1 /* Generic symbol file reading for the GNU debugger, GDB.
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6 Contributed by Cygnus Support, using pieces from other GDB modules.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
35 #include "breakpoint.h"
37 #include "complaints.h"
39 #include "inferior.h" /* for write_pc */
40 #include "gdb-stabs.h"
42 #include "completer.h"
44 #include <sys/types.h>
46 #include "gdb_string.h"
57 /* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
60 extern int hp_som_som_object_present;
61 extern int hp_cxx_exception_support_initialized;
62 #define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
68 int (*ui_load_progress_hook) (const char *section, unsigned long num);
69 void (*show_load_progress) (const char *section,
70 unsigned long section_sent,
71 unsigned long section_size,
72 unsigned long total_sent,
73 unsigned long total_size);
74 void (*pre_add_symbol_hook) (char *);
75 void (*post_add_symbol_hook) (void);
76 void (*target_new_objfile_hook) (struct objfile *);
78 static void clear_symtab_users_cleanup (void *ignore);
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
83 struct complaint oldsyms_complaint =
85 "Replacing old symbols for `%s'", 0, 0
88 struct complaint empty_symtab_complaint =
90 "Empty symbol table found for `%s'", 0, 0
93 struct complaint unknown_option_complaint =
95 "Unknown option `%s' ignored", 0, 0
98 /* External variables and functions referenced. */
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
102 /* Functions this file defines */
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
109 static void set_initial_language (void);
111 static void load_command (char *, int);
113 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
115 static void add_symbol_file_command (char *, int);
117 static void add_shared_symbol_files_command (char *, int);
119 static void cashier_psymtab (struct partial_symtab *);
121 bfd *symfile_bfd_open (char *);
123 static void find_sym_fns (struct objfile *);
125 static void decrement_reading_symtab (void *);
127 static void overlay_invalidate_all (void);
129 static int overlay_is_mapped (struct obj_section *);
131 void list_overlays_command (char *, int);
133 void map_overlay_command (char *, int);
135 void unmap_overlay_command (char *, int);
137 static void overlay_auto_command (char *, int);
139 static void overlay_manual_command (char *, int);
141 static void overlay_off_command (char *, int);
143 static void overlay_load_command (char *, int);
145 static void overlay_command (char *, int);
147 static void simple_free_overlay_table (void);
149 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
151 static int simple_read_overlay_table (void);
153 static int simple_overlay_update_1 (struct obj_section *);
155 static void add_filename_language (char *ext, enum language lang);
157 static void set_ext_lang_command (char *args, int from_tty);
159 static void info_ext_lang_command (char *args, int from_tty);
161 static void init_filename_language_table (void);
163 void _initialize_symfile (void);
165 /* List of all available sym_fns. On gdb startup, each object file reader
166 calls add_symtab_fns() to register information on each format it is
169 static struct sym_fns *symtab_fns = NULL;
171 /* Flag for whether user will be reloading symbols multiple times.
172 Defaults to ON for VxWorks, otherwise OFF. */
174 #ifdef SYMBOL_RELOADING_DEFAULT
175 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
177 int symbol_reloading = 0;
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
190 int auto_solib_add = 1;
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
200 int auto_solib_limit;
203 /* Since this function is called from within qsort, in an ANSI environment
204 it must conform to the prototype for qsort, which specifies that the
205 comparison function takes two "void *" pointers. */
208 compare_symbols (const void *s1p, const void *s2p)
210 register struct symbol **s1, **s2;
212 s1 = (struct symbol **) s1p;
213 s2 = (struct symbol **) s2p;
214 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
221 compare_psymbols -- compare two partial symbols by name
225 Given pointers to pointers to two partial symbol table entries,
226 compare them by name and return -N, 0, or +N (ala strcmp).
227 Typically used by sorting routines like qsort().
231 Does direct compare of first two characters before punting
232 and passing to strcmp for longer compares. Note that the
233 original version had a bug whereby two null strings or two
234 identically named one character strings would return the
235 comparison of memory following the null byte.
240 compare_psymbols (const void *s1p, const void *s2p)
242 register struct partial_symbol **s1, **s2;
243 register char *st1, *st2;
245 s1 = (struct partial_symbol **) s1p;
246 s2 = (struct partial_symbol **) s2p;
247 st1 = SYMBOL_SOURCE_NAME (*s1);
248 st2 = SYMBOL_SOURCE_NAME (*s2);
251 if ((st1[0] - st2[0]) || !st1[0])
253 return (st1[0] - st2[0]);
255 else if ((st1[1] - st2[1]) || !st1[1])
257 return (st1[1] - st2[1]);
261 return (strcmp (st1, st2));
266 sort_pst_symbols (struct partial_symtab *pst)
268 /* Sort the global list; don't sort the static list */
270 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
271 pst->n_global_syms, sizeof (struct partial_symbol *),
275 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
278 sort_block_syms (register struct block *b)
280 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
281 sizeof (struct symbol *), compare_symbols);
284 /* Call sort_symtab_syms to sort alphabetically
285 the symbols of each block of one symtab. */
288 sort_symtab_syms (register struct symtab *s)
290 register struct blockvector *bv;
293 register struct block *b;
297 bv = BLOCKVECTOR (s);
298 nbl = BLOCKVECTOR_NBLOCKS (bv);
299 for (i = 0; i < nbl; i++)
301 b = BLOCKVECTOR_BLOCK (bv, i);
302 if (BLOCK_SHOULD_SORT (b))
307 /* Make a null terminated copy of the string at PTR with SIZE characters in
308 the obstack pointed to by OBSTACKP . Returns the address of the copy.
309 Note that the string at PTR does not have to be null terminated, I.E. it
310 may be part of a larger string and we are only saving a substring. */
313 obsavestring (char *ptr, int size, struct obstack *obstackp)
315 register char *p = (char *) obstack_alloc (obstackp, size + 1);
316 /* Open-coded memcpy--saves function call time. These strings are usually
317 short. FIXME: Is this really still true with a compiler that can
320 register char *p1 = ptr;
321 register char *p2 = p;
322 char *end = ptr + size;
330 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
331 in the obstack pointed to by OBSTACKP. */
334 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
337 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
338 register char *val = (char *) obstack_alloc (obstackp, len);
345 /* True if we are nested inside psymtab_to_symtab. */
347 int currently_reading_symtab = 0;
350 decrement_reading_symtab (void *dummy)
352 currently_reading_symtab--;
355 /* Get the symbol table that corresponds to a partial_symtab.
356 This is fast after the first time you do it. In fact, there
357 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
361 psymtab_to_symtab (register struct partial_symtab *pst)
363 /* If it's been looked up before, return it. */
367 /* If it has not yet been read in, read it. */
370 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
371 currently_reading_symtab++;
372 (*pst->read_symtab) (pst);
373 do_cleanups (back_to);
379 /* Initialize entry point information for this objfile. */
382 init_entry_point_info (struct objfile *objfile)
384 /* Save startup file's range of PC addresses to help blockframe.c
385 decide where the bottom of the stack is. */
387 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
389 /* Executable file -- record its entry point so we'll recognize
390 the startup file because it contains the entry point. */
391 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
395 /* Examination of non-executable.o files. Short-circuit this stuff. */
396 objfile->ei.entry_point = INVALID_ENTRY_POINT;
398 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
406 /* Get current entry point address. */
409 entry_point_address (void)
411 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
414 /* Remember the lowest-addressed loadable section we've seen.
415 This function is called via bfd_map_over_sections.
417 In case of equal vmas, the section with the largest size becomes the
418 lowest-addressed loadable section.
420 If the vmas and sizes are equal, the last section is considered the
421 lowest-addressed loadable section. */
424 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
426 asection **lowest = (asection **) obj;
428 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
431 *lowest = sect; /* First loadable section */
432 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
433 *lowest = sect; /* A lower loadable section */
434 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
435 && (bfd_section_size (abfd, (*lowest))
436 <= bfd_section_size (abfd, sect)))
441 /* Build (allocate and populate) a section_addr_info struct from
442 an existing section table. */
444 extern struct section_addr_info *
445 build_section_addr_info_from_section_table (const struct section_table *start,
446 const struct section_table *end)
448 struct section_addr_info *sap;
449 const struct section_table *stp;
452 sap = xmalloc (sizeof (struct section_addr_info));
453 memset (sap, 0, sizeof (struct section_addr_info));
455 for (stp = start, oidx = 0; stp != end; stp++)
457 if (bfd_get_section_flags (stp->bfd,
458 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
459 && oidx < MAX_SECTIONS)
461 sap->other[oidx].addr = stp->addr;
462 sap->other[oidx].name
463 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
464 sap->other[oidx].sectindex = stp->the_bfd_section->index;
473 /* Free all memory allocated by build_section_addr_info_from_section_table. */
476 free_section_addr_info (struct section_addr_info *sap)
480 for (idx = 0; idx < MAX_SECTIONS; idx++)
481 if (sap->other[idx].name)
482 xfree (sap->other[idx].name);
487 /* Parse the user's idea of an offset for dynamic linking, into our idea
488 of how to represent it for fast symbol reading. This is the default
489 version of the sym_fns.sym_offsets function for symbol readers that
490 don't need to do anything special. It allocates a section_offsets table
491 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
494 default_symfile_offsets (struct objfile *objfile,
495 struct section_addr_info *addrs)
498 asection *sect = NULL;
500 objfile->num_sections = SECT_OFF_MAX;
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
503 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
505 /* Now calculate offsets for section that were specified by the
507 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
509 struct other_sections *osp ;
511 osp = &addrs->other[i] ;
515 /* Record all sections in offsets */
516 /* The section_offsets in the objfile are here filled in using
518 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 /* Remember the bfd indexes for the .text, .data, .bss and
524 sect = bfd_get_section_by_name (objfile->obfd, ".text");
526 objfile->sect_index_text = sect->index;
528 sect = bfd_get_section_by_name (objfile->obfd, ".data");
530 objfile->sect_index_data = sect->index;
532 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
534 objfile->sect_index_bss = sect->index;
536 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
538 objfile->sect_index_rodata = sect->index;
542 /* Process a symbol file, as either the main file or as a dynamically
545 OBJFILE is where the symbols are to be read from.
547 ADDR is the address where the text segment was loaded, unless the
548 objfile is the main symbol file, in which case it is zero.
550 MAINLINE is nonzero if this is the main symbol file, or zero if
551 it's an extra symbol file such as dynamically loaded code.
553 VERBO is nonzero if the caller has printed a verbose message about
554 the symbol reading (and complaints can be more terse about it). */
557 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
558 int mainline, int verbo)
560 asection *lower_sect;
562 CORE_ADDR lower_offset;
563 struct section_addr_info local_addr;
564 struct cleanup *old_chain;
567 /* If ADDRS is NULL, initialize the local section_addr_info struct and
568 point ADDRS to it. We now establish the convention that an addr of
569 zero means no load address was specified. */
573 memset (&local_addr, 0, sizeof (local_addr));
577 init_entry_point_info (objfile);
578 find_sym_fns (objfile);
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
586 /* We will modify the main symbol table, make sure that all its users
587 will be cleaned up if an error occurs during symbol reading. */
588 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
590 /* Since no error yet, throw away the old symbol table. */
592 if (symfile_objfile != NULL)
594 free_objfile (symfile_objfile);
595 symfile_objfile = NULL;
598 /* Currently we keep symbols from the add-symbol-file command.
599 If the user wants to get rid of them, they should do "symbol-file"
600 without arguments first. Not sure this is the best behavior
603 (*objfile->sf->sym_new_init) (objfile);
606 /* Convert addr into an offset rather than an absolute address.
607 We find the lowest address of a loaded segment in the objfile,
608 and assume that <addr> is where that got loaded.
610 We no longer warn if the lowest section is not a text segment (as
611 happens for the PA64 port. */
614 /* Find lowest loadable section to be used as starting point for
615 continguous sections. FIXME!! won't work without call to find
616 .text first, but this assumes text is lowest section. */
617 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
618 if (lower_sect == NULL)
619 bfd_map_over_sections (objfile->obfd, find_lowest_section,
621 if (lower_sect == NULL)
622 warning ("no loadable sections found in added symbol-file %s",
625 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
626 warning ("Lowest section in %s is %s at %s",
628 bfd_section_name (objfile->obfd, lower_sect),
629 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
630 if (lower_sect != NULL)
631 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
635 /* Calculate offsets for the loadable sections.
636 FIXME! Sections must be in order of increasing loadable section
637 so that contiguous sections can use the lower-offset!!!
639 Adjust offsets if the segments are not contiguous.
640 If the section is contiguous, its offset should be set to
641 the offset of the highest loadable section lower than it
642 (the loadable section directly below it in memory).
643 this_offset = lower_offset = lower_addr - lower_orig_addr */
645 /* Calculate offsets for sections. */
646 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
648 if (addrs->other[i].addr != 0)
650 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
653 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
654 lower_offset = addrs->other[i].addr;
655 /* This is the index used by BFD. */
656 addrs->other[i].sectindex = sect->index ;
660 warning ("section %s not found in %s", addrs->other[i].name,
662 addrs->other[i].addr = 0;
666 addrs->other[i].addr = lower_offset;
670 /* Initialize symbol reading routines for this objfile, allow complaints to
671 appear for this new file, and record how verbose to be, then do the
672 initial symbol reading for this file. */
674 (*objfile->sf->sym_init) (objfile);
675 clear_complaints (1, verbo);
677 (*objfile->sf->sym_offsets) (objfile, addrs);
679 #ifndef IBM6000_TARGET
680 /* This is a SVR4/SunOS specific hack, I think. In any event, it
681 screws RS/6000. sym_offsets should be doing this sort of thing,
682 because it knows the mapping between bfd sections and
684 /* This is a hack. As far as I can tell, section offsets are not
685 target dependent. They are all set to addr with a couple of
686 exceptions. The exceptions are sysvr4 shared libraries, whose
687 offsets are kept in solib structures anyway and rs6000 xcoff
688 which handles shared libraries in a completely unique way.
690 Section offsets are built similarly, except that they are built
691 by adding addr in all cases because there is no clear mapping
692 from section_offsets into actual sections. Note that solib.c
693 has a different algorithm for finding section offsets.
695 These should probably all be collapsed into some target
696 independent form of shared library support. FIXME. */
700 struct obj_section *s;
702 /* Map section offsets in "addr" back to the object's
703 sections by comparing the section names with bfd's
704 section names. Then adjust the section address by
705 the offset. */ /* for gdb/13815 */
707 ALL_OBJFILE_OSECTIONS (objfile, s)
709 CORE_ADDR s_addr = 0;
713 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
715 if (strcmp (bfd_section_name (s->objfile->obfd,
717 addrs->other[i].name) == 0)
718 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
720 s->addr -= s->offset;
722 s->endaddr -= s->offset;
723 s->endaddr += s_addr;
727 #endif /* not IBM6000_TARGET */
729 (*objfile->sf->sym_read) (objfile, mainline);
731 if (!have_partial_symbols () && !have_full_symbols ())
734 printf_filtered ("(no debugging symbols found)...");
738 /* Don't allow char * to have a typename (else would get caddr_t).
739 Ditto void *. FIXME: Check whether this is now done by all the
740 symbol readers themselves (many of them now do), and if so remove
743 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
744 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
746 /* Mark the objfile has having had initial symbol read attempted. Note
747 that this does not mean we found any symbols... */
749 objfile->flags |= OBJF_SYMS;
751 /* Discard cleanups as symbol reading was successful. */
753 discard_cleanups (old_chain);
755 /* Call this after reading in a new symbol table to give target
756 dependent code a crack at the new symbols. For instance, this
757 could be used to update the values of target-specific symbols GDB
758 needs to keep track of (such as _sigtramp, or whatever). */
760 TARGET_SYMFILE_POSTREAD (objfile);
763 /* Perform required actions after either reading in the initial
764 symbols for a new objfile, or mapping in the symbols from a reusable
768 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
771 /* If this is the main symbol file we have to clean up all users of the
772 old main symbol file. Otherwise it is sufficient to fixup all the
773 breakpoints that may have been redefined by this symbol file. */
776 /* OK, make it the "real" symbol file. */
777 symfile_objfile = objfile;
779 clear_symtab_users ();
783 breakpoint_re_set ();
786 /* We're done reading the symbol file; finish off complaints. */
787 clear_complaints (0, verbo);
790 /* Process a symbol file, as either the main file or as a dynamically
793 NAME is the file name (which will be tilde-expanded and made
794 absolute herein) (but we don't free or modify NAME itself).
795 FROM_TTY says how verbose to be. MAINLINE specifies whether this
796 is the main symbol file, or whether it's an extra symbol file such
797 as dynamically loaded code. If !mainline, ADDR is the address
798 where the text segment was loaded.
800 Upon success, returns a pointer to the objfile that was added.
801 Upon failure, jumps back to command level (never returns). */
804 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
805 int mainline, int flags)
807 struct objfile *objfile;
808 struct partial_symtab *psymtab;
811 /* Open a bfd for the file, and give user a chance to burp if we'd be
812 interactively wiping out any existing symbols. */
814 abfd = symfile_bfd_open (name);
816 if ((have_full_symbols () || have_partial_symbols ())
819 && !query ("Load new symbol table from \"%s\"? ", name))
820 error ("Not confirmed.");
822 objfile = allocate_objfile (abfd, flags);
824 /* If the objfile uses a mapped symbol file, and we have a psymtab for
825 it, then skip reading any symbols at this time. */
827 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
829 /* We mapped in an existing symbol table file that already has had
830 initial symbol reading performed, so we can skip that part. Notify
831 the user that instead of reading the symbols, they have been mapped.
833 if (from_tty || info_verbose)
835 printf_filtered ("Mapped symbols for %s...", name);
837 gdb_flush (gdb_stdout);
839 init_entry_point_info (objfile);
840 find_sym_fns (objfile);
844 /* We either created a new mapped symbol table, mapped an existing
845 symbol table file which has not had initial symbol reading
846 performed, or need to read an unmapped symbol table. */
847 if (from_tty || info_verbose)
849 if (pre_add_symbol_hook)
850 pre_add_symbol_hook (name);
853 printf_filtered ("Reading symbols from %s...", name);
855 gdb_flush (gdb_stdout);
858 syms_from_objfile (objfile, addrs, mainline, from_tty);
861 /* We now have at least a partial symbol table. Check to see if the
862 user requested that all symbols be read on initial access via either
863 the gdb startup command line or on a per symbol file basis. Expand
864 all partial symbol tables for this objfile if so. */
866 if ((flags & OBJF_READNOW) || readnow_symbol_files)
868 if (from_tty || info_verbose)
870 printf_filtered ("expanding to full symbols...");
872 gdb_flush (gdb_stdout);
875 for (psymtab = objfile->psymtabs;
877 psymtab = psymtab->next)
879 psymtab_to_symtab (psymtab);
883 if (from_tty || info_verbose)
885 if (post_add_symbol_hook)
886 post_add_symbol_hook ();
889 printf_filtered ("done.\n");
890 gdb_flush (gdb_stdout);
894 new_symfile_objfile (objfile, mainline, from_tty);
896 if (target_new_objfile_hook)
897 target_new_objfile_hook (objfile);
902 /* Call symbol_file_add() with default values and update whatever is
903 affected by the loading of a new main().
904 Used when the file is supplied in the gdb command line
905 and by some targets with special loading requirements.
906 The auxiliary function, symbol_file_add_main_1(), has the flags
907 argument for the switches that can only be specified in the symbol_file
911 symbol_file_add_main (char *args, int from_tty)
913 symbol_file_add_main_1 (args, from_tty, 0);
917 symbol_file_add_main_1 (char *args, int from_tty, int flags)
919 symbol_file_add (args, from_tty, NULL, 1, flags);
922 RESET_HP_UX_GLOBALS ();
925 /* Getting new symbols may change our opinion about
926 what is frameless. */
927 reinit_frame_cache ();
929 set_initial_language ();
933 symbol_file_clear (int from_tty)
935 if ((have_full_symbols () || have_partial_symbols ())
937 && !query ("Discard symbol table from `%s'? ",
938 symfile_objfile->name))
939 error ("Not confirmed.");
940 free_all_objfiles ();
942 /* solib descriptors may have handles to objfiles. Since their
943 storage has just been released, we'd better wipe the solib
946 #if defined(SOLIB_RESTART)
950 symfile_objfile = NULL;
952 printf_unfiltered ("No symbol file now.\n");
954 RESET_HP_UX_GLOBALS ();
958 /* This is the symbol-file command. Read the file, analyze its
959 symbols, and add a struct symtab to a symtab list. The syntax of
960 the command is rather bizarre--(1) buildargv implements various
961 quoting conventions which are undocumented and have little or
962 nothing in common with the way things are quoted (or not quoted)
963 elsewhere in GDB, (2) options are used, which are not generally
964 used in GDB (perhaps "set mapped on", "set readnow on" would be
965 better), (3) the order of options matters, which is contrary to GNU
966 conventions (because it is confusing and inconvenient). */
967 /* Note: ezannoni 2000-04-17. This function used to have support for
968 rombug (see remote-os9k.c). It consisted of a call to target_link()
969 (target.c) to get the address of the text segment from the target,
970 and pass that to symbol_file_add(). This is no longer supported. */
973 symbol_file_command (char *args, int from_tty)
977 struct cleanup *cleanups;
978 int flags = OBJF_USERLOADED;
984 symbol_file_clear (from_tty);
988 if ((argv = buildargv (args)) == NULL)
992 cleanups = make_cleanup_freeargv (argv);
993 while (*argv != NULL)
995 if (STREQ (*argv, "-mapped"))
996 flags |= OBJF_MAPPED;
998 if (STREQ (*argv, "-readnow"))
999 flags |= OBJF_READNOW;
1002 error ("unknown option `%s'", *argv);
1007 symbol_file_add_main_1 (name, from_tty, flags);
1014 error ("no symbol file name was specified");
1016 do_cleanups (cleanups);
1020 /* Set the initial language.
1022 A better solution would be to record the language in the psymtab when reading
1023 partial symbols, and then use it (if known) to set the language. This would
1024 be a win for formats that encode the language in an easily discoverable place,
1025 such as DWARF. For stabs, we can jump through hoops looking for specially
1026 named symbols or try to intuit the language from the specific type of stabs
1027 we find, but we can't do that until later when we read in full symbols.
1031 set_initial_language (void)
1033 struct partial_symtab *pst;
1034 enum language lang = language_unknown;
1036 pst = find_main_psymtab ();
1039 if (pst->filename != NULL)
1041 lang = deduce_language_from_filename (pst->filename);
1043 if (lang == language_unknown)
1045 /* Make C the default language */
1048 set_language (lang);
1049 expected_language = current_language; /* Don't warn the user */
1053 /* Open file specified by NAME and hand it off to BFD for preliminary
1054 analysis. Result is a newly initialized bfd *, which includes a newly
1055 malloc'd` copy of NAME (tilde-expanded and made absolute).
1056 In case of trouble, error() is called. */
1059 symfile_bfd_open (char *name)
1063 char *absolute_name;
1067 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1069 /* Look down path for it, allocate 2nd new malloc'd copy. */
1070 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1071 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1074 char *exename = alloca (strlen (name) + 5);
1075 strcat (strcpy (exename, name), ".exe");
1076 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1082 make_cleanup (xfree, name);
1083 perror_with_name (name);
1085 xfree (name); /* Free 1st new malloc'd copy */
1086 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1087 /* It'll be freed in free_objfile(). */
1089 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1093 make_cleanup (xfree, name);
1094 error ("\"%s\": can't open to read symbols: %s.", name,
1095 bfd_errmsg (bfd_get_error ()));
1097 sym_bfd->cacheable = true;
1099 if (!bfd_check_format (sym_bfd, bfd_object))
1101 /* FIXME: should be checking for errors from bfd_close (for one thing,
1102 on error it does not free all the storage associated with the
1104 bfd_close (sym_bfd); /* This also closes desc */
1105 make_cleanup (xfree, name);
1106 error ("\"%s\": can't read symbols: %s.", name,
1107 bfd_errmsg (bfd_get_error ()));
1112 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1113 startup by the _initialize routine in each object file format reader,
1114 to register information about each format the the reader is prepared
1118 add_symtab_fns (struct sym_fns *sf)
1120 sf->next = symtab_fns;
1125 /* Initialize to read symbols from the symbol file sym_bfd. It either
1126 returns or calls error(). The result is an initialized struct sym_fns
1127 in the objfile structure, that contains cached information about the
1131 find_sym_fns (struct objfile *objfile)
1134 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1135 char *our_target = bfd_get_target (objfile->obfd);
1137 /* Special kludge for apollo. See dstread.c. */
1138 if (STREQN (our_target, "apollo", 6))
1139 our_flavour = (enum bfd_flavour) -2;
1141 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1143 if (our_flavour == sf->sym_flavour)
1149 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1150 bfd_get_target (objfile->obfd));
1153 /* This function runs the load command of our current target. */
1156 load_command (char *arg, int from_tty)
1159 arg = get_exec_file (1);
1160 target_load (arg, from_tty);
1162 /* After re-loading the executable, we don't really know which
1163 overlays are mapped any more. */
1164 overlay_cache_invalid = 1;
1167 /* This version of "load" should be usable for any target. Currently
1168 it is just used for remote targets, not inftarg.c or core files,
1169 on the theory that only in that case is it useful.
1171 Avoiding xmodem and the like seems like a win (a) because we don't have
1172 to worry about finding it, and (b) On VMS, fork() is very slow and so
1173 we don't want to run a subprocess. On the other hand, I'm not sure how
1174 performance compares. */
1176 static int download_write_size = 512;
1177 static int validate_download = 0;
1179 /* Callback service function for generic_load (bfd_map_over_sections). */
1182 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1184 bfd_size_type *sum = data;
1186 *sum += bfd_get_section_size_before_reloc (asec);
1189 /* Opaque data for load_section_callback. */
1190 struct load_section_data {
1191 unsigned long load_offset;
1192 unsigned long write_count;
1193 unsigned long data_count;
1194 bfd_size_type total_size;
1197 /* Callback service function for generic_load (bfd_map_over_sections). */
1200 load_section_callback (bfd *abfd, asection *asec, void *data)
1202 struct load_section_data *args = data;
1204 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1206 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1210 struct cleanup *old_chain;
1211 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1212 bfd_size_type block_size;
1214 const char *sect_name = bfd_get_section_name (abfd, asec);
1217 if (download_write_size > 0 && size > download_write_size)
1218 block_size = download_write_size;
1222 buffer = xmalloc (size);
1223 old_chain = make_cleanup (xfree, buffer);
1225 /* Is this really necessary? I guess it gives the user something
1226 to look at during a long download. */
1227 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1228 sect_name, paddr_nz (size), paddr_nz (lma));
1230 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1236 bfd_size_type this_transfer = size - sent;
1238 if (this_transfer >= block_size)
1239 this_transfer = block_size;
1240 len = target_write_memory_partial (lma, buffer,
1241 this_transfer, &err);
1244 if (validate_download)
1246 /* Broken memories and broken monitors manifest
1247 themselves here when bring new computers to
1248 life. This doubles already slow downloads. */
1249 /* NOTE: cagney/1999-10-18: A more efficient
1250 implementation might add a verify_memory()
1251 method to the target vector and then use
1252 that. remote.c could implement that method
1253 using the ``qCRC'' packet. */
1254 char *check = xmalloc (len);
1255 struct cleanup *verify_cleanups =
1256 make_cleanup (xfree, check);
1258 if (target_read_memory (lma, check, len) != 0)
1259 error ("Download verify read failed at 0x%s",
1261 if (memcmp (buffer, check, len) != 0)
1262 error ("Download verify compare failed at 0x%s",
1264 do_cleanups (verify_cleanups);
1266 args->data_count += len;
1269 args->write_count += 1;
1272 || (ui_load_progress_hook != NULL
1273 && ui_load_progress_hook (sect_name, sent)))
1274 error ("Canceled the download");
1276 if (show_load_progress != NULL)
1277 show_load_progress (sect_name, sent, size,
1278 args->data_count, args->total_size);
1280 while (sent < size);
1283 error ("Memory access error while loading section %s.", sect_name);
1285 do_cleanups (old_chain);
1291 generic_load (char *args, int from_tty)
1295 time_t start_time, end_time; /* Start and end times of download */
1297 struct cleanup *old_cleanups;
1299 struct load_section_data cbdata;
1302 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1303 cbdata.write_count = 0; /* Number of writes needed. */
1304 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1305 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1307 /* Parse the input argument - the user can specify a load offset as
1308 a second argument. */
1309 filename = xmalloc (strlen (args) + 1);
1310 old_cleanups = make_cleanup (xfree, filename);
1311 strcpy (filename, args);
1312 offptr = strchr (filename, ' ');
1317 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1318 if (offptr == endptr)
1319 error ("Invalid download offset:%s\n", offptr);
1323 cbdata.load_offset = 0;
1325 /* Open the file for loading. */
1326 loadfile_bfd = bfd_openr (filename, gnutarget);
1327 if (loadfile_bfd == NULL)
1329 perror_with_name (filename);
1333 /* FIXME: should be checking for errors from bfd_close (for one thing,
1334 on error it does not free all the storage associated with the
1336 make_cleanup_bfd_close (loadfile_bfd);
1338 if (!bfd_check_format (loadfile_bfd, bfd_object))
1340 error ("\"%s\" is not an object file: %s", filename,
1341 bfd_errmsg (bfd_get_error ()));
1344 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1345 (void *) &cbdata.total_size);
1347 start_time = time (NULL);
1349 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1351 end_time = time (NULL);
1353 entry = bfd_get_start_address (loadfile_bfd);
1354 ui_out_text (uiout, "Start address ");
1355 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1356 ui_out_text (uiout, ", load size ");
1357 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1358 ui_out_text (uiout, "\n");
1359 /* We were doing this in remote-mips.c, I suspect it is right
1360 for other targets too. */
1363 /* FIXME: are we supposed to call symbol_file_add or not? According to
1364 a comment from remote-mips.c (where a call to symbol_file_add was
1365 commented out), making the call confuses GDB if more than one file is
1366 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1369 print_transfer_performance (gdb_stdout, cbdata.data_count,
1370 cbdata.write_count, end_time - start_time);
1372 do_cleanups (old_cleanups);
1375 /* Report how fast the transfer went. */
1377 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1378 replaced by print_transfer_performance (with a very different
1379 function signature). */
1382 report_transfer_performance (unsigned long data_count, time_t start_time,
1385 print_transfer_performance (gdb_stdout, data_count,
1386 end_time - start_time, 0);
1390 print_transfer_performance (struct ui_file *stream,
1391 unsigned long data_count,
1392 unsigned long write_count,
1393 unsigned long time_count)
1395 ui_out_text (uiout, "Transfer rate: ");
1398 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1399 (data_count * 8) / time_count);
1400 ui_out_text (uiout, " bits/sec");
1404 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1405 ui_out_text (uiout, " bits in <1 sec");
1407 if (write_count > 0)
1409 ui_out_text (uiout, ", ");
1410 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1411 ui_out_text (uiout, " bytes/write");
1413 ui_out_text (uiout, ".\n");
1416 /* This function allows the addition of incrementally linked object files.
1417 It does not modify any state in the target, only in the debugger. */
1418 /* Note: ezannoni 2000-04-13 This function/command used to have a
1419 special case syntax for the rombug target (Rombug is the boot
1420 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1421 rombug case, the user doesn't need to supply a text address,
1422 instead a call to target_link() (in target.c) would supply the
1423 value to use. We are now discontinuing this type of ad hoc syntax. */
1427 add_symbol_file_command (char *args, int from_tty)
1429 char *filename = NULL;
1430 int flags = OBJF_USERLOADED;
1432 int expecting_option = 0;
1433 int section_index = 0;
1437 int expecting_sec_name = 0;
1438 int expecting_sec_addr = 0;
1444 } sect_opts[SECT_OFF_MAX];
1446 struct section_addr_info section_addrs;
1447 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1452 error ("add-symbol-file takes a file name and an address");
1454 /* Make a copy of the string that we can safely write into. */
1455 args = xstrdup (args);
1457 /* Ensure section_addrs is initialized */
1458 memset (§ion_addrs, 0, sizeof (section_addrs));
1460 while (*args != '\000')
1462 /* Any leading spaces? */
1463 while (isspace (*args))
1466 /* Point arg to the beginning of the argument. */
1469 /* Move args pointer over the argument. */
1470 while ((*args != '\000') && !isspace (*args))
1473 /* If there are more arguments, terminate arg and
1475 if (*args != '\000')
1478 /* Now process the argument. */
1481 /* The first argument is the file name. */
1482 filename = tilde_expand (arg);
1483 make_cleanup (xfree, filename);
1488 /* The second argument is always the text address at which
1489 to load the program. */
1490 sect_opts[section_index].name = ".text";
1491 sect_opts[section_index].value = arg;
1496 /* It's an option (starting with '-') or it's an argument
1501 if (strcmp (arg, "-mapped") == 0)
1502 flags |= OBJF_MAPPED;
1504 if (strcmp (arg, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1507 if (strcmp (arg, "-s") == 0)
1509 if (section_index >= SECT_OFF_MAX)
1510 error ("Too many sections specified.");
1511 expecting_sec_name = 1;
1512 expecting_sec_addr = 1;
1517 if (expecting_sec_name)
1519 sect_opts[section_index].name = arg;
1520 expecting_sec_name = 0;
1523 if (expecting_sec_addr)
1525 sect_opts[section_index].value = arg;
1526 expecting_sec_addr = 0;
1530 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1536 /* Print the prompt for the query below. And save the arguments into
1537 a sect_addr_info structure to be passed around to other
1538 functions. We have to split this up into separate print
1539 statements because local_hex_string returns a local static
1542 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1543 for (i = 0; i < section_index; i++)
1546 char *val = sect_opts[i].value;
1547 char *sec = sect_opts[i].name;
1549 val = sect_opts[i].value;
1550 if (val[0] == '0' && val[1] == 'x')
1551 addr = strtoul (val+2, NULL, 16);
1553 addr = strtoul (val, NULL, 10);
1555 /* Here we store the section offsets in the order they were
1556 entered on the command line. */
1557 section_addrs.other[sec_num].name = sec;
1558 section_addrs.other[sec_num].addr = addr;
1559 printf_filtered ("\t%s_addr = %s\n",
1561 local_hex_string ((unsigned long)addr));
1564 /* The object's sections are initialized when a
1565 call is made to build_objfile_section_table (objfile).
1566 This happens in reread_symbols.
1567 At this point, we don't know what file type this is,
1568 so we can't determine what section names are valid. */
1571 if (from_tty && (!query ("%s", "")))
1572 error ("Not confirmed.");
1574 symbol_file_add (filename, from_tty, §ion_addrs, 0, flags);
1576 /* Getting new symbols may change our opinion about what is
1578 reinit_frame_cache ();
1579 do_cleanups (my_cleanups);
1583 add_shared_symbol_files_command (char *args, int from_tty)
1585 #ifdef ADD_SHARED_SYMBOL_FILES
1586 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1588 error ("This command is not available in this configuration of GDB.");
1592 /* Re-read symbols if a symbol-file has changed. */
1594 reread_symbols (void)
1596 struct objfile *objfile;
1599 struct stat new_statbuf;
1602 /* With the addition of shared libraries, this should be modified,
1603 the load time should be saved in the partial symbol tables, since
1604 different tables may come from different source files. FIXME.
1605 This routine should then walk down each partial symbol table
1606 and see if the symbol table that it originates from has been changed */
1608 for (objfile = object_files; objfile; objfile = objfile->next)
1612 #ifdef IBM6000_TARGET
1613 /* If this object is from a shared library, then you should
1614 stat on the library name, not member name. */
1616 if (objfile->obfd->my_archive)
1617 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1620 res = stat (objfile->name, &new_statbuf);
1623 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1624 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1628 new_modtime = new_statbuf.st_mtime;
1629 if (new_modtime != objfile->mtime)
1631 struct cleanup *old_cleanups;
1632 struct section_offsets *offsets;
1634 char *obfd_filename;
1636 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1639 /* There are various functions like symbol_file_add,
1640 symfile_bfd_open, syms_from_objfile, etc., which might
1641 appear to do what we want. But they have various other
1642 effects which we *don't* want. So we just do stuff
1643 ourselves. We don't worry about mapped files (for one thing,
1644 any mapped file will be out of date). */
1646 /* If we get an error, blow away this objfile (not sure if
1647 that is the correct response for things like shared
1649 old_cleanups = make_cleanup_free_objfile (objfile);
1650 /* We need to do this whenever any symbols go away. */
1651 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1653 /* Clean up any state BFD has sitting around. We don't need
1654 to close the descriptor but BFD lacks a way of closing the
1655 BFD without closing the descriptor. */
1656 obfd_filename = bfd_get_filename (objfile->obfd);
1657 if (!bfd_close (objfile->obfd))
1658 error ("Can't close BFD for %s: %s", objfile->name,
1659 bfd_errmsg (bfd_get_error ()));
1660 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1661 if (objfile->obfd == NULL)
1662 error ("Can't open %s to read symbols.", objfile->name);
1663 /* bfd_openr sets cacheable to true, which is what we want. */
1664 if (!bfd_check_format (objfile->obfd, bfd_object))
1665 error ("Can't read symbols from %s: %s.", objfile->name,
1666 bfd_errmsg (bfd_get_error ()));
1668 /* Save the offsets, we will nuke them with the rest of the
1670 num_offsets = objfile->num_sections;
1671 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1672 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1674 /* Nuke all the state that we will re-read. Much of the following
1675 code which sets things to NULL really is necessary to tell
1676 other parts of GDB that there is nothing currently there. */
1678 /* FIXME: Do we have to free a whole linked list, or is this
1680 if (objfile->global_psymbols.list)
1681 xmfree (objfile->md, objfile->global_psymbols.list);
1682 memset (&objfile->global_psymbols, 0,
1683 sizeof (objfile->global_psymbols));
1684 if (objfile->static_psymbols.list)
1685 xmfree (objfile->md, objfile->static_psymbols.list);
1686 memset (&objfile->static_psymbols, 0,
1687 sizeof (objfile->static_psymbols));
1689 /* Free the obstacks for non-reusable objfiles */
1690 free_bcache (&objfile->psymbol_cache);
1691 obstack_free (&objfile->psymbol_obstack, 0);
1692 obstack_free (&objfile->symbol_obstack, 0);
1693 obstack_free (&objfile->type_obstack, 0);
1694 objfile->sections = NULL;
1695 objfile->symtabs = NULL;
1696 objfile->psymtabs = NULL;
1697 objfile->free_psymtabs = NULL;
1698 objfile->msymbols = NULL;
1699 objfile->minimal_symbol_count = 0;
1700 memset (&objfile->msymbol_hash, 0,
1701 sizeof (objfile->msymbol_hash));
1702 memset (&objfile->msymbol_demangled_hash, 0,
1703 sizeof (objfile->msymbol_demangled_hash));
1704 objfile->fundamental_types = NULL;
1705 if (objfile->sf != NULL)
1707 (*objfile->sf->sym_finish) (objfile);
1710 /* We never make this a mapped file. */
1712 /* obstack_specify_allocation also initializes the obstack so
1714 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1716 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1718 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1720 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1722 if (build_objfile_section_table (objfile))
1724 error ("Can't find the file sections in `%s': %s",
1725 objfile->name, bfd_errmsg (bfd_get_error ()));
1728 /* We use the same section offsets as from last time. I'm not
1729 sure whether that is always correct for shared libraries. */
1730 objfile->section_offsets = (struct section_offsets *)
1731 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1732 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1733 objfile->num_sections = num_offsets;
1735 /* What the hell is sym_new_init for, anyway? The concept of
1736 distinguishing between the main file and additional files
1737 in this way seems rather dubious. */
1738 if (objfile == symfile_objfile)
1740 (*objfile->sf->sym_new_init) (objfile);
1742 RESET_HP_UX_GLOBALS ();
1746 (*objfile->sf->sym_init) (objfile);
1747 clear_complaints (1, 1);
1748 /* The "mainline" parameter is a hideous hack; I think leaving it
1749 zero is OK since dbxread.c also does what it needs to do if
1750 objfile->global_psymbols.size is 0. */
1751 (*objfile->sf->sym_read) (objfile, 0);
1752 if (!have_partial_symbols () && !have_full_symbols ())
1755 printf_filtered ("(no debugging symbols found)\n");
1758 objfile->flags |= OBJF_SYMS;
1760 /* We're done reading the symbol file; finish off complaints. */
1761 clear_complaints (0, 1);
1763 /* Getting new symbols may change our opinion about what is
1766 reinit_frame_cache ();
1768 /* Discard cleanups as symbol reading was successful. */
1769 discard_cleanups (old_cleanups);
1771 /* If the mtime has changed between the time we set new_modtime
1772 and now, we *want* this to be out of date, so don't call stat
1774 objfile->mtime = new_modtime;
1777 /* Call this after reading in a new symbol table to give target
1778 dependent code a crack at the new symbols. For instance, this
1779 could be used to update the values of target-specific symbols GDB
1780 needs to keep track of (such as _sigtramp, or whatever). */
1782 TARGET_SYMFILE_POSTREAD (objfile);
1788 clear_symtab_users ();
1800 static filename_language *filename_language_table;
1801 static int fl_table_size, fl_table_next;
1804 add_filename_language (char *ext, enum language lang)
1806 if (fl_table_next >= fl_table_size)
1808 fl_table_size += 10;
1809 filename_language_table = xrealloc (filename_language_table,
1813 filename_language_table[fl_table_next].ext = xstrdup (ext);
1814 filename_language_table[fl_table_next].lang = lang;
1818 static char *ext_args;
1821 set_ext_lang_command (char *args, int from_tty)
1824 char *cp = ext_args;
1827 /* First arg is filename extension, starting with '.' */
1829 error ("'%s': Filename extension must begin with '.'", ext_args);
1831 /* Find end of first arg. */
1832 while (*cp && !isspace (*cp))
1836 error ("'%s': two arguments required -- filename extension and language",
1839 /* Null-terminate first arg */
1842 /* Find beginning of second arg, which should be a source language. */
1843 while (*cp && isspace (*cp))
1847 error ("'%s': two arguments required -- filename extension and language",
1850 /* Lookup the language from among those we know. */
1851 lang = language_enum (cp);
1853 /* Now lookup the filename extension: do we already know it? */
1854 for (i = 0; i < fl_table_next; i++)
1855 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1858 if (i >= fl_table_next)
1860 /* new file extension */
1861 add_filename_language (ext_args, lang);
1865 /* redefining a previously known filename extension */
1868 /* query ("Really make files of type %s '%s'?", */
1869 /* ext_args, language_str (lang)); */
1871 xfree (filename_language_table[i].ext);
1872 filename_language_table[i].ext = xstrdup (ext_args);
1873 filename_language_table[i].lang = lang;
1878 info_ext_lang_command (char *args, int from_tty)
1882 printf_filtered ("Filename extensions and the languages they represent:");
1883 printf_filtered ("\n\n");
1884 for (i = 0; i < fl_table_next; i++)
1885 printf_filtered ("\t%s\t- %s\n",
1886 filename_language_table[i].ext,
1887 language_str (filename_language_table[i].lang));
1891 init_filename_language_table (void)
1893 if (fl_table_size == 0) /* protect against repetition */
1897 filename_language_table =
1898 xmalloc (fl_table_size * sizeof (*filename_language_table));
1899 add_filename_language (".c", language_c);
1900 add_filename_language (".C", language_cplus);
1901 add_filename_language (".cc", language_cplus);
1902 add_filename_language (".cp", language_cplus);
1903 add_filename_language (".cpp", language_cplus);
1904 add_filename_language (".cxx", language_cplus);
1905 add_filename_language (".c++", language_cplus);
1906 add_filename_language (".java", language_java);
1907 add_filename_language (".class", language_java);
1908 add_filename_language (".ch", language_chill);
1909 add_filename_language (".c186", language_chill);
1910 add_filename_language (".c286", language_chill);
1911 add_filename_language (".f", language_fortran);
1912 add_filename_language (".F", language_fortran);
1913 add_filename_language (".s", language_asm);
1914 add_filename_language (".S", language_asm);
1915 add_filename_language (".pas", language_pascal);
1916 add_filename_language (".p", language_pascal);
1917 add_filename_language (".pp", language_pascal);
1922 deduce_language_from_filename (char *filename)
1927 if (filename != NULL)
1928 if ((cp = strrchr (filename, '.')) != NULL)
1929 for (i = 0; i < fl_table_next; i++)
1930 if (strcmp (cp, filename_language_table[i].ext) == 0)
1931 return filename_language_table[i].lang;
1933 return language_unknown;
1938 Allocate and partly initialize a new symbol table. Return a pointer
1939 to it. error() if no space.
1941 Caller must set these fields:
1947 possibly free_named_symtabs (symtab->filename);
1951 allocate_symtab (char *filename, struct objfile *objfile)
1953 register struct symtab *symtab;
1955 symtab = (struct symtab *)
1956 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1957 memset (symtab, 0, sizeof (*symtab));
1958 symtab->filename = obsavestring (filename, strlen (filename),
1959 &objfile->symbol_obstack);
1960 symtab->fullname = NULL;
1961 symtab->language = deduce_language_from_filename (filename);
1962 symtab->debugformat = obsavestring ("unknown", 7,
1963 &objfile->symbol_obstack);
1965 /* Hook it to the objfile it comes from */
1967 symtab->objfile = objfile;
1968 symtab->next = objfile->symtabs;
1969 objfile->symtabs = symtab;
1971 /* FIXME: This should go away. It is only defined for the Z8000,
1972 and the Z8000 definition of this macro doesn't have anything to
1973 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1974 here for convenience. */
1975 #ifdef INIT_EXTRA_SYMTAB_INFO
1976 INIT_EXTRA_SYMTAB_INFO (symtab);
1982 struct partial_symtab *
1983 allocate_psymtab (char *filename, struct objfile *objfile)
1985 struct partial_symtab *psymtab;
1987 if (objfile->free_psymtabs)
1989 psymtab = objfile->free_psymtabs;
1990 objfile->free_psymtabs = psymtab->next;
1993 psymtab = (struct partial_symtab *)
1994 obstack_alloc (&objfile->psymbol_obstack,
1995 sizeof (struct partial_symtab));
1997 memset (psymtab, 0, sizeof (struct partial_symtab));
1998 psymtab->filename = obsavestring (filename, strlen (filename),
1999 &objfile->psymbol_obstack);
2000 psymtab->symtab = NULL;
2002 /* Prepend it to the psymtab list for the objfile it belongs to.
2003 Psymtabs are searched in most recent inserted -> least recent
2006 psymtab->objfile = objfile;
2007 psymtab->next = objfile->psymtabs;
2008 objfile->psymtabs = psymtab;
2011 struct partial_symtab **prev_pst;
2012 psymtab->objfile = objfile;
2013 psymtab->next = NULL;
2014 prev_pst = &(objfile->psymtabs);
2015 while ((*prev_pst) != NULL)
2016 prev_pst = &((*prev_pst)->next);
2017 (*prev_pst) = psymtab;
2025 discard_psymtab (struct partial_symtab *pst)
2027 struct partial_symtab **prev_pst;
2030 Empty psymtabs happen as a result of header files which don't
2031 have any symbols in them. There can be a lot of them. But this
2032 check is wrong, in that a psymtab with N_SLINE entries but
2033 nothing else is not empty, but we don't realize that. Fixing
2034 that without slowing things down might be tricky. */
2036 /* First, snip it out of the psymtab chain */
2038 prev_pst = &(pst->objfile->psymtabs);
2039 while ((*prev_pst) != pst)
2040 prev_pst = &((*prev_pst)->next);
2041 (*prev_pst) = pst->next;
2043 /* Next, put it on a free list for recycling */
2045 pst->next = pst->objfile->free_psymtabs;
2046 pst->objfile->free_psymtabs = pst;
2050 /* Reset all data structures in gdb which may contain references to symbol
2054 clear_symtab_users (void)
2056 /* Someday, we should do better than this, by only blowing away
2057 the things that really need to be blown. */
2058 clear_value_history ();
2060 clear_internalvars ();
2061 breakpoint_re_set ();
2062 set_default_breakpoint (0, 0, 0, 0);
2063 current_source_symtab = 0;
2064 current_source_line = 0;
2065 clear_pc_function_cache ();
2066 if (target_new_objfile_hook)
2067 target_new_objfile_hook (NULL);
2071 clear_symtab_users_cleanup (void *ignore)
2073 clear_symtab_users ();
2076 /* clear_symtab_users_once:
2078 This function is run after symbol reading, or from a cleanup.
2079 If an old symbol table was obsoleted, the old symbol table
2080 has been blown away, but the other GDB data structures that may
2081 reference it have not yet been cleared or re-directed. (The old
2082 symtab was zapped, and the cleanup queued, in free_named_symtab()
2085 This function can be queued N times as a cleanup, or called
2086 directly; it will do all the work the first time, and then will be a
2087 no-op until the next time it is queued. This works by bumping a
2088 counter at queueing time. Much later when the cleanup is run, or at
2089 the end of symbol processing (in case the cleanup is discarded), if
2090 the queued count is greater than the "done-count", we do the work
2091 and set the done-count to the queued count. If the queued count is
2092 less than or equal to the done-count, we just ignore the call. This
2093 is needed because reading a single .o file will often replace many
2094 symtabs (one per .h file, for example), and we don't want to reset
2095 the breakpoints N times in the user's face.
2097 The reason we both queue a cleanup, and call it directly after symbol
2098 reading, is because the cleanup protects us in case of errors, but is
2099 discarded if symbol reading is successful. */
2102 /* FIXME: As free_named_symtabs is currently a big noop this function
2103 is no longer needed. */
2104 static void clear_symtab_users_once (void);
2106 static int clear_symtab_users_queued;
2107 static int clear_symtab_users_done;
2110 clear_symtab_users_once (void)
2112 /* Enforce once-per-`do_cleanups'-semantics */
2113 if (clear_symtab_users_queued <= clear_symtab_users_done)
2115 clear_symtab_users_done = clear_symtab_users_queued;
2117 clear_symtab_users ();
2121 /* Delete the specified psymtab, and any others that reference it. */
2124 cashier_psymtab (struct partial_symtab *pst)
2126 struct partial_symtab *ps, *pprev = NULL;
2129 /* Find its previous psymtab in the chain */
2130 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2139 /* Unhook it from the chain. */
2140 if (ps == pst->objfile->psymtabs)
2141 pst->objfile->psymtabs = ps->next;
2143 pprev->next = ps->next;
2145 /* FIXME, we can't conveniently deallocate the entries in the
2146 partial_symbol lists (global_psymbols/static_psymbols) that
2147 this psymtab points to. These just take up space until all
2148 the psymtabs are reclaimed. Ditto the dependencies list and
2149 filename, which are all in the psymbol_obstack. */
2151 /* We need to cashier any psymtab that has this one as a dependency... */
2153 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2155 for (i = 0; i < ps->number_of_dependencies; i++)
2157 if (ps->dependencies[i] == pst)
2159 cashier_psymtab (ps);
2160 goto again; /* Must restart, chain has been munged. */
2167 /* If a symtab or psymtab for filename NAME is found, free it along
2168 with any dependent breakpoints, displays, etc.
2169 Used when loading new versions of object modules with the "add-file"
2170 command. This is only called on the top-level symtab or psymtab's name;
2171 it is not called for subsidiary files such as .h files.
2173 Return value is 1 if we blew away the environment, 0 if not.
2174 FIXME. The return value appears to never be used.
2176 FIXME. I think this is not the best way to do this. We should
2177 work on being gentler to the environment while still cleaning up
2178 all stray pointers into the freed symtab. */
2181 free_named_symtabs (char *name)
2184 /* FIXME: With the new method of each objfile having it's own
2185 psymtab list, this function needs serious rethinking. In particular,
2186 why was it ever necessary to toss psymtabs with specific compilation
2187 unit filenames, as opposed to all psymtabs from a particular symbol
2189 Well, the answer is that some systems permit reloading of particular
2190 compilation units. We want to blow away any old info about these
2191 compilation units, regardless of which objfiles they arrived in. --gnu. */
2193 register struct symtab *s;
2194 register struct symtab *prev;
2195 register struct partial_symtab *ps;
2196 struct blockvector *bv;
2199 /* We only wack things if the symbol-reload switch is set. */
2200 if (!symbol_reloading)
2203 /* Some symbol formats have trouble providing file names... */
2204 if (name == 0 || *name == '\0')
2207 /* Look for a psymtab with the specified name. */
2210 for (ps = partial_symtab_list; ps; ps = ps->next)
2212 if (STREQ (name, ps->filename))
2214 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2215 goto again2; /* Must restart, chain has been munged */
2219 /* Look for a symtab with the specified name. */
2221 for (s = symtab_list; s; s = s->next)
2223 if (STREQ (name, s->filename))
2230 if (s == symtab_list)
2231 symtab_list = s->next;
2233 prev->next = s->next;
2235 /* For now, queue a delete for all breakpoints, displays, etc., whether
2236 or not they depend on the symtab being freed. This should be
2237 changed so that only those data structures affected are deleted. */
2239 /* But don't delete anything if the symtab is empty.
2240 This test is necessary due to a bug in "dbxread.c" that
2241 causes empty symtabs to be created for N_SO symbols that
2242 contain the pathname of the object file. (This problem
2243 has been fixed in GDB 3.9x). */
2245 bv = BLOCKVECTOR (s);
2246 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2247 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2248 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2250 complain (&oldsyms_complaint, name);
2252 clear_symtab_users_queued++;
2253 make_cleanup (clear_symtab_users_once, 0);
2258 complain (&empty_symtab_complaint, name);
2265 /* It is still possible that some breakpoints will be affected
2266 even though no symtab was found, since the file might have
2267 been compiled without debugging, and hence not be associated
2268 with a symtab. In order to handle this correctly, we would need
2269 to keep a list of text address ranges for undebuggable files.
2270 For now, we do nothing, since this is a fairly obscure case. */
2274 /* FIXME, what about the minimal symbol table? */
2281 /* Allocate and partially fill a partial symtab. It will be
2282 completely filled at the end of the symbol list.
2284 FILENAME is the name of the symbol-file we are reading from. */
2286 struct partial_symtab *
2287 start_psymtab_common (struct objfile *objfile,
2288 struct section_offsets *section_offsets, char *filename,
2289 CORE_ADDR textlow, struct partial_symbol **global_syms,
2290 struct partial_symbol **static_syms)
2292 struct partial_symtab *psymtab;
2294 psymtab = allocate_psymtab (filename, objfile);
2295 psymtab->section_offsets = section_offsets;
2296 psymtab->textlow = textlow;
2297 psymtab->texthigh = psymtab->textlow; /* default */
2298 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2299 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2303 /* Add a symbol with a long value to a psymtab.
2304 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2307 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2308 enum address_class class,
2309 struct psymbol_allocation_list *list, long val, /* Value as a long */
2310 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2311 enum language language, struct objfile *objfile)
2313 register struct partial_symbol *psym;
2314 char *buf = alloca (namelength + 1);
2315 /* psymbol is static so that there will be no uninitialized gaps in the
2316 structure which might contain random data, causing cache misses in
2318 static struct partial_symbol psymbol;
2320 /* Create local copy of the partial symbol */
2321 memcpy (buf, name, namelength);
2322 buf[namelength] = '\0';
2323 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2324 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2327 SYMBOL_VALUE (&psymbol) = val;
2331 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2333 SYMBOL_SECTION (&psymbol) = 0;
2334 SYMBOL_LANGUAGE (&psymbol) = language;
2335 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2336 PSYMBOL_CLASS (&psymbol) = class;
2337 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2339 /* Stash the partial symbol away in the cache */
2340 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2342 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2343 if (list->next >= list->list + list->size)
2345 extend_psymbol_list (list, objfile);
2347 *list->next++ = psym;
2348 OBJSTAT (objfile, n_psyms++);
2351 /* Add a symbol with a long value to a psymtab. This differs from
2352 * add_psymbol_to_list above in taking both a mangled and a demangled
2356 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2357 int dem_namelength, namespace_enum namespace,
2358 enum address_class class,
2359 struct psymbol_allocation_list *list, long val, /* Value as a long */
2360 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2361 enum language language,
2362 struct objfile *objfile)
2364 register struct partial_symbol *psym;
2365 char *buf = alloca (namelength + 1);
2366 /* psymbol is static so that there will be no uninitialized gaps in the
2367 structure which might contain random data, causing cache misses in
2369 static struct partial_symbol psymbol;
2371 /* Create local copy of the partial symbol */
2373 memcpy (buf, name, namelength);
2374 buf[namelength] = '\0';
2375 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2377 buf = alloca (dem_namelength + 1);
2378 memcpy (buf, dem_name, dem_namelength);
2379 buf[dem_namelength] = '\0';
2384 case language_cplus:
2385 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2386 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2388 case language_chill:
2389 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2390 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2392 /* FIXME What should be done for the default case? Ignoring for now. */
2395 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2398 SYMBOL_VALUE (&psymbol) = val;
2402 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2404 SYMBOL_SECTION (&psymbol) = 0;
2405 SYMBOL_LANGUAGE (&psymbol) = language;
2406 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2407 PSYMBOL_CLASS (&psymbol) = class;
2408 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2410 /* Stash the partial symbol away in the cache */
2411 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2413 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2414 if (list->next >= list->list + list->size)
2416 extend_psymbol_list (list, objfile);
2418 *list->next++ = psym;
2419 OBJSTAT (objfile, n_psyms++);
2422 /* Initialize storage for partial symbols. */
2425 init_psymbol_list (struct objfile *objfile, int total_symbols)
2427 /* Free any previously allocated psymbol lists. */
2429 if (objfile->global_psymbols.list)
2431 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2433 if (objfile->static_psymbols.list)
2435 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2438 /* Current best guess is that approximately a twentieth
2439 of the total symbols (in a debugging file) are global or static
2442 objfile->global_psymbols.size = total_symbols / 10;
2443 objfile->static_psymbols.size = total_symbols / 10;
2445 if (objfile->global_psymbols.size > 0)
2447 objfile->global_psymbols.next =
2448 objfile->global_psymbols.list = (struct partial_symbol **)
2449 xmmalloc (objfile->md, (objfile->global_psymbols.size
2450 * sizeof (struct partial_symbol *)));
2452 if (objfile->static_psymbols.size > 0)
2454 objfile->static_psymbols.next =
2455 objfile->static_psymbols.list = (struct partial_symbol **)
2456 xmmalloc (objfile->md, (objfile->static_psymbols.size
2457 * sizeof (struct partial_symbol *)));
2462 The following code implements an abstraction for debugging overlay sections.
2464 The target model is as follows:
2465 1) The gnu linker will permit multiple sections to be mapped into the
2466 same VMA, each with its own unique LMA (or load address).
2467 2) It is assumed that some runtime mechanism exists for mapping the
2468 sections, one by one, from the load address into the VMA address.
2469 3) This code provides a mechanism for gdb to keep track of which
2470 sections should be considered to be mapped from the VMA to the LMA.
2471 This information is used for symbol lookup, and memory read/write.
2472 For instance, if a section has been mapped then its contents
2473 should be read from the VMA, otherwise from the LMA.
2475 Two levels of debugger support for overlays are available. One is
2476 "manual", in which the debugger relies on the user to tell it which
2477 overlays are currently mapped. This level of support is
2478 implemented entirely in the core debugger, and the information about
2479 whether a section is mapped is kept in the objfile->obj_section table.
2481 The second level of support is "automatic", and is only available if
2482 the target-specific code provides functionality to read the target's
2483 overlay mapping table, and translate its contents for the debugger
2484 (by updating the mapped state information in the obj_section tables).
2486 The interface is as follows:
2488 overlay map <name> -- tell gdb to consider this section mapped
2489 overlay unmap <name> -- tell gdb to consider this section unmapped
2490 overlay list -- list the sections that GDB thinks are mapped
2491 overlay read-target -- get the target's state of what's mapped
2492 overlay off/manual/auto -- set overlay debugging state
2493 Functional interface:
2494 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2495 section, return that section.
2496 find_pc_overlay(pc): find any overlay section that contains
2497 the pc, either in its VMA or its LMA
2498 overlay_is_mapped(sect): true if overlay is marked as mapped
2499 section_is_overlay(sect): true if section's VMA != LMA
2500 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2501 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2502 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2503 overlay_mapped_address(...): map an address from section's LMA to VMA
2504 overlay_unmapped_address(...): map an address from section's VMA to LMA
2505 symbol_overlayed_address(...): Return a "current" address for symbol:
2506 either in VMA or LMA depending on whether
2507 the symbol's section is currently mapped
2510 /* Overlay debugging state: */
2512 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2513 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2515 /* Target vector for refreshing overlay mapped state */
2516 static void simple_overlay_update (struct obj_section *);
2517 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2519 /* Function: section_is_overlay (SECTION)
2520 Returns true if SECTION has VMA not equal to LMA, ie.
2521 SECTION is loaded at an address different from where it will "run". */
2524 section_is_overlay (asection *section)
2526 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2528 if (overlay_debugging)
2529 if (section && section->lma != 0 &&
2530 section->vma != section->lma)
2536 /* Function: overlay_invalidate_all (void)
2537 Invalidate the mapped state of all overlay sections (mark it as stale). */
2540 overlay_invalidate_all (void)
2542 struct objfile *objfile;
2543 struct obj_section *sect;
2545 ALL_OBJSECTIONS (objfile, sect)
2546 if (section_is_overlay (sect->the_bfd_section))
2547 sect->ovly_mapped = -1;
2550 /* Function: overlay_is_mapped (SECTION)
2551 Returns true if section is an overlay, and is currently mapped.
2552 Private: public access is thru function section_is_mapped.
2554 Access to the ovly_mapped flag is restricted to this function, so
2555 that we can do automatic update. If the global flag
2556 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2557 overlay_invalidate_all. If the mapped state of the particular
2558 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2561 overlay_is_mapped (struct obj_section *osect)
2563 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2566 switch (overlay_debugging)
2570 return 0; /* overlay debugging off */
2571 case -1: /* overlay debugging automatic */
2572 /* Unles there is a target_overlay_update function,
2573 there's really nothing useful to do here (can't really go auto) */
2574 if (target_overlay_update)
2576 if (overlay_cache_invalid)
2578 overlay_invalidate_all ();
2579 overlay_cache_invalid = 0;
2581 if (osect->ovly_mapped == -1)
2582 (*target_overlay_update) (osect);
2584 /* fall thru to manual case */
2585 case 1: /* overlay debugging manual */
2586 return osect->ovly_mapped == 1;
2590 /* Function: section_is_mapped
2591 Returns true if section is an overlay, and is currently mapped. */
2594 section_is_mapped (asection *section)
2596 struct objfile *objfile;
2597 struct obj_section *osect;
2599 if (overlay_debugging)
2600 if (section && section_is_overlay (section))
2601 ALL_OBJSECTIONS (objfile, osect)
2602 if (osect->the_bfd_section == section)
2603 return overlay_is_mapped (osect);
2608 /* Function: pc_in_unmapped_range
2609 If PC falls into the lma range of SECTION, return true, else false. */
2612 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2614 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2618 if (overlay_debugging)
2619 if (section && section_is_overlay (section))
2621 size = bfd_get_section_size_before_reloc (section);
2622 if (section->lma <= pc && pc < section->lma + size)
2628 /* Function: pc_in_mapped_range
2629 If PC falls into the vma range of SECTION, return true, else false. */
2632 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2634 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2638 if (overlay_debugging)
2639 if (section && section_is_overlay (section))
2641 size = bfd_get_section_size_before_reloc (section);
2642 if (section->vma <= pc && pc < section->vma + size)
2649 /* Return true if the mapped ranges of sections A and B overlap, false
2652 sections_overlap (asection *a, asection *b)
2654 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2656 CORE_ADDR a_start = a->vma;
2657 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2658 CORE_ADDR b_start = b->vma;
2659 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2661 return (a_start < b_end && b_start < a_end);
2664 /* Function: overlay_unmapped_address (PC, SECTION)
2665 Returns the address corresponding to PC in the unmapped (load) range.
2666 May be the same as PC. */
2669 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2671 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2673 if (overlay_debugging)
2674 if (section && section_is_overlay (section) &&
2675 pc_in_mapped_range (pc, section))
2676 return pc + section->lma - section->vma;
2681 /* Function: overlay_mapped_address (PC, SECTION)
2682 Returns the address corresponding to PC in the mapped (runtime) range.
2683 May be the same as PC. */
2686 overlay_mapped_address (CORE_ADDR pc, asection *section)
2688 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2690 if (overlay_debugging)
2691 if (section && section_is_overlay (section) &&
2692 pc_in_unmapped_range (pc, section))
2693 return pc + section->vma - section->lma;
2699 /* Function: symbol_overlayed_address
2700 Return one of two addresses (relative to the VMA or to the LMA),
2701 depending on whether the section is mapped or not. */
2704 symbol_overlayed_address (CORE_ADDR address, asection *section)
2706 if (overlay_debugging)
2708 /* If the symbol has no section, just return its regular address. */
2711 /* If the symbol's section is not an overlay, just return its address */
2712 if (!section_is_overlay (section))
2714 /* If the symbol's section is mapped, just return its address */
2715 if (section_is_mapped (section))
2718 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2719 * then return its LOADED address rather than its vma address!!
2721 return overlay_unmapped_address (address, section);
2726 /* Function: find_pc_overlay (PC)
2727 Return the best-match overlay section for PC:
2728 If PC matches a mapped overlay section's VMA, return that section.
2729 Else if PC matches an unmapped section's VMA, return that section.
2730 Else if PC matches an unmapped section's LMA, return that section. */
2733 find_pc_overlay (CORE_ADDR pc)
2735 struct objfile *objfile;
2736 struct obj_section *osect, *best_match = NULL;
2738 if (overlay_debugging)
2739 ALL_OBJSECTIONS (objfile, osect)
2740 if (section_is_overlay (osect->the_bfd_section))
2742 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2744 if (overlay_is_mapped (osect))
2745 return osect->the_bfd_section;
2749 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2752 return best_match ? best_match->the_bfd_section : NULL;
2755 /* Function: find_pc_mapped_section (PC)
2756 If PC falls into the VMA address range of an overlay section that is
2757 currently marked as MAPPED, return that section. Else return NULL. */
2760 find_pc_mapped_section (CORE_ADDR pc)
2762 struct objfile *objfile;
2763 struct obj_section *osect;
2765 if (overlay_debugging)
2766 ALL_OBJSECTIONS (objfile, osect)
2767 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2768 overlay_is_mapped (osect))
2769 return osect->the_bfd_section;
2774 /* Function: list_overlays_command
2775 Print a list of mapped sections and their PC ranges */
2778 list_overlays_command (char *args, int from_tty)
2781 struct objfile *objfile;
2782 struct obj_section *osect;
2784 if (overlay_debugging)
2785 ALL_OBJSECTIONS (objfile, osect)
2786 if (overlay_is_mapped (osect))
2792 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2793 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2794 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2795 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2797 printf_filtered ("Section %s, loaded at ", name);
2798 print_address_numeric (lma, 1, gdb_stdout);
2799 puts_filtered (" - ");
2800 print_address_numeric (lma + size, 1, gdb_stdout);
2801 printf_filtered (", mapped at ");
2802 print_address_numeric (vma, 1, gdb_stdout);
2803 puts_filtered (" - ");
2804 print_address_numeric (vma + size, 1, gdb_stdout);
2805 puts_filtered ("\n");
2810 printf_filtered ("No sections are mapped.\n");
2813 /* Function: map_overlay_command
2814 Mark the named section as mapped (ie. residing at its VMA address). */
2817 map_overlay_command (char *args, int from_tty)
2819 struct objfile *objfile, *objfile2;
2820 struct obj_section *sec, *sec2;
2823 if (!overlay_debugging)
2825 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2826 the 'overlay manual' command.");
2828 if (args == 0 || *args == 0)
2829 error ("Argument required: name of an overlay section");
2831 /* First, find a section matching the user supplied argument */
2832 ALL_OBJSECTIONS (objfile, sec)
2833 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2835 /* Now, check to see if the section is an overlay. */
2836 bfdsec = sec->the_bfd_section;
2837 if (!section_is_overlay (bfdsec))
2838 continue; /* not an overlay section */
2840 /* Mark the overlay as "mapped" */
2841 sec->ovly_mapped = 1;
2843 /* Next, make a pass and unmap any sections that are
2844 overlapped by this new section: */
2845 ALL_OBJSECTIONS (objfile2, sec2)
2846 if (sec2->ovly_mapped
2848 && sec->the_bfd_section != sec2->the_bfd_section
2849 && sections_overlap (sec->the_bfd_section,
2850 sec2->the_bfd_section))
2853 printf_filtered ("Note: section %s unmapped by overlap\n",
2854 bfd_section_name (objfile->obfd,
2855 sec2->the_bfd_section));
2856 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2860 error ("No overlay section called %s", args);
2863 /* Function: unmap_overlay_command
2864 Mark the overlay section as unmapped
2865 (ie. resident in its LMA address range, rather than the VMA range). */
2868 unmap_overlay_command (char *args, int from_tty)
2870 struct objfile *objfile;
2871 struct obj_section *sec;
2873 if (!overlay_debugging)
2875 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2876 the 'overlay manual' command.");
2878 if (args == 0 || *args == 0)
2879 error ("Argument required: name of an overlay section");
2881 /* First, find a section matching the user supplied argument */
2882 ALL_OBJSECTIONS (objfile, sec)
2883 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2885 if (!sec->ovly_mapped)
2886 error ("Section %s is not mapped", args);
2887 sec->ovly_mapped = 0;
2890 error ("No overlay section called %s", args);
2893 /* Function: overlay_auto_command
2894 A utility command to turn on overlay debugging.
2895 Possibly this should be done via a set/show command. */
2898 overlay_auto_command (char *args, int from_tty)
2900 overlay_debugging = -1;
2902 printf_filtered ("Automatic overlay debugging enabled.");
2905 /* Function: overlay_manual_command
2906 A utility command to turn on overlay debugging.
2907 Possibly this should be done via a set/show command. */
2910 overlay_manual_command (char *args, int from_tty)
2912 overlay_debugging = 1;
2914 printf_filtered ("Overlay debugging enabled.");
2917 /* Function: overlay_off_command
2918 A utility command to turn on overlay debugging.
2919 Possibly this should be done via a set/show command. */
2922 overlay_off_command (char *args, int from_tty)
2924 overlay_debugging = 0;
2926 printf_filtered ("Overlay debugging disabled.");
2930 overlay_load_command (char *args, int from_tty)
2932 if (target_overlay_update)
2933 (*target_overlay_update) (NULL);
2935 error ("This target does not know how to read its overlay state.");
2938 /* Function: overlay_command
2939 A place-holder for a mis-typed command */
2941 /* Command list chain containing all defined "overlay" subcommands. */
2942 struct cmd_list_element *overlaylist;
2945 overlay_command (char *args, int from_tty)
2948 ("\"overlay\" must be followed by the name of an overlay command.\n");
2949 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2953 /* Target Overlays for the "Simplest" overlay manager:
2955 This is GDB's default target overlay layer. It works with the
2956 minimal overlay manager supplied as an example by Cygnus. The
2957 entry point is via a function pointer "target_overlay_update",
2958 so targets that use a different runtime overlay manager can
2959 substitute their own overlay_update function and take over the
2962 The overlay_update function pokes around in the target's data structures
2963 to see what overlays are mapped, and updates GDB's overlay mapping with
2966 In this simple implementation, the target data structures are as follows:
2967 unsigned _novlys; /# number of overlay sections #/
2968 unsigned _ovly_table[_novlys][4] = {
2969 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2970 {..., ..., ..., ...},
2972 unsigned _novly_regions; /# number of overlay regions #/
2973 unsigned _ovly_region_table[_novly_regions][3] = {
2974 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2977 These functions will attempt to update GDB's mappedness state in the
2978 symbol section table, based on the target's mappedness state.
2980 To do this, we keep a cached copy of the target's _ovly_table, and
2981 attempt to detect when the cached copy is invalidated. The main
2982 entry point is "simple_overlay_update(SECT), which looks up SECT in
2983 the cached table and re-reads only the entry for that section from
2984 the target (whenever possible).
2987 /* Cached, dynamically allocated copies of the target data structures: */
2988 static unsigned (*cache_ovly_table)[4] = 0;
2990 static unsigned (*cache_ovly_region_table)[3] = 0;
2992 static unsigned cache_novlys = 0;
2994 static unsigned cache_novly_regions = 0;
2996 static CORE_ADDR cache_ovly_table_base = 0;
2998 static CORE_ADDR cache_ovly_region_table_base = 0;
3002 VMA, SIZE, LMA, MAPPED
3004 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3006 /* Throw away the cached copy of _ovly_table */
3008 simple_free_overlay_table (void)
3010 if (cache_ovly_table)
3011 xfree (cache_ovly_table);
3013 cache_ovly_table = NULL;
3014 cache_ovly_table_base = 0;
3018 /* Throw away the cached copy of _ovly_region_table */
3020 simple_free_overlay_region_table (void)
3022 if (cache_ovly_region_table)
3023 xfree (cache_ovly_region_table);
3024 cache_novly_regions = 0;
3025 cache_ovly_region_table = NULL;
3026 cache_ovly_region_table_base = 0;
3030 /* Read an array of ints from the target into a local buffer.
3031 Convert to host order. int LEN is number of ints */
3033 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3035 /* FIXME (alloca): Not safe if array is very large. */
3036 char *buf = alloca (len * TARGET_LONG_BYTES);
3039 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3040 for (i = 0; i < len; i++)
3041 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3045 /* Find and grab a copy of the target _ovly_table
3046 (and _novlys, which is needed for the table's size) */
3048 simple_read_overlay_table (void)
3050 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3052 simple_free_overlay_table ();
3053 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3056 error ("Error reading inferior's overlay table: "
3057 "couldn't find `_novlys' variable\n"
3058 "in inferior. Use `overlay manual' mode.");
3062 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3063 if (! ovly_table_msym)
3065 error ("Error reading inferior's overlay table: couldn't find "
3066 "`_ovly_table' array\n"
3067 "in inferior. Use `overlay manual' mode.");
3071 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3073 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3074 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3075 read_target_long_array (cache_ovly_table_base,
3076 (int *) cache_ovly_table,
3079 return 1; /* SUCCESS */
3083 /* Find and grab a copy of the target _ovly_region_table
3084 (and _novly_regions, which is needed for the table's size) */
3086 simple_read_overlay_region_table (void)
3088 struct minimal_symbol *msym;
3090 simple_free_overlay_region_table ();
3091 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3093 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3095 return 0; /* failure */
3096 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3097 if (cache_ovly_region_table != NULL)
3099 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3102 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3103 read_target_long_array (cache_ovly_region_table_base,
3104 (int *) cache_ovly_region_table,
3105 cache_novly_regions * 3);
3108 return 0; /* failure */
3111 return 0; /* failure */
3112 return 1; /* SUCCESS */
3116 /* Function: simple_overlay_update_1
3117 A helper function for simple_overlay_update. Assuming a cached copy
3118 of _ovly_table exists, look through it to find an entry whose vma,
3119 lma and size match those of OSECT. Re-read the entry and make sure
3120 it still matches OSECT (else the table may no longer be valid).
3121 Set OSECT's mapped state to match the entry. Return: 1 for
3122 success, 0 for failure. */
3125 simple_overlay_update_1 (struct obj_section *osect)
3128 bfd *obfd = osect->objfile->obfd;
3129 asection *bsect = osect->the_bfd_section;
3131 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3132 for (i = 0; i < cache_novlys; i++)
3133 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3134 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3135 /* && cache_ovly_table[i][SIZE] == size */ )
3137 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3138 (int *) cache_ovly_table[i], 4);
3139 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3140 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3141 /* && cache_ovly_table[i][SIZE] == size */ )
3143 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3146 else /* Warning! Warning! Target's ovly table has changed! */
3152 /* Function: simple_overlay_update
3153 If OSECT is NULL, then update all sections' mapped state
3154 (after re-reading the entire target _ovly_table).
3155 If OSECT is non-NULL, then try to find a matching entry in the
3156 cached ovly_table and update only OSECT's mapped state.
3157 If a cached entry can't be found or the cache isn't valid, then
3158 re-read the entire cache, and go ahead and update all sections. */
3161 simple_overlay_update (struct obj_section *osect)
3163 struct objfile *objfile;
3165 /* Were we given an osect to look up? NULL means do all of them. */
3167 /* Have we got a cached copy of the target's overlay table? */
3168 if (cache_ovly_table != NULL)
3169 /* Does its cached location match what's currently in the symtab? */
3170 if (cache_ovly_table_base ==
3171 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3172 /* Then go ahead and try to look up this single section in the cache */
3173 if (simple_overlay_update_1 (osect))
3174 /* Found it! We're done. */
3177 /* Cached table no good: need to read the entire table anew.
3178 Or else we want all the sections, in which case it's actually
3179 more efficient to read the whole table in one block anyway. */
3181 if (! simple_read_overlay_table ())
3184 /* Now may as well update all sections, even if only one was requested. */
3185 ALL_OBJSECTIONS (objfile, osect)
3186 if (section_is_overlay (osect->the_bfd_section))
3189 bfd *obfd = osect->objfile->obfd;
3190 asection *bsect = osect->the_bfd_section;
3192 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3193 for (i = 0; i < cache_novlys; i++)
3194 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3195 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3196 /* && cache_ovly_table[i][SIZE] == size */ )
3197 { /* obj_section matches i'th entry in ovly_table */
3198 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3199 break; /* finished with inner for loop: break out */
3206 _initialize_symfile (void)
3208 struct cmd_list_element *c;
3210 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3211 "Load symbol table from executable file FILE.\n\
3212 The `file' command can also load symbol tables, as well as setting the file\n\
3213 to execute.", &cmdlist);
3214 c->completer = filename_completer;
3216 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3217 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3218 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3219 ADDR is the starting address of the file's text.\n\
3220 The optional arguments are section-name section-address pairs and\n\
3221 should be specified if the data and bss segments are not contiguous\n\
3222 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3224 c->completer = filename_completer;
3226 c = add_cmd ("add-shared-symbol-files", class_files,
3227 add_shared_symbol_files_command,
3228 "Load the symbols from shared objects in the dynamic linker's link map.",
3230 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3233 c = add_cmd ("load", class_files, load_command,
3234 "Dynamically load FILE into the running program, and record its symbols\n\
3235 for access from GDB.", &cmdlist);
3236 c->completer = filename_completer;
3239 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3240 (char *) &symbol_reloading,
3241 "Set dynamic symbol table reloading multiple times in one run.",
3245 add_prefix_cmd ("overlay", class_support, overlay_command,
3246 "Commands for debugging overlays.", &overlaylist,
3247 "overlay ", 0, &cmdlist);
3249 add_com_alias ("ovly", "overlay", class_alias, 1);
3250 add_com_alias ("ov", "overlay", class_alias, 1);
3252 add_cmd ("map-overlay", class_support, map_overlay_command,
3253 "Assert that an overlay section is mapped.", &overlaylist);
3255 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3256 "Assert that an overlay section is unmapped.", &overlaylist);
3258 add_cmd ("list-overlays", class_support, list_overlays_command,
3259 "List mappings of overlay sections.", &overlaylist);
3261 add_cmd ("manual", class_support, overlay_manual_command,
3262 "Enable overlay debugging.", &overlaylist);
3263 add_cmd ("off", class_support, overlay_off_command,
3264 "Disable overlay debugging.", &overlaylist);
3265 add_cmd ("auto", class_support, overlay_auto_command,
3266 "Enable automatic overlay debugging.", &overlaylist);
3267 add_cmd ("load-target", class_support, overlay_load_command,
3268 "Read the overlay mapping state from the target.", &overlaylist);
3270 /* Filename extension to source language lookup table: */
3271 init_filename_language_table ();
3272 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3274 "Set mapping between filename extension and source language.\n\
3275 Usage: set extension-language .foo bar",
3277 c->function.cfunc = set_ext_lang_command;
3279 add_info ("extensions", info_ext_lang_command,
3280 "All filename extensions associated with a source language.");
3283 (add_set_cmd ("download-write-size", class_obscure,
3284 var_integer, (char *) &download_write_size,
3285 "Set the write size used when downloading a program.\n"
3286 "Only used when downloading a program onto a remote\n"
3287 "target. Specify zero, or a negative value, to disable\n"
3288 "blocked writes. The actual size of each transfer is also\n"
3289 "limited by the size of the target packet and the memory\n"