]> Git Repo - binutils.git/blob - gdb/go32-nat.c
[gdb] Fix heap-buffer-overflow in completion_tracker::build_completion_result
[binutils.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2    Copyright (C) 1997-2020 Free Software Foundation, Inc.
3    Written by Robert Hoehne.
4
5    This file is part of GDB.
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19
20 /* To whomever it may concern, here's a general description of how
21    debugging in DJGPP works, and the special quirks GDB does to
22    support that.
23
24    When the DJGPP port of GDB is debugging a DJGPP program natively,
25    there aren't 2 separate processes, the debuggee and GDB itself, as
26    on other systems.  (This is DOS, where there can only be one active
27    process at any given time, remember?)  Instead, GDB and the
28    debuggee live in the same process.  So when GDB calls
29    go32_create_inferior below, and that function calls edi_init from
30    the DJGPP debug support library libdbg.a, we load the debuggee's
31    executable file into GDB's address space, set it up for execution
32    as the stub loader (a short real-mode program prepended to each
33    DJGPP executable) normally would, and do a lot of preparations for
34    swapping between GDB's and debuggee's internal state, primarily wrt
35    the exception handlers.  This swapping happens every time we resume
36    the debuggee or switch back to GDB's code, and it includes:
37
38     . swapping all the segment registers
39     . swapping the PSP (the Program Segment Prefix)
40     . swapping the signal handlers
41     . swapping the exception handlers
42     . swapping the FPU status
43     . swapping the 3 standard file handles (more about this below)
44
45    Then running the debuggee simply means longjmp into it where its PC
46    is and let it run until it stops for some reason.  When it stops,
47    GDB catches the exception that stopped it and longjmp's back into
48    its own code.  All the possible exit points of the debuggee are
49    watched; for example, the normal exit point is recognized because a
50    DOS program issues a special system call to exit.  If one of those
51    exit points is hit, we mourn the inferior and clean up after it.
52    Cleaning up is very important, even if the process exits normally,
53    because otherwise we might leave behind traces of previous
54    execution, and in several cases GDB itself might be left hosed,
55    because all the exception handlers were not restored.
56
57    Swapping of the standard handles (in redir_to_child and
58    redir_to_debugger) is needed because, since both GDB and the
59    debuggee live in the same process, as far as the OS is concerned,
60    the share the same file table.  This means that the standard
61    handles 0, 1, and 2 point to the same file table entries, and thus
62    are connected to the same devices.  Therefore, if the debugger
63    redirects its standard output, the standard output of the debuggee
64    is also automagically redirected to the same file/device!
65    Similarly, if the debuggee redirects its stdout to a file, you
66    won't be able to see debugger's output (it will go to the same file
67    where the debuggee has its output); and if the debuggee closes its
68    standard input, you will lose the ability to talk to debugger!
69
70    For this reason, every time the debuggee is about to be resumed, we
71    call redir_to_child, which redirects the standard handles to where
72    the debuggee expects them to be.  When the debuggee stops and GDB
73    regains control, we call redir_to_debugger, which redirects those 3
74    handles back to where GDB expects.
75
76    Note that only the first 3 handles are swapped, so if the debuggee
77    redirects or closes any other handles, GDB will not notice.  In
78    particular, the exit code of a DJGPP program forcibly closes all
79    file handles beyond the first 3 ones, so when the debuggee exits,
80    GDB currently loses its stdaux and stdprn streams.  Fortunately,
81    GDB does not use those as of this writing, and will never need
82    to.  */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on.  Until then I code it
125    here.  */
126 typedef struct
127   {
128     unsigned short sig0;
129     unsigned short sig1;
130     unsigned short sig2;
131     unsigned short sig3;
132     unsigned short exponent:15;
133     unsigned short sign:1;
134   }
135 NPXREG;
136
137 typedef struct
138   {
139     unsigned int control;
140     unsigned int status;
141     unsigned int tag;
142     unsigned int eip;
143     unsigned int cs;
144     unsigned int dataptr;
145     unsigned int datasel;
146     NPXREG reg[8];
147   }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void);    /* Save the FPU of the debugged program.  */
153 static void load_npx (void);    /* Restore the FPU of the debugged program.  */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'.  */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162   asm ("inb    $0xa0, %%al  \n\
163        testb $0x20, %%al    \n\
164        jz 1f                \n\
165        xorb %%al, %%al      \n\
166        outb %%al, $0xf0     \n\
167        movb $0x20, %%al     \n\
168        outb %%al, $0xa0     \n\
169        outb %%al, $0x20     \n\
170 1:                          \n\
171        fnsave %0            \n\
172        fwait "
173 :     "=m" (npx)
174 :                               /* No input */
175 :     "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'.  */
183
184 static void
185 load_npx (void)
186 {
187   asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions.  */
191 typedef struct {
192   char *command;
193   int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199   ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205   return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211   return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217   return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223   return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register.  */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235
236 #define r_ofs(x) (offsetof(TSS,x))
237
238 static struct
239 {
240   size_t tss_ofs;
241   size_t size;
242 }
243 regno_mapping[] =
244 {
245   {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246   {r_ofs (tss_ecx), 4},
247   {r_ofs (tss_edx), 4},
248   {r_ofs (tss_ebx), 4},
249   {r_ofs (tss_esp), 4},
250   {r_ofs (tss_ebp), 4},
251   {r_ofs (tss_esi), 4},
252   {r_ofs (tss_edi), 4},
253   {r_ofs (tss_eip), 4},
254   {r_ofs (tss_eflags), 4},
255   {r_ofs (tss_cs), 2},
256   {r_ofs (tss_ss), 2},
257   {r_ofs (tss_ds), 2},
258   {r_ofs (tss_es), 2},
259   {r_ofs (tss_fs), 2},
260   {r_ofs (tss_gs), 2},
261   {0, 10},              /* 8 FP registers, from npx.reg[] */
262   {1, 10},
263   {2, 10},
264   {3, 10},
265   {4, 10},
266   {5, 10},
267   {6, 10},
268   {7, 10},
269         /* The order of the next 7 registers must be consistent
270            with their numbering in config/i386/tm-i386.h, which see.  */
271   {0, 2},               /* control word, from npx */
272   {4, 2},               /* status word, from npx */
273   {8, 2},               /* tag word, from npx */
274   {16, 2},              /* last FP exception CS from npx */
275   {12, 4},              /* last FP exception EIP from npx */
276   {24, 2},              /* last FP exception operand selector from npx */
277   {20, 4},              /* last FP exception operand offset from npx */
278   {18, 2}               /* last FP opcode from npx */
279 };
280
281 static struct
282   {
283     int go32_sig;
284     enum gdb_signal gdb_sig;
285   }
286 sig_map[] =
287 {
288   {0, GDB_SIGNAL_FPE},
289   {1, GDB_SIGNAL_TRAP},
290   /* Exception 2 is triggered by the NMI.  DJGPP handles it as SIGILL,
291      but I think SIGBUS is better, since the NMI is usually activated
292      as a result of a memory parity check failure.  */
293   {2, GDB_SIGNAL_BUS},
294   {3, GDB_SIGNAL_TRAP},
295   {4, GDB_SIGNAL_FPE},
296   {5, GDB_SIGNAL_SEGV},
297   {6, GDB_SIGNAL_ILL},
298   {7, GDB_SIGNAL_EMT},  /* no-coprocessor exception */
299   {8, GDB_SIGNAL_SEGV},
300   {9, GDB_SIGNAL_SEGV},
301   {10, GDB_SIGNAL_BUS},
302   {11, GDB_SIGNAL_SEGV},
303   {12, GDB_SIGNAL_SEGV},
304   {13, GDB_SIGNAL_SEGV},
305   {14, GDB_SIGNAL_SEGV},
306   {16, GDB_SIGNAL_FPE},
307   {17, GDB_SIGNAL_BUS},
308   {31, GDB_SIGNAL_ILL},
309   {0x1b, GDB_SIGNAL_INT},
310   {0x75, GDB_SIGNAL_FPE},
311   {0x78, GDB_SIGNAL_ALRM},
312   {0x79, GDB_SIGNAL_INT},
313   {0x7a, GDB_SIGNAL_QUIT},
314   {-1, GDB_SIGNAL_LAST}
315 };
316
317 static struct {
318   enum gdb_signal gdb_sig;
319   int djgpp_excepno;
320 } excepn_map[] = {
321   {GDB_SIGNAL_0, -1},
322   {GDB_SIGNAL_ILL, 6},  /* Invalid Opcode */
323   {GDB_SIGNAL_EMT, 7},  /* triggers SIGNOFP */
324   {GDB_SIGNAL_SEGV, 13},        /* GPF */
325   {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326   /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327      details.  */
328   {GDB_SIGNAL_TERM, 0x1b},      /* triggers Ctrl-Break type of SIGINT */
329   {GDB_SIGNAL_FPE, 0x75},
330   {GDB_SIGNAL_INT, 0x79},
331   {GDB_SIGNAL_QUIT, 0x7a},
332   {GDB_SIGNAL_ALRM, 0x78},      /* triggers SIGTIMR */
333   {GDB_SIGNAL_PROF, 0x78},
334   {GDB_SIGNAL_LAST, -1}
335 };
336
337 /* The go32 target.  */
338
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
340 {
341   void attach (const char *, int) override;
342
343   void resume (ptid_t, int, enum gdb_signal) override;
344
345   ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
346
347   void fetch_registers (struct regcache *, int) override;
348   void store_registers (struct regcache *, int) override;
349
350   enum target_xfer_status xfer_partial (enum target_object object,
351                                         const char *annex,
352                                         gdb_byte *readbuf,
353                                         const gdb_byte *writebuf,
354                                         ULONGEST offset, ULONGEST len,
355                                         ULONGEST *xfered_len) override;
356
357   void files_info () override;
358
359   void terminal_init () override;
360
361   void terminal_inferior () override;
362
363   void terminal_ours_for_output () override;
364
365   void terminal_ours () override;
366
367   void terminal_info (const char *, int) override;
368
369   void pass_ctrlc () override;
370
371   void kill () override;
372
373   void create_inferior (const char *, const std::string &,
374                         char **, int) override;
375
376   void mourn_inferior () override;
377
378   bool thread_alive (ptid_t ptid) override;
379
380   std::string pid_to_str (ptid_t) override;
381 };
382
383 static go32_nat_target the_go32_nat_target;
384
385 void
386 go32_nat_target::attach (const char *args, int from_tty)
387 {
388   error (_("\
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
391 }
392
393 static int resume_is_step;
394 static int resume_signal = -1;
395
396 void
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
398 {
399   int i;
400
401   resume_is_step = step;
402
403   if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
404   {
405     for (i = 0, resume_signal = -1;
406          excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407       if (excepn_map[i].gdb_sig == siggnal)
408       {
409         resume_signal = excepn_map[i].djgpp_excepno;
410         break;
411       }
412     if (resume_signal == -1)
413       printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414                          gdb_signal_to_name (siggnal));
415   }
416 }
417
418 static char child_cwd[FILENAME_MAX];
419
420 ptid_t
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
422                        target_wait_flags options)
423 {
424   int i;
425   unsigned char saved_opcode;
426   unsigned long INT3_addr = 0;
427   int stepping_over_INT = 0;
428
429   a_tss.tss_eflags &= 0xfeff;   /* Reset the single-step flag (TF).  */
430   if (resume_is_step)
431     {
432       /* If the next instruction is INT xx or INTO, we need to handle
433          them specially.  Intel manuals say that these instructions
434          reset the single-step flag (a.k.a. TF).  However, it seems
435          that, at least in the DPMI environment, and at least when
436          stepping over the DPMI interrupt 31h, the problem is having
437          TF set at all when INT 31h is executed: the debuggee either
438          crashes (and takes the system with it) or is killed by a
439          SIGTRAP.
440
441          So we need to emulate single-step mode: we put an INT3 opcode
442          right after the INT xx instruction, let the debuggee run
443          until it hits INT3 and stops, then restore the original
444          instruction which we overwrote with the INT3 opcode, and back
445          up the debuggee's EIP to that instruction.  */
446       read_child (a_tss.tss_eip, &saved_opcode, 1);
447       if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448         {
449           unsigned char INT3_opcode = 0xCC;
450
451           INT3_addr
452             = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453           stepping_over_INT = 1;
454           read_child (INT3_addr, &saved_opcode, 1);
455           write_child (INT3_addr, &INT3_opcode, 1);
456         }
457       else
458         a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459     }
460
461   /* The special value FFFFh in tss_trap indicates to run_child that
462      tss_irqn holds a signal to be delivered to the debuggee.  */
463   if (resume_signal <= -1)
464     {
465       a_tss.tss_trap = 0;
466       a_tss.tss_irqn = 0xff;
467     }
468   else
469     {
470       a_tss.tss_trap = 0xffff;  /* run_child looks for this.  */
471       a_tss.tss_irqn = resume_signal;
472     }
473
474   /* The child might change working directory behind our back.  The
475      GDB users won't like the side effects of that when they work with
476      relative file names, and GDB might be confused by its current
477      directory not being in sync with the truth.  So we always make a
478      point of changing back to where GDB thinks is its cwd, when we
479      return control to the debugger, but restore child's cwd before we
480      run it.  */
481   /* Initialize child_cwd, before the first call to run_child and not
482      in the initialization, so the child get also the changed directory
483      set with the gdb-command "cd ..."  */
484   if (!*child_cwd)
485     /* Initialize child's cwd with the current one.  */
486     getcwd (child_cwd, sizeof (child_cwd));
487
488   chdir (child_cwd);
489
490 #if __DJGPP_MINOR__ < 3
491   load_npx ();
492 #endif
493   run_child ();
494 #if __DJGPP_MINOR__ < 3
495   save_npx ();
496 #endif
497
498   /* Did we step over an INT xx instruction?  */
499   if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500     {
501       /* Restore the original opcode.  */
502       a_tss.tss_eip--;  /* EIP points *after* the INT3 instruction.  */
503       write_child (a_tss.tss_eip, &saved_opcode, 1);
504       /* Simulate a TRAP exception.  */
505       a_tss.tss_irqn = 1;
506       a_tss.tss_eflags |= 0x0100;
507     }
508
509   getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510   if (current_directory != NULL)
511     chdir (current_directory);
512
513   if (a_tss.tss_irqn == 0x21)
514     {
515       status->kind = TARGET_WAITKIND_EXITED;
516       status->value.integer = a_tss.tss_eax & 0xff;
517     }
518   else
519     {
520       status->value.sig = GDB_SIGNAL_UNKNOWN;
521       status->kind = TARGET_WAITKIND_STOPPED;
522       for (i = 0; sig_map[i].go32_sig != -1; i++)
523         {
524           if (a_tss.tss_irqn == sig_map[i].go32_sig)
525             {
526 #if __DJGPP_MINOR__ < 3
527               if ((status->value.sig = sig_map[i].gdb_sig) !=
528                   GDB_SIGNAL_TRAP)
529                 status->kind = TARGET_WAITKIND_SIGNALLED;
530 #else
531               status->value.sig = sig_map[i].gdb_sig;
532 #endif
533               break;
534             }
535         }
536     }
537   return ptid_t (SOME_PID);
538 }
539
540 static void
541 fetch_register (struct regcache *regcache, int regno)
542 {
543   struct gdbarch *gdbarch = regcache->arch ();
544   if (regno < gdbarch_fp0_regnum (gdbarch))
545     regcache->raw_supply (regno,
546                           (char *) &a_tss + regno_mapping[regno].tss_ofs);
547   else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
548                                                                    regno))
549     i387_supply_fsave (regcache, regno, &npx);
550   else
551     internal_error (__FILE__, __LINE__,
552                     _("Invalid register no. %d in fetch_register."), regno);
553 }
554
555 void
556 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
557 {
558   if (regno >= 0)
559     fetch_register (regcache, regno);
560   else
561     {
562       for (regno = 0;
563            regno < gdbarch_fp0_regnum (regcache->arch ());
564            regno++)
565         fetch_register (regcache, regno);
566       i387_supply_fsave (regcache, -1, &npx);
567     }
568 }
569
570 static void
571 store_register (const struct regcache *regcache, int regno)
572 {
573   struct gdbarch *gdbarch = regcache->arch ();
574   if (regno < gdbarch_fp0_regnum (gdbarch))
575     regcache->raw_collect (regno,
576                            (char *) &a_tss + regno_mapping[regno].tss_ofs);
577   else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
578                                                                    regno))
579     i387_collect_fsave (regcache, regno, &npx);
580   else
581     internal_error (__FILE__, __LINE__,
582                     _("Invalid register no. %d in store_register."), regno);
583 }
584
585 void
586 go32_nat_target::store_registers (struct regcache *regcache, int regno)
587 {
588   unsigned r;
589
590   if (regno >= 0)
591     store_register (regcache, regno);
592   else
593     {
594       for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
595         store_register (regcache, r);
596       i387_collect_fsave (regcache, -1, &npx);
597     }
598 }
599
600 /* Const-correct version of DJGPP's write_child, which unfortunately
601    takes a non-const buffer pointer.  */
602
603 static int
604 my_write_child (unsigned child_addr, const void *buf, unsigned len)
605 {
606   static void *buffer = NULL;
607   static unsigned buffer_len = 0;
608   int res;
609
610   if (buffer_len < len)
611     {
612       buffer = xrealloc (buffer, len);
613       buffer_len = len;
614     }
615
616   memcpy (buffer, buf, len);
617   res = write_child (child_addr, buffer, len);
618   return res;
619 }
620
621 /* Helper for go32_xfer_partial that handles memory transfers.
622    Arguments are like target_xfer_partial.  */
623
624 static enum target_xfer_status
625 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
626                   ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
627 {
628   int res;
629
630   if (writebuf != NULL)
631     res = my_write_child (memaddr, writebuf, len);
632   else
633     res = read_child (memaddr, readbuf, len);
634
635   /* read_child and write_child return zero on success, non-zero on
636      failure.  */
637   if (res != 0)
638     return TARGET_XFER_E_IO;
639
640   *xfered_len = len;
641   return TARGET_XFER_OK;
642 }
643
644 /* Target to_xfer_partial implementation.  */
645
646 enum target_xfer_status
647 go32_nat_target::xfer_partial (enum target_object object,
648                                const char *annex, gdb_byte *readbuf,
649                                const gdb_byte *writebuf, ULONGEST offset,
650                                ULONGEST len,
651                                ULONGEST *xfered_len)
652 {
653   switch (object)
654     {
655     case TARGET_OBJECT_MEMORY:
656       return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
657
658     default:
659       return this->beneath ()->xfer_partial (object, annex,
660                                              readbuf, writebuf, offset, len,
661                                              xfered_len);
662     }
663 }
664
665 static cmdline_t child_cmd;     /* Parsed child's command line kept here.  */
666
667 void
668 go32_nat_target::files_info ()
669 {
670   printf_unfiltered ("You are running a DJGPP V2 program.\n");
671 }
672
673 void
674 go32_nat_target::kill_inferior ()
675 {
676   mourn_inferior ();
677 }
678
679 void
680 go32_nat_target::create_inferior (const char *exec_file,
681                                   const std::string &allargs,
682                                   char **env, int from_tty)
683 {
684   extern char **environ;
685   jmp_buf start_state;
686   char *cmdline;
687   char **env_save = environ;
688   size_t cmdlen;
689   struct inferior *inf;
690   int result;
691   const char *args = allargs.c_str ();
692
693   /* If no exec file handed to us, get it from the exec-file command -- with
694      a good, common error message if none is specified.  */
695   if (exec_file == 0)
696     exec_file = get_exec_file (1);
697
698   resume_signal = -1;
699   resume_is_step = 0;
700
701   /* Initialize child's cwd as empty to be initialized when starting
702      the child.  */
703   *child_cwd = 0;
704
705   /* Init command line storage.  */
706   if (redir_debug_init (&child_cmd) == -1)
707     internal_error (__FILE__, __LINE__,
708                     _("Cannot allocate redirection storage: "
709                       "not enough memory.\n"));
710
711   /* Parse the command line and create redirections.  */
712   if (strpbrk (args, "<>"))
713     {
714       if (redir_cmdline_parse (args, &child_cmd) == 0)
715         args = child_cmd.command;
716       else
717         error (_("Syntax error in command line."));
718     }
719   else
720     child_cmd.command = xstrdup (args);
721
722   cmdlen = strlen (args);
723   /* v2loadimage passes command lines via DOS memory, so it cannot
724      possibly handle commands longer than 1MB.  */
725   if (cmdlen > 1024*1024)
726     error (_("Command line too long."));
727
728   cmdline = (char *) xmalloc (cmdlen + 4);
729   strcpy (cmdline + 1, args);
730   /* If the command-line length fits into DOS 126-char limits, use the
731      DOS command tail format; otherwise, tell v2loadimage to pass it
732      through a buffer in conventional memory.  */
733   if (cmdlen < 127)
734     {
735       cmdline[0] = strlen (args);
736       cmdline[cmdlen + 1] = 13;
737     }
738   else
739     cmdline[0] = 0xff;  /* Signal v2loadimage it's a long command.  */
740
741   environ = env;
742
743   result = v2loadimage (exec_file, cmdline, start_state);
744
745   environ = env_save;
746   xfree (cmdline);
747
748   if (result != 0)
749     error (_("Load failed for image %s"), exec_file);
750
751   edi_init (start_state);
752 #if __DJGPP_MINOR__ < 3
753   save_npx ();
754 #endif
755
756   inf = current_inferior ();
757   inferior_appeared (inf, SOME_PID);
758
759   if (!target_is_pushed (this))
760     push_target (this);
761
762   thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
763   switch_to_thread (thr);
764
765   clear_proceed_status (0);
766   insert_breakpoints ();
767   prog_has_started = 1;
768 }
769
770 void
771 go32_nat_target::mourn_inferior ()
772 {
773   redir_cmdline_delete (&child_cmd);
774   resume_signal = -1;
775   resume_is_step = 0;
776
777   cleanup_client ();
778
779   /* We need to make sure all the breakpoint enable bits in the DR7
780      register are reset when the inferior exits.  Otherwise, if they
781      rerun the inferior, the uncleared bits may cause random SIGTRAPs,
782      failure to set more watchpoints, and other calamities.  It would
783      be nice if GDB itself would take care to remove all breakpoints
784      at all times, but it doesn't, probably under an assumption that
785      the OS cleans up when the debuggee exits.  */
786   x86_cleanup_dregs ();
787
788   prog_has_started = 0;
789
790   generic_mourn_inferior ();
791   maybe_unpush_target ();
792 }
793
794 /* Hardware watchpoint support.  */
795
796 #define D_REGS edi.dr
797 #define CONTROL D_REGS[7]
798 #define STATUS D_REGS[6]
799
800 /* Pass the address ADDR to the inferior in the I'th debug register.
801    Here we just store the address in D_REGS, the watchpoint will be
802    actually set up when go32_wait runs the debuggee.  */
803 static void
804 go32_set_dr (int i, CORE_ADDR addr)
805 {
806   if (i < 0 || i > 3)
807     internal_error (__FILE__, __LINE__, 
808                     _("Invalid register %d in go32_set_dr.\n"), i);
809   D_REGS[i] = addr;
810 }
811
812 /* Pass the value VAL to the inferior in the DR7 debug control
813    register.  Here we just store the address in D_REGS, the watchpoint
814    will be actually set up when go32_wait runs the debuggee.  */
815 static void
816 go32_set_dr7 (unsigned long val)
817 {
818   CONTROL = val;
819 }
820
821 /* Get the value of the DR6 debug status register from the inferior.
822    Here we just return the value stored in D_REGS, as we've got it
823    from the last go32_wait call.  */
824 static unsigned long
825 go32_get_dr6 (void)
826 {
827   return STATUS;
828 }
829
830 /* Get the value of the DR7 debug status register from the inferior.
831    Here we just return the value stored in D_REGS, as we've got it
832    from the last go32_wait call.  */
833
834 static unsigned long
835 go32_get_dr7 (void)
836 {
837   return CONTROL;
838 }
839
840 /* Get the value of the DR debug register I from the inferior.  Here
841    we just return the value stored in D_REGS, as we've got it from the
842    last go32_wait call.  */
843
844 static CORE_ADDR
845 go32_get_dr (int i)
846 {
847   if (i < 0 || i > 3)
848     internal_error (__FILE__, __LINE__,
849                     _("Invalid register %d in go32_get_dr.\n"), i);
850   return D_REGS[i];
851 }
852
853 /* Put the device open on handle FD into either raw or cooked
854    mode, return 1 if it was in raw mode, zero otherwise.  */
855
856 static int
857 device_mode (int fd, int raw_p)
858 {
859   int oldmode, newmode;
860   __dpmi_regs regs;
861
862   regs.x.ax = 0x4400;
863   regs.x.bx = fd;
864   __dpmi_int (0x21, &regs);
865   if (regs.x.flags & 1)
866     return -1;
867   newmode = oldmode = regs.x.dx;
868
869   if (raw_p)
870     newmode |= 0x20;
871   else
872     newmode &= ~0x20;
873
874   if (oldmode & 0x80)   /* Only for character dev.  */
875   {
876     regs.x.ax = 0x4401;
877     regs.x.bx = fd;
878     regs.x.dx = newmode & 0xff;   /* Force upper byte zero, else it fails.  */
879     __dpmi_int (0x21, &regs);
880     if (regs.x.flags & 1)
881       return -1;
882   }
883   return (oldmode & 0x20) == 0x20;
884 }
885
886
887 static int inf_mode_valid = 0;
888 static int inf_terminal_mode;
889
890 /* This semaphore is needed because, amazingly enough, GDB calls
891    target.to_terminal_ours more than once after the inferior stops.
892    But we need the information from the first call only, since the
893    second call will always see GDB's own cooked terminal.  */
894 static int terminal_is_ours = 1;
895
896 void
897 go32_nat_target::terminal_init ()
898 {
899   inf_mode_valid = 0;   /* Reinitialize, in case they are restarting child.  */
900   terminal_is_ours = 1;
901 }
902
903 void
904 go32_nat_target::terminal_info (const char *args, int from_tty)
905 {
906   printf_unfiltered ("Inferior's terminal is in %s mode.\n",
907                      !inf_mode_valid
908                      ? "default" : inf_terminal_mode ? "raw" : "cooked");
909
910 #if __DJGPP_MINOR__ > 2
911   if (child_cmd.redirection)
912   {
913     int i;
914
915     for (i = 0; i < DBG_HANDLES; i++)
916     {
917       if (child_cmd.redirection[i]->file_name)
918         printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
919                            i, child_cmd.redirection[i]->file_name);
920       else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
921         printf_unfiltered
922           ("\tFile handle %d appears to be closed by inferior.\n", i);
923       /* Mask off the raw/cooked bit when comparing device info words.  */
924       else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
925                != (_get_dev_info (i) & 0xdf))
926         printf_unfiltered
927           ("\tFile handle %d appears to be redirected by inferior.\n", i);
928     }
929   }
930 #endif
931 }
932
933 void
934 go32_nat_target::terminal_inferior ()
935 {
936   /* Redirect standard handles as child wants them.  */
937   errno = 0;
938   if (redir_to_child (&child_cmd) == -1)
939   {
940     redir_to_debugger (&child_cmd);
941     error (_("Cannot redirect standard handles for program: %s."),
942            safe_strerror (errno));
943   }
944   /* Set the console device of the inferior to whatever mode
945      (raw or cooked) we found it last time.  */
946   if (terminal_is_ours)
947   {
948     if (inf_mode_valid)
949       device_mode (0, inf_terminal_mode);
950     terminal_is_ours = 0;
951   }
952 }
953
954 void
955 go32_nat_target::terminal_ours ()
956 {
957   /* Switch to cooked mode on the gdb terminal and save the inferior
958      terminal mode to be restored when it is resumed.  */
959   if (!terminal_is_ours)
960   {
961     inf_terminal_mode = device_mode (0, 0);
962     if (inf_terminal_mode != -1)
963       inf_mode_valid = 1;
964     else
965       /* If device_mode returned -1, we don't know what happens with
966          handle 0 anymore, so make the info invalid.  */
967       inf_mode_valid = 0;
968     terminal_is_ours = 1;
969
970     /* Restore debugger's standard handles.  */
971     errno = 0;
972     if (redir_to_debugger (&child_cmd) == -1)
973     {
974       redir_to_child (&child_cmd);
975       error (_("Cannot redirect standard handles for debugger: %s."),
976              safe_strerror (errno));
977     }
978   }
979 }
980
981 void
982 go32_nat_target::pass_ctrlc ()
983 {
984 }
985
986 bool
987 go32_nat_target::thread_alive (ptid_t ptid)
988 {
989   return ptid != null_ptid;
990 }
991
992 std::string
993 go32_nat_target::pid_to_str (ptid_t ptid)
994 {
995   return normal_pid_to_str (ptid);
996 }
997
998 /* Return the current DOS codepage number.  */
999 static int
1000 dos_codepage (void)
1001 {
1002   __dpmi_regs regs;
1003
1004   regs.x.ax = 0x6601;
1005   __dpmi_int (0x21, &regs);
1006   if (!(regs.x.flags & 1))
1007     return regs.x.bx & 0xffff;
1008   else
1009     return 437; /* default */
1010 }
1011
1012 /* Limited emulation of `nl_langinfo', for charset.c.  */
1013 char *
1014 nl_langinfo (nl_item item)
1015 {
1016   char *retval;
1017
1018   switch (item)
1019     {
1020       case CODESET:
1021         {
1022           /* 8 is enough for SHORT_MAX + "CP" + null.  */
1023           char buf[8];
1024           int blen = sizeof (buf);
1025           int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1026
1027           if (needed > blen)    /* Should never happen.  */
1028             buf[0] = 0;
1029           retval = xstrdup (buf);
1030         }
1031         break;
1032       default:
1033         retval = xstrdup ("");
1034         break;
1035     }
1036   return retval;
1037 }
1038
1039 unsigned short windows_major, windows_minor;
1040
1041 /* Compute the version Windows reports via Int 2Fh/AX=1600h.  */
1042 static void
1043 go32_get_windows_version(void)
1044 {
1045   __dpmi_regs r;
1046
1047   r.x.ax = 0x1600;
1048   __dpmi_int(0x2f, &r);
1049   if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1050       && (r.h.al > 3 || r.h.ah > 0))
1051     {
1052       windows_major = r.h.al;
1053       windows_minor = r.h.ah;
1054     }
1055   else
1056     windows_major = 0xff;       /* meaning no Windows */
1057 }
1058
1059 /* A subroutine of go32_sysinfo to display memory info.  */
1060 static void
1061 print_mem (unsigned long datum, const char *header, int in_pages_p)
1062 {
1063   if (datum != 0xffffffffUL)
1064     {
1065       if (in_pages_p)
1066         datum <<= 12;
1067       puts_filtered (header);
1068       if (datum > 1024)
1069         {
1070           printf_filtered ("%lu KB", datum >> 10);
1071           if (datum > 1024 * 1024)
1072             printf_filtered (" (%lu MB)", datum >> 20);
1073         }
1074       else
1075         printf_filtered ("%lu Bytes", datum);
1076       puts_filtered ("\n");
1077     }
1078 }
1079
1080 /* Display assorted information about the underlying OS.  */
1081 static void
1082 go32_sysinfo (const char *arg, int from_tty)
1083 {
1084   static const char test_pattern[] =
1085     "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1086     "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1087     "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1088   struct utsname u;
1089   char cpuid_vendor[13];
1090   unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1091   unsigned true_dos_version = _get_dos_version (1);
1092   unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1093   int dpmi_flags;
1094   char dpmi_vendor_info[129];
1095   int dpmi_vendor_available;
1096   __dpmi_version_ret dpmi_version_data;
1097   long eflags;
1098   __dpmi_free_mem_info mem_info;
1099   __dpmi_regs regs;
1100
1101   cpuid_vendor[0] = '\0';
1102   if (uname (&u))
1103     strcpy (u.machine, "Unknown x86");
1104   else if (u.machine[0] == 'i' && u.machine[1] > 4)
1105     {
1106       /* CPUID with EAX = 0 returns the Vendor ID.  */
1107 #if 0
1108       /* Ideally we would use x86_cpuid(), but it needs someone to run
1109          native tests first to make sure things actually work.  They should.
1110          http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html  */
1111       unsigned int eax, ebx, ecx, edx;
1112
1113       if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1114         {
1115           cpuid_max = eax;
1116           memcpy (&vendor[0], &ebx, 4);
1117           memcpy (&vendor[4], &ecx, 4);
1118           memcpy (&vendor[8], &edx, 4);
1119           cpuid_vendor[12] = '\0';
1120         }
1121 #else
1122       __asm__ __volatile__ ("xorl   %%ebx, %%ebx;"
1123                             "xorl   %%ecx, %%ecx;"
1124                             "xorl   %%edx, %%edx;"
1125                             "movl   $0,    %%eax;"
1126                             "cpuid;"
1127                             "movl   %%ebx,  %0;"
1128                             "movl   %%edx,  %1;"
1129                             "movl   %%ecx,  %2;"
1130                             "movl   %%eax,  %3;"
1131                             : "=m" (cpuid_vendor[0]),
1132                               "=m" (cpuid_vendor[4]),
1133                               "=m" (cpuid_vendor[8]),
1134                               "=m" (cpuid_max)
1135                             :
1136                             : "%eax", "%ebx", "%ecx", "%edx");
1137       cpuid_vendor[12] = '\0';
1138 #endif
1139     }
1140
1141   printf_filtered ("CPU Type.......................%s", u.machine);
1142   if (cpuid_vendor[0])
1143     printf_filtered (" (%s)", cpuid_vendor);
1144   puts_filtered ("\n");
1145
1146   /* CPUID with EAX = 1 returns processor signature and features.  */
1147   if (cpuid_max >= 1)
1148     {
1149       static const char *brand_name[] = {
1150         "",
1151         " Celeron",
1152         " III",
1153         " III Xeon",
1154         "", "", "", "",
1155         " 4"
1156       };
1157       char cpu_string[80];
1158       char cpu_brand[20];
1159       unsigned brand_idx;
1160       int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1161       int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1162       int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1163       unsigned cpu_family, cpu_model;
1164
1165 #if 0
1166       /* See comment above about cpuid usage.  */
1167       x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1168 #else
1169       __asm__ __volatile__ ("movl   $1, %%eax;"
1170                             "cpuid;"
1171                             : "=a" (cpuid_eax),
1172                               "=b" (cpuid_ebx),
1173                               "=d" (cpuid_edx)
1174                             :
1175                             : "%ecx");
1176 #endif
1177       brand_idx = cpuid_ebx & 0xff;
1178       cpu_family = (cpuid_eax >> 8) & 0xf;
1179       cpu_model  = (cpuid_eax >> 4) & 0xf;
1180       cpu_brand[0] = '\0';
1181       if (intel_p)
1182         {
1183           if (brand_idx > 0
1184               && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1185               && *brand_name[brand_idx])
1186             strcpy (cpu_brand, brand_name[brand_idx]);
1187           else if (cpu_family == 5)
1188             {
1189               if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1190                 strcpy (cpu_brand, " MMX");
1191               else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1192                 strcpy (cpu_brand, " OverDrive");
1193               else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1194                 strcpy (cpu_brand, " Dual");
1195             }
1196           else if (cpu_family == 6 && cpu_model < 8)
1197             {
1198               switch (cpu_model)
1199                 {
1200                   case 1:
1201                     strcpy (cpu_brand, " Pro");
1202                     break;
1203                   case 3:
1204                     strcpy (cpu_brand, " II");
1205                     break;
1206                   case 5:
1207                     strcpy (cpu_brand, " II Xeon");
1208                     break;
1209                   case 6:
1210                     strcpy (cpu_brand, " Celeron");
1211                     break;
1212                   case 7:
1213                     strcpy (cpu_brand, " III");
1214                     break;
1215                 }
1216             }
1217         }
1218       else if (amd_p)
1219         {
1220           switch (cpu_family)
1221             {
1222               case 4:
1223                 strcpy (cpu_brand, "486/5x86");
1224                 break;
1225               case 5:
1226                 switch (cpu_model)
1227                   {
1228                     case 0:
1229                     case 1:
1230                     case 2:
1231                     case 3:
1232                       strcpy (cpu_brand, "-K5");
1233                       break;
1234                     case 6:
1235                     case 7:
1236                       strcpy (cpu_brand, "-K6");
1237                       break;
1238                     case 8:
1239                       strcpy (cpu_brand, "-K6-2");
1240                       break;
1241                     case 9:
1242                       strcpy (cpu_brand, "-K6-III");
1243                       break;
1244                   }
1245                 break;
1246               case 6:
1247                 switch (cpu_model)
1248                   {
1249                     case 1:
1250                     case 2:
1251                     case 4:
1252                       strcpy (cpu_brand, " Athlon");
1253                       break;
1254                     case 3:
1255                       strcpy (cpu_brand, " Duron");
1256                       break;
1257                   }
1258                 break;
1259             }
1260         }
1261       xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1262                  intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1263                  cpu_brand, cpu_model, cpuid_eax & 0xf);
1264       printfi_filtered (31, "%s\n", cpu_string);
1265       if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1266           || ((cpuid_edx & 1) == 0)
1267           || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1268         {
1269           puts_filtered ("CPU Features...................");
1270           /* We only list features which might be useful in the DPMI
1271              environment.  */
1272           if ((cpuid_edx & 1) == 0)
1273             puts_filtered ("No FPU "); /* It's unusual to not have an FPU.  */
1274           if ((cpuid_edx & (1 << 1)) != 0)
1275             puts_filtered ("VME ");
1276           if ((cpuid_edx & (1 << 2)) != 0)
1277             puts_filtered ("DE ");
1278           if ((cpuid_edx & (1 << 4)) != 0)
1279             puts_filtered ("TSC ");
1280           if ((cpuid_edx & (1 << 23)) != 0)
1281             puts_filtered ("MMX ");
1282           if ((cpuid_edx & (1 << 25)) != 0)
1283             puts_filtered ("SSE ");
1284           if ((cpuid_edx & (1 << 26)) != 0)
1285             puts_filtered ("SSE2 ");
1286           if (amd_p || hygon_p)
1287             {
1288               if ((cpuid_edx & (1 << 31)) != 0)
1289                 puts_filtered ("3DNow! ");
1290               if ((cpuid_edx & (1 << 30)) != 0)
1291                 puts_filtered ("3DNow!Ext");
1292             }
1293           puts_filtered ("\n");
1294         }
1295     }
1296   puts_filtered ("\n");
1297   printf_filtered ("DOS Version....................%s %s.%s",
1298                    _os_flavor, u.release, u.version);
1299   if (true_dos_version != advertized_dos_version)
1300     printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1301   puts_filtered ("\n");
1302   if (!windows_major)
1303     go32_get_windows_version ();
1304   if (windows_major != 0xff)
1305     {
1306       const char *windows_flavor;
1307
1308       printf_filtered ("Windows Version................%d.%02d (Windows ",
1309                        windows_major, windows_minor);
1310       switch (windows_major)
1311         {
1312           case 3:
1313             windows_flavor = "3.X";
1314             break;
1315           case 4:
1316             switch (windows_minor)
1317               {
1318                 case 0:
1319                   windows_flavor = "95, 95A, or 95B";
1320                   break;
1321                 case 3:
1322                   windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1323                   break;
1324                 case 10:
1325                   windows_flavor = "98 or 98 SE";
1326                   break;
1327                 case 90:
1328                   windows_flavor = "ME";
1329                   break;
1330                 default:
1331                   windows_flavor = "9X";
1332                   break;
1333               }
1334             break;
1335           default:
1336             windows_flavor = "??";
1337             break;
1338         }
1339       printf_filtered ("%s)\n", windows_flavor);
1340     }
1341   else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1342     printf_filtered ("Windows Version................"
1343                      "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1344   puts_filtered ("\n");
1345   /* On some versions of Windows, __dpmi_get_capabilities returns
1346      zero, but the buffer is not filled with info, so we fill the
1347      buffer with a known pattern and test for it afterwards.  */
1348   memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1349   dpmi_vendor_available =
1350     __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1351   if (dpmi_vendor_available == 0
1352       && memcmp (dpmi_vendor_info, test_pattern,
1353                  sizeof(dpmi_vendor_info)) != 0)
1354     {
1355       /* The DPMI spec says the vendor string should be ASCIIZ, but
1356          I don't trust the vendors to follow that...  */
1357       if (!memchr (&dpmi_vendor_info[2], 0, 126))
1358         dpmi_vendor_info[128] = '\0';
1359       printf_filtered ("DPMI Host......................"
1360                        "%s v%d.%d (capabilities: %#x)\n",
1361                        &dpmi_vendor_info[2],
1362                        (unsigned)dpmi_vendor_info[0],
1363                        (unsigned)dpmi_vendor_info[1],
1364                        ((unsigned)dpmi_flags & 0x7f));
1365     }
1366   else
1367     printf_filtered ("DPMI Host......................(Info not available)\n");
1368   __dpmi_get_version (&dpmi_version_data);
1369   printf_filtered ("DPMI Version...................%d.%02d\n",
1370                    dpmi_version_data.major, dpmi_version_data.minor);
1371   printf_filtered ("DPMI Info......................"
1372                    "%s-bit DPMI, with%s Virtual Memory support\n",
1373                    (dpmi_version_data.flags & 1) ? "32" : "16",
1374                    (dpmi_version_data.flags & 4) ? "" : "out");
1375   printfi_filtered (31, "Interrupts reflected to %s mode\n",
1376                    (dpmi_version_data.flags & 2) ? "V86" : "Real");
1377   printfi_filtered (31, "Processor type: i%d86\n",
1378                    dpmi_version_data.cpu);
1379   printfi_filtered (31, "PIC base interrupt: Master: %#x  Slave: %#x\n",
1380                    dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1381
1382   /* a_tss is only initialized when the debuggee is first run.  */
1383   if (prog_has_started)
1384     {
1385       __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1386       printf_filtered ("Protection....................."
1387                        "Ring %d (in %s), with%s I/O protection\n",
1388                        a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1389                        (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1390     }
1391   puts_filtered ("\n");
1392   __dpmi_get_free_memory_information (&mem_info);
1393   print_mem (mem_info.total_number_of_physical_pages,
1394              "DPMI Total Physical Memory.....", 1);
1395   print_mem (mem_info.total_number_of_free_pages,
1396              "DPMI Free Physical Memory......", 1);
1397   print_mem (mem_info.size_of_paging_file_partition_in_pages,
1398              "DPMI Swap Space................", 1);
1399   print_mem (mem_info.linear_address_space_size_in_pages,
1400              "DPMI Total Linear Address Size.", 1);
1401   print_mem (mem_info.free_linear_address_space_in_pages,
1402              "DPMI Free Linear Address Size..", 1);
1403   print_mem (mem_info.largest_available_free_block_in_bytes,
1404              "DPMI Largest Free Memory Block.", 0);
1405
1406   regs.h.ah = 0x48;
1407   regs.x.bx = 0xffff;
1408   __dpmi_int (0x21, &regs);
1409   print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1410   regs.x.ax = 0x5800;
1411   __dpmi_int (0x21, &regs);
1412   if ((regs.x.flags & 1) == 0)
1413     {
1414       static const char *dos_hilo[] = {
1415         "Low", "", "", "", "High", "", "", "", "High, then Low"
1416       };
1417       static const char *dos_fit[] = {
1418         "First", "Best", "Last"
1419       };
1420       int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1421       int fit_idx  = regs.x.ax & 0x0f;
1422
1423       if (hilo_idx > 8)
1424         hilo_idx = 0;
1425       if (fit_idx > 2)
1426         fit_idx = 0;
1427       printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1428                        dos_hilo[hilo_idx], dos_fit[fit_idx]);
1429       regs.x.ax = 0x5802;
1430       __dpmi_int (0x21, &regs);
1431       if ((regs.x.flags & 1) != 0)
1432         regs.h.al = 0;
1433       printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1434                         regs.h.al == 0 ? "not " : "");
1435     }
1436 }
1437
1438 struct seg_descr {
1439   unsigned short limit0;
1440   unsigned short base0;
1441   unsigned char  base1;
1442   unsigned       stype:5;
1443   unsigned       dpl:2;
1444   unsigned       present:1;
1445   unsigned       limit1:4;
1446   unsigned       available:1;
1447   unsigned       dummy:1;
1448   unsigned       bit32:1;
1449   unsigned       page_granular:1;
1450   unsigned char  base2;
1451 } __attribute__ ((packed));
1452
1453 struct gate_descr {
1454   unsigned short offset0;
1455   unsigned short selector;
1456   unsigned       param_count:5;
1457   unsigned       dummy:3;
1458   unsigned       stype:5;
1459   unsigned       dpl:2;
1460   unsigned       present:1;
1461   unsigned short offset1;
1462 } __attribute__ ((packed));
1463
1464 /* Read LEN bytes starting at logical address ADDR, and put the result
1465    into DEST.  Return 1 if success, zero if not.  */
1466 static int
1467 read_memory_region (unsigned long addr, void *dest, size_t len)
1468 {
1469   unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1470   int retval = 1;
1471
1472   /* For the low memory, we can simply use _dos_ds.  */
1473   if (addr <= dos_ds_limit - len)
1474     dosmemget (addr, len, dest);
1475   else
1476     {
1477       /* For memory above 1MB we need to set up a special segment to
1478          be able to access that memory.  */
1479       int sel = __dpmi_allocate_ldt_descriptors (1);
1480
1481       if (sel <= 0)
1482         retval = 0;
1483       else
1484         {
1485           int access_rights = __dpmi_get_descriptor_access_rights (sel);
1486           size_t segment_limit = len - 1;
1487
1488           /* Make sure the crucial bits in the descriptor access
1489              rights are set correctly.  Some DPMI providers might barf
1490              if we set the segment limit to something that is not an
1491              integral multiple of 4KB pages if the granularity bit is
1492              not set to byte-granular, even though the DPMI spec says
1493              it's the host's responsibility to set that bit correctly.  */
1494           if (len > 1024 * 1024)
1495             {
1496               access_rights |= 0x8000;
1497               /* Page-granular segments should have the low 12 bits of
1498                  the limit set.  */
1499               segment_limit |= 0xfff;
1500             }
1501           else
1502             access_rights &= ~0x8000;
1503
1504           if (__dpmi_set_segment_base_address (sel, addr) != -1
1505               && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1506               && __dpmi_set_segment_limit (sel, segment_limit) != -1
1507               /* W2K silently fails to set the segment limit, leaving
1508                  it at zero; this test avoids the resulting crash.  */
1509               && __dpmi_get_segment_limit (sel) >= segment_limit)
1510             movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1511           else
1512             retval = 0;
1513
1514           __dpmi_free_ldt_descriptor (sel);
1515         }
1516     }
1517   return retval;
1518 }
1519
1520 /* Get a segment descriptor stored at index IDX in the descriptor
1521    table whose base address is TABLE_BASE.  Return the descriptor
1522    type, or -1 if failure.  */
1523 static int
1524 get_descriptor (unsigned long table_base, int idx, void *descr)
1525 {
1526   unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1527
1528   if (read_memory_region (addr, descr, 8))
1529     return (int)((struct seg_descr *)descr)->stype;
1530   return -1;
1531 }
1532
1533 struct dtr_reg {
1534   unsigned short limit __attribute__((packed));
1535   unsigned long  base  __attribute__((packed));
1536 };
1537
1538 /* Display a segment descriptor stored at index IDX in a descriptor
1539    table whose type is TYPE and whose base address is BASE_ADDR.  If
1540    FORCE is non-zero, display even invalid descriptors.  */
1541 static void
1542 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1543 {
1544   struct seg_descr descr;
1545   struct gate_descr gate;
1546
1547   /* Get the descriptor from the table.  */
1548   if (idx == 0 && type == 0)
1549     puts_filtered ("0x000: null descriptor\n");
1550   else if (get_descriptor (base_addr, idx, &descr) != -1)
1551     {
1552       /* For each type of descriptor table, this has a bit set if the
1553          corresponding type of selectors is valid in that table.  */
1554       static unsigned allowed_descriptors[] = {
1555           0xffffdafeL,   /* GDT */
1556           0x0000c0e0L,   /* IDT */
1557           0xffffdafaL    /* LDT */
1558       };
1559
1560       /* If the program hasn't started yet, assume the debuggee will
1561          have the same CPL as the debugger.  */
1562       int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1563       unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1564
1565       if (descr.present
1566           && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1567         {
1568           printf_filtered ("0x%03x: ",
1569                            type == 1
1570                            ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1571           if (descr.page_granular)
1572             limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1573           if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1574               || descr.stype == 9 || descr.stype == 11
1575               || (descr.stype >= 16 && descr.stype < 32))
1576             printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1577                              descr.base2, descr.base1, descr.base0, limit);
1578
1579           switch (descr.stype)
1580             {
1581               case 1:
1582               case 3:
1583                 printf_filtered (" 16-bit TSS  (task %sactive)",
1584                                  descr.stype == 3 ? "" : "in");
1585                 break;
1586               case 2:
1587                 puts_filtered (" LDT");
1588                 break;
1589               case 4:
1590                 memcpy (&gate, &descr, sizeof gate);
1591                 printf_filtered ("selector=0x%04x  offs=0x%04x%04x",
1592                                  gate.selector, gate.offset1, gate.offset0);
1593                 printf_filtered (" 16-bit Call Gate (params=%d)",
1594                                  gate.param_count);
1595                 break;
1596               case 5:
1597                 printf_filtered ("TSS selector=0x%04x", descr.base0);
1598                 printfi_filtered (16, "Task Gate");
1599                 break;
1600               case 6:
1601               case 7:
1602                 memcpy (&gate, &descr, sizeof gate);
1603                 printf_filtered ("selector=0x%04x  offs=0x%04x%04x",
1604                                  gate.selector, gate.offset1, gate.offset0);
1605                 printf_filtered (" 16-bit %s Gate",
1606                                  descr.stype == 6 ? "Interrupt" : "Trap");
1607                 break;
1608               case 9:
1609               case 11:
1610                 printf_filtered (" 32-bit TSS (task %sactive)",
1611                                  descr.stype == 3 ? "" : "in");
1612                 break;
1613               case 12:
1614                 memcpy (&gate, &descr, sizeof gate);
1615                 printf_filtered ("selector=0x%04x  offs=0x%04x%04x",
1616                                  gate.selector, gate.offset1, gate.offset0);
1617                 printf_filtered (" 32-bit Call Gate (params=%d)",
1618                                  gate.param_count);
1619                 break;
1620               case 14:
1621               case 15:
1622                 memcpy (&gate, &descr, sizeof gate);
1623                 printf_filtered ("selector=0x%04x  offs=0x%04x%04x",
1624                                  gate.selector, gate.offset1, gate.offset0);
1625                 printf_filtered (" 32-bit %s Gate",
1626                                  descr.stype == 14 ? "Interrupt" : "Trap");
1627                 break;
1628               case 16:          /* data segments */
1629               case 17:
1630               case 18:
1631               case 19:
1632               case 20:
1633               case 21:
1634               case 22:
1635               case 23:
1636                 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1637                                  descr.bit32 ? "32" : "16",
1638                                  descr.stype & 2
1639                                  ? "Read/Write," : "Read-Only, ",
1640                                  descr.stype & 4 ? "down" : "up",
1641                                  descr.stype & 1 ? "" : ", N.Acc");
1642                 break;
1643               case 24:          /* code segments */
1644               case 25:
1645               case 26:
1646               case 27:
1647               case 28:
1648               case 29:
1649               case 30:
1650               case 31:
1651                 printf_filtered (" %s-bit Code (%s,  %sConf%s)",
1652                                  descr.bit32 ? "32" : "16",
1653                                  descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1654                                  descr.stype & 4 ? "" : "N.",
1655                                  descr.stype & 1 ? "" : ", N.Acc");
1656                 break;
1657               default:
1658                 printf_filtered ("Unknown type 0x%02x", descr.stype);
1659                 break;
1660             }
1661           puts_filtered ("\n");
1662         }
1663       else if (force)
1664         {
1665           printf_filtered ("0x%03x: ",
1666                            type == 1
1667                            ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1668           if (!descr.present)
1669             puts_filtered ("Segment not present\n");
1670           else
1671             printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1672                              descr.stype);
1673         }
1674     }
1675   else if (force)
1676     printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1677 }
1678
1679 static void
1680 go32_sldt (const char *arg, int from_tty)
1681 {
1682   struct dtr_reg gdtr;
1683   unsigned short ldtr = 0;
1684   int ldt_idx;
1685   struct seg_descr ldt_descr;
1686   long ldt_entry = -1L;
1687   int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1688
1689   if (arg && *arg)
1690     {
1691       arg = skip_spaces (arg);
1692
1693       if (*arg)
1694         {
1695           ldt_entry = parse_and_eval_long (arg);
1696           if (ldt_entry < 0
1697               || (ldt_entry & 4) == 0
1698               || (ldt_entry & 3) != (cpl & 3))
1699             error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1700         }
1701     }
1702
1703   __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ );
1704   __asm__ __volatile__ ("sldt   %0" : "=m" (ldtr) : /* no inputs */ );
1705   ldt_idx = ldtr / 8;
1706   if (ldt_idx == 0)
1707     puts_filtered ("There is no LDT.\n");
1708   /* LDT's entry in the GDT must have the type LDT, which is 2.  */
1709   else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1710     printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1711                      ldt_descr.base0
1712                      | (ldt_descr.base1 << 16)
1713                      | (ldt_descr.base2 << 24));
1714   else
1715     {
1716       unsigned base =
1717         ldt_descr.base0
1718         | (ldt_descr.base1 << 16)
1719         | (ldt_descr.base2 << 24);
1720       unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1721       int max_entry;
1722
1723       if (ldt_descr.page_granular)
1724         /* Page-granular segments must have the low 12 bits of their
1725            limit set.  */
1726         limit = (limit << 12) | 0xfff;
1727       /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1728          64KB.  */
1729       if (limit > 0xffff)
1730         limit = 0xffff;
1731
1732       max_entry = (limit + 1) / 8;
1733
1734       if (ldt_entry >= 0)
1735         {
1736           if (ldt_entry > limit)
1737             error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1738                    (unsigned long)ldt_entry, limit);
1739
1740           display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1741         }
1742       else
1743         {
1744           int i;
1745
1746           for (i = 0; i < max_entry; i++)
1747             display_descriptor (ldt_descr.stype, base, i, 0);
1748         }
1749     }
1750 }
1751
1752 static void
1753 go32_sgdt (const char *arg, int from_tty)
1754 {
1755   struct dtr_reg gdtr;
1756   long gdt_entry = -1L;
1757   int max_entry;
1758
1759   if (arg && *arg)
1760     {
1761       arg = skip_spaces (arg);
1762
1763       if (*arg)
1764         {
1765           gdt_entry = parse_and_eval_long (arg);
1766           if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1767             error (_("Invalid GDT entry 0x%03lx: "
1768                      "not an integral multiple of 8."),
1769                    (unsigned long)gdt_entry);
1770         }
1771     }
1772
1773   __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ );
1774   max_entry = (gdtr.limit + 1) / 8;
1775
1776   if (gdt_entry >= 0)
1777     {
1778       if (gdt_entry > gdtr.limit)
1779         error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1780                (unsigned long)gdt_entry, gdtr.limit);
1781
1782       display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1783     }
1784   else
1785     {
1786       int i;
1787
1788       for (i = 0; i < max_entry; i++)
1789         display_descriptor (0, gdtr.base, i, 0);
1790     }
1791 }
1792
1793 static void
1794 go32_sidt (const char *arg, int from_tty)
1795 {
1796   struct dtr_reg idtr;
1797   long idt_entry = -1L;
1798   int max_entry;
1799
1800   if (arg && *arg)
1801     {
1802       arg = skip_spaces (arg);
1803
1804       if (*arg)
1805         {
1806           idt_entry = parse_and_eval_long (arg);
1807           if (idt_entry < 0)
1808             error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1809         }
1810     }
1811
1812   __asm__ __volatile__ ("sidt   %0" : "=m" (idtr) : /* no inputs */ );
1813   max_entry = (idtr.limit + 1) / 8;
1814   if (max_entry > 0x100)        /* No more than 256 entries.  */
1815     max_entry = 0x100;
1816
1817   if (idt_entry >= 0)
1818     {
1819       if (idt_entry > idtr.limit)
1820         error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1821                (unsigned long)idt_entry, idtr.limit);
1822
1823       display_descriptor (1, idtr.base, idt_entry, 1);
1824     }
1825   else
1826     {
1827       int i;
1828
1829       for (i = 0; i < max_entry; i++)
1830         display_descriptor (1, idtr.base, i, 0);
1831     }
1832 }
1833
1834 /* Cached linear address of the base of the page directory.  For
1835    now, available only under CWSDPMI.  Code based on ideas and
1836    suggestions from Charles Sandmann <[email protected]>.  */
1837 static unsigned long pdbr;
1838
1839 static unsigned long
1840 get_cr3 (void)
1841 {
1842   unsigned offset;
1843   unsigned taskreg;
1844   unsigned long taskbase, cr3;
1845   struct dtr_reg gdtr;
1846
1847   if (pdbr > 0 && pdbr <= 0xfffff)
1848     return pdbr;
1849
1850   /* Get the linear address of GDT and the Task Register.  */
1851   __asm__ __volatile__ ("sgdt   %0" : "=m" (gdtr) : /* no inputs */ );
1852   __asm__ __volatile__ ("str    %0" : "=m" (taskreg) : /* no inputs */ );
1853
1854   /* Task Register is a segment selector for the TSS of the current
1855      task.  Therefore, it can be used as an index into the GDT to get
1856      at the segment descriptor for the TSS.  To get the index, reset
1857      the low 3 bits of the selector (which give the CPL).  Add 2 to the
1858      offset to point to the 3 low bytes of the base address.  */
1859   offset = gdtr.base + (taskreg & 0xfff8) + 2;
1860
1861
1862   /* CWSDPMI's task base is always under the 1MB mark.  */
1863   if (offset > 0xfffff)
1864     return 0;
1865
1866   _farsetsel (_dos_ds);
1867   taskbase  = _farnspeekl (offset) & 0xffffffU;
1868   taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1869   if (taskbase > 0xfffff)
1870     return 0;
1871
1872   /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1873      offset 1Ch in the TSS.  */
1874   cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1875   if (cr3 > 0xfffff)
1876     {
1877 #if 0  /* Not fully supported yet.  */
1878       /* The Page Directory is in UMBs.  In that case, CWSDPMI puts
1879          the first Page Table right below the Page Directory.  Thus,
1880          the first Page Table's entry for its own address and the Page
1881          Directory entry for that Page Table will hold the same
1882          physical address.  The loop below searches the entire UMB
1883          range of addresses for such an occurrence.  */
1884       unsigned long addr, pte_idx;
1885
1886       for (addr = 0xb0000, pte_idx = 0xb0;
1887            pte_idx < 0xff;
1888            addr += 0x1000, pte_idx++)
1889         {
1890           if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1891                (_farnspeekl (addr + 0x1000) & 0xfffff027))
1892               && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1893             {
1894               cr3 = addr + 0x1000;
1895               break;
1896             }
1897         }
1898 #endif
1899
1900       if (cr3 > 0xfffff)
1901         cr3 = 0;
1902     }
1903
1904   return cr3;
1905 }
1906
1907 /* Return the N'th Page Directory entry.  */
1908 static unsigned long
1909 get_pde (int n)
1910 {
1911   unsigned long pde = 0;
1912
1913   if (pdbr && n >= 0 && n < 1024)
1914     {
1915       pde = _farpeekl (_dos_ds, pdbr + 4*n);
1916     }
1917   return pde;
1918 }
1919
1920 /* Return the N'th entry of the Page Table whose Page Directory entry
1921    is PDE.  */
1922 static unsigned long
1923 get_pte (unsigned long pde, int n)
1924 {
1925   unsigned long pte = 0;
1926
1927   /* pde & 0x80 tests the 4MB page bit.  We don't support 4MB
1928      page tables, for now.  */
1929   if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1930     {
1931       pde &= ~0xfff;    /* Clear non-address bits.  */
1932       pte = _farpeekl (_dos_ds, pde + 4*n);
1933     }
1934   return pte;
1935 }
1936
1937 /* Display a Page Directory or Page Table entry.  IS_DIR, if non-zero,
1938    says this is a Page Directory entry.  If FORCE is non-zero, display
1939    the entry even if its Present flag is off.  OFF is the offset of the
1940    address from the page's base address.  */
1941 static void
1942 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1943 {
1944   if ((entry & 1) != 0)
1945     {
1946       printf_filtered ("Base=0x%05lx000", entry >> 12);
1947       if ((entry & 0x100) && !is_dir)
1948         puts_filtered (" Global");
1949       if ((entry & 0x40) && !is_dir)
1950         puts_filtered (" Dirty");
1951       printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1952       printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1953       printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1954       printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1955       printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1956       if (off)
1957         printf_filtered (" +0x%x", off);
1958       puts_filtered ("\n");
1959     }
1960   else if (force)
1961     printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1962                      is_dir ? " Table" : "", entry >> 1);
1963 }
1964
1965 static void
1966 go32_pde (const char *arg, int from_tty)
1967 {
1968   long pde_idx = -1, i;
1969
1970   if (arg && *arg)
1971     {
1972       arg = skip_spaces (arg);
1973
1974       if (*arg)
1975         {
1976           pde_idx = parse_and_eval_long (arg);
1977           if (pde_idx < 0 || pde_idx >= 1024)
1978             error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1979         }
1980     }
1981
1982   pdbr = get_cr3 ();
1983   if (!pdbr)
1984     puts_filtered ("Access to Page Directories is "
1985                    "not supported on this system.\n");
1986   else if (pde_idx >= 0)
1987     display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1988   else
1989     for (i = 0; i < 1024; i++)
1990       display_ptable_entry (get_pde (i), 1, 0, 0);
1991 }
1992
1993 /* A helper function to display entries in a Page Table pointed to by
1994    the N'th entry in the Page Directory.  If FORCE is non-zero, say
1995    something even if the Page Table is not accessible.  */
1996 static void
1997 display_page_table (long n, int force)
1998 {
1999   unsigned long pde = get_pde (n);
2000
2001   if ((pde & 1) != 0)
2002     {
2003       int i;
2004
2005       printf_filtered ("Page Table pointed to by "
2006                        "Page Directory entry 0x%lx:\n", n);
2007       for (i = 0; i < 1024; i++)
2008         display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2009       puts_filtered ("\n");
2010     }
2011   else if (force)
2012     printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2013 }
2014
2015 static void
2016 go32_pte (const char *arg, int from_tty)
2017 {
2018   long pde_idx = -1L, i;
2019
2020   if (arg && *arg)
2021     {
2022       arg = skip_spaces (arg);
2023
2024       if (*arg)
2025         {
2026           pde_idx = parse_and_eval_long (arg);
2027           if (pde_idx < 0 || pde_idx >= 1024)
2028             error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2029         }
2030     }
2031
2032   pdbr = get_cr3 ();
2033   if (!pdbr)
2034     puts_filtered ("Access to Page Tables is not supported on this system.\n");
2035   else if (pde_idx >= 0)
2036     display_page_table (pde_idx, 1);
2037   else
2038     for (i = 0; i < 1024; i++)
2039       display_page_table (i, 0);
2040 }
2041
2042 static void
2043 go32_pte_for_address (const char *arg, int from_tty)
2044 {
2045   CORE_ADDR addr = 0, i;
2046
2047   if (arg && *arg)
2048     {
2049       arg = skip_spaces (arg);
2050
2051       if (*arg)
2052         addr = parse_and_eval_address (arg);
2053     }
2054   if (!addr)
2055     error_no_arg (_("linear address"));
2056
2057   pdbr = get_cr3 ();
2058   if (!pdbr)
2059     puts_filtered ("Access to Page Tables is not supported on this system.\n");
2060   else
2061     {
2062       int pde_idx = (addr >> 22) & 0x3ff;
2063       int pte_idx = (addr >> 12) & 0x3ff;
2064       unsigned offs = addr & 0xfff;
2065
2066       printf_filtered ("Page Table entry for address %s:\n",
2067                        hex_string(addr));
2068       display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2069     }
2070 }
2071
2072 static struct cmd_list_element *info_dos_cmdlist = NULL;
2073
2074 void _initialize_go32_nat ();
2075 void
2076 _initialize_go32_nat ()
2077 {
2078   x86_dr_low.set_control = go32_set_dr7;
2079   x86_dr_low.set_addr = go32_set_dr;
2080   x86_dr_low.get_status = go32_get_dr6;
2081   x86_dr_low.get_control = go32_get_dr7;
2082   x86_dr_low.get_addr = go32_get_dr;
2083   x86_set_debug_register_length (4);
2084
2085   add_inf_child_target (&the_go32_nat_target);
2086
2087   /* Initialize child's cwd as empty to be initialized when starting
2088      the child.  */
2089   *child_cwd = 0;
2090
2091   /* Initialize child's command line storage.  */
2092   if (redir_debug_init (&child_cmd) == -1)
2093     internal_error (__FILE__, __LINE__,
2094                     _("Cannot allocate redirection storage: "
2095                       "not enough memory.\n"));
2096
2097   /* We are always processing GCC-compiled programs.  */
2098   processing_gcc_compilation = 2;
2099
2100   add_basic_prefix_cmd ("dos", class_info, _("\
2101 Print information specific to DJGPP (aka MS-DOS) debugging."),
2102                         &info_dos_cmdlist, "info dos ", 0, &infolist);
2103
2104   add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2105 Display information about the target system, including CPU, OS, DPMI, etc."),
2106            &info_dos_cmdlist);
2107   add_cmd ("ldt", class_info, go32_sldt, _("\
2108 Display entries in the LDT (Local Descriptor Table).\n\
2109 Entry number (an expression) as an argument means display only that entry."),
2110            &info_dos_cmdlist);
2111   add_cmd ("gdt", class_info, go32_sgdt, _("\
2112 Display entries in the GDT (Global Descriptor Table).\n\
2113 Entry number (an expression) as an argument means display only that entry."),
2114            &info_dos_cmdlist);
2115   add_cmd ("idt", class_info, go32_sidt, _("\
2116 Display entries in the IDT (Interrupt Descriptor Table).\n\
2117 Entry number (an expression) as an argument means display only that entry."),
2118            &info_dos_cmdlist);
2119   add_cmd ("pde", class_info, go32_pde, _("\
2120 Display entries in the Page Directory.\n\
2121 Entry number (an expression) as an argument means display only that entry."),
2122            &info_dos_cmdlist);
2123   add_cmd ("pte", class_info, go32_pte, _("\
2124 Display entries in Page Tables.\n\
2125 Entry number (an expression) as an argument means display only entries\n\
2126 from the Page Table pointed to by the specified Page Directory entry."),
2127            &info_dos_cmdlist);
2128   add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2129 Display a Page Table entry for a linear address.\n\
2130 The address argument must be a linear address, after adding to\n\
2131 it the base address of the appropriate segment.\n\
2132 The base address of variables and functions in the debuggee's data\n\
2133 or code segment is stored in the variable __djgpp_base_address,\n\
2134 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2135 For other segments, look up their base address in the output of\n\
2136 the `info dos ldt' command."),
2137            &info_dos_cmdlist);
2138 }
2139
2140 pid_t
2141 tcgetpgrp (int fd)
2142 {
2143   if (isatty (fd))
2144     return SOME_PID;
2145   errno = ENOTTY;
2146   return -1;
2147 }
2148
2149 int
2150 tcsetpgrp (int fd, pid_t pgid)
2151 {
2152   if (isatty (fd) && pgid == SOME_PID)
2153     return 0;
2154   errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2155   return -1;
2156 }
This page took 0.143836 seconds and 4 git commands to generate.