1 /* Target-struct-independent code to start (run) and stop an inferior
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
36 #include "cli/cli-script.h"
38 #include "gdbthread.h"
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
54 /* Prototypes for local functions */
56 static void signals_info (char *, int);
58 static void handle_command (char *, int);
60 static void sig_print_info (enum target_signal);
62 static void sig_print_header (void);
64 static void resume_cleanups (void *);
66 static int hook_stop_stub (void *);
68 static int restore_selected_frame (void *);
70 static void build_infrun (void);
72 static int follow_fork (void);
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
77 struct execution_control_state;
79 static int currently_stepping (struct execution_control_state *ecs);
81 static void xdb_handle_command (char *args, int from_tty);
83 static int prepare_to_proceed (void);
85 void _initialize_infrun (void);
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
101 /* In asynchronous mode, but simulating synchronous execution. */
103 int sync_execution = 0;
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
109 static ptid_t previous_inferior_ptid;
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
120 static int debug_infrun = 0;
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
180 /* Convert the #defines into values. This is temporary until wfi control
181 flow is completely sorted out. */
183 #ifndef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 0
186 #undef CANNOT_STEP_HW_WATCHPOINTS
187 #define CANNOT_STEP_HW_WATCHPOINTS 1
190 /* Tables of how to react to signals; the user sets them. */
192 static unsigned char *signal_stop;
193 static unsigned char *signal_print;
194 static unsigned char *signal_program;
196 #define SET_SIGS(nsigs,sigs,flags) \
198 int signum = (nsigs); \
199 while (signum-- > 0) \
200 if ((sigs)[signum]) \
201 (flags)[signum] = 1; \
204 #define UNSET_SIGS(nsigs,sigs,flags) \
206 int signum = (nsigs); \
207 while (signum-- > 0) \
208 if ((sigs)[signum]) \
209 (flags)[signum] = 0; \
212 /* Value to pass to target_resume() to cause all threads to resume */
214 #define RESUME_ALL (pid_to_ptid (-1))
216 /* Command list pointer for the "stop" placeholder. */
218 static struct cmd_list_element *stop_command;
220 /* Nonzero if breakpoints are now inserted in the inferior. */
222 static int breakpoints_inserted;
224 /* Function inferior was in as of last step command. */
226 static struct symbol *step_start_function;
228 /* Nonzero if we are expecting a trace trap and should proceed from it. */
230 static int trap_expected;
232 /* Nonzero if we want to give control to the user when we're notified
233 of shared library events by the dynamic linker. */
234 static int stop_on_solib_events;
236 show_stop_on_solib_events (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
239 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
243 /* Nonzero means expecting a trace trap
244 and should stop the inferior and return silently when it happens. */
248 /* Nonzero means expecting a trap and caller will handle it themselves.
249 It is used after attach, due to attaching to a process;
250 when running in the shell before the child program has been exec'd;
251 and when running some kinds of remote stuff (FIXME?). */
253 enum stop_kind stop_soon;
255 /* Nonzero if proceed is being used for a "finish" command or a similar
256 situation when stop_registers should be saved. */
258 int proceed_to_finish;
260 /* Save register contents here when about to pop a stack dummy frame,
261 if-and-only-if proceed_to_finish is set.
262 Thus this contains the return value from the called function (assuming
263 values are returned in a register). */
265 struct regcache *stop_registers;
267 /* Nonzero after stop if current stack frame should be printed. */
269 static int stop_print_frame;
271 static struct breakpoint *step_resume_breakpoint = NULL;
273 /* This is a cached copy of the pid/waitstatus of the last event
274 returned by target_wait()/deprecated_target_wait_hook(). This
275 information is returned by get_last_target_status(). */
276 static ptid_t target_last_wait_ptid;
277 static struct target_waitstatus target_last_waitstatus;
279 /* This is used to remember when a fork, vfork or exec event
280 was caught by a catchpoint, and thus the event is to be
281 followed at the next resume of the inferior, and not
285 enum target_waitkind kind;
292 char *execd_pathname;
296 static const char follow_fork_mode_child[] = "child";
297 static const char follow_fork_mode_parent[] = "parent";
299 static const char *follow_fork_mode_kind_names[] = {
300 follow_fork_mode_child,
301 follow_fork_mode_parent,
305 static const char *follow_fork_mode_string = follow_fork_mode_parent;
307 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
310 fprintf_filtered (file, _("\
311 Debugger response to a program call of fork or vfork is \"%s\".\n"),
319 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
321 return target_follow_fork (follow_child);
325 follow_inferior_reset_breakpoints (void)
327 /* Was there a step_resume breakpoint? (There was if the user
328 did a "next" at the fork() call.) If so, explicitly reset its
331 step_resumes are a form of bp that are made to be per-thread.
332 Since we created the step_resume bp when the parent process
333 was being debugged, and now are switching to the child process,
334 from the breakpoint package's viewpoint, that's a switch of
335 "threads". We must update the bp's notion of which thread
336 it is for, or it'll be ignored when it triggers. */
338 if (step_resume_breakpoint)
339 breakpoint_re_set_thread (step_resume_breakpoint);
341 /* Reinsert all breakpoints in the child. The user may have set
342 breakpoints after catching the fork, in which case those
343 were never set in the child, but only in the parent. This makes
344 sure the inserted breakpoints match the breakpoint list. */
346 breakpoint_re_set ();
347 insert_breakpoints ();
350 /* EXECD_PATHNAME is assumed to be non-NULL. */
353 follow_exec (int pid, char *execd_pathname)
356 struct target_ops *tgt;
358 if (!may_follow_exec)
361 /* This is an exec event that we actually wish to pay attention to.
362 Refresh our symbol table to the newly exec'd program, remove any
365 If there are breakpoints, they aren't really inserted now,
366 since the exec() transformed our inferior into a fresh set
369 We want to preserve symbolic breakpoints on the list, since
370 we have hopes that they can be reset after the new a.out's
371 symbol table is read.
373 However, any "raw" breakpoints must be removed from the list
374 (e.g., the solib bp's), since their address is probably invalid
377 And, we DON'T want to call delete_breakpoints() here, since
378 that may write the bp's "shadow contents" (the instruction
379 value that was overwritten witha TRAP instruction). Since
380 we now have a new a.out, those shadow contents aren't valid. */
381 update_breakpoints_after_exec ();
383 /* If there was one, it's gone now. We cannot truly step-to-next
384 statement through an exec(). */
385 step_resume_breakpoint = NULL;
386 step_range_start = 0;
389 /* What is this a.out's name? */
390 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
392 /* We've followed the inferior through an exec. Therefore, the
393 inferior has essentially been killed & reborn. */
395 /* First collect the run target in effect. */
396 tgt = find_run_target ();
397 /* If we can't find one, things are in a very strange state... */
399 error (_("Could find run target to save before following exec"));
401 gdb_flush (gdb_stdout);
402 target_mourn_inferior ();
403 inferior_ptid = pid_to_ptid (saved_pid);
404 /* Because mourn_inferior resets inferior_ptid. */
407 /* That a.out is now the one to use. */
408 exec_file_attach (execd_pathname, 0);
410 /* And also is where symbols can be found. */
411 symbol_file_add_main (execd_pathname, 0);
413 /* Reset the shared library package. This ensures that we get
414 a shlib event when the child reaches "_start", at which point
415 the dld will have had a chance to initialize the child. */
416 #if defined(SOLIB_RESTART)
419 #ifdef SOLIB_CREATE_INFERIOR_HOOK
420 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
422 solib_create_inferior_hook ();
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
444 /* PC when we started this single-step. */
445 static CORE_ADDR singlestep_pc;
447 /* If another thread hit the singlestep breakpoint, we save the original
448 thread here so that we can resume single-stepping it later. */
449 static ptid_t saved_singlestep_ptid;
450 static int stepping_past_singlestep_breakpoint;
453 /* Things to clean up if we QUIT out of resume (). */
455 resume_cleanups (void *ignore)
460 static const char schedlock_off[] = "off";
461 static const char schedlock_on[] = "on";
462 static const char schedlock_step[] = "step";
463 static const char *scheduler_enums[] = {
469 static const char *scheduler_mode = schedlock_off;
471 show_scheduler_mode (struct ui_file *file, int from_tty,
472 struct cmd_list_element *c, const char *value)
474 fprintf_filtered (file, _("\
475 Mode for locking scheduler during execution is \"%s\".\n"),
480 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
482 if (!target_can_lock_scheduler)
484 scheduler_mode = schedlock_off;
485 error (_("Target '%s' cannot support this command."), target_shortname);
490 /* Resume the inferior, but allow a QUIT. This is useful if the user
491 wants to interrupt some lengthy single-stepping operation
492 (for child processes, the SIGINT goes to the inferior, and so
493 we get a SIGINT random_signal, but for remote debugging and perhaps
494 other targets, that's not true).
496 STEP nonzero if we should step (zero to continue instead).
497 SIG is the signal to give the inferior (zero for none). */
499 resume (int step, enum target_signal sig)
501 int should_resume = 1;
502 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
506 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
509 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
512 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
513 over an instruction that causes a page fault without triggering
514 a hardware watchpoint. The kernel properly notices that it shouldn't
515 stop, because the hardware watchpoint is not triggered, but it forgets
516 the step request and continues the program normally.
517 Work around the problem by removing hardware watchpoints if a step is
518 requested, GDB will check for a hardware watchpoint trigger after the
520 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
521 remove_hw_watchpoints ();
524 /* Normally, by the time we reach `resume', the breakpoints are either
525 removed or inserted, as appropriate. The exception is if we're sitting
526 at a permanent breakpoint; we need to step over it, but permanent
527 breakpoints can't be removed. So we have to test for it here. */
528 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
530 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
531 gdbarch_skip_permanent_breakpoint (current_gdbarch, current_regcache);
534 The program is stopped at a permanent breakpoint, but GDB does not know\n\
535 how to step past a permanent breakpoint on this architecture. Try using\n\
536 a command like `return' or `jump' to continue execution."));
539 if (SOFTWARE_SINGLE_STEP_P () && step)
541 /* Do it the hard way, w/temp breakpoints */
542 if (SOFTWARE_SINGLE_STEP (current_regcache))
544 /* ...and don't ask hardware to do it. */
546 /* and do not pull these breakpoints until after a `wait' in
547 `wait_for_inferior' */
548 singlestep_breakpoints_inserted_p = 1;
549 singlestep_ptid = inferior_ptid;
550 singlestep_pc = read_pc ();
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
581 resume_ptid = RESUME_ALL; /* Default */
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
592 resume_ptid = inferior_ptid;
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
603 if (CANNOT_STEP_BREAKPOINT)
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
611 target_resume (resume_ptid, step, sig);
614 discard_cleanups (old_cleanups);
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
622 clear_proceed_status (void)
625 step_range_start = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
638 /* This should be suitable for any targets that support threads. */
641 prepare_to_proceed (void)
644 struct target_waitstatus wait_status;
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
649 /* Make sure we were stopped either at a breakpoint, or because
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
664 if (wait_pc != read_pc ())
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 reinit_frame_cache ();
672 registers_changed ();
676 /* We return 1 to indicate that there is a breakpoint here,
677 so we need to step over it before continuing to avoid
678 hitting it straight away. */
679 if (breakpoint_here_p (wait_pc))
687 /* Record the pc of the program the last time it stopped. This is
688 just used internally by wait_for_inferior, but need to be preserved
689 over calls to it and cleared when the inferior is started. */
690 static CORE_ADDR prev_pc;
692 /* Basic routine for continuing the program in various fashions.
694 ADDR is the address to resume at, or -1 for resume where stopped.
695 SIGGNAL is the signal to give it, or 0 for none,
696 or -1 for act according to how it stopped.
697 STEP is nonzero if should trap after one instruction.
698 -1 means return after that and print nothing.
699 You should probably set various step_... variables
700 before calling here, if you are stepping.
702 You should call clear_proceed_status before calling proceed. */
705 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
710 step_start_function = find_pc_function (read_pc ());
714 if (addr == (CORE_ADDR) -1)
716 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
717 /* There is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints so that
719 we do not stop right away (and report a second hit at this
722 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
723 && gdbarch_single_step_through_delay (current_gdbarch,
724 get_current_frame ()))
725 /* We stepped onto an instruction that needs to be stepped
726 again before re-inserting the breakpoint, do so. */
735 fprintf_unfiltered (gdb_stdlog,
736 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
737 paddr_nz (addr), siggnal, step);
739 /* In a multi-threaded task we may select another thread
740 and then continue or step.
742 But if the old thread was stopped at a breakpoint, it
743 will immediately cause another breakpoint stop without
744 any execution (i.e. it will report a breakpoint hit
745 incorrectly). So we must step over it first.
747 prepare_to_proceed checks the current thread against the thread
748 that reported the most recent event. If a step-over is required
749 it returns TRUE and sets the current thread to the old thread. */
750 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754 /* We will get a trace trap after one instruction.
755 Continue it automatically and insert breakpoints then. */
759 insert_breakpoints ();
760 /* If we get here there was no call to error() in
761 insert breakpoints -- so they were inserted. */
762 breakpoints_inserted = 1;
765 if (siggnal != TARGET_SIGNAL_DEFAULT)
766 stop_signal = siggnal;
767 /* If this signal should not be seen by program,
768 give it zero. Used for debugging signals. */
769 else if (!signal_program[stop_signal])
770 stop_signal = TARGET_SIGNAL_0;
772 annotate_starting ();
774 /* Make sure that output from GDB appears before output from the
776 gdb_flush (gdb_stdout);
778 /* Refresh prev_pc value just prior to resuming. This used to be
779 done in stop_stepping, however, setting prev_pc there did not handle
780 scenarios such as inferior function calls or returning from
781 a function via the return command. In those cases, the prev_pc
782 value was not set properly for subsequent commands. The prev_pc value
783 is used to initialize the starting line number in the ecs. With an
784 invalid value, the gdb next command ends up stopping at the position
785 represented by the next line table entry past our start position.
786 On platforms that generate one line table entry per line, this
787 is not a problem. However, on the ia64, the compiler generates
788 extraneous line table entries that do not increase the line number.
789 When we issue the gdb next command on the ia64 after an inferior call
790 or a return command, we often end up a few instructions forward, still
791 within the original line we started.
793 An attempt was made to have init_execution_control_state () refresh
794 the prev_pc value before calculating the line number. This approach
795 did not work because on platforms that use ptrace, the pc register
796 cannot be read unless the inferior is stopped. At that point, we
797 are not guaranteed the inferior is stopped and so the read_pc ()
798 call can fail. Setting the prev_pc value here ensures the value is
799 updated correctly when the inferior is stopped. */
800 prev_pc = read_pc ();
802 /* Resume inferior. */
803 resume (oneproc || step || bpstat_should_step (), stop_signal);
805 /* Wait for it to stop (if not standalone)
806 and in any case decode why it stopped, and act accordingly. */
807 /* Do this only if we are not using the event loop, or if the target
808 does not support asynchronous execution. */
809 if (!target_can_async_p ())
811 wait_for_inferior ();
817 /* Start remote-debugging of a machine over a serial link. */
820 start_remote (int from_tty)
823 init_wait_for_inferior ();
824 stop_soon = STOP_QUIETLY;
827 /* Always go on waiting for the target, regardless of the mode. */
828 /* FIXME: cagney/1999-09-23: At present it isn't possible to
829 indicate to wait_for_inferior that a target should timeout if
830 nothing is returned (instead of just blocking). Because of this,
831 targets expecting an immediate response need to, internally, set
832 things up so that the target_wait() is forced to eventually
834 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
835 differentiate to its caller what the state of the target is after
836 the initial open has been performed. Here we're assuming that
837 the target has stopped. It should be possible to eventually have
838 target_open() return to the caller an indication that the target
839 is currently running and GDB state should be set to the same as
841 wait_for_inferior ();
843 /* Now that the inferior has stopped, do any bookkeeping like
844 loading shared libraries. We want to do this before normal_stop,
845 so that the displayed frame is up to date. */
846 post_create_inferior (¤t_target, from_tty);
851 /* Initialize static vars when a new inferior begins. */
854 init_wait_for_inferior (void)
856 /* These are meaningless until the first time through wait_for_inferior. */
859 breakpoints_inserted = 0;
860 breakpoint_init_inferior (inf_starting);
862 /* Don't confuse first call to proceed(). */
863 stop_signal = TARGET_SIGNAL_0;
865 /* The first resume is not following a fork/vfork/exec. */
866 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
868 clear_proceed_status ();
870 stepping_past_singlestep_breakpoint = 0;
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nonstep_watch_state
884 /* Why did the inferior stop? Used to print the appropriate messages
885 to the interface from within handle_inferior_event(). */
886 enum inferior_stop_reason
888 /* Step, next, nexti, stepi finished. */
890 /* Inferior terminated by signal. */
892 /* Inferior exited. */
894 /* Inferior received signal, and user asked to be notified. */
898 /* This structure contains what used to be local variables in
899 wait_for_inferior. Probably many of them can return to being
900 locals in handle_inferior_event. */
902 struct execution_control_state
904 struct target_waitstatus ws;
905 struct target_waitstatus *wp;
908 CORE_ADDR stop_func_start;
909 CORE_ADDR stop_func_end;
910 char *stop_func_name;
911 struct symtab_and_line sal;
913 struct symtab *current_symtab;
914 int handling_longjmp; /* FIXME */
916 ptid_t saved_inferior_ptid;
917 int step_after_step_resume_breakpoint;
918 int stepping_through_solib_after_catch;
919 bpstat stepping_through_solib_catchpoints;
920 int new_thread_event;
921 struct target_waitstatus tmpstatus;
922 enum infwait_states infwait_state;
927 void init_execution_control_state (struct execution_control_state *ecs);
929 void handle_inferior_event (struct execution_control_state *ecs);
931 static void step_into_function (struct execution_control_state *ecs);
932 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
933 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
934 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
935 struct frame_id sr_id);
936 static void stop_stepping (struct execution_control_state *ecs);
937 static void prepare_to_wait (struct execution_control_state *ecs);
938 static void keep_going (struct execution_control_state *ecs);
939 static void print_stop_reason (enum inferior_stop_reason stop_reason,
942 /* Wait for control to return from inferior to debugger.
943 If inferior gets a signal, we may decide to start it up again
944 instead of returning. That is why there is a loop in this function.
945 When this function actually returns it means the inferior
946 should be left stopped and GDB should read more commands. */
949 wait_for_inferior (void)
951 struct cleanup *old_cleanups;
952 struct execution_control_state ecss;
953 struct execution_control_state *ecs;
956 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
958 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
959 &step_resume_breakpoint);
961 /* wfi still stays in a loop, so it's OK just to take the address of
962 a local to get the ecs pointer. */
965 /* Fill in with reasonable starting values. */
966 init_execution_control_state (ecs);
968 /* We'll update this if & when we switch to a new thread. */
969 previous_inferior_ptid = inferior_ptid;
971 overlay_cache_invalid = 1;
973 /* We have to invalidate the registers BEFORE calling target_wait
974 because they can be loaded from the target while in target_wait.
975 This makes remote debugging a bit more efficient for those
976 targets that provide critical registers as part of their normal
979 registers_changed ();
983 if (deprecated_target_wait_hook)
984 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
986 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
988 /* Now figure out what to do with the result of the result. */
989 handle_inferior_event (ecs);
991 if (!ecs->wait_some_more)
994 do_cleanups (old_cleanups);
997 /* Asynchronous version of wait_for_inferior. It is called by the
998 event loop whenever a change of state is detected on the file
999 descriptor corresponding to the target. It can be called more than
1000 once to complete a single execution command. In such cases we need
1001 to keep the state in a global variable ASYNC_ECSS. If it is the
1002 last time that this function is called for a single execution
1003 command, then report to the user that the inferior has stopped, and
1004 do the necessary cleanups. */
1006 struct execution_control_state async_ecss;
1007 struct execution_control_state *async_ecs;
1010 fetch_inferior_event (void *client_data)
1012 static struct cleanup *old_cleanups;
1014 async_ecs = &async_ecss;
1016 if (!async_ecs->wait_some_more)
1018 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1019 &step_resume_breakpoint);
1021 /* Fill in with reasonable starting values. */
1022 init_execution_control_state (async_ecs);
1024 /* We'll update this if & when we switch to a new thread. */
1025 previous_inferior_ptid = inferior_ptid;
1027 overlay_cache_invalid = 1;
1029 /* We have to invalidate the registers BEFORE calling target_wait
1030 because they can be loaded from the target while in target_wait.
1031 This makes remote debugging a bit more efficient for those
1032 targets that provide critical registers as part of their normal
1033 status mechanism. */
1035 registers_changed ();
1038 if (deprecated_target_wait_hook)
1040 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1042 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1044 /* Now figure out what to do with the result of the result. */
1045 handle_inferior_event (async_ecs);
1047 if (!async_ecs->wait_some_more)
1049 /* Do only the cleanups that have been added by this
1050 function. Let the continuations for the commands do the rest,
1051 if there are any. */
1052 do_exec_cleanups (old_cleanups);
1054 if (step_multi && stop_step)
1055 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1057 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1061 /* Prepare an execution control state for looping through a
1062 wait_for_inferior-type loop. */
1065 init_execution_control_state (struct execution_control_state *ecs)
1067 ecs->another_trap = 0;
1068 ecs->random_signal = 0;
1069 ecs->step_after_step_resume_breakpoint = 0;
1070 ecs->handling_longjmp = 0; /* FIXME */
1071 ecs->stepping_through_solib_after_catch = 0;
1072 ecs->stepping_through_solib_catchpoints = NULL;
1073 ecs->sal = find_pc_line (prev_pc, 0);
1074 ecs->current_line = ecs->sal.line;
1075 ecs->current_symtab = ecs->sal.symtab;
1076 ecs->infwait_state = infwait_normal_state;
1077 ecs->waiton_ptid = pid_to_ptid (-1);
1078 ecs->wp = &(ecs->ws);
1081 /* Return the cached copy of the last pid/waitstatus returned by
1082 target_wait()/deprecated_target_wait_hook(). The data is actually
1083 cached by handle_inferior_event(), which gets called immediately
1084 after target_wait()/deprecated_target_wait_hook(). */
1087 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1089 *ptidp = target_last_wait_ptid;
1090 *status = target_last_waitstatus;
1094 nullify_last_target_wait_ptid (void)
1096 target_last_wait_ptid = minus_one_ptid;
1099 /* Switch thread contexts, maintaining "infrun state". */
1102 context_switch (struct execution_control_state *ecs)
1104 /* Caution: it may happen that the new thread (or the old one!)
1105 is not in the thread list. In this case we must not attempt
1106 to "switch context", or we run the risk that our context may
1107 be lost. This may happen as a result of the target module
1108 mishandling thread creation. */
1112 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1113 target_pid_to_str (inferior_ptid));
1114 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1115 target_pid_to_str (ecs->ptid));
1118 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1119 { /* Perform infrun state context switch: */
1120 /* Save infrun state for the old thread. */
1121 save_infrun_state (inferior_ptid, prev_pc,
1122 trap_expected, step_resume_breakpoint,
1124 step_range_end, &step_frame_id,
1125 ecs->handling_longjmp, ecs->another_trap,
1126 ecs->stepping_through_solib_after_catch,
1127 ecs->stepping_through_solib_catchpoints,
1128 ecs->current_line, ecs->current_symtab);
1130 /* Load infrun state for the new thread. */
1131 load_infrun_state (ecs->ptid, &prev_pc,
1132 &trap_expected, &step_resume_breakpoint,
1134 &step_range_end, &step_frame_id,
1135 &ecs->handling_longjmp, &ecs->another_trap,
1136 &ecs->stepping_through_solib_after_catch,
1137 &ecs->stepping_through_solib_catchpoints,
1138 &ecs->current_line, &ecs->current_symtab);
1140 inferior_ptid = ecs->ptid;
1141 reinit_frame_cache ();
1145 adjust_pc_after_break (struct execution_control_state *ecs)
1147 CORE_ADDR breakpoint_pc;
1149 /* If this target does not decrement the PC after breakpoints, then
1150 we have nothing to do. */
1151 if (DECR_PC_AFTER_BREAK == 0)
1154 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1155 we aren't, just return.
1157 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1158 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1159 by software breakpoints should be handled through the normal breakpoint
1162 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1163 different signals (SIGILL or SIGEMT for instance), but it is less
1164 clear where the PC is pointing afterwards. It may not match
1165 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1166 these signals at breakpoints (the code has been in GDB since at least
1167 1992) so I can not guess how to handle them here.
1169 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1170 would have the PC after hitting a watchpoint affected by
1171 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1172 in GDB history, and it seems unlikely to be correct, so
1173 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1175 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1178 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1181 /* Find the location where (if we've hit a breakpoint) the
1182 breakpoint would be. */
1183 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1185 if (SOFTWARE_SINGLE_STEP_P ())
1187 /* When using software single-step, a SIGTRAP can only indicate
1188 an inserted breakpoint. This actually makes things
1190 if (singlestep_breakpoints_inserted_p)
1191 /* When software single stepping, the instruction at [prev_pc]
1192 is never a breakpoint, but the instruction following
1193 [prev_pc] (in program execution order) always is. Assume
1194 that following instruction was reached and hence a software
1195 breakpoint was hit. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1198 /* The inferior was free running (i.e., no single-step
1199 breakpoints inserted) and it hit a software breakpoint. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1204 /* When using hardware single-step, a SIGTRAP is reported for
1205 both a completed single-step and a software breakpoint. Need
1206 to differentiate between the two as the latter needs
1207 adjusting but the former does not.
1209 When the thread to be examined does not match the current thread
1210 context we can't use currently_stepping, so assume no
1211 single-stepping in this case. */
1212 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1234 /* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
1238 int stepped_after_stopped_by_watchpoint;
1241 handle_inferior_event (struct execution_control_state *ecs)
1243 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1244 that the variable stepped_after_stopped_by_watchpoint isn't used,
1245 then you're wrong! See remote.c:remote_stopped_data_address. */
1247 int sw_single_step_trap_p = 0;
1248 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1250 /* Cache the last pid/waitstatus. */
1251 target_last_wait_ptid = ecs->ptid;
1252 target_last_waitstatus = *ecs->wp;
1254 adjust_pc_after_break (ecs);
1256 switch (ecs->infwait_state)
1258 case infwait_thread_hop_state:
1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1261 /* Cancel the waiton_ptid. */
1262 ecs->waiton_ptid = pid_to_ptid (-1);
1265 case infwait_normal_state:
1267 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1268 stepped_after_stopped_by_watchpoint = 0;
1271 case infwait_nonstep_watch_state:
1273 fprintf_unfiltered (gdb_stdlog,
1274 "infrun: infwait_nonstep_watch_state\n");
1275 insert_breakpoints ();
1277 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1278 handle things like signals arriving and other things happening
1279 in combination correctly? */
1280 stepped_after_stopped_by_watchpoint = 1;
1284 internal_error (__FILE__, __LINE__, _("bad switch"));
1286 ecs->infwait_state = infwait_normal_state;
1288 reinit_frame_cache ();
1290 /* If it's a new process, add it to the thread database */
1292 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1293 && !ptid_equal (ecs->ptid, minus_one_ptid)
1294 && !in_thread_list (ecs->ptid));
1296 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1297 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1299 add_thread (ecs->ptid);
1301 ui_out_text (uiout, "[New ");
1302 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1303 ui_out_text (uiout, "]\n");
1306 switch (ecs->ws.kind)
1308 case TARGET_WAITKIND_LOADED:
1310 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1311 /* Ignore gracefully during startup of the inferior, as it
1312 might be the shell which has just loaded some objects,
1313 otherwise add the symbols for the newly loaded objects. */
1315 if (stop_soon == NO_STOP_QUIETLY)
1317 /* Remove breakpoints, SOLIB_ADD might adjust
1318 breakpoint addresses via breakpoint_re_set. */
1319 if (breakpoints_inserted)
1320 remove_breakpoints ();
1322 /* Check for any newly added shared libraries if we're
1323 supposed to be adding them automatically. Switch
1324 terminal for any messages produced by
1325 breakpoint_re_set. */
1326 target_terminal_ours_for_output ();
1327 /* NOTE: cagney/2003-11-25: Make certain that the target
1328 stack's section table is kept up-to-date. Architectures,
1329 (e.g., PPC64), use the section table to perform
1330 operations such as address => section name and hence
1331 require the table to contain all sections (including
1332 those found in shared libraries). */
1333 /* NOTE: cagney/2003-11-25: Pass current_target and not
1334 exec_ops to SOLIB_ADD. This is because current GDB is
1335 only tooled to propagate section_table changes out from
1336 the "current_target" (see target_resize_to_sections), and
1337 not up from the exec stratum. This, of course, isn't
1338 right. "infrun.c" should only interact with the
1339 exec/process stratum, instead relying on the target stack
1340 to propagate relevant changes (stop, section table
1341 changed, ...) up to other layers. */
1342 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
1343 target_terminal_inferior ();
1345 /* Reinsert breakpoints and continue. */
1346 if (breakpoints_inserted)
1347 insert_breakpoints ();
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1354 case TARGET_WAITKIND_SPURIOUS:
1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1357 resume (0, TARGET_SIGNAL_0);
1358 prepare_to_wait (ecs);
1361 case TARGET_WAITKIND_EXITED:
1363 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1364 target_terminal_ours (); /* Must do this before mourn anyway */
1365 print_stop_reason (EXITED, ecs->ws.value.integer);
1367 /* Record the exit code in the convenience variable $_exitcode, so
1368 that the user can inspect this again later. */
1369 set_internalvar (lookup_internalvar ("_exitcode"),
1370 value_from_longest (builtin_type_int,
1371 (LONGEST) ecs->ws.value.integer));
1372 gdb_flush (gdb_stdout);
1373 target_mourn_inferior ();
1374 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1375 stop_print_frame = 0;
1376 stop_stepping (ecs);
1379 case TARGET_WAITKIND_SIGNALLED:
1381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1382 stop_print_frame = 0;
1383 stop_signal = ecs->ws.value.sig;
1384 target_terminal_ours (); /* Must do this before mourn anyway */
1386 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1387 reach here unless the inferior is dead. However, for years
1388 target_kill() was called here, which hints that fatal signals aren't
1389 really fatal on some systems. If that's true, then some changes
1391 target_mourn_inferior ();
1393 print_stop_reason (SIGNAL_EXITED, stop_signal);
1394 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1395 stop_stepping (ecs);
1398 /* The following are the only cases in which we keep going;
1399 the above cases end in a continue or goto. */
1400 case TARGET_WAITKIND_FORKED:
1401 case TARGET_WAITKIND_VFORKED:
1403 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1404 stop_signal = TARGET_SIGNAL_TRAP;
1405 pending_follow.kind = ecs->ws.kind;
1407 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1408 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1410 if (!ptid_equal (ecs->ptid, inferior_ptid))
1412 context_switch (ecs);
1413 reinit_frame_cache ();
1416 stop_pc = read_pc ();
1418 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1420 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1422 /* If no catchpoint triggered for this, then keep going. */
1423 if (ecs->random_signal)
1425 stop_signal = TARGET_SIGNAL_0;
1429 goto process_event_stop_test;
1431 case TARGET_WAITKIND_EXECD:
1433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1434 stop_signal = TARGET_SIGNAL_TRAP;
1436 /* NOTE drow/2002-12-05: This code should be pushed down into the
1437 target_wait function. Until then following vfork on HP/UX 10.20
1438 is probably broken by this. Of course, it's broken anyway. */
1439 /* Is this a target which reports multiple exec events per actual
1440 call to exec()? (HP-UX using ptrace does, for example.) If so,
1441 ignore all but the last one. Just resume the exec'r, and wait
1442 for the next exec event. */
1443 if (inferior_ignoring_leading_exec_events)
1445 inferior_ignoring_leading_exec_events--;
1446 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1450 inferior_ignoring_leading_exec_events =
1451 target_reported_exec_events_per_exec_call () - 1;
1453 pending_follow.execd_pathname =
1454 savestring (ecs->ws.value.execd_pathname,
1455 strlen (ecs->ws.value.execd_pathname));
1457 /* This causes the eventpoints and symbol table to be reset. Must
1458 do this now, before trying to determine whether to stop. */
1459 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1460 xfree (pending_follow.execd_pathname);
1462 stop_pc = read_pc_pid (ecs->ptid);
1463 ecs->saved_inferior_ptid = inferior_ptid;
1464 inferior_ptid = ecs->ptid;
1466 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1468 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1469 inferior_ptid = ecs->saved_inferior_ptid;
1471 if (!ptid_equal (ecs->ptid, inferior_ptid))
1473 context_switch (ecs);
1474 reinit_frame_cache ();
1477 /* If no catchpoint triggered for this, then keep going. */
1478 if (ecs->random_signal)
1480 stop_signal = TARGET_SIGNAL_0;
1484 goto process_event_stop_test;
1486 /* Be careful not to try to gather much state about a thread
1487 that's in a syscall. It's frequently a losing proposition. */
1488 case TARGET_WAITKIND_SYSCALL_ENTRY:
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1491 resume (0, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1495 /* Before examining the threads further, step this thread to
1496 get it entirely out of the syscall. (We get notice of the
1497 event when the thread is just on the verge of exiting a
1498 syscall. Stepping one instruction seems to get it back
1500 case TARGET_WAITKIND_SYSCALL_RETURN:
1502 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1503 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1504 prepare_to_wait (ecs);
1507 case TARGET_WAITKIND_STOPPED:
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1510 stop_signal = ecs->ws.value.sig;
1513 /* We had an event in the inferior, but we are not interested
1514 in handling it at this level. The lower layers have already
1515 done what needs to be done, if anything.
1517 One of the possible circumstances for this is when the
1518 inferior produces output for the console. The inferior has
1519 not stopped, and we are ignoring the event. Another possible
1520 circumstance is any event which the lower level knows will be
1521 reported multiple times without an intervening resume. */
1522 case TARGET_WAITKIND_IGNORE:
1524 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1525 prepare_to_wait (ecs);
1529 /* We may want to consider not doing a resume here in order to give
1530 the user a chance to play with the new thread. It might be good
1531 to make that a user-settable option. */
1533 /* At this point, all threads are stopped (happens automatically in
1534 either the OS or the native code). Therefore we need to continue
1535 all threads in order to make progress. */
1536 if (ecs->new_thread_event)
1538 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1539 prepare_to_wait (ecs);
1543 stop_pc = read_pc_pid (ecs->ptid);
1546 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1548 if (stepping_past_singlestep_breakpoint)
1550 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1551 && singlestep_breakpoints_inserted_p);
1552 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1553 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1555 stepping_past_singlestep_breakpoint = 0;
1557 /* We've either finished single-stepping past the single-step
1558 breakpoint, or stopped for some other reason. It would be nice if
1559 we could tell, but we can't reliably. */
1560 if (stop_signal == TARGET_SIGNAL_TRAP)
1563 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1564 /* Pull the single step breakpoints out of the target. */
1565 remove_single_step_breakpoints ();
1566 singlestep_breakpoints_inserted_p = 0;
1568 ecs->random_signal = 0;
1570 ecs->ptid = saved_singlestep_ptid;
1571 context_switch (ecs);
1572 if (deprecated_context_hook)
1573 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1575 resume (1, TARGET_SIGNAL_0);
1576 prepare_to_wait (ecs);
1581 stepping_past_singlestep_breakpoint = 0;
1583 /* See if a thread hit a thread-specific breakpoint that was meant for
1584 another thread. If so, then step that thread past the breakpoint,
1587 if (stop_signal == TARGET_SIGNAL_TRAP)
1589 int thread_hop_needed = 0;
1591 /* Check if a regular breakpoint has been hit before checking
1592 for a potential single step breakpoint. Otherwise, GDB will
1593 not see this breakpoint hit when stepping onto breakpoints. */
1594 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1596 ecs->random_signal = 0;
1597 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1598 thread_hop_needed = 1;
1600 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1602 /* We have not context switched yet, so this should be true
1603 no matter which thread hit the singlestep breakpoint. */
1604 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1606 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1608 target_pid_to_str (ecs->ptid));
1610 ecs->random_signal = 0;
1611 /* The call to in_thread_list is necessary because PTIDs sometimes
1612 change when we go from single-threaded to multi-threaded. If
1613 the singlestep_ptid is still in the list, assume that it is
1614 really different from ecs->ptid. */
1615 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1616 && in_thread_list (singlestep_ptid))
1618 /* If the PC of the thread we were trying to single-step
1619 has changed, discard this event (which we were going
1620 to ignore anyway), and pretend we saw that thread
1621 trap. This prevents us continuously moving the
1622 single-step breakpoint forward, one instruction at a
1623 time. If the PC has changed, then the thread we were
1624 trying to single-step has trapped or been signalled,
1625 but the event has not been reported to GDB yet.
1627 There might be some cases where this loses signal
1628 information, if a signal has arrived at exactly the
1629 same time that the PC changed, but this is the best
1630 we can do with the information available. Perhaps we
1631 should arrange to report all events for all threads
1632 when they stop, or to re-poll the remote looking for
1633 this particular thread (i.e. temporarily enable
1635 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1638 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1639 " but expected thread advanced also\n");
1641 /* The current context still belongs to
1642 singlestep_ptid. Don't swap here, since that's
1643 the context we want to use. Just fudge our
1644 state and continue. */
1645 ecs->ptid = singlestep_ptid;
1646 stop_pc = read_pc_pid (ecs->ptid);
1651 fprintf_unfiltered (gdb_stdlog,
1652 "infrun: unexpected thread\n");
1654 thread_hop_needed = 1;
1655 stepping_past_singlestep_breakpoint = 1;
1656 saved_singlestep_ptid = singlestep_ptid;
1661 if (thread_hop_needed)
1666 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1668 /* Saw a breakpoint, but it was hit by the wrong thread.
1671 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1673 /* Pull the single step breakpoints out of the target. */
1674 remove_single_step_breakpoints ();
1675 singlestep_breakpoints_inserted_p = 0;
1678 remove_status = remove_breakpoints ();
1679 /* Did we fail to remove breakpoints? If so, try
1680 to set the PC past the bp. (There's at least
1681 one situation in which we can fail to remove
1682 the bp's: On HP-UX's that use ttrace, we can't
1683 change the address space of a vforking child
1684 process until the child exits (well, okay, not
1685 then either :-) or execs. */
1686 if (remove_status != 0)
1688 /* FIXME! This is obviously non-portable! */
1689 write_pc_pid (stop_pc + 4, ecs->ptid);
1690 /* We need to restart all the threads now,
1691 * unles we're running in scheduler-locked mode.
1692 * Use currently_stepping to determine whether to
1695 /* FIXME MVS: is there any reason not to call resume()? */
1696 if (scheduler_mode == schedlock_on)
1697 target_resume (ecs->ptid,
1698 currently_stepping (ecs), TARGET_SIGNAL_0);
1700 target_resume (RESUME_ALL,
1701 currently_stepping (ecs), TARGET_SIGNAL_0);
1702 prepare_to_wait (ecs);
1707 breakpoints_inserted = 0;
1708 if (!ptid_equal (inferior_ptid, ecs->ptid))
1709 context_switch (ecs);
1710 ecs->waiton_ptid = ecs->ptid;
1711 ecs->wp = &(ecs->ws);
1712 ecs->another_trap = 1;
1714 ecs->infwait_state = infwait_thread_hop_state;
1716 registers_changed ();
1720 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1722 sw_single_step_trap_p = 1;
1723 ecs->random_signal = 0;
1727 ecs->random_signal = 1;
1729 /* See if something interesting happened to the non-current thread. If
1730 so, then switch to that thread. */
1731 if (!ptid_equal (ecs->ptid, inferior_ptid))
1734 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1736 context_switch (ecs);
1738 if (deprecated_context_hook)
1739 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1742 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1744 /* Pull the single step breakpoints out of the target. */
1745 remove_single_step_breakpoints ();
1746 singlestep_breakpoints_inserted_p = 0;
1749 /* It may not be necessary to disable the watchpoint to stop over
1750 it. For example, the PA can (with some kernel cooperation)
1751 single step over a watchpoint without disabling the watchpoint. */
1752 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1755 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1757 prepare_to_wait (ecs);
1761 /* It is far more common to need to disable a watchpoint to step
1762 the inferior over it. FIXME. What else might a debug
1763 register or page protection watchpoint scheme need here? */
1764 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1766 /* At this point, we are stopped at an instruction which has
1767 attempted to write to a piece of memory under control of
1768 a watchpoint. The instruction hasn't actually executed
1769 yet. If we were to evaluate the watchpoint expression
1770 now, we would get the old value, and therefore no change
1771 would seem to have occurred.
1773 In order to make watchpoints work `right', we really need
1774 to complete the memory write, and then evaluate the
1775 watchpoint expression. The following code does that by
1776 removing the watchpoint (actually, all watchpoints and
1777 breakpoints), single-stepping the target, re-inserting
1778 watchpoints, and then falling through to let normal
1779 single-step processing handle proceed. Since this
1780 includes evaluating watchpoints, things will come to a
1781 stop in the correct manner. */
1784 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1785 remove_breakpoints ();
1786 registers_changed ();
1787 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1789 ecs->waiton_ptid = ecs->ptid;
1790 ecs->wp = &(ecs->ws);
1791 ecs->infwait_state = infwait_nonstep_watch_state;
1792 prepare_to_wait (ecs);
1796 /* It may be possible to simply continue after a watchpoint. */
1797 if (HAVE_CONTINUABLE_WATCHPOINT)
1798 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1800 ecs->stop_func_start = 0;
1801 ecs->stop_func_end = 0;
1802 ecs->stop_func_name = 0;
1803 /* Don't care about return value; stop_func_start and stop_func_name
1804 will both be 0 if it doesn't work. */
1805 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1806 &ecs->stop_func_start, &ecs->stop_func_end);
1807 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1808 ecs->another_trap = 0;
1809 bpstat_clear (&stop_bpstat);
1811 stop_stack_dummy = 0;
1812 stop_print_frame = 1;
1813 ecs->random_signal = 0;
1814 stopped_by_random_signal = 0;
1816 if (stop_signal == TARGET_SIGNAL_TRAP
1818 && gdbarch_single_step_through_delay_p (current_gdbarch)
1819 && currently_stepping (ecs))
1821 /* We're trying to step of a breakpoint. Turns out that we're
1822 also on an instruction that needs to be stepped multiple
1823 times before it's been fully executing. E.g., architectures
1824 with a delay slot. It needs to be stepped twice, once for
1825 the instruction and once for the delay slot. */
1826 int step_through_delay
1827 = gdbarch_single_step_through_delay (current_gdbarch,
1828 get_current_frame ());
1829 if (debug_infrun && step_through_delay)
1830 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1831 if (step_range_end == 0 && step_through_delay)
1833 /* The user issued a continue when stopped at a breakpoint.
1834 Set up for another trap and get out of here. */
1835 ecs->another_trap = 1;
1839 else if (step_through_delay)
1841 /* The user issued a step when stopped at a breakpoint.
1842 Maybe we should stop, maybe we should not - the delay
1843 slot *might* correspond to a line of source. In any
1844 case, don't decide that here, just set ecs->another_trap,
1845 making sure we single-step again before breakpoints are
1847 ecs->another_trap = 1;
1851 /* Look at the cause of the stop, and decide what to do.
1852 The alternatives are:
1853 1) break; to really stop and return to the debugger,
1854 2) drop through to start up again
1855 (set ecs->another_trap to 1 to single step once)
1856 3) set ecs->random_signal to 1, and the decision between 1 and 2
1857 will be made according to the signal handling tables. */
1859 /* First, distinguish signals caused by the debugger from signals
1860 that have to do with the program's own actions. Note that
1861 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1862 on the operating system version. Here we detect when a SIGILL or
1863 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1864 something similar for SIGSEGV, since a SIGSEGV will be generated
1865 when we're trying to execute a breakpoint instruction on a
1866 non-executable stack. This happens for call dummy breakpoints
1867 for architectures like SPARC that place call dummies on the
1870 if (stop_signal == TARGET_SIGNAL_TRAP
1871 || (breakpoints_inserted
1872 && (stop_signal == TARGET_SIGNAL_ILL
1873 || stop_signal == TARGET_SIGNAL_SEGV
1874 || stop_signal == TARGET_SIGNAL_EMT))
1875 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1877 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1880 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1881 stop_print_frame = 0;
1882 stop_stepping (ecs);
1886 /* This is originated from start_remote(), start_inferior() and
1887 shared libraries hook functions. */
1888 if (stop_soon == STOP_QUIETLY)
1891 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1892 stop_stepping (ecs);
1896 /* This originates from attach_command(). We need to overwrite
1897 the stop_signal here, because some kernels don't ignore a
1898 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1899 See more comments in inferior.h. */
1900 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1902 stop_stepping (ecs);
1903 if (stop_signal == TARGET_SIGNAL_STOP)
1904 stop_signal = TARGET_SIGNAL_0;
1908 /* Don't even think about breakpoints if just proceeded over a
1910 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1913 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1914 bpstat_clear (&stop_bpstat);
1918 /* See if there is a breakpoint at the current PC. */
1919 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1920 stopped_by_watchpoint);
1922 /* Following in case break condition called a
1924 stop_print_frame = 1;
1927 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1928 at one stage in the past included checks for an inferior
1929 function call's call dummy's return breakpoint. The original
1930 comment, that went with the test, read:
1932 ``End of a stack dummy. Some systems (e.g. Sony news) give
1933 another signal besides SIGTRAP, so check here as well as
1936 If someone ever tries to get get call dummys on a
1937 non-executable stack to work (where the target would stop
1938 with something like a SIGSEGV), then those tests might need
1939 to be re-instated. Given, however, that the tests were only
1940 enabled when momentary breakpoints were not being used, I
1941 suspect that it won't be the case.
1943 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1944 be necessary for call dummies on a non-executable stack on
1947 if (stop_signal == TARGET_SIGNAL_TRAP)
1949 = !(bpstat_explains_signal (stop_bpstat)
1951 || (step_range_end && step_resume_breakpoint == NULL));
1954 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1955 if (!ecs->random_signal)
1956 stop_signal = TARGET_SIGNAL_TRAP;
1960 /* When we reach this point, we've pretty much decided
1961 that the reason for stopping must've been a random
1962 (unexpected) signal. */
1965 ecs->random_signal = 1;
1967 process_event_stop_test:
1968 /* For the program's own signals, act according to
1969 the signal handling tables. */
1971 if (ecs->random_signal)
1973 /* Signal not for debugging purposes. */
1977 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1979 stopped_by_random_signal = 1;
1981 if (signal_print[stop_signal])
1984 target_terminal_ours_for_output ();
1985 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1987 if (signal_stop[stop_signal])
1989 stop_stepping (ecs);
1992 /* If not going to stop, give terminal back
1993 if we took it away. */
1995 target_terminal_inferior ();
1997 /* Clear the signal if it should not be passed. */
1998 if (signal_program[stop_signal] == 0)
1999 stop_signal = TARGET_SIGNAL_0;
2001 if (prev_pc == read_pc ()
2002 && !breakpoints_inserted
2003 && breakpoint_here_p (read_pc ())
2004 && step_resume_breakpoint == NULL)
2006 /* We were just starting a new sequence, attempting to
2007 single-step off of a breakpoint and expecting a SIGTRAP.
2008 Intead this signal arrives. This signal will take us out
2009 of the stepping range so GDB needs to remember to, when
2010 the signal handler returns, resume stepping off that
2012 /* To simplify things, "continue" is forced to use the same
2013 code paths as single-step - set a breakpoint at the
2014 signal return address and then, once hit, step off that
2017 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2018 ecs->step_after_step_resume_breakpoint = 1;
2023 if (step_range_end != 0
2024 && stop_signal != TARGET_SIGNAL_0
2025 && stop_pc >= step_range_start && stop_pc < step_range_end
2026 && frame_id_eq (get_frame_id (get_current_frame ()),
2028 && step_resume_breakpoint == NULL)
2030 /* The inferior is about to take a signal that will take it
2031 out of the single step range. Set a breakpoint at the
2032 current PC (which is presumably where the signal handler
2033 will eventually return) and then allow the inferior to
2036 Note that this is only needed for a signal delivered
2037 while in the single-step range. Nested signals aren't a
2038 problem as they eventually all return. */
2039 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2044 /* Note: step_resume_breakpoint may be non-NULL. This occures
2045 when either there's a nested signal, or when there's a
2046 pending signal enabled just as the signal handler returns
2047 (leaving the inferior at the step-resume-breakpoint without
2048 actually executing it). Either way continue until the
2049 breakpoint is really hit. */
2054 /* Handle cases caused by hitting a breakpoint. */
2056 CORE_ADDR jmp_buf_pc;
2057 struct bpstat_what what;
2059 what = bpstat_what (stop_bpstat);
2061 if (what.call_dummy)
2063 stop_stack_dummy = 1;
2066 switch (what.main_action)
2068 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2069 /* If we hit the breakpoint at longjmp, disable it for the
2070 duration of this command. Then, install a temporary
2071 breakpoint at the target of the jmp_buf. */
2073 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2074 disable_longjmp_breakpoint ();
2075 remove_breakpoints ();
2076 breakpoints_inserted = 0;
2077 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2083 /* Need to blow away step-resume breakpoint, as it
2084 interferes with us */
2085 if (step_resume_breakpoint != NULL)
2087 delete_step_resume_breakpoint (&step_resume_breakpoint);
2090 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2091 ecs->handling_longjmp = 1; /* FIXME */
2095 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2096 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2098 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2099 remove_breakpoints ();
2100 breakpoints_inserted = 0;
2101 disable_longjmp_breakpoint ();
2102 ecs->handling_longjmp = 0; /* FIXME */
2103 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2105 /* else fallthrough */
2107 case BPSTAT_WHAT_SINGLE:
2109 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2110 if (breakpoints_inserted)
2111 remove_breakpoints ();
2112 breakpoints_inserted = 0;
2113 ecs->another_trap = 1;
2114 /* Still need to check other stuff, at least the case
2115 where we are stepping and step out of the right range. */
2118 case BPSTAT_WHAT_STOP_NOISY:
2120 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2121 stop_print_frame = 1;
2123 /* We are about to nuke the step_resume_breakpointt via the
2124 cleanup chain, so no need to worry about it here. */
2126 stop_stepping (ecs);
2129 case BPSTAT_WHAT_STOP_SILENT:
2131 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2132 stop_print_frame = 0;
2134 /* We are about to nuke the step_resume_breakpoin via the
2135 cleanup chain, so no need to worry about it here. */
2137 stop_stepping (ecs);
2140 case BPSTAT_WHAT_STEP_RESUME:
2141 /* This proably demands a more elegant solution, but, yeah
2144 This function's use of the simple variable
2145 step_resume_breakpoint doesn't seem to accomodate
2146 simultaneously active step-resume bp's, although the
2147 breakpoint list certainly can.
2149 If we reach here and step_resume_breakpoint is already
2150 NULL, then apparently we have multiple active
2151 step-resume bp's. We'll just delete the breakpoint we
2152 stopped at, and carry on.
2154 Correction: what the code currently does is delete a
2155 step-resume bp, but it makes no effort to ensure that
2156 the one deleted is the one currently stopped at. MVS */
2159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2161 if (step_resume_breakpoint == NULL)
2163 step_resume_breakpoint =
2164 bpstat_find_step_resume_breakpoint (stop_bpstat);
2166 delete_step_resume_breakpoint (&step_resume_breakpoint);
2167 if (ecs->step_after_step_resume_breakpoint)
2169 /* Back when the step-resume breakpoint was inserted, we
2170 were trying to single-step off a breakpoint. Go back
2172 ecs->step_after_step_resume_breakpoint = 0;
2173 remove_breakpoints ();
2174 breakpoints_inserted = 0;
2175 ecs->another_trap = 1;
2181 case BPSTAT_WHAT_CHECK_SHLIBS:
2182 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2185 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2186 /* Remove breakpoints, we eventually want to step over the
2187 shlib event breakpoint, and SOLIB_ADD might adjust
2188 breakpoint addresses via breakpoint_re_set. */
2189 if (breakpoints_inserted)
2190 remove_breakpoints ();
2191 breakpoints_inserted = 0;
2193 /* Check for any newly added shared libraries if we're
2194 supposed to be adding them automatically. Switch
2195 terminal for any messages produced by
2196 breakpoint_re_set. */
2197 target_terminal_ours_for_output ();
2198 /* NOTE: cagney/2003-11-25: Make certain that the target
2199 stack's section table is kept up-to-date. Architectures,
2200 (e.g., PPC64), use the section table to perform
2201 operations such as address => section name and hence
2202 require the table to contain all sections (including
2203 those found in shared libraries). */
2204 /* NOTE: cagney/2003-11-25: Pass current_target and not
2205 exec_ops to SOLIB_ADD. This is because current GDB is
2206 only tooled to propagate section_table changes out from
2207 the "current_target" (see target_resize_to_sections), and
2208 not up from the exec stratum. This, of course, isn't
2209 right. "infrun.c" should only interact with the
2210 exec/process stratum, instead relying on the target stack
2211 to propagate relevant changes (stop, section table
2212 changed, ...) up to other layers. */
2214 SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add);
2216 solib_add (NULL, 0, ¤t_target, auto_solib_add);
2218 target_terminal_inferior ();
2220 /* Try to reenable shared library breakpoints, additional
2221 code segments in shared libraries might be mapped in now. */
2222 re_enable_breakpoints_in_shlibs ();
2224 /* If requested, stop when the dynamic linker notifies
2225 gdb of events. This allows the user to get control
2226 and place breakpoints in initializer routines for
2227 dynamically loaded objects (among other things). */
2228 if (stop_on_solib_events || stop_stack_dummy)
2230 stop_stepping (ecs);
2234 /* If we stopped due to an explicit catchpoint, then the
2235 (see above) call to SOLIB_ADD pulled in any symbols
2236 from a newly-loaded library, if appropriate.
2238 We do want the inferior to stop, but not where it is
2239 now, which is in the dynamic linker callback. Rather,
2240 we would like it stop in the user's program, just after
2241 the call that caused this catchpoint to trigger. That
2242 gives the user a more useful vantage from which to
2243 examine their program's state. */
2244 else if (what.main_action
2245 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2247 /* ??rehrauer: If I could figure out how to get the
2248 right return PC from here, we could just set a temp
2249 breakpoint and resume. I'm not sure we can without
2250 cracking open the dld's shared libraries and sniffing
2251 their unwind tables and text/data ranges, and that's
2252 not a terribly portable notion.
2254 Until that time, we must step the inferior out of the
2255 dld callback, and also out of the dld itself (and any
2256 code or stubs in libdld.sl, such as "shl_load" and
2257 friends) until we reach non-dld code. At that point,
2258 we can stop stepping. */
2259 bpstat_get_triggered_catchpoints (stop_bpstat,
2261 stepping_through_solib_catchpoints);
2262 ecs->stepping_through_solib_after_catch = 1;
2264 /* Be sure to lift all breakpoints, so the inferior does
2265 actually step past this point... */
2266 ecs->another_trap = 1;
2271 /* We want to step over this breakpoint, then keep going. */
2272 ecs->another_trap = 1;
2278 case BPSTAT_WHAT_LAST:
2279 /* Not a real code, but listed here to shut up gcc -Wall. */
2281 case BPSTAT_WHAT_KEEP_CHECKING:
2286 /* We come here if we hit a breakpoint but should not
2287 stop for it. Possibly we also were stepping
2288 and should stop for that. So fall through and
2289 test for stepping. But, if not stepping,
2292 /* Are we stepping to get the inferior out of the dynamic linker's
2293 hook (and possibly the dld itself) after catching a shlib
2295 if (ecs->stepping_through_solib_after_catch)
2297 #if defined(SOLIB_ADD)
2298 /* Have we reached our destination? If not, keep going. */
2299 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2302 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2303 ecs->another_trap = 1;
2309 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2310 /* Else, stop and report the catchpoint(s) whose triggering
2311 caused us to begin stepping. */
2312 ecs->stepping_through_solib_after_catch = 0;
2313 bpstat_clear (&stop_bpstat);
2314 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2315 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2316 stop_print_frame = 1;
2317 stop_stepping (ecs);
2321 if (step_resume_breakpoint)
2324 fprintf_unfiltered (gdb_stdlog,
2325 "infrun: step-resume breakpoint is inserted\n");
2327 /* Having a step-resume breakpoint overrides anything
2328 else having to do with stepping commands until
2329 that breakpoint is reached. */
2334 if (step_range_end == 0)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2338 /* Likewise if we aren't even stepping. */
2343 /* If stepping through a line, keep going if still within it.
2345 Note that step_range_end is the address of the first instruction
2346 beyond the step range, and NOT the address of the last instruction
2348 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2351 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2352 paddr_nz (step_range_start),
2353 paddr_nz (step_range_end));
2358 /* We stepped out of the stepping range. */
2360 /* If we are stepping at the source level and entered the runtime
2361 loader dynamic symbol resolution code, we keep on single stepping
2362 until we exit the run time loader code and reach the callee's
2364 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2365 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2366 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2368 && in_solib_dynsym_resolve_code (stop_pc)
2372 CORE_ADDR pc_after_resolver =
2373 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2376 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2378 if (pc_after_resolver)
2380 /* Set up a step-resume breakpoint at the address
2381 indicated by SKIP_SOLIB_RESOLVER. */
2382 struct symtab_and_line sr_sal;
2384 sr_sal.pc = pc_after_resolver;
2386 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2393 if (step_range_end != 1
2394 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2395 || step_over_calls == STEP_OVER_ALL)
2396 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2399 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2400 /* The inferior, while doing a "step" or "next", has ended up in
2401 a signal trampoline (either by a signal being delivered or by
2402 the signal handler returning). Just single-step until the
2403 inferior leaves the trampoline (either by calling the handler
2409 /* Check for subroutine calls. The check for the current frame
2410 equalling the step ID is not necessary - the check of the
2411 previous frame's ID is sufficient - but it is a common case and
2412 cheaper than checking the previous frame's ID.
2414 NOTE: frame_id_eq will never report two invalid frame IDs as
2415 being equal, so to get into this block, both the current and
2416 previous frame must have valid frame IDs. */
2417 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2418 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2420 CORE_ADDR real_stop_pc;
2423 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2425 if ((step_over_calls == STEP_OVER_NONE)
2426 || ((step_range_end == 1)
2427 && in_prologue (prev_pc, ecs->stop_func_start)))
2429 /* I presume that step_over_calls is only 0 when we're
2430 supposed to be stepping at the assembly language level
2431 ("stepi"). Just stop. */
2432 /* Also, maybe we just did a "nexti" inside a prolog, so we
2433 thought it was a subroutine call but it was not. Stop as
2436 print_stop_reason (END_STEPPING_RANGE, 0);
2437 stop_stepping (ecs);
2441 if (step_over_calls == STEP_OVER_ALL)
2443 /* We're doing a "next", set a breakpoint at callee's return
2444 address (the address at which the caller will
2446 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2451 /* If we are in a function call trampoline (a stub between the
2452 calling routine and the real function), locate the real
2453 function. That's what tells us (a) whether we want to step
2454 into it at all, and (b) what prologue we want to run to the
2455 end of, if we do step into it. */
2456 real_stop_pc = skip_language_trampoline (stop_pc);
2457 if (real_stop_pc == 0)
2458 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2459 if (real_stop_pc != 0)
2460 ecs->stop_func_start = real_stop_pc;
2463 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2464 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2466 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2470 struct symtab_and_line sr_sal;
2472 sr_sal.pc = ecs->stop_func_start;
2474 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2479 /* If we have line number information for the function we are
2480 thinking of stepping into, step into it.
2482 If there are several symtabs at that PC (e.g. with include
2483 files), just want to know whether *any* of them have line
2484 numbers. find_pc_line handles this. */
2486 struct symtab_and_line tmp_sal;
2488 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2489 if (tmp_sal.line != 0)
2491 step_into_function (ecs);
2496 /* If we have no line number and the step-stop-if-no-debug is
2497 set, we stop the step so that the user has a chance to switch
2498 in assembly mode. */
2499 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2502 print_stop_reason (END_STEPPING_RANGE, 0);
2503 stop_stepping (ecs);
2507 /* Set a breakpoint at callee's return address (the address at
2508 which the caller will resume). */
2509 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2514 /* If we're in the return path from a shared library trampoline,
2515 we want to proceed through the trampoline when stepping. */
2516 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2518 /* Determine where this trampoline returns. */
2519 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2522 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2524 /* Only proceed through if we know where it's going. */
2527 /* And put the step-breakpoint there and go until there. */
2528 struct symtab_and_line sr_sal;
2530 init_sal (&sr_sal); /* initialize to zeroes */
2531 sr_sal.pc = real_stop_pc;
2532 sr_sal.section = find_pc_overlay (sr_sal.pc);
2534 /* Do not specify what the fp should be when we stop since
2535 on some machines the prologue is where the new fp value
2537 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2539 /* Restart without fiddling with the step ranges or
2546 ecs->sal = find_pc_line (stop_pc, 0);
2548 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2549 the trampoline processing logic, however, there are some trampolines
2550 that have no names, so we should do trampoline handling first. */
2551 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2552 && ecs->stop_func_name == NULL
2553 && ecs->sal.line == 0)
2556 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2558 /* The inferior just stepped into, or returned to, an
2559 undebuggable function (where there is no debugging information
2560 and no line number corresponding to the address where the
2561 inferior stopped). Since we want to skip this kind of code,
2562 we keep going until the inferior returns from this
2563 function - unless the user has asked us not to (via
2564 set step-mode) or we no longer know how to get back
2565 to the call site. */
2566 if (step_stop_if_no_debug
2567 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2569 /* If we have no line number and the step-stop-if-no-debug
2570 is set, we stop the step so that the user has a chance to
2571 switch in assembly mode. */
2573 print_stop_reason (END_STEPPING_RANGE, 0);
2574 stop_stepping (ecs);
2579 /* Set a breakpoint at callee's return address (the address
2580 at which the caller will resume). */
2581 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2587 if (step_range_end == 1)
2589 /* It is stepi or nexti. We always want to stop stepping after
2592 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2594 print_stop_reason (END_STEPPING_RANGE, 0);
2595 stop_stepping (ecs);
2599 if (ecs->sal.line == 0)
2601 /* We have no line number information. That means to stop
2602 stepping (does this always happen right after one instruction,
2603 when we do "s" in a function with no line numbers,
2604 or can this happen as a result of a return or longjmp?). */
2606 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2608 print_stop_reason (END_STEPPING_RANGE, 0);
2609 stop_stepping (ecs);
2613 if ((stop_pc == ecs->sal.pc)
2614 && (ecs->current_line != ecs->sal.line
2615 || ecs->current_symtab != ecs->sal.symtab))
2617 /* We are at the start of a different line. So stop. Note that
2618 we don't stop if we step into the middle of a different line.
2619 That is said to make things like for (;;) statements work
2622 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2624 print_stop_reason (END_STEPPING_RANGE, 0);
2625 stop_stepping (ecs);
2629 /* We aren't done stepping.
2631 Optimize by setting the stepping range to the line.
2632 (We might not be in the original line, but if we entered a
2633 new line in mid-statement, we continue stepping. This makes
2634 things like for(;;) statements work better.) */
2636 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2638 /* If this is the last line of the function, don't keep stepping
2639 (it would probably step us out of the function).
2640 This is particularly necessary for a one-line function,
2641 in which after skipping the prologue we better stop even though
2642 we will be in mid-line. */
2644 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2646 print_stop_reason (END_STEPPING_RANGE, 0);
2647 stop_stepping (ecs);
2650 step_range_start = ecs->sal.pc;
2651 step_range_end = ecs->sal.end;
2652 step_frame_id = get_frame_id (get_current_frame ());
2653 ecs->current_line = ecs->sal.line;
2654 ecs->current_symtab = ecs->sal.symtab;
2656 /* In the case where we just stepped out of a function into the
2657 middle of a line of the caller, continue stepping, but
2658 step_frame_id must be modified to current frame */
2660 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2661 generous. It will trigger on things like a step into a frameless
2662 stackless leaf function. I think the logic should instead look
2663 at the unwound frame ID has that should give a more robust
2664 indication of what happened. */
2665 if (step - ID == current - ID)
2666 still stepping in same function;
2667 else if (step - ID == unwind (current - ID))
2668 stepped into a function;
2670 stepped out of a function;
2671 /* Of course this assumes that the frame ID unwind code is robust
2672 and we're willing to introduce frame unwind logic into this
2673 function. Fortunately, those days are nearly upon us. */
2676 struct frame_id current_frame = get_frame_id (get_current_frame ());
2677 if (!(frame_id_inner (current_frame, step_frame_id)))
2678 step_frame_id = current_frame;
2682 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2686 /* Are we in the middle of stepping? */
2689 currently_stepping (struct execution_control_state *ecs)
2691 return ((!ecs->handling_longjmp
2692 && ((step_range_end && step_resume_breakpoint == NULL)
2694 || ecs->stepping_through_solib_after_catch
2695 || bpstat_should_step ());
2698 /* Subroutine call with source code we should not step over. Do step
2699 to the first line of code in it. */
2702 step_into_function (struct execution_control_state *ecs)
2705 struct symtab_and_line sr_sal;
2707 s = find_pc_symtab (stop_pc);
2708 if (s && s->language != language_asm)
2709 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2711 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2712 /* Use the step_resume_break to step until the end of the prologue,
2713 even if that involves jumps (as it seems to on the vax under
2715 /* If the prologue ends in the middle of a source line, continue to
2716 the end of that source line (if it is still within the function).
2717 Otherwise, just go to end of prologue. */
2719 && ecs->sal.pc != ecs->stop_func_start
2720 && ecs->sal.end < ecs->stop_func_end)
2721 ecs->stop_func_start = ecs->sal.end;
2723 /* Architectures which require breakpoint adjustment might not be able
2724 to place a breakpoint at the computed address. If so, the test
2725 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2726 ecs->stop_func_start to an address at which a breakpoint may be
2727 legitimately placed.
2729 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2730 made, GDB will enter an infinite loop when stepping through
2731 optimized code consisting of VLIW instructions which contain
2732 subinstructions corresponding to different source lines. On
2733 FR-V, it's not permitted to place a breakpoint on any but the
2734 first subinstruction of a VLIW instruction. When a breakpoint is
2735 set, GDB will adjust the breakpoint address to the beginning of
2736 the VLIW instruction. Thus, we need to make the corresponding
2737 adjustment here when computing the stop address. */
2739 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2741 ecs->stop_func_start
2742 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2743 ecs->stop_func_start);
2746 if (ecs->stop_func_start == stop_pc)
2748 /* We are already there: stop now. */
2750 print_stop_reason (END_STEPPING_RANGE, 0);
2751 stop_stepping (ecs);
2756 /* Put the step-breakpoint there and go until there. */
2757 init_sal (&sr_sal); /* initialize to zeroes */
2758 sr_sal.pc = ecs->stop_func_start;
2759 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2761 /* Do not specify what the fp should be when we stop since on
2762 some machines the prologue is where the new fp value is
2764 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2766 /* And make sure stepping stops right away then. */
2767 step_range_end = step_range_start;
2772 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2773 This is used to both functions and to skip over code. */
2776 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2777 struct frame_id sr_id)
2779 /* There should never be more than one step-resume breakpoint per
2780 thread, so we should never be setting a new
2781 step_resume_breakpoint when one is already active. */
2782 gdb_assert (step_resume_breakpoint == NULL);
2785 fprintf_unfiltered (gdb_stdlog,
2786 "infrun: inserting step-resume breakpoint at 0x%s\n",
2787 paddr_nz (sr_sal.pc));
2789 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2791 if (breakpoints_inserted)
2792 insert_breakpoints ();
2795 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2796 to skip a potential signal handler.
2798 This is called with the interrupted function's frame. The signal
2799 handler, when it returns, will resume the interrupted function at
2803 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2805 struct symtab_and_line sr_sal;
2807 init_sal (&sr_sal); /* initialize to zeros */
2809 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2810 sr_sal.section = find_pc_overlay (sr_sal.pc);
2812 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2815 /* Similar to insert_step_resume_breakpoint_at_frame, except
2816 but a breakpoint at the previous frame's PC. This is used to
2817 skip a function after stepping into it (for "next" or if the called
2818 function has no debugging information).
2820 The current function has almost always been reached by single
2821 stepping a call or return instruction. NEXT_FRAME belongs to the
2822 current function, and the breakpoint will be set at the caller's
2825 This is a separate function rather than reusing
2826 insert_step_resume_breakpoint_at_frame in order to avoid
2827 get_prev_frame, which may stop prematurely (see the implementation
2828 of frame_unwind_id for an example). */
2831 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2833 struct symtab_and_line sr_sal;
2835 /* We shouldn't have gotten here if we don't know where the call site
2837 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2839 init_sal (&sr_sal); /* initialize to zeros */
2841 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2842 sr_sal.section = find_pc_overlay (sr_sal.pc);
2844 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2848 stop_stepping (struct execution_control_state *ecs)
2851 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2853 /* Let callers know we don't want to wait for the inferior anymore. */
2854 ecs->wait_some_more = 0;
2857 /* This function handles various cases where we need to continue
2858 waiting for the inferior. */
2859 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2862 keep_going (struct execution_control_state *ecs)
2864 /* Save the pc before execution, to compare with pc after stop. */
2865 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2867 /* If we did not do break;, it means we should keep running the
2868 inferior and not return to debugger. */
2870 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2872 /* We took a signal (which we are supposed to pass through to
2873 the inferior, else we'd have done a break above) and we
2874 haven't yet gotten our trap. Simply continue. */
2875 resume (currently_stepping (ecs), stop_signal);
2879 /* Either the trap was not expected, but we are continuing
2880 anyway (the user asked that this signal be passed to the
2883 The signal was SIGTRAP, e.g. it was our signal, but we
2884 decided we should resume from it.
2886 We're going to run this baby now! */
2888 if (!breakpoints_inserted && !ecs->another_trap)
2890 /* Stop stepping when inserting breakpoints
2892 if (insert_breakpoints () != 0)
2894 stop_stepping (ecs);
2897 breakpoints_inserted = 1;
2900 trap_expected = ecs->another_trap;
2902 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2903 specifies that such a signal should be delivered to the
2906 Typically, this would occure when a user is debugging a
2907 target monitor on a simulator: the target monitor sets a
2908 breakpoint; the simulator encounters this break-point and
2909 halts the simulation handing control to GDB; GDB, noteing
2910 that the break-point isn't valid, returns control back to the
2911 simulator; the simulator then delivers the hardware
2912 equivalent of a SIGNAL_TRAP to the program being debugged. */
2914 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2915 stop_signal = TARGET_SIGNAL_0;
2918 resume (currently_stepping (ecs), stop_signal);
2921 prepare_to_wait (ecs);
2924 /* This function normally comes after a resume, before
2925 handle_inferior_event exits. It takes care of any last bits of
2926 housekeeping, and sets the all-important wait_some_more flag. */
2929 prepare_to_wait (struct execution_control_state *ecs)
2932 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2933 if (ecs->infwait_state == infwait_normal_state)
2935 overlay_cache_invalid = 1;
2937 /* We have to invalidate the registers BEFORE calling
2938 target_wait because they can be loaded from the target while
2939 in target_wait. This makes remote debugging a bit more
2940 efficient for those targets that provide critical registers
2941 as part of their normal status mechanism. */
2943 registers_changed ();
2944 ecs->waiton_ptid = pid_to_ptid (-1);
2945 ecs->wp = &(ecs->ws);
2947 /* This is the old end of the while loop. Let everybody know we
2948 want to wait for the inferior some more and get called again
2950 ecs->wait_some_more = 1;
2953 /* Print why the inferior has stopped. We always print something when
2954 the inferior exits, or receives a signal. The rest of the cases are
2955 dealt with later on in normal_stop() and print_it_typical(). Ideally
2956 there should be a call to this function from handle_inferior_event()
2957 each time stop_stepping() is called.*/
2959 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2961 switch (stop_reason)
2963 case END_STEPPING_RANGE:
2964 /* We are done with a step/next/si/ni command. */
2965 /* For now print nothing. */
2966 /* Print a message only if not in the middle of doing a "step n"
2967 operation for n > 1 */
2968 if (!step_multi || !stop_step)
2969 if (ui_out_is_mi_like_p (uiout))
2972 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2975 /* The inferior was terminated by a signal. */
2976 annotate_signalled ();
2977 if (ui_out_is_mi_like_p (uiout))
2980 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2981 ui_out_text (uiout, "\nProgram terminated with signal ");
2982 annotate_signal_name ();
2983 ui_out_field_string (uiout, "signal-name",
2984 target_signal_to_name (stop_info));
2985 annotate_signal_name_end ();
2986 ui_out_text (uiout, ", ");
2987 annotate_signal_string ();
2988 ui_out_field_string (uiout, "signal-meaning",
2989 target_signal_to_string (stop_info));
2990 annotate_signal_string_end ();
2991 ui_out_text (uiout, ".\n");
2992 ui_out_text (uiout, "The program no longer exists.\n");
2995 /* The inferior program is finished. */
2996 annotate_exited (stop_info);
2999 if (ui_out_is_mi_like_p (uiout))
3000 ui_out_field_string (uiout, "reason",
3001 async_reason_lookup (EXEC_ASYNC_EXITED));
3002 ui_out_text (uiout, "\nProgram exited with code ");
3003 ui_out_field_fmt (uiout, "exit-code", "0%o",
3004 (unsigned int) stop_info);
3005 ui_out_text (uiout, ".\n");
3009 if (ui_out_is_mi_like_p (uiout))
3012 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3013 ui_out_text (uiout, "\nProgram exited normally.\n");
3015 /* Support the --return-child-result option. */
3016 return_child_result_value = stop_info;
3018 case SIGNAL_RECEIVED:
3019 /* Signal received. The signal table tells us to print about
3022 ui_out_text (uiout, "\nProgram received signal ");
3023 annotate_signal_name ();
3024 if (ui_out_is_mi_like_p (uiout))
3026 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3027 ui_out_field_string (uiout, "signal-name",
3028 target_signal_to_name (stop_info));
3029 annotate_signal_name_end ();
3030 ui_out_text (uiout, ", ");
3031 annotate_signal_string ();
3032 ui_out_field_string (uiout, "signal-meaning",
3033 target_signal_to_string (stop_info));
3034 annotate_signal_string_end ();
3035 ui_out_text (uiout, ".\n");
3038 internal_error (__FILE__, __LINE__,
3039 _("print_stop_reason: unrecognized enum value"));
3045 /* Here to return control to GDB when the inferior stops for real.
3046 Print appropriate messages, remove breakpoints, give terminal our modes.
3048 STOP_PRINT_FRAME nonzero means print the executing frame
3049 (pc, function, args, file, line number and line text).
3050 BREAKPOINTS_FAILED nonzero means stop was due to error
3051 attempting to insert breakpoints. */
3056 struct target_waitstatus last;
3059 get_last_target_status (&last_ptid, &last);
3061 /* As with the notification of thread events, we want to delay
3062 notifying the user that we've switched thread context until
3063 the inferior actually stops.
3065 There's no point in saying anything if the inferior has exited.
3066 Note that SIGNALLED here means "exited with a signal", not
3067 "received a signal". */
3068 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3069 && target_has_execution
3070 && last.kind != TARGET_WAITKIND_SIGNALLED
3071 && last.kind != TARGET_WAITKIND_EXITED)
3073 target_terminal_ours_for_output ();
3074 printf_filtered (_("[Switching to %s]\n"),
3075 target_pid_or_tid_to_str (inferior_ptid));
3076 previous_inferior_ptid = inferior_ptid;
3079 /* NOTE drow/2004-01-17: Is this still necessary? */
3080 /* Make sure that the current_frame's pc is correct. This
3081 is a correction for setting up the frame info before doing
3082 DECR_PC_AFTER_BREAK */
3083 if (target_has_execution)
3084 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3085 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3086 frame code to check for this and sort out any resultant mess.
3087 DECR_PC_AFTER_BREAK needs to just go away. */
3088 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3090 if (target_has_execution && breakpoints_inserted)
3092 if (remove_breakpoints ())
3094 target_terminal_ours_for_output ();
3095 printf_filtered (_("\
3096 Cannot remove breakpoints because program is no longer writable.\n\
3097 It might be running in another process.\n\
3098 Further execution is probably impossible.\n"));
3101 breakpoints_inserted = 0;
3103 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3104 Delete any breakpoint that is to be deleted at the next stop. */
3106 breakpoint_auto_delete (stop_bpstat);
3108 /* If an auto-display called a function and that got a signal,
3109 delete that auto-display to avoid an infinite recursion. */
3111 if (stopped_by_random_signal)
3112 disable_current_display ();
3114 /* Don't print a message if in the middle of doing a "step n"
3115 operation for n > 1 */
3116 if (step_multi && stop_step)
3119 target_terminal_ours ();
3121 /* Set the current source location. This will also happen if we
3122 display the frame below, but the current SAL will be incorrect
3123 during a user hook-stop function. */
3124 if (target_has_stack && !stop_stack_dummy)
3125 set_current_sal_from_frame (get_current_frame (), 1);
3127 /* Look up the hook_stop and run it (CLI internally handles problem
3128 of stop_command's pre-hook not existing). */
3130 catch_errors (hook_stop_stub, stop_command,
3131 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3133 if (!target_has_stack)
3139 /* Select innermost stack frame - i.e., current frame is frame 0,
3140 and current location is based on that.
3141 Don't do this on return from a stack dummy routine,
3142 or if the program has exited. */
3144 if (!stop_stack_dummy)
3146 select_frame (get_current_frame ());
3148 /* Print current location without a level number, if
3149 we have changed functions or hit a breakpoint.
3150 Print source line if we have one.
3151 bpstat_print() contains the logic deciding in detail
3152 what to print, based on the event(s) that just occurred. */
3154 if (stop_print_frame)
3158 int do_frame_printing = 1;
3160 bpstat_ret = bpstat_print (stop_bpstat);
3164 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3165 (or should) carry around the function and does (or
3166 should) use that when doing a frame comparison. */
3168 && frame_id_eq (step_frame_id,
3169 get_frame_id (get_current_frame ()))
3170 && step_start_function == find_pc_function (stop_pc))
3171 source_flag = SRC_LINE; /* finished step, just print source line */
3173 source_flag = SRC_AND_LOC; /* print location and source line */
3175 case PRINT_SRC_AND_LOC:
3176 source_flag = SRC_AND_LOC; /* print location and source line */
3178 case PRINT_SRC_ONLY:
3179 source_flag = SRC_LINE;
3182 source_flag = SRC_LINE; /* something bogus */
3183 do_frame_printing = 0;
3186 internal_error (__FILE__, __LINE__, _("Unknown value."));
3189 if (ui_out_is_mi_like_p (uiout))
3190 ui_out_field_int (uiout, "thread-id",
3191 pid_to_thread_id (inferior_ptid));
3192 /* The behavior of this routine with respect to the source
3194 SRC_LINE: Print only source line
3195 LOCATION: Print only location
3196 SRC_AND_LOC: Print location and source line */
3197 if (do_frame_printing)
3198 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3200 /* Display the auto-display expressions. */
3205 /* Save the function value return registers, if we care.
3206 We might be about to restore their previous contents. */
3207 if (proceed_to_finish)
3208 /* NB: The copy goes through to the target picking up the value of
3209 all the registers. */
3210 regcache_cpy (stop_registers, current_regcache);
3212 if (stop_stack_dummy)
3214 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3215 ends with a setting of the current frame, so we can use that
3217 frame_pop (get_current_frame ());
3218 /* Set stop_pc to what it was before we called the function.
3219 Can't rely on restore_inferior_status because that only gets
3220 called if we don't stop in the called function. */
3221 stop_pc = read_pc ();
3222 select_frame (get_current_frame ());
3226 annotate_stopped ();
3227 observer_notify_normal_stop (stop_bpstat);
3231 hook_stop_stub (void *cmd)
3233 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3238 signal_stop_state (int signo)
3240 return signal_stop[signo];
3244 signal_print_state (int signo)
3246 return signal_print[signo];
3250 signal_pass_state (int signo)
3252 return signal_program[signo];
3256 signal_stop_update (int signo, int state)
3258 int ret = signal_stop[signo];
3259 signal_stop[signo] = state;
3264 signal_print_update (int signo, int state)
3266 int ret = signal_print[signo];
3267 signal_print[signo] = state;
3272 signal_pass_update (int signo, int state)
3274 int ret = signal_program[signo];
3275 signal_program[signo] = state;
3280 sig_print_header (void)
3282 printf_filtered (_("\
3283 Signal Stop\tPrint\tPass to program\tDescription\n"));
3287 sig_print_info (enum target_signal oursig)
3289 char *name = target_signal_to_name (oursig);
3290 int name_padding = 13 - strlen (name);
3292 if (name_padding <= 0)
3295 printf_filtered ("%s", name);
3296 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3297 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3298 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3299 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3300 printf_filtered ("%s\n", target_signal_to_string (oursig));
3303 /* Specify how various signals in the inferior should be handled. */
3306 handle_command (char *args, int from_tty)
3309 int digits, wordlen;
3310 int sigfirst, signum, siglast;
3311 enum target_signal oursig;
3314 unsigned char *sigs;
3315 struct cleanup *old_chain;
3319 error_no_arg (_("signal to handle"));
3322 /* Allocate and zero an array of flags for which signals to handle. */
3324 nsigs = (int) TARGET_SIGNAL_LAST;
3325 sigs = (unsigned char *) alloca (nsigs);
3326 memset (sigs, 0, nsigs);
3328 /* Break the command line up into args. */
3330 argv = buildargv (args);
3335 old_chain = make_cleanup_freeargv (argv);
3337 /* Walk through the args, looking for signal oursigs, signal names, and
3338 actions. Signal numbers and signal names may be interspersed with
3339 actions, with the actions being performed for all signals cumulatively
3340 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3342 while (*argv != NULL)
3344 wordlen = strlen (*argv);
3345 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3349 sigfirst = siglast = -1;
3351 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3353 /* Apply action to all signals except those used by the
3354 debugger. Silently skip those. */
3357 siglast = nsigs - 1;
3359 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3361 SET_SIGS (nsigs, sigs, signal_stop);
3362 SET_SIGS (nsigs, sigs, signal_print);
3364 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3366 UNSET_SIGS (nsigs, sigs, signal_program);
3368 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3370 SET_SIGS (nsigs, sigs, signal_print);
3372 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3374 SET_SIGS (nsigs, sigs, signal_program);
3376 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3378 UNSET_SIGS (nsigs, sigs, signal_stop);
3380 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3382 SET_SIGS (nsigs, sigs, signal_program);
3384 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3386 UNSET_SIGS (nsigs, sigs, signal_print);
3387 UNSET_SIGS (nsigs, sigs, signal_stop);
3389 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3391 UNSET_SIGS (nsigs, sigs, signal_program);
3393 else if (digits > 0)
3395 /* It is numeric. The numeric signal refers to our own
3396 internal signal numbering from target.h, not to host/target
3397 signal number. This is a feature; users really should be
3398 using symbolic names anyway, and the common ones like
3399 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3401 sigfirst = siglast = (int)
3402 target_signal_from_command (atoi (*argv));
3403 if ((*argv)[digits] == '-')
3406 target_signal_from_command (atoi ((*argv) + digits + 1));
3408 if (sigfirst > siglast)
3410 /* Bet he didn't figure we'd think of this case... */
3418 oursig = target_signal_from_name (*argv);
3419 if (oursig != TARGET_SIGNAL_UNKNOWN)
3421 sigfirst = siglast = (int) oursig;
3425 /* Not a number and not a recognized flag word => complain. */
3426 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3430 /* If any signal numbers or symbol names were found, set flags for
3431 which signals to apply actions to. */
3433 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3435 switch ((enum target_signal) signum)
3437 case TARGET_SIGNAL_TRAP:
3438 case TARGET_SIGNAL_INT:
3439 if (!allsigs && !sigs[signum])
3441 if (query ("%s is used by the debugger.\n\
3442 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3448 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3449 gdb_flush (gdb_stdout);
3453 case TARGET_SIGNAL_0:
3454 case TARGET_SIGNAL_DEFAULT:
3455 case TARGET_SIGNAL_UNKNOWN:
3456 /* Make sure that "all" doesn't print these. */
3467 target_notice_signals (inferior_ptid);
3471 /* Show the results. */
3472 sig_print_header ();
3473 for (signum = 0; signum < nsigs; signum++)
3477 sig_print_info (signum);
3482 do_cleanups (old_chain);
3486 xdb_handle_command (char *args, int from_tty)
3489 struct cleanup *old_chain;
3491 /* Break the command line up into args. */
3493 argv = buildargv (args);
3498 old_chain = make_cleanup_freeargv (argv);
3499 if (argv[1] != (char *) NULL)
3504 bufLen = strlen (argv[0]) + 20;
3505 argBuf = (char *) xmalloc (bufLen);
3509 enum target_signal oursig;
3511 oursig = target_signal_from_name (argv[0]);
3512 memset (argBuf, 0, bufLen);
3513 if (strcmp (argv[1], "Q") == 0)
3514 sprintf (argBuf, "%s %s", argv[0], "noprint");
3517 if (strcmp (argv[1], "s") == 0)
3519 if (!signal_stop[oursig])
3520 sprintf (argBuf, "%s %s", argv[0], "stop");
3522 sprintf (argBuf, "%s %s", argv[0], "nostop");
3524 else if (strcmp (argv[1], "i") == 0)
3526 if (!signal_program[oursig])
3527 sprintf (argBuf, "%s %s", argv[0], "pass");
3529 sprintf (argBuf, "%s %s", argv[0], "nopass");
3531 else if (strcmp (argv[1], "r") == 0)
3533 if (!signal_print[oursig])
3534 sprintf (argBuf, "%s %s", argv[0], "print");
3536 sprintf (argBuf, "%s %s", argv[0], "noprint");
3542 handle_command (argBuf, from_tty);
3544 printf_filtered (_("Invalid signal handling flag.\n"));
3549 do_cleanups (old_chain);
3552 /* Print current contents of the tables set by the handle command.
3553 It is possible we should just be printing signals actually used
3554 by the current target (but for things to work right when switching
3555 targets, all signals should be in the signal tables). */
3558 signals_info (char *signum_exp, int from_tty)
3560 enum target_signal oursig;
3561 sig_print_header ();
3565 /* First see if this is a symbol name. */
3566 oursig = target_signal_from_name (signum_exp);
3567 if (oursig == TARGET_SIGNAL_UNKNOWN)
3569 /* No, try numeric. */
3571 target_signal_from_command (parse_and_eval_long (signum_exp));
3573 sig_print_info (oursig);
3577 printf_filtered ("\n");
3578 /* These ugly casts brought to you by the native VAX compiler. */
3579 for (oursig = TARGET_SIGNAL_FIRST;
3580 (int) oursig < (int) TARGET_SIGNAL_LAST;
3581 oursig = (enum target_signal) ((int) oursig + 1))
3585 if (oursig != TARGET_SIGNAL_UNKNOWN
3586 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3587 sig_print_info (oursig);
3590 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3593 struct inferior_status
3595 enum target_signal stop_signal;
3599 int stop_stack_dummy;
3600 int stopped_by_random_signal;
3602 CORE_ADDR step_range_start;
3603 CORE_ADDR step_range_end;
3604 struct frame_id step_frame_id;
3605 enum step_over_calls_kind step_over_calls;
3606 CORE_ADDR step_resume_break_address;
3607 int stop_after_trap;
3609 struct regcache *stop_registers;
3611 /* These are here because if call_function_by_hand has written some
3612 registers and then decides to call error(), we better not have changed
3614 struct regcache *registers;
3616 /* A frame unique identifier. */
3617 struct frame_id selected_frame_id;
3619 int breakpoint_proceeded;
3620 int restore_stack_info;
3621 int proceed_to_finish;
3625 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3628 int size = register_size (current_gdbarch, regno);
3629 void *buf = alloca (size);
3630 store_signed_integer (buf, size, val);
3631 regcache_raw_write (inf_status->registers, regno, buf);
3634 /* Save all of the information associated with the inferior<==>gdb
3635 connection. INF_STATUS is a pointer to a "struct inferior_status"
3636 (defined in inferior.h). */
3638 struct inferior_status *
3639 save_inferior_status (int restore_stack_info)
3641 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3643 inf_status->stop_signal = stop_signal;
3644 inf_status->stop_pc = stop_pc;
3645 inf_status->stop_step = stop_step;
3646 inf_status->stop_stack_dummy = stop_stack_dummy;
3647 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3648 inf_status->trap_expected = trap_expected;
3649 inf_status->step_range_start = step_range_start;
3650 inf_status->step_range_end = step_range_end;
3651 inf_status->step_frame_id = step_frame_id;
3652 inf_status->step_over_calls = step_over_calls;
3653 inf_status->stop_after_trap = stop_after_trap;
3654 inf_status->stop_soon = stop_soon;
3655 /* Save original bpstat chain here; replace it with copy of chain.
3656 If caller's caller is walking the chain, they'll be happier if we
3657 hand them back the original chain when restore_inferior_status is
3659 inf_status->stop_bpstat = stop_bpstat;
3660 stop_bpstat = bpstat_copy (stop_bpstat);
3661 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3662 inf_status->restore_stack_info = restore_stack_info;
3663 inf_status->proceed_to_finish = proceed_to_finish;
3665 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3667 inf_status->registers = regcache_dup (current_regcache);
3669 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3674 restore_selected_frame (void *args)
3676 struct frame_id *fid = (struct frame_id *) args;
3677 struct frame_info *frame;
3679 frame = frame_find_by_id (*fid);
3681 /* If inf_status->selected_frame_id is NULL, there was no previously
3685 warning (_("Unable to restore previously selected frame."));
3689 select_frame (frame);
3695 restore_inferior_status (struct inferior_status *inf_status)
3697 stop_signal = inf_status->stop_signal;
3698 stop_pc = inf_status->stop_pc;
3699 stop_step = inf_status->stop_step;
3700 stop_stack_dummy = inf_status->stop_stack_dummy;
3701 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3702 trap_expected = inf_status->trap_expected;
3703 step_range_start = inf_status->step_range_start;
3704 step_range_end = inf_status->step_range_end;
3705 step_frame_id = inf_status->step_frame_id;
3706 step_over_calls = inf_status->step_over_calls;
3707 stop_after_trap = inf_status->stop_after_trap;
3708 stop_soon = inf_status->stop_soon;
3709 bpstat_clear (&stop_bpstat);
3710 stop_bpstat = inf_status->stop_bpstat;
3711 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3712 proceed_to_finish = inf_status->proceed_to_finish;
3714 /* FIXME: Is the restore of stop_registers always needed. */
3715 regcache_xfree (stop_registers);
3716 stop_registers = inf_status->stop_registers;
3718 /* The inferior can be gone if the user types "print exit(0)"
3719 (and perhaps other times). */
3720 if (target_has_execution)
3721 /* NB: The register write goes through to the target. */
3722 regcache_cpy (current_regcache, inf_status->registers);
3723 regcache_xfree (inf_status->registers);
3725 /* FIXME: If we are being called after stopping in a function which
3726 is called from gdb, we should not be trying to restore the
3727 selected frame; it just prints a spurious error message (The
3728 message is useful, however, in detecting bugs in gdb (like if gdb
3729 clobbers the stack)). In fact, should we be restoring the
3730 inferior status at all in that case? . */
3732 if (target_has_stack && inf_status->restore_stack_info)
3734 /* The point of catch_errors is that if the stack is clobbered,
3735 walking the stack might encounter a garbage pointer and
3736 error() trying to dereference it. */
3738 (restore_selected_frame, &inf_status->selected_frame_id,
3739 "Unable to restore previously selected frame:\n",
3740 RETURN_MASK_ERROR) == 0)
3741 /* Error in restoring the selected frame. Select the innermost
3743 select_frame (get_current_frame ());
3751 do_restore_inferior_status_cleanup (void *sts)
3753 restore_inferior_status (sts);
3757 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3759 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3763 discard_inferior_status (struct inferior_status *inf_status)
3765 /* See save_inferior_status for info on stop_bpstat. */
3766 bpstat_clear (&inf_status->stop_bpstat);
3767 regcache_xfree (inf_status->registers);
3768 regcache_xfree (inf_status->stop_registers);
3773 inferior_has_forked (int pid, int *child_pid)
3775 struct target_waitstatus last;
3778 get_last_target_status (&last_ptid, &last);
3780 if (last.kind != TARGET_WAITKIND_FORKED)
3783 if (ptid_get_pid (last_ptid) != pid)
3786 *child_pid = last.value.related_pid;
3791 inferior_has_vforked (int pid, int *child_pid)
3793 struct target_waitstatus last;
3796 get_last_target_status (&last_ptid, &last);
3798 if (last.kind != TARGET_WAITKIND_VFORKED)
3801 if (ptid_get_pid (last_ptid) != pid)
3804 *child_pid = last.value.related_pid;
3809 inferior_has_execd (int pid, char **execd_pathname)
3811 struct target_waitstatus last;
3814 get_last_target_status (&last_ptid, &last);
3816 if (last.kind != TARGET_WAITKIND_EXECD)
3819 if (ptid_get_pid (last_ptid) != pid)
3822 *execd_pathname = xstrdup (last.value.execd_pathname);
3826 /* Oft used ptids */
3828 ptid_t minus_one_ptid;
3830 /* Create a ptid given the necessary PID, LWP, and TID components. */
3833 ptid_build (int pid, long lwp, long tid)
3843 /* Create a ptid from just a pid. */
3846 pid_to_ptid (int pid)
3848 return ptid_build (pid, 0, 0);
3851 /* Fetch the pid (process id) component from a ptid. */
3854 ptid_get_pid (ptid_t ptid)
3859 /* Fetch the lwp (lightweight process) component from a ptid. */
3862 ptid_get_lwp (ptid_t ptid)
3867 /* Fetch the tid (thread id) component from a ptid. */
3870 ptid_get_tid (ptid_t ptid)
3875 /* ptid_equal() is used to test equality of two ptids. */
3878 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3880 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3881 && ptid1.tid == ptid2.tid);
3884 /* restore_inferior_ptid() will be used by the cleanup machinery
3885 to restore the inferior_ptid value saved in a call to
3886 save_inferior_ptid(). */
3889 restore_inferior_ptid (void *arg)
3891 ptid_t *saved_ptid_ptr = arg;
3892 inferior_ptid = *saved_ptid_ptr;
3896 /* Save the value of inferior_ptid so that it may be restored by a
3897 later call to do_cleanups(). Returns the struct cleanup pointer
3898 needed for later doing the cleanup. */
3901 save_inferior_ptid (void)
3903 ptid_t *saved_ptid_ptr;
3905 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3906 *saved_ptid_ptr = inferior_ptid;
3907 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3914 stop_registers = regcache_xmalloc (current_gdbarch);
3918 _initialize_infrun (void)
3922 struct cmd_list_element *c;
3924 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3925 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3927 add_info ("signals", signals_info, _("\
3928 What debugger does when program gets various signals.\n\
3929 Specify a signal as argument to print info on that signal only."));
3930 add_info_alias ("handle", "signals", 0);
3932 add_com ("handle", class_run, handle_command, _("\
3933 Specify how to handle a signal.\n\
3934 Args are signals and actions to apply to those signals.\n\
3935 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3936 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3937 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3938 The special arg \"all\" is recognized to mean all signals except those\n\
3939 used by the debugger, typically SIGTRAP and SIGINT.\n\
3940 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3941 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3942 Stop means reenter debugger if this signal happens (implies print).\n\
3943 Print means print a message if this signal happens.\n\
3944 Pass means let program see this signal; otherwise program doesn't know.\n\
3945 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3946 Pass and Stop may be combined."));
3949 add_com ("lz", class_info, signals_info, _("\
3950 What debugger does when program gets various signals.\n\
3951 Specify a signal as argument to print info on that signal only."));
3952 add_com ("z", class_run, xdb_handle_command, _("\
3953 Specify how to handle a signal.\n\
3954 Args are signals and actions to apply to those signals.\n\
3955 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3956 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3957 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3958 The special arg \"all\" is recognized to mean all signals except those\n\
3959 used by the debugger, typically SIGTRAP and SIGINT.\n\
3960 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3961 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3962 nopass), \"Q\" (noprint)\n\
3963 Stop means reenter debugger if this signal happens (implies print).\n\
3964 Print means print a message if this signal happens.\n\
3965 Pass means let program see this signal; otherwise program doesn't know.\n\
3966 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3967 Pass and Stop may be combined."));
3971 stop_command = add_cmd ("stop", class_obscure,
3972 not_just_help_class_command, _("\
3973 There is no `stop' command, but you can set a hook on `stop'.\n\
3974 This allows you to set a list of commands to be run each time execution\n\
3975 of the program stops."), &cmdlist);
3977 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3978 Set inferior debugging."), _("\
3979 Show inferior debugging."), _("\
3980 When non-zero, inferior specific debugging is enabled."),
3983 &setdebuglist, &showdebuglist);
3985 numsigs = (int) TARGET_SIGNAL_LAST;
3986 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3987 signal_print = (unsigned char *)
3988 xmalloc (sizeof (signal_print[0]) * numsigs);
3989 signal_program = (unsigned char *)
3990 xmalloc (sizeof (signal_program[0]) * numsigs);
3991 for (i = 0; i < numsigs; i++)
3994 signal_print[i] = 1;
3995 signal_program[i] = 1;
3998 /* Signals caused by debugger's own actions
3999 should not be given to the program afterwards. */
4000 signal_program[TARGET_SIGNAL_TRAP] = 0;
4001 signal_program[TARGET_SIGNAL_INT] = 0;
4003 /* Signals that are not errors should not normally enter the debugger. */
4004 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4005 signal_print[TARGET_SIGNAL_ALRM] = 0;
4006 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4007 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4008 signal_stop[TARGET_SIGNAL_PROF] = 0;
4009 signal_print[TARGET_SIGNAL_PROF] = 0;
4010 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4011 signal_print[TARGET_SIGNAL_CHLD] = 0;
4012 signal_stop[TARGET_SIGNAL_IO] = 0;
4013 signal_print[TARGET_SIGNAL_IO] = 0;
4014 signal_stop[TARGET_SIGNAL_POLL] = 0;
4015 signal_print[TARGET_SIGNAL_POLL] = 0;
4016 signal_stop[TARGET_SIGNAL_URG] = 0;
4017 signal_print[TARGET_SIGNAL_URG] = 0;
4018 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4019 signal_print[TARGET_SIGNAL_WINCH] = 0;
4021 /* These signals are used internally by user-level thread
4022 implementations. (See signal(5) on Solaris.) Like the above
4023 signals, a healthy program receives and handles them as part of
4024 its normal operation. */
4025 signal_stop[TARGET_SIGNAL_LWP] = 0;
4026 signal_print[TARGET_SIGNAL_LWP] = 0;
4027 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4028 signal_print[TARGET_SIGNAL_WAITING] = 0;
4029 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4030 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4032 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4033 &stop_on_solib_events, _("\
4034 Set stopping for shared library events."), _("\
4035 Show stopping for shared library events."), _("\
4036 If nonzero, gdb will give control to the user when the dynamic linker\n\
4037 notifies gdb of shared library events. The most common event of interest\n\
4038 to the user would be loading/unloading of a new library."),
4040 show_stop_on_solib_events,
4041 &setlist, &showlist);
4043 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4044 follow_fork_mode_kind_names,
4045 &follow_fork_mode_string, _("\
4046 Set debugger response to a program call of fork or vfork."), _("\
4047 Show debugger response to a program call of fork or vfork."), _("\
4048 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4049 parent - the original process is debugged after a fork\n\
4050 child - the new process is debugged after a fork\n\
4051 The unfollowed process will continue to run.\n\
4052 By default, the debugger will follow the parent process."),
4054 show_follow_fork_mode_string,
4055 &setlist, &showlist);
4057 add_setshow_enum_cmd ("scheduler-locking", class_run,
4058 scheduler_enums, &scheduler_mode, _("\
4059 Set mode for locking scheduler during execution."), _("\
4060 Show mode for locking scheduler during execution."), _("\
4061 off == no locking (threads may preempt at any time)\n\
4062 on == full locking (no thread except the current thread may run)\n\
4063 step == scheduler locked during every single-step operation.\n\
4064 In this mode, no other thread may run during a step command.\n\
4065 Other threads may run while stepping over a function call ('next')."),
4066 set_schedlock_func, /* traps on target vector */
4067 show_scheduler_mode,
4068 &setlist, &showlist);
4070 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4071 Set mode of the step operation."), _("\
4072 Show mode of the step operation."), _("\
4073 When set, doing a step over a function without debug line information\n\
4074 will stop at the first instruction of that function. Otherwise, the\n\
4075 function is skipped and the step command stops at a different source line."),
4077 show_step_stop_if_no_debug,
4078 &setlist, &showlist);
4080 /* ptid initializations */
4081 null_ptid = ptid_build (0, 0, 0);
4082 minus_one_ptid = ptid_build (-1, 0, 0);
4083 inferior_ptid = null_ptid;
4084 target_last_wait_ptid = minus_one_ptid;