1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_string.h"
33 #include "exceptions.h"
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
50 struct ext_elf32_fdpic_loadseg
52 /* Core address to which the segment is mapped. */
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
74 /* Core address to which the segment is mapped. */
76 /* VMA recorded in the program header. */
78 /* Size of this segment in memory. */
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
85 /* Number of segments in this map. */
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
100 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
101 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
102 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
103 struct int_elf32_fdpic_loadmap *int_ldmbuf;
104 int ext_ldmbuf_size, int_ldmbuf_size;
105 int version, seg, nsegs;
107 /* Fetch initial portion of the loadmap. */
108 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
109 sizeof ext_ldmbuf_partial))
111 /* Problem reading the target's memory. */
115 /* Extract the version. */
116 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
117 sizeof ext_ldmbuf_partial.version,
121 /* We only handle version 0. */
125 /* Extract the number of segments. */
126 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
127 sizeof ext_ldmbuf_partial.nsegs,
133 /* Allocate space for the complete (external) loadmap. */
134 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
135 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
136 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
138 /* Copy over the portion of the loadmap that's already been read. */
139 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
141 /* Read the rest of the loadmap from the target. */
142 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
143 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
144 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
146 /* Couldn't read rest of the loadmap. */
151 /* Allocate space into which to put information extract from the
152 external loadsegs. I.e, allocate the internal loadsegs. */
153 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
154 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
155 int_ldmbuf = xmalloc (int_ldmbuf_size);
157 /* Place extracted information in internal structs. */
158 int_ldmbuf->version = version;
159 int_ldmbuf->nsegs = nsegs;
160 for (seg = 0; seg < nsegs; seg++)
162 int_ldmbuf->segs[seg].addr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
164 sizeof (ext_ldmbuf->segs[seg].addr),
166 int_ldmbuf->segs[seg].p_vaddr
167 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
168 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
170 int_ldmbuf->segs[seg].p_memsz
171 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
172 sizeof (ext_ldmbuf->segs[seg].p_memsz),
180 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
182 typedef gdb_byte ext_ptr[4];
184 struct ext_elf32_fdpic_loadaddr
186 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
187 ext_ptr got_value; /* void *got_value; */
192 struct ext_elf32_fdpic_loadaddr l_addr;
194 /* Absolute file name object was found in. */
195 ext_ptr l_name; /* char *l_name; */
197 /* Dynamic section of the shared object. */
198 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
200 /* Chain of loaded objects. */
201 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
204 /* Link map info to include in an allocated so_list entry */
208 /* The loadmap, digested into an easier to use form. */
209 struct int_elf32_fdpic_loadmap *map;
210 /* The GOT address for this link map entry. */
212 /* The link map address, needed for frv_fetch_objfile_link_map(). */
215 /* Cached dynamic symbol table and dynamic relocs initialized and
216 used only by find_canonical_descriptor_in_load_object().
218 Note: kevinb/2004-02-26: It appears that calls to
219 bfd_canonicalize_dynamic_reloc() will use the same symbols as
220 those supplied to the first call to this function. Therefore,
221 it's important to NOT free the asymbol ** data structure
222 supplied to the first call. Thus the caching of the dynamic
223 symbols (dyn_syms) is critical for correct operation. The
224 caching of the dynamic relocations could be dispensed with. */
226 arelent **dyn_relocs;
227 int dyn_reloc_count; /* number of dynamic relocs. */
231 /* The load map, got value, etc. are not available from the chain
232 of loaded shared objects. ``main_executable_lm_info'' provides
233 a way to get at this information so that it doesn't need to be
234 frequently recomputed. Initialized by frv_relocate_main_executable(). */
235 static struct lm_info *main_executable_lm_info;
237 static void frv_relocate_main_executable (void);
238 static CORE_ADDR main_got (void);
239 static int enable_break2 (void);
245 bfd_lookup_symbol -- lookup the value for a specific symbol
249 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
253 An expensive way to lookup the value of a single symbol for
254 bfd's that are only temporary anyway. This is used by the
255 shared library support to find the address of the debugger
256 interface structures in the shared library.
258 Note that 0 is specifically allowed as an error return (no
263 bfd_lookup_symbol (bfd *abfd, char *symname)
267 asymbol **symbol_table;
268 unsigned int number_of_symbols;
270 struct cleanup *back_to;
271 CORE_ADDR symaddr = 0;
273 storage_needed = bfd_get_symtab_upper_bound (abfd);
275 if (storage_needed > 0)
277 symbol_table = (asymbol **) xmalloc (storage_needed);
278 back_to = make_cleanup (xfree, symbol_table);
279 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
281 for (i = 0; i < number_of_symbols; i++)
283 sym = *symbol_table++;
284 if (strcmp (sym->name, symname) == 0)
286 /* Bfd symbols are section relative. */
287 symaddr = sym->value + sym->section->vma;
291 do_cleanups (back_to);
297 /* Look for the symbol in the dynamic string table too. */
299 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
301 if (storage_needed > 0)
303 symbol_table = (asymbol **) xmalloc (storage_needed);
304 back_to = make_cleanup (xfree, symbol_table);
305 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
307 for (i = 0; i < number_of_symbols; i++)
309 sym = *symbol_table++;
310 if (strcmp (sym->name, symname) == 0)
312 /* Bfd symbols are section relative. */
313 symaddr = sym->value + sym->section->vma;
317 do_cleanups (back_to);
328 open_symbol_file_object
332 void open_symbol_file_object (void *from_tty)
336 If no open symbol file, attempt to locate and open the main symbol
339 If FROM_TTYP dereferences to a non-zero integer, allow messages to
340 be printed. This parameter is a pointer rather than an int because
341 open_symbol_file_object() is called via catch_errors() and
342 catch_errors() requires a pointer argument. */
345 open_symbol_file_object (void *from_ttyp)
351 /* Cached value for lm_base(), below. */
352 static CORE_ADDR lm_base_cache = 0;
354 /* Link map address for main module. */
355 static CORE_ADDR main_lm_addr = 0;
357 /* Return the address from which the link map chain may be found. On
358 the FR-V, this may be found in a number of ways. Assuming that the
359 main executable has already been relocated, the easiest way to find
360 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
361 pointer to the start of the link map will be located at the word found
362 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
363 reserve area mandated by the ABI.) */
368 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
369 struct minimal_symbol *got_sym;
371 gdb_byte buf[FRV_PTR_SIZE];
373 /* One of our assumptions is that the main executable has been relocated.
374 Bail out if this has not happened. (Note that post_create_inferior()
375 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
376 If we allow this to happen, lm_base_cache will be initialized with
378 if (main_executable_lm_info == 0)
381 /* If we already have a cached value, return it. */
383 return lm_base_cache;
385 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
390 fprintf_unfiltered (gdb_stdlog,
391 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
395 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
398 fprintf_unfiltered (gdb_stdlog,
399 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
400 hex_string_custom (addr, 8));
402 if (target_read_memory (addr, buf, sizeof buf) != 0)
404 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
407 fprintf_unfiltered (gdb_stdlog,
408 "lm_base: lm_base_cache = %s\n",
409 hex_string_custom (lm_base_cache, 8));
411 return lm_base_cache;
417 frv_current_sos -- build a list of currently loaded shared objects
421 struct so_list *frv_current_sos ()
425 Build a list of `struct so_list' objects describing the shared
426 objects currently loaded in the inferior. This list does not
427 include an entry for the main executable file.
429 Note that we only gather information directly available from the
430 inferior --- we don't examine any of the shared library files
431 themselves. The declaration of `struct so_list' says which fields
432 we provide values for. */
434 static struct so_list *
435 frv_current_sos (void)
437 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
438 CORE_ADDR lm_addr, mgot;
439 struct so_list *sos_head = NULL;
440 struct so_list **sos_next_ptr = &sos_head;
442 /* Make sure that the main executable has been relocated. This is
443 required in order to find the address of the global offset table,
444 which in turn is used to find the link map info. (See lm_base()
447 Note that the relocation of the main executable is also performed
448 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
449 files, this hook is called too late in order to be of benefit to
450 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
451 frv_current_sos, and also precedes the call to
452 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
454 if (main_executable_lm_info == 0 && core_bfd != NULL)
455 frv_relocate_main_executable ();
457 /* Fetch the GOT corresponding to the main executable. */
460 /* Locate the address of the first link map struct. */
461 lm_addr = lm_base ();
463 /* We have at least one link map entry. Fetch the the lot of them,
464 building the solist chain. */
467 struct ext_link_map lm_buf;
471 fprintf_unfiltered (gdb_stdlog,
472 "current_sos: reading link_map entry at %s\n",
473 hex_string_custom (lm_addr, 8));
475 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
477 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
482 = extract_unsigned_integer (lm_buf.l_addr.got_value,
483 sizeof (lm_buf.l_addr.got_value),
485 /* If the got_addr is the same as mgotr, then we're looking at the
486 entry for the main executable. By convention, we don't include
487 this in the list of shared objects. */
488 if (got_addr != mgot)
492 struct int_elf32_fdpic_loadmap *loadmap;
496 /* Fetch the load map address. */
497 addr = extract_unsigned_integer (lm_buf.l_addr.map,
498 sizeof lm_buf.l_addr.map,
500 loadmap = fetch_loadmap (addr);
503 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
507 sop = xcalloc (1, sizeof (struct so_list));
508 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
509 sop->lm_info->map = loadmap;
510 sop->lm_info->got_value = got_addr;
511 sop->lm_info->lm_addr = lm_addr;
512 /* Fetch the name. */
513 addr = extract_unsigned_integer (lm_buf.l_name,
514 sizeof (lm_buf.l_name),
516 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
520 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
524 warning (_("Can't read pathname for link map entry: %s."),
525 safe_strerror (errcode));
528 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
529 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
531 strcpy (sop->so_original_name, sop->so_name);
535 sos_next_ptr = &sop->next;
539 main_lm_addr = lm_addr;
542 lm_addr = extract_unsigned_integer (lm_buf.l_next,
543 sizeof (lm_buf.l_next), byte_order);
552 /* Return 1 if PC lies in the dynamic symbol resolution code of the
555 static CORE_ADDR interp_text_sect_low;
556 static CORE_ADDR interp_text_sect_high;
557 static CORE_ADDR interp_plt_sect_low;
558 static CORE_ADDR interp_plt_sect_high;
561 frv_in_dynsym_resolve_code (CORE_ADDR pc)
563 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
564 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
565 || in_plt_section (pc, NULL));
568 /* Given a loadmap and an address, return the displacement needed
569 to relocate the address. */
572 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
577 for (seg = 0; seg < map->nsegs; seg++)
579 if (map->segs[seg].p_vaddr <= addr
580 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
582 return map->segs[seg].addr - map->segs[seg].p_vaddr;
589 /* Print a warning about being unable to set the dynamic linker
593 enable_break_failure_warning (void)
595 warning (_("Unable to find dynamic linker breakpoint function.\n"
596 "GDB will be unable to debug shared library initializers\n"
597 "and track explicitly loaded dynamic code."));
604 enable_break -- arrange for dynamic linker to hit breakpoint
608 int enable_break (void)
612 The dynamic linkers has, as part of its debugger interface, support
613 for arranging for the inferior to hit a breakpoint after mapping in
614 the shared libraries. This function enables that breakpoint.
616 On the FR-V, using the shared library (FDPIC) ABI, the symbol
617 _dl_debug_addr points to the r_debug struct which contains
618 a field called r_brk. r_brk is the address of the function
619 descriptor upon which a breakpoint must be placed. Being a
620 function descriptor, we must extract the entry point in order
621 to set the breakpoint.
623 Our strategy will be to get the .interp section from the
624 executable. This section will provide us with the name of the
625 interpreter. We'll open the interpreter and then look up
626 the address of _dl_debug_addr. We then relocate this address
627 using the interpreter's loadmap. Once the relocated address
628 is known, we fetch the value (address) corresponding to r_brk
629 and then use that value to fetch the entry point of the function
634 static int enable_break1_done = 0;
635 static int enable_break2_done = 0;
640 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
643 asection *interp_sect;
645 if (!enable_break1_done || enable_break2_done)
648 enable_break2_done = 1;
650 /* First, remove all the solib event breakpoints. Their addresses
651 may have changed since the last time we ran the program. */
652 remove_solib_event_breakpoints ();
654 interp_text_sect_low = interp_text_sect_high = 0;
655 interp_plt_sect_low = interp_plt_sect_high = 0;
657 /* Find the .interp section; if not found, warn the user and drop
658 into the old breakpoint at symbol code. */
659 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
662 unsigned int interp_sect_size;
666 CORE_ADDR addr, interp_loadmap_addr;
667 gdb_byte addr_buf[FRV_PTR_SIZE];
668 struct int_elf32_fdpic_loadmap *ldm;
669 volatile struct gdb_exception ex;
671 /* Read the contents of the .interp section into a local buffer;
672 the contents specify the dynamic linker this program uses. */
673 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
674 buf = alloca (interp_sect_size);
675 bfd_get_section_contents (exec_bfd, interp_sect,
676 buf, 0, interp_sect_size);
678 /* Now we need to figure out where the dynamic linker was
679 loaded so that we can load its symbols and place a breakpoint
680 in the dynamic linker itself.
682 This address is stored on the stack. However, I've been unable
683 to find any magic formula to find it for Solaris (appears to
684 be trivial on GNU/Linux). Therefore, we have to try an alternate
685 mechanism to find the dynamic linker's base address. */
687 TRY_CATCH (ex, RETURN_MASK_ALL)
689 tmp_bfd = solib_bfd_open (buf);
693 enable_break_failure_warning ();
697 status = frv_fdpic_loadmap_addresses (target_gdbarch,
698 &interp_loadmap_addr, 0);
701 warning (_("Unable to determine dynamic linker loadmap address."));
702 enable_break_failure_warning ();
708 fprintf_unfiltered (gdb_stdlog,
709 "enable_break: interp_loadmap_addr = %s\n",
710 hex_string_custom (interp_loadmap_addr, 8));
712 ldm = fetch_loadmap (interp_loadmap_addr);
715 warning (_("Unable to load dynamic linker loadmap at address %s."),
716 hex_string_custom (interp_loadmap_addr, 8));
717 enable_break_failure_warning ();
722 /* Record the relocated start and end address of the dynamic linker
723 text and plt section for svr4_in_dynsym_resolve_code. */
724 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
728 = bfd_section_vma (tmp_bfd, interp_sect);
730 += displacement_from_map (ldm, interp_text_sect_low);
731 interp_text_sect_high
732 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
734 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
737 interp_plt_sect_low =
738 bfd_section_vma (tmp_bfd, interp_sect);
740 += displacement_from_map (ldm, interp_plt_sect_low);
741 interp_plt_sect_high =
742 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
745 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
748 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
749 enable_break_failure_warning ();
755 fprintf_unfiltered (gdb_stdlog,
756 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
757 hex_string_custom (addr, 8));
759 addr += displacement_from_map (ldm, addr);
762 fprintf_unfiltered (gdb_stdlog,
763 "enable_break: _dl_debug_addr (after relocation) = %s\n",
764 hex_string_custom (addr, 8));
766 /* Fetch the address of the r_debug struct. */
767 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
769 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
770 hex_string_custom (addr, 8));
772 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
774 /* Fetch the r_brk field. It's 8 bytes from the start of
776 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
778 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
779 hex_string_custom (addr + 8, 8));
780 enable_break_failure_warning ();
784 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
786 /* Now fetch the function entry point. */
787 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
789 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
790 hex_string_custom (addr, 8));
791 enable_break_failure_warning ();
795 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
797 /* We're done with the temporary bfd. */
800 /* We're also done with the loadmap. */
803 /* Now (finally!) create the solib breakpoint. */
804 create_solib_event_breakpoint (target_gdbarch, addr);
809 /* Tell the user we couldn't set a dynamic linker breakpoint. */
810 enable_break_failure_warning ();
812 /* Failure return. */
819 asection *interp_sect;
821 /* Remove all the solib event breakpoints. Their addresses
822 may have changed since the last time we ran the program. */
823 remove_solib_event_breakpoints ();
825 if (symfile_objfile == NULL)
828 fprintf_unfiltered (gdb_stdlog,
829 "enable_break: No symbol file found.\n");
833 if (!symfile_objfile->ei.entry_point_p)
836 fprintf_unfiltered (gdb_stdlog,
837 "enable_break: Symbol file has no entry point.\n");
841 /* Check for the presence of a .interp section. If there is no
842 such section, the executable is statically linked. */
844 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
846 if (interp_sect == NULL)
849 fprintf_unfiltered (gdb_stdlog,
850 "enable_break: No .interp section found.\n");
854 enable_break1_done = 1;
855 create_solib_event_breakpoint (target_gdbarch,
856 symfile_objfile->ei.entry_point);
859 fprintf_unfiltered (gdb_stdlog,
860 "enable_break: solib event breakpoint placed at entry point: %s\n",
861 hex_string_custom (symfile_objfile->ei.entry_point, 8));
869 special_symbol_handling -- additional shared library symbol handling
873 void special_symbol_handling ()
877 Once the symbols from a shared object have been loaded in the usual
878 way, we are called to do any system specific symbol handling that
884 frv_special_symbol_handling (void)
886 /* Nothing needed (yet) for FRV. */
890 frv_relocate_main_executable (void)
893 CORE_ADDR exec_addr, interp_addr;
894 struct int_elf32_fdpic_loadmap *ldm;
895 struct cleanup *old_chain;
896 struct section_offsets *new_offsets;
898 struct obj_section *osect;
900 status = frv_fdpic_loadmap_addresses (target_gdbarch,
901 &interp_addr, &exec_addr);
903 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
905 /* Not using FDPIC ABI, so do nothing. */
909 /* Fetch the loadmap located at ``exec_addr''. */
910 ldm = fetch_loadmap (exec_addr);
912 error (_("Unable to load the executable's loadmap."));
914 if (main_executable_lm_info)
915 xfree (main_executable_lm_info);
916 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
917 main_executable_lm_info->map = ldm;
919 new_offsets = xcalloc (symfile_objfile->num_sections,
920 sizeof (struct section_offsets));
921 old_chain = make_cleanup (xfree, new_offsets);
924 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
926 CORE_ADDR orig_addr, addr, offset;
930 osect_idx = osect->the_bfd_section->index;
932 /* Current address of section. */
933 addr = obj_section_addr (osect);
934 /* Offset from where this section started. */
935 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
936 /* Original address prior to any past relocations. */
937 orig_addr = addr - offset;
939 for (seg = 0; seg < ldm->nsegs; seg++)
941 if (ldm->segs[seg].p_vaddr <= orig_addr
942 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
944 new_offsets->offsets[osect_idx]
945 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
947 if (new_offsets->offsets[osect_idx] != offset)
955 objfile_relocate (symfile_objfile, new_offsets);
957 do_cleanups (old_chain);
959 /* Now that symfile_objfile has been relocated, we can compute the
960 GOT value and stash it away. */
961 main_executable_lm_info->got_value = main_got ();
968 frv_solib_create_inferior_hook -- shared library startup support
972 void frv_solib_create_inferior_hook ()
976 When gdb starts up the inferior, it nurses it along (through the
977 shell) until it is ready to execute it's first instruction. At this
978 point, this function gets called via expansion of the macro
979 SOLIB_CREATE_INFERIOR_HOOK.
981 For the FR-V shared library ABI (FDPIC), the main executable
982 needs to be relocated. The shared library breakpoints also need
987 frv_solib_create_inferior_hook (void)
989 /* Relocate main executable. */
990 frv_relocate_main_executable ();
992 /* Enable shared library breakpoints. */
993 if (!enable_break ())
995 warning (_("shared library handler failed to enable breakpoint"));
1001 frv_clear_solib (void)
1004 enable_break1_done = 0;
1005 enable_break2_done = 0;
1007 if (main_executable_lm_info != 0)
1009 xfree (main_executable_lm_info->map);
1010 xfree (main_executable_lm_info->dyn_syms);
1011 xfree (main_executable_lm_info->dyn_relocs);
1012 xfree (main_executable_lm_info);
1013 main_executable_lm_info = 0;
1018 frv_free_so (struct so_list *so)
1020 xfree (so->lm_info->map);
1021 xfree (so->lm_info->dyn_syms);
1022 xfree (so->lm_info->dyn_relocs);
1023 xfree (so->lm_info);
1027 frv_relocate_section_addresses (struct so_list *so,
1028 struct target_section *sec)
1031 struct int_elf32_fdpic_loadmap *map;
1033 map = so->lm_info->map;
1035 for (seg = 0; seg < map->nsegs; seg++)
1037 if (map->segs[seg].p_vaddr <= sec->addr
1038 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1040 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1042 sec->endaddr += displ;
1048 /* Return the GOT address associated with the main executable. Return
1049 0 if it can't be found. */
1054 struct minimal_symbol *got_sym;
1056 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1060 return SYMBOL_VALUE_ADDRESS (got_sym);
1063 /* Find the global pointer for the given function address ADDR. */
1066 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1070 so = master_so_list ();
1074 struct int_elf32_fdpic_loadmap *map;
1076 map = so->lm_info->map;
1078 for (seg = 0; seg < map->nsegs; seg++)
1080 if (map->segs[seg].addr <= addr
1081 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1082 return so->lm_info->got_value;
1088 /* Didn't find it it any of the shared objects. So assume it's in the
1093 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1094 static CORE_ADDR find_canonical_descriptor_in_load_object
1095 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1097 /* Given a function entry point, attempt to find the canonical descriptor
1098 associated with that entry point. Return 0 if no canonical descriptor
1102 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1106 CORE_ADDR got_value;
1107 struct int_elf32_fdpic_loadmap *ldm = 0;
1110 CORE_ADDR exec_loadmap_addr;
1112 /* Fetch the corresponding global pointer for the entry point. */
1113 got_value = frv_fdpic_find_global_pointer (entry_point);
1115 /* Attempt to find the name of the function. If the name is available,
1116 it'll be used as an aid in finding matching functions in the dynamic
1118 sym = find_pc_function (entry_point);
1122 name = SYMBOL_LINKAGE_NAME (sym);
1124 /* Check the main executable. */
1125 addr = find_canonical_descriptor_in_load_object
1126 (entry_point, got_value, name, symfile_objfile->obfd,
1127 main_executable_lm_info);
1129 /* If descriptor not found via main executable, check each load object
1130 in list of shared objects. */
1135 so = master_so_list ();
1138 addr = find_canonical_descriptor_in_load_object
1139 (entry_point, got_value, name, so->abfd, so->lm_info);
1152 find_canonical_descriptor_in_load_object
1153 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1156 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1161 /* Nothing to do if no bfd. */
1165 /* Nothing to do if no link map. */
1169 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1170 (More about this later.) But in order to fetch the relocs, we
1171 need to first fetch the dynamic symbols. These symbols need to
1172 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1173 works. (See the comments in the declaration of struct lm_info
1174 for more information.) */
1175 if (lm->dyn_syms == NULL)
1177 long storage_needed;
1178 unsigned int number_of_symbols;
1180 /* Determine amount of space needed to hold the dynamic symbol table. */
1181 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1183 /* If there are no dynamic symbols, there's nothing to do. */
1184 if (storage_needed <= 0)
1187 /* Allocate space for the dynamic symbol table. */
1188 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1190 /* Fetch the dynamic symbol table. */
1191 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1193 if (number_of_symbols == 0)
1197 /* Fetch the dynamic relocations if not already cached. */
1198 if (lm->dyn_relocs == NULL)
1200 long storage_needed;
1202 /* Determine amount of space needed to hold the dynamic relocs. */
1203 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1205 /* Bail out if there are no dynamic relocs. */
1206 if (storage_needed <= 0)
1209 /* Allocate space for the relocs. */
1210 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1212 /* Fetch the dynamic relocs. */
1214 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1217 /* Search the dynamic relocs. */
1218 for (i = 0; i < lm->dyn_reloc_count; i++)
1220 rel = lm->dyn_relocs[i];
1222 /* Relocs of interest are those which meet the following
1225 - the names match (assuming the caller could provide
1226 a name which matches ``entry_point'').
1227 - the relocation type must be R_FRV_FUNCDESC. Relocs
1228 of this type are used (by the dynamic linker) to
1229 look up the address of a canonical descriptor (allocating
1230 it if need be) and initializing the GOT entry referred
1231 to by the offset to the address of the descriptor.
1233 These relocs of interest may be used to obtain a
1234 candidate descriptor by first adjusting the reloc's
1235 address according to the link map and then dereferencing
1236 this address (which is a GOT entry) to obtain a descriptor
1238 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1239 && rel->howto->type == R_FRV_FUNCDESC)
1241 gdb_byte buf [FRV_PTR_SIZE];
1243 /* Compute address of address of candidate descriptor. */
1244 addr = rel->address + displacement_from_map (lm->map, rel->address);
1246 /* Fetch address of candidate descriptor. */
1247 if (target_read_memory (addr, buf, sizeof buf) != 0)
1249 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
1251 /* Check for matching entry point. */
1252 if (target_read_memory (addr, buf, sizeof buf) != 0)
1254 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1258 /* Check for matching got value. */
1259 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1261 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1265 /* Match was successful! Exit loop. */
1273 /* Given an objfile, return the address of its link map. This value is
1274 needed for TLS support. */
1276 frv_fetch_objfile_link_map (struct objfile *objfile)
1280 /* Cause frv_current_sos() to be run if it hasn't been already. */
1281 if (main_lm_addr == 0)
1282 solib_add (0, 0, 0, 1);
1284 /* frv_current_sos() will set main_lm_addr for the main executable. */
1285 if (objfile == symfile_objfile)
1286 return main_lm_addr;
1288 /* The other link map addresses may be found by examining the list
1289 of shared libraries. */
1290 for (so = master_so_list (); so; so = so->next)
1292 if (so->objfile == objfile)
1293 return so->lm_info->lm_addr;
1300 struct target_so_ops frv_so_ops;
1302 /* Provide a prototype to silence -Wmissing-prototypes. */
1303 extern initialize_file_ftype _initialize_frv_solib;
1306 _initialize_frv_solib (void)
1308 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1309 frv_so_ops.free_so = frv_free_so;
1310 frv_so_ops.clear_solib = frv_clear_solib;
1311 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1312 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1313 frv_so_ops.current_sos = frv_current_sos;
1314 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1315 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1316 frv_so_ops.bfd_open = solib_bfd_open;
1318 /* Debug this file's internals. */
1319 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1320 &solib_frv_debug, _("\
1321 Set internal debugging of shared library code for FR-V."), _("\
1322 Show internal debugging of shared library code for FR-V."), _("\
1323 When non-zero, FR-V solib specific internal debugging is enabled."),
1325 NULL, /* FIXME: i18n: */
1326 &setdebuglist, &showdebuglist);