)
5641 const char *name = *namep;
5651 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5654 if (name == name0 + 5 && startswith (name0, "_ada"))
5659 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5660 || name[2] == target0))
5665 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5667 /* Names like "pkg__B_N__name", where N is a number, are
5668 block-local. We can handle these by simply skipping
5675 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5685 /* Return true iff NAME encodes a name of the form prefix.PATN.
5686 Ignores any informational suffixes of NAME (i.e., for which
5687 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5691 wild_match (const char *name, const char *patn)
5694 const char *name0 = name;
5698 const char *match = name;
5702 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5705 if (*p == '\0' && is_name_suffix (name))
5706 return match == name0 || is_valid_name_for_wild_match (name0);
5708 if (name[-1] == '_')
5711 if (!advance_wild_match (&name, name0, *patn))
5716 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5717 necessary). OBJFILE is the section containing BLOCK. */
5720 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5721 const struct block *block,
5722 const lookup_name_info &lookup_name,
5723 domain_enum domain, struct objfile *objfile)
5725 struct block_iterator iter;
5726 /* A matching argument symbol, if any. */
5727 struct symbol *arg_sym;
5728 /* Set true when we find a matching non-argument symbol. */
5734 for (sym = block_iter_match_first (block, lookup_name, &iter);
5736 sym = block_iter_match_next (lookup_name, &iter))
5738 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5740 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5742 if (SYMBOL_IS_ARGUMENT (sym))
5747 add_defn_to_vec (result,
5748 fixup_symbol_section (sym, objfile),
5755 /* Handle renamings. */
5757 if (ada_add_block_renamings (result, block, lookup_name, domain))
5760 if (!found_sym && arg_sym != NULL)
5762 add_defn_to_vec (result,
5763 fixup_symbol_section (arg_sym, objfile),
5767 if (!lookup_name.ada ().wild_match_p ())
5771 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5772 const char *name = ada_lookup_name.c_str ();
5773 size_t name_len = ada_lookup_name.size ();
5775 ALL_BLOCK_SYMBOLS (block, iter, sym)
5777 if (symbol_matches_domain (sym->language (),
5778 SYMBOL_DOMAIN (sym), domain))
5782 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5785 cmp = !startswith (sym->linkage_name (), "_ada_");
5787 cmp = strncmp (name, sym->linkage_name () + 5,
5792 && is_name_suffix (sym->linkage_name () + name_len + 5))
5794 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5796 if (SYMBOL_IS_ARGUMENT (sym))
5801 add_defn_to_vec (result,
5802 fixup_symbol_section (sym, objfile),
5810 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5811 They aren't parameters, right? */
5812 if (!found_sym && arg_sym != NULL)
5814 add_defn_to_vec (result,
5815 fixup_symbol_section (arg_sym, objfile),
5822 /* Symbol Completion */
5827 ada_lookup_name_info::matches
5828 (const char *sym_name,
5829 symbol_name_match_type match_type,
5830 completion_match_result *comp_match_res) const
5833 const char *text = m_encoded_name.c_str ();
5834 size_t text_len = m_encoded_name.size ();
5836 /* First, test against the fully qualified name of the symbol. */
5838 if (strncmp (sym_name, text, text_len) == 0)
5841 std::string decoded_name = ada_decode (sym_name);
5842 if (match && !m_encoded_p)
5844 /* One needed check before declaring a positive match is to verify
5845 that iff we are doing a verbatim match, the decoded version
5846 of the symbol name starts with '<'. Otherwise, this symbol name
5847 is not a suitable completion. */
5849 bool has_angle_bracket = (decoded_name[0] == '<');
5850 match = (has_angle_bracket == m_verbatim_p);
5853 if (match && !m_verbatim_p)
5855 /* When doing non-verbatim match, another check that needs to
5856 be done is to verify that the potentially matching symbol name
5857 does not include capital letters, because the ada-mode would
5858 not be able to understand these symbol names without the
5859 angle bracket notation. */
5862 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5867 /* Second: Try wild matching... */
5869 if (!match && m_wild_match_p)
5871 /* Since we are doing wild matching, this means that TEXT
5872 may represent an unqualified symbol name. We therefore must
5873 also compare TEXT against the unqualified name of the symbol. */
5874 sym_name = ada_unqualified_name (decoded_name.c_str ());
5876 if (strncmp (sym_name, text, text_len) == 0)
5880 /* Finally: If we found a match, prepare the result to return. */
5885 if (comp_match_res != NULL)
5887 std::string &match_str = comp_match_res->match.storage ();
5890 match_str = ada_decode (sym_name);
5894 match_str = add_angle_brackets (sym_name);
5896 match_str = sym_name;
5900 comp_match_res->set_match (match_str.c_str ());
5908 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5909 for tagged types. */
5912 ada_is_dispatch_table_ptr_type (struct type *type)
5916 if (type->code () != TYPE_CODE_PTR)
5919 name = TYPE_TARGET_TYPE (type)->name ();
5923 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5926 /* Return non-zero if TYPE is an interface tag. */
5929 ada_is_interface_tag (struct type *type)
5931 const char *name = type->name ();
5936 return (strcmp (name, "ada__tags__interface_tag") == 0);
5939 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5940 to be invisible to users. */
5943 ada_is_ignored_field (struct type *type, int field_num)
5945 if (field_num < 0 || field_num > type->num_fields ())
5948 /* Check the name of that field. */
5950 const char *name = type->field (field_num).name ();
5952 /* Anonymous field names should not be printed.
5953 brobecker/2007-02-20: I don't think this can actually happen
5954 but we don't want to print the value of anonymous fields anyway. */
5958 /* Normally, fields whose name start with an underscore ("_")
5959 are fields that have been internally generated by the compiler,
5960 and thus should not be printed. The "_parent" field is special,
5961 however: This is a field internally generated by the compiler
5962 for tagged types, and it contains the components inherited from
5963 the parent type. This field should not be printed as is, but
5964 should not be ignored either. */
5965 if (name[0] == '_' && !startswith (name, "_parent"))
5969 /* If this is the dispatch table of a tagged type or an interface tag,
5971 if (ada_is_tagged_type (type, 1)
5972 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5973 || ada_is_interface_tag (type->field (field_num).type ())))
5976 /* Not a special field, so it should not be ignored. */
5980 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5981 pointer or reference type whose ultimate target has a tag field. */
5984 ada_is_tagged_type (struct type *type, int refok)
5986 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5989 /* True iff TYPE represents the type of X'Tag */
5992 ada_is_tag_type (struct type *type)
5994 type = ada_check_typedef (type);
5996 if (type == NULL || type->code () != TYPE_CODE_PTR)
6000 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6002 return (name != NULL
6003 && strcmp (name, "ada__tags__dispatch_table") == 0);
6007 /* The type of the tag on VAL. */
6009 static struct type *
6010 ada_tag_type (struct value *val)
6012 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6015 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6016 retired at Ada 05). */
6019 is_ada95_tag (struct value *tag)
6021 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6024 /* The value of the tag on VAL. */
6026 static struct value *
6027 ada_value_tag (struct value *val)
6029 return ada_value_struct_elt (val, "_tag", 0);
6032 /* The value of the tag on the object of type TYPE whose contents are
6033 saved at VALADDR, if it is non-null, or is at memory address
6036 static struct value *
6037 value_tag_from_contents_and_address (struct type *type,
6038 const gdb_byte *valaddr,
6041 int tag_byte_offset;
6042 struct type *tag_type;
6044 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6047 const gdb_byte *valaddr1 = ((valaddr == NULL)
6049 : valaddr + tag_byte_offset);
6050 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6052 return value_from_contents_and_address (tag_type, valaddr1, address1);
6057 static struct type *
6058 type_from_tag (struct value *tag)
6060 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6062 if (type_name != NULL)
6063 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6067 /* Given a value OBJ of a tagged type, return a value of this
6068 type at the base address of the object. The base address, as
6069 defined in Ada.Tags, it is the address of the primary tag of
6070 the object, and therefore where the field values of its full
6071 view can be fetched. */
6074 ada_tag_value_at_base_address (struct value *obj)
6077 LONGEST offset_to_top = 0;
6078 struct type *ptr_type, *obj_type;
6080 CORE_ADDR base_address;
6082 obj_type = value_type (obj);
6084 /* It is the responsability of the caller to deref pointers. */
6086 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6089 tag = ada_value_tag (obj);
6093 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6095 if (is_ada95_tag (tag))
6098 ptr_type = language_lookup_primitive_type
6099 (language_def (language_ada), target_gdbarch(), "storage_offset");
6100 ptr_type = lookup_pointer_type (ptr_type);
6101 val = value_cast (ptr_type, tag);
6105 /* It is perfectly possible that an exception be raised while
6106 trying to determine the base address, just like for the tag;
6107 see ada_tag_name for more details. We do not print the error
6108 message for the same reason. */
6112 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6115 catch (const gdb_exception_error &e)
6120 /* If offset is null, nothing to do. */
6122 if (offset_to_top == 0)
6125 /* -1 is a special case in Ada.Tags; however, what should be done
6126 is not quite clear from the documentation. So do nothing for
6129 if (offset_to_top == -1)
6132 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6133 from the base address. This was however incompatible with
6134 C++ dispatch table: C++ uses a *negative* value to *add*
6135 to the base address. Ada's convention has therefore been
6136 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6137 use the same convention. Here, we support both cases by
6138 checking the sign of OFFSET_TO_TOP. */
6140 if (offset_to_top > 0)
6141 offset_to_top = -offset_to_top;
6143 base_address = value_address (obj) + offset_to_top;
6144 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6146 /* Make sure that we have a proper tag at the new address.
6147 Otherwise, offset_to_top is bogus (which can happen when
6148 the object is not initialized yet). */
6153 obj_type = type_from_tag (tag);
6158 return value_from_contents_and_address (obj_type, NULL, base_address);
6161 /* Return the "ada__tags__type_specific_data" type. */
6163 static struct type *
6164 ada_get_tsd_type (struct inferior *inf)
6166 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6168 if (data->tsd_type == 0)
6169 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6170 return data->tsd_type;
6173 /* Return the TSD (type-specific data) associated to the given TAG.
6174 TAG is assumed to be the tag of a tagged-type entity.
6176 May return NULL if we are unable to get the TSD. */
6178 static struct value *
6179 ada_get_tsd_from_tag (struct value *tag)
6184 /* First option: The TSD is simply stored as a field of our TAG.
6185 Only older versions of GNAT would use this format, but we have
6186 to test it first, because there are no visible markers for
6187 the current approach except the absence of that field. */
6189 val = ada_value_struct_elt (tag, "tsd", 1);
6193 /* Try the second representation for the dispatch table (in which
6194 there is no explicit 'tsd' field in the referent of the tag pointer,
6195 and instead the tsd pointer is stored just before the dispatch
6198 type = ada_get_tsd_type (current_inferior());
6201 type = lookup_pointer_type (lookup_pointer_type (type));
6202 val = value_cast (type, tag);
6205 return value_ind (value_ptradd (val, -1));
6208 /* Given the TSD of a tag (type-specific data), return a string
6209 containing the name of the associated type.
6211 May return NULL if we are unable to determine the tag name. */
6213 static gdb::unique_xmalloc_ptr<char>
6214 ada_tag_name_from_tsd (struct value *tsd)
6219 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6222 gdb::unique_xmalloc_ptr<char> buffer
6223 = target_read_string (value_as_address (val), INT_MAX);
6224 if (buffer == nullptr)
6227 for (p = buffer.get (); *p != '\0'; ++p)
6236 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6239 Return NULL if the TAG is not an Ada tag, or if we were unable to
6240 determine the name of that tag. */
6242 gdb::unique_xmalloc_ptr<char>
6243 ada_tag_name (struct value *tag)
6245 gdb::unique_xmalloc_ptr<char> name;
6247 if (!ada_is_tag_type (value_type (tag)))
6250 /* It is perfectly possible that an exception be raised while trying
6251 to determine the TAG's name, even under normal circumstances:
6252 The associated variable may be uninitialized or corrupted, for
6253 instance. We do not let any exception propagate past this point.
6254 instead we return NULL.
6256 We also do not print the error message either (which often is very
6257 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6258 the caller print a more meaningful message if necessary. */
6261 struct value *tsd = ada_get_tsd_from_tag (tag);
6264 name = ada_tag_name_from_tsd (tsd);
6266 catch (const gdb_exception_error &e)
6273 /* The parent type of TYPE, or NULL if none. */
6276 ada_parent_type (struct type *type)
6280 type = ada_check_typedef (type);
6282 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6285 for (i = 0; i < type->num_fields (); i += 1)
6286 if (ada_is_parent_field (type, i))
6288 struct type *parent_type = type->field (i).type ();
6290 /* If the _parent field is a pointer, then dereference it. */
6291 if (parent_type->code () == TYPE_CODE_PTR)
6292 parent_type = TYPE_TARGET_TYPE (parent_type);
6293 /* If there is a parallel XVS type, get the actual base type. */
6294 parent_type = ada_get_base_type (parent_type);
6296 return ada_check_typedef (parent_type);
6302 /* True iff field number FIELD_NUM of structure type TYPE contains the
6303 parent-type (inherited) fields of a derived type. Assumes TYPE is
6304 a structure type with at least FIELD_NUM+1 fields. */
6307 ada_is_parent_field (struct type *type, int field_num)
6309 const char *name = ada_check_typedef (type)->field (field_num).name ();
6311 return (name != NULL
6312 && (startswith (name, "PARENT")
6313 || startswith (name, "_parent")));
6316 /* True iff field number FIELD_NUM of structure type TYPE is a
6317 transparent wrapper field (which should be silently traversed when doing
6318 field selection and flattened when printing). Assumes TYPE is a
6319 structure type with at least FIELD_NUM+1 fields. Such fields are always
6323 ada_is_wrapper_field (struct type *type, int field_num)
6325 const char *name = type->field (field_num).name ();
6327 if (name != NULL && strcmp (name, "RETVAL") == 0)
6329 /* This happens in functions with "out" or "in out" parameters
6330 which are passed by copy. For such functions, GNAT describes
6331 the function's return type as being a struct where the return
6332 value is in a field called RETVAL, and where the other "out"
6333 or "in out" parameters are fields of that struct. This is not
6338 return (name != NULL
6339 && (startswith (name, "PARENT")
6340 || strcmp (name, "REP") == 0
6341 || startswith (name, "_parent")
6342 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6345 /* True iff field number FIELD_NUM of structure or union type TYPE
6346 is a variant wrapper. Assumes TYPE is a structure type with at least
6347 FIELD_NUM+1 fields. */
6350 ada_is_variant_part (struct type *type, int field_num)
6352 /* Only Ada types are eligible. */
6353 if (!ADA_TYPE_P (type))
6356 struct type *field_type = type->field (field_num).type ();
6358 return (field_type->code () == TYPE_CODE_UNION
6359 || (is_dynamic_field (type, field_num)
6360 && (TYPE_TARGET_TYPE (field_type)->code ()
6361 == TYPE_CODE_UNION)));
6364 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6365 whose discriminants are contained in the record type OUTER_TYPE,
6366 returns the type of the controlling discriminant for the variant.
6367 May return NULL if the type could not be found. */
6370 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6372 const char *name = ada_variant_discrim_name (var_type);
6374 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6377 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6378 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6379 represents a 'when others' clause; otherwise 0. */
6382 ada_is_others_clause (struct type *type, int field_num)
6384 const char *name = type->field (field_num).name ();
6386 return (name != NULL && name[0] == 'O');
6389 /* Assuming that TYPE0 is the type of the variant part of a record,
6390 returns the name of the discriminant controlling the variant.
6391 The value is valid until the next call to ada_variant_discrim_name. */
6394 ada_variant_discrim_name (struct type *type0)
6396 static std::string result;
6399 const char *discrim_end;
6400 const char *discrim_start;
6402 if (type0->code () == TYPE_CODE_PTR)
6403 type = TYPE_TARGET_TYPE (type0);
6407 name = ada_type_name (type);
6409 if (name == NULL || name[0] == '\000')
6412 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6415 if (startswith (discrim_end, "___XVN"))
6418 if (discrim_end == name)
6421 for (discrim_start = discrim_end; discrim_start != name + 3;
6424 if (discrim_start == name + 1)
6426 if ((discrim_start > name + 3
6427 && startswith (discrim_start - 3, "___"))
6428 || discrim_start[-1] == '.')
6432 result = std::string (discrim_start, discrim_end - discrim_start);
6433 return result.c_str ();
6436 /* Scan STR for a subtype-encoded number, beginning at position K.
6437 Put the position of the character just past the number scanned in
6438 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6439 Return 1 if there was a valid number at the given position, and 0
6440 otherwise. A "subtype-encoded" number consists of the absolute value
6441 in decimal, followed by the letter 'm' to indicate a negative number.
6442 Assumes 0m does not occur. */
6445 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6449 if (!isdigit (str[k]))
6452 /* Do it the hard way so as not to make any assumption about
6453 the relationship of unsigned long (%lu scan format code) and
6456 while (isdigit (str[k]))
6458 RU = RU * 10 + (str[k] - '0');
6465 *R = (-(LONGEST) (RU - 1)) - 1;
6471 /* NOTE on the above: Technically, C does not say what the results of
6472 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6473 number representable as a LONGEST (although either would probably work
6474 in most implementations). When RU>0, the locution in the then branch
6475 above is always equivalent to the negative of RU. */
6482 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6483 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6484 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6487 ada_in_variant (LONGEST val, struct type *type, int field_num)
6489 const char *name = type->field (field_num).name ();
6503 if (!ada_scan_number (name, p + 1, &W, &p))
6513 if (!ada_scan_number (name, p + 1, &L, &p)
6514 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6516 if (val >= L && val <= U)
6528 /* FIXME: Lots of redundancy below. Try to consolidate. */
6530 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6531 ARG_TYPE, extract and return the value of one of its (non-static)
6532 fields. FIELDNO says which field. Differs from value_primitive_field
6533 only in that it can handle packed values of arbitrary type. */
6536 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6537 struct type *arg_type)
6541 arg_type = ada_check_typedef (arg_type);
6542 type = arg_type->field (fieldno).type ();
6544 /* Handle packed fields. It might be that the field is not packed
6545 relative to its containing structure, but the structure itself is
6546 packed; in this case we must take the bit-field path. */
6547 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6549 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6550 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6552 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6553 offset + bit_pos / 8,
6554 bit_pos % 8, bit_size, type);
6557 return value_primitive_field (arg1, offset, fieldno, arg_type);
6560 /* Find field with name NAME in object of type TYPE. If found,
6561 set the following for each argument that is non-null:
6562 - *FIELD_TYPE_P to the field's type;
6563 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6564 an object of that type;
6565 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6566 - *BIT_SIZE_P to its size in bits if the field is packed, and
6568 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6569 fields up to but not including the desired field, or by the total
6570 number of fields if not found. A NULL value of NAME never
6571 matches; the function just counts visible fields in this case.
6573 Notice that we need to handle when a tagged record hierarchy
6574 has some components with the same name, like in this scenario:
6576 type Top_T is tagged record
6582 type Middle_T is new Top.Top_T with record
6583 N : Character := 'a';
6587 type Bottom_T is new Middle.Middle_T with record
6589 C : Character := '5';
6591 A : Character := 'J';
6594 Let's say we now have a variable declared and initialized as follow:
6596 TC : Top_A := new Bottom_T;
6598 And then we use this variable to call this function
6600 procedure Assign (Obj: in out Top_T; TV : Integer);
6604 Assign (Top_T (B), 12);
6606 Now, we're in the debugger, and we're inside that procedure
6607 then and we want to print the value of obj.c:
6609 Usually, the tagged record or one of the parent type owns the
6610 component to print and there's no issue but in this particular
6611 case, what does it mean to ask for Obj.C? Since the actual
6612 type for object is type Bottom_T, it could mean two things: type
6613 component C from the Middle_T view, but also component C from
6614 Bottom_T. So in that "undefined" case, when the component is
6615 not found in the non-resolved type (which includes all the
6616 components of the parent type), then resolve it and see if we
6617 get better luck once expanded.
6619 In the case of homonyms in the derived tagged type, we don't
6620 guaranty anything, and pick the one that's easiest for us
6623 Returns 1 if found, 0 otherwise. */
6626 find_struct_field (const char *name, struct type *type, int offset,
6627 struct type **field_type_p,
6628 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6632 int parent_offset = -1;
6634 type = ada_check_typedef (type);
6636 if (field_type_p != NULL)
6637 *field_type_p = NULL;
6638 if (byte_offset_p != NULL)
6640 if (bit_offset_p != NULL)
6642 if (bit_size_p != NULL)
6645 for (i = 0; i < type->num_fields (); i += 1)
6647 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6648 int fld_offset = offset + bit_pos / 8;
6649 const char *t_field_name = type->field (i).name ();
6651 if (t_field_name == NULL)
6654 else if (ada_is_parent_field (type, i))
6656 /* This is a field pointing us to the parent type of a tagged
6657 type. As hinted in this function's documentation, we give
6658 preference to fields in the current record first, so what
6659 we do here is just record the index of this field before
6660 we skip it. If it turns out we couldn't find our field
6661 in the current record, then we'll get back to it and search
6662 inside it whether the field might exist in the parent. */
6668 else if (name != NULL && field_name_match (t_field_name, name))
6670 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6672 if (field_type_p != NULL)
6673 *field_type_p = type->field (i).type ();
6674 if (byte_offset_p != NULL)
6675 *byte_offset_p = fld_offset;
6676 if (bit_offset_p != NULL)
6677 *bit_offset_p = bit_pos % 8;
6678 if (bit_size_p != NULL)
6679 *bit_size_p = bit_size;
6682 else if (ada_is_wrapper_field (type, i))
6684 if (find_struct_field (name, type->field (i).type (), fld_offset,
6685 field_type_p, byte_offset_p, bit_offset_p,
6686 bit_size_p, index_p))
6689 else if (ada_is_variant_part (type, i))
6691 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6694 struct type *field_type
6695 = ada_check_typedef (type->field (i).type ());
6697 for (j = 0; j < field_type->num_fields (); j += 1)
6699 if (find_struct_field (name, field_type->field (j).type (),
6701 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6702 field_type_p, byte_offset_p,
6703 bit_offset_p, bit_size_p, index_p))
6707 else if (index_p != NULL)
6711 /* Field not found so far. If this is a tagged type which
6712 has a parent, try finding that field in the parent now. */
6714 if (parent_offset != -1)
6716 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6717 int fld_offset = offset + bit_pos / 8;
6719 if (find_struct_field (name, type->field (parent_offset).type (),
6720 fld_offset, field_type_p, byte_offset_p,
6721 bit_offset_p, bit_size_p, index_p))
6728 /* Number of user-visible fields in record type TYPE. */
6731 num_visible_fields (struct type *type)
6736 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6740 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6741 and search in it assuming it has (class) type TYPE.
6742 If found, return value, else return NULL.
6744 Searches recursively through wrapper fields (e.g., '_parent').
6746 In the case of homonyms in the tagged types, please refer to the
6747 long explanation in find_struct_field's function documentation. */
6749 static struct value *
6750 ada_search_struct_field (const char *name, struct value *arg, int offset,
6754 int parent_offset = -1;
6756 type = ada_check_typedef (type);
6757 for (i = 0; i < type->num_fields (); i += 1)
6759 const char *t_field_name = type->field (i).name ();
6761 if (t_field_name == NULL)
6764 else if (ada_is_parent_field (type, i))
6766 /* This is a field pointing us to the parent type of a tagged
6767 type. As hinted in this function's documentation, we give
6768 preference to fields in the current record first, so what
6769 we do here is just record the index of this field before
6770 we skip it. If it turns out we couldn't find our field
6771 in the current record, then we'll get back to it and search
6772 inside it whether the field might exist in the parent. */
6778 else if (field_name_match (t_field_name, name))
6779 return ada_value_primitive_field (arg, offset, i, type);
6781 else if (ada_is_wrapper_field (type, i))
6783 struct value *v = /* Do not let indent join lines here. */
6784 ada_search_struct_field (name, arg,
6785 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6786 type->field (i).type ());
6792 else if (ada_is_variant_part (type, i))
6794 /* PNH: Do we ever get here? See find_struct_field. */
6796 struct type *field_type = ada_check_typedef (type->field (i).type ());
6797 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6799 for (j = 0; j < field_type->num_fields (); j += 1)
6801 struct value *v = ada_search_struct_field /* Force line
6804 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6805 field_type->field (j).type ());
6813 /* Field not found so far. If this is a tagged type which
6814 has a parent, try finding that field in the parent now. */
6816 if (parent_offset != -1)
6818 struct value *v = ada_search_struct_field (
6819 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6820 type->field (parent_offset).type ());
6829 static struct value *ada_index_struct_field_1 (int *, struct value *,
6830 int, struct type *);
6833 /* Return field #INDEX in ARG, where the index is that returned by
6834 * find_struct_field through its INDEX_P argument. Adjust the address
6835 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6836 * If found, return value, else return NULL. */
6838 static struct value *
6839 ada_index_struct_field (int index, struct value *arg, int offset,
6842 return ada_index_struct_field_1 (&index, arg, offset, type);
6846 /* Auxiliary function for ada_index_struct_field. Like
6847 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6850 static struct value *
6851 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6855 type = ada_check_typedef (type);
6857 for (i = 0; i < type->num_fields (); i += 1)
6859 if (type->field (i).name () == NULL)
6861 else if (ada_is_wrapper_field (type, i))
6863 struct value *v = /* Do not let indent join lines here. */
6864 ada_index_struct_field_1 (index_p, arg,
6865 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6866 type->field (i).type ());
6872 else if (ada_is_variant_part (type, i))
6874 /* PNH: Do we ever get here? See ada_search_struct_field,
6875 find_struct_field. */
6876 error (_("Cannot assign this kind of variant record"));
6878 else if (*index_p == 0)
6879 return ada_value_primitive_field (arg, offset, i, type);
6886 /* Return a string representation of type TYPE. */
6889 type_as_string (struct type *type)
6891 string_file tmp_stream;
6893 type_print (type, "", &tmp_stream, -1);
6895 return std::move (tmp_stream.string ());
6898 /* Given a type TYPE, look up the type of the component of type named NAME.
6899 If DISPP is non-null, add its byte displacement from the beginning of a
6900 structure (pointed to by a value) of type TYPE to *DISPP (does not
6901 work for packed fields).
6903 Matches any field whose name has NAME as a prefix, possibly
6906 TYPE can be either a struct or union. If REFOK, TYPE may also
6907 be a (pointer or reference)+ to a struct or union, and the
6908 ultimate target type will be searched.
6910 Looks recursively into variant clauses and parent types.
6912 In the case of homonyms in the tagged types, please refer to the
6913 long explanation in find_struct_field's function documentation.
6915 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6916 TYPE is not a type of the right kind. */
6918 static struct type *
6919 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6923 int parent_offset = -1;
6928 if (refok && type != NULL)
6931 type = ada_check_typedef (type);
6932 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6934 type = TYPE_TARGET_TYPE (type);
6938 || (type->code () != TYPE_CODE_STRUCT
6939 && type->code () != TYPE_CODE_UNION))
6944 error (_("Type %s is not a structure or union type"),
6945 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6948 type = to_static_fixed_type (type);
6950 for (i = 0; i < type->num_fields (); i += 1)
6952 const char *t_field_name = type->field (i).name ();
6955 if (t_field_name == NULL)
6958 else if (ada_is_parent_field (type, i))
6960 /* This is a field pointing us to the parent type of a tagged
6961 type. As hinted in this function's documentation, we give
6962 preference to fields in the current record first, so what
6963 we do here is just record the index of this field before
6964 we skip it. If it turns out we couldn't find our field
6965 in the current record, then we'll get back to it and search
6966 inside it whether the field might exist in the parent. */
6972 else if (field_name_match (t_field_name, name))
6973 return type->field (i).type ();
6975 else if (ada_is_wrapper_field (type, i))
6977 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6983 else if (ada_is_variant_part (type, i))
6986 struct type *field_type = ada_check_typedef (type->field (i).type ());
6988 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6990 /* FIXME pnh 2008/01/26: We check for a field that is
6991 NOT wrapped in a struct, since the compiler sometimes
6992 generates these for unchecked variant types. Revisit
6993 if the compiler changes this practice. */
6994 const char *v_field_name = field_type->field (j).name ();
6996 if (v_field_name != NULL
6997 && field_name_match (v_field_name, name))
6998 t = field_type->field (j).type ();
7000 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7010 /* Field not found so far. If this is a tagged type which
7011 has a parent, try finding that field in the parent now. */
7013 if (parent_offset != -1)
7017 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7026 const char *name_str = name != NULL ? name : _("<null>");
7028 error (_("Type %s has no component named %s"),
7029 type_as_string (type).c_str (), name_str);
7035 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7036 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7037 represents an unchecked union (that is, the variant part of a
7038 record that is named in an Unchecked_Union pragma). */
7041 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7043 const char *discrim_name = ada_variant_discrim_name (var_type);
7045 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7049 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7050 within OUTER, determine which variant clause (field number in VAR_TYPE,
7051 numbering from 0) is applicable. Returns -1 if none are. */
7054 ada_which_variant_applies (struct type *var_type, struct value *outer)
7058 const char *discrim_name = ada_variant_discrim_name (var_type);
7059 struct value *discrim;
7060 LONGEST discrim_val;
7062 /* Using plain value_from_contents_and_address here causes problems
7063 because we will end up trying to resolve a type that is currently
7064 being constructed. */
7065 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7066 if (discrim == NULL)
7068 discrim_val = value_as_long (discrim);
7071 for (i = 0; i < var_type->num_fields (); i += 1)
7073 if (ada_is_others_clause (var_type, i))
7075 else if (ada_in_variant (discrim_val, var_type, i))
7079 return others_clause;
7084 /* Dynamic-Sized Records */
7086 /* Strategy: The type ostensibly attached to a value with dynamic size
7087 (i.e., a size that is not statically recorded in the debugging
7088 data) does not accurately reflect the size or layout of the value.
7089 Our strategy is to convert these values to values with accurate,
7090 conventional types that are constructed on the fly. */
7092 /* There is a subtle and tricky problem here. In general, we cannot
7093 determine the size of dynamic records without its data. However,
7094 the 'struct value' data structure, which GDB uses to represent
7095 quantities in the inferior process (the target), requires the size
7096 of the type at the time of its allocation in order to reserve space
7097 for GDB's internal copy of the data. That's why the
7098 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7099 rather than struct value*s.
7101 However, GDB's internal history variables ($1, $2, etc.) are
7102 struct value*s containing internal copies of the data that are not, in
7103 general, the same as the data at their corresponding addresses in
7104 the target. Fortunately, the types we give to these values are all
7105 conventional, fixed-size types (as per the strategy described
7106 above), so that we don't usually have to perform the
7107 'to_fixed_xxx_type' conversions to look at their values.
7108 Unfortunately, there is one exception: if one of the internal
7109 history variables is an array whose elements are unconstrained
7110 records, then we will need to create distinct fixed types for each
7111 element selected. */
7113 /* The upshot of all of this is that many routines take a (type, host
7114 address, target address) triple as arguments to represent a value.
7115 The host address, if non-null, is supposed to contain an internal
7116 copy of the relevant data; otherwise, the program is to consult the
7117 target at the target address. */
7119 /* Assuming that VAL0 represents a pointer value, the result of
7120 dereferencing it. Differs from value_ind in its treatment of
7121 dynamic-sized types. */
7124 ada_value_ind (struct value *val0)
7126 struct value *val = value_ind (val0);
7128 if (ada_is_tagged_type (value_type (val), 0))
7129 val = ada_tag_value_at_base_address (val);
7131 return ada_to_fixed_value (val);
7134 /* The value resulting from dereferencing any "reference to"
7135 qualifiers on VAL0. */
7137 static struct value *
7138 ada_coerce_ref (struct value *val0)
7140 if (value_type (val0)->code () == TYPE_CODE_REF)
7142 struct value *val = val0;
7144 val = coerce_ref (val);
7146 if (ada_is_tagged_type (value_type (val), 0))
7147 val = ada_tag_value_at_base_address (val);
7149 return ada_to_fixed_value (val);
7155 /* Return the bit alignment required for field #F of template type TYPE. */
7158 field_alignment (struct type *type, int f)
7160 const char *name = type->field (f).name ();
7164 /* The field name should never be null, unless the debugging information
7165 is somehow malformed. In this case, we assume the field does not
7166 require any alignment. */
7170 len = strlen (name);
7172 if (!isdigit (name[len - 1]))
7175 if (isdigit (name[len - 2]))
7176 align_offset = len - 2;
7178 align_offset = len - 1;
7180 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7181 return TARGET_CHAR_BIT;
7183 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7186 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7188 static struct symbol *
7189 ada_find_any_type_symbol (const char *name)
7193 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7194 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7197 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7201 /* Find a type named NAME. Ignores ambiguity. This routine will look
7202 solely for types defined by debug info, it will not search the GDB
7205 static struct type *
7206 ada_find_any_type (const char *name)
7208 struct symbol *sym = ada_find_any_type_symbol (name);
7211 return SYMBOL_TYPE (sym);
7216 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7217 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7218 symbol, in which case it is returned. Otherwise, this looks for
7219 symbols whose name is that of NAME_SYM suffixed with "___XR".
7220 Return symbol if found, and NULL otherwise. */
7223 ada_is_renaming_symbol (struct symbol *name_sym)
7225 const char *name = name_sym->linkage_name ();
7226 return strstr (name, "___XR") != NULL;
7229 /* Because of GNAT encoding conventions, several GDB symbols may match a
7230 given type name. If the type denoted by TYPE0 is to be preferred to
7231 that of TYPE1 for purposes of type printing, return non-zero;
7232 otherwise return 0. */
7235 ada_prefer_type (struct type *type0, struct type *type1)
7239 else if (type0 == NULL)
7241 else if (type1->code () == TYPE_CODE_VOID)
7243 else if (type0->code () == TYPE_CODE_VOID)
7245 else if (type1->name () == NULL && type0->name () != NULL)
7247 else if (ada_is_constrained_packed_array_type (type0))
7249 else if (ada_is_array_descriptor_type (type0)
7250 && !ada_is_array_descriptor_type (type1))
7254 const char *type0_name = type0->name ();
7255 const char *type1_name = type1->name ();
7257 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7258 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7264 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7268 ada_type_name (struct type *type)
7272 return type->name ();
7275 /* Search the list of "descriptive" types associated to TYPE for a type
7276 whose name is NAME. */
7278 static struct type *
7279 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7281 struct type *result, *tmp;
7283 if (ada_ignore_descriptive_types_p)
7286 /* If there no descriptive-type info, then there is no parallel type
7288 if (!HAVE_GNAT_AUX_INFO (type))
7291 result = TYPE_DESCRIPTIVE_TYPE (type);
7292 while (result != NULL)
7294 const char *result_name = ada_type_name (result);
7296 if (result_name == NULL)
7298 warning (_("unexpected null name on descriptive type"));
7302 /* If the names match, stop. */
7303 if (strcmp (result_name, name) == 0)
7306 /* Otherwise, look at the next item on the list, if any. */
7307 if (HAVE_GNAT_AUX_INFO (result))
7308 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7312 /* If not found either, try after having resolved the typedef. */
7317 result = check_typedef (result);
7318 if (HAVE_GNAT_AUX_INFO (result))
7319 result = TYPE_DESCRIPTIVE_TYPE (result);
7325 /* If we didn't find a match, see whether this is a packed array. With
7326 older compilers, the descriptive type information is either absent or
7327 irrelevant when it comes to packed arrays so the above lookup fails.
7328 Fall back to using a parallel lookup by name in this case. */
7329 if (result == NULL && ada_is_constrained_packed_array_type (type))
7330 return ada_find_any_type (name);
7335 /* Find a parallel type to TYPE with the specified NAME, using the
7336 descriptive type taken from the debugging information, if available,
7337 and otherwise using the (slower) name-based method. */
7339 static struct type *
7340 ada_find_parallel_type_with_name (struct type *type, const char *name)
7342 struct type *result = NULL;
7344 if (HAVE_GNAT_AUX_INFO (type))
7345 result = find_parallel_type_by_descriptive_type (type, name);
7347 result = ada_find_any_type (name);
7352 /* Same as above, but specify the name of the parallel type by appending
7353 SUFFIX to the name of TYPE. */
7356 ada_find_parallel_type (struct type *type, const char *suffix)
7359 const char *type_name = ada_type_name (type);
7362 if (type_name == NULL)
7365 len = strlen (type_name);
7367 name = (char *) alloca (len + strlen (suffix) + 1);
7369 strcpy (name, type_name);
7370 strcpy (name + len, suffix);
7372 return ada_find_parallel_type_with_name (type, name);
7375 /* If TYPE is a variable-size record type, return the corresponding template
7376 type describing its fields. Otherwise, return NULL. */
7378 static struct type *
7379 dynamic_template_type (struct type *type)
7381 type = ada_check_typedef (type);
7383 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7384 || ada_type_name (type) == NULL)
7388 int len = strlen (ada_type_name (type));
7390 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7393 return ada_find_parallel_type (type, "___XVE");
7397 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7398 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7401 is_dynamic_field (struct type *templ_type, int field_num)
7403 const char *name = templ_type->field (field_num).name ();
7406 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7407 && strstr (name, "___XVL") != NULL;
7410 /* The index of the variant field of TYPE, or -1 if TYPE does not
7411 represent a variant record type. */
7414 variant_field_index (struct type *type)
7418 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7421 for (f = 0; f < type->num_fields (); f += 1)
7423 if (ada_is_variant_part (type, f))
7429 /* A record type with no fields. */
7431 static struct type *
7432 empty_record (struct type *templ)
7434 struct type *type = alloc_type_copy (templ);
7436 type->set_code (TYPE_CODE_STRUCT);
7437 INIT_NONE_SPECIFIC (type);
7438 type->set_name ("<empty>");
7439 TYPE_LENGTH (type) = 0;
7443 /* An ordinary record type (with fixed-length fields) that describes
7444 the value of type TYPE at VALADDR or ADDRESS (see comments at
7445 the beginning of this section) VAL according to GNAT conventions.
7446 DVAL0 should describe the (portion of a) record that contains any
7447 necessary discriminants. It should be NULL if value_type (VAL) is
7448 an outer-level type (i.e., as opposed to a branch of a variant.) A
7449 variant field (unless unchecked) is replaced by a particular branch
7452 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7453 length are not statically known are discarded. As a consequence,
7454 VALADDR, ADDRESS and DVAL0 are ignored.
7456 NOTE: Limitations: For now, we assume that dynamic fields and
7457 variants occupy whole numbers of bytes. However, they need not be
7461 ada_template_to_fixed_record_type_1 (struct type *type,
7462 const gdb_byte *valaddr,
7463 CORE_ADDR address, struct value *dval0,
7464 int keep_dynamic_fields)
7466 struct value *mark = value_mark ();
7469 int nfields, bit_len;
7475 /* Compute the number of fields in this record type that are going
7476 to be processed: unless keep_dynamic_fields, this includes only
7477 fields whose position and length are static will be processed. */
7478 if (keep_dynamic_fields)
7479 nfields = type->num_fields ();
7483 while (nfields < type->num_fields ()
7484 && !ada_is_variant_part (type, nfields)
7485 && !is_dynamic_field (type, nfields))
7489 rtype = alloc_type_copy (type);
7490 rtype->set_code (TYPE_CODE_STRUCT);
7491 INIT_NONE_SPECIFIC (rtype);
7492 rtype->set_num_fields (nfields);
7494 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7495 rtype->set_name (ada_type_name (type));
7496 rtype->set_is_fixed_instance (true);
7502 for (f = 0; f < nfields; f += 1)
7504 off = align_up (off, field_alignment (type, f))
7505 + TYPE_FIELD_BITPOS (type, f);
7506 SET_FIELD_BITPOS (rtype->field (f), off);
7507 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7509 if (ada_is_variant_part (type, f))
7514 else if (is_dynamic_field (type, f))
7516 const gdb_byte *field_valaddr = valaddr;
7517 CORE_ADDR field_address = address;
7518 struct type *field_type =
7519 TYPE_TARGET_TYPE (type->field (f).type ());
7523 /* Using plain value_from_contents_and_address here
7524 causes problems because we will end up trying to
7525 resolve a type that is currently being
7527 dval = value_from_contents_and_address_unresolved (rtype,
7530 rtype = value_type (dval);
7535 /* If the type referenced by this field is an aligner type, we need
7536 to unwrap that aligner type, because its size might not be set.
7537 Keeping the aligner type would cause us to compute the wrong
7538 size for this field, impacting the offset of the all the fields
7539 that follow this one. */
7540 if (ada_is_aligner_type (field_type))
7542 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7544 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7545 field_address = cond_offset_target (field_address, field_offset);
7546 field_type = ada_aligned_type (field_type);
7549 field_valaddr = cond_offset_host (field_valaddr,
7550 off / TARGET_CHAR_BIT);
7551 field_address = cond_offset_target (field_address,
7552 off / TARGET_CHAR_BIT);
7554 /* Get the fixed type of the field. Note that, in this case,
7555 we do not want to get the real type out of the tag: if
7556 the current field is the parent part of a tagged record,
7557 we will get the tag of the object. Clearly wrong: the real
7558 type of the parent is not the real type of the child. We
7559 would end up in an infinite loop. */
7560 field_type = ada_get_base_type (field_type);
7561 field_type = ada_to_fixed_type (field_type, field_valaddr,
7562 field_address, dval, 0);
7564 rtype->field (f).set_type (field_type);
7565 rtype->field (f).set_name (type->field (f).name ());
7566 /* The multiplication can potentially overflow. But because
7567 the field length has been size-checked just above, and
7568 assuming that the maximum size is a reasonable value,
7569 an overflow should not happen in practice. So rather than
7570 adding overflow recovery code to this already complex code,
7571 we just assume that it's not going to happen. */
7573 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7577 /* Note: If this field's type is a typedef, it is important
7578 to preserve the typedef layer.
7580 Otherwise, we might be transforming a typedef to a fat
7581 pointer (encoding a pointer to an unconstrained array),
7582 into a basic fat pointer (encoding an unconstrained
7583 array). As both types are implemented using the same
7584 structure, the typedef is the only clue which allows us
7585 to distinguish between the two options. Stripping it
7586 would prevent us from printing this field appropriately. */
7587 rtype->field (f).set_type (type->field (f).type ());
7588 rtype->field (f).set_name (type->field (f).name ());
7589 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7591 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7594 struct type *field_type = type->field (f).type ();
7596 /* We need to be careful of typedefs when computing
7597 the length of our field. If this is a typedef,
7598 get the length of the target type, not the length
7600 if (field_type->code () == TYPE_CODE_TYPEDEF)
7601 field_type = ada_typedef_target_type (field_type);
7604 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7607 if (off + fld_bit_len > bit_len)
7608 bit_len = off + fld_bit_len;
7610 TYPE_LENGTH (rtype) =
7611 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7614 /* We handle the variant part, if any, at the end because of certain
7615 odd cases in which it is re-ordered so as NOT to be the last field of
7616 the record. This can happen in the presence of representation
7618 if (variant_field >= 0)
7620 struct type *branch_type;
7622 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7626 /* Using plain value_from_contents_and_address here causes
7627 problems because we will end up trying to resolve a type
7628 that is currently being constructed. */
7629 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7631 rtype = value_type (dval);
7637 to_fixed_variant_branch_type
7638 (type->field (variant_field).type (),
7639 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7640 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7641 if (branch_type == NULL)
7643 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7644 rtype->field (f - 1) = rtype->field (f);
7645 rtype->set_num_fields (rtype->num_fields () - 1);
7649 rtype->field (variant_field).set_type (branch_type);
7650 rtype->field (variant_field).set_name ("S");
7652 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7654 if (off + fld_bit_len > bit_len)
7655 bit_len = off + fld_bit_len;
7656 TYPE_LENGTH (rtype) =
7657 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7661 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7662 should contain the alignment of that record, which should be a strictly
7663 positive value. If null or negative, then something is wrong, most
7664 probably in the debug info. In that case, we don't round up the size
7665 of the resulting type. If this record is not part of another structure,
7666 the current RTYPE length might be good enough for our purposes. */
7667 if (TYPE_LENGTH (type) <= 0)
7670 warning (_("Invalid type size for `%s' detected: %s."),
7671 rtype->name (), pulongest (TYPE_LENGTH (type)));
7673 warning (_("Invalid type size for <unnamed> detected: %s."),
7674 pulongest (TYPE_LENGTH (type)));
7678 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7679 TYPE_LENGTH (type));
7682 value_free_to_mark (mark);
7686 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7689 static struct type *
7690 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7691 CORE_ADDR address, struct value *dval0)
7693 return ada_template_to_fixed_record_type_1 (type, valaddr,
7697 /* An ordinary record type in which ___XVL-convention fields and
7698 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7699 static approximations, containing all possible fields. Uses
7700 no runtime values. Useless for use in values, but that's OK,
7701 since the results are used only for type determinations. Works on both
7702 structs and unions. Representation note: to save space, we memorize
7703 the result of this function in the TYPE_TARGET_TYPE of the
7706 static struct type *
7707 template_to_static_fixed_type (struct type *type0)
7713 /* No need no do anything if the input type is already fixed. */
7714 if (type0->is_fixed_instance ())
7717 /* Likewise if we already have computed the static approximation. */
7718 if (TYPE_TARGET_TYPE (type0) != NULL)
7719 return TYPE_TARGET_TYPE (type0);
7721 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7723 nfields = type0->num_fields ();
7725 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7726 recompute all over next time. */
7727 TYPE_TARGET_TYPE (type0) = type;
7729 for (f = 0; f < nfields; f += 1)
7731 struct type *field_type = type0->field (f).type ();
7732 struct type *new_type;
7734 if (is_dynamic_field (type0, f))
7736 field_type = ada_check_typedef (field_type);
7737 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7740 new_type = static_unwrap_type (field_type);
7742 if (new_type != field_type)
7744 /* Clone TYPE0 only the first time we get a new field type. */
7747 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7748 type->set_code (type0->code ());
7749 INIT_NONE_SPECIFIC (type);
7750 type->set_num_fields (nfields);
7754 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7755 memcpy (fields, type0->fields (),
7756 sizeof (struct field) * nfields);
7757 type->set_fields (fields);
7759 type->set_name (ada_type_name (type0));
7760 type->set_is_fixed_instance (true);
7761 TYPE_LENGTH (type) = 0;
7763 type->field (f).set_type (new_type);
7764 type->field (f).set_name (type0->field (f).name ());
7771 /* Given an object of type TYPE whose contents are at VALADDR and
7772 whose address in memory is ADDRESS, returns a revision of TYPE,
7773 which should be a non-dynamic-sized record, in which the variant
7774 part, if any, is replaced with the appropriate branch. Looks
7775 for discriminant values in DVAL0, which can be NULL if the record
7776 contains the necessary discriminant values. */
7778 static struct type *
7779 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7780 CORE_ADDR address, struct value *dval0)
7782 struct value *mark = value_mark ();
7785 struct type *branch_type;
7786 int nfields = type->num_fields ();
7787 int variant_field = variant_field_index (type);
7789 if (variant_field == -1)
7794 dval = value_from_contents_and_address (type, valaddr, address);
7795 type = value_type (dval);
7800 rtype = alloc_type_copy (type);
7801 rtype->set_code (TYPE_CODE_STRUCT);
7802 INIT_NONE_SPECIFIC (rtype);
7803 rtype->set_num_fields (nfields);
7806 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7807 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7808 rtype->set_fields (fields);
7810 rtype->set_name (ada_type_name (type));
7811 rtype->set_is_fixed_instance (true);
7812 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7814 branch_type = to_fixed_variant_branch_type
7815 (type->field (variant_field).type (),
7816 cond_offset_host (valaddr,
7817 TYPE_FIELD_BITPOS (type, variant_field)
7819 cond_offset_target (address,
7820 TYPE_FIELD_BITPOS (type, variant_field)
7821 / TARGET_CHAR_BIT), dval);
7822 if (branch_type == NULL)
7826 for (f = variant_field + 1; f < nfields; f += 1)
7827 rtype->field (f - 1) = rtype->field (f);
7828 rtype->set_num_fields (rtype->num_fields () - 1);
7832 rtype->field (variant_field).set_type (branch_type);
7833 rtype->field (variant_field).set_name ("S");
7834 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7835 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7837 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7839 value_free_to_mark (mark);
7843 /* An ordinary record type (with fixed-length fields) that describes
7844 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7845 beginning of this section]. Any necessary discriminants' values
7846 should be in DVAL, a record value; it may be NULL if the object
7847 at ADDR itself contains any necessary discriminant values.
7848 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7849 values from the record are needed. Except in the case that DVAL,
7850 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7851 unchecked) is replaced by a particular branch of the variant.
7853 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7854 is questionable and may be removed. It can arise during the
7855 processing of an unconstrained-array-of-record type where all the
7856 variant branches have exactly the same size. This is because in
7857 such cases, the compiler does not bother to use the XVS convention
7858 when encoding the record. I am currently dubious of this
7859 shortcut and suspect the compiler should be altered. FIXME. */
7861 static struct type *
7862 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7863 CORE_ADDR address, struct value *dval)
7865 struct type *templ_type;
7867 if (type0->is_fixed_instance ())
7870 templ_type = dynamic_template_type (type0);
7872 if (templ_type != NULL)
7873 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7874 else if (variant_field_index (type0) >= 0)
7876 if (dval == NULL && valaddr == NULL && address == 0)
7878 return to_record_with_fixed_variant_part (type0, valaddr, address,
7883 type0->set_is_fixed_instance (true);
7889 /* An ordinary record type (with fixed-length fields) that describes
7890 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7891 union type. Any necessary discriminants' values should be in DVAL,
7892 a record value. That is, this routine selects the appropriate
7893 branch of the union at ADDR according to the discriminant value
7894 indicated in the union's type name. Returns VAR_TYPE0 itself if
7895 it represents a variant subject to a pragma Unchecked_Union. */
7897 static struct type *
7898 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7899 CORE_ADDR address, struct value *dval)
7902 struct type *templ_type;
7903 struct type *var_type;
7905 if (var_type0->code () == TYPE_CODE_PTR)
7906 var_type = TYPE_TARGET_TYPE (var_type0);
7908 var_type = var_type0;
7910 templ_type = ada_find_parallel_type (var_type, "___XVU");
7912 if (templ_type != NULL)
7913 var_type = templ_type;
7915 if (is_unchecked_variant (var_type, value_type (dval)))
7917 which = ada_which_variant_applies (var_type, dval);
7920 return empty_record (var_type);
7921 else if (is_dynamic_field (var_type, which))
7922 return to_fixed_record_type
7923 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7924 valaddr, address, dval);
7925 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7927 to_fixed_record_type
7928 (var_type->field (which).type (), valaddr, address, dval);
7930 return var_type->field (which).type ();
7933 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7934 ENCODING_TYPE, a type following the GNAT conventions for discrete
7935 type encodings, only carries redundant information. */
7938 ada_is_redundant_range_encoding (struct type *range_type,
7939 struct type *encoding_type)
7941 const char *bounds_str;
7945 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7947 if (get_base_type (range_type)->code ()
7948 != get_base_type (encoding_type)->code ())
7950 /* The compiler probably used a simple base type to describe
7951 the range type instead of the range's actual base type,
7952 expecting us to get the real base type from the encoding
7953 anyway. In this situation, the encoding cannot be ignored
7958 if (is_dynamic_type (range_type))
7961 if (encoding_type->name () == NULL)
7964 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7965 if (bounds_str == NULL)
7968 n = 8; /* Skip "___XDLU_". */
7969 if (!ada_scan_number (bounds_str, n, &lo, &n))
7971 if (range_type->bounds ()->low.const_val () != lo)
7974 n += 2; /* Skip the "__" separator between the two bounds. */
7975 if (!ada_scan_number (bounds_str, n, &hi, &n))
7977 if (range_type->bounds ()->high.const_val () != hi)
7983 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7984 a type following the GNAT encoding for describing array type
7985 indices, only carries redundant information. */
7988 ada_is_redundant_index_type_desc (struct type *array_type,
7989 struct type *desc_type)
7991 struct type *this_layer = check_typedef (array_type);
7994 for (i = 0; i < desc_type->num_fields (); i++)
7996 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7997 desc_type->field (i).type ()))
7999 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8005 /* Assuming that TYPE0 is an array type describing the type of a value
8006 at ADDR, and that DVAL describes a record containing any
8007 discriminants used in TYPE0, returns a type for the value that
8008 contains no dynamic components (that is, no components whose sizes
8009 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8010 true, gives an error message if the resulting type's size is over
8013 static struct type *
8014 to_fixed_array_type (struct type *type0, struct value *dval,
8017 struct type *index_type_desc;
8018 struct type *result;
8019 int constrained_packed_array_p;
8020 static const char *xa_suffix = "___XA";
8022 type0 = ada_check_typedef (type0);
8023 if (type0->is_fixed_instance ())
8026 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8027 if (constrained_packed_array_p)
8029 type0 = decode_constrained_packed_array_type (type0);
8030 if (type0 == nullptr)
8031 error (_("could not decode constrained packed array type"));
8034 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8036 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8037 encoding suffixed with 'P' may still be generated. If so,
8038 it should be used to find the XA type. */
8040 if (index_type_desc == NULL)
8042 const char *type_name = ada_type_name (type0);
8044 if (type_name != NULL)
8046 const int len = strlen (type_name);
8047 char *name = (char *) alloca (len + strlen (xa_suffix));
8049 if (type_name[len - 1] == 'P')
8051 strcpy (name, type_name);
8052 strcpy (name + len - 1, xa_suffix);
8053 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8058 ada_fixup_array_indexes_type (index_type_desc);
8059 if (index_type_desc != NULL
8060 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8062 /* Ignore this ___XA parallel type, as it does not bring any
8063 useful information. This allows us to avoid creating fixed
8064 versions of the array's index types, which would be identical
8065 to the original ones. This, in turn, can also help avoid
8066 the creation of fixed versions of the array itself. */
8067 index_type_desc = NULL;
8070 if (index_type_desc == NULL)
8072 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8074 /* NOTE: elt_type---the fixed version of elt_type0---should never
8075 depend on the contents of the array in properly constructed
8077 /* Create a fixed version of the array element type.
8078 We're not providing the address of an element here,
8079 and thus the actual object value cannot be inspected to do
8080 the conversion. This should not be a problem, since arrays of
8081 unconstrained objects are not allowed. In particular, all
8082 the elements of an array of a tagged type should all be of
8083 the same type specified in the debugging info. No need to
8084 consult the object tag. */
8085 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8087 /* Make sure we always create a new array type when dealing with
8088 packed array types, since we're going to fix-up the array
8089 type length and element bitsize a little further down. */
8090 if (elt_type0 == elt_type && !constrained_packed_array_p)
8093 result = create_array_type (alloc_type_copy (type0),
8094 elt_type, type0->index_type ());
8099 struct type *elt_type0;
8102 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8103 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8105 /* NOTE: result---the fixed version of elt_type0---should never
8106 depend on the contents of the array in properly constructed
8108 /* Create a fixed version of the array element type.
8109 We're not providing the address of an element here,
8110 and thus the actual object value cannot be inspected to do
8111 the conversion. This should not be a problem, since arrays of
8112 unconstrained objects are not allowed. In particular, all
8113 the elements of an array of a tagged type should all be of
8114 the same type specified in the debugging info. No need to
8115 consult the object tag. */
8117 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8120 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8122 struct type *range_type =
8123 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8125 result = create_array_type (alloc_type_copy (elt_type0),
8126 result, range_type);
8127 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8131 /* We want to preserve the type name. This can be useful when
8132 trying to get the type name of a value that has already been
8133 printed (for instance, if the user did "print VAR; whatis $". */
8134 result->set_name (type0->name ());
8136 if (constrained_packed_array_p)
8138 /* So far, the resulting type has been created as if the original
8139 type was a regular (non-packed) array type. As a result, the
8140 bitsize of the array elements needs to be set again, and the array
8141 length needs to be recomputed based on that bitsize. */
8142 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8143 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8145 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8146 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8147 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8148 TYPE_LENGTH (result)++;
8151 result->set_is_fixed_instance (true);
8156 /* A standard type (containing no dynamically sized components)
8157 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8158 DVAL describes a record containing any discriminants used in TYPE0,
8159 and may be NULL if there are none, or if the object of type TYPE at
8160 ADDRESS or in VALADDR contains these discriminants.
8162 If CHECK_TAG is not null, in the case of tagged types, this function
8163 attempts to locate the object's tag and use it to compute the actual
8164 type. However, when ADDRESS is null, we cannot use it to determine the
8165 location of the tag, and therefore compute the tagged type's actual type.
8166 So we return the tagged type without consulting the tag. */
8168 static struct type *
8169 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8170 CORE_ADDR address, struct value *dval, int check_tag)
8172 type = ada_check_typedef (type);
8174 /* Only un-fixed types need to be handled here. */
8175 if (!HAVE_GNAT_AUX_INFO (type))
8178 switch (type->code ())
8182 case TYPE_CODE_STRUCT:
8184 struct type *static_type = to_static_fixed_type (type);
8185 struct type *fixed_record_type =
8186 to_fixed_record_type (type, valaddr, address, NULL);
8188 /* If STATIC_TYPE is a tagged type and we know the object's address,
8189 then we can determine its tag, and compute the object's actual
8190 type from there. Note that we have to use the fixed record
8191 type (the parent part of the record may have dynamic fields
8192 and the way the location of _tag is expressed may depend on
8195 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8198 value_tag_from_contents_and_address
8202 struct type *real_type = type_from_tag (tag);
8204 value_from_contents_and_address (fixed_record_type,
8207 fixed_record_type = value_type (obj);
8208 if (real_type != NULL)
8209 return to_fixed_record_type
8211 value_address (ada_tag_value_at_base_address (obj)), NULL);
8214 /* Check to see if there is a parallel ___XVZ variable.
8215 If there is, then it provides the actual size of our type. */
8216 else if (ada_type_name (fixed_record_type) != NULL)
8218 const char *name = ada_type_name (fixed_record_type);
8220 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8221 bool xvz_found = false;
8224 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8227 xvz_found = get_int_var_value (xvz_name, size);
8229 catch (const gdb_exception_error &except)
8231 /* We found the variable, but somehow failed to read
8232 its value. Rethrow the same error, but with a little
8233 bit more information, to help the user understand
8234 what went wrong (Eg: the variable might have been
8236 throw_error (except.error,
8237 _("unable to read value of %s (%s)"),
8238 xvz_name, except.what ());
8241 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8243 fixed_record_type = copy_type (fixed_record_type);
8244 TYPE_LENGTH (fixed_record_type) = size;
8246 /* The FIXED_RECORD_TYPE may have be a stub. We have
8247 observed this when the debugging info is STABS, and
8248 apparently it is something that is hard to fix.
8250 In practice, we don't need the actual type definition
8251 at all, because the presence of the XVZ variable allows us
8252 to assume that there must be a XVS type as well, which we
8253 should be able to use later, when we need the actual type
8256 In the meantime, pretend that the "fixed" type we are
8257 returning is NOT a stub, because this can cause trouble
8258 when using this type to create new types targeting it.
8259 Indeed, the associated creation routines often check
8260 whether the target type is a stub and will try to replace
8261 it, thus using a type with the wrong size. This, in turn,
8262 might cause the new type to have the wrong size too.
8263 Consider the case of an array, for instance, where the size
8264 of the array is computed from the number of elements in
8265 our array multiplied by the size of its element. */
8266 fixed_record_type->set_is_stub (false);
8269 return fixed_record_type;
8271 case TYPE_CODE_ARRAY:
8272 return to_fixed_array_type (type, dval, 1);
8273 case TYPE_CODE_UNION:
8277 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8281 /* The same as ada_to_fixed_type_1, except that it preserves the type
8282 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8284 The typedef layer needs be preserved in order to differentiate between
8285 arrays and array pointers when both types are implemented using the same
8286 fat pointer. In the array pointer case, the pointer is encoded as
8287 a typedef of the pointer type. For instance, considering:
8289 type String_Access is access String;
8290 S1 : String_Access := null;
8292 To the debugger, S1 is defined as a typedef of type String. But
8293 to the user, it is a pointer. So if the user tries to print S1,
8294 we should not dereference the array, but print the array address
8297 If we didn't preserve the typedef layer, we would lose the fact that
8298 the type is to be presented as a pointer (needs de-reference before
8299 being printed). And we would also use the source-level type name. */
8302 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8303 CORE_ADDR address, struct value *dval, int check_tag)
8306 struct type *fixed_type =
8307 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8309 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8310 then preserve the typedef layer.
8312 Implementation note: We can only check the main-type portion of
8313 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8314 from TYPE now returns a type that has the same instance flags
8315 as TYPE. For instance, if TYPE is a "typedef const", and its
8316 target type is a "struct", then the typedef elimination will return
8317 a "const" version of the target type. See check_typedef for more
8318 details about how the typedef layer elimination is done.
8320 brobecker/2010-11-19: It seems to me that the only case where it is
8321 useful to preserve the typedef layer is when dealing with fat pointers.
8322 Perhaps, we could add a check for that and preserve the typedef layer
8323 only in that situation. But this seems unnecessary so far, probably
8324 because we call check_typedef/ada_check_typedef pretty much everywhere.
8326 if (type->code () == TYPE_CODE_TYPEDEF
8327 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8328 == TYPE_MAIN_TYPE (fixed_type)))
8334 /* A standard (static-sized) type corresponding as well as possible to
8335 TYPE0, but based on no runtime data. */
8337 static struct type *
8338 to_static_fixed_type (struct type *type0)
8345 if (type0->is_fixed_instance ())
8348 type0 = ada_check_typedef (type0);
8350 switch (type0->code ())
8354 case TYPE_CODE_STRUCT:
8355 type = dynamic_template_type (type0);
8357 return template_to_static_fixed_type (type);
8359 return template_to_static_fixed_type (type0);
8360 case TYPE_CODE_UNION:
8361 type = ada_find_parallel_type (type0, "___XVU");
8363 return template_to_static_fixed_type (type);
8365 return template_to_static_fixed_type (type0);
8369 /* A static approximation of TYPE with all type wrappers removed. */
8371 static struct type *
8372 static_unwrap_type (struct type *type)
8374 if (ada_is_aligner_type (type))
8376 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8377 if (ada_type_name (type1) == NULL)
8378 type1->set_name (ada_type_name (type));
8380 return static_unwrap_type (type1);
8384 struct type *raw_real_type = ada_get_base_type (type);
8386 if (raw_real_type == type)
8389 return to_static_fixed_type (raw_real_type);
8393 /* In some cases, incomplete and private types require
8394 cross-references that are not resolved as records (for example,
8396 type FooP is access Foo;
8398 type Foo is array ...;
8399 ). In these cases, since there is no mechanism for producing
8400 cross-references to such types, we instead substitute for FooP a
8401 stub enumeration type that is nowhere resolved, and whose tag is
8402 the name of the actual type. Call these types "non-record stubs". */
8404 /* A type equivalent to TYPE that is not a non-record stub, if one
8405 exists, otherwise TYPE. */
8408 ada_check_typedef (struct type *type)
8413 /* If our type is an access to an unconstrained array, which is encoded
8414 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8415 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8416 what allows us to distinguish between fat pointers that represent
8417 array types, and fat pointers that represent array access types
8418 (in both cases, the compiler implements them as fat pointers). */
8419 if (ada_is_access_to_unconstrained_array (type))
8422 type = check_typedef (type);
8423 if (type == NULL || type->code () != TYPE_CODE_ENUM
8424 || !type->is_stub ()
8425 || type->name () == NULL)
8429 const char *name = type->name ();
8430 struct type *type1 = ada_find_any_type (name);
8435 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8436 stubs pointing to arrays, as we don't create symbols for array
8437 types, only for the typedef-to-array types). If that's the case,
8438 strip the typedef layer. */
8439 if (type1->code () == TYPE_CODE_TYPEDEF)
8440 type1 = ada_check_typedef (type1);
8446 /* A value representing the data at VALADDR/ADDRESS as described by
8447 type TYPE0, but with a standard (static-sized) type that correctly
8448 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8449 type, then return VAL0 [this feature is simply to avoid redundant
8450 creation of struct values]. */
8452 static struct value *
8453 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8456 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8458 if (type == type0 && val0 != NULL)
8461 if (VALUE_LVAL (val0) != lval_memory)
8463 /* Our value does not live in memory; it could be a convenience
8464 variable, for instance. Create a not_lval value using val0's
8466 return value_from_contents (type, value_contents (val0));
8469 return value_from_contents_and_address (type, 0, address);
8472 /* A value representing VAL, but with a standard (static-sized) type
8473 that correctly describes it. Does not necessarily create a new
8477 ada_to_fixed_value (struct value *val)
8479 val = unwrap_value (val);
8480 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8487 /* Table mapping attribute numbers to names.
8488 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8490 static const char * const attribute_names[] = {
8508 ada_attribute_name (enum exp_opcode n)
8510 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8511 return attribute_names[n - OP_ATR_FIRST + 1];
8513 return attribute_names[0];
8516 /* Evaluate the 'POS attribute applied to ARG. */
8519 pos_atr (struct value *arg)
8521 struct value *val = coerce_ref (arg);
8522 struct type *type = value_type (val);
8524 if (!discrete_type_p (type))
8525 error (_("'POS only defined on discrete types"));
8527 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8528 if (!result.has_value ())
8529 error (_("enumeration value is invalid: can't find 'POS"));
8535 ada_pos_atr (struct type *expect_type,
8536 struct expression *exp,
8537 enum noside noside, enum exp_opcode op,
8540 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8541 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8542 return value_zero (type, not_lval);
8543 return value_from_longest (type, pos_atr (arg));
8546 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8548 static struct value *
8549 val_atr (struct type *type, LONGEST val)
8551 gdb_assert (discrete_type_p (type));
8552 if (type->code () == TYPE_CODE_RANGE)
8553 type = TYPE_TARGET_TYPE (type);
8554 if (type->code () == TYPE_CODE_ENUM)
8556 if (val < 0 || val >= type->num_fields ())
8557 error (_("argument to 'VAL out of range"));
8558 val = TYPE_FIELD_ENUMVAL (type, val);
8560 return value_from_longest (type, val);
8564 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8566 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8567 return value_zero (type, not_lval);
8569 if (!discrete_type_p (type))
8570 error (_("'VAL only defined on discrete types"));
8571 if (!integer_type_p (value_type (arg)))
8572 error (_("'VAL requires integral argument"));
8574 return val_atr (type, value_as_long (arg));
8580 /* True if TYPE appears to be an Ada character type.
8581 [At the moment, this is true only for Character and Wide_Character;
8582 It is a heuristic test that could stand improvement]. */
8585 ada_is_character_type (struct type *type)
8589 /* If the type code says it's a character, then assume it really is,
8590 and don't check any further. */
8591 if (type->code () == TYPE_CODE_CHAR)
8594 /* Otherwise, assume it's a character type iff it is a discrete type
8595 with a known character type name. */
8596 name = ada_type_name (type);
8597 return (name != NULL
8598 && (type->code () == TYPE_CODE_INT
8599 || type->code () == TYPE_CODE_RANGE)
8600 && (strcmp (name, "character") == 0
8601 || strcmp (name, "wide_character") == 0
8602 || strcmp (name, "wide_wide_character") == 0
8603 || strcmp (name, "unsigned char") == 0));
8606 /* True if TYPE appears to be an Ada string type. */
8609 ada_is_string_type (struct type *type)
8611 type = ada_check_typedef (type);
8613 && type->code () != TYPE_CODE_PTR
8614 && (ada_is_simple_array_type (type)
8615 || ada_is_array_descriptor_type (type))
8616 && ada_array_arity (type) == 1)
8618 struct type *elttype = ada_array_element_type (type, 1);
8620 return ada_is_character_type (elttype);
8626 /* The compiler sometimes provides a parallel XVS type for a given
8627 PAD type. Normally, it is safe to follow the PAD type directly,
8628 but older versions of the compiler have a bug that causes the offset
8629 of its "F" field to be wrong. Following that field in that case
8630 would lead to incorrect results, but this can be worked around
8631 by ignoring the PAD type and using the associated XVS type instead.
8633 Set to True if the debugger should trust the contents of PAD types.
8634 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8635 static bool trust_pad_over_xvs = true;
8637 /* True if TYPE is a struct type introduced by the compiler to force the
8638 alignment of a value. Such types have a single field with a
8639 distinctive name. */
8642 ada_is_aligner_type (struct type *type)
8644 type = ada_check_typedef (type);
8646 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8649 return (type->code () == TYPE_CODE_STRUCT
8650 && type->num_fields () == 1
8651 && strcmp (type->field (0).name (), "F") == 0);
8654 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8655 the parallel type. */
8658 ada_get_base_type (struct type *raw_type)
8660 struct type *real_type_namer;
8661 struct type *raw_real_type;
8663 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8666 if (ada_is_aligner_type (raw_type))
8667 /* The encoding specifies that we should always use the aligner type.
8668 So, even if this aligner type has an associated XVS type, we should
8671 According to the compiler gurus, an XVS type parallel to an aligner
8672 type may exist because of a stabs limitation. In stabs, aligner
8673 types are empty because the field has a variable-sized type, and
8674 thus cannot actually be used as an aligner type. As a result,
8675 we need the associated parallel XVS type to decode the type.
8676 Since the policy in the compiler is to not change the internal
8677 representation based on the debugging info format, we sometimes
8678 end up having a redundant XVS type parallel to the aligner type. */
8681 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8682 if (real_type_namer == NULL
8683 || real_type_namer->code () != TYPE_CODE_STRUCT
8684 || real_type_namer->num_fields () != 1)
8687 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8689 /* This is an older encoding form where the base type needs to be
8690 looked up by name. We prefer the newer encoding because it is
8692 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8693 if (raw_real_type == NULL)
8696 return raw_real_type;
8699 /* The field in our XVS type is a reference to the base type. */
8700 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8703 /* The type of value designated by TYPE, with all aligners removed. */
8706 ada_aligned_type (struct type *type)
8708 if (ada_is_aligner_type (type))
8709 return ada_aligned_type (type->field (0).type ());
8711 return ada_get_base_type (type);
8715 /* The address of the aligned value in an object at address VALADDR
8716 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8719 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8721 if (ada_is_aligner_type (type))
8722 return ada_aligned_value_addr (type->field (0).type (),
8724 TYPE_FIELD_BITPOS (type,
8725 0) / TARGET_CHAR_BIT);
8732 /* The printed representation of an enumeration literal with encoded
8733 name NAME. The value is good to the next call of ada_enum_name. */
8735 ada_enum_name (const char *name)
8737 static std::string storage;
8740 /* First, unqualify the enumeration name:
8741 1. Search for the last '.' character. If we find one, then skip
8742 all the preceding characters, the unqualified name starts
8743 right after that dot.
8744 2. Otherwise, we may be debugging on a target where the compiler
8745 translates dots into "__". Search forward for double underscores,
8746 but stop searching when we hit an overloading suffix, which is
8747 of the form "__" followed by digits. */
8749 tmp = strrchr (name, '.');
8754 while ((tmp = strstr (name, "__")) != NULL)
8756 if (isdigit (tmp[2]))
8767 if (name[1] == 'U' || name[1] == 'W')
8769 if (sscanf (name + 2, "%x", &v) != 1)
8772 else if (((name[1] >= '0' && name[1] <= '9')
8773 || (name[1] >= 'a' && name[1] <= 'z'))
8776 storage = string_printf ("'%c'", name[1]);
8777 return storage.c_str ();
8782 if (isascii (v) && isprint (v))
8783 storage = string_printf ("'%c'", v);
8784 else if (name[1] == 'U')
8785 storage = string_printf ("[\"%02x\"]", v);
8787 storage = string_printf ("[\"%04x\"]", v);
8789 return storage.c_str ();
8793 tmp = strstr (name, "__");
8795 tmp = strstr (name, "$");
8798 storage = std::string (name, tmp - name);
8799 return storage.c_str ();
8806 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8809 static struct value *
8810 unwrap_value (struct value *val)
8812 struct type *type = ada_check_typedef (value_type (val));
8814 if (ada_is_aligner_type (type))
8816 struct value *v = ada_value_struct_elt (val, "F", 0);
8817 struct type *val_type = ada_check_typedef (value_type (v));
8819 if (ada_type_name (val_type) == NULL)
8820 val_type->set_name (ada_type_name (type));
8822 return unwrap_value (v);
8826 struct type *raw_real_type =
8827 ada_check_typedef (ada_get_base_type (type));
8829 /* If there is no parallel XVS or XVE type, then the value is
8830 already unwrapped. Return it without further modification. */
8831 if ((type == raw_real_type)
8832 && ada_find_parallel_type (type, "___XVE") == NULL)
8836 coerce_unspec_val_to_type
8837 (val, ada_to_fixed_type (raw_real_type, 0,
8838 value_address (val),
8843 /* Given two array types T1 and T2, return nonzero iff both arrays
8844 contain the same number of elements. */
8847 ada_same_array_size_p (struct type *t1, struct type *t2)
8849 LONGEST lo1, hi1, lo2, hi2;
8851 /* Get the array bounds in order to verify that the size of
8852 the two arrays match. */
8853 if (!get_array_bounds (t1, &lo1, &hi1)
8854 || !get_array_bounds (t2, &lo2, &hi2))
8855 error (_("unable to determine array bounds"));
8857 /* To make things easier for size comparison, normalize a bit
8858 the case of empty arrays by making sure that the difference
8859 between upper bound and lower bound is always -1. */
8865 return (hi1 - lo1 == hi2 - lo2);
8868 /* Assuming that VAL is an array of integrals, and TYPE represents
8869 an array with the same number of elements, but with wider integral
8870 elements, return an array "casted" to TYPE. In practice, this
8871 means that the returned array is built by casting each element
8872 of the original array into TYPE's (wider) element type. */
8874 static struct value *
8875 ada_promote_array_of_integrals (struct type *type, struct value *val)
8877 struct type *elt_type = TYPE_TARGET_TYPE (type);
8882 /* Verify that both val and type are arrays of scalars, and
8883 that the size of val's elements is smaller than the size
8884 of type's element. */
8885 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8886 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8887 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8888 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8889 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8890 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8892 if (!get_array_bounds (type, &lo, &hi))
8893 error (_("unable to determine array bounds"));
8895 res = allocate_value (type);
8897 /* Promote each array element. */
8898 for (i = 0; i < hi - lo + 1; i++)
8900 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8902 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8903 value_contents_all (elt), TYPE_LENGTH (elt_type));
8909 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8910 return the converted value. */
8912 static struct value *
8913 coerce_for_assign (struct type *type, struct value *val)
8915 struct type *type2 = value_type (val);
8920 type2 = ada_check_typedef (type2);
8921 type = ada_check_typedef (type);
8923 if (type2->code () == TYPE_CODE_PTR
8924 && type->code () == TYPE_CODE_ARRAY)
8926 val = ada_value_ind (val);
8927 type2 = value_type (val);
8930 if (type2->code () == TYPE_CODE_ARRAY
8931 && type->code () == TYPE_CODE_ARRAY)
8933 if (!ada_same_array_size_p (type, type2))
8934 error (_("cannot assign arrays of different length"));
8936 if (is_integral_type (TYPE_TARGET_TYPE (type))
8937 && is_integral_type (TYPE_TARGET_TYPE (type2))
8938 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8939 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8941 /* Allow implicit promotion of the array elements to
8943 return ada_promote_array_of_integrals (type, val);
8946 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8947 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8948 error (_("Incompatible types in assignment"));
8949 deprecated_set_value_type (val, type);
8954 static struct value *
8955 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8958 struct type *type1, *type2;
8961 arg1 = coerce_ref (arg1);
8962 arg2 = coerce_ref (arg2);
8963 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8964 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8966 if (type1->code () != TYPE_CODE_INT
8967 || type2->code () != TYPE_CODE_INT)
8968 return value_binop (arg1, arg2, op);
8977 return value_binop (arg1, arg2, op);
8980 v2 = value_as_long (arg2);
8984 if (op == BINOP_MOD)
8986 else if (op == BINOP_DIV)
8990 gdb_assert (op == BINOP_REM);
8994 error (_("second operand of %s must not be zero."), name);
8997 if (type1->is_unsigned () || op == BINOP_MOD)
8998 return value_binop (arg1, arg2, op);
9000 v1 = value_as_long (arg1);
9005 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9006 v += v > 0 ? -1 : 1;
9014 /* Should not reach this point. */
9018 val = allocate_value (type1);
9019 store_unsigned_integer (value_contents_raw (val),
9020 TYPE_LENGTH (value_type (val)),
9021 type_byte_order (type1), v);
9026 ada_value_equal (struct value *arg1, struct value *arg2)
9028 if (ada_is_direct_array_type (value_type (arg1))
9029 || ada_is_direct_array_type (value_type (arg2)))
9031 struct type *arg1_type, *arg2_type;
9033 /* Automatically dereference any array reference before
9034 we attempt to perform the comparison. */
9035 arg1 = ada_coerce_ref (arg1);
9036 arg2 = ada_coerce_ref (arg2);
9038 arg1 = ada_coerce_to_simple_array (arg1);
9039 arg2 = ada_coerce_to_simple_array (arg2);
9041 arg1_type = ada_check_typedef (value_type (arg1));
9042 arg2_type = ada_check_typedef (value_type (arg2));
9044 if (arg1_type->code () != TYPE_CODE_ARRAY
9045 || arg2_type->code () != TYPE_CODE_ARRAY)
9046 error (_("Attempt to compare array with non-array"));
9047 /* FIXME: The following works only for types whose
9048 representations use all bits (no padding or undefined bits)
9049 and do not have user-defined equality. */
9050 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9051 && memcmp (value_contents (arg1), value_contents (arg2),
9052 TYPE_LENGTH (arg1_type)) == 0);
9054 return value_equal (arg1, arg2);
9061 check_objfile (const std::unique_ptr<ada_component> &comp,
9062 struct objfile *objfile)
9064 return comp->uses_objfile (objfile);
9067 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9068 component of LHS (a simple array or a record). Does not modify the
9069 inferior's memory, nor does it modify LHS (unless LHS ==
9073 assign_component (struct value *container, struct value *lhs, LONGEST index,
9074 struct expression *exp, operation_up &arg)
9076 scoped_value_mark mark;
9079 struct type *lhs_type = check_typedef (value_type (lhs));
9081 if (lhs_type->code () == TYPE_CODE_ARRAY)
9083 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9084 struct value *index_val = value_from_longest (index_type, index);
9086 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9090 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9091 elt = ada_to_fixed_value (elt);
9094 ada_aggregate_operation *ag_op
9095 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9096 if (ag_op != nullptr)
9097 ag_op->assign_aggregate (container, elt, exp);
9099 value_assign_to_component (container, elt,
9100 arg->evaluate (nullptr, exp,
9105 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9107 for (const auto &item : m_components)
9108 if (item->uses_objfile (objfile))
9114 ada_aggregate_component::dump (ui_file *stream, int depth)
9116 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9117 for (const auto &item : m_components)
9118 item->dump (stream, depth + 1);
9122 ada_aggregate_component::assign (struct value *container,
9123 struct value *lhs, struct expression *exp,
9124 std::vector<LONGEST> &indices,
9125 LONGEST low, LONGEST high)
9127 for (auto &item : m_components)
9128 item->assign (container, lhs, exp, indices, low, high);
9131 /* See ada-exp.h. */
9134 ada_aggregate_operation::assign_aggregate (struct value *container,
9136 struct expression *exp)
9138 struct type *lhs_type;
9139 LONGEST low_index, high_index;
9141 container = ada_coerce_ref (container);
9142 if (ada_is_direct_array_type (value_type (container)))
9143 container = ada_coerce_to_simple_array (container);
9144 lhs = ada_coerce_ref (lhs);
9145 if (!deprecated_value_modifiable (lhs))
9146 error (_("Left operand of assignment is not a modifiable lvalue."));
9148 lhs_type = check_typedef (value_type (lhs));
9149 if (ada_is_direct_array_type (lhs_type))
9151 lhs = ada_coerce_to_simple_array (lhs);
9152 lhs_type = check_typedef (value_type (lhs));
9153 low_index = lhs_type->bounds ()->low.const_val ();
9154 high_index = lhs_type->bounds ()->high.const_val ();
9156 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9159 high_index = num_visible_fields (lhs_type) - 1;
9162 error (_("Left-hand side must be array or record."));
9164 std::vector<LONGEST> indices (4);
9165 indices[0] = indices[1] = low_index - 1;
9166 indices[2] = indices[3] = high_index + 1;
9168 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9169 low_index, high_index);
9175 ada_positional_component::uses_objfile (struct objfile *objfile)
9177 return m_op->uses_objfile (objfile);
9181 ada_positional_component::dump (ui_file *stream, int depth)
9183 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9184 depth, "", m_index);
9185 m_op->dump (stream, depth + 1);
9188 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9189 construct, given that the positions are relative to lower bound
9190 LOW, where HIGH is the upper bound. Record the position in
9191 INDICES. CONTAINER is as for assign_aggregate. */
9193 ada_positional_component::assign (struct value *container,
9194 struct value *lhs, struct expression *exp,
9195 std::vector<LONGEST> &indices,
9196 LONGEST low, LONGEST high)
9198 LONGEST ind = m_index + low;
9200 if (ind - 1 == high)
9201 warning (_("Extra components in aggregate ignored."));
9204 add_component_interval (ind, ind, indices);
9205 assign_component (container, lhs, ind, exp, m_op);
9210 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9212 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9216 ada_discrete_range_association::dump (ui_file *stream, int depth)
9218 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9219 m_low->dump (stream, depth + 1);
9220 m_high->dump (stream, depth + 1);
9224 ada_discrete_range_association::assign (struct value *container,
9226 struct expression *exp,
9227 std::vector<LONGEST> &indices,
9228 LONGEST low, LONGEST high,
9231 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9232 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9234 if (lower <= upper && (lower < low || upper > high))
9235 error (_("Index in component association out of bounds."));
9237 add_component_interval (lower, upper, indices);
9238 while (lower <= upper)
9240 assign_component (container, lhs, lower, exp, op);
9246 ada_name_association::uses_objfile (struct objfile *objfile)
9248 return m_val->uses_objfile (objfile);
9252 ada_name_association::dump (ui_file *stream, int depth)
9254 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9255 m_val->dump (stream, depth + 1);
9259 ada_name_association::assign (struct value *container,
9261 struct expression *exp,
9262 std::vector<LONGEST> &indices,
9263 LONGEST low, LONGEST high,
9268 if (ada_is_direct_array_type (value_type (lhs)))
9269 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9273 ada_string_operation *strop
9274 = dynamic_cast<ada_string_operation *> (m_val.get ());
9277 if (strop != nullptr)
9278 name = strop->get_name ();
9281 ada_var_value_operation *vvo
9282 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9284 error (_("Invalid record component association."));
9285 name = vvo->get_symbol ()->natural_name ();
9289 if (! find_struct_field (name, value_type (lhs), 0,
9290 NULL, NULL, NULL, NULL, &index))
9291 error (_("Unknown component name: %s."), name);
9294 add_component_interval (index, index, indices);
9295 assign_component (container, lhs, index, exp, op);
9299 ada_choices_component::uses_objfile (struct objfile *objfile)
9301 if (m_op->uses_objfile (objfile))
9303 for (const auto &item : m_assocs)
9304 if (item->uses_objfile (objfile))
9310 ada_choices_component::dump (ui_file *stream, int depth)
9312 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9313 m_op->dump (stream, depth + 1);
9314 for (const auto &item : m_assocs)
9315 item->dump (stream, depth + 1);
9318 /* Assign into the components of LHS indexed by the OP_CHOICES
9319 construct at *POS, updating *POS past the construct, given that
9320 the allowable indices are LOW..HIGH. Record the indices assigned
9321 to in INDICES. CONTAINER is as for assign_aggregate. */
9323 ada_choices_component::assign (struct value *container,
9324 struct value *lhs, struct expression *exp,
9325 std::vector<LONGEST> &indices,
9326 LONGEST low, LONGEST high)
9328 for (auto &item : m_assocs)
9329 item->assign (container, lhs, exp, indices, low, high, m_op);
9333 ada_others_component::uses_objfile (struct objfile *objfile)
9335 return m_op->uses_objfile (objfile);
9339 ada_others_component::dump (ui_file *stream, int depth)
9341 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9342 m_op->dump (stream, depth + 1);
9345 /* Assign the value of the expression in the OP_OTHERS construct in
9346 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9347 have not been previously assigned. The index intervals already assigned
9348 are in INDICES. CONTAINER is as for assign_aggregate. */
9350 ada_others_component::assign (struct value *container,
9351 struct value *lhs, struct expression *exp,
9352 std::vector<LONGEST> &indices,
9353 LONGEST low, LONGEST high)
9355 int num_indices = indices.size ();
9356 for (int i = 0; i < num_indices - 2; i += 2)
9358 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9359 assign_component (container, lhs, ind, exp, m_op);
9364 ada_assign_operation::evaluate (struct type *expect_type,
9365 struct expression *exp,
9368 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9370 ada_aggregate_operation *ag_op
9371 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9372 if (ag_op != nullptr)
9374 if (noside != EVAL_NORMAL)
9377 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9378 return ada_value_assign (arg1, arg1);
9380 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9381 except if the lhs of our assignment is a convenience variable.
9382 In the case of assigning to a convenience variable, the lhs
9383 should be exactly the result of the evaluation of the rhs. */
9384 struct type *type = value_type (arg1);
9385 if (VALUE_LVAL (arg1) == lval_internalvar)
9387 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9388 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9390 if (VALUE_LVAL (arg1) == lval_internalvar)
9395 arg2 = coerce_for_assign (value_type (arg1), arg2);
9396 return ada_value_assign (arg1, arg2);
9399 } /* namespace expr */
9401 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9402 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9405 add_component_interval (LONGEST low, LONGEST high,
9406 std::vector<LONGEST> &indices)
9410 int size = indices.size ();
9411 for (i = 0; i < size; i += 2) {
9412 if (high >= indices[i] && low <= indices[i + 1])
9416 for (kh = i + 2; kh < size; kh += 2)
9417 if (high < indices[kh])
9419 if (low < indices[i])
9421 indices[i + 1] = indices[kh - 1];
9422 if (high > indices[i + 1])
9423 indices[i + 1] = high;
9424 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9425 indices.resize (kh - i - 2);
9428 else if (high < indices[i])
9432 indices.resize (indices.size () + 2);
9433 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9434 indices[j] = indices[j - 2];
9436 indices[i + 1] = high;
9439 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9442 static struct value *
9443 ada_value_cast (struct type *type, struct value *arg2)
9445 if (type == ada_check_typedef (value_type (arg2)))
9448 return value_cast (type, arg2);
9451 /* Evaluating Ada expressions, and printing their result.
9452 ------------------------------------------------------
9457 We usually evaluate an Ada expression in order to print its value.
9458 We also evaluate an expression in order to print its type, which
9459 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9460 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9461 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9462 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9465 Evaluating expressions is a little more complicated for Ada entities
9466 than it is for entities in languages such as C. The main reason for
9467 this is that Ada provides types whose definition might be dynamic.
9468 One example of such types is variant records. Or another example
9469 would be an array whose bounds can only be known at run time.
9471 The following description is a general guide as to what should be
9472 done (and what should NOT be done) in order to evaluate an expression
9473 involving such types, and when. This does not cover how the semantic
9474 information is encoded by GNAT as this is covered separatly. For the
9475 document used as the reference for the GNAT encoding, see exp_dbug.ads
9476 in the GNAT sources.
9478 Ideally, we should embed each part of this description next to its
9479 associated code. Unfortunately, the amount of code is so vast right
9480 now that it's hard to see whether the code handling a particular
9481 situation might be duplicated or not. One day, when the code is
9482 cleaned up, this guide might become redundant with the comments
9483 inserted in the code, and we might want to remove it.
9485 2. ``Fixing'' an Entity, the Simple Case:
9486 -----------------------------------------
9488 When evaluating Ada expressions, the tricky issue is that they may
9489 reference entities whose type contents and size are not statically
9490 known. Consider for instance a variant record:
9492 type Rec (Empty : Boolean := True) is record
9495 when False => Value : Integer;
9498 Yes : Rec := (Empty => False, Value => 1);
9499 No : Rec := (empty => True);
9501 The size and contents of that record depends on the value of the
9502 descriminant (Rec.Empty). At this point, neither the debugging
9503 information nor the associated type structure in GDB are able to
9504 express such dynamic types. So what the debugger does is to create
9505 "fixed" versions of the type that applies to the specific object.
9506 We also informally refer to this operation as "fixing" an object,
9507 which means creating its associated fixed type.
9509 Example: when printing the value of variable "Yes" above, its fixed
9510 type would look like this:
9517 On the other hand, if we printed the value of "No", its fixed type
9524 Things become a little more complicated when trying to fix an entity
9525 with a dynamic type that directly contains another dynamic type,
9526 such as an array of variant records, for instance. There are
9527 two possible cases: Arrays, and records.
9529 3. ``Fixing'' Arrays:
9530 ---------------------
9532 The type structure in GDB describes an array in terms of its bounds,
9533 and the type of its elements. By design, all elements in the array
9534 have the same type and we cannot represent an array of variant elements
9535 using the current type structure in GDB. When fixing an array,
9536 we cannot fix the array element, as we would potentially need one
9537 fixed type per element of the array. As a result, the best we can do
9538 when fixing an array is to produce an array whose bounds and size
9539 are correct (allowing us to read it from memory), but without having
9540 touched its element type. Fixing each element will be done later,
9541 when (if) necessary.
9543 Arrays are a little simpler to handle than records, because the same
9544 amount of memory is allocated for each element of the array, even if
9545 the amount of space actually used by each element differs from element
9546 to element. Consider for instance the following array of type Rec:
9548 type Rec_Array is array (1 .. 2) of Rec;
9550 The actual amount of memory occupied by each element might be different
9551 from element to element, depending on the value of their discriminant.
9552 But the amount of space reserved for each element in the array remains
9553 fixed regardless. So we simply need to compute that size using
9554 the debugging information available, from which we can then determine
9555 the array size (we multiply the number of elements of the array by
9556 the size of each element).
9558 The simplest case is when we have an array of a constrained element
9559 type. For instance, consider the following type declarations:
9561 type Bounded_String (Max_Size : Integer) is
9563 Buffer : String (1 .. Max_Size);
9565 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9567 In this case, the compiler describes the array as an array of
9568 variable-size elements (identified by its XVS suffix) for which
9569 the size can be read in the parallel XVZ variable.
9571 In the case of an array of an unconstrained element type, the compiler
9572 wraps the array element inside a private PAD type. This type should not
9573 be shown to the user, and must be "unwrap"'ed before printing. Note
9574 that we also use the adjective "aligner" in our code to designate
9575 these wrapper types.
9577 In some cases, the size allocated for each element is statically
9578 known. In that case, the PAD type already has the correct size,
9579 and the array element should remain unfixed.
9581 But there are cases when this size is not statically known.
9582 For instance, assuming that "Five" is an integer variable:
9584 type Dynamic is array (1 .. Five) of Integer;
9585 type Wrapper (Has_Length : Boolean := False) is record
9588 when True => Length : Integer;
9592 type Wrapper_Array is array (1 .. 2) of Wrapper;
9594 Hello : Wrapper_Array := (others => (Has_Length => True,
9595 Data => (others => 17),
9599 The debugging info would describe variable Hello as being an
9600 array of a PAD type. The size of that PAD type is not statically
9601 known, but can be determined using a parallel XVZ variable.
9602 In that case, a copy of the PAD type with the correct size should
9603 be used for the fixed array.
9605 3. ``Fixing'' record type objects:
9606 ----------------------------------
9608 Things are slightly different from arrays in the case of dynamic
9609 record types. In this case, in order to compute the associated
9610 fixed type, we need to determine the size and offset of each of
9611 its components. This, in turn, requires us to compute the fixed
9612 type of each of these components.
9614 Consider for instance the example:
9616 type Bounded_String (Max_Size : Natural) is record
9617 Str : String (1 .. Max_Size);
9620 My_String : Bounded_String (Max_Size => 10);
9622 In that case, the position of field "Length" depends on the size
9623 of field Str, which itself depends on the value of the Max_Size
9624 discriminant. In order to fix the type of variable My_String,
9625 we need to fix the type of field Str. Therefore, fixing a variant
9626 record requires us to fix each of its components.
9628 However, if a component does not have a dynamic size, the component
9629 should not be fixed. In particular, fields that use a PAD type
9630 should not fixed. Here is an example where this might happen
9631 (assuming type Rec above):
9633 type Container (Big : Boolean) is record
9637 when True => Another : Integer;
9641 My_Container : Container := (Big => False,
9642 First => (Empty => True),
9645 In that example, the compiler creates a PAD type for component First,
9646 whose size is constant, and then positions the component After just
9647 right after it. The offset of component After is therefore constant
9650 The debugger computes the position of each field based on an algorithm
9651 that uses, among other things, the actual position and size of the field
9652 preceding it. Let's now imagine that the user is trying to print
9653 the value of My_Container. If the type fixing was recursive, we would
9654 end up computing the offset of field After based on the size of the
9655 fixed version of field First. And since in our example First has
9656 only one actual field, the size of the fixed type is actually smaller
9657 than the amount of space allocated to that field, and thus we would
9658 compute the wrong offset of field After.
9660 To make things more complicated, we need to watch out for dynamic
9661 components of variant records (identified by the ___XVL suffix in
9662 the component name). Even if the target type is a PAD type, the size
9663 of that type might not be statically known. So the PAD type needs
9664 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9665 we might end up with the wrong size for our component. This can be
9666 observed with the following type declarations:
9668 type Octal is new Integer range 0 .. 7;
9669 type Octal_Array is array (Positive range <>) of Octal;
9670 pragma Pack (Octal_Array);
9672 type Octal_Buffer (Size : Positive) is record
9673 Buffer : Octal_Array (1 .. Size);
9677 In that case, Buffer is a PAD type whose size is unset and needs
9678 to be computed by fixing the unwrapped type.
9680 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9681 ----------------------------------------------------------
9683 Lastly, when should the sub-elements of an entity that remained unfixed
9684 thus far, be actually fixed?
9686 The answer is: Only when referencing that element. For instance
9687 when selecting one component of a record, this specific component
9688 should be fixed at that point in time. Or when printing the value
9689 of a record, each component should be fixed before its value gets
9690 printed. Similarly for arrays, the element of the array should be
9691 fixed when printing each element of the array, or when extracting
9692 one element out of that array. On the other hand, fixing should
9693 not be performed on the elements when taking a slice of an array!
9695 Note that one of the side effects of miscomputing the offset and
9696 size of each field is that we end up also miscomputing the size
9697 of the containing type. This can have adverse results when computing
9698 the value of an entity. GDB fetches the value of an entity based
9699 on the size of its type, and thus a wrong size causes GDB to fetch
9700 the wrong amount of memory. In the case where the computed size is
9701 too small, GDB fetches too little data to print the value of our
9702 entity. Results in this case are unpredictable, as we usually read
9703 past the buffer containing the data =:-o. */
9705 /* A helper function for TERNOP_IN_RANGE. */
9708 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9710 value *arg1, value *arg2, value *arg3)
9712 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9714 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9716 value_from_longest (type,
9717 (value_less (arg1, arg3)
9718 || value_equal (arg1, arg3))
9719 && (value_less (arg2, arg1)
9720 || value_equal (arg2, arg1)));
9723 /* A helper function for UNOP_NEG. */
9726 ada_unop_neg (struct type *expect_type,
9727 struct expression *exp,
9728 enum noside noside, enum exp_opcode op,
9731 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9732 return value_neg (arg1);
9735 /* A helper function for UNOP_IN_RANGE. */
9738 ada_unop_in_range (struct type *expect_type,
9739 struct expression *exp,
9740 enum noside noside, enum exp_opcode op,
9741 struct value *arg1, struct type *type)
9743 struct value *arg2, *arg3;
9744 switch (type->code ())
9747 lim_warning (_("Membership test incompletely implemented; "
9748 "always returns true"));
9749 type = language_bool_type (exp->language_defn, exp->gdbarch);
9750 return value_from_longest (type, (LONGEST) 1);
9752 case TYPE_CODE_RANGE:
9753 arg2 = value_from_longest (type,
9754 type->bounds ()->low.const_val ());
9755 arg3 = value_from_longest (type,
9756 type->bounds ()->high.const_val ());
9757 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9758 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9759 type = language_bool_type (exp->language_defn, exp->gdbarch);
9761 value_from_longest (type,
9762 (value_less (arg1, arg3)
9763 || value_equal (arg1, arg3))
9764 && (value_less (arg2, arg1)
9765 || value_equal (arg2, arg1)));
9769 /* A helper function for OP_ATR_TAG. */
9772 ada_atr_tag (struct type *expect_type,
9773 struct expression *exp,
9774 enum noside noside, enum exp_opcode op,
9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9778 return value_zero (ada_tag_type (arg1), not_lval);
9780 return ada_value_tag (arg1);
9783 /* A helper function for OP_ATR_SIZE. */
9786 ada_atr_size (struct type *expect_type,
9787 struct expression *exp,
9788 enum noside noside, enum exp_opcode op,
9791 struct type *type = value_type (arg1);
9793 /* If the argument is a reference, then dereference its type, since
9794 the user is really asking for the size of the actual object,
9795 not the size of the pointer. */
9796 if (type->code () == TYPE_CODE_REF)
9797 type = TYPE_TARGET_TYPE (type);
9799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9800 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9802 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9803 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9806 /* A helper function for UNOP_ABS. */
9809 ada_abs (struct type *expect_type,
9810 struct expression *exp,
9811 enum noside noside, enum exp_opcode op,
9814 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9815 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9816 return value_neg (arg1);
9821 /* A helper function for BINOP_MUL. */
9824 ada_mult_binop (struct type *expect_type,
9825 struct expression *exp,
9826 enum noside noside, enum exp_opcode op,
9827 struct value *arg1, struct value *arg2)
9829 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9831 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9832 return value_zero (value_type (arg1), not_lval);
9836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837 return ada_value_binop (arg1, arg2, op);
9841 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9844 ada_equal_binop (struct type *expect_type,
9845 struct expression *exp,
9846 enum noside noside, enum exp_opcode op,
9847 struct value *arg1, struct value *arg2)
9850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 tem = ada_value_equal (arg1, arg2);
9857 if (op == BINOP_NOTEQUAL)
9859 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9860 return value_from_longest (type, (LONGEST) tem);
9863 /* A helper function for TERNOP_SLICE. */
9866 ada_ternop_slice (struct expression *exp,
9868 struct value *array, struct value *low_bound_val,
9869 struct value *high_bound_val)
9874 low_bound_val = coerce_ref (low_bound_val);
9875 high_bound_val = coerce_ref (high_bound_val);
9876 low_bound = value_as_long (low_bound_val);
9877 high_bound = value_as_long (high_bound_val);
9879 /* If this is a reference to an aligner type, then remove all
9881 if (value_type (array)->code () == TYPE_CODE_REF
9882 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9883 TYPE_TARGET_TYPE (value_type (array)) =
9884 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9886 if (ada_is_any_packed_array_type (value_type (array)))
9887 error (_("cannot slice a packed array"));
9889 /* If this is a reference to an array or an array lvalue,
9890 convert to a pointer. */
9891 if (value_type (array)->code () == TYPE_CODE_REF
9892 || (value_type (array)->code () == TYPE_CODE_ARRAY
9893 && VALUE_LVAL (array) == lval_memory))
9894 array = value_addr (array);
9896 if (noside == EVAL_AVOID_SIDE_EFFECTS
9897 && ada_is_array_descriptor_type (ada_check_typedef
9898 (value_type (array))))
9899 return empty_array (ada_type_of_array (array, 0), low_bound,
9902 array = ada_coerce_to_simple_array_ptr (array);
9904 /* If we have more than one level of pointer indirection,
9905 dereference the value until we get only one level. */
9906 while (value_type (array)->code () == TYPE_CODE_PTR
9907 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9909 array = value_ind (array);
9911 /* Make sure we really do have an array type before going further,
9912 to avoid a SEGV when trying to get the index type or the target
9913 type later down the road if the debug info generated by
9914 the compiler is incorrect or incomplete. */
9915 if (!ada_is_simple_array_type (value_type (array)))
9916 error (_("cannot take slice of non-array"));
9918 if (ada_check_typedef (value_type (array))->code ()
9921 struct type *type0 = ada_check_typedef (value_type (array));
9923 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9924 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9927 struct type *arr_type0 =
9928 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9930 return ada_value_slice_from_ptr (array, arr_type0,
9931 longest_to_int (low_bound),
9932 longest_to_int (high_bound));
9935 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9937 else if (high_bound < low_bound)
9938 return empty_array (value_type (array), low_bound, high_bound);
9940 return ada_value_slice (array, longest_to_int (low_bound),
9941 longest_to_int (high_bound));
9944 /* A helper function for BINOP_IN_BOUNDS. */
9947 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9948 struct value *arg1, struct value *arg2, int n)
9950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9952 struct type *type = language_bool_type (exp->language_defn,
9954 return value_zero (type, not_lval);
9957 struct type *type = ada_index_type (value_type (arg2), n, "range");
9959 type = value_type (arg1);
9961 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9962 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9964 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9966 type = language_bool_type (exp->language_defn, exp->gdbarch);
9967 return value_from_longest (type,
9968 (value_less (arg1, arg3)
9969 || value_equal (arg1, arg3))
9970 && (value_less (arg2, arg1)
9971 || value_equal (arg2, arg1)));
9974 /* A helper function for some attribute operations. */
9977 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9978 struct value *arg1, struct type *type_arg, int tem)
9980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9982 if (type_arg == NULL)
9983 type_arg = value_type (arg1);
9985 if (ada_is_constrained_packed_array_type (type_arg))
9986 type_arg = decode_constrained_packed_array_type (type_arg);
9988 if (!discrete_type_p (type_arg))
9992 default: /* Should never happen. */
9993 error (_("unexpected attribute encountered"));
9996 type_arg = ada_index_type (type_arg, tem,
9997 ada_attribute_name (op));
10000 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10005 return value_zero (type_arg, not_lval);
10007 else if (type_arg == NULL)
10009 arg1 = ada_coerce_ref (arg1);
10011 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10012 arg1 = ada_coerce_to_simple_array (arg1);
10015 if (op == OP_ATR_LENGTH)
10016 type = builtin_type (exp->gdbarch)->builtin_int;
10019 type = ada_index_type (value_type (arg1), tem,
10020 ada_attribute_name (op));
10022 type = builtin_type (exp->gdbarch)->builtin_int;
10027 default: /* Should never happen. */
10028 error (_("unexpected attribute encountered"));
10030 return value_from_longest
10031 (type, ada_array_bound (arg1, tem, 0));
10033 return value_from_longest
10034 (type, ada_array_bound (arg1, tem, 1));
10035 case OP_ATR_LENGTH:
10036 return value_from_longest
10037 (type, ada_array_length (arg1, tem));
10040 else if (discrete_type_p (type_arg))
10042 struct type *range_type;
10043 const char *name = ada_type_name (type_arg);
10046 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10047 range_type = to_fixed_range_type (type_arg, NULL);
10048 if (range_type == NULL)
10049 range_type = type_arg;
10053 error (_("unexpected attribute encountered"));
10055 return value_from_longest
10056 (range_type, ada_discrete_type_low_bound (range_type));
10058 return value_from_longest
10059 (range_type, ada_discrete_type_high_bound (range_type));
10060 case OP_ATR_LENGTH:
10061 error (_("the 'length attribute applies only to array types"));
10064 else if (type_arg->code () == TYPE_CODE_FLT)
10065 error (_("unimplemented type attribute"));
10070 if (ada_is_constrained_packed_array_type (type_arg))
10071 type_arg = decode_constrained_packed_array_type (type_arg);
10074 if (op == OP_ATR_LENGTH)
10075 type = builtin_type (exp->gdbarch)->builtin_int;
10078 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10080 type = builtin_type (exp->gdbarch)->builtin_int;
10086 error (_("unexpected attribute encountered"));
10088 low = ada_array_bound_from_type (type_arg, tem, 0);
10089 return value_from_longest (type, low);
10091 high = ada_array_bound_from_type (type_arg, tem, 1);
10092 return value_from_longest (type, high);
10093 case OP_ATR_LENGTH:
10094 low = ada_array_bound_from_type (type_arg, tem, 0);
10095 high = ada_array_bound_from_type (type_arg, tem, 1);
10096 return value_from_longest (type, high - low + 1);
10101 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10104 ada_binop_minmax (struct type *expect_type,
10105 struct expression *exp,
10106 enum noside noside, enum exp_opcode op,
10107 struct value *arg1, struct value *arg2)
10109 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10110 return value_zero (value_type (arg1), not_lval);
10113 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10114 return value_binop (arg1, arg2, op);
10118 /* A helper function for BINOP_EXP. */
10121 ada_binop_exp (struct type *expect_type,
10122 struct expression *exp,
10123 enum noside noside, enum exp_opcode op,
10124 struct value *arg1, struct value *arg2)
10126 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10127 return value_zero (value_type (arg1), not_lval);
10130 /* For integer exponentiation operations,
10131 only promote the first argument. */
10132 if (is_integral_type (value_type (arg2)))
10133 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10135 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10137 return value_binop (arg1, arg2, op);
10144 /* See ada-exp.h. */
10147 ada_resolvable::replace (operation_up &&owner,
10148 struct expression *exp,
10149 bool deprocedure_p,
10150 bool parse_completion,
10151 innermost_block_tracker *tracker,
10152 struct type *context_type)
10154 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10155 return (make_operation<ada_funcall_operation>
10156 (std::move (owner),
10157 std::vector<operation_up> ()));
10158 return std::move (owner);
10161 /* Convert the character literal whose ASCII value would be VAL to the
10162 appropriate value of type TYPE, if there is a translation.
10163 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10164 the literal 'A' (VAL == 65), returns 0. */
10167 convert_char_literal (struct type *type, LONGEST val)
10174 type = check_typedef (type);
10175 if (type->code () != TYPE_CODE_ENUM)
10178 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10179 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10181 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10182 size_t len = strlen (name);
10183 for (f = 0; f < type->num_fields (); f += 1)
10185 /* Check the suffix because an enum constant in a package will
10186 have a name like "pkg__QUxx". This is safe enough because we
10187 already have the correct type, and because mangling means
10188 there can't be clashes. */
10189 const char *ename = type->field (f).name ();
10190 size_t elen = strlen (ename);
10192 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10193 return TYPE_FIELD_ENUMVAL (type, f);
10198 /* See ada-exp.h. */
10201 ada_char_operation::replace (operation_up &&owner,
10202 struct expression *exp,
10203 bool deprocedure_p,
10204 bool parse_completion,
10205 innermost_block_tracker *tracker,
10206 struct type *context_type)
10208 operation_up result = std::move (owner);
10210 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10212 gdb_assert (result.get () == this);
10213 std::get<0> (m_storage) = context_type;
10214 std::get<1> (m_storage)
10215 = convert_char_literal (context_type, std::get<1> (m_storage));
10218 return make_operation<ada_wrapped_operation> (std::move (result));
10222 ada_wrapped_operation::evaluate (struct type *expect_type,
10223 struct expression *exp,
10224 enum noside noside)
10226 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10227 if (noside == EVAL_NORMAL)
10228 result = unwrap_value (result);
10230 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10231 then we need to perform the conversion manually, because
10232 evaluate_subexp_standard doesn't do it. This conversion is
10233 necessary in Ada because the different kinds of float/fixed
10234 types in Ada have different representations.
10236 Similarly, we need to perform the conversion from OP_LONG
10238 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10239 result = ada_value_cast (expect_type, result);
10245 ada_string_operation::evaluate (struct type *expect_type,
10246 struct expression *exp,
10247 enum noside noside)
10249 value *result = string_operation::evaluate (expect_type, exp, noside);
10250 /* The result type will have code OP_STRING, bashed there from
10251 OP_ARRAY. Bash it back. */
10252 if (value_type (result)->code () == TYPE_CODE_STRING)
10253 value_type (result)->set_code (TYPE_CODE_ARRAY);
10258 ada_qual_operation::evaluate (struct type *expect_type,
10259 struct expression *exp,
10260 enum noside noside)
10262 struct type *type = std::get<1> (m_storage);
10263 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10267 ada_ternop_range_operation::evaluate (struct type *expect_type,
10268 struct expression *exp,
10269 enum noside noside)
10271 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10272 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10273 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10274 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10278 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10279 struct expression *exp,
10280 enum noside noside)
10282 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10283 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10285 auto do_op = [=] (LONGEST x, LONGEST y)
10287 if (std::get<0> (m_storage) == BINOP_ADD)
10292 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10293 return (value_from_longest
10294 (value_type (arg1),
10295 do_op (value_as_long (arg1), value_as_long (arg2))));
10296 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10297 return (value_from_longest
10298 (value_type (arg2),
10299 do_op (value_as_long (arg1), value_as_long (arg2))));
10300 /* Preserve the original type for use by the range case below.
10301 We cannot cast the result to a reference type, so if ARG1 is
10302 a reference type, find its underlying type. */
10303 struct type *type = value_type (arg1);
10304 while (type->code () == TYPE_CODE_REF)
10305 type = TYPE_TARGET_TYPE (type);
10306 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10307 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10308 /* We need to special-case the result with a range.
10309 This is done for the benefit of "ptype". gdb's Ada support
10310 historically used the LHS to set the result type here, so
10311 preserve this behavior. */
10312 if (type->code () == TYPE_CODE_RANGE)
10313 arg1 = value_cast (type, arg1);
10318 ada_unop_atr_operation::evaluate (struct type *expect_type,
10319 struct expression *exp,
10320 enum noside noside)
10322 struct type *type_arg = nullptr;
10323 value *val = nullptr;
10325 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10327 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10328 EVAL_AVOID_SIDE_EFFECTS);
10329 type_arg = value_type (tem);
10332 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10334 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10335 val, type_arg, std::get<2> (m_storage));
10339 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10340 struct expression *exp,
10341 enum noside noside)
10343 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10344 return value_zero (expect_type, not_lval);
10346 const bound_minimal_symbol &b = std::get<0> (m_storage);
10347 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10349 val = ada_value_cast (expect_type, val);
10351 /* Follow the Ada language semantics that do not allow taking
10352 an address of the result of a cast (view conversion in Ada). */
10353 if (VALUE_LVAL (val) == lval_memory)
10355 if (value_lazy (val))
10356 value_fetch_lazy (val);
10357 VALUE_LVAL (val) = not_lval;
10363 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10364 struct expression *exp,
10365 enum noside noside)
10367 value *val = evaluate_var_value (noside,
10368 std::get<0> (m_storage).block,
10369 std::get<0> (m_storage).symbol);
10371 val = ada_value_cast (expect_type, val);
10373 /* Follow the Ada language semantics that do not allow taking
10374 an address of the result of a cast (view conversion in Ada). */
10375 if (VALUE_LVAL (val) == lval_memory)
10377 if (value_lazy (val))
10378 value_fetch_lazy (val);
10379 VALUE_LVAL (val) = not_lval;
10385 ada_var_value_operation::evaluate (struct type *expect_type,
10386 struct expression *exp,
10387 enum noside noside)
10389 symbol *sym = std::get<0> (m_storage).symbol;
10391 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10392 /* Only encountered when an unresolved symbol occurs in a
10393 context other than a function call, in which case, it is
10395 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10396 sym->print_name ());
10398 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10400 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10401 /* Check to see if this is a tagged type. We also need to handle
10402 the case where the type is a reference to a tagged type, but
10403 we have to be careful to exclude pointers to tagged types.
10404 The latter should be shown as usual (as a pointer), whereas
10405 a reference should mostly be transparent to the user. */
10406 if (ada_is_tagged_type (type, 0)
10407 || (type->code () == TYPE_CODE_REF
10408 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10410 /* Tagged types are a little special in the fact that the real
10411 type is dynamic and can only be determined by inspecting the
10412 object's tag. This means that we need to get the object's
10413 value first (EVAL_NORMAL) and then extract the actual object
10416 Note that we cannot skip the final step where we extract
10417 the object type from its tag, because the EVAL_NORMAL phase
10418 results in dynamic components being resolved into fixed ones.
10419 This can cause problems when trying to print the type
10420 description of tagged types whose parent has a dynamic size:
10421 We use the type name of the "_parent" component in order
10422 to print the name of the ancestor type in the type description.
10423 If that component had a dynamic size, the resolution into
10424 a fixed type would result in the loss of that type name,
10425 thus preventing us from printing the name of the ancestor
10426 type in the type description. */
10427 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10429 if (type->code () != TYPE_CODE_REF)
10431 struct type *actual_type;
10433 actual_type = type_from_tag (ada_value_tag (arg1));
10434 if (actual_type == NULL)
10435 /* If, for some reason, we were unable to determine
10436 the actual type from the tag, then use the static
10437 approximation that we just computed as a fallback.
10438 This can happen if the debugging information is
10439 incomplete, for instance. */
10440 actual_type = type;
10441 return value_zero (actual_type, not_lval);
10445 /* In the case of a ref, ada_coerce_ref takes care
10446 of determining the actual type. But the evaluation
10447 should return a ref as it should be valid to ask
10448 for its address; so rebuild a ref after coerce. */
10449 arg1 = ada_coerce_ref (arg1);
10450 return value_ref (arg1, TYPE_CODE_REF);
10454 /* Records and unions for which GNAT encodings have been
10455 generated need to be statically fixed as well.
10456 Otherwise, non-static fixing produces a type where
10457 all dynamic properties are removed, which prevents "ptype"
10458 from being able to completely describe the type.
10459 For instance, a case statement in a variant record would be
10460 replaced by the relevant components based on the actual
10461 value of the discriminants. */
10462 if ((type->code () == TYPE_CODE_STRUCT
10463 && dynamic_template_type (type) != NULL)
10464 || (type->code () == TYPE_CODE_UNION
10465 && ada_find_parallel_type (type, "___XVU") != NULL))
10466 return value_zero (to_static_fixed_type (type), not_lval);
10469 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10470 return ada_to_fixed_value (arg1);
10474 ada_var_value_operation::resolve (struct expression *exp,
10475 bool deprocedure_p,
10476 bool parse_completion,
10477 innermost_block_tracker *tracker,
10478 struct type *context_type)
10480 symbol *sym = std::get<0> (m_storage).symbol;
10481 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10483 block_symbol resolved
10484 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10485 context_type, parse_completion,
10486 deprocedure_p, tracker);
10487 std::get<0> (m_storage) = resolved;
10491 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10492 == TYPE_CODE_FUNC))
10499 ada_atr_val_operation::evaluate (struct type *expect_type,
10500 struct expression *exp,
10501 enum noside noside)
10503 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10504 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10508 ada_unop_ind_operation::evaluate (struct type *expect_type,
10509 struct expression *exp,
10510 enum noside noside)
10512 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10514 struct type *type = ada_check_typedef (value_type (arg1));
10515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10517 if (ada_is_array_descriptor_type (type))
10518 /* GDB allows dereferencing GNAT array descriptors. */
10520 struct type *arrType = ada_type_of_array (arg1, 0);
10522 if (arrType == NULL)
10523 error (_("Attempt to dereference null array pointer."));
10524 return value_at_lazy (arrType, 0);
10526 else if (type->code () == TYPE_CODE_PTR
10527 || type->code () == TYPE_CODE_REF
10528 /* In C you can dereference an array to get the 1st elt. */
10529 || type->code () == TYPE_CODE_ARRAY)
10531 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10532 only be determined by inspecting the object's tag.
10533 This means that we need to evaluate completely the
10534 expression in order to get its type. */
10536 if ((type->code () == TYPE_CODE_REF
10537 || type->code () == TYPE_CODE_PTR)
10538 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10540 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10542 type = value_type (ada_value_ind (arg1));
10546 type = to_static_fixed_type
10548 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10550 return value_zero (type, lval_memory);
10552 else if (type->code () == TYPE_CODE_INT)
10554 /* GDB allows dereferencing an int. */
10555 if (expect_type == NULL)
10556 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10561 to_static_fixed_type (ada_aligned_type (expect_type));
10562 return value_zero (expect_type, lval_memory);
10566 error (_("Attempt to take contents of a non-pointer value."));
10568 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10569 type = ada_check_typedef (value_type (arg1));
10571 if (type->code () == TYPE_CODE_INT)
10572 /* GDB allows dereferencing an int. If we were given
10573 the expect_type, then use that as the target type.
10574 Otherwise, assume that the target type is an int. */
10576 if (expect_type != NULL)
10577 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10580 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10581 (CORE_ADDR) value_as_address (arg1));
10584 if (ada_is_array_descriptor_type (type))
10585 /* GDB allows dereferencing GNAT array descriptors. */
10586 return ada_coerce_to_simple_array (arg1);
10588 return ada_value_ind (arg1);
10592 ada_structop_operation::evaluate (struct type *expect_type,
10593 struct expression *exp,
10594 enum noside noside)
10596 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10597 const char *str = std::get<1> (m_storage).c_str ();
10598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10601 struct type *type1 = value_type (arg1);
10603 if (ada_is_tagged_type (type1, 1))
10605 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10607 /* If the field is not found, check if it exists in the
10608 extension of this object's type. This means that we
10609 need to evaluate completely the expression. */
10613 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10615 arg1 = ada_value_struct_elt (arg1, str, 0);
10616 arg1 = unwrap_value (arg1);
10617 type = value_type (ada_to_fixed_value (arg1));
10621 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10623 return value_zero (ada_aligned_type (type), lval_memory);
10627 arg1 = ada_value_struct_elt (arg1, str, 0);
10628 arg1 = unwrap_value (arg1);
10629 return ada_to_fixed_value (arg1);
10634 ada_funcall_operation::evaluate (struct type *expect_type,
10635 struct expression *exp,
10636 enum noside noside)
10638 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10639 int nargs = args_up.size ();
10640 std::vector<value *> argvec (nargs);
10641 operation_up &callee_op = std::get<0> (m_storage);
10643 ada_var_value_operation *avv
10644 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10646 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10647 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10648 avv->get_symbol ()->print_name ());
10650 value *callee = callee_op->evaluate (nullptr, exp, noside);
10651 for (int i = 0; i < args_up.size (); ++i)
10652 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10654 if (ada_is_constrained_packed_array_type
10655 (desc_base_type (value_type (callee))))
10656 callee = ada_coerce_to_simple_array (callee);
10657 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10658 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10659 /* This is a packed array that has already been fixed, and
10660 therefore already coerced to a simple array. Nothing further
10663 else if (value_type (callee)->code () == TYPE_CODE_REF)
10665 /* Make sure we dereference references so that all the code below
10666 feels like it's really handling the referenced value. Wrapping
10667 types (for alignment) may be there, so make sure we strip them as
10669 callee = ada_to_fixed_value (coerce_ref (callee));
10671 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10672 && VALUE_LVAL (callee) == lval_memory)
10673 callee = value_addr (callee);
10675 struct type *type = ada_check_typedef (value_type (callee));
10677 /* Ada allows us to implicitly dereference arrays when subscripting
10678 them. So, if this is an array typedef (encoding use for array
10679 access types encoded as fat pointers), strip it now. */
10680 if (type->code () == TYPE_CODE_TYPEDEF)
10681 type = ada_typedef_target_type (type);
10683 if (type->code () == TYPE_CODE_PTR)
10685 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10687 case TYPE_CODE_FUNC:
10688 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10690 case TYPE_CODE_ARRAY:
10692 case TYPE_CODE_STRUCT:
10693 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10694 callee = ada_value_ind (callee);
10695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10698 error (_("cannot subscript or call something of type `%s'"),
10699 ada_type_name (value_type (callee)));
10704 switch (type->code ())
10706 case TYPE_CODE_FUNC:
10707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 if (TYPE_TARGET_TYPE (type) == NULL)
10710 error_call_unknown_return_type (NULL);
10711 return allocate_value (TYPE_TARGET_TYPE (type));
10713 return call_function_by_hand (callee, NULL, argvec);
10714 case TYPE_CODE_INTERNAL_FUNCTION:
10715 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10716 /* We don't know anything about what the internal
10717 function might return, but we have to return
10719 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10722 return call_internal_function (exp->gdbarch, exp->language_defn,
10726 case TYPE_CODE_STRUCT:
10730 arity = ada_array_arity (type);
10731 type = ada_array_element_type (type, nargs);
10733 error (_("cannot subscript or call a record"));
10734 if (arity != nargs)
10735 error (_("wrong number of subscripts; expecting %d"), arity);
10736 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10737 return value_zero (ada_aligned_type (type), lval_memory);
10739 unwrap_value (ada_value_subscript
10740 (callee, nargs, argvec.data ()));
10742 case TYPE_CODE_ARRAY:
10743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10745 type = ada_array_element_type (type, nargs);
10747 error (_("element type of array unknown"));
10749 return value_zero (ada_aligned_type (type), lval_memory);
10752 unwrap_value (ada_value_subscript
10753 (ada_coerce_to_simple_array (callee),
10754 nargs, argvec.data ()));
10755 case TYPE_CODE_PTR: /* Pointer to array */
10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10758 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10759 type = ada_array_element_type (type, nargs);
10761 error (_("element type of array unknown"));
10763 return value_zero (ada_aligned_type (type), lval_memory);
10766 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10770 error (_("Attempt to index or call something other than an "
10771 "array or function"));
10776 ada_funcall_operation::resolve (struct expression *exp,
10777 bool deprocedure_p,
10778 bool parse_completion,
10779 innermost_block_tracker *tracker,
10780 struct type *context_type)
10782 operation_up &callee_op = std::get<0> (m_storage);
10784 ada_var_value_operation *avv
10785 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10786 if (avv == nullptr)
10789 symbol *sym = avv->get_symbol ();
10790 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10793 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10794 int nargs = args_up.size ();
10795 std::vector<value *> argvec (nargs);
10797 for (int i = 0; i < args_up.size (); ++i)
10798 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10800 const block *block = avv->get_block ();
10801 block_symbol resolved
10802 = ada_resolve_funcall (sym, block,
10803 context_type, parse_completion,
10804 nargs, argvec.data (),
10807 std::get<0> (m_storage)
10808 = make_operation<ada_var_value_operation> (resolved);
10813 ada_ternop_slice_operation::resolve (struct expression *exp,
10814 bool deprocedure_p,
10815 bool parse_completion,
10816 innermost_block_tracker *tracker,
10817 struct type *context_type)
10819 /* Historically this check was done during resolution, so we
10820 continue that here. */
10821 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10822 EVAL_AVOID_SIDE_EFFECTS);
10823 if (ada_is_any_packed_array_type (value_type (v)))
10824 error (_("cannot slice a packed array"));
10832 /* Return non-zero iff TYPE represents a System.Address type. */
10835 ada_is_system_address_type (struct type *type)
10837 return (type->name () && strcmp (type->name (), "system__address") == 0);
10844 /* Scan STR beginning at position K for a discriminant name, and
10845 return the value of that discriminant field of DVAL in *PX. If
10846 PNEW_K is not null, put the position of the character beyond the
10847 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10848 not alter *PX and *PNEW_K if unsuccessful. */
10851 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10854 static std::string storage;
10855 const char *pstart, *pend, *bound;
10856 struct value *bound_val;
10858 if (dval == NULL || str == NULL || str[k] == '\0')
10862 pend = strstr (pstart, "__");
10866 k += strlen (bound);
10870 int len = pend - pstart;
10872 /* Strip __ and beyond. */
10873 storage = std::string (pstart, len);
10874 bound = storage.c_str ();
10878 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10879 if (bound_val == NULL)
10882 *px = value_as_long (bound_val);
10883 if (pnew_k != NULL)
10888 /* Value of variable named NAME. Only exact matches are considered.
10889 If no such variable found, then if ERR_MSG is null, returns 0, and
10890 otherwise causes an error with message ERR_MSG. */
10892 static struct value *
10893 get_var_value (const char *name, const char *err_msg)
10895 std::string quoted_name = add_angle_brackets (name);
10897 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10899 std::vector<struct block_symbol> syms
10900 = ada_lookup_symbol_list_worker (lookup_name,
10901 get_selected_block (0),
10904 if (syms.size () != 1)
10906 if (err_msg == NULL)
10909 error (("%s"), err_msg);
10912 return value_of_variable (syms[0].symbol, syms[0].block);
10915 /* Value of integer variable named NAME in the current environment.
10916 If no such variable is found, returns false. Otherwise, sets VALUE
10917 to the variable's value and returns true. */
10920 get_int_var_value (const char *name, LONGEST &value)
10922 struct value *var_val = get_var_value (name, 0);
10927 value = value_as_long (var_val);
10932 /* Return a range type whose base type is that of the range type named
10933 NAME in the current environment, and whose bounds are calculated
10934 from NAME according to the GNAT range encoding conventions.
10935 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10936 corresponding range type from debug information; fall back to using it
10937 if symbol lookup fails. If a new type must be created, allocate it
10938 like ORIG_TYPE was. The bounds information, in general, is encoded
10939 in NAME, the base type given in the named range type. */
10941 static struct type *
10942 to_fixed_range_type (struct type *raw_type, struct value *dval)
10945 struct type *base_type;
10946 const char *subtype_info;
10948 gdb_assert (raw_type != NULL);
10949 gdb_assert (raw_type->name () != NULL);
10951 if (raw_type->code () == TYPE_CODE_RANGE)
10952 base_type = TYPE_TARGET_TYPE (raw_type);
10954 base_type = raw_type;
10956 name = raw_type->name ();
10957 subtype_info = strstr (name, "___XD");
10958 if (subtype_info == NULL)
10960 LONGEST L = ada_discrete_type_low_bound (raw_type);
10961 LONGEST U = ada_discrete_type_high_bound (raw_type);
10963 if (L < INT_MIN || U > INT_MAX)
10966 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10971 int prefix_len = subtype_info - name;
10974 const char *bounds_str;
10978 bounds_str = strchr (subtype_info, '_');
10981 if (*subtype_info == 'L')
10983 if (!ada_scan_number (bounds_str, n, &L, &n)
10984 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10986 if (bounds_str[n] == '_')
10988 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10994 std::string name_buf = std::string (name, prefix_len) + "___L";
10995 if (!get_int_var_value (name_buf.c_str (), L))
10997 lim_warning (_("Unknown lower bound, using 1."));
11002 if (*subtype_info == 'U')
11004 if (!ada_scan_number (bounds_str, n, &U, &n)
11005 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11010 std::string name_buf = std::string (name, prefix_len) + "___U";
11011 if (!get_int_var_value (name_buf.c_str (), U))
11013 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11018 type = create_static_range_type (alloc_type_copy (raw_type),
11020 /* create_static_range_type alters the resulting type's length
11021 to match the size of the base_type, which is not what we want.
11022 Set it back to the original range type's length. */
11023 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11024 type->set_name (name);
11029 /* True iff NAME is the name of a range type. */
11032 ada_is_range_type_name (const char *name)
11034 return (name != NULL && strstr (name, "___XD"));
11038 /* Modular types */
11040 /* True iff TYPE is an Ada modular type. */
11043 ada_is_modular_type (struct type *type)
11045 struct type *subranged_type = get_base_type (type);
11047 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11048 && subranged_type->code () == TYPE_CODE_INT
11049 && subranged_type->is_unsigned ());
11052 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11055 ada_modulus (struct type *type)
11057 const dynamic_prop &high = type->bounds ()->high;
11059 if (high.kind () == PROP_CONST)
11060 return (ULONGEST) high.const_val () + 1;
11062 /* If TYPE is unresolved, the high bound might be a location list. Return
11063 0, for lack of a better value to return. */
11068 /* Ada exception catchpoint support:
11069 ---------------------------------
11071 We support 3 kinds of exception catchpoints:
11072 . catchpoints on Ada exceptions
11073 . catchpoints on unhandled Ada exceptions
11074 . catchpoints on failed assertions
11076 Exceptions raised during failed assertions, or unhandled exceptions
11077 could perfectly be caught with the general catchpoint on Ada exceptions.
11078 However, we can easily differentiate these two special cases, and having
11079 the option to distinguish these two cases from the rest can be useful
11080 to zero-in on certain situations.
11082 Exception catchpoints are a specialized form of breakpoint,
11083 since they rely on inserting breakpoints inside known routines
11084 of the GNAT runtime. The implementation therefore uses a standard
11085 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11088 Support in the runtime for exception catchpoints have been changed
11089 a few times already, and these changes affect the implementation
11090 of these catchpoints. In order to be able to support several
11091 variants of the runtime, we use a sniffer that will determine
11092 the runtime variant used by the program being debugged. */
11094 /* Ada's standard exceptions.
11096 The Ada 83 standard also defined Numeric_Error. But there so many
11097 situations where it was unclear from the Ada 83 Reference Manual
11098 (RM) whether Constraint_Error or Numeric_Error should be raised,
11099 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11100 Interpretation saying that anytime the RM says that Numeric_Error
11101 should be raised, the implementation may raise Constraint_Error.
11102 Ada 95 went one step further and pretty much removed Numeric_Error
11103 from the list of standard exceptions (it made it a renaming of
11104 Constraint_Error, to help preserve compatibility when compiling
11105 an Ada83 compiler). As such, we do not include Numeric_Error from
11106 this list of standard exceptions. */
11108 static const char * const standard_exc[] = {
11109 "constraint_error",
11115 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11117 /* A structure that describes how to support exception catchpoints
11118 for a given executable. */
11120 struct exception_support_info
11122 /* The name of the symbol to break on in order to insert
11123 a catchpoint on exceptions. */
11124 const char *catch_exception_sym;
11126 /* The name of the symbol to break on in order to insert
11127 a catchpoint on unhandled exceptions. */
11128 const char *catch_exception_unhandled_sym;
11130 /* The name of the symbol to break on in order to insert
11131 a catchpoint on failed assertions. */
11132 const char *catch_assert_sym;
11134 /* The name of the symbol to break on in order to insert
11135 a catchpoint on exception handling. */
11136 const char *catch_handlers_sym;
11138 /* Assuming that the inferior just triggered an unhandled exception
11139 catchpoint, this function is responsible for returning the address
11140 in inferior memory where the name of that exception is stored.
11141 Return zero if the address could not be computed. */
11142 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11145 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11146 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11148 /* The following exception support info structure describes how to
11149 implement exception catchpoints with the latest version of the
11150 Ada runtime (as of 2019-08-??). */
11152 static const struct exception_support_info default_exception_support_info =
11154 "__gnat_debug_raise_exception", /* catch_exception_sym */
11155 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11156 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11157 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11158 ada_unhandled_exception_name_addr
11161 /* The following exception support info structure describes how to
11162 implement exception catchpoints with an earlier version of the
11163 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11165 static const struct exception_support_info exception_support_info_v0 =
11167 "__gnat_debug_raise_exception", /* catch_exception_sym */
11168 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11169 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11170 "__gnat_begin_handler", /* catch_handlers_sym */
11171 ada_unhandled_exception_name_addr
11174 /* The following exception support info structure describes how to
11175 implement exception catchpoints with a slightly older version
11176 of the Ada runtime. */
11178 static const struct exception_support_info exception_support_info_fallback =
11180 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11181 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11182 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11183 "__gnat_begin_handler", /* catch_handlers_sym */
11184 ada_unhandled_exception_name_addr_from_raise
11187 /* Return nonzero if we can detect the exception support routines
11188 described in EINFO.
11190 This function errors out if an abnormal situation is detected
11191 (for instance, if we find the exception support routines, but
11192 that support is found to be incomplete). */
11195 ada_has_this_exception_support (const struct exception_support_info *einfo)
11197 struct symbol *sym;
11199 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11200 that should be compiled with debugging information. As a result, we
11201 expect to find that symbol in the symtabs. */
11203 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11206 /* Perhaps we did not find our symbol because the Ada runtime was
11207 compiled without debugging info, or simply stripped of it.
11208 It happens on some GNU/Linux distributions for instance, where
11209 users have to install a separate debug package in order to get
11210 the runtime's debugging info. In that situation, let the user
11211 know why we cannot insert an Ada exception catchpoint.
11213 Note: Just for the purpose of inserting our Ada exception
11214 catchpoint, we could rely purely on the associated minimal symbol.
11215 But we would be operating in degraded mode anyway, since we are
11216 still lacking the debugging info needed later on to extract
11217 the name of the exception being raised (this name is printed in
11218 the catchpoint message, and is also used when trying to catch
11219 a specific exception). We do not handle this case for now. */
11220 struct bound_minimal_symbol msym
11221 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11223 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11224 error (_("Your Ada runtime appears to be missing some debugging "
11225 "information.\nCannot insert Ada exception catchpoint "
11226 "in this configuration."));
11231 /* Make sure that the symbol we found corresponds to a function. */
11233 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11235 error (_("Symbol \"%s\" is not a function (class = %d)"),
11236 sym->linkage_name (), SYMBOL_CLASS (sym));
11240 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11243 struct bound_minimal_symbol msym
11244 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11246 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11247 error (_("Your Ada runtime appears to be missing some debugging "
11248 "information.\nCannot insert Ada exception catchpoint "
11249 "in this configuration."));
11254 /* Make sure that the symbol we found corresponds to a function. */
11256 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11258 error (_("Symbol \"%s\" is not a function (class = %d)"),
11259 sym->linkage_name (), SYMBOL_CLASS (sym));
11266 /* Inspect the Ada runtime and determine which exception info structure
11267 should be used to provide support for exception catchpoints.
11269 This function will always set the per-inferior exception_info,
11270 or raise an error. */
11273 ada_exception_support_info_sniffer (void)
11275 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11277 /* If the exception info is already known, then no need to recompute it. */
11278 if (data->exception_info != NULL)
11281 /* Check the latest (default) exception support info. */
11282 if (ada_has_this_exception_support (&default_exception_support_info))
11284 data->exception_info = &default_exception_support_info;
11288 /* Try the v0 exception suport info. */
11289 if (ada_has_this_exception_support (&exception_support_info_v0))
11291 data->exception_info = &exception_support_info_v0;
11295 /* Try our fallback exception suport info. */
11296 if (ada_has_this_exception_support (&exception_support_info_fallback))
11298 data->exception_info = &exception_support_info_fallback;
11302 /* Sometimes, it is normal for us to not be able to find the routine
11303 we are looking for. This happens when the program is linked with
11304 the shared version of the GNAT runtime, and the program has not been
11305 started yet. Inform the user of these two possible causes if
11308 if (ada_update_initial_language (language_unknown) != language_ada)
11309 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11311 /* If the symbol does not exist, then check that the program is
11312 already started, to make sure that shared libraries have been
11313 loaded. If it is not started, this may mean that the symbol is
11314 in a shared library. */
11316 if (inferior_ptid.pid () == 0)
11317 error (_("Unable to insert catchpoint. Try to start the program first."));
11319 /* At this point, we know that we are debugging an Ada program and
11320 that the inferior has been started, but we still are not able to
11321 find the run-time symbols. That can mean that we are in
11322 configurable run time mode, or that a-except as been optimized
11323 out by the linker... In any case, at this point it is not worth
11324 supporting this feature. */
11326 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11329 /* True iff FRAME is very likely to be that of a function that is
11330 part of the runtime system. This is all very heuristic, but is
11331 intended to be used as advice as to what frames are uninteresting
11335 is_known_support_routine (struct frame_info *frame)
11337 enum language func_lang;
11339 const char *fullname;
11341 /* If this code does not have any debugging information (no symtab),
11342 This cannot be any user code. */
11344 symtab_and_line sal = find_frame_sal (frame);
11345 if (sal.symtab == NULL)
11348 /* If there is a symtab, but the associated source file cannot be
11349 located, then assume this is not user code: Selecting a frame
11350 for which we cannot display the code would not be very helpful
11351 for the user. This should also take care of case such as VxWorks
11352 where the kernel has some debugging info provided for a few units. */
11354 fullname = symtab_to_fullname (sal.symtab);
11355 if (access (fullname, R_OK) != 0)
11358 /* Check the unit filename against the Ada runtime file naming.
11359 We also check the name of the objfile against the name of some
11360 known system libraries that sometimes come with debugging info
11363 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11365 re_comp (known_runtime_file_name_patterns[i]);
11366 if (re_exec (lbasename (sal.symtab->filename)))
11368 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11369 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11373 /* Check whether the function is a GNAT-generated entity. */
11375 gdb::unique_xmalloc_ptr<char> func_name
11376 = find_frame_funname (frame, &func_lang, NULL);
11377 if (func_name == NULL)
11380 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11382 re_comp (known_auxiliary_function_name_patterns[i]);
11383 if (re_exec (func_name.get ()))
11390 /* Find the first frame that contains debugging information and that is not
11391 part of the Ada run-time, starting from FI and moving upward. */
11394 ada_find_printable_frame (struct frame_info *fi)
11396 for (; fi != NULL; fi = get_prev_frame (fi))
11398 if (!is_known_support_routine (fi))
11407 /* Assuming that the inferior just triggered an unhandled exception
11408 catchpoint, return the address in inferior memory where the name
11409 of the exception is stored.
11411 Return zero if the address could not be computed. */
11414 ada_unhandled_exception_name_addr (void)
11416 return parse_and_eval_address ("e.full_name");
11419 /* Same as ada_unhandled_exception_name_addr, except that this function
11420 should be used when the inferior uses an older version of the runtime,
11421 where the exception name needs to be extracted from a specific frame
11422 several frames up in the callstack. */
11425 ada_unhandled_exception_name_addr_from_raise (void)
11428 struct frame_info *fi;
11429 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11431 /* To determine the name of this exception, we need to select
11432 the frame corresponding to RAISE_SYM_NAME. This frame is
11433 at least 3 levels up, so we simply skip the first 3 frames
11434 without checking the name of their associated function. */
11435 fi = get_current_frame ();
11436 for (frame_level = 0; frame_level < 3; frame_level += 1)
11438 fi = get_prev_frame (fi);
11442 enum language func_lang;
11444 gdb::unique_xmalloc_ptr<char> func_name
11445 = find_frame_funname (fi, &func_lang, NULL);
11446 if (func_name != NULL)
11448 if (strcmp (func_name.get (),
11449 data->exception_info->catch_exception_sym) == 0)
11450 break; /* We found the frame we were looking for... */
11452 fi = get_prev_frame (fi);
11459 return parse_and_eval_address ("id.full_name");
11462 /* Assuming the inferior just triggered an Ada exception catchpoint
11463 (of any type), return the address in inferior memory where the name
11464 of the exception is stored, if applicable.
11466 Assumes the selected frame is the current frame.
11468 Return zero if the address could not be computed, or if not relevant. */
11471 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11472 struct breakpoint *b)
11474 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11478 case ada_catch_exception:
11479 return (parse_and_eval_address ("e.full_name"));
11482 case ada_catch_exception_unhandled:
11483 return data->exception_info->unhandled_exception_name_addr ();
11486 case ada_catch_handlers:
11487 return 0; /* The runtimes does not provide access to the exception
11491 case ada_catch_assert:
11492 return 0; /* Exception name is not relevant in this case. */
11496 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11500 return 0; /* Should never be reached. */
11503 /* Assuming the inferior is stopped at an exception catchpoint,
11504 return the message which was associated to the exception, if
11505 available. Return NULL if the message could not be retrieved.
11507 Note: The exception message can be associated to an exception
11508 either through the use of the Raise_Exception function, or
11509 more simply (Ada 2005 and later), via:
11511 raise Exception_Name with "exception message";
11515 static gdb::unique_xmalloc_ptr<char>
11516 ada_exception_message_1 (void)
11518 struct value *e_msg_val;
11521 /* For runtimes that support this feature, the exception message
11522 is passed as an unbounded string argument called "message". */
11523 e_msg_val = parse_and_eval ("message");
11524 if (e_msg_val == NULL)
11525 return NULL; /* Exception message not supported. */
11527 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11528 gdb_assert (e_msg_val != NULL);
11529 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11531 /* If the message string is empty, then treat it as if there was
11532 no exception message. */
11533 if (e_msg_len <= 0)
11536 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11537 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11539 e_msg.get ()[e_msg_len] = '\0';
11544 /* Same as ada_exception_message_1, except that all exceptions are
11545 contained here (returning NULL instead). */
11547 static gdb::unique_xmalloc_ptr<char>
11548 ada_exception_message (void)
11550 gdb::unique_xmalloc_ptr<char> e_msg;
11554 e_msg = ada_exception_message_1 ();
11556 catch (const gdb_exception_error &e)
11558 e_msg.reset (nullptr);
11564 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11565 any error that ada_exception_name_addr_1 might cause to be thrown.
11566 When an error is intercepted, a warning with the error message is printed,
11567 and zero is returned. */
11570 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11571 struct breakpoint *b)
11573 CORE_ADDR result = 0;
11577 result = ada_exception_name_addr_1 (ex, b);
11580 catch (const gdb_exception_error &e)
11582 warning (_("failed to get exception name: %s"), e.what ());
11589 static std::string ada_exception_catchpoint_cond_string
11590 (const char *excep_string,
11591 enum ada_exception_catchpoint_kind ex);
11593 /* Ada catchpoints.
11595 In the case of catchpoints on Ada exceptions, the catchpoint will
11596 stop the target on every exception the program throws. When a user
11597 specifies the name of a specific exception, we translate this
11598 request into a condition expression (in text form), and then parse
11599 it into an expression stored in each of the catchpoint's locations.
11600 We then use this condition to check whether the exception that was
11601 raised is the one the user is interested in. If not, then the
11602 target is resumed again. We store the name of the requested
11603 exception, in order to be able to re-set the condition expression
11604 when symbols change. */
11606 /* An instance of this type is used to represent an Ada catchpoint
11607 breakpoint location. */
11609 class ada_catchpoint_location : public bp_location
11612 ada_catchpoint_location (breakpoint *owner)
11613 : bp_location (owner, bp_loc_software_breakpoint)
11616 /* The condition that checks whether the exception that was raised
11617 is the specific exception the user specified on catchpoint
11619 expression_up excep_cond_expr;
11622 /* An instance of this type is used to represent an Ada catchpoint. */
11624 struct ada_catchpoint : public breakpoint
11626 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11631 /* The name of the specific exception the user specified. */
11632 std::string excep_string;
11634 /* What kind of catchpoint this is. */
11635 enum ada_exception_catchpoint_kind m_kind;
11638 /* Parse the exception condition string in the context of each of the
11639 catchpoint's locations, and store them for later evaluation. */
11642 create_excep_cond_exprs (struct ada_catchpoint *c,
11643 enum ada_exception_catchpoint_kind ex)
11645 /* Nothing to do if there's no specific exception to catch. */
11646 if (c->excep_string.empty ())
11649 /* Same if there are no locations... */
11650 if (c->loc == NULL)
11653 /* Compute the condition expression in text form, from the specific
11654 expection we want to catch. */
11655 std::string cond_string
11656 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11658 /* Iterate over all the catchpoint's locations, and parse an
11659 expression for each. */
11660 for (bp_location *bl : c->locations ())
11662 struct ada_catchpoint_location *ada_loc
11663 = (struct ada_catchpoint_location *) bl;
11666 if (!bl->shlib_disabled)
11670 s = cond_string.c_str ();
11673 exp = parse_exp_1 (&s, bl->address,
11674 block_for_pc (bl->address),
11677 catch (const gdb_exception_error &e)
11679 warning (_("failed to reevaluate internal exception condition "
11680 "for catchpoint %d: %s"),
11681 c->number, e.what ());
11685 ada_loc->excep_cond_expr = std::move (exp);
11689 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11690 structure for all exception catchpoint kinds. */
11692 static struct bp_location *
11693 allocate_location_exception (struct breakpoint *self)
11695 return new ada_catchpoint_location (self);
11698 /* Implement the RE_SET method in the breakpoint_ops structure for all
11699 exception catchpoint kinds. */
11702 re_set_exception (struct breakpoint *b)
11704 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11706 /* Call the base class's method. This updates the catchpoint's
11708 bkpt_breakpoint_ops.re_set (b);
11710 /* Reparse the exception conditional expressions. One for each
11712 create_excep_cond_exprs (c, c->m_kind);
11715 /* Returns true if we should stop for this breakpoint hit. If the
11716 user specified a specific exception, we only want to cause a stop
11717 if the program thrown that exception. */
11720 should_stop_exception (const struct bp_location *bl)
11722 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11723 const struct ada_catchpoint_location *ada_loc
11724 = (const struct ada_catchpoint_location *) bl;
11727 struct internalvar *var = lookup_internalvar ("_ada_exception");
11728 if (c->m_kind == ada_catch_assert)
11729 clear_internalvar (var);
11736 if (c->m_kind == ada_catch_handlers)
11737 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11738 ".all.occurrence.id");
11742 struct value *exc = parse_and_eval (expr);
11743 set_internalvar (var, exc);
11745 catch (const gdb_exception_error &ex)
11747 clear_internalvar (var);
11751 /* With no specific exception, should always stop. */
11752 if (c->excep_string.empty ())
11755 if (ada_loc->excep_cond_expr == NULL)
11757 /* We will have a NULL expression if back when we were creating
11758 the expressions, this location's had failed to parse. */
11765 struct value *mark;
11767 mark = value_mark ();
11768 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11769 value_free_to_mark (mark);
11771 catch (const gdb_exception &ex)
11773 exception_fprintf (gdb_stderr, ex,
11774 _("Error in testing exception condition:\n"));
11780 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11781 for all exception catchpoint kinds. */
11784 check_status_exception (bpstat bs)
11786 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11789 /* Implement the PRINT_IT method in the breakpoint_ops structure
11790 for all exception catchpoint kinds. */
11792 static enum print_stop_action
11793 print_it_exception (bpstat bs)
11795 struct ui_out *uiout = current_uiout;
11796 struct breakpoint *b = bs->breakpoint_at;
11798 annotate_catchpoint (b->number);
11800 if (uiout->is_mi_like_p ())
11802 uiout->field_string ("reason",
11803 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11804 uiout->field_string ("disp", bpdisp_text (b->disposition));
11807 uiout->text (b->disposition == disp_del
11808 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11809 uiout->field_signed ("bkptno", b->number);
11810 uiout->text (", ");
11812 /* ada_exception_name_addr relies on the selected frame being the
11813 current frame. Need to do this here because this function may be
11814 called more than once when printing a stop, and below, we'll
11815 select the first frame past the Ada run-time (see
11816 ada_find_printable_frame). */
11817 select_frame (get_current_frame ());
11819 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11822 case ada_catch_exception:
11823 case ada_catch_exception_unhandled:
11824 case ada_catch_handlers:
11826 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11827 char exception_name[256];
11831 read_memory (addr, (gdb_byte *) exception_name,
11832 sizeof (exception_name) - 1);
11833 exception_name [sizeof (exception_name) - 1] = '\0';
11837 /* For some reason, we were unable to read the exception
11838 name. This could happen if the Runtime was compiled
11839 without debugging info, for instance. In that case,
11840 just replace the exception name by the generic string
11841 "exception" - it will read as "an exception" in the
11842 notification we are about to print. */
11843 memcpy (exception_name, "exception", sizeof ("exception"));
11845 /* In the case of unhandled exception breakpoints, we print
11846 the exception name as "unhandled EXCEPTION_NAME", to make
11847 it clearer to the user which kind of catchpoint just got
11848 hit. We used ui_out_text to make sure that this extra
11849 info does not pollute the exception name in the MI case. */
11850 if (c->m_kind == ada_catch_exception_unhandled)
11851 uiout->text ("unhandled ");
11852 uiout->field_string ("exception-name", exception_name);
11855 case ada_catch_assert:
11856 /* In this case, the name of the exception is not really
11857 important. Just print "failed assertion" to make it clearer
11858 that his program just hit an assertion-failure catchpoint.
11859 We used ui_out_text because this info does not belong in
11861 uiout->text ("failed assertion");
11865 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11866 if (exception_message != NULL)
11868 uiout->text (" (");
11869 uiout->field_string ("exception-message", exception_message.get ());
11873 uiout->text (" at ");
11874 ada_find_printable_frame (get_current_frame ());
11876 return PRINT_SRC_AND_LOC;
11879 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11880 for all exception catchpoint kinds. */
11883 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11885 struct ui_out *uiout = current_uiout;
11886 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11887 struct value_print_options opts;
11889 get_user_print_options (&opts);
11891 if (opts.addressprint)
11892 uiout->field_skip ("addr");
11894 annotate_field (5);
11897 case ada_catch_exception:
11898 if (!c->excep_string.empty ())
11900 std::string msg = string_printf (_("`%s' Ada exception"),
11901 c->excep_string.c_str ());
11903 uiout->field_string ("what", msg);
11906 uiout->field_string ("what", "all Ada exceptions");
11910 case ada_catch_exception_unhandled:
11911 uiout->field_string ("what", "unhandled Ada exceptions");
11914 case ada_catch_handlers:
11915 if (!c->excep_string.empty ())
11917 uiout->field_fmt ("what",
11918 _("`%s' Ada exception handlers"),
11919 c->excep_string.c_str ());
11922 uiout->field_string ("what", "all Ada exceptions handlers");
11925 case ada_catch_assert:
11926 uiout->field_string ("what", "failed Ada assertions");
11930 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11935 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11936 for all exception catchpoint kinds. */
11939 print_mention_exception (struct breakpoint *b)
11941 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11942 struct ui_out *uiout = current_uiout;
11944 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11945 : _("Catchpoint "));
11946 uiout->field_signed ("bkptno", b->number);
11947 uiout->text (": ");
11951 case ada_catch_exception:
11952 if (!c->excep_string.empty ())
11954 std::string info = string_printf (_("`%s' Ada exception"),
11955 c->excep_string.c_str ());
11956 uiout->text (info);
11959 uiout->text (_("all Ada exceptions"));
11962 case ada_catch_exception_unhandled:
11963 uiout->text (_("unhandled Ada exceptions"));
11966 case ada_catch_handlers:
11967 if (!c->excep_string.empty ())
11970 = string_printf (_("`%s' Ada exception handlers"),
11971 c->excep_string.c_str ());
11972 uiout->text (info);
11975 uiout->text (_("all Ada exceptions handlers"));
11978 case ada_catch_assert:
11979 uiout->text (_("failed Ada assertions"));
11983 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11988 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11989 for all exception catchpoint kinds. */
11992 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11994 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11998 case ada_catch_exception:
11999 fprintf_filtered (fp, "catch exception");
12000 if (!c->excep_string.empty ())
12001 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12004 case ada_catch_exception_unhandled:
12005 fprintf_filtered (fp, "catch exception unhandled");
12008 case ada_catch_handlers:
12009 fprintf_filtered (fp, "catch handlers");
12012 case ada_catch_assert:
12013 fprintf_filtered (fp, "catch assert");
12017 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12019 print_recreate_thread (b, fp);
12022 /* Virtual tables for various breakpoint types. */
12023 static struct breakpoint_ops catch_exception_breakpoint_ops;
12024 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12025 static struct breakpoint_ops catch_assert_breakpoint_ops;
12026 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12028 /* See ada-lang.h. */
12031 is_ada_exception_catchpoint (breakpoint *bp)
12033 return (bp->ops == &catch_exception_breakpoint_ops
12034 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12035 || bp->ops == &catch_assert_breakpoint_ops
12036 || bp->ops == &catch_handlers_breakpoint_ops);
12039 /* Split the arguments specified in a "catch exception" command.
12040 Set EX to the appropriate catchpoint type.
12041 Set EXCEP_STRING to the name of the specific exception if
12042 specified by the user.
12043 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12044 "catch handlers" command. False otherwise.
12045 If a condition is found at the end of the arguments, the condition
12046 expression is stored in COND_STRING (memory must be deallocated
12047 after use). Otherwise COND_STRING is set to NULL. */
12050 catch_ada_exception_command_split (const char *args,
12051 bool is_catch_handlers_cmd,
12052 enum ada_exception_catchpoint_kind *ex,
12053 std::string *excep_string,
12054 std::string *cond_string)
12056 std::string exception_name;
12058 exception_name = extract_arg (&args);
12059 if (exception_name == "if")
12061 /* This is not an exception name; this is the start of a condition
12062 expression for a catchpoint on all exceptions. So, "un-get"
12063 this token, and set exception_name to NULL. */
12064 exception_name.clear ();
12068 /* Check to see if we have a condition. */
12070 args = skip_spaces (args);
12071 if (startswith (args, "if")
12072 && (isspace (args[2]) || args[2] == '\0'))
12075 args = skip_spaces (args);
12077 if (args[0] == '\0')
12078 error (_("Condition missing after `if' keyword"));
12079 *cond_string = args;
12081 args += strlen (args);
12084 /* Check that we do not have any more arguments. Anything else
12087 if (args[0] != '\0')
12088 error (_("Junk at end of expression"));
12090 if (is_catch_handlers_cmd)
12092 /* Catch handling of exceptions. */
12093 *ex = ada_catch_handlers;
12094 *excep_string = exception_name;
12096 else if (exception_name.empty ())
12098 /* Catch all exceptions. */
12099 *ex = ada_catch_exception;
12100 excep_string->clear ();
12102 else if (exception_name == "unhandled")
12104 /* Catch unhandled exceptions. */
12105 *ex = ada_catch_exception_unhandled;
12106 excep_string->clear ();
12110 /* Catch a specific exception. */
12111 *ex = ada_catch_exception;
12112 *excep_string = exception_name;
12116 /* Return the name of the symbol on which we should break in order to
12117 implement a catchpoint of the EX kind. */
12119 static const char *
12120 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12122 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12124 gdb_assert (data->exception_info != NULL);
12128 case ada_catch_exception:
12129 return (data->exception_info->catch_exception_sym);
12131 case ada_catch_exception_unhandled:
12132 return (data->exception_info->catch_exception_unhandled_sym);
12134 case ada_catch_assert:
12135 return (data->exception_info->catch_assert_sym);
12137 case ada_catch_handlers:
12138 return (data->exception_info->catch_handlers_sym);
12141 internal_error (__FILE__, __LINE__,
12142 _("unexpected catchpoint kind (%d)"), ex);
12146 /* Return the breakpoint ops "virtual table" used for catchpoints
12149 static const struct breakpoint_ops *
12150 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12154 case ada_catch_exception:
12155 return (&catch_exception_breakpoint_ops);
12157 case ada_catch_exception_unhandled:
12158 return (&catch_exception_unhandled_breakpoint_ops);
12160 case ada_catch_assert:
12161 return (&catch_assert_breakpoint_ops);
12163 case ada_catch_handlers:
12164 return (&catch_handlers_breakpoint_ops);
12167 internal_error (__FILE__, __LINE__,
12168 _("unexpected catchpoint kind (%d)"), ex);
12172 /* Return the condition that will be used to match the current exception
12173 being raised with the exception that the user wants to catch. This
12174 assumes that this condition is used when the inferior just triggered
12175 an exception catchpoint.
12176 EX: the type of catchpoints used for catching Ada exceptions. */
12179 ada_exception_catchpoint_cond_string (const char *excep_string,
12180 enum ada_exception_catchpoint_kind ex)
12183 bool is_standard_exc = false;
12184 std::string result;
12186 if (ex == ada_catch_handlers)
12188 /* For exception handlers catchpoints, the condition string does
12189 not use the same parameter as for the other exceptions. */
12190 result = ("long_integer (GNAT_GCC_exception_Access"
12191 "(gcc_exception).all.occurrence.id)");
12194 result = "long_integer (e)";
12196 /* The standard exceptions are a special case. They are defined in
12197 runtime units that have been compiled without debugging info; if
12198 EXCEP_STRING is the not-fully-qualified name of a standard
12199 exception (e.g. "constraint_error") then, during the evaluation
12200 of the condition expression, the symbol lookup on this name would
12201 *not* return this standard exception. The catchpoint condition
12202 may then be set only on user-defined exceptions which have the
12203 same not-fully-qualified name (e.g. my_package.constraint_error).
12205 To avoid this unexcepted behavior, these standard exceptions are
12206 systematically prefixed by "standard". This means that "catch
12207 exception constraint_error" is rewritten into "catch exception
12208 standard.constraint_error".
12210 If an exception named constraint_error is defined in another package of
12211 the inferior program, then the only way to specify this exception as a
12212 breakpoint condition is to use its fully-qualified named:
12213 e.g. my_package.constraint_error. */
12215 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12217 if (strcmp (standard_exc [i], excep_string) == 0)
12219 is_standard_exc = true;
12226 if (is_standard_exc)
12227 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12229 string_appendf (result, "long_integer (&%s)", excep_string);
12234 /* Return the symtab_and_line that should be used to insert an exception
12235 catchpoint of the TYPE kind.
12237 ADDR_STRING returns the name of the function where the real
12238 breakpoint that implements the catchpoints is set, depending on the
12239 type of catchpoint we need to create. */
12241 static struct symtab_and_line
12242 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12243 std::string *addr_string, const struct breakpoint_ops **ops)
12245 const char *sym_name;
12246 struct symbol *sym;
12248 /* First, find out which exception support info to use. */
12249 ada_exception_support_info_sniffer ();
12251 /* Then lookup the function on which we will break in order to catch
12252 the Ada exceptions requested by the user. */
12253 sym_name = ada_exception_sym_name (ex);
12254 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12257 error (_("Catchpoint symbol not found: %s"), sym_name);
12259 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12260 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12262 /* Set ADDR_STRING. */
12263 *addr_string = sym_name;
12266 *ops = ada_exception_breakpoint_ops (ex);
12268 return find_function_start_sal (sym, 1);
12271 /* Create an Ada exception catchpoint.
12273 EX_KIND is the kind of exception catchpoint to be created.
12275 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12276 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12277 of the exception to which this catchpoint applies.
12279 COND_STRING, if not empty, is the catchpoint condition.
12281 TEMPFLAG, if nonzero, means that the underlying breakpoint
12282 should be temporary.
12284 FROM_TTY is the usual argument passed to all commands implementations. */
12287 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12288 enum ada_exception_catchpoint_kind ex_kind,
12289 const std::string &excep_string,
12290 const std::string &cond_string,
12295 std::string addr_string;
12296 const struct breakpoint_ops *ops = NULL;
12297 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12299 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12300 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12301 ops, tempflag, disabled, from_tty);
12302 c->excep_string = excep_string;
12303 create_excep_cond_exprs (c.get (), ex_kind);
12304 if (!cond_string.empty ())
12305 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12306 install_breakpoint (0, std::move (c), 1);
12309 /* Implement the "catch exception" command. */
12312 catch_ada_exception_command (const char *arg_entry, int from_tty,
12313 struct cmd_list_element *command)
12315 const char *arg = arg_entry;
12316 struct gdbarch *gdbarch = get_current_arch ();
12318 enum ada_exception_catchpoint_kind ex_kind;
12319 std::string excep_string;
12320 std::string cond_string;
12322 tempflag = command->context () == CATCH_TEMPORARY;
12326 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12328 create_ada_exception_catchpoint (gdbarch, ex_kind,
12329 excep_string, cond_string,
12330 tempflag, 1 /* enabled */,
12334 /* Implement the "catch handlers" command. */
12337 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12338 struct cmd_list_element *command)
12340 const char *arg = arg_entry;
12341 struct gdbarch *gdbarch = get_current_arch ();
12343 enum ada_exception_catchpoint_kind ex_kind;
12344 std::string excep_string;
12345 std::string cond_string;
12347 tempflag = command->context () == CATCH_TEMPORARY;
12351 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12353 create_ada_exception_catchpoint (gdbarch, ex_kind,
12354 excep_string, cond_string,
12355 tempflag, 1 /* enabled */,
12359 /* Completion function for the Ada "catch" commands. */
12362 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12363 const char *text, const char *word)
12365 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12367 for (const ada_exc_info &info : exceptions)
12369 if (startswith (info.name, word))
12370 tracker.add_completion (make_unique_xstrdup (info.name));
12374 /* Split the arguments specified in a "catch assert" command.
12376 ARGS contains the command's arguments (or the empty string if
12377 no arguments were passed).
12379 If ARGS contains a condition, set COND_STRING to that condition
12380 (the memory needs to be deallocated after use). */
12383 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12385 args = skip_spaces (args);
12387 /* Check whether a condition was provided. */
12388 if (startswith (args, "if")
12389 && (isspace (args[2]) || args[2] == '\0'))
12392 args = skip_spaces (args);
12393 if (args[0] == '\0')
12394 error (_("condition missing after `if' keyword"));
12395 cond_string.assign (args);
12398 /* Otherwise, there should be no other argument at the end of
12400 else if (args[0] != '\0')
12401 error (_("Junk at end of arguments."));
12404 /* Implement the "catch assert" command. */
12407 catch_assert_command (const char *arg_entry, int from_tty,
12408 struct cmd_list_element *command)
12410 const char *arg = arg_entry;
12411 struct gdbarch *gdbarch = get_current_arch ();
12413 std::string cond_string;
12415 tempflag = command->context () == CATCH_TEMPORARY;
12419 catch_ada_assert_command_split (arg, cond_string);
12420 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12422 tempflag, 1 /* enabled */,
12426 /* Return non-zero if the symbol SYM is an Ada exception object. */
12429 ada_is_exception_sym (struct symbol *sym)
12431 const char *type_name = SYMBOL_TYPE (sym)->name ();
12433 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12434 && SYMBOL_CLASS (sym) != LOC_BLOCK
12435 && SYMBOL_CLASS (sym) != LOC_CONST
12436 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12437 && type_name != NULL && strcmp (type_name, "exception") == 0);
12440 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12441 Ada exception object. This matches all exceptions except the ones
12442 defined by the Ada language. */
12445 ada_is_non_standard_exception_sym (struct symbol *sym)
12449 if (!ada_is_exception_sym (sym))
12452 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12453 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12454 return 0; /* A standard exception. */
12456 /* Numeric_Error is also a standard exception, so exclude it.
12457 See the STANDARD_EXC description for more details as to why
12458 this exception is not listed in that array. */
12459 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12465 /* A helper function for std::sort, comparing two struct ada_exc_info
12468 The comparison is determined first by exception name, and then
12469 by exception address. */
12472 ada_exc_info::operator< (const ada_exc_info &other) const
12476 result = strcmp (name, other.name);
12479 if (result == 0 && addr < other.addr)
12485 ada_exc_info::operator== (const ada_exc_info &other) const
12487 return addr == other.addr && strcmp (name, other.name) == 0;
12490 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12491 routine, but keeping the first SKIP elements untouched.
12493 All duplicates are also removed. */
12496 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12499 std::sort (exceptions->begin () + skip, exceptions->end ());
12500 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12501 exceptions->end ());
12504 /* Add all exceptions defined by the Ada standard whose name match
12505 a regular expression.
12507 If PREG is not NULL, then this regexp_t object is used to
12508 perform the symbol name matching. Otherwise, no name-based
12509 filtering is performed.
12511 EXCEPTIONS is a vector of exceptions to which matching exceptions
12515 ada_add_standard_exceptions (compiled_regex *preg,
12516 std::vector<ada_exc_info> *exceptions)
12520 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12523 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12525 struct bound_minimal_symbol msymbol
12526 = ada_lookup_simple_minsym (standard_exc[i]);
12528 if (msymbol.minsym != NULL)
12530 struct ada_exc_info info
12531 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12533 exceptions->push_back (info);
12539 /* Add all Ada exceptions defined locally and accessible from the given
12542 If PREG is not NULL, then this regexp_t object is used to
12543 perform the symbol name matching. Otherwise, no name-based
12544 filtering is performed.
12546 EXCEPTIONS is a vector of exceptions to which matching exceptions
12550 ada_add_exceptions_from_frame (compiled_regex *preg,
12551 struct frame_info *frame,
12552 std::vector<ada_exc_info> *exceptions)
12554 const struct block *block = get_frame_block (frame, 0);
12558 struct block_iterator iter;
12559 struct symbol *sym;
12561 ALL_BLOCK_SYMBOLS (block, iter, sym)
12563 switch (SYMBOL_CLASS (sym))
12570 if (ada_is_exception_sym (sym))
12572 struct ada_exc_info info = {sym->print_name (),
12573 SYMBOL_VALUE_ADDRESS (sym)};
12575 exceptions->push_back (info);
12579 if (BLOCK_FUNCTION (block) != NULL)
12581 block = BLOCK_SUPERBLOCK (block);
12585 /* Return true if NAME matches PREG or if PREG is NULL. */
12588 name_matches_regex (const char *name, compiled_regex *preg)
12590 return (preg == NULL
12591 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12594 /* Add all exceptions defined globally whose name name match
12595 a regular expression, excluding standard exceptions.
12597 The reason we exclude standard exceptions is that they need
12598 to be handled separately: Standard exceptions are defined inside
12599 a runtime unit which is normally not compiled with debugging info,
12600 and thus usually do not show up in our symbol search. However,
12601 if the unit was in fact built with debugging info, we need to
12602 exclude them because they would duplicate the entry we found
12603 during the special loop that specifically searches for those
12604 standard exceptions.
12606 If PREG is not NULL, then this regexp_t object is used to
12607 perform the symbol name matching. Otherwise, no name-based
12608 filtering is performed.
12610 EXCEPTIONS is a vector of exceptions to which matching exceptions
12614 ada_add_global_exceptions (compiled_regex *preg,
12615 std::vector<ada_exc_info> *exceptions)
12617 /* In Ada, the symbol "search name" is a linkage name, whereas the
12618 regular expression used to do the matching refers to the natural
12619 name. So match against the decoded name. */
12620 expand_symtabs_matching (NULL,
12621 lookup_name_info::match_any (),
12622 [&] (const char *search_name)
12624 std::string decoded = ada_decode (search_name);
12625 return name_matches_regex (decoded.c_str (), preg);
12628 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12631 for (objfile *objfile : current_program_space->objfiles ())
12633 for (compunit_symtab *s : objfile->compunits ())
12635 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12638 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12640 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12641 struct block_iterator iter;
12642 struct symbol *sym;
12644 ALL_BLOCK_SYMBOLS (b, iter, sym)
12645 if (ada_is_non_standard_exception_sym (sym)
12646 && name_matches_regex (sym->natural_name (), preg))
12648 struct ada_exc_info info
12649 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12651 exceptions->push_back (info);
12658 /* Implements ada_exceptions_list with the regular expression passed
12659 as a regex_t, rather than a string.
12661 If not NULL, PREG is used to filter out exceptions whose names
12662 do not match. Otherwise, all exceptions are listed. */
12664 static std::vector<ada_exc_info>
12665 ada_exceptions_list_1 (compiled_regex *preg)
12667 std::vector<ada_exc_info> result;
12670 /* First, list the known standard exceptions. These exceptions
12671 need to be handled separately, as they are usually defined in
12672 runtime units that have been compiled without debugging info. */
12674 ada_add_standard_exceptions (preg, &result);
12676 /* Next, find all exceptions whose scope is local and accessible
12677 from the currently selected frame. */
12679 if (has_stack_frames ())
12681 prev_len = result.size ();
12682 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12684 if (result.size () > prev_len)
12685 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12688 /* Add all exceptions whose scope is global. */
12690 prev_len = result.size ();
12691 ada_add_global_exceptions (preg, &result);
12692 if (result.size () > prev_len)
12693 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12698 /* Return a vector of ada_exc_info.
12700 If REGEXP is NULL, all exceptions are included in the result.
12701 Otherwise, it should contain a valid regular expression,
12702 and only the exceptions whose names match that regular expression
12703 are included in the result.
12705 The exceptions are sorted in the following order:
12706 - Standard exceptions (defined by the Ada language), in
12707 alphabetical order;
12708 - Exceptions only visible from the current frame, in
12709 alphabetical order;
12710 - Exceptions whose scope is global, in alphabetical order. */
12712 std::vector<ada_exc_info>
12713 ada_exceptions_list (const char *regexp)
12715 if (regexp == NULL)
12716 return ada_exceptions_list_1 (NULL);
12718 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12719 return ada_exceptions_list_1 (®);
12722 /* Implement the "info exceptions" command. */
12725 info_exceptions_command (const char *regexp, int from_tty)
12727 struct gdbarch *gdbarch = get_current_arch ();
12729 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12731 if (regexp != NULL)
12733 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12735 printf_filtered (_("All defined Ada exceptions:\n"));
12737 for (const ada_exc_info &info : exceptions)
12738 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12742 /* Language vector */
12744 /* symbol_name_matcher_ftype adapter for wild_match. */
12747 do_wild_match (const char *symbol_search_name,
12748 const lookup_name_info &lookup_name,
12749 completion_match_result *comp_match_res)
12751 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12754 /* symbol_name_matcher_ftype adapter for full_match. */
12757 do_full_match (const char *symbol_search_name,
12758 const lookup_name_info &lookup_name,
12759 completion_match_result *comp_match_res)
12761 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12763 /* If both symbols start with "_ada_", just let the loop below
12764 handle the comparison. However, if only the symbol name starts
12765 with "_ada_", skip the prefix and let the match proceed as
12767 if (startswith (symbol_search_name, "_ada_")
12768 && !startswith (lname, "_ada"))
12769 symbol_search_name += 5;
12771 int uscore_count = 0;
12772 while (*lname != '\0')
12774 if (*symbol_search_name != *lname)
12776 if (*symbol_search_name == 'B' && uscore_count == 2
12777 && symbol_search_name[1] == '_')
12779 symbol_search_name += 2;
12780 while (isdigit (*symbol_search_name))
12781 ++symbol_search_name;
12782 if (symbol_search_name[0] == '_'
12783 && symbol_search_name[1] == '_')
12785 symbol_search_name += 2;
12792 if (*symbol_search_name == '_')
12797 ++symbol_search_name;
12801 return is_name_suffix (symbol_search_name);
12804 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12807 do_exact_match (const char *symbol_search_name,
12808 const lookup_name_info &lookup_name,
12809 completion_match_result *comp_match_res)
12811 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12814 /* Build the Ada lookup name for LOOKUP_NAME. */
12816 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12818 gdb::string_view user_name = lookup_name.name ();
12820 if (!user_name.empty () && user_name[0] == '<')
12822 if (user_name.back () == '>')
12824 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12827 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12828 m_encoded_p = true;
12829 m_verbatim_p = true;
12830 m_wild_match_p = false;
12831 m_standard_p = false;
12835 m_verbatim_p = false;
12837 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12841 const char *folded = ada_fold_name (user_name);
12842 m_encoded_name = ada_encode_1 (folded, false);
12843 if (m_encoded_name.empty ())
12844 m_encoded_name = gdb::to_string (user_name);
12847 m_encoded_name = gdb::to_string (user_name);
12849 /* Handle the 'package Standard' special case. See description
12850 of m_standard_p. */
12851 if (startswith (m_encoded_name.c_str (), "standard__"))
12853 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12854 m_standard_p = true;
12857 m_standard_p = false;
12859 /* If the name contains a ".", then the user is entering a fully
12860 qualified entity name, and the match must not be done in wild
12861 mode. Similarly, if the user wants to complete what looks
12862 like an encoded name, the match must not be done in wild
12863 mode. Also, in the standard__ special case always do
12864 non-wild matching. */
12866 = (lookup_name.match_type () != symbol_name_match_type::FULL
12869 && user_name.find ('.') == std::string::npos);
12873 /* symbol_name_matcher_ftype method for Ada. This only handles
12874 completion mode. */
12877 ada_symbol_name_matches (const char *symbol_search_name,
12878 const lookup_name_info &lookup_name,
12879 completion_match_result *comp_match_res)
12881 return lookup_name.ada ().matches (symbol_search_name,
12882 lookup_name.match_type (),
12886 /* A name matcher that matches the symbol name exactly, with
12890 literal_symbol_name_matcher (const char *symbol_search_name,
12891 const lookup_name_info &lookup_name,
12892 completion_match_result *comp_match_res)
12894 gdb::string_view name_view = lookup_name.name ();
12896 if (lookup_name.completion_mode ()
12897 ? (strncmp (symbol_search_name, name_view.data (),
12898 name_view.size ()) == 0)
12899 : symbol_search_name == name_view)
12901 if (comp_match_res != NULL)
12902 comp_match_res->set_match (symbol_search_name);
12909 /* Implement the "get_symbol_name_matcher" language_defn method for
12912 static symbol_name_matcher_ftype *
12913 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12915 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12916 return literal_symbol_name_matcher;
12918 if (lookup_name.completion_mode ())
12919 return ada_symbol_name_matches;
12922 if (lookup_name.ada ().wild_match_p ())
12923 return do_wild_match;
12924 else if (lookup_name.ada ().verbatim_p ())
12925 return do_exact_match;
12927 return do_full_match;
12931 /* Class representing the Ada language. */
12933 class ada_language : public language_defn
12937 : language_defn (language_ada)
12940 /* See language.h. */
12942 const char *name () const override
12945 /* See language.h. */
12947 const char *natural_name () const override
12950 /* See language.h. */
12952 const std::vector<const char *> &filename_extensions () const override
12954 static const std::vector<const char *> extensions
12955 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12959 /* Print an array element index using the Ada syntax. */
12961 void print_array_index (struct type *index_type,
12963 struct ui_file *stream,
12964 const value_print_options *options) const override
12966 struct value *index_value = val_atr (index_type, index);
12968 value_print (index_value, stream, options);
12969 fprintf_filtered (stream, " => ");
12972 /* Implement the "read_var_value" language_defn method for Ada. */
12974 struct value *read_var_value (struct symbol *var,
12975 const struct block *var_block,
12976 struct frame_info *frame) const override
12978 /* The only case where default_read_var_value is not sufficient
12979 is when VAR is a renaming... */
12980 if (frame != nullptr)
12982 const struct block *frame_block = get_frame_block (frame, NULL);
12983 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12984 return ada_read_renaming_var_value (var, frame_block);
12987 /* This is a typical case where we expect the default_read_var_value
12988 function to work. */
12989 return language_defn::read_var_value (var, var_block, frame);
12992 /* See language.h. */
12993 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
12995 return symbol->artificial;
12998 /* See language.h. */
12999 void language_arch_info (struct gdbarch *gdbarch,
13000 struct language_arch_info *lai) const override
13002 const struct builtin_type *builtin = builtin_type (gdbarch);
13004 /* Helper function to allow shorter lines below. */
13005 auto add = [&] (struct type *t)
13007 lai->add_primitive_type (t);
13010 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13012 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13013 0, "long_integer"));
13014 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13015 0, "short_integer"));
13016 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13018 lai->set_string_char_type (char_type);
13020 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13021 "float", gdbarch_float_format (gdbarch)));
13022 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13023 "long_float", gdbarch_double_format (gdbarch)));
13024 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13025 0, "long_long_integer"));
13026 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13028 gdbarch_long_double_format (gdbarch)));
13029 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13031 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13033 add (builtin->builtin_void);
13035 struct type *system_addr_ptr
13036 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13038 system_addr_ptr->set_name ("system__address");
13039 add (system_addr_ptr);
13041 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13042 type. This is a signed integral type whose size is the same as
13043 the size of addresses. */
13044 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13045 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13046 "storage_offset"));
13048 lai->set_bool_type (builtin->builtin_bool);
13051 /* See language.h. */
13053 bool iterate_over_symbols
13054 (const struct block *block, const lookup_name_info &name,
13055 domain_enum domain,
13056 gdb::function_view<symbol_found_callback_ftype> callback) const override
13058 std::vector<struct block_symbol> results
13059 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13060 for (block_symbol &sym : results)
13062 if (!callback (&sym))
13069 /* See language.h. */
13070 bool sniff_from_mangled_name
13071 (const char *mangled,
13072 gdb::unique_xmalloc_ptr<char> *out) const override
13074 std::string demangled = ada_decode (mangled);
13078 if (demangled != mangled && demangled[0] != '<')
13080 /* Set the gsymbol language to Ada, but still return 0.
13081 Two reasons for that:
13083 1. For Ada, we prefer computing the symbol's decoded name
13084 on the fly rather than pre-compute it, in order to save
13085 memory (Ada projects are typically very large).
13087 2. There are some areas in the definition of the GNAT
13088 encoding where, with a bit of bad luck, we might be able
13089 to decode a non-Ada symbol, generating an incorrect
13090 demangled name (Eg: names ending with "TB" for instance
13091 are identified as task bodies and so stripped from
13092 the decoded name returned).
13094 Returning true, here, but not setting *DEMANGLED, helps us get
13095 a little bit of the best of both worlds. Because we're last,
13096 we should not affect any of the other languages that were
13097 able to demangle the symbol before us; we get to correctly
13098 tag Ada symbols as such; and even if we incorrectly tagged a
13099 non-Ada symbol, which should be rare, any routing through the
13100 Ada language should be transparent (Ada tries to behave much
13101 like C/C++ with non-Ada symbols). */
13108 /* See language.h. */
13110 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13111 int options) const override
13113 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13116 /* See language.h. */
13118 void print_type (struct type *type, const char *varstring,
13119 struct ui_file *stream, int show, int level,
13120 const struct type_print_options *flags) const override
13122 ada_print_type (type, varstring, stream, show, level, flags);
13125 /* See language.h. */
13127 const char *word_break_characters (void) const override
13129 return ada_completer_word_break_characters;
13132 /* See language.h. */
13134 void collect_symbol_completion_matches (completion_tracker &tracker,
13135 complete_symbol_mode mode,
13136 symbol_name_match_type name_match_type,
13137 const char *text, const char *word,
13138 enum type_code code) const override
13140 struct symbol *sym;
13141 const struct block *b, *surrounding_static_block = 0;
13142 struct block_iterator iter;
13144 gdb_assert (code == TYPE_CODE_UNDEF);
13146 lookup_name_info lookup_name (text, name_match_type, true);
13148 /* First, look at the partial symtab symbols. */
13149 expand_symtabs_matching (NULL,
13153 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13156 /* At this point scan through the misc symbol vectors and add each
13157 symbol you find to the list. Eventually we want to ignore
13158 anything that isn't a text symbol (everything else will be
13159 handled by the psymtab code above). */
13161 for (objfile *objfile : current_program_space->objfiles ())
13163 for (minimal_symbol *msymbol : objfile->msymbols ())
13167 if (completion_skip_symbol (mode, msymbol))
13170 language symbol_language = msymbol->language ();
13172 /* Ada minimal symbols won't have their language set to Ada. If
13173 we let completion_list_add_name compare using the
13174 default/C-like matcher, then when completing e.g., symbols in a
13175 package named "pck", we'd match internal Ada symbols like
13176 "pckS", which are invalid in an Ada expression, unless you wrap
13177 them in '<' '>' to request a verbatim match.
13179 Unfortunately, some Ada encoded names successfully demangle as
13180 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13181 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13182 with the wrong language set. Paper over that issue here. */
13183 if (symbol_language == language_auto
13184 || symbol_language == language_cplus)
13185 symbol_language = language_ada;
13187 completion_list_add_name (tracker,
13189 msymbol->linkage_name (),
13190 lookup_name, text, word);
13194 /* Search upwards from currently selected frame (so that we can
13195 complete on local vars. */
13197 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13199 if (!BLOCK_SUPERBLOCK (b))
13200 surrounding_static_block = b; /* For elmin of dups */
13202 ALL_BLOCK_SYMBOLS (b, iter, sym)
13204 if (completion_skip_symbol (mode, sym))
13207 completion_list_add_name (tracker,
13209 sym->linkage_name (),
13210 lookup_name, text, word);
13214 /* Go through the symtabs and check the externs and statics for
13215 symbols which match. */
13217 for (objfile *objfile : current_program_space->objfiles ())
13219 for (compunit_symtab *s : objfile->compunits ())
13222 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13223 ALL_BLOCK_SYMBOLS (b, iter, sym)
13225 if (completion_skip_symbol (mode, sym))
13228 completion_list_add_name (tracker,
13230 sym->linkage_name (),
13231 lookup_name, text, word);
13236 for (objfile *objfile : current_program_space->objfiles ())
13238 for (compunit_symtab *s : objfile->compunits ())
13241 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13242 /* Don't do this block twice. */
13243 if (b == surrounding_static_block)
13245 ALL_BLOCK_SYMBOLS (b, iter, sym)
13247 if (completion_skip_symbol (mode, sym))
13250 completion_list_add_name (tracker,
13252 sym->linkage_name (),
13253 lookup_name, text, word);
13259 /* See language.h. */
13261 gdb::unique_xmalloc_ptr<char> watch_location_expression
13262 (struct type *type, CORE_ADDR addr) const override
13264 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13265 std::string name = type_to_string (type);
13266 return gdb::unique_xmalloc_ptr<char>
13267 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13270 /* See language.h. */
13272 void value_print (struct value *val, struct ui_file *stream,
13273 const struct value_print_options *options) const override
13275 return ada_value_print (val, stream, options);
13278 /* See language.h. */
13280 void value_print_inner
13281 (struct value *val, struct ui_file *stream, int recurse,
13282 const struct value_print_options *options) const override
13284 return ada_value_print_inner (val, stream, recurse, options);
13287 /* See language.h. */
13289 struct block_symbol lookup_symbol_nonlocal
13290 (const char *name, const struct block *block,
13291 const domain_enum domain) const override
13293 struct block_symbol sym;
13295 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13296 if (sym.symbol != NULL)
13299 /* If we haven't found a match at this point, try the primitive
13300 types. In other languages, this search is performed before
13301 searching for global symbols in order to short-circuit that
13302 global-symbol search if it happens that the name corresponds
13303 to a primitive type. But we cannot do the same in Ada, because
13304 it is perfectly legitimate for a program to declare a type which
13305 has the same name as a standard type. If looking up a type in
13306 that situation, we have traditionally ignored the primitive type
13307 in favor of user-defined types. This is why, unlike most other
13308 languages, we search the primitive types this late and only after
13309 having searched the global symbols without success. */
13311 if (domain == VAR_DOMAIN)
13313 struct gdbarch *gdbarch;
13316 gdbarch = target_gdbarch ();
13318 gdbarch = block_gdbarch (block);
13320 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13321 if (sym.symbol != NULL)
13328 /* See language.h. */
13330 int parser (struct parser_state *ps) const override
13332 warnings_issued = 0;
13333 return ada_parse (ps);
13336 /* See language.h. */
13338 void emitchar (int ch, struct type *chtype,
13339 struct ui_file *stream, int quoter) const override
13341 ada_emit_char (ch, chtype, stream, quoter, 1);
13344 /* See language.h. */
13346 void printchar (int ch, struct type *chtype,
13347 struct ui_file *stream) const override
13349 ada_printchar (ch, chtype, stream);
13352 /* See language.h. */
13354 void printstr (struct ui_file *stream, struct type *elttype,
13355 const gdb_byte *string, unsigned int length,
13356 const char *encoding, int force_ellipses,
13357 const struct value_print_options *options) const override
13359 ada_printstr (stream, elttype, string, length, encoding,
13360 force_ellipses, options);
13363 /* See language.h. */
13365 void print_typedef (struct type *type, struct symbol *new_symbol,
13366 struct ui_file *stream) const override
13368 ada_print_typedef (type, new_symbol, stream);
13371 /* See language.h. */
13373 bool is_string_type_p (struct type *type) const override
13375 return ada_is_string_type (type);
13378 /* See language.h. */
13380 const char *struct_too_deep_ellipsis () const override
13381 { return "(...)"; }
13383 /* See language.h. */
13385 bool c_style_arrays_p () const override
13388 /* See language.h. */
13390 bool store_sym_names_in_linkage_form_p () const override
13393 /* See language.h. */
13395 const struct lang_varobj_ops *varobj_ops () const override
13396 { return &ada_varobj_ops; }
13399 /* See language.h. */
13401 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13402 (const lookup_name_info &lookup_name) const override
13404 return ada_get_symbol_name_matcher (lookup_name);
13408 /* Single instance of the Ada language class. */
13410 static ada_language ada_language_defn;
13412 /* Command-list for the "set/show ada" prefix command. */
13413 static struct cmd_list_element *set_ada_list;
13414 static struct cmd_list_element *show_ada_list;
13417 initialize_ada_catchpoint_ops (void)
13419 struct breakpoint_ops *ops;
13421 initialize_breakpoint_ops ();
13423 ops = &catch_exception_breakpoint_ops;
13424 *ops = bkpt_breakpoint_ops;
13425 ops->allocate_location = allocate_location_exception;
13426 ops->re_set = re_set_exception;
13427 ops->check_status = check_status_exception;
13428 ops->print_it = print_it_exception;
13429 ops->print_one = print_one_exception;
13430 ops->print_mention = print_mention_exception;
13431 ops->print_recreate = print_recreate_exception;
13433 ops = &catch_exception_unhandled_breakpoint_ops;
13434 *ops = bkpt_breakpoint_ops;
13435 ops->allocate_location = allocate_location_exception;
13436 ops->re_set = re_set_exception;
13437 ops->check_status = check_status_exception;
13438 ops->print_it = print_it_exception;
13439 ops->print_one = print_one_exception;
13440 ops->print_mention = print_mention_exception;
13441 ops->print_recreate = print_recreate_exception;
13443 ops = &catch_assert_breakpoint_ops;
13444 *ops = bkpt_breakpoint_ops;
13445 ops->allocate_location = allocate_location_exception;
13446 ops->re_set = re_set_exception;
13447 ops->check_status = check_status_exception;
13448 ops->print_it = print_it_exception;
13449 ops->print_one = print_one_exception;
13450 ops->print_mention = print_mention_exception;
13451 ops->print_recreate = print_recreate_exception;
13453 ops = &catch_handlers_breakpoint_ops;
13454 *ops = bkpt_breakpoint_ops;
13455 ops->allocate_location = allocate_location_exception;
13456 ops->re_set = re_set_exception;
13457 ops->check_status = check_status_exception;
13458 ops->print_it = print_it_exception;
13459 ops->print_one = print_one_exception;
13460 ops->print_mention = print_mention_exception;
13461 ops->print_recreate = print_recreate_exception;
13464 /* This module's 'new_objfile' observer. */
13467 ada_new_objfile_observer (struct objfile *objfile)
13469 ada_clear_symbol_cache ();
13472 /* This module's 'free_objfile' observer. */
13475 ada_free_objfile_observer (struct objfile *objfile)
13477 ada_clear_symbol_cache ();
13480 void _initialize_ada_language ();
13482 _initialize_ada_language ()
13484 initialize_ada_catchpoint_ops ();
13486 add_basic_prefix_cmd ("ada", no_class,
13487 _("Prefix command for changing Ada-specific settings."),
13488 &set_ada_list, 0, &setlist);
13490 add_show_prefix_cmd ("ada", no_class,
13491 _("Generic command for showing Ada-specific settings."),
13492 &show_ada_list, 0, &showlist);
13494 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13495 &trust_pad_over_xvs, _("\
13496 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13497 Show whether an optimization trusting PAD types over XVS types is activated."),
13499 This is related to the encoding used by the GNAT compiler. The debugger\n\
13500 should normally trust the contents of PAD types, but certain older versions\n\
13501 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13502 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13503 work around this bug. It is always safe to turn this option \"off\", but\n\
13504 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13505 this option to \"off\" unless necessary."),
13506 NULL, NULL, &set_ada_list, &show_ada_list);
13508 add_setshow_boolean_cmd ("print-signatures", class_vars,
13509 &print_signatures, _("\
13510 Enable or disable the output of formal and return types for functions in the \
13511 overloads selection menu."), _("\
13512 Show whether the output of formal and return types for functions in the \
13513 overloads selection menu is activated."),
13514 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13516 add_catch_command ("exception", _("\
13517 Catch Ada exceptions, when raised.\n\
13518 Usage: catch exception [ARG] [if CONDITION]\n\
13519 Without any argument, stop when any Ada exception is raised.\n\
13520 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13521 being raised does not have a handler (and will therefore lead to the task's\n\
13523 Otherwise, the catchpoint only stops when the name of the exception being\n\
13524 raised is the same as ARG.\n\
13525 CONDITION is a boolean expression that is evaluated to see whether the\n\
13526 exception should cause a stop."),
13527 catch_ada_exception_command,
13528 catch_ada_completer,
13532 add_catch_command ("handlers", _("\
13533 Catch Ada exceptions, when handled.\n\
13534 Usage: catch handlers [ARG] [if CONDITION]\n\
13535 Without any argument, stop when any Ada exception is handled.\n\
13536 With an argument, catch only exceptions with the given name.\n\
13537 CONDITION is a boolean expression that is evaluated to see whether the\n\
13538 exception should cause a stop."),
13539 catch_ada_handlers_command,
13540 catch_ada_completer,
13543 add_catch_command ("assert", _("\
13544 Catch failed Ada assertions, when raised.\n\
13545 Usage: catch assert [if CONDITION]\n\
13546 CONDITION is a boolean expression that is evaluated to see whether the\n\
13547 exception should cause a stop."),
13548 catch_assert_command,
13553 add_info ("exceptions", info_exceptions_command,
13555 List all Ada exception names.\n\
13556 Usage: info exceptions [REGEXP]\n\
13557 If a regular expression is passed as an argument, only those matching\n\
13558 the regular expression are listed."));
13560 add_basic_prefix_cmd ("ada", class_maintenance,
13561 _("Set Ada maintenance-related variables."),
13562 &maint_set_ada_cmdlist,
13563 0/*allow-unknown*/, &maintenance_set_cmdlist);
13565 add_show_prefix_cmd ("ada", class_maintenance,
13566 _("Show Ada maintenance-related variables."),
13567 &maint_show_ada_cmdlist,
13568 0/*allow-unknown*/, &maintenance_show_cmdlist);
13570 add_setshow_boolean_cmd
13571 ("ignore-descriptive-types", class_maintenance,
13572 &ada_ignore_descriptive_types_p,
13573 _("Set whether descriptive types generated by GNAT should be ignored."),
13574 _("Show whether descriptive types generated by GNAT should be ignored."),
13576 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13577 DWARF attribute."),
13578 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13580 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13582 NULL, xcalloc, xfree);
13584 /* The ada-lang observers. */
13585 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13586 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13587 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");