1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
28 #include "gdb_regex.h"
33 #include "expression.h"
34 #include "parser-defs.h"
40 #include "breakpoint.h"
43 #include "gdb_obstack.h"
45 #include "completer.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 static void extract_string (CORE_ADDR addr, char *buf);
74 static void modify_general_field (char *, LONGEST, int, int);
76 static struct type *desc_base_type (struct type *);
78 static struct type *desc_bounds_type (struct type *);
80 static struct value *desc_bounds (struct value *);
82 static int fat_pntr_bounds_bitpos (struct type *);
84 static int fat_pntr_bounds_bitsize (struct type *);
86 static struct type *desc_data_type (struct type *);
88 static struct value *desc_data (struct value *);
90 static int fat_pntr_data_bitpos (struct type *);
92 static int fat_pntr_data_bitsize (struct type *);
94 static struct value *desc_one_bound (struct value *, int, int);
96 static int desc_bound_bitpos (struct type *, int, int);
98 static int desc_bound_bitsize (struct type *, int, int);
100 static struct type *desc_index_type (struct type *, int);
102 static int desc_arity (struct type *);
104 static int ada_type_match (struct type *, struct type *, int);
106 static int ada_args_match (struct symbol *, struct value **, int);
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
110 static struct value *convert_actual (struct value *, struct type *,
113 static struct value *make_array_descriptor (struct type *, struct value *,
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
121 static int is_nonfunction (struct ada_symbol_info *, int);
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
126 static int num_defns_collected (struct obstack *);
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
134 static struct symtab *symtab_for_sym (struct symbol *);
136 static struct value *resolve_subexp (struct expression **, int *, int,
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
144 static char *ada_op_name (enum exp_opcode);
146 static const char *ada_decoded_op_name (enum exp_opcode);
148 static int numeric_type_p (struct type *);
150 static int integer_type_p (struct type *);
152 static int scalar_type_p (struct type *);
154 static int discrete_type_p (struct type *);
156 static enum ada_renaming_category parse_old_style_renaming (struct type *,
161 static struct symbol *find_old_style_renaming_symbol (const char *,
164 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
167 static struct value *evaluate_subexp (struct type *, struct expression *,
170 static struct value *evaluate_subexp_type (struct expression *, int *);
172 static int is_dynamic_field (struct type *, int);
174 static struct type *to_fixed_variant_branch_type (struct type *,
176 CORE_ADDR, struct value *);
178 static struct type *to_fixed_array_type (struct type *, struct value *, int);
180 static struct type *to_fixed_range_type (char *, struct value *,
183 static struct type *to_static_fixed_type (struct type *);
184 static struct type *static_unwrap_type (struct type *type);
186 static struct value *unwrap_value (struct value *);
188 static struct type *packed_array_type (struct type *, long *);
190 static struct type *decode_packed_array_type (struct type *);
192 static struct value *decode_packed_array (struct value *);
194 static struct value *value_subscript_packed (struct value *, int,
197 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
199 static struct value *coerce_unspec_val_to_type (struct value *,
202 static struct value *get_var_value (char *, char *);
204 static int lesseq_defined_than (struct symbol *, struct symbol *);
206 static int equiv_types (struct type *, struct type *);
208 static int is_name_suffix (const char *);
210 static int wild_match (const char *, int, const char *);
212 static struct value *ada_coerce_ref (struct value *);
214 static LONGEST pos_atr (struct value *);
216 static struct value *value_pos_atr (struct value *);
218 static struct value *value_val_atr (struct type *, struct value *);
220 static struct symbol *standard_lookup (const char *, const struct block *,
223 static struct value *ada_search_struct_field (char *, struct value *, int,
226 static struct value *ada_value_primitive_field (struct value *, int, int,
229 static int find_struct_field (char *, struct type *, int,
230 struct type **, int *, int *, int *, int *);
232 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
235 static struct value *ada_to_fixed_value (struct value *);
237 static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
241 static struct value *ada_coerce_to_simple_array (struct value *);
243 static int ada_is_direct_array_type (struct type *);
245 static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
248 static void check_size (const struct type *);
250 static struct value *ada_index_struct_field (int, struct value *, int,
253 static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
256 static void aggregate_assign_from_choices (struct value *, struct value *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
261 static void aggregate_assign_positional (struct value *, struct value *,
263 int *, LONGEST *, int *, int,
267 static void aggregate_assign_others (struct value *, struct value *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
272 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
275 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
278 static void ada_forward_operator_length (struct expression *, int, int *,
283 /* Maximum-sized dynamic type. */
284 static unsigned int varsize_limit;
286 /* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288 static char *ada_completer_word_break_characters =
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
295 /* The name of the symbol to use to get the name of the main subprogram. */
296 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
297 = "__gnat_ada_main_program_name";
299 /* Limit on the number of warnings to raise per expression evaluation. */
300 static int warning_limit = 2;
302 /* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304 static int warnings_issued = 0;
306 static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
310 static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
314 /* Space for allocating results of ada_lookup_symbol_list. */
315 static struct obstack symbol_list_obstack;
321 ada_get_gdb_completer_word_break_characters (void)
323 return ada_completer_word_break_characters;
326 /* Print an array element index using the Ada syntax. */
329 ada_print_array_index (struct value *index_value, struct ui_file *stream,
330 int format, enum val_prettyprint pretty)
332 LA_VALUE_PRINT (index_value, stream, format, pretty);
333 fprintf_filtered (stream, " => ");
336 /* Read the string located at ADDR from the inferior and store the
340 extract_string (CORE_ADDR addr, char *buf)
344 /* Loop, reading one byte at a time, until we reach the '\000'
345 end-of-string marker. */
348 target_read_memory (addr + char_index * sizeof (char),
349 buf + char_index * sizeof (char), sizeof (char));
352 while (buf[char_index - 1] != '\000');
355 /* Assuming VECT points to an array of *SIZE objects of size
356 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
357 updating *SIZE as necessary and returning the (new) array. */
360 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
362 if (*size < min_size)
365 if (*size < min_size)
367 vect = xrealloc (vect, *size * element_size);
372 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
373 suffix of FIELD_NAME beginning "___". */
376 field_name_match (const char *field_name, const char *target)
378 int len = strlen (target);
380 (strncmp (field_name, target, len) == 0
381 && (field_name[len] == '\0'
382 || (strncmp (field_name + len, "___", 3) == 0
383 && strcmp (field_name + strlen (field_name) - 6,
388 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
389 FIELD_NAME, and return its index. This function also handles fields
390 whose name have ___ suffixes because the compiler sometimes alters
391 their name by adding such a suffix to represent fields with certain
392 constraints. If the field could not be found, return a negative
393 number if MAYBE_MISSING is set. Otherwise raise an error. */
396 ada_get_field_index (const struct type *type, const char *field_name,
400 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
401 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
405 error (_("Unable to find field %s in struct %s. Aborting"),
406 field_name, TYPE_NAME (type));
411 /* The length of the prefix of NAME prior to any "___" suffix. */
414 ada_name_prefix_len (const char *name)
420 const char *p = strstr (name, "___");
422 return strlen (name);
428 /* Return non-zero if SUFFIX is a suffix of STR.
429 Return zero if STR is null. */
432 is_suffix (const char *str, const char *suffix)
438 len2 = strlen (suffix);
439 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
442 /* Create a value of type TYPE whose contents come from VALADDR, if it
443 is non-null, and whose memory address (in the inferior) is
447 value_from_contents_and_address (struct type *type,
448 const gdb_byte *valaddr,
451 struct value *v = allocate_value (type);
453 set_value_lazy (v, 1);
455 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
456 VALUE_ADDRESS (v) = address;
458 VALUE_LVAL (v) = lval_memory;
462 /* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
465 static struct value *
466 coerce_unspec_val_to_type (struct value *val, struct type *type)
468 type = ada_check_typedef (type);
469 if (value_type (val) == type)
473 struct value *result;
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
479 result = allocate_value (type);
480 VALUE_LVAL (result) = VALUE_LVAL (val);
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
483 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
486 set_value_lazy (result, 1);
488 memcpy (value_contents_raw (result), value_contents (val),
494 static const gdb_byte *
495 cond_offset_host (const gdb_byte *valaddr, long offset)
500 return valaddr + offset;
504 cond_offset_target (CORE_ADDR address, long offset)
509 return address + offset;
512 /* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
517 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522 lim_warning (const char *format, ...)
525 va_start (args, format);
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
529 vwarning (format, args);
534 /* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
539 check_size (const struct type *type)
541 if (TYPE_LENGTH (type) > varsize_limit)
542 error (_("object size is larger than varsize-limit"));
546 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
550 /* Maximum value of a SIZE-byte signed integer type. */
552 max_of_size (int size)
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
558 /* Minimum value of a SIZE-byte signed integer type. */
560 min_of_size (int size)
562 return -max_of_size (size) - 1;
565 /* Maximum value of a SIZE-byte unsigned integer type. */
567 umax_of_size (int size)
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
573 /* Maximum value of integral type T, as a signed quantity. */
575 max_of_type (struct type *t)
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
580 return max_of_size (TYPE_LENGTH (t));
583 /* Minimum value of integral type T, as a signed quantity. */
585 min_of_type (struct type *t)
587 if (TYPE_UNSIGNED (t))
590 return min_of_size (TYPE_LENGTH (t));
593 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
594 static struct value *
595 discrete_type_high_bound (struct type *type)
597 switch (TYPE_CODE (type))
599 case TYPE_CODE_RANGE:
600 return value_from_longest (TYPE_TARGET_TYPE (type),
601 TYPE_HIGH_BOUND (type));
604 value_from_longest (type,
605 TYPE_FIELD_BITPOS (type,
606 TYPE_NFIELDS (type) - 1));
608 return value_from_longest (type, max_of_type (type));
610 error (_("Unexpected type in discrete_type_high_bound."));
614 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
615 static struct value *
616 discrete_type_low_bound (struct type *type)
618 switch (TYPE_CODE (type))
620 case TYPE_CODE_RANGE:
621 return value_from_longest (TYPE_TARGET_TYPE (type),
622 TYPE_LOW_BOUND (type));
624 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
626 return value_from_longest (type, min_of_type (type));
628 error (_("Unexpected type in discrete_type_low_bound."));
632 /* The identity on non-range types. For range types, the underlying
633 non-range scalar type. */
636 base_type (struct type *type)
638 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 type = TYPE_TARGET_TYPE (type);
648 /* Language Selection */
650 /* If the main program is in Ada, return language_ada, otherwise return LANG
651 (the main program is in Ada iif the adainit symbol is found).
653 MAIN_PST is not used. */
656 ada_update_initial_language (enum language lang,
657 struct partial_symtab *main_pst)
659 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
660 (struct objfile *) NULL) != NULL)
666 /* If the main procedure is written in Ada, then return its name.
667 The result is good until the next call. Return NULL if the main
668 procedure doesn't appear to be in Ada. */
673 struct minimal_symbol *msym;
674 CORE_ADDR main_program_name_addr;
675 static char main_program_name[1024];
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
686 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
687 if (main_program_name_addr == 0)
688 error (_("Invalid address for Ada main program name."));
690 extract_string (main_program_name_addr, main_program_name);
691 return main_program_name;
694 /* The main procedure doesn't seem to be in Ada. */
700 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
703 const struct ada_opname_map ada_opname_table[] = {
704 {"Oadd", "\"+\"", BINOP_ADD},
705 {"Osubtract", "\"-\"", BINOP_SUB},
706 {"Omultiply", "\"*\"", BINOP_MUL},
707 {"Odivide", "\"/\"", BINOP_DIV},
708 {"Omod", "\"mod\"", BINOP_MOD},
709 {"Orem", "\"rem\"", BINOP_REM},
710 {"Oexpon", "\"**\"", BINOP_EXP},
711 {"Olt", "\"<\"", BINOP_LESS},
712 {"Ole", "\"<=\"", BINOP_LEQ},
713 {"Ogt", "\">\"", BINOP_GTR},
714 {"Oge", "\">=\"", BINOP_GEQ},
715 {"Oeq", "\"=\"", BINOP_EQUAL},
716 {"One", "\"/=\"", BINOP_NOTEQUAL},
717 {"Oand", "\"and\"", BINOP_BITWISE_AND},
718 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
719 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
720 {"Oconcat", "\"&\"", BINOP_CONCAT},
721 {"Oabs", "\"abs\"", UNOP_ABS},
722 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
723 {"Oadd", "\"+\"", UNOP_PLUS},
724 {"Osubtract", "\"-\"", UNOP_NEG},
728 /* Return non-zero if STR should be suppressed in info listings. */
731 is_suppressed_name (const char *str)
733 if (strncmp (str, "_ada_", 5) == 0)
735 if (str[0] == '_' || str[0] == '\000')
740 const char *suffix = strstr (str, "___");
741 if (suffix != NULL && suffix[3] != 'X')
744 suffix = str + strlen (str);
745 for (p = suffix - 1; p != str; p -= 1)
749 if (p[0] == 'X' && p[-1] != '_')
753 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
754 if (strncmp (ada_opname_table[i].encoded, p,
755 strlen (ada_opname_table[i].encoded)) == 0)
764 /* The "encoded" form of DECODED, according to GNAT conventions.
765 The result is valid until the next call to ada_encode. */
768 ada_encode (const char *decoded)
770 static char *encoding_buffer = NULL;
771 static size_t encoding_buffer_size = 0;
778 GROW_VECT (encoding_buffer, encoding_buffer_size,
779 2 * strlen (decoded) + 10);
782 for (p = decoded; *p != '\0'; p += 1)
784 if (!ADA_RETAIN_DOTS && *p == '.')
786 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
791 const struct ada_opname_map *mapping;
793 for (mapping = ada_opname_table;
794 mapping->encoded != NULL
795 && strncmp (mapping->decoded, p,
796 strlen (mapping->decoded)) != 0; mapping += 1)
798 if (mapping->encoded == NULL)
799 error (_("invalid Ada operator name: %s"), p);
800 strcpy (encoding_buffer + k, mapping->encoded);
801 k += strlen (mapping->encoded);
806 encoding_buffer[k] = *p;
811 encoding_buffer[k] = '\0';
812 return encoding_buffer;
815 /* Return NAME folded to lower case, or, if surrounded by single
816 quotes, unfolded, but with the quotes stripped away. Result good
820 ada_fold_name (const char *name)
822 static char *fold_buffer = NULL;
823 static size_t fold_buffer_size = 0;
825 int len = strlen (name);
826 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
830 strncpy (fold_buffer, name + 1, len - 2);
831 fold_buffer[len - 2] = '\000';
836 for (i = 0; i <= len; i += 1)
837 fold_buffer[i] = tolower (name[i]);
843 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
846 is_lower_alphanum (const char c)
848 return (isdigit (c) || (isalpha (c) && islower (c)));
851 /* Remove either of these suffixes:
856 These are suffixes introduced by the compiler for entities such as
857 nested subprogram for instance, in order to avoid name clashes.
858 They do not serve any purpose for the debugger. */
861 ada_remove_trailing_digits (const char *encoded, int *len)
863 if (*len > 1 && isdigit (encoded[*len - 1]))
866 while (i > 0 && isdigit (encoded[i]))
868 if (i >= 0 && encoded[i] == '.')
870 else if (i >= 0 && encoded[i] == '$')
872 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
874 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
879 /* Remove the suffix introduced by the compiler for protected object
883 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
885 /* Remove trailing N. */
887 /* Protected entry subprograms are broken into two
888 separate subprograms: The first one is unprotected, and has
889 a 'N' suffix; the second is the protected version, and has
890 the 'P' suffix. The second calls the first one after handling
891 the protection. Since the P subprograms are internally generated,
892 we leave these names undecoded, giving the user a clue that this
893 entity is internal. */
896 && encoded[*len - 1] == 'N'
897 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
901 /* If ENCODED follows the GNAT entity encoding conventions, then return
902 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
905 The resulting string is valid until the next call of ada_decode.
906 If the string is unchanged by decoding, the original string pointer
910 ada_decode (const char *encoded)
917 static char *decoding_buffer = NULL;
918 static size_t decoding_buffer_size = 0;
920 /* The name of the Ada main procedure starts with "_ada_".
921 This prefix is not part of the decoded name, so skip this part
922 if we see this prefix. */
923 if (strncmp (encoded, "_ada_", 5) == 0)
926 /* If the name starts with '_', then it is not a properly encoded
927 name, so do not attempt to decode it. Similarly, if the name
928 starts with '<', the name should not be decoded. */
929 if (encoded[0] == '_' || encoded[0] == '<')
932 len0 = strlen (encoded);
934 ada_remove_trailing_digits (encoded, &len0);
935 ada_remove_po_subprogram_suffix (encoded, &len0);
937 /* Remove the ___X.* suffix if present. Do not forget to verify that
938 the suffix is located before the current "end" of ENCODED. We want
939 to avoid re-matching parts of ENCODED that have previously been
940 marked as discarded (by decrementing LEN0). */
941 p = strstr (encoded, "___");
942 if (p != NULL && p - encoded < len0 - 3)
950 /* Remove any trailing TKB suffix. It tells us that this symbol
951 is for the body of a task, but that information does not actually
952 appear in the decoded name. */
954 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
957 /* Remove trailing "B" suffixes. */
958 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
960 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
963 /* Make decoded big enough for possible expansion by operator name. */
965 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
966 decoded = decoding_buffer;
968 /* Remove trailing __{digit}+ or trailing ${digit}+. */
970 if (len0 > 1 && isdigit (encoded[len0 - 1]))
973 while ((i >= 0 && isdigit (encoded[i]))
974 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
976 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
978 else if (encoded[i] == '$')
982 /* The first few characters that are not alphabetic are not part
983 of any encoding we use, so we can copy them over verbatim. */
985 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
986 decoded[j] = encoded[i];
991 /* Is this a symbol function? */
992 if (at_start_name && encoded[i] == 'O')
995 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
997 int op_len = strlen (ada_opname_table[k].encoded);
998 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1000 && !isalnum (encoded[i + op_len]))
1002 strcpy (decoded + j, ada_opname_table[k].decoded);
1005 j += strlen (ada_opname_table[k].decoded);
1009 if (ada_opname_table[k].encoded != NULL)
1014 /* Replace "TK__" with "__", which will eventually be translated
1015 into "." (just below). */
1017 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1020 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1021 be translated into "." (just below). These are internal names
1022 generated for anonymous blocks inside which our symbol is nested. */
1024 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1025 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1026 && isdigit (encoded [i+4]))
1030 while (k < len0 && isdigit (encoded[k]))
1031 k++; /* Skip any extra digit. */
1033 /* Double-check that the "__B_{DIGITS}+" sequence we found
1034 is indeed followed by "__". */
1035 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1039 /* Remove _E{DIGITS}+[sb] */
1041 /* Just as for protected object subprograms, there are 2 categories
1042 of subprograms created by the compiler for each entry. The first
1043 one implements the actual entry code, and has a suffix following
1044 the convention above; the second one implements the barrier and
1045 uses the same convention as above, except that the 'E' is replaced
1048 Just as above, we do not decode the name of barrier functions
1049 to give the user a clue that the code he is debugging has been
1050 internally generated. */
1052 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1053 && isdigit (encoded[i+2]))
1057 while (k < len0 && isdigit (encoded[k]))
1061 && (encoded[k] == 'b' || encoded[k] == 's'))
1064 /* Just as an extra precaution, make sure that if this
1065 suffix is followed by anything else, it is a '_'.
1066 Otherwise, we matched this sequence by accident. */
1068 || (k < len0 && encoded[k] == '_'))
1073 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1074 the GNAT front-end in protected object subprograms. */
1077 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1079 /* Backtrack a bit up until we reach either the begining of
1080 the encoded name, or "__". Make sure that we only find
1081 digits or lowercase characters. */
1082 const char *ptr = encoded + i - 1;
1084 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1087 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1091 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1093 /* This is a X[bn]* sequence not separated from the previous
1094 part of the name with a non-alpha-numeric character (in other
1095 words, immediately following an alpha-numeric character), then
1096 verify that it is placed at the end of the encoded name. If
1097 not, then the encoding is not valid and we should abort the
1098 decoding. Otherwise, just skip it, it is used in body-nested
1102 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1106 else if (!ADA_RETAIN_DOTS
1107 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1109 /* Replace '__' by '.'. */
1117 /* It's a character part of the decoded name, so just copy it
1119 decoded[j] = encoded[i];
1124 decoded[j] = '\000';
1126 /* Decoded names should never contain any uppercase character.
1127 Double-check this, and abort the decoding if we find one. */
1129 for (i = 0; decoded[i] != '\0'; i += 1)
1130 if (isupper (decoded[i]) || decoded[i] == ' ')
1133 if (strcmp (decoded, encoded) == 0)
1139 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1140 decoded = decoding_buffer;
1141 if (encoded[0] == '<')
1142 strcpy (decoded, encoded);
1144 sprintf (decoded, "<%s>", encoded);
1149 /* Table for keeping permanent unique copies of decoded names. Once
1150 allocated, names in this table are never released. While this is a
1151 storage leak, it should not be significant unless there are massive
1152 changes in the set of decoded names in successive versions of a
1153 symbol table loaded during a single session. */
1154 static struct htab *decoded_names_store;
1156 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1157 in the language-specific part of GSYMBOL, if it has not been
1158 previously computed. Tries to save the decoded name in the same
1159 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1160 in any case, the decoded symbol has a lifetime at least that of
1162 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1163 const, but nevertheless modified to a semantically equivalent form
1164 when a decoded name is cached in it.
1168 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1171 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1172 if (*resultp == NULL)
1174 const char *decoded = ada_decode (gsymbol->name);
1175 if (gsymbol->bfd_section != NULL)
1177 bfd *obfd = gsymbol->bfd_section->owner;
1180 struct objfile *objf;
1183 if (obfd == objf->obfd)
1185 *resultp = obsavestring (decoded, strlen (decoded),
1186 &objf->objfile_obstack);
1192 /* Sometimes, we can't find a corresponding objfile, in which
1193 case, we put the result on the heap. Since we only decode
1194 when needed, we hope this usually does not cause a
1195 significant memory leak (FIXME). */
1196 if (*resultp == NULL)
1198 char **slot = (char **) htab_find_slot (decoded_names_store,
1201 *slot = xstrdup (decoded);
1210 ada_la_decode (const char *encoded, int options)
1212 return xstrdup (ada_decode (encoded));
1215 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1216 suffixes that encode debugging information or leading _ada_ on
1217 SYM_NAME (see is_name_suffix commentary for the debugging
1218 information that is ignored). If WILD, then NAME need only match a
1219 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1220 either argument is NULL. */
1223 ada_match_name (const char *sym_name, const char *name, int wild)
1225 if (sym_name == NULL || name == NULL)
1228 return wild_match (name, strlen (name), sym_name);
1231 int len_name = strlen (name);
1232 return (strncmp (sym_name, name, len_name) == 0
1233 && is_name_suffix (sym_name + len_name))
1234 || (strncmp (sym_name, "_ada_", 5) == 0
1235 && strncmp (sym_name + 5, name, len_name) == 0
1236 && is_name_suffix (sym_name + len_name + 5));
1240 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1241 suppressed in info listings. */
1244 ada_suppress_symbol_printing (struct symbol *sym)
1246 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1249 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1255 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1257 static char *bound_name[] = {
1258 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1259 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1262 /* Maximum number of array dimensions we are prepared to handle. */
1264 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1266 /* Like modify_field, but allows bitpos > wordlength. */
1269 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1271 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1275 /* The desc_* routines return primitive portions of array descriptors
1278 /* The descriptor or array type, if any, indicated by TYPE; removes
1279 level of indirection, if needed. */
1281 static struct type *
1282 desc_base_type (struct type *type)
1286 type = ada_check_typedef (type);
1288 && (TYPE_CODE (type) == TYPE_CODE_PTR
1289 || TYPE_CODE (type) == TYPE_CODE_REF))
1290 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1295 /* True iff TYPE indicates a "thin" array pointer type. */
1298 is_thin_pntr (struct type *type)
1301 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1302 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1305 /* The descriptor type for thin pointer type TYPE. */
1307 static struct type *
1308 thin_descriptor_type (struct type *type)
1310 struct type *base_type = desc_base_type (type);
1311 if (base_type == NULL)
1313 if (is_suffix (ada_type_name (base_type), "___XVE"))
1317 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1318 if (alt_type == NULL)
1325 /* A pointer to the array data for thin-pointer value VAL. */
1327 static struct value *
1328 thin_data_pntr (struct value *val)
1330 struct type *type = value_type (val);
1331 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1332 return value_cast (desc_data_type (thin_descriptor_type (type)),
1335 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1336 VALUE_ADDRESS (val) + value_offset (val));
1339 /* True iff TYPE indicates a "thick" array pointer type. */
1342 is_thick_pntr (struct type *type)
1344 type = desc_base_type (type);
1345 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1346 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1349 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1350 pointer to one, the type of its bounds data; otherwise, NULL. */
1352 static struct type *
1353 desc_bounds_type (struct type *type)
1357 type = desc_base_type (type);
1361 else if (is_thin_pntr (type))
1363 type = thin_descriptor_type (type);
1366 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1368 return ada_check_typedef (r);
1370 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1372 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1374 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1379 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1380 one, a pointer to its bounds data. Otherwise NULL. */
1382 static struct value *
1383 desc_bounds (struct value *arr)
1385 struct type *type = ada_check_typedef (value_type (arr));
1386 if (is_thin_pntr (type))
1388 struct type *bounds_type =
1389 desc_bounds_type (thin_descriptor_type (type));
1392 if (bounds_type == NULL)
1393 error (_("Bad GNAT array descriptor"));
1395 /* NOTE: The following calculation is not really kosher, but
1396 since desc_type is an XVE-encoded type (and shouldn't be),
1397 the correct calculation is a real pain. FIXME (and fix GCC). */
1398 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1399 addr = value_as_long (arr);
1401 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1404 value_from_longest (lookup_pointer_type (bounds_type),
1405 addr - TYPE_LENGTH (bounds_type));
1408 else if (is_thick_pntr (type))
1409 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1410 _("Bad GNAT array descriptor"));
1415 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1416 position of the field containing the address of the bounds data. */
1419 fat_pntr_bounds_bitpos (struct type *type)
1421 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 size of the field containing the address of the bounds data. */
1428 fat_pntr_bounds_bitsize (struct type *type)
1430 type = desc_base_type (type);
1432 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1433 return TYPE_FIELD_BITSIZE (type, 1);
1435 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1438 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1439 pointer to one, the type of its array data (a
1440 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1441 ada_type_of_array to get an array type with bounds data. */
1443 static struct type *
1444 desc_data_type (struct type *type)
1446 type = desc_base_type (type);
1448 /* NOTE: The following is bogus; see comment in desc_bounds. */
1449 if (is_thin_pntr (type))
1450 return lookup_pointer_type
1451 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1452 else if (is_thick_pntr (type))
1453 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1458 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1461 static struct value *
1462 desc_data (struct value *arr)
1464 struct type *type = value_type (arr);
1465 if (is_thin_pntr (type))
1466 return thin_data_pntr (arr);
1467 else if (is_thick_pntr (type))
1468 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1469 _("Bad GNAT array descriptor"));
1475 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1476 position of the field containing the address of the data. */
1479 fat_pntr_data_bitpos (struct type *type)
1481 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1484 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1485 size of the field containing the address of the data. */
1488 fat_pntr_data_bitsize (struct type *type)
1490 type = desc_base_type (type);
1492 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1493 return TYPE_FIELD_BITSIZE (type, 0);
1495 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1498 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1499 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1500 bound, if WHICH is 1. The first bound is I=1. */
1502 static struct value *
1503 desc_one_bound (struct value *bounds, int i, int which)
1505 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1506 _("Bad GNAT array descriptor bounds"));
1509 /* If BOUNDS is an array-bounds structure type, return the bit position
1510 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1511 bound, if WHICH is 1. The first bound is I=1. */
1514 desc_bound_bitpos (struct type *type, int i, int which)
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1519 /* If BOUNDS is an array-bounds structure type, return the bit field size
1520 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1521 bound, if WHICH is 1. The first bound is I=1. */
1524 desc_bound_bitsize (struct type *type, int i, int which)
1526 type = desc_base_type (type);
1528 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1529 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1531 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1534 /* If TYPE is the type of an array-bounds structure, the type of its
1535 Ith bound (numbering from 1). Otherwise, NULL. */
1537 static struct type *
1538 desc_index_type (struct type *type, int i)
1540 type = desc_base_type (type);
1542 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1543 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1548 /* The number of index positions in the array-bounds type TYPE.
1549 Return 0 if TYPE is NULL. */
1552 desc_arity (struct type *type)
1554 type = desc_base_type (type);
1557 return TYPE_NFIELDS (type) / 2;
1561 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1562 an array descriptor type (representing an unconstrained array
1566 ada_is_direct_array_type (struct type *type)
1570 type = ada_check_typedef (type);
1571 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1572 || ada_is_array_descriptor_type (type));
1575 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1579 ada_is_array_type (struct type *type)
1582 && (TYPE_CODE (type) == TYPE_CODE_PTR
1583 || TYPE_CODE (type) == TYPE_CODE_REF))
1584 type = TYPE_TARGET_TYPE (type);
1585 return ada_is_direct_array_type (type);
1588 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1591 ada_is_simple_array_type (struct type *type)
1595 type = ada_check_typedef (type);
1596 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1597 || (TYPE_CODE (type) == TYPE_CODE_PTR
1598 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1601 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1604 ada_is_array_descriptor_type (struct type *type)
1606 struct type *data_type = desc_data_type (type);
1610 type = ada_check_typedef (type);
1613 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1614 && TYPE_TARGET_TYPE (data_type) != NULL
1615 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1616 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1617 && desc_arity (desc_bounds_type (type)) > 0;
1620 /* Non-zero iff type is a partially mal-formed GNAT array
1621 descriptor. FIXME: This is to compensate for some problems with
1622 debugging output from GNAT. Re-examine periodically to see if it
1626 ada_is_bogus_array_descriptor (struct type *type)
1630 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1631 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1632 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1633 && !ada_is_array_descriptor_type (type);
1637 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1638 (fat pointer) returns the type of the array data described---specifically,
1639 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1640 in from the descriptor; otherwise, they are left unspecified. If
1641 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1642 returns NULL. The result is simply the type of ARR if ARR is not
1645 ada_type_of_array (struct value *arr, int bounds)
1647 if (ada_is_packed_array_type (value_type (arr)))
1648 return decode_packed_array_type (value_type (arr));
1650 if (!ada_is_array_descriptor_type (value_type (arr)))
1651 return value_type (arr);
1655 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1658 struct type *elt_type;
1660 struct value *descriptor;
1661 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1663 elt_type = ada_array_element_type (value_type (arr), -1);
1664 arity = ada_array_arity (value_type (arr));
1666 if (elt_type == NULL || arity == 0)
1667 return ada_check_typedef (value_type (arr));
1669 descriptor = desc_bounds (arr);
1670 if (value_as_long (descriptor) == 0)
1674 struct type *range_type = alloc_type (objf);
1675 struct type *array_type = alloc_type (objf);
1676 struct value *low = desc_one_bound (descriptor, arity, 0);
1677 struct value *high = desc_one_bound (descriptor, arity, 1);
1680 create_range_type (range_type, value_type (low),
1681 longest_to_int (value_as_long (low)),
1682 longest_to_int (value_as_long (high)));
1683 elt_type = create_array_type (array_type, elt_type, range_type);
1686 return lookup_pointer_type (elt_type);
1690 /* If ARR does not represent an array, returns ARR unchanged.
1691 Otherwise, returns either a standard GDB array with bounds set
1692 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1693 GDB array. Returns NULL if ARR is a null fat pointer. */
1696 ada_coerce_to_simple_array_ptr (struct value *arr)
1698 if (ada_is_array_descriptor_type (value_type (arr)))
1700 struct type *arrType = ada_type_of_array (arr, 1);
1701 if (arrType == NULL)
1703 return value_cast (arrType, value_copy (desc_data (arr)));
1705 else if (ada_is_packed_array_type (value_type (arr)))
1706 return decode_packed_array (arr);
1711 /* If ARR does not represent an array, returns ARR unchanged.
1712 Otherwise, returns a standard GDB array describing ARR (which may
1713 be ARR itself if it already is in the proper form). */
1715 static struct value *
1716 ada_coerce_to_simple_array (struct value *arr)
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1720 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1722 error (_("Bounds unavailable for null array pointer."));
1723 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1724 return value_ind (arrVal);
1726 else if (ada_is_packed_array_type (value_type (arr)))
1727 return decode_packed_array (arr);
1732 /* If TYPE represents a GNAT array type, return it translated to an
1733 ordinary GDB array type (possibly with BITSIZE fields indicating
1734 packing). For other types, is the identity. */
1737 ada_coerce_to_simple_array_type (struct type *type)
1739 struct value *mark = value_mark ();
1740 struct value *dummy = value_from_longest (builtin_type_long, 0);
1741 struct type *result;
1742 deprecated_set_value_type (dummy, type);
1743 result = ada_type_of_array (dummy, 0);
1744 value_free_to_mark (mark);
1748 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1751 ada_is_packed_array_type (struct type *type)
1755 type = desc_base_type (type);
1756 type = ada_check_typedef (type);
1758 ada_type_name (type) != NULL
1759 && strstr (ada_type_name (type), "___XP") != NULL;
1762 /* Given that TYPE is a standard GDB array type with all bounds filled
1763 in, and that the element size of its ultimate scalar constituents
1764 (that is, either its elements, or, if it is an array of arrays, its
1765 elements' elements, etc.) is *ELT_BITS, return an identical type,
1766 but with the bit sizes of its elements (and those of any
1767 constituent arrays) recorded in the BITSIZE components of its
1768 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1771 static struct type *
1772 packed_array_type (struct type *type, long *elt_bits)
1774 struct type *new_elt_type;
1775 struct type *new_type;
1776 LONGEST low_bound, high_bound;
1778 type = ada_check_typedef (type);
1779 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1782 new_type = alloc_type (TYPE_OBJFILE (type));
1783 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1785 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1786 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1787 TYPE_NAME (new_type) = ada_type_name (type);
1789 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1790 &low_bound, &high_bound) < 0)
1791 low_bound = high_bound = 0;
1792 if (high_bound < low_bound)
1793 *elt_bits = TYPE_LENGTH (new_type) = 0;
1796 *elt_bits *= (high_bound - low_bound + 1);
1797 TYPE_LENGTH (new_type) =
1798 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1801 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1805 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1807 static struct type *
1808 decode_packed_array_type (struct type *type)
1811 struct block **blocks;
1812 char *raw_name = ada_type_name (ada_check_typedef (type));
1815 struct type *shadow_type;
1820 raw_name = ada_type_name (desc_base_type (type));
1825 name = (char *) alloca (strlen (raw_name) + 1);
1826 tail = strstr (raw_name, "___XP");
1827 type = desc_base_type (type);
1829 memcpy (name, raw_name, tail - raw_name);
1830 name[tail - raw_name] = '\000';
1832 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1833 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1835 lim_warning (_("could not find bounds information on packed array"));
1838 shadow_type = SYMBOL_TYPE (sym);
1840 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1842 lim_warning (_("could not understand bounds information on packed array"));
1846 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1849 (_("could not understand bit size information on packed array"));
1853 return packed_array_type (shadow_type, &bits);
1856 /* Given that ARR is a struct value *indicating a GNAT packed array,
1857 returns a simple array that denotes that array. Its type is a
1858 standard GDB array type except that the BITSIZEs of the array
1859 target types are set to the number of bits in each element, and the
1860 type length is set appropriately. */
1862 static struct value *
1863 decode_packed_array (struct value *arr)
1867 arr = ada_coerce_ref (arr);
1868 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1869 arr = ada_value_ind (arr);
1871 type = decode_packed_array_type (value_type (arr));
1874 error (_("can't unpack array"));
1878 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1880 /* This is a (right-justified) modular type representing a packed
1881 array with no wrapper. In order to interpret the value through
1882 the (left-justified) packed array type we just built, we must
1883 first left-justify it. */
1884 int bit_size, bit_pos;
1887 mod = ada_modulus (value_type (arr)) - 1;
1894 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1895 arr = ada_value_primitive_packed_val (arr, NULL,
1896 bit_pos / HOST_CHAR_BIT,
1897 bit_pos % HOST_CHAR_BIT,
1902 return coerce_unspec_val_to_type (arr, type);
1906 /* The value of the element of packed array ARR at the ARITY indices
1907 given in IND. ARR must be a simple array. */
1909 static struct value *
1910 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1913 int bits, elt_off, bit_off;
1914 long elt_total_bit_offset;
1915 struct type *elt_type;
1919 elt_total_bit_offset = 0;
1920 elt_type = ada_check_typedef (value_type (arr));
1921 for (i = 0; i < arity; i += 1)
1923 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1924 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1926 (_("attempt to do packed indexing of something other than a packed array"));
1929 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1930 LONGEST lowerbound, upperbound;
1933 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1935 lim_warning (_("don't know bounds of array"));
1936 lowerbound = upperbound = 0;
1939 idx = value_as_long (value_pos_atr (ind[i]));
1940 if (idx < lowerbound || idx > upperbound)
1941 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1942 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1943 elt_total_bit_offset += (idx - lowerbound) * bits;
1944 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1947 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1948 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1950 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1955 /* Non-zero iff TYPE includes negative integer values. */
1958 has_negatives (struct type *type)
1960 switch (TYPE_CODE (type))
1965 return !TYPE_UNSIGNED (type);
1966 case TYPE_CODE_RANGE:
1967 return TYPE_LOW_BOUND (type) < 0;
1972 /* Create a new value of type TYPE from the contents of OBJ starting
1973 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1974 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1975 assigning through the result will set the field fetched from.
1976 VALADDR is ignored unless OBJ is NULL, in which case,
1977 VALADDR+OFFSET must address the start of storage containing the
1978 packed value. The value returned in this case is never an lval.
1979 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1982 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1983 long offset, int bit_offset, int bit_size,
1987 int src, /* Index into the source area */
1988 targ, /* Index into the target area */
1989 srcBitsLeft, /* Number of source bits left to move */
1990 nsrc, ntarg, /* Number of source and target bytes */
1991 unusedLS, /* Number of bits in next significant
1992 byte of source that are unused */
1993 accumSize; /* Number of meaningful bits in accum */
1994 unsigned char *bytes; /* First byte containing data to unpack */
1995 unsigned char *unpacked;
1996 unsigned long accum; /* Staging area for bits being transferred */
1998 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1999 /* Transmit bytes from least to most significant; delta is the direction
2000 the indices move. */
2001 int delta = BITS_BIG_ENDIAN ? -1 : 1;
2003 type = ada_check_typedef (type);
2007 v = allocate_value (type);
2008 bytes = (unsigned char *) (valaddr + offset);
2010 else if (value_lazy (obj))
2013 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2014 bytes = (unsigned char *) alloca (len);
2015 read_memory (VALUE_ADDRESS (v), bytes, len);
2019 v = allocate_value (type);
2020 bytes = (unsigned char *) value_contents (obj) + offset;
2025 VALUE_LVAL (v) = VALUE_LVAL (obj);
2026 if (VALUE_LVAL (obj) == lval_internalvar)
2027 VALUE_LVAL (v) = lval_internalvar_component;
2028 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2029 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2030 set_value_bitsize (v, bit_size);
2031 if (value_bitpos (v) >= HOST_CHAR_BIT)
2033 VALUE_ADDRESS (v) += 1;
2034 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2038 set_value_bitsize (v, bit_size);
2039 unpacked = (unsigned char *) value_contents (v);
2041 srcBitsLeft = bit_size;
2043 ntarg = TYPE_LENGTH (type);
2047 memset (unpacked, 0, TYPE_LENGTH (type));
2050 else if (BITS_BIG_ENDIAN)
2053 if (has_negatives (type)
2054 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2058 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2061 switch (TYPE_CODE (type))
2063 case TYPE_CODE_ARRAY:
2064 case TYPE_CODE_UNION:
2065 case TYPE_CODE_STRUCT:
2066 /* Non-scalar values must be aligned at a byte boundary... */
2068 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2069 /* ... And are placed at the beginning (most-significant) bytes
2071 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2075 targ = TYPE_LENGTH (type) - 1;
2081 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2084 unusedLS = bit_offset;
2087 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2094 /* Mask for removing bits of the next source byte that are not
2095 part of the value. */
2096 unsigned int unusedMSMask =
2097 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2099 /* Sign-extend bits for this byte. */
2100 unsigned int signMask = sign & ~unusedMSMask;
2102 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2103 accumSize += HOST_CHAR_BIT - unusedLS;
2104 if (accumSize >= HOST_CHAR_BIT)
2106 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2107 accumSize -= HOST_CHAR_BIT;
2108 accum >>= HOST_CHAR_BIT;
2112 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2119 accum |= sign << accumSize;
2120 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2121 accumSize -= HOST_CHAR_BIT;
2122 accum >>= HOST_CHAR_BIT;
2130 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2131 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2134 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2135 int src_offset, int n)
2137 unsigned int accum, mask;
2138 int accum_bits, chunk_size;
2140 target += targ_offset / HOST_CHAR_BIT;
2141 targ_offset %= HOST_CHAR_BIT;
2142 source += src_offset / HOST_CHAR_BIT;
2143 src_offset %= HOST_CHAR_BIT;
2144 if (BITS_BIG_ENDIAN)
2146 accum = (unsigned char) *source;
2148 accum_bits = HOST_CHAR_BIT - src_offset;
2153 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2154 accum_bits += HOST_CHAR_BIT;
2156 chunk_size = HOST_CHAR_BIT - targ_offset;
2159 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2160 mask = ((1 << chunk_size) - 1) << unused_right;
2163 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2165 accum_bits -= chunk_size;
2172 accum = (unsigned char) *source >> src_offset;
2174 accum_bits = HOST_CHAR_BIT - src_offset;
2178 accum = accum + ((unsigned char) *source << accum_bits);
2179 accum_bits += HOST_CHAR_BIT;
2181 chunk_size = HOST_CHAR_BIT - targ_offset;
2184 mask = ((1 << chunk_size) - 1) << targ_offset;
2185 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2187 accum_bits -= chunk_size;
2188 accum >>= chunk_size;
2195 /* Store the contents of FROMVAL into the location of TOVAL.
2196 Return a new value with the location of TOVAL and contents of
2197 FROMVAL. Handles assignment into packed fields that have
2198 floating-point or non-scalar types. */
2200 static struct value *
2201 ada_value_assign (struct value *toval, struct value *fromval)
2203 struct type *type = value_type (toval);
2204 int bits = value_bitsize (toval);
2206 toval = ada_coerce_ref (toval);
2207 fromval = ada_coerce_ref (fromval);
2209 if (ada_is_direct_array_type (value_type (toval)))
2210 toval = ada_coerce_to_simple_array (toval);
2211 if (ada_is_direct_array_type (value_type (fromval)))
2212 fromval = ada_coerce_to_simple_array (fromval);
2214 if (!deprecated_value_modifiable (toval))
2215 error (_("Left operand of assignment is not a modifiable lvalue."));
2217 if (VALUE_LVAL (toval) == lval_memory
2219 && (TYPE_CODE (type) == TYPE_CODE_FLT
2220 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2222 int len = (value_bitpos (toval)
2223 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2224 char *buffer = (char *) alloca (len);
2226 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2228 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2229 fromval = value_cast (type, fromval);
2231 read_memory (to_addr, buffer, len);
2232 if (BITS_BIG_ENDIAN)
2233 move_bits (buffer, value_bitpos (toval),
2234 value_contents (fromval),
2235 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2238 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2240 write_memory (to_addr, buffer, len);
2241 if (deprecated_memory_changed_hook)
2242 deprecated_memory_changed_hook (to_addr, len);
2244 val = value_copy (toval);
2245 memcpy (value_contents_raw (val), value_contents (fromval),
2246 TYPE_LENGTH (type));
2247 deprecated_set_value_type (val, type);
2252 return value_assign (toval, fromval);
2256 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2257 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2258 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2259 * COMPONENT, and not the inferior's memory. The current contents
2260 * of COMPONENT are ignored. */
2262 value_assign_to_component (struct value *container, struct value *component,
2265 LONGEST offset_in_container =
2266 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2267 - VALUE_ADDRESS (container) - value_offset (container));
2268 int bit_offset_in_container =
2269 value_bitpos (component) - value_bitpos (container);
2272 val = value_cast (value_type (component), val);
2274 if (value_bitsize (component) == 0)
2275 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2277 bits = value_bitsize (component);
2279 if (BITS_BIG_ENDIAN)
2280 move_bits (value_contents_writeable (container) + offset_in_container,
2281 value_bitpos (container) + bit_offset_in_container,
2282 value_contents (val),
2283 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2286 move_bits (value_contents_writeable (container) + offset_in_container,
2287 value_bitpos (container) + bit_offset_in_container,
2288 value_contents (val), 0, bits);
2291 /* The value of the element of array ARR at the ARITY indices given in IND.
2292 ARR may be either a simple array, GNAT array descriptor, or pointer
2296 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2300 struct type *elt_type;
2302 elt = ada_coerce_to_simple_array (arr);
2304 elt_type = ada_check_typedef (value_type (elt));
2305 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2306 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2307 return value_subscript_packed (elt, arity, ind);
2309 for (k = 0; k < arity; k += 1)
2311 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2312 error (_("too many subscripts (%d expected)"), k);
2313 elt = value_subscript (elt, value_pos_atr (ind[k]));
2318 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2319 value of the element of *ARR at the ARITY indices given in
2320 IND. Does not read the entire array into memory. */
2323 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2328 for (k = 0; k < arity; k += 1)
2333 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2334 error (_("too many subscripts (%d expected)"), k);
2335 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2337 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2338 idx = value_pos_atr (ind[k]);
2340 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2341 arr = value_add (arr, idx);
2342 type = TYPE_TARGET_TYPE (type);
2345 return value_ind (arr);
2348 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2349 actual type of ARRAY_PTR is ignored), returns a reference to
2350 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2351 bound of this array is LOW, as per Ada rules. */
2352 static struct value *
2353 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2356 CORE_ADDR base = value_as_address (array_ptr)
2357 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2358 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2359 struct type *index_type =
2360 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2362 struct type *slice_type =
2363 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2364 return value_from_pointer (lookup_reference_type (slice_type), base);
2368 static struct value *
2369 ada_value_slice (struct value *array, int low, int high)
2371 struct type *type = value_type (array);
2372 struct type *index_type =
2373 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2374 struct type *slice_type =
2375 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2376 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2379 /* If type is a record type in the form of a standard GNAT array
2380 descriptor, returns the number of dimensions for type. If arr is a
2381 simple array, returns the number of "array of"s that prefix its
2382 type designation. Otherwise, returns 0. */
2385 ada_array_arity (struct type *type)
2392 type = desc_base_type (type);
2395 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2396 return desc_arity (desc_bounds_type (type));
2398 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2407 /* If TYPE is a record type in the form of a standard GNAT array
2408 descriptor or a simple array type, returns the element type for
2409 TYPE after indexing by NINDICES indices, or by all indices if
2410 NINDICES is -1. Otherwise, returns NULL. */
2413 ada_array_element_type (struct type *type, int nindices)
2415 type = desc_base_type (type);
2417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2420 struct type *p_array_type;
2422 p_array_type = desc_data_type (type);
2424 k = ada_array_arity (type);
2428 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2429 if (nindices >= 0 && k > nindices)
2431 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2432 while (k > 0 && p_array_type != NULL)
2434 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2437 return p_array_type;
2439 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2441 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2443 type = TYPE_TARGET_TYPE (type);
2452 /* The type of nth index in arrays of given type (n numbering from 1).
2453 Does not examine memory. */
2456 ada_index_type (struct type *type, int n)
2458 struct type *result_type;
2460 type = desc_base_type (type);
2462 if (n > ada_array_arity (type))
2465 if (ada_is_simple_array_type (type))
2469 for (i = 1; i < n; i += 1)
2470 type = TYPE_TARGET_TYPE (type);
2471 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2472 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2473 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2474 perhaps stabsread.c would make more sense. */
2475 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2476 result_type = builtin_type_int;
2481 return desc_index_type (desc_bounds_type (type), n);
2484 /* Given that arr is an array type, returns the lower bound of the
2485 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2486 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2487 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2488 bounds type. It works for other arrays with bounds supplied by
2489 run-time quantities other than discriminants. */
2492 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2493 struct type ** typep)
2496 struct type *index_type_desc;
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2504 *typep = builtin_type_int;
2505 return (LONGEST) - which;
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
2514 if (index_type_desc == NULL)
2516 struct type *index_type;
2520 type = TYPE_TARGET_TYPE (type);
2524 index_type = TYPE_INDEX_TYPE (type);
2526 *typep = index_type;
2528 /* The index type is either a range type or an enumerated type.
2529 For the range type, we have some macros that allow us to
2530 extract the value of the low and high bounds. But they
2531 do now work for enumerated types. The expressions used
2532 below work for both range and enum types. */
2534 (LONGEST) (which == 0
2535 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1));
2541 struct type *index_type =
2542 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2543 NULL, TYPE_OBJFILE (arr_type));
2546 *typep = index_type;
2549 (LONGEST) (which == 0
2550 ? TYPE_LOW_BOUND (index_type)
2551 : TYPE_HIGH_BOUND (index_type));
2555 /* Given that arr is an array value, returns the lower bound of the
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
2558 supplied by run-time quantities other than discriminants. */
2561 ada_array_bound (struct value *arr, int n, int which)
2563 struct type *arr_type = value_type (arr);
2565 if (ada_is_packed_array_type (arr_type))
2566 return ada_array_bound (decode_packed_array (arr), n, which);
2567 else if (ada_is_simple_array_type (arr_type))
2570 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2571 return value_from_longest (type, v);
2574 return desc_one_bound (desc_bounds (arr), n, which);
2577 /* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
2584 ada_array_length (struct value *arr, int n)
2586 struct type *arr_type = ada_check_typedef (value_type (arr));
2588 if (ada_is_packed_array_type (arr_type))
2589 return ada_array_length (decode_packed_array (arr), n);
2591 if (ada_is_simple_array_type (arr_type))
2595 ada_array_bound_from_type (arr_type, n, 1, &type) -
2596 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2597 return value_from_longest (type, v);
2601 value_from_longest (builtin_type_int,
2602 value_as_long (desc_one_bound (desc_bounds (arr),
2604 - value_as_long (desc_one_bound (desc_bounds (arr),
2608 /* An empty array whose type is that of ARR_TYPE (an array type),
2609 with bounds LOW to LOW-1. */
2611 static struct value *
2612 empty_array (struct type *arr_type, int low)
2614 struct type *index_type =
2615 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2617 struct type *elt_type = ada_array_element_type (arr_type, 1);
2618 return allocate_value (create_array_type (NULL, elt_type, index_type));
2622 /* Name resolution */
2624 /* The "decoded" name for the user-definable Ada operator corresponding
2628 ada_decoded_op_name (enum exp_opcode op)
2632 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2634 if (ada_opname_table[i].op == op)
2635 return ada_opname_table[i].decoded;
2637 error (_("Could not find operator name for opcode"));
2641 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2642 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2643 undefined namespace) and converts operators that are
2644 user-defined into appropriate function calls. If CONTEXT_TYPE is
2645 non-null, it provides a preferred result type [at the moment, only
2646 type void has any effect---causing procedures to be preferred over
2647 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2648 return type is preferred. May change (expand) *EXP. */
2651 resolve (struct expression **expp, int void_context_p)
2655 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2658 /* Resolve the operator of the subexpression beginning at
2659 position *POS of *EXPP. "Resolving" consists of replacing
2660 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2661 with their resolutions, replacing built-in operators with
2662 function calls to user-defined operators, where appropriate, and,
2663 when DEPROCEDURE_P is non-zero, converting function-valued variables
2664 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2665 are as in ada_resolve, above. */
2667 static struct value *
2668 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2669 struct type *context_type)
2673 struct expression *exp; /* Convenience: == *expp. */
2674 enum exp_opcode op = (*expp)->elts[pc].opcode;
2675 struct value **argvec; /* Vector of operand types (alloca'ed). */
2676 int nargs; /* Number of operands. */
2683 /* Pass one: resolve operands, saving their types and updating *pos,
2688 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2689 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2694 resolve_subexp (expp, pos, 0, NULL);
2696 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2701 resolve_subexp (expp, pos, 0, NULL);
2706 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2709 case OP_ATR_MODULUS:
2719 case TERNOP_IN_RANGE:
2720 case BINOP_IN_BOUNDS:
2726 case OP_DISCRETE_RANGE:
2728 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2737 arg1 = resolve_subexp (expp, pos, 0, NULL);
2739 resolve_subexp (expp, pos, 1, NULL);
2741 resolve_subexp (expp, pos, 1, value_type (arg1));
2758 case BINOP_LOGICAL_AND:
2759 case BINOP_LOGICAL_OR:
2760 case BINOP_BITWISE_AND:
2761 case BINOP_BITWISE_IOR:
2762 case BINOP_BITWISE_XOR:
2765 case BINOP_NOTEQUAL:
2772 case BINOP_SUBSCRIPT:
2780 case UNOP_LOGICAL_NOT:
2796 case OP_INTERNALVAR:
2806 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2809 case STRUCTOP_STRUCT:
2810 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2823 error (_("Unexpected operator during name resolution"));
2826 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2827 for (i = 0; i < nargs; i += 1)
2828 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2832 /* Pass two: perform any resolution on principal operator. */
2839 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2841 struct ada_symbol_info *candidates;
2845 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2846 (exp->elts[pc + 2].symbol),
2847 exp->elts[pc + 1].block, VAR_DOMAIN,
2850 if (n_candidates > 1)
2852 /* Types tend to get re-introduced locally, so if there
2853 are any local symbols that are not types, first filter
2856 for (j = 0; j < n_candidates; j += 1)
2857 switch (SYMBOL_CLASS (candidates[j].sym))
2863 case LOC_REGPARM_ADDR:
2867 case LOC_BASEREG_ARG:
2869 case LOC_COMPUTED_ARG:
2875 if (j < n_candidates)
2878 while (j < n_candidates)
2880 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2882 candidates[j] = candidates[n_candidates - 1];
2891 if (n_candidates == 0)
2892 error (_("No definition found for %s"),
2893 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2894 else if (n_candidates == 1)
2896 else if (deprocedure_p
2897 && !is_nonfunction (candidates, n_candidates))
2899 i = ada_resolve_function
2900 (candidates, n_candidates, NULL, 0,
2901 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2904 error (_("Could not find a match for %s"),
2905 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2909 printf_filtered (_("Multiple matches for %s\n"),
2910 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2911 user_select_syms (candidates, n_candidates, 1);
2915 exp->elts[pc + 1].block = candidates[i].block;
2916 exp->elts[pc + 2].symbol = candidates[i].sym;
2917 if (innermost_block == NULL
2918 || contained_in (candidates[i].block, innermost_block))
2919 innermost_block = candidates[i].block;
2923 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2926 replace_operator_with_call (expp, pc, 0, 0,
2927 exp->elts[pc + 2].symbol,
2928 exp->elts[pc + 1].block);
2935 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2936 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2938 struct ada_symbol_info *candidates;
2942 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2943 (exp->elts[pc + 5].symbol),
2944 exp->elts[pc + 4].block, VAR_DOMAIN,
2946 if (n_candidates == 1)
2950 i = ada_resolve_function
2951 (candidates, n_candidates,
2953 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2956 error (_("Could not find a match for %s"),
2957 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2960 exp->elts[pc + 4].block = candidates[i].block;
2961 exp->elts[pc + 5].symbol = candidates[i].sym;
2962 if (innermost_block == NULL
2963 || contained_in (candidates[i].block, innermost_block))
2964 innermost_block = candidates[i].block;
2975 case BINOP_BITWISE_AND:
2976 case BINOP_BITWISE_IOR:
2977 case BINOP_BITWISE_XOR:
2979 case BINOP_NOTEQUAL:
2987 case UNOP_LOGICAL_NOT:
2989 if (possible_user_operator_p (op, argvec))
2991 struct ada_symbol_info *candidates;
2995 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2996 (struct block *) NULL, VAR_DOMAIN,
2998 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2999 ada_decoded_op_name (op), NULL);
3003 replace_operator_with_call (expp, pc, nargs, 1,
3004 candidates[i].sym, candidates[i].block);
3015 return evaluate_subexp_type (exp, pos);
3018 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3019 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3020 a non-pointer. A type of 'void' (which is never a valid expression type)
3021 by convention matches anything. */
3022 /* The term "match" here is rather loose. The match is heuristic and
3023 liberal. FIXME: TOO liberal, in fact. */
3026 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3028 ftype = ada_check_typedef (ftype);
3029 atype = ada_check_typedef (atype);
3031 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3032 ftype = TYPE_TARGET_TYPE (ftype);
3033 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3034 atype = TYPE_TARGET_TYPE (atype);
3036 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3037 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3040 switch (TYPE_CODE (ftype))
3045 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3046 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3047 TYPE_TARGET_TYPE (atype), 0);
3050 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3052 case TYPE_CODE_ENUM:
3053 case TYPE_CODE_RANGE:
3054 switch (TYPE_CODE (atype))
3057 case TYPE_CODE_ENUM:
3058 case TYPE_CODE_RANGE:
3064 case TYPE_CODE_ARRAY:
3065 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3066 || ada_is_array_descriptor_type (atype));
3068 case TYPE_CODE_STRUCT:
3069 if (ada_is_array_descriptor_type (ftype))
3070 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3071 || ada_is_array_descriptor_type (atype));
3073 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3074 && !ada_is_array_descriptor_type (atype));
3076 case TYPE_CODE_UNION:
3078 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3082 /* Return non-zero if the formals of FUNC "sufficiently match" the
3083 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3084 may also be an enumeral, in which case it is treated as a 0-
3085 argument function. */
3088 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3091 struct type *func_type = SYMBOL_TYPE (func);
3093 if (SYMBOL_CLASS (func) == LOC_CONST
3094 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3095 return (n_actuals == 0);
3096 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3099 if (TYPE_NFIELDS (func_type) != n_actuals)
3102 for (i = 0; i < n_actuals; i += 1)
3104 if (actuals[i] == NULL)
3108 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3109 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3111 if (!ada_type_match (ftype, atype, 1))
3118 /* False iff function type FUNC_TYPE definitely does not produce a value
3119 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3120 FUNC_TYPE is not a valid function type with a non-null return type
3121 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3124 return_match (struct type *func_type, struct type *context_type)
3126 struct type *return_type;
3128 if (func_type == NULL)
3131 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3132 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3134 return_type = base_type (func_type);
3135 if (return_type == NULL)
3138 context_type = base_type (context_type);
3140 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3141 return context_type == NULL || return_type == context_type;
3142 else if (context_type == NULL)
3143 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3145 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3149 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3150 function (if any) that matches the types of the NARGS arguments in
3151 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3152 that returns that type, then eliminate matches that don't. If
3153 CONTEXT_TYPE is void and there is at least one match that does not
3154 return void, eliminate all matches that do.
3156 Asks the user if there is more than one match remaining. Returns -1
3157 if there is no such symbol or none is selected. NAME is used
3158 solely for messages. May re-arrange and modify SYMS in
3159 the process; the index returned is for the modified vector. */
3162 ada_resolve_function (struct ada_symbol_info syms[],
3163 int nsyms, struct value **args, int nargs,
3164 const char *name, struct type *context_type)
3167 int m; /* Number of hits */
3168 struct type *fallback;
3169 struct type *return_type;
3171 return_type = context_type;
3172 if (context_type == NULL)
3173 fallback = builtin_type_void;
3180 for (k = 0; k < nsyms; k += 1)
3182 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3184 if (ada_args_match (syms[k].sym, args, nargs)
3185 && return_match (type, return_type))
3191 if (m > 0 || return_type == fallback)
3194 return_type = fallback;
3201 printf_filtered (_("Multiple matches for %s\n"), name);
3202 user_select_syms (syms, m, 1);
3208 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3209 in a listing of choices during disambiguation (see sort_choices, below).
3210 The idea is that overloadings of a subprogram name from the
3211 same package should sort in their source order. We settle for ordering
3212 such symbols by their trailing number (__N or $N). */
3215 encoded_ordered_before (char *N0, char *N1)
3219 else if (N0 == NULL)
3224 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3226 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3228 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3229 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3233 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3236 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3238 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3239 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3241 return (strcmp (N0, N1) < 0);
3245 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3249 sort_choices (struct ada_symbol_info syms[], int nsyms)
3252 for (i = 1; i < nsyms; i += 1)
3254 struct ada_symbol_info sym = syms[i];
3257 for (j = i - 1; j >= 0; j -= 1)
3259 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3260 SYMBOL_LINKAGE_NAME (sym.sym)))
3262 syms[j + 1] = syms[j];
3268 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3269 by asking the user (if necessary), returning the number selected,
3270 and setting the first elements of SYMS items. Error if no symbols
3273 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3274 to be re-integrated one of these days. */
3277 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3280 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3282 int first_choice = (max_results == 1) ? 1 : 2;
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3289 printf_unfiltered (_("[0] cancel\n"));
3290 if (max_results > 1)
3291 printf_unfiltered (_("[1] all\n"));
3293 sort_choices (syms, nsyms);
3295 for (i = 0; i < nsyms; i += 1)
3297 if (syms[i].sym == NULL)
3300 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3302 struct symtab_and_line sal =
3303 find_function_start_sal (syms[i].sym, 1);
3304 if (sal.symtab == NULL)
3305 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3307 SYMBOL_PRINT_NAME (syms[i].sym),
3310 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 sal.symtab->filename, sal.line);
3318 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3319 && SYMBOL_TYPE (syms[i].sym) != NULL
3320 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3321 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3323 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3324 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3326 SYMBOL_PRINT_NAME (syms[i].sym),
3327 symtab->filename, SYMBOL_LINE (syms[i].sym));
3328 else if (is_enumeral
3329 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3331 printf_unfiltered (("[%d] "), i + first_choice);
3332 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3334 printf_unfiltered (_("'(%s) (enumeral)\n"),
3335 SYMBOL_PRINT_NAME (syms[i].sym));
3337 else if (symtab != NULL)
3338 printf_unfiltered (is_enumeral
3339 ? _("[%d] %s in %s (enumeral)\n")
3340 : _("[%d] %s at %s:?\n"),
3342 SYMBOL_PRINT_NAME (syms[i].sym),
3345 printf_unfiltered (is_enumeral
3346 ? _("[%d] %s (enumeral)\n")
3347 : _("[%d] %s at ?\n"),
3349 SYMBOL_PRINT_NAME (syms[i].sym));
3353 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3356 for (i = 0; i < n_chosen; i += 1)
3357 syms[i] = syms[chosen[i]];
3362 /* Read and validate a set of numeric choices from the user in the
3363 range 0 .. N_CHOICES-1. Place the results in increasing
3364 order in CHOICES[0 .. N-1], and return N.
3366 The user types choices as a sequence of numbers on one line
3367 separated by blanks, encoding them as follows:
3369 + A choice of 0 means to cancel the selection, throwing an error.
3370 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3371 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3373 The user is not allowed to choose more than MAX_RESULTS values.
3375 ANNOTATION_SUFFIX, if present, is used to annotate the input
3376 prompts (for use with the -f switch). */
3379 get_selections (int *choices, int n_choices, int max_results,
3380 int is_all_choice, char *annotation_suffix)
3385 int first_choice = is_all_choice ? 2 : 1;
3387 prompt = getenv ("PS2");
3391 printf_unfiltered (("%s "), prompt);
3392 gdb_flush (gdb_stdout);
3394 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3397 error_no_arg (_("one or more choice numbers"));
3401 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3402 order, as given in args. Choices are validated. */
3408 while (isspace (*args))
3410 if (*args == '\0' && n_chosen == 0)
3411 error_no_arg (_("one or more choice numbers"));
3412 else if (*args == '\0')
3415 choice = strtol (args, &args2, 10);
3416 if (args == args2 || choice < 0
3417 || choice > n_choices + first_choice - 1)
3418 error (_("Argument must be choice number"));
3422 error (_("cancelled"));
3424 if (choice < first_choice)
3426 n_chosen = n_choices;
3427 for (j = 0; j < n_choices; j += 1)
3431 choice -= first_choice;
3433 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3437 if (j < 0 || choice != choices[j])
3440 for (k = n_chosen - 1; k > j; k -= 1)
3441 choices[k + 1] = choices[k];
3442 choices[j + 1] = choice;
3447 if (n_chosen > max_results)
3448 error (_("Select no more than %d of the above"), max_results);
3453 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3454 on the function identified by SYM and BLOCK, and taking NARGS
3455 arguments. Update *EXPP as needed to hold more space. */
3458 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3459 int oplen, struct symbol *sym,
3460 struct block *block)
3462 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3463 symbol, -oplen for operator being replaced). */
3464 struct expression *newexp = (struct expression *)
3465 xmalloc (sizeof (struct expression)
3466 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3467 struct expression *exp = *expp;
3469 newexp->nelts = exp->nelts + 7 - oplen;
3470 newexp->language_defn = exp->language_defn;
3471 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3472 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3473 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3475 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3476 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3478 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3479 newexp->elts[pc + 4].block = block;
3480 newexp->elts[pc + 5].symbol = sym;
3486 /* Type-class predicates */
3488 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3492 numeric_type_p (struct type *type)
3498 switch (TYPE_CODE (type))
3503 case TYPE_CODE_RANGE:
3504 return (type == TYPE_TARGET_TYPE (type)
3505 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3512 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3515 integer_type_p (struct type *type)
3521 switch (TYPE_CODE (type))
3525 case TYPE_CODE_RANGE:
3526 return (type == TYPE_TARGET_TYPE (type)
3527 || integer_type_p (TYPE_TARGET_TYPE (type)));
3534 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3537 scalar_type_p (struct type *type)
3543 switch (TYPE_CODE (type))
3546 case TYPE_CODE_RANGE:
3547 case TYPE_CODE_ENUM:
3556 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3559 discrete_type_p (struct type *type)
3565 switch (TYPE_CODE (type))
3568 case TYPE_CODE_RANGE:
3569 case TYPE_CODE_ENUM:
3577 /* Returns non-zero if OP with operands in the vector ARGS could be
3578 a user-defined function. Errs on the side of pre-defined operators
3579 (i.e., result 0). */
3582 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3584 struct type *type0 =
3585 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3586 struct type *type1 =
3587 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3601 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3605 case BINOP_BITWISE_AND:
3606 case BINOP_BITWISE_IOR:
3607 case BINOP_BITWISE_XOR:
3608 return (!(integer_type_p (type0) && integer_type_p (type1)));
3611 case BINOP_NOTEQUAL:
3616 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3619 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3622 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3626 case UNOP_LOGICAL_NOT:
3628 return (!numeric_type_p (type0));
3637 1. In the following, we assume that a renaming type's name may
3638 have an ___XD suffix. It would be nice if this went away at some
3640 2. We handle both the (old) purely type-based representation of
3641 renamings and the (new) variable-based encoding. At some point,
3642 it is devoutly to be hoped that the former goes away
3643 (FIXME: hilfinger-2007-07-09).
3644 3. Subprogram renamings are not implemented, although the XRS
3645 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3647 /* If SYM encodes a renaming,
3649 <renaming> renames <renamed entity>,
3651 sets *LEN to the length of the renamed entity's name,
3652 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3653 the string describing the subcomponent selected from the renamed
3654 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3655 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3656 are undefined). Otherwise, returns a value indicating the category
3657 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3658 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3659 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3660 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3661 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3662 may be NULL, in which case they are not assigned.
3664 [Currently, however, GCC does not generate subprogram renamings.] */
3666 enum ada_renaming_category
3667 ada_parse_renaming (struct symbol *sym,
3668 const char **renamed_entity, int *len,
3669 const char **renaming_expr)
3671 enum ada_renaming_category kind;
3676 return ADA_NOT_RENAMING;
3677 switch (SYMBOL_CLASS (sym))
3680 return ADA_NOT_RENAMING;
3682 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3683 renamed_entity, len, renaming_expr);
3687 case LOC_OPTIMIZED_OUT:
3688 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3690 return ADA_NOT_RENAMING;
3694 kind = ADA_OBJECT_RENAMING;
3698 kind = ADA_EXCEPTION_RENAMING;
3702 kind = ADA_PACKAGE_RENAMING;
3706 kind = ADA_SUBPROGRAM_RENAMING;
3710 return ADA_NOT_RENAMING;
3714 if (renamed_entity != NULL)
3715 *renamed_entity = info;
3716 suffix = strstr (info, "___XE");
3717 if (suffix == NULL || suffix == info)
3718 return ADA_NOT_RENAMING;
3720 *len = strlen (info) - strlen (suffix);
3722 if (renaming_expr != NULL)
3723 *renaming_expr = suffix;
3727 /* Assuming TYPE encodes a renaming according to the old encoding in
3728 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3729 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3730 ADA_NOT_RENAMING otherwise. */
3731 static enum ada_renaming_category
3732 parse_old_style_renaming (struct type *type,
3733 const char **renamed_entity, int *len,
3734 const char **renaming_expr)
3736 enum ada_renaming_category kind;
3741 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3742 || TYPE_NFIELDS (type) != 1)
3743 return ADA_NOT_RENAMING;
3745 name = type_name_no_tag (type);
3747 return ADA_NOT_RENAMING;
3749 name = strstr (name, "___XR");
3751 return ADA_NOT_RENAMING;
3756 kind = ADA_OBJECT_RENAMING;
3759 kind = ADA_EXCEPTION_RENAMING;
3762 kind = ADA_PACKAGE_RENAMING;
3765 kind = ADA_SUBPROGRAM_RENAMING;
3768 return ADA_NOT_RENAMING;
3771 info = TYPE_FIELD_NAME (type, 0);
3773 return ADA_NOT_RENAMING;
3774 if (renamed_entity != NULL)
3775 *renamed_entity = info;
3776 suffix = strstr (info, "___XE");
3777 if (renaming_expr != NULL)
3778 *renaming_expr = suffix + 5;
3779 if (suffix == NULL || suffix == info)
3780 return ADA_NOT_RENAMING;
3782 *len = suffix - info;
3788 /* Evaluation: Function Calls */
3790 /* Return an lvalue containing the value VAL. This is the identity on
3791 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3792 on the stack, using and updating *SP as the stack pointer, and
3793 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3795 static struct value *
3796 ensure_lval (struct value *val, CORE_ADDR *sp)
3798 if (! VALUE_LVAL (val))
3800 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3802 /* The following is taken from the structure-return code in
3803 call_function_by_hand. FIXME: Therefore, some refactoring seems
3805 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3807 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3808 reserving sufficient space. */
3810 if (gdbarch_frame_align_p (current_gdbarch))
3811 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3812 VALUE_ADDRESS (val) = *sp;
3816 /* Stack grows upward. Align the frame, allocate space, and
3817 then again, re-align the frame. */
3818 if (gdbarch_frame_align_p (current_gdbarch))
3819 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3820 VALUE_ADDRESS (val) = *sp;
3822 if (gdbarch_frame_align_p (current_gdbarch))
3823 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3825 VALUE_LVAL (val) = lval_memory;
3827 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3833 /* Return the value ACTUAL, converted to be an appropriate value for a
3834 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3835 allocating any necessary descriptors (fat pointers), or copies of
3836 values not residing in memory, updating it as needed. */
3839 ada_convert_actual (struct value *actual, struct type *formal_type0,
3842 struct type *actual_type = ada_check_typedef (value_type (actual));
3843 struct type *formal_type = ada_check_typedef (formal_type0);
3844 struct type *formal_target =
3845 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3846 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3847 struct type *actual_target =
3848 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3849 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3851 if (ada_is_array_descriptor_type (formal_target)
3852 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3853 return make_array_descriptor (formal_type, actual, sp);
3854 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3855 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3857 struct value *result;
3858 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3859 && ada_is_array_descriptor_type (actual_target))
3860 result = desc_data (actual);
3861 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3863 if (VALUE_LVAL (actual) != lval_memory)
3866 actual_type = ada_check_typedef (value_type (actual));
3867 val = allocate_value (actual_type);
3868 memcpy ((char *) value_contents_raw (val),
3869 (char *) value_contents (actual),
3870 TYPE_LENGTH (actual_type));
3871 actual = ensure_lval (val, sp);
3873 result = value_addr (actual);
3877 return value_cast_pointers (formal_type, result);
3879 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3880 return ada_value_ind (actual);
3886 /* Push a descriptor of type TYPE for array value ARR on the stack at
3887 *SP, updating *SP to reflect the new descriptor. Return either
3888 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3889 to-descriptor type rather than a descriptor type), a struct value *
3890 representing a pointer to this descriptor. */
3892 static struct value *
3893 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3895 struct type *bounds_type = desc_bounds_type (type);
3896 struct type *desc_type = desc_base_type (type);
3897 struct value *descriptor = allocate_value (desc_type);
3898 struct value *bounds = allocate_value (bounds_type);
3901 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3903 modify_general_field (value_contents_writeable (bounds),
3904 value_as_long (ada_array_bound (arr, i, 0)),
3905 desc_bound_bitpos (bounds_type, i, 0),
3906 desc_bound_bitsize (bounds_type, i, 0));
3907 modify_general_field (value_contents_writeable (bounds),
3908 value_as_long (ada_array_bound (arr, i, 1)),
3909 desc_bound_bitpos (bounds_type, i, 1),
3910 desc_bound_bitsize (bounds_type, i, 1));
3913 bounds = ensure_lval (bounds, sp);
3915 modify_general_field (value_contents_writeable (descriptor),
3916 VALUE_ADDRESS (ensure_lval (arr, sp)),
3917 fat_pntr_data_bitpos (desc_type),
3918 fat_pntr_data_bitsize (desc_type));
3920 modify_general_field (value_contents_writeable (descriptor),
3921 VALUE_ADDRESS (bounds),
3922 fat_pntr_bounds_bitpos (desc_type),
3923 fat_pntr_bounds_bitsize (desc_type));
3925 descriptor = ensure_lval (descriptor, sp);
3927 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3928 return value_addr (descriptor);
3933 /* Dummy definitions for an experimental caching module that is not
3934 * used in the public sources. */
3937 lookup_cached_symbol (const char *name, domain_enum namespace,
3938 struct symbol **sym, struct block **block,
3939 struct symtab **symtab)
3945 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3946 struct block *block, struct symtab *symtab)
3952 /* Return the result of a standard (literal, C-like) lookup of NAME in
3953 given DOMAIN, visible from lexical block BLOCK. */
3955 static struct symbol *
3956 standard_lookup (const char *name, const struct block *block,
3960 struct symtab *symtab;
3962 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3965 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3966 cache_symbol (name, domain, sym, block_found, symtab);
3971 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3972 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3973 since they contend in overloading in the same way. */
3975 is_nonfunction (struct ada_symbol_info syms[], int n)
3979 for (i = 0; i < n; i += 1)
3980 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3981 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3982 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3988 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3989 struct types. Otherwise, they may not. */
3992 equiv_types (struct type *type0, struct type *type1)
3996 if (type0 == NULL || type1 == NULL
3997 || TYPE_CODE (type0) != TYPE_CODE (type1))
3999 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4000 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4001 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4002 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4008 /* True iff SYM0 represents the same entity as SYM1, or one that is
4009 no more defined than that of SYM1. */
4012 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4016 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4017 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4020 switch (SYMBOL_CLASS (sym0))
4026 struct type *type0 = SYMBOL_TYPE (sym0);
4027 struct type *type1 = SYMBOL_TYPE (sym1);
4028 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4029 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4030 int len0 = strlen (name0);
4032 TYPE_CODE (type0) == TYPE_CODE (type1)
4033 && (equiv_types (type0, type1)
4034 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4035 && strncmp (name1 + len0, "___XV", 5) == 0));
4038 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4039 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4045 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4046 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4049 add_defn_to_vec (struct obstack *obstackp,
4051 struct block *block, struct symtab *symtab)
4055 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4057 /* Do not try to complete stub types, as the debugger is probably
4058 already scanning all symbols matching a certain name at the
4059 time when this function is called. Trying to replace the stub
4060 type by its associated full type will cause us to restart a scan
4061 which may lead to an infinite recursion. Instead, the client
4062 collecting the matching symbols will end up collecting several
4063 matches, with at least one of them complete. It can then filter
4064 out the stub ones if needed. */
4066 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4068 if (lesseq_defined_than (sym, prevDefns[i].sym))
4070 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4072 prevDefns[i].sym = sym;
4073 prevDefns[i].block = block;
4074 prevDefns[i].symtab = symtab;
4080 struct ada_symbol_info info;
4084 info.symtab = symtab;
4085 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4089 /* Number of ada_symbol_info structures currently collected in
4090 current vector in *OBSTACKP. */
4093 num_defns_collected (struct obstack *obstackp)
4095 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4098 /* Vector of ada_symbol_info structures currently collected in current
4099 vector in *OBSTACKP. If FINISH, close off the vector and return
4100 its final address. */
4102 static struct ada_symbol_info *
4103 defns_collected (struct obstack *obstackp, int finish)
4106 return obstack_finish (obstackp);
4108 return (struct ada_symbol_info *) obstack_base (obstackp);
4111 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4112 Check the global symbols if GLOBAL, the static symbols if not.
4113 Do wild-card match if WILD. */
4115 static struct partial_symbol *
4116 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4117 int global, domain_enum namespace, int wild)
4119 struct partial_symbol **start;
4120 int name_len = strlen (name);
4121 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4130 pst->objfile->global_psymbols.list + pst->globals_offset :
4131 pst->objfile->static_psymbols.list + pst->statics_offset);
4135 for (i = 0; i < length; i += 1)
4137 struct partial_symbol *psym = start[i];
4139 if (SYMBOL_DOMAIN (psym) == namespace
4140 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4171 struct partial_symbol *psym = start[i];
4173 if (SYMBOL_DOMAIN (psym) == namespace)
4175 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4183 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4197 int M = (U + i) >> 1;
4198 struct partial_symbol *psym = start[M];
4199 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4201 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4203 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4214 struct partial_symbol *psym = start[i];
4216 if (SYMBOL_DOMAIN (psym) == namespace)
4220 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4223 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4225 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4235 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4245 /* Find a symbol table containing symbol SYM or NULL if none. */
4247 static struct symtab *
4248 symtab_for_sym (struct symbol *sym)
4251 struct objfile *objfile;
4253 struct symbol *tmp_sym;
4254 struct dict_iterator iter;
4257 ALL_PRIMARY_SYMTABS (objfile, s)
4259 switch (SYMBOL_CLASS (sym))
4267 case LOC_CONST_BYTES:
4268 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4269 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4271 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4272 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4278 switch (SYMBOL_CLASS (sym))
4284 case LOC_REGPARM_ADDR:
4289 case LOC_BASEREG_ARG:
4291 case LOC_COMPUTED_ARG:
4292 for (j = FIRST_LOCAL_BLOCK;
4293 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4295 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4296 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4307 /* Return a minimal symbol matching NAME according to Ada decoding
4308 rules. Returns NULL if there is no such minimal symbol. Names
4309 prefixed with "standard__" are handled specially: "standard__" is
4310 first stripped off, and only static and global symbols are searched. */
4312 struct minimal_symbol *
4313 ada_lookup_simple_minsym (const char *name)
4315 struct objfile *objfile;
4316 struct minimal_symbol *msymbol;
4319 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4321 name += sizeof ("standard__") - 1;
4325 wild_match = (strstr (name, "__") == NULL);
4327 ALL_MSYMBOLS (objfile, msymbol)
4329 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4330 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4337 /* For all subprograms that statically enclose the subprogram of the
4338 selected frame, add symbols matching identifier NAME in DOMAIN
4339 and their blocks to the list of data in OBSTACKP, as for
4340 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4344 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4345 const char *name, domain_enum namespace,
4350 /* True if TYPE is definitely an artificial type supplied to a symbol
4351 for which no debugging information was given in the symbol file. */
4354 is_nondebugging_type (struct type *type)
4356 char *name = ada_type_name (type);
4357 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4360 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4361 duplicate other symbols in the list (The only case I know of where
4362 this happens is when object files containing stabs-in-ecoff are
4363 linked with files containing ordinary ecoff debugging symbols (or no
4364 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4365 Returns the number of items in the modified list. */
4368 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4375 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4376 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4377 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4379 for (j = 0; j < nsyms; j += 1)
4382 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4383 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4384 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4385 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4386 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4387 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4390 for (k = i + 1; k < nsyms; k += 1)
4391 syms[k - 1] = syms[k];
4404 /* Given a type that corresponds to a renaming entity, use the type name
4405 to extract the scope (package name or function name, fully qualified,
4406 and following the GNAT encoding convention) where this renaming has been
4407 defined. The string returned needs to be deallocated after use. */
4410 xget_renaming_scope (struct type *renaming_type)
4412 /* The renaming types adhere to the following convention:
4413 <scope>__<rename>___<XR extension>.
4414 So, to extract the scope, we search for the "___XR" extension,
4415 and then backtrack until we find the first "__". */
4417 const char *name = type_name_no_tag (renaming_type);
4418 char *suffix = strstr (name, "___XR");
4423 /* Now, backtrack a bit until we find the first "__". Start looking
4424 at suffix - 3, as the <rename> part is at least one character long. */
4426 for (last = suffix - 3; last > name; last--)
4427 if (last[0] == '_' && last[1] == '_')
4430 /* Make a copy of scope and return it. */
4432 scope_len = last - name;
4433 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4435 strncpy (scope, name, scope_len);
4436 scope[scope_len] = '\0';
4441 /* Return nonzero if NAME corresponds to a package name. */
4444 is_package_name (const char *name)
4446 /* Here, We take advantage of the fact that no symbols are generated
4447 for packages, while symbols are generated for each function.
4448 So the condition for NAME represent a package becomes equivalent
4449 to NAME not existing in our list of symbols. There is only one
4450 small complication with library-level functions (see below). */
4454 /* If it is a function that has not been defined at library level,
4455 then we should be able to look it up in the symbols. */
4456 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4459 /* Library-level function names start with "_ada_". See if function
4460 "_ada_" followed by NAME can be found. */
4462 /* Do a quick check that NAME does not contain "__", since library-level
4463 functions names cannot contain "__" in them. */
4464 if (strstr (name, "__") != NULL)
4467 fun_name = xstrprintf ("_ada_%s", name);
4469 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4472 /* Return nonzero if SYM corresponds to a renaming entity that is
4473 not visible from FUNCTION_NAME. */
4476 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4480 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4483 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4485 make_cleanup (xfree, scope);
4487 /* If the rename has been defined in a package, then it is visible. */
4488 if (is_package_name (scope))
4491 /* Check that the rename is in the current function scope by checking
4492 that its name starts with SCOPE. */
4494 /* If the function name starts with "_ada_", it means that it is
4495 a library-level function. Strip this prefix before doing the
4496 comparison, as the encoding for the renaming does not contain
4498 if (strncmp (function_name, "_ada_", 5) == 0)
4501 return (strncmp (function_name, scope, strlen (scope)) != 0);
4504 /* Remove entries from SYMS that corresponds to a renaming entity that
4505 is not visible from the function associated with CURRENT_BLOCK or
4506 that is superfluous due to the presence of more specific renaming
4507 information. Places surviving symbols in the initial entries of
4508 SYMS and returns the number of surviving symbols.
4511 First, in cases where an object renaming is implemented as a
4512 reference variable, GNAT may produce both the actual reference
4513 variable and the renaming encoding. In this case, we discard the
4516 Second, GNAT emits a type following a specified encoding for each renaming
4517 entity. Unfortunately, STABS currently does not support the definition
4518 of types that are local to a given lexical block, so all renamings types
4519 are emitted at library level. As a consequence, if an application
4520 contains two renaming entities using the same name, and a user tries to
4521 print the value of one of these entities, the result of the ada symbol
4522 lookup will also contain the wrong renaming type.
4524 This function partially covers for this limitation by attempting to
4525 remove from the SYMS list renaming symbols that should be visible
4526 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4527 method with the current information available. The implementation
4528 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4530 - When the user tries to print a rename in a function while there
4531 is another rename entity defined in a package: Normally, the
4532 rename in the function has precedence over the rename in the
4533 package, so the latter should be removed from the list. This is
4534 currently not the case.
4536 - This function will incorrectly remove valid renames if
4537 the CURRENT_BLOCK corresponds to a function which symbol name
4538 has been changed by an "Export" pragma. As a consequence,
4539 the user will be unable to print such rename entities. */
4542 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4543 int nsyms, const struct block *current_block)
4545 struct symbol *current_function;
4546 char *current_function_name;
4548 int is_new_style_renaming;
4550 /* If there is both a renaming foo___XR... encoded as a variable and
4551 a simple variable foo in the same block, discard the latter.
4552 First, zero out such symbols, then compress. */
4553 is_new_style_renaming = 0;
4554 for (i = 0; i < nsyms; i += 1)
4556 struct symbol *sym = syms[i].sym;
4557 struct block *block = syms[i].block;
4561 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4563 name = SYMBOL_LINKAGE_NAME (sym);
4564 suffix = strstr (name, "___XR");
4568 int name_len = suffix - name;
4570 is_new_style_renaming = 1;
4571 for (j = 0; j < nsyms; j += 1)
4572 if (i != j && syms[j].sym != NULL
4573 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4575 && block == syms[j].block)
4579 if (is_new_style_renaming)
4583 for (j = k = 0; j < nsyms; j += 1)
4584 if (syms[j].sym != NULL)
4592 /* Extract the function name associated to CURRENT_BLOCK.
4593 Abort if unable to do so. */
4595 if (current_block == NULL)
4598 current_function = block_function (current_block);
4599 if (current_function == NULL)
4602 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4603 if (current_function_name == NULL)
4606 /* Check each of the symbols, and remove it from the list if it is
4607 a type corresponding to a renaming that is out of the scope of
4608 the current block. */
4613 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4614 == ADA_OBJECT_RENAMING
4615 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4618 for (j = i + 1; j < nsyms; j += 1)
4619 syms[j - 1] = syms[j];
4629 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4630 scope and in global scopes, returning the number of matches. Sets
4631 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4632 indicating the symbols found and the blocks and symbol tables (if
4633 any) in which they were found. This vector are transient---good only to
4634 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4635 symbol match within the nest of blocks whose innermost member is BLOCK0,
4636 is the one match returned (no other matches in that or
4637 enclosing blocks is returned). If there are any matches in or
4638 surrounding BLOCK0, then these alone are returned. Otherwise, the
4639 search extends to global and file-scope (static) symbol tables.
4640 Names prefixed with "standard__" are handled specially: "standard__"
4641 is first stripped off, and only static and global symbols are searched. */
4644 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4645 domain_enum namespace,
4646 struct ada_symbol_info **results)
4650 struct partial_symtab *ps;
4651 struct blockvector *bv;
4652 struct objfile *objfile;
4653 struct block *block;
4655 struct minimal_symbol *msymbol;
4661 obstack_free (&symbol_list_obstack, NULL);
4662 obstack_init (&symbol_list_obstack);
4666 /* Search specified block and its superiors. */
4668 wild_match = (strstr (name0, "__") == NULL);
4670 block = (struct block *) block0; /* FIXME: No cast ought to be
4671 needed, but adding const will
4672 have a cascade effect. */
4673 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4677 name = name0 + sizeof ("standard__") - 1;
4681 while (block != NULL)
4684 ada_add_block_symbols (&symbol_list_obstack, block, name,
4685 namespace, NULL, NULL, wild_match);
4687 /* If we found a non-function match, assume that's the one. */
4688 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4689 num_defns_collected (&symbol_list_obstack)))
4692 block = BLOCK_SUPERBLOCK (block);
4695 /* If no luck so far, try to find NAME as a local symbol in some lexically
4696 enclosing subprogram. */
4697 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4698 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4699 name, namespace, wild_match);
4701 /* If we found ANY matches among non-global symbols, we're done. */
4703 if (num_defns_collected (&symbol_list_obstack) > 0)
4707 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4710 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4714 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4715 tables, and psymtab's. */
4717 ALL_PRIMARY_SYMTABS (objfile, s)
4720 bv = BLOCKVECTOR (s);
4721 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4722 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4723 objfile, s, wild_match);
4726 if (namespace == VAR_DOMAIN)
4728 ALL_MSYMBOLS (objfile, msymbol)
4730 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4732 switch (MSYMBOL_TYPE (msymbol))
4734 case mst_solib_trampoline:
4737 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4740 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4742 bv = BLOCKVECTOR (s);
4743 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4744 ada_add_block_symbols (&symbol_list_obstack, block,
4745 SYMBOL_LINKAGE_NAME (msymbol),
4746 namespace, objfile, s, wild_match);
4748 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4750 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4751 ada_add_block_symbols (&symbol_list_obstack, block,
4752 SYMBOL_LINKAGE_NAME (msymbol),
4753 namespace, objfile, s,
4762 ALL_PSYMTABS (objfile, ps)
4766 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4768 s = PSYMTAB_TO_SYMTAB (ps);
4771 bv = BLOCKVECTOR (s);
4772 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4773 ada_add_block_symbols (&symbol_list_obstack, block, name,
4774 namespace, objfile, s, wild_match);
4778 /* Now add symbols from all per-file blocks if we've gotten no hits
4779 (Not strictly correct, but perhaps better than an error).
4780 Do the symtabs first, then check the psymtabs. */
4782 if (num_defns_collected (&symbol_list_obstack) == 0)
4785 ALL_PRIMARY_SYMTABS (objfile, s)
4788 bv = BLOCKVECTOR (s);
4789 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4790 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4791 objfile, s, wild_match);
4794 ALL_PSYMTABS (objfile, ps)
4798 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4800 s = PSYMTAB_TO_SYMTAB (ps);
4801 bv = BLOCKVECTOR (s);
4804 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4805 ada_add_block_symbols (&symbol_list_obstack, block, name,
4806 namespace, objfile, s, wild_match);
4812 ndefns = num_defns_collected (&symbol_list_obstack);
4813 *results = defns_collected (&symbol_list_obstack, 1);
4815 ndefns = remove_extra_symbols (*results, ndefns);
4818 cache_symbol (name0, namespace, NULL, NULL, NULL);
4820 if (ndefns == 1 && cacheIfUnique)
4821 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4822 (*results)[0].symtab);
4824 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4830 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4831 domain_enum namespace,
4832 struct block **block_found, struct symtab **symtab)
4834 struct ada_symbol_info *candidates;
4837 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4839 if (n_candidates == 0)
4842 if (block_found != NULL)
4843 *block_found = candidates[0].block;
4847 *symtab = candidates[0].symtab;
4848 if (*symtab == NULL && candidates[0].block != NULL)
4850 struct objfile *objfile;
4853 struct blockvector *bv;
4855 /* Search the list of symtabs for one which contains the
4856 address of the start of this block. */
4857 ALL_PRIMARY_SYMTABS (objfile, s)
4859 bv = BLOCKVECTOR (s);
4860 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4861 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4862 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4865 return fixup_symbol_section (candidates[0].sym, objfile);
4868 /* FIXME: brobecker/2004-11-12: I think that we should never
4869 reach this point. I don't see a reason why we would not
4870 find a symtab for a given block, so I suggest raising an
4871 internal_error exception here. Otherwise, we end up
4872 returning a symbol but no symtab, which certain parts of
4873 the code that rely (indirectly) on this function do not
4874 expect, eventually causing a SEGV. */
4875 return fixup_symbol_section (candidates[0].sym, NULL);
4878 return candidates[0].sym;
4881 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4882 scope and in global scopes, or NULL if none. NAME is folded and
4883 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4884 choosing the first symbol if there are multiple choices.
4885 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4886 table in which the symbol was found (in both cases, these
4887 assignments occur only if the pointers are non-null). */
4889 ada_lookup_symbol (const char *name, const struct block *block0,
4890 domain_enum namespace, int *is_a_field_of_this,
4891 struct symtab **symtab)
4893 if (is_a_field_of_this != NULL)
4894 *is_a_field_of_this = 0;
4897 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4898 block0, namespace, NULL, symtab);
4901 static struct symbol *
4902 ada_lookup_symbol_nonlocal (const char *name,
4903 const char *linkage_name,
4904 const struct block *block,
4905 const domain_enum domain, struct symtab **symtab)
4907 if (linkage_name == NULL)
4908 linkage_name = name;
4909 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4914 /* True iff STR is a possible encoded suffix of a normal Ada name
4915 that is to be ignored for matching purposes. Suffixes of parallel
4916 names (e.g., XVE) are not included here. Currently, the possible suffixes
4917 are given by either of the regular expression:
4919 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4920 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4921 _E[0-9]+[bs]$ [protected object entry suffixes]
4922 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4924 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4925 match is performed. This sequence is used to differentiate homonyms,
4926 is an optional part of a valid name suffix. */
4929 is_name_suffix (const char *str)
4932 const char *matching;
4933 const int len = strlen (str);
4935 /* Skip optional leading __[0-9]+. */
4937 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4940 while (isdigit (str[0]))
4946 if (str[0] == '.' || str[0] == '$')
4949 while (isdigit (matching[0]))
4951 if (matching[0] == '\0')
4957 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4960 while (isdigit (matching[0]))
4962 if (matching[0] == '\0')
4967 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4968 with a N at the end. Unfortunately, the compiler uses the same
4969 convention for other internal types it creates. So treating
4970 all entity names that end with an "N" as a name suffix causes
4971 some regressions. For instance, consider the case of an enumerated
4972 type. To support the 'Image attribute, it creates an array whose
4974 Having a single character like this as a suffix carrying some
4975 information is a bit risky. Perhaps we should change the encoding
4976 to be something like "_N" instead. In the meantime, do not do
4977 the following check. */
4978 /* Protected Object Subprograms */
4979 if (len == 1 && str [0] == 'N')
4984 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4987 while (isdigit (matching[0]))
4989 if ((matching[0] == 'b' || matching[0] == 's')
4990 && matching [1] == '\0')
4994 /* ??? We should not modify STR directly, as we are doing below. This
4995 is fine in this case, but may become problematic later if we find
4996 that this alternative did not work, and want to try matching
4997 another one from the begining of STR. Since we modified it, we
4998 won't be able to find the begining of the string anymore! */
5002 while (str[0] != '_' && str[0] != '\0')
5004 if (str[0] != 'n' && str[0] != 'b')
5010 if (str[0] == '\000')
5015 if (str[1] != '_' || str[2] == '\000')
5019 if (strcmp (str + 3, "JM") == 0)
5021 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5022 the LJM suffix in favor of the JM one. But we will
5023 still accept LJM as a valid suffix for a reasonable
5024 amount of time, just to allow ourselves to debug programs
5025 compiled using an older version of GNAT. */
5026 if (strcmp (str + 3, "LJM") == 0)
5030 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5031 || str[4] == 'U' || str[4] == 'P')
5033 if (str[4] == 'R' && str[5] != 'T')
5037 if (!isdigit (str[2]))
5039 for (k = 3; str[k] != '\0'; k += 1)
5040 if (!isdigit (str[k]) && str[k] != '_')
5044 if (str[0] == '$' && isdigit (str[1]))
5046 for (k = 2; str[k] != '\0'; k += 1)
5047 if (!isdigit (str[k]) && str[k] != '_')
5054 /* Return nonzero if the given string starts with a dot ('.')
5055 followed by zero or more digits.
5057 Note: brobecker/2003-11-10: A forward declaration has not been
5058 added at the begining of this file yet, because this function
5059 is only used to work around a problem found during wild matching
5060 when trying to match minimal symbol names against symbol names
5061 obtained from dwarf-2 data. This function is therefore currently
5062 only used in wild_match() and is likely to be deleted when the
5063 problem in dwarf-2 is fixed. */
5066 is_dot_digits_suffix (const char *str)
5072 while (isdigit (str[0]))
5074 return (str[0] == '\0');
5077 /* Return non-zero if the string starting at NAME and ending before
5078 NAME_END contains no capital letters. */
5081 is_valid_name_for_wild_match (const char *name0)
5083 const char *decoded_name = ada_decode (name0);
5086 for (i=0; decoded_name[i] != '\0'; i++)
5087 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5093 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5094 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5095 informational suffixes of NAME (i.e., for which is_name_suffix is
5099 wild_match (const char *patn0, int patn_len, const char *name0)
5106 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5107 stored in the symbol table for nested function names is sometimes
5108 different from the name of the associated entity stored in
5109 the dwarf-2 data: This is the case for nested subprograms, where
5110 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5111 while the symbol name from the dwarf-2 data does not.
5113 Although the DWARF-2 standard documents that entity names stored
5114 in the dwarf-2 data should be identical to the name as seen in
5115 the source code, GNAT takes a different approach as we already use
5116 a special encoding mechanism to convey the information so that
5117 a C debugger can still use the information generated to debug
5118 Ada programs. A corollary is that the symbol names in the dwarf-2
5119 data should match the names found in the symbol table. I therefore
5120 consider this issue as a compiler defect.
5122 Until the compiler is properly fixed, we work-around the problem
5123 by ignoring such suffixes during the match. We do so by making
5124 a copy of PATN0 and NAME0, and then by stripping such a suffix
5125 if present. We then perform the match on the resulting strings. */
5128 name_len = strlen (name0);
5130 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5131 strcpy (name, name0);
5132 dot = strrchr (name, '.');
5133 if (dot != NULL && is_dot_digits_suffix (dot))
5136 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5137 strncpy (patn, patn0, patn_len);
5138 patn[patn_len] = '\0';
5139 dot = strrchr (patn, '.');
5140 if (dot != NULL && is_dot_digits_suffix (dot))
5143 patn_len = dot - patn;
5147 /* Now perform the wild match. */
5149 name_len = strlen (name);
5150 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5151 && strncmp (patn, name + 5, patn_len) == 0
5152 && is_name_suffix (name + patn_len + 5))
5155 while (name_len >= patn_len)
5157 if (strncmp (patn, name, patn_len) == 0
5158 && is_name_suffix (name + patn_len))
5159 return (name == name_start || is_valid_name_for_wild_match (name0));
5166 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5171 if (!islower (name[2]))
5178 if (!islower (name[1]))
5189 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5190 vector *defn_symbols, updating the list of symbols in OBSTACKP
5191 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5192 OBJFILE is the section containing BLOCK.
5193 SYMTAB is recorded with each symbol added. */
5196 ada_add_block_symbols (struct obstack *obstackp,
5197 struct block *block, const char *name,
5198 domain_enum domain, struct objfile *objfile,
5199 struct symtab *symtab, int wild)
5201 struct dict_iterator iter;
5202 int name_len = strlen (name);
5203 /* A matching argument symbol, if any. */
5204 struct symbol *arg_sym;
5205 /* Set true when we find a matching non-argument symbol. */
5214 ALL_BLOCK_SYMBOLS (block, iter, sym)
5216 if (SYMBOL_DOMAIN (sym) == domain
5217 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5219 switch (SYMBOL_CLASS (sym))
5225 case LOC_REGPARM_ADDR:
5226 case LOC_BASEREG_ARG:
5227 case LOC_COMPUTED_ARG:
5230 case LOC_UNRESOLVED:
5234 add_defn_to_vec (obstackp,
5235 fixup_symbol_section (sym, objfile),
5244 ALL_BLOCK_SYMBOLS (block, iter, sym)
5246 if (SYMBOL_DOMAIN (sym) == domain)
5248 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5250 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5252 switch (SYMBOL_CLASS (sym))
5258 case LOC_REGPARM_ADDR:
5259 case LOC_BASEREG_ARG:
5260 case LOC_COMPUTED_ARG:
5263 case LOC_UNRESOLVED:
5267 add_defn_to_vec (obstackp,
5268 fixup_symbol_section (sym, objfile),
5277 if (!found_sym && arg_sym != NULL)
5279 add_defn_to_vec (obstackp,
5280 fixup_symbol_section (arg_sym, objfile),
5289 ALL_BLOCK_SYMBOLS (block, iter, sym)
5291 if (SYMBOL_DOMAIN (sym) == domain)
5295 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5298 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5300 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5305 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5307 switch (SYMBOL_CLASS (sym))
5313 case LOC_REGPARM_ADDR:
5314 case LOC_BASEREG_ARG:
5315 case LOC_COMPUTED_ARG:
5318 case LOC_UNRESOLVED:
5322 add_defn_to_vec (obstackp,
5323 fixup_symbol_section (sym, objfile),
5331 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5332 They aren't parameters, right? */
5333 if (!found_sym && arg_sym != NULL)
5335 add_defn_to_vec (obstackp,
5336 fixup_symbol_section (arg_sym, objfile),
5344 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5345 for tagged types. */
5348 ada_is_dispatch_table_ptr_type (struct type *type)
5352 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5355 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5359 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5362 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5363 to be invisible to users. */
5366 ada_is_ignored_field (struct type *type, int field_num)
5368 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5371 /* Check the name of that field. */
5373 const char *name = TYPE_FIELD_NAME (type, field_num);
5375 /* Anonymous field names should not be printed.
5376 brobecker/2007-02-20: I don't think this can actually happen
5377 but we don't want to print the value of annonymous fields anyway. */
5381 /* A field named "_parent" is internally generated by GNAT for
5382 tagged types, and should not be printed either. */
5383 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5387 /* If this is the dispatch table of a tagged type, then ignore. */
5388 if (ada_is_tagged_type (type, 1)
5389 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5392 /* Not a special field, so it should not be ignored. */
5396 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5397 pointer or reference type whose ultimate target has a tag field. */
5400 ada_is_tagged_type (struct type *type, int refok)
5402 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5405 /* True iff TYPE represents the type of X'Tag */
5408 ada_is_tag_type (struct type *type)
5410 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5414 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5415 return (name != NULL
5416 && strcmp (name, "ada__tags__dispatch_table") == 0);
5420 /* The type of the tag on VAL. */
5423 ada_tag_type (struct value *val)
5425 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5428 /* The value of the tag on VAL. */
5431 ada_value_tag (struct value *val)
5433 return ada_value_struct_elt (val, "_tag", 0);
5436 /* The value of the tag on the object of type TYPE whose contents are
5437 saved at VALADDR, if it is non-null, or is at memory address
5440 static struct value *
5441 value_tag_from_contents_and_address (struct type *type,
5442 const gdb_byte *valaddr,
5445 int tag_byte_offset, dummy1, dummy2;
5446 struct type *tag_type;
5447 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5450 const gdb_byte *valaddr1 = ((valaddr == NULL)
5452 : valaddr + tag_byte_offset);
5453 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5455 return value_from_contents_and_address (tag_type, valaddr1, address1);
5460 static struct type *
5461 type_from_tag (struct value *tag)
5463 const char *type_name = ada_tag_name (tag);
5464 if (type_name != NULL)
5465 return ada_find_any_type (ada_encode (type_name));
5476 static int ada_tag_name_1 (void *);
5477 static int ada_tag_name_2 (struct tag_args *);
5479 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5480 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5481 The value stored in ARGS->name is valid until the next call to
5485 ada_tag_name_1 (void *args0)
5487 struct tag_args *args = (struct tag_args *) args0;
5488 static char name[1024];
5492 val = ada_value_struct_elt (args->tag, "tsd", 1);
5494 return ada_tag_name_2 (args);
5495 val = ada_value_struct_elt (val, "expanded_name", 1);
5498 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5499 for (p = name; *p != '\0'; p += 1)
5506 /* Utility function for ada_tag_name_1 that tries the second
5507 representation for the dispatch table (in which there is no
5508 explicit 'tsd' field in the referent of the tag pointer, and instead
5509 the tsd pointer is stored just before the dispatch table. */
5512 ada_tag_name_2 (struct tag_args *args)
5514 struct type *info_type;
5515 static char name[1024];
5517 struct value *val, *valp;
5520 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5521 if (info_type == NULL)
5523 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5524 valp = value_cast (info_type, args->tag);
5527 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5530 val = ada_value_struct_elt (val, "expanded_name", 1);
5533 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5534 for (p = name; *p != '\0'; p += 1)
5541 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5545 ada_tag_name (struct value *tag)
5547 struct tag_args args;
5548 if (!ada_is_tag_type (value_type (tag)))
5552 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5556 /* The parent type of TYPE, or NULL if none. */
5559 ada_parent_type (struct type *type)
5563 type = ada_check_typedef (type);
5565 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5568 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5569 if (ada_is_parent_field (type, i))
5570 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5575 /* True iff field number FIELD_NUM of structure type TYPE contains the
5576 parent-type (inherited) fields of a derived type. Assumes TYPE is
5577 a structure type with at least FIELD_NUM+1 fields. */
5580 ada_is_parent_field (struct type *type, int field_num)
5582 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5583 return (name != NULL
5584 && (strncmp (name, "PARENT", 6) == 0
5585 || strncmp (name, "_parent", 7) == 0));
5588 /* True iff field number FIELD_NUM of structure type TYPE is a
5589 transparent wrapper field (which should be silently traversed when doing
5590 field selection and flattened when printing). Assumes TYPE is a
5591 structure type with at least FIELD_NUM+1 fields. Such fields are always
5595 ada_is_wrapper_field (struct type *type, int field_num)
5597 const char *name = TYPE_FIELD_NAME (type, field_num);
5598 return (name != NULL
5599 && (strncmp (name, "PARENT", 6) == 0
5600 || strcmp (name, "REP") == 0
5601 || strncmp (name, "_parent", 7) == 0
5602 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5605 /* True iff field number FIELD_NUM of structure or union type TYPE
5606 is a variant wrapper. Assumes TYPE is a structure type with at least
5607 FIELD_NUM+1 fields. */
5610 ada_is_variant_part (struct type *type, int field_num)
5612 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5613 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5614 || (is_dynamic_field (type, field_num)
5615 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5616 == TYPE_CODE_UNION)));
5619 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5620 whose discriminants are contained in the record type OUTER_TYPE,
5621 returns the type of the controlling discriminant for the variant. */
5624 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5626 char *name = ada_variant_discrim_name (var_type);
5628 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5630 return builtin_type_int;
5635 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5636 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5637 represents a 'when others' clause; otherwise 0. */
5640 ada_is_others_clause (struct type *type, int field_num)
5642 const char *name = TYPE_FIELD_NAME (type, field_num);
5643 return (name != NULL && name[0] == 'O');
5646 /* Assuming that TYPE0 is the type of the variant part of a record,
5647 returns the name of the discriminant controlling the variant.
5648 The value is valid until the next call to ada_variant_discrim_name. */
5651 ada_variant_discrim_name (struct type *type0)
5653 static char *result = NULL;
5654 static size_t result_len = 0;
5657 const char *discrim_end;
5658 const char *discrim_start;
5660 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5661 type = TYPE_TARGET_TYPE (type0);
5665 name = ada_type_name (type);
5667 if (name == NULL || name[0] == '\000')
5670 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5673 if (strncmp (discrim_end, "___XVN", 6) == 0)
5676 if (discrim_end == name)
5679 for (discrim_start = discrim_end; discrim_start != name + 3;
5682 if (discrim_start == name + 1)
5684 if ((discrim_start > name + 3
5685 && strncmp (discrim_start - 3, "___", 3) == 0)
5686 || discrim_start[-1] == '.')
5690 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5691 strncpy (result, discrim_start, discrim_end - discrim_start);
5692 result[discrim_end - discrim_start] = '\0';
5696 /* Scan STR for a subtype-encoded number, beginning at position K.
5697 Put the position of the character just past the number scanned in
5698 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5699 Return 1 if there was a valid number at the given position, and 0
5700 otherwise. A "subtype-encoded" number consists of the absolute value
5701 in decimal, followed by the letter 'm' to indicate a negative number.
5702 Assumes 0m does not occur. */
5705 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5709 if (!isdigit (str[k]))
5712 /* Do it the hard way so as not to make any assumption about
5713 the relationship of unsigned long (%lu scan format code) and
5716 while (isdigit (str[k]))
5718 RU = RU * 10 + (str[k] - '0');
5725 *R = (-(LONGEST) (RU - 1)) - 1;
5731 /* NOTE on the above: Technically, C does not say what the results of
5732 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5733 number representable as a LONGEST (although either would probably work
5734 in most implementations). When RU>0, the locution in the then branch
5735 above is always equivalent to the negative of RU. */
5742 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5743 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5744 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5747 ada_in_variant (LONGEST val, struct type *type, int field_num)
5749 const char *name = TYPE_FIELD_NAME (type, field_num);
5762 if (!ada_scan_number (name, p + 1, &W, &p))
5771 if (!ada_scan_number (name, p + 1, &L, &p)
5772 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5774 if (val >= L && val <= U)
5786 /* FIXME: Lots of redundancy below. Try to consolidate. */
5788 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5789 ARG_TYPE, extract and return the value of one of its (non-static)
5790 fields. FIELDNO says which field. Differs from value_primitive_field
5791 only in that it can handle packed values of arbitrary type. */
5793 static struct value *
5794 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5795 struct type *arg_type)
5799 arg_type = ada_check_typedef (arg_type);
5800 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5802 /* Handle packed fields. */
5804 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5806 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5807 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5809 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5810 offset + bit_pos / 8,
5811 bit_pos % 8, bit_size, type);
5814 return value_primitive_field (arg1, offset, fieldno, arg_type);
5817 /* Find field with name NAME in object of type TYPE. If found,
5818 set the following for each argument that is non-null:
5819 - *FIELD_TYPE_P to the field's type;
5820 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5821 an object of that type;
5822 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5823 - *BIT_SIZE_P to its size in bits if the field is packed, and
5825 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5826 fields up to but not including the desired field, or by the total
5827 number of fields if not found. A NULL value of NAME never
5828 matches; the function just counts visible fields in this case.
5830 Returns 1 if found, 0 otherwise. */
5833 find_struct_field (char *name, struct type *type, int offset,
5834 struct type **field_type_p,
5835 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5840 type = ada_check_typedef (type);
5842 if (field_type_p != NULL)
5843 *field_type_p = NULL;
5844 if (byte_offset_p != NULL)
5846 if (bit_offset_p != NULL)
5848 if (bit_size_p != NULL)
5851 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5853 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5854 int fld_offset = offset + bit_pos / 8;
5855 char *t_field_name = TYPE_FIELD_NAME (type, i);
5857 if (t_field_name == NULL)
5860 else if (name != NULL && field_name_match (t_field_name, name))
5862 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5863 if (field_type_p != NULL)
5864 *field_type_p = TYPE_FIELD_TYPE (type, i);
5865 if (byte_offset_p != NULL)
5866 *byte_offset_p = fld_offset;
5867 if (bit_offset_p != NULL)
5868 *bit_offset_p = bit_pos % 8;
5869 if (bit_size_p != NULL)
5870 *bit_size_p = bit_size;
5873 else if (ada_is_wrapper_field (type, i))
5875 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5876 field_type_p, byte_offset_p, bit_offset_p,
5877 bit_size_p, index_p))
5880 else if (ada_is_variant_part (type, i))
5882 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5885 struct type *field_type
5886 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5888 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5890 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5892 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5893 field_type_p, byte_offset_p,
5894 bit_offset_p, bit_size_p, index_p))
5898 else if (index_p != NULL)
5904 /* Number of user-visible fields in record type TYPE. */
5907 num_visible_fields (struct type *type)
5911 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5915 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5916 and search in it assuming it has (class) type TYPE.
5917 If found, return value, else return NULL.
5919 Searches recursively through wrapper fields (e.g., '_parent'). */
5921 static struct value *
5922 ada_search_struct_field (char *name, struct value *arg, int offset,
5926 type = ada_check_typedef (type);
5928 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5930 char *t_field_name = TYPE_FIELD_NAME (type, i);
5932 if (t_field_name == NULL)
5935 else if (field_name_match (t_field_name, name))
5936 return ada_value_primitive_field (arg, offset, i, type);
5938 else if (ada_is_wrapper_field (type, i))
5940 struct value *v = /* Do not let indent join lines here. */
5941 ada_search_struct_field (name, arg,
5942 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5943 TYPE_FIELD_TYPE (type, i));
5948 else if (ada_is_variant_part (type, i))
5950 /* PNH: Do we ever get here? See find_struct_field. */
5952 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5953 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5955 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5957 struct value *v = ada_search_struct_field /* Force line break. */
5959 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5960 TYPE_FIELD_TYPE (field_type, j));
5969 static struct value *ada_index_struct_field_1 (int *, struct value *,
5970 int, struct type *);
5973 /* Return field #INDEX in ARG, where the index is that returned by
5974 * find_struct_field through its INDEX_P argument. Adjust the address
5975 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5976 * If found, return value, else return NULL. */
5978 static struct value *
5979 ada_index_struct_field (int index, struct value *arg, int offset,
5982 return ada_index_struct_field_1 (&index, arg, offset, type);
5986 /* Auxiliary function for ada_index_struct_field. Like
5987 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5990 static struct value *
5991 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5995 type = ada_check_typedef (type);
5997 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5999 if (TYPE_FIELD_NAME (type, i) == NULL)
6001 else if (ada_is_wrapper_field (type, i))
6003 struct value *v = /* Do not let indent join lines here. */
6004 ada_index_struct_field_1 (index_p, arg,
6005 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6006 TYPE_FIELD_TYPE (type, i));
6011 else if (ada_is_variant_part (type, i))
6013 /* PNH: Do we ever get here? See ada_search_struct_field,
6014 find_struct_field. */
6015 error (_("Cannot assign this kind of variant record"));
6017 else if (*index_p == 0)
6018 return ada_value_primitive_field (arg, offset, i, type);
6025 /* Given ARG, a value of type (pointer or reference to a)*
6026 structure/union, extract the component named NAME from the ultimate
6027 target structure/union and return it as a value with its
6028 appropriate type. If ARG is a pointer or reference and the field
6029 is not packed, returns a reference to the field, otherwise the
6030 value of the field (an lvalue if ARG is an lvalue).
6032 The routine searches for NAME among all members of the structure itself
6033 and (recursively) among all members of any wrapper members
6036 If NO_ERR, then simply return NULL in case of error, rather than
6040 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6042 struct type *t, *t1;
6046 t1 = t = ada_check_typedef (value_type (arg));
6047 if (TYPE_CODE (t) == TYPE_CODE_REF)
6049 t1 = TYPE_TARGET_TYPE (t);
6052 t1 = ada_check_typedef (t1);
6053 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6055 arg = coerce_ref (arg);
6060 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6062 t1 = TYPE_TARGET_TYPE (t);
6065 t1 = ada_check_typedef (t1);
6066 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6068 arg = value_ind (arg);
6075 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6079 v = ada_search_struct_field (name, arg, 0, t);
6082 int bit_offset, bit_size, byte_offset;
6083 struct type *field_type;
6086 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6087 address = value_as_address (arg);
6089 address = unpack_pointer (t, value_contents (arg));
6091 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6092 if (find_struct_field (name, t1, 0,
6093 &field_type, &byte_offset, &bit_offset,
6098 if (TYPE_CODE (t) == TYPE_CODE_REF)
6099 arg = ada_coerce_ref (arg);
6101 arg = ada_value_ind (arg);
6102 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6103 bit_offset, bit_size,
6107 v = value_from_pointer (lookup_reference_type (field_type),
6108 address + byte_offset);
6112 if (v != NULL || no_err)
6115 error (_("There is no member named %s."), name);
6121 error (_("Attempt to extract a component of a value that is not a record."));
6124 /* Given a type TYPE, look up the type of the component of type named NAME.
6125 If DISPP is non-null, add its byte displacement from the beginning of a
6126 structure (pointed to by a value) of type TYPE to *DISPP (does not
6127 work for packed fields).
6129 Matches any field whose name has NAME as a prefix, possibly
6132 TYPE can be either a struct or union. If REFOK, TYPE may also
6133 be a (pointer or reference)+ to a struct or union, and the
6134 ultimate target type will be searched.
6136 Looks recursively into variant clauses and parent types.
6138 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6139 TYPE is not a type of the right kind. */
6141 static struct type *
6142 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6143 int noerr, int *dispp)
6150 if (refok && type != NULL)
6153 type = ada_check_typedef (type);
6154 if (TYPE_CODE (type) != TYPE_CODE_PTR
6155 && TYPE_CODE (type) != TYPE_CODE_REF)
6157 type = TYPE_TARGET_TYPE (type);
6161 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6162 && TYPE_CODE (type) != TYPE_CODE_UNION))
6168 target_terminal_ours ();
6169 gdb_flush (gdb_stdout);
6171 error (_("Type (null) is not a structure or union type"));
6174 /* XXX: type_sprint */
6175 fprintf_unfiltered (gdb_stderr, _("Type "));
6176 type_print (type, "", gdb_stderr, -1);
6177 error (_(" is not a structure or union type"));
6182 type = to_static_fixed_type (type);
6184 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6186 char *t_field_name = TYPE_FIELD_NAME (type, i);
6190 if (t_field_name == NULL)
6193 else if (field_name_match (t_field_name, name))
6196 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6197 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6200 else if (ada_is_wrapper_field (type, i))
6203 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6208 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6213 else if (ada_is_variant_part (type, i))
6216 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6218 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6221 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6226 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6237 target_terminal_ours ();
6238 gdb_flush (gdb_stdout);
6241 /* XXX: type_sprint */
6242 fprintf_unfiltered (gdb_stderr, _("Type "));
6243 type_print (type, "", gdb_stderr, -1);
6244 error (_(" has no component named <null>"));
6248 /* XXX: type_sprint */
6249 fprintf_unfiltered (gdb_stderr, _("Type "));
6250 type_print (type, "", gdb_stderr, -1);
6251 error (_(" has no component named %s"), name);
6258 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6259 within a value of type OUTER_TYPE that is stored in GDB at
6260 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6261 numbering from 0) is applicable. Returns -1 if none are. */
6264 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6265 const gdb_byte *outer_valaddr)
6269 char *discrim_name = ada_variant_discrim_name (var_type);
6270 struct value *outer;
6271 struct value *discrim;
6272 LONGEST discrim_val;
6274 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6275 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6276 if (discrim == NULL)
6278 discrim_val = value_as_long (discrim);
6281 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6283 if (ada_is_others_clause (var_type, i))
6285 else if (ada_in_variant (discrim_val, var_type, i))
6289 return others_clause;
6294 /* Dynamic-Sized Records */
6296 /* Strategy: The type ostensibly attached to a value with dynamic size
6297 (i.e., a size that is not statically recorded in the debugging
6298 data) does not accurately reflect the size or layout of the value.
6299 Our strategy is to convert these values to values with accurate,
6300 conventional types that are constructed on the fly. */
6302 /* There is a subtle and tricky problem here. In general, we cannot
6303 determine the size of dynamic records without its data. However,
6304 the 'struct value' data structure, which GDB uses to represent
6305 quantities in the inferior process (the target), requires the size
6306 of the type at the time of its allocation in order to reserve space
6307 for GDB's internal copy of the data. That's why the
6308 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6309 rather than struct value*s.
6311 However, GDB's internal history variables ($1, $2, etc.) are
6312 struct value*s containing internal copies of the data that are not, in
6313 general, the same as the data at their corresponding addresses in
6314 the target. Fortunately, the types we give to these values are all
6315 conventional, fixed-size types (as per the strategy described
6316 above), so that we don't usually have to perform the
6317 'to_fixed_xxx_type' conversions to look at their values.
6318 Unfortunately, there is one exception: if one of the internal
6319 history variables is an array whose elements are unconstrained
6320 records, then we will need to create distinct fixed types for each
6321 element selected. */
6323 /* The upshot of all of this is that many routines take a (type, host
6324 address, target address) triple as arguments to represent a value.
6325 The host address, if non-null, is supposed to contain an internal
6326 copy of the relevant data; otherwise, the program is to consult the
6327 target at the target address. */
6329 /* Assuming that VAL0 represents a pointer value, the result of
6330 dereferencing it. Differs from value_ind in its treatment of
6331 dynamic-sized types. */
6334 ada_value_ind (struct value *val0)
6336 struct value *val = unwrap_value (value_ind (val0));
6337 return ada_to_fixed_value (val);
6340 /* The value resulting from dereferencing any "reference to"
6341 qualifiers on VAL0. */
6343 static struct value *
6344 ada_coerce_ref (struct value *val0)
6346 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6348 struct value *val = val0;
6349 val = coerce_ref (val);
6350 val = unwrap_value (val);
6351 return ada_to_fixed_value (val);
6357 /* Return OFF rounded upward if necessary to a multiple of
6358 ALIGNMENT (a power of 2). */
6361 align_value (unsigned int off, unsigned int alignment)
6363 return (off + alignment - 1) & ~(alignment - 1);
6366 /* Return the bit alignment required for field #F of template type TYPE. */
6369 field_alignment (struct type *type, int f)
6371 const char *name = TYPE_FIELD_NAME (type, f);
6375 /* The field name should never be null, unless the debugging information
6376 is somehow malformed. In this case, we assume the field does not
6377 require any alignment. */
6381 len = strlen (name);
6383 if (!isdigit (name[len - 1]))
6386 if (isdigit (name[len - 2]))
6387 align_offset = len - 2;
6389 align_offset = len - 1;
6391 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6392 return TARGET_CHAR_BIT;
6394 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6397 /* Find a symbol named NAME. Ignores ambiguity. */
6400 ada_find_any_symbol (const char *name)
6404 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6405 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6408 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6412 /* Find a type named NAME. Ignores ambiguity. */
6415 ada_find_any_type (const char *name)
6417 struct symbol *sym = ada_find_any_symbol (name);
6420 return SYMBOL_TYPE (sym);
6425 /* Given NAME and an associated BLOCK, search all symbols for
6426 NAME suffixed with "___XR", which is the ``renaming'' symbol
6427 associated to NAME. Return this symbol if found, return
6431 ada_find_renaming_symbol (const char *name, struct block *block)
6435 sym = find_old_style_renaming_symbol (name, block);
6440 /* Not right yet. FIXME pnh 7/20/2007. */
6441 sym = ada_find_any_symbol (name);
6442 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6448 static struct symbol *
6449 find_old_style_renaming_symbol (const char *name, struct block *block)
6451 const struct symbol *function_sym = block_function (block);
6454 if (function_sym != NULL)
6456 /* If the symbol is defined inside a function, NAME is not fully
6457 qualified. This means we need to prepend the function name
6458 as well as adding the ``___XR'' suffix to build the name of
6459 the associated renaming symbol. */
6460 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6461 /* Function names sometimes contain suffixes used
6462 for instance to qualify nested subprograms. When building
6463 the XR type name, we need to make sure that this suffix is
6464 not included. So do not include any suffix in the function
6465 name length below. */
6466 const int function_name_len = ada_name_prefix_len (function_name);
6467 const int rename_len = function_name_len + 2 /* "__" */
6468 + strlen (name) + 6 /* "___XR\0" */ ;
6470 /* Strip the suffix if necessary. */
6471 function_name[function_name_len] = '\0';
6473 /* Library-level functions are a special case, as GNAT adds
6474 a ``_ada_'' prefix to the function name to avoid namespace
6475 pollution. However, the renaming symbols themselves do not
6476 have this prefix, so we need to skip this prefix if present. */
6477 if (function_name_len > 5 /* "_ada_" */
6478 && strstr (function_name, "_ada_") == function_name)
6479 function_name = function_name + 5;
6481 rename = (char *) alloca (rename_len * sizeof (char));
6482 sprintf (rename, "%s__%s___XR", function_name, name);
6486 const int rename_len = strlen (name) + 6;
6487 rename = (char *) alloca (rename_len * sizeof (char));
6488 sprintf (rename, "%s___XR", name);
6491 return ada_find_any_symbol (rename);
6494 /* Because of GNAT encoding conventions, several GDB symbols may match a
6495 given type name. If the type denoted by TYPE0 is to be preferred to
6496 that of TYPE1 for purposes of type printing, return non-zero;
6497 otherwise return 0. */
6500 ada_prefer_type (struct type *type0, struct type *type1)
6504 else if (type0 == NULL)
6506 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6508 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6510 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6512 else if (ada_is_packed_array_type (type0))
6514 else if (ada_is_array_descriptor_type (type0)
6515 && !ada_is_array_descriptor_type (type1))
6519 const char *type0_name = type_name_no_tag (type0);
6520 const char *type1_name = type_name_no_tag (type1);
6522 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6523 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6529 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6530 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6533 ada_type_name (struct type *type)
6537 else if (TYPE_NAME (type) != NULL)
6538 return TYPE_NAME (type);
6540 return TYPE_TAG_NAME (type);
6543 /* Find a parallel type to TYPE whose name is formed by appending
6544 SUFFIX to the name of TYPE. */
6547 ada_find_parallel_type (struct type *type, const char *suffix)
6550 static size_t name_len = 0;
6552 char *typename = ada_type_name (type);
6554 if (typename == NULL)
6557 len = strlen (typename);
6559 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6561 strcpy (name, typename);
6562 strcpy (name + len, suffix);
6564 return ada_find_any_type (name);
6568 /* If TYPE is a variable-size record type, return the corresponding template
6569 type describing its fields. Otherwise, return NULL. */
6571 static struct type *
6572 dynamic_template_type (struct type *type)
6574 type = ada_check_typedef (type);
6576 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6577 || ada_type_name (type) == NULL)
6581 int len = strlen (ada_type_name (type));
6582 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6585 return ada_find_parallel_type (type, "___XVE");
6589 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6590 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6593 is_dynamic_field (struct type *templ_type, int field_num)
6595 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6597 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6598 && strstr (name, "___XVL") != NULL;
6601 /* The index of the variant field of TYPE, or -1 if TYPE does not
6602 represent a variant record type. */
6605 variant_field_index (struct type *type)
6609 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6612 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6614 if (ada_is_variant_part (type, f))
6620 /* A record type with no fields. */
6622 static struct type *
6623 empty_record (struct objfile *objfile)
6625 struct type *type = alloc_type (objfile);
6626 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6627 TYPE_NFIELDS (type) = 0;
6628 TYPE_FIELDS (type) = NULL;
6629 TYPE_NAME (type) = "<empty>";
6630 TYPE_TAG_NAME (type) = NULL;
6631 TYPE_FLAGS (type) = 0;
6632 TYPE_LENGTH (type) = 0;
6636 /* An ordinary record type (with fixed-length fields) that describes
6637 the value of type TYPE at VALADDR or ADDRESS (see comments at
6638 the beginning of this section) VAL according to GNAT conventions.
6639 DVAL0 should describe the (portion of a) record that contains any
6640 necessary discriminants. It should be NULL if value_type (VAL) is
6641 an outer-level type (i.e., as opposed to a branch of a variant.) A
6642 variant field (unless unchecked) is replaced by a particular branch
6645 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6646 length are not statically known are discarded. As a consequence,
6647 VALADDR, ADDRESS and DVAL0 are ignored.
6649 NOTE: Limitations: For now, we assume that dynamic fields and
6650 variants occupy whole numbers of bytes. However, they need not be
6654 ada_template_to_fixed_record_type_1 (struct type *type,
6655 const gdb_byte *valaddr,
6656 CORE_ADDR address, struct value *dval0,
6657 int keep_dynamic_fields)
6659 struct value *mark = value_mark ();
6662 int nfields, bit_len;
6665 int fld_bit_len, bit_incr;
6668 /* Compute the number of fields in this record type that are going
6669 to be processed: unless keep_dynamic_fields, this includes only
6670 fields whose position and length are static will be processed. */
6671 if (keep_dynamic_fields)
6672 nfields = TYPE_NFIELDS (type);
6676 while (nfields < TYPE_NFIELDS (type)
6677 && !ada_is_variant_part (type, nfields)
6678 && !is_dynamic_field (type, nfields))
6682 rtype = alloc_type (TYPE_OBJFILE (type));
6683 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6684 INIT_CPLUS_SPECIFIC (rtype);
6685 TYPE_NFIELDS (rtype) = nfields;
6686 TYPE_FIELDS (rtype) = (struct field *)
6687 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6688 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6689 TYPE_NAME (rtype) = ada_type_name (type);
6690 TYPE_TAG_NAME (rtype) = NULL;
6691 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6697 for (f = 0; f < nfields; f += 1)
6699 off = align_value (off, field_alignment (type, f))
6700 + TYPE_FIELD_BITPOS (type, f);
6701 TYPE_FIELD_BITPOS (rtype, f) = off;
6702 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6704 if (ada_is_variant_part (type, f))
6707 fld_bit_len = bit_incr = 0;
6709 else if (is_dynamic_field (type, f))
6712 dval = value_from_contents_and_address (rtype, valaddr, address);
6716 /* Get the fixed type of the field. Note that, in this case, we
6717 do not want to get the real type out of the tag: if the current
6718 field is the parent part of a tagged record, we will get the
6719 tag of the object. Clearly wrong: the real type of the parent
6720 is not the real type of the child. We would end up in an infinite
6722 TYPE_FIELD_TYPE (rtype, f) =
6725 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6726 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6727 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6728 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6729 bit_incr = fld_bit_len =
6730 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6734 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6735 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6736 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6737 bit_incr = fld_bit_len =
6738 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6740 bit_incr = fld_bit_len =
6741 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6743 if (off + fld_bit_len > bit_len)
6744 bit_len = off + fld_bit_len;
6746 TYPE_LENGTH (rtype) =
6747 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6750 /* We handle the variant part, if any, at the end because of certain
6751 odd cases in which it is re-ordered so as NOT the last field of
6752 the record. This can happen in the presence of representation
6754 if (variant_field >= 0)
6756 struct type *branch_type;
6758 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6761 dval = value_from_contents_and_address (rtype, valaddr, address);
6766 to_fixed_variant_branch_type
6767 (TYPE_FIELD_TYPE (type, variant_field),
6768 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6769 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6770 if (branch_type == NULL)
6772 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6773 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6774 TYPE_NFIELDS (rtype) -= 1;
6778 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6779 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6781 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6783 if (off + fld_bit_len > bit_len)
6784 bit_len = off + fld_bit_len;
6785 TYPE_LENGTH (rtype) =
6786 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6790 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6791 should contain the alignment of that record, which should be a strictly
6792 positive value. If null or negative, then something is wrong, most
6793 probably in the debug info. In that case, we don't round up the size
6794 of the resulting type. If this record is not part of another structure,
6795 the current RTYPE length might be good enough for our purposes. */
6796 if (TYPE_LENGTH (type) <= 0)
6798 if (TYPE_NAME (rtype))
6799 warning (_("Invalid type size for `%s' detected: %d."),
6800 TYPE_NAME (rtype), TYPE_LENGTH (type));
6802 warning (_("Invalid type size for <unnamed> detected: %d."),
6803 TYPE_LENGTH (type));
6807 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6808 TYPE_LENGTH (type));
6811 value_free_to_mark (mark);
6812 if (TYPE_LENGTH (rtype) > varsize_limit)
6813 error (_("record type with dynamic size is larger than varsize-limit"));
6817 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6820 static struct type *
6821 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6822 CORE_ADDR address, struct value *dval0)
6824 return ada_template_to_fixed_record_type_1 (type, valaddr,
6828 /* An ordinary record type in which ___XVL-convention fields and
6829 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6830 static approximations, containing all possible fields. Uses
6831 no runtime values. Useless for use in values, but that's OK,
6832 since the results are used only for type determinations. Works on both
6833 structs and unions. Representation note: to save space, we memorize
6834 the result of this function in the TYPE_TARGET_TYPE of the
6837 static struct type *
6838 template_to_static_fixed_type (struct type *type0)
6844 if (TYPE_TARGET_TYPE (type0) != NULL)
6845 return TYPE_TARGET_TYPE (type0);
6847 nfields = TYPE_NFIELDS (type0);
6850 for (f = 0; f < nfields; f += 1)
6852 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6853 struct type *new_type;
6855 if (is_dynamic_field (type0, f))
6856 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6858 new_type = static_unwrap_type (field_type);
6859 if (type == type0 && new_type != field_type)
6861 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6862 TYPE_CODE (type) = TYPE_CODE (type0);
6863 INIT_CPLUS_SPECIFIC (type);
6864 TYPE_NFIELDS (type) = nfields;
6865 TYPE_FIELDS (type) = (struct field *)
6866 TYPE_ALLOC (type, nfields * sizeof (struct field));
6867 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6868 sizeof (struct field) * nfields);
6869 TYPE_NAME (type) = ada_type_name (type0);
6870 TYPE_TAG_NAME (type) = NULL;
6871 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6872 TYPE_LENGTH (type) = 0;
6874 TYPE_FIELD_TYPE (type, f) = new_type;
6875 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6880 /* Given an object of type TYPE whose contents are at VALADDR and
6881 whose address in memory is ADDRESS, returns a revision of TYPE --
6882 a non-dynamic-sized record with a variant part -- in which
6883 the variant part is replaced with the appropriate branch. Looks
6884 for discriminant values in DVAL0, which can be NULL if the record
6885 contains the necessary discriminant values. */
6887 static struct type *
6888 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6889 CORE_ADDR address, struct value *dval0)
6891 struct value *mark = value_mark ();
6894 struct type *branch_type;
6895 int nfields = TYPE_NFIELDS (type);
6896 int variant_field = variant_field_index (type);
6898 if (variant_field == -1)
6902 dval = value_from_contents_and_address (type, valaddr, address);
6906 rtype = alloc_type (TYPE_OBJFILE (type));
6907 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6908 INIT_CPLUS_SPECIFIC (rtype);
6909 TYPE_NFIELDS (rtype) = nfields;
6910 TYPE_FIELDS (rtype) =
6911 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6912 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6913 sizeof (struct field) * nfields);
6914 TYPE_NAME (rtype) = ada_type_name (type);
6915 TYPE_TAG_NAME (rtype) = NULL;
6916 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6917 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6919 branch_type = to_fixed_variant_branch_type
6920 (TYPE_FIELD_TYPE (type, variant_field),
6921 cond_offset_host (valaddr,
6922 TYPE_FIELD_BITPOS (type, variant_field)
6924 cond_offset_target (address,
6925 TYPE_FIELD_BITPOS (type, variant_field)
6926 / TARGET_CHAR_BIT), dval);
6927 if (branch_type == NULL)
6930 for (f = variant_field + 1; f < nfields; f += 1)
6931 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6932 TYPE_NFIELDS (rtype) -= 1;
6936 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6937 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6938 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6939 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6941 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6943 value_free_to_mark (mark);
6947 /* An ordinary record type (with fixed-length fields) that describes
6948 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6949 beginning of this section]. Any necessary discriminants' values
6950 should be in DVAL, a record value; it may be NULL if the object
6951 at ADDR itself contains any necessary discriminant values.
6952 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6953 values from the record are needed. Except in the case that DVAL,
6954 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6955 unchecked) is replaced by a particular branch of the variant.
6957 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6958 is questionable and may be removed. It can arise during the
6959 processing of an unconstrained-array-of-record type where all the
6960 variant branches have exactly the same size. This is because in
6961 such cases, the compiler does not bother to use the XVS convention
6962 when encoding the record. I am currently dubious of this
6963 shortcut and suspect the compiler should be altered. FIXME. */
6965 static struct type *
6966 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6967 CORE_ADDR address, struct value *dval)
6969 struct type *templ_type;
6971 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6974 templ_type = dynamic_template_type (type0);
6976 if (templ_type != NULL)
6977 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6978 else if (variant_field_index (type0) >= 0)
6980 if (dval == NULL && valaddr == NULL && address == 0)
6982 return to_record_with_fixed_variant_part (type0, valaddr, address,
6987 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6993 /* An ordinary record type (with fixed-length fields) that describes
6994 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6995 union type. Any necessary discriminants' values should be in DVAL,
6996 a record value. That is, this routine selects the appropriate
6997 branch of the union at ADDR according to the discriminant value
6998 indicated in the union's type name. */
7000 static struct type *
7001 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7002 CORE_ADDR address, struct value *dval)
7005 struct type *templ_type;
7006 struct type *var_type;
7008 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7009 var_type = TYPE_TARGET_TYPE (var_type0);
7011 var_type = var_type0;
7013 templ_type = ada_find_parallel_type (var_type, "___XVU");
7015 if (templ_type != NULL)
7016 var_type = templ_type;
7019 ada_which_variant_applies (var_type,
7020 value_type (dval), value_contents (dval));
7023 return empty_record (TYPE_OBJFILE (var_type));
7024 else if (is_dynamic_field (var_type, which))
7025 return to_fixed_record_type
7026 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7027 valaddr, address, dval);
7028 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7030 to_fixed_record_type
7031 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7033 return TYPE_FIELD_TYPE (var_type, which);
7036 /* Assuming that TYPE0 is an array type describing the type of a value
7037 at ADDR, and that DVAL describes a record containing any
7038 discriminants used in TYPE0, returns a type for the value that
7039 contains no dynamic components (that is, no components whose sizes
7040 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7041 true, gives an error message if the resulting type's size is over
7044 static struct type *
7045 to_fixed_array_type (struct type *type0, struct value *dval,
7048 struct type *index_type_desc;
7049 struct type *result;
7051 if (ada_is_packed_array_type (type0) /* revisit? */
7052 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7055 index_type_desc = ada_find_parallel_type (type0, "___XA");
7056 if (index_type_desc == NULL)
7058 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7059 /* NOTE: elt_type---the fixed version of elt_type0---should never
7060 depend on the contents of the array in properly constructed
7062 /* Create a fixed version of the array element type.
7063 We're not providing the address of an element here,
7064 and thus the actual object value cannot be inspected to do
7065 the conversion. This should not be a problem, since arrays of
7066 unconstrained objects are not allowed. In particular, all
7067 the elements of an array of a tagged type should all be of
7068 the same type specified in the debugging info. No need to
7069 consult the object tag. */
7070 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7072 if (elt_type0 == elt_type)
7075 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7076 elt_type, TYPE_INDEX_TYPE (type0));
7081 struct type *elt_type0;
7084 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7085 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7087 /* NOTE: result---the fixed version of elt_type0---should never
7088 depend on the contents of the array in properly constructed
7090 /* Create a fixed version of the array element type.
7091 We're not providing the address of an element here,
7092 and thus the actual object value cannot be inspected to do
7093 the conversion. This should not be a problem, since arrays of
7094 unconstrained objects are not allowed. In particular, all
7095 the elements of an array of a tagged type should all be of
7096 the same type specified in the debugging info. No need to
7097 consult the object tag. */
7099 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7100 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7102 struct type *range_type =
7103 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7104 dval, TYPE_OBJFILE (type0));
7105 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7106 result, range_type);
7108 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7109 error (_("array type with dynamic size is larger than varsize-limit"));
7112 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
7117 /* A standard type (containing no dynamically sized components)
7118 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7119 DVAL describes a record containing any discriminants used in TYPE0,
7120 and may be NULL if there are none, or if the object of type TYPE at
7121 ADDRESS or in VALADDR contains these discriminants.
7123 If CHECK_TAG is not null, in the case of tagged types, this function
7124 attempts to locate the object's tag and use it to compute the actual
7125 type. However, when ADDRESS is null, we cannot use it to determine the
7126 location of the tag, and therefore compute the tagged type's actual type.
7127 So we return the tagged type without consulting the tag. */
7129 static struct type *
7130 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7131 CORE_ADDR address, struct value *dval, int check_tag)
7133 type = ada_check_typedef (type);
7134 switch (TYPE_CODE (type))
7138 case TYPE_CODE_STRUCT:
7140 struct type *static_type = to_static_fixed_type (type);
7141 struct type *fixed_record_type =
7142 to_fixed_record_type (type, valaddr, address, NULL);
7143 /* If STATIC_TYPE is a tagged type and we know the object's address,
7144 then we can determine its tag, and compute the object's actual
7145 type from there. Note that we have to use the fixed record
7146 type (the parent part of the record may have dynamic fields
7147 and the way the location of _tag is expressed may depend on
7150 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7152 struct type *real_type =
7153 type_from_tag (value_tag_from_contents_and_address
7157 if (real_type != NULL)
7158 return to_fixed_record_type (real_type, valaddr, address, NULL);
7160 return fixed_record_type;
7162 case TYPE_CODE_ARRAY:
7163 return to_fixed_array_type (type, dval, 1);
7164 case TYPE_CODE_UNION:
7168 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7172 /* The same as ada_to_fixed_type_1, except that it preserves the type
7173 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7174 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7177 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7178 CORE_ADDR address, struct value *dval, int check_tag)
7181 struct type *fixed_type =
7182 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7184 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7185 && TYPE_TARGET_TYPE (type) == fixed_type)
7191 /* A standard (static-sized) type corresponding as well as possible to
7192 TYPE0, but based on no runtime data. */
7194 static struct type *
7195 to_static_fixed_type (struct type *type0)
7202 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7205 type0 = ada_check_typedef (type0);
7207 switch (TYPE_CODE (type0))
7211 case TYPE_CODE_STRUCT:
7212 type = dynamic_template_type (type0);
7214 return template_to_static_fixed_type (type);
7216 return template_to_static_fixed_type (type0);
7217 case TYPE_CODE_UNION:
7218 type = ada_find_parallel_type (type0, "___XVU");
7220 return template_to_static_fixed_type (type);
7222 return template_to_static_fixed_type (type0);
7226 /* A static approximation of TYPE with all type wrappers removed. */
7228 static struct type *
7229 static_unwrap_type (struct type *type)
7231 if (ada_is_aligner_type (type))
7233 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7234 if (ada_type_name (type1) == NULL)
7235 TYPE_NAME (type1) = ada_type_name (type);
7237 return static_unwrap_type (type1);
7241 struct type *raw_real_type = ada_get_base_type (type);
7242 if (raw_real_type == type)
7245 return to_static_fixed_type (raw_real_type);
7249 /* In some cases, incomplete and private types require
7250 cross-references that are not resolved as records (for example,
7252 type FooP is access Foo;
7254 type Foo is array ...;
7255 ). In these cases, since there is no mechanism for producing
7256 cross-references to such types, we instead substitute for FooP a
7257 stub enumeration type that is nowhere resolved, and whose tag is
7258 the name of the actual type. Call these types "non-record stubs". */
7260 /* A type equivalent to TYPE that is not a non-record stub, if one
7261 exists, otherwise TYPE. */
7264 ada_check_typedef (struct type *type)
7269 CHECK_TYPEDEF (type);
7270 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7271 || !TYPE_STUB (type)
7272 || TYPE_TAG_NAME (type) == NULL)
7276 char *name = TYPE_TAG_NAME (type);
7277 struct type *type1 = ada_find_any_type (name);
7278 return (type1 == NULL) ? type : type1;
7282 /* A value representing the data at VALADDR/ADDRESS as described by
7283 type TYPE0, but with a standard (static-sized) type that correctly
7284 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7285 type, then return VAL0 [this feature is simply to avoid redundant
7286 creation of struct values]. */
7288 static struct value *
7289 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7292 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7293 if (type == type0 && val0 != NULL)
7296 return value_from_contents_and_address (type, 0, address);
7299 /* A value representing VAL, but with a standard (static-sized) type
7300 that correctly describes it. Does not necessarily create a new
7303 static struct value *
7304 ada_to_fixed_value (struct value *val)
7306 return ada_to_fixed_value_create (value_type (val),
7307 VALUE_ADDRESS (val) + value_offset (val),
7311 /* A value representing VAL, but with a standard (static-sized) type
7312 chosen to approximate the real type of VAL as well as possible, but
7313 without consulting any runtime values. For Ada dynamic-sized
7314 types, therefore, the type of the result is likely to be inaccurate. */
7317 ada_to_static_fixed_value (struct value *val)
7320 to_static_fixed_type (static_unwrap_type (value_type (val)));
7321 if (type == value_type (val))
7324 return coerce_unspec_val_to_type (val, type);
7330 /* Table mapping attribute numbers to names.
7331 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7333 static const char *attribute_names[] = {
7351 ada_attribute_name (enum exp_opcode n)
7353 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7354 return attribute_names[n - OP_ATR_FIRST + 1];
7356 return attribute_names[0];
7359 /* Evaluate the 'POS attribute applied to ARG. */
7362 pos_atr (struct value *arg)
7364 struct type *type = value_type (arg);
7366 if (!discrete_type_p (type))
7367 error (_("'POS only defined on discrete types"));
7369 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7372 LONGEST v = value_as_long (arg);
7374 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7376 if (v == TYPE_FIELD_BITPOS (type, i))
7379 error (_("enumeration value is invalid: can't find 'POS"));
7382 return value_as_long (arg);
7385 static struct value *
7386 value_pos_atr (struct value *arg)
7388 return value_from_longest (builtin_type_int, pos_atr (arg));
7391 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7393 static struct value *
7394 value_val_atr (struct type *type, struct value *arg)
7396 if (!discrete_type_p (type))
7397 error (_("'VAL only defined on discrete types"));
7398 if (!integer_type_p (value_type (arg)))
7399 error (_("'VAL requires integral argument"));
7401 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7403 long pos = value_as_long (arg);
7404 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7405 error (_("argument to 'VAL out of range"));
7406 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7409 return value_from_longest (type, value_as_long (arg));
7415 /* True if TYPE appears to be an Ada character type.
7416 [At the moment, this is true only for Character and Wide_Character;
7417 It is a heuristic test that could stand improvement]. */
7420 ada_is_character_type (struct type *type)
7424 /* If the type code says it's a character, then assume it really is,
7425 and don't check any further. */
7426 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7429 /* Otherwise, assume it's a character type iff it is a discrete type
7430 with a known character type name. */
7431 name = ada_type_name (type);
7432 return (name != NULL
7433 && (TYPE_CODE (type) == TYPE_CODE_INT
7434 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7435 && (strcmp (name, "character") == 0
7436 || strcmp (name, "wide_character") == 0
7437 || strcmp (name, "wide_wide_character") == 0
7438 || strcmp (name, "unsigned char") == 0));
7441 /* True if TYPE appears to be an Ada string type. */
7444 ada_is_string_type (struct type *type)
7446 type = ada_check_typedef (type);
7448 && TYPE_CODE (type) != TYPE_CODE_PTR
7449 && (ada_is_simple_array_type (type)
7450 || ada_is_array_descriptor_type (type))
7451 && ada_array_arity (type) == 1)
7453 struct type *elttype = ada_array_element_type (type, 1);
7455 return ada_is_character_type (elttype);
7462 /* True if TYPE is a struct type introduced by the compiler to force the
7463 alignment of a value. Such types have a single field with a
7464 distinctive name. */
7467 ada_is_aligner_type (struct type *type)
7469 type = ada_check_typedef (type);
7471 /* If we can find a parallel XVS type, then the XVS type should
7472 be used instead of this type. And hence, this is not an aligner
7474 if (ada_find_parallel_type (type, "___XVS") != NULL)
7477 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7478 && TYPE_NFIELDS (type) == 1
7479 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7482 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7483 the parallel type. */
7486 ada_get_base_type (struct type *raw_type)
7488 struct type *real_type_namer;
7489 struct type *raw_real_type;
7491 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7494 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7495 if (real_type_namer == NULL
7496 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7497 || TYPE_NFIELDS (real_type_namer) != 1)
7500 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7501 if (raw_real_type == NULL)
7504 return raw_real_type;
7507 /* The type of value designated by TYPE, with all aligners removed. */
7510 ada_aligned_type (struct type *type)
7512 if (ada_is_aligner_type (type))
7513 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7515 return ada_get_base_type (type);
7519 /* The address of the aligned value in an object at address VALADDR
7520 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7523 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7525 if (ada_is_aligner_type (type))
7526 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7528 TYPE_FIELD_BITPOS (type,
7529 0) / TARGET_CHAR_BIT);
7536 /* The printed representation of an enumeration literal with encoded
7537 name NAME. The value is good to the next call of ada_enum_name. */
7539 ada_enum_name (const char *name)
7541 static char *result;
7542 static size_t result_len = 0;
7545 /* First, unqualify the enumeration name:
7546 1. Search for the last '.' character. If we find one, then skip
7547 all the preceeding characters, the unqualified name starts
7548 right after that dot.
7549 2. Otherwise, we may be debugging on a target where the compiler
7550 translates dots into "__". Search forward for double underscores,
7551 but stop searching when we hit an overloading suffix, which is
7552 of the form "__" followed by digits. */
7554 tmp = strrchr (name, '.');
7559 while ((tmp = strstr (name, "__")) != NULL)
7561 if (isdigit (tmp[2]))
7571 if (name[1] == 'U' || name[1] == 'W')
7573 if (sscanf (name + 2, "%x", &v) != 1)
7579 GROW_VECT (result, result_len, 16);
7580 if (isascii (v) && isprint (v))
7581 sprintf (result, "'%c'", v);
7582 else if (name[1] == 'U')
7583 sprintf (result, "[\"%02x\"]", v);
7585 sprintf (result, "[\"%04x\"]", v);
7591 tmp = strstr (name, "__");
7593 tmp = strstr (name, "$");
7596 GROW_VECT (result, result_len, tmp - name + 1);
7597 strncpy (result, name, tmp - name);
7598 result[tmp - name] = '\0';
7606 static struct value *
7607 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7610 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7611 (expect_type, exp, pos, noside);
7614 /* Evaluate the subexpression of EXP starting at *POS as for
7615 evaluate_type, updating *POS to point just past the evaluated
7618 static struct value *
7619 evaluate_subexp_type (struct expression *exp, int *pos)
7621 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7622 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7625 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7628 static struct value *
7629 unwrap_value (struct value *val)
7631 struct type *type = ada_check_typedef (value_type (val));
7632 if (ada_is_aligner_type (type))
7634 struct value *v = value_struct_elt (&val, NULL, "F",
7635 NULL, "internal structure");
7636 struct type *val_type = ada_check_typedef (value_type (v));
7637 if (ada_type_name (val_type) == NULL)
7638 TYPE_NAME (val_type) = ada_type_name (type);
7640 return unwrap_value (v);
7644 struct type *raw_real_type =
7645 ada_check_typedef (ada_get_base_type (type));
7647 if (type == raw_real_type)
7651 coerce_unspec_val_to_type
7652 (val, ada_to_fixed_type (raw_real_type, 0,
7653 VALUE_ADDRESS (val) + value_offset (val),
7658 static struct value *
7659 cast_to_fixed (struct type *type, struct value *arg)
7663 if (type == value_type (arg))
7665 else if (ada_is_fixed_point_type (value_type (arg)))
7666 val = ada_float_to_fixed (type,
7667 ada_fixed_to_float (value_type (arg),
7668 value_as_long (arg)));
7672 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7673 val = ada_float_to_fixed (type, argd);
7676 return value_from_longest (type, val);
7679 static struct value *
7680 cast_from_fixed_to_double (struct value *arg)
7682 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7683 value_as_long (arg));
7684 return value_from_double (builtin_type_double, val);
7687 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7688 return the converted value. */
7690 static struct value *
7691 coerce_for_assign (struct type *type, struct value *val)
7693 struct type *type2 = value_type (val);
7697 type2 = ada_check_typedef (type2);
7698 type = ada_check_typedef (type);
7700 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7701 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7703 val = ada_value_ind (val);
7704 type2 = value_type (val);
7707 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7708 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7710 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7711 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7712 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7713 error (_("Incompatible types in assignment"));
7714 deprecated_set_value_type (val, type);
7719 static struct value *
7720 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7723 struct type *type1, *type2;
7726 arg1 = coerce_ref (arg1);
7727 arg2 = coerce_ref (arg2);
7728 type1 = base_type (ada_check_typedef (value_type (arg1)));
7729 type2 = base_type (ada_check_typedef (value_type (arg2)));
7731 if (TYPE_CODE (type1) != TYPE_CODE_INT
7732 || TYPE_CODE (type2) != TYPE_CODE_INT)
7733 return value_binop (arg1, arg2, op);
7742 return value_binop (arg1, arg2, op);
7745 v2 = value_as_long (arg2);
7747 error (_("second operand of %s must not be zero."), op_string (op));
7749 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7750 return value_binop (arg1, arg2, op);
7752 v1 = value_as_long (arg1);
7757 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7758 v += v > 0 ? -1 : 1;
7766 /* Should not reach this point. */
7770 val = allocate_value (type1);
7771 store_unsigned_integer (value_contents_raw (val),
7772 TYPE_LENGTH (value_type (val)), v);
7777 ada_value_equal (struct value *arg1, struct value *arg2)
7779 if (ada_is_direct_array_type (value_type (arg1))
7780 || ada_is_direct_array_type (value_type (arg2)))
7782 /* Automatically dereference any array reference before
7783 we attempt to perform the comparison. */
7784 arg1 = ada_coerce_ref (arg1);
7785 arg2 = ada_coerce_ref (arg2);
7787 arg1 = ada_coerce_to_simple_array (arg1);
7788 arg2 = ada_coerce_to_simple_array (arg2);
7789 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7790 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7791 error (_("Attempt to compare array with non-array"));
7792 /* FIXME: The following works only for types whose
7793 representations use all bits (no padding or undefined bits)
7794 and do not have user-defined equality. */
7796 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7797 && memcmp (value_contents (arg1), value_contents (arg2),
7798 TYPE_LENGTH (value_type (arg1))) == 0;
7800 return value_equal (arg1, arg2);
7803 /* Total number of component associations in the aggregate starting at
7804 index PC in EXP. Assumes that index PC is the start of an
7808 num_component_specs (struct expression *exp, int pc)
7811 m = exp->elts[pc + 1].longconst;
7814 for (i = 0; i < m; i += 1)
7816 switch (exp->elts[pc].opcode)
7822 n += exp->elts[pc + 1].longconst;
7825 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7830 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7831 component of LHS (a simple array or a record), updating *POS past
7832 the expression, assuming that LHS is contained in CONTAINER. Does
7833 not modify the inferior's memory, nor does it modify LHS (unless
7834 LHS == CONTAINER). */
7837 assign_component (struct value *container, struct value *lhs, LONGEST index,
7838 struct expression *exp, int *pos)
7840 struct value *mark = value_mark ();
7842 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7844 struct value *index_val = value_from_longest (builtin_type_int, index);
7845 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7849 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7850 elt = ada_to_fixed_value (unwrap_value (elt));
7853 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7854 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7856 value_assign_to_component (container, elt,
7857 ada_evaluate_subexp (NULL, exp, pos,
7860 value_free_to_mark (mark);
7863 /* Assuming that LHS represents an lvalue having a record or array
7864 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7865 of that aggregate's value to LHS, advancing *POS past the
7866 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7867 lvalue containing LHS (possibly LHS itself). Does not modify
7868 the inferior's memory, nor does it modify the contents of
7869 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7871 static struct value *
7872 assign_aggregate (struct value *container,
7873 struct value *lhs, struct expression *exp,
7874 int *pos, enum noside noside)
7876 struct type *lhs_type;
7877 int n = exp->elts[*pos+1].longconst;
7878 LONGEST low_index, high_index;
7881 int max_indices, num_indices;
7882 int is_array_aggregate;
7884 struct value *mark = value_mark ();
7887 if (noside != EVAL_NORMAL)
7890 for (i = 0; i < n; i += 1)
7891 ada_evaluate_subexp (NULL, exp, pos, noside);
7895 container = ada_coerce_ref (container);
7896 if (ada_is_direct_array_type (value_type (container)))
7897 container = ada_coerce_to_simple_array (container);
7898 lhs = ada_coerce_ref (lhs);
7899 if (!deprecated_value_modifiable (lhs))
7900 error (_("Left operand of assignment is not a modifiable lvalue."));
7902 lhs_type = value_type (lhs);
7903 if (ada_is_direct_array_type (lhs_type))
7905 lhs = ada_coerce_to_simple_array (lhs);
7906 lhs_type = value_type (lhs);
7907 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7908 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7909 is_array_aggregate = 1;
7911 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7914 high_index = num_visible_fields (lhs_type) - 1;
7915 is_array_aggregate = 0;
7918 error (_("Left-hand side must be array or record."));
7920 num_specs = num_component_specs (exp, *pos - 3);
7921 max_indices = 4 * num_specs + 4;
7922 indices = alloca (max_indices * sizeof (indices[0]));
7923 indices[0] = indices[1] = low_index - 1;
7924 indices[2] = indices[3] = high_index + 1;
7927 for (i = 0; i < n; i += 1)
7929 switch (exp->elts[*pos].opcode)
7932 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7933 &num_indices, max_indices,
7934 low_index, high_index);
7937 aggregate_assign_positional (container, lhs, exp, pos, indices,
7938 &num_indices, max_indices,
7939 low_index, high_index);
7943 error (_("Misplaced 'others' clause"));
7944 aggregate_assign_others (container, lhs, exp, pos, indices,
7945 num_indices, low_index, high_index);
7948 error (_("Internal error: bad aggregate clause"));
7955 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7956 construct at *POS, updating *POS past the construct, given that
7957 the positions are relative to lower bound LOW, where HIGH is the
7958 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7959 updating *NUM_INDICES as needed. CONTAINER is as for
7960 assign_aggregate. */
7962 aggregate_assign_positional (struct value *container,
7963 struct value *lhs, struct expression *exp,
7964 int *pos, LONGEST *indices, int *num_indices,
7965 int max_indices, LONGEST low, LONGEST high)
7967 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7969 if (ind - 1 == high)
7970 warning (_("Extra components in aggregate ignored."));
7973 add_component_interval (ind, ind, indices, num_indices, max_indices);
7975 assign_component (container, lhs, ind, exp, pos);
7978 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7981 /* Assign into the components of LHS indexed by the OP_CHOICES
7982 construct at *POS, updating *POS past the construct, given that
7983 the allowable indices are LOW..HIGH. Record the indices assigned
7984 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7985 needed. CONTAINER is as for assign_aggregate. */
7987 aggregate_assign_from_choices (struct value *container,
7988 struct value *lhs, struct expression *exp,
7989 int *pos, LONGEST *indices, int *num_indices,
7990 int max_indices, LONGEST low, LONGEST high)
7993 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7994 int choice_pos, expr_pc;
7995 int is_array = ada_is_direct_array_type (value_type (lhs));
7997 choice_pos = *pos += 3;
7999 for (j = 0; j < n_choices; j += 1)
8000 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8002 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8004 for (j = 0; j < n_choices; j += 1)
8006 LONGEST lower, upper;
8007 enum exp_opcode op = exp->elts[choice_pos].opcode;
8008 if (op == OP_DISCRETE_RANGE)
8011 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8013 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8018 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8029 name = &exp->elts[choice_pos + 2].string;
8032 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8035 error (_("Invalid record component association."));
8037 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8039 if (! find_struct_field (name, value_type (lhs), 0,
8040 NULL, NULL, NULL, NULL, &ind))
8041 error (_("Unknown component name: %s."), name);
8042 lower = upper = ind;
8045 if (lower <= upper && (lower < low || upper > high))
8046 error (_("Index in component association out of bounds."));
8048 add_component_interval (lower, upper, indices, num_indices,
8050 while (lower <= upper)
8054 assign_component (container, lhs, lower, exp, &pos1);
8060 /* Assign the value of the expression in the OP_OTHERS construct in
8061 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8062 have not been previously assigned. The index intervals already assigned
8063 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8064 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8066 aggregate_assign_others (struct value *container,
8067 struct value *lhs, struct expression *exp,
8068 int *pos, LONGEST *indices, int num_indices,
8069 LONGEST low, LONGEST high)
8072 int expr_pc = *pos+1;
8074 for (i = 0; i < num_indices - 2; i += 2)
8077 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8081 assign_component (container, lhs, ind, exp, &pos);
8084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8087 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8088 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8089 modifying *SIZE as needed. It is an error if *SIZE exceeds
8090 MAX_SIZE. The resulting intervals do not overlap. */
8092 add_component_interval (LONGEST low, LONGEST high,
8093 LONGEST* indices, int *size, int max_size)
8096 for (i = 0; i < *size; i += 2) {
8097 if (high >= indices[i] && low <= indices[i + 1])
8100 for (kh = i + 2; kh < *size; kh += 2)
8101 if (high < indices[kh])
8103 if (low < indices[i])
8105 indices[i + 1] = indices[kh - 1];
8106 if (high > indices[i + 1])
8107 indices[i + 1] = high;
8108 memcpy (indices + i + 2, indices + kh, *size - kh);
8109 *size -= kh - i - 2;
8112 else if (high < indices[i])
8116 if (*size == max_size)
8117 error (_("Internal error: miscounted aggregate components."));
8119 for (j = *size-1; j >= i+2; j -= 1)
8120 indices[j] = indices[j - 2];
8122 indices[i + 1] = high;
8125 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8128 static struct value *
8129 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8131 if (type == ada_check_typedef (value_type (arg2)))
8134 if (ada_is_fixed_point_type (type))
8135 return (cast_to_fixed (type, arg2));
8137 if (ada_is_fixed_point_type (value_type (arg2)))
8138 return value_cast (type, cast_from_fixed_to_double (arg2));
8140 return value_cast (type, arg2);
8143 static struct value *
8144 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8145 int *pos, enum noside noside)
8148 int tem, tem2, tem3;
8150 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8153 struct value **argvec;
8157 op = exp->elts[pc].opcode;
8163 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8164 arg1 = unwrap_value (arg1);
8166 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8167 then we need to perform the conversion manually, because
8168 evaluate_subexp_standard doesn't do it. This conversion is
8169 necessary in Ada because the different kinds of float/fixed
8170 types in Ada have different representations.
8172 Similarly, we need to perform the conversion from OP_LONG
8174 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8175 arg1 = ada_value_cast (expect_type, arg1, noside);
8181 struct value *result;
8183 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8184 /* The result type will have code OP_STRING, bashed there from
8185 OP_ARRAY. Bash it back. */
8186 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8187 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8193 type = exp->elts[pc + 1].type;
8194 arg1 = evaluate_subexp (type, exp, pos, noside);
8195 if (noside == EVAL_SKIP)
8197 arg1 = ada_value_cast (type, arg1, noside);
8202 type = exp->elts[pc + 1].type;
8203 return ada_evaluate_subexp (type, exp, pos, noside);
8206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8207 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8209 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8210 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8212 return ada_value_assign (arg1, arg1);
8214 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8215 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8217 if (ada_is_fixed_point_type (value_type (arg1)))
8218 arg2 = cast_to_fixed (value_type (arg1), arg2);
8219 else if (ada_is_fixed_point_type (value_type (arg2)))
8221 (_("Fixed-point values must be assigned to fixed-point variables"));
8223 arg2 = coerce_for_assign (value_type (arg1), arg2);
8224 return ada_value_assign (arg1, arg2);
8227 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8228 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8229 if (noside == EVAL_SKIP)
8231 if ((ada_is_fixed_point_type (value_type (arg1))
8232 || ada_is_fixed_point_type (value_type (arg2)))
8233 && value_type (arg1) != value_type (arg2))
8234 error (_("Operands of fixed-point addition must have the same type"));
8235 /* Do the addition, and cast the result to the type of the first
8236 argument. We cannot cast the result to a reference type, so if
8237 ARG1 is a reference type, find its underlying type. */
8238 type = value_type (arg1);
8239 while (TYPE_CODE (type) == TYPE_CODE_REF)
8240 type = TYPE_TARGET_TYPE (type);
8241 return value_cast (type, value_add (arg1, arg2));
8244 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8245 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8246 if (noside == EVAL_SKIP)
8248 if ((ada_is_fixed_point_type (value_type (arg1))
8249 || ada_is_fixed_point_type (value_type (arg2)))
8250 && value_type (arg1) != value_type (arg2))
8251 error (_("Operands of fixed-point subtraction must have the same type"));
8252 /* Do the substraction, and cast the result to the type of the first
8253 argument. We cannot cast the result to a reference type, so if
8254 ARG1 is a reference type, find its underlying type. */
8255 type = value_type (arg1);
8256 while (TYPE_CODE (type) == TYPE_CODE_REF)
8257 type = TYPE_TARGET_TYPE (type);
8258 return value_cast (type, value_sub (arg1, arg2));
8262 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8263 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8264 if (noside == EVAL_SKIP)
8266 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8267 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8268 return value_zero (value_type (arg1), not_lval);
8271 if (ada_is_fixed_point_type (value_type (arg1)))
8272 arg1 = cast_from_fixed_to_double (arg1);
8273 if (ada_is_fixed_point_type (value_type (arg2)))
8274 arg2 = cast_from_fixed_to_double (arg2);
8275 return ada_value_binop (arg1, arg2, op);
8280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8281 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8282 if (noside == EVAL_SKIP)
8284 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8285 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8286 return value_zero (value_type (arg1), not_lval);
8288 return ada_value_binop (arg1, arg2, op);
8291 case BINOP_NOTEQUAL:
8292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8293 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8294 if (noside == EVAL_SKIP)
8296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8299 tem = ada_value_equal (arg1, arg2);
8300 if (op == BINOP_NOTEQUAL)
8302 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8306 if (noside == EVAL_SKIP)
8308 else if (ada_is_fixed_point_type (value_type (arg1)))
8309 return value_cast (value_type (arg1), value_neg (arg1));
8311 return value_neg (arg1);
8313 case BINOP_LOGICAL_AND:
8314 case BINOP_LOGICAL_OR:
8315 case UNOP_LOGICAL_NOT:
8320 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8321 return value_cast (LA_BOOL_TYPE, val);
8324 case BINOP_BITWISE_AND:
8325 case BINOP_BITWISE_IOR:
8326 case BINOP_BITWISE_XOR:
8330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8332 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8334 return value_cast (value_type (arg1), val);
8340 /* Tagged types are a little special in the fact that the real type
8341 is dynamic and can only be determined by inspecting the object
8342 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8343 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8344 if (noside == EVAL_AVOID_SIDE_EFFECTS
8345 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8346 noside = EVAL_NORMAL;
8348 if (noside == EVAL_SKIP)
8353 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8354 /* Only encountered when an unresolved symbol occurs in a
8355 context other than a function call, in which case, it is
8357 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8358 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8363 (to_static_fixed_type
8364 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8370 unwrap_value (evaluate_subexp_standard
8371 (expect_type, exp, pos, noside));
8372 return ada_to_fixed_value (arg1);
8378 /* Allocate arg vector, including space for the function to be
8379 called in argvec[0] and a terminating NULL. */
8380 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8382 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8384 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8385 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8386 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8387 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8390 for (tem = 0; tem <= nargs; tem += 1)
8391 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8394 if (noside == EVAL_SKIP)
8398 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8399 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8400 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8401 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8402 && VALUE_LVAL (argvec[0]) == lval_memory))
8403 argvec[0] = value_addr (argvec[0]);
8405 type = ada_check_typedef (value_type (argvec[0]));
8406 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8408 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8410 case TYPE_CODE_FUNC:
8411 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8413 case TYPE_CODE_ARRAY:
8415 case TYPE_CODE_STRUCT:
8416 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8417 argvec[0] = ada_value_ind (argvec[0]);
8418 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8421 error (_("cannot subscript or call something of type `%s'"),
8422 ada_type_name (value_type (argvec[0])));
8427 switch (TYPE_CODE (type))
8429 case TYPE_CODE_FUNC:
8430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8431 return allocate_value (TYPE_TARGET_TYPE (type));
8432 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8433 case TYPE_CODE_STRUCT:
8437 arity = ada_array_arity (type);
8438 type = ada_array_element_type (type, nargs);
8440 error (_("cannot subscript or call a record"));
8442 error (_("wrong number of subscripts; expecting %d"), arity);
8443 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8444 return value_zero (ada_aligned_type (type), lval_memory);
8446 unwrap_value (ada_value_subscript
8447 (argvec[0], nargs, argvec + 1));
8449 case TYPE_CODE_ARRAY:
8450 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8452 type = ada_array_element_type (type, nargs);
8454 error (_("element type of array unknown"));
8456 return value_zero (ada_aligned_type (type), lval_memory);
8459 unwrap_value (ada_value_subscript
8460 (ada_coerce_to_simple_array (argvec[0]),
8461 nargs, argvec + 1));
8462 case TYPE_CODE_PTR: /* Pointer to array */
8463 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8466 type = ada_array_element_type (type, nargs);
8468 error (_("element type of array unknown"));
8470 return value_zero (ada_aligned_type (type), lval_memory);
8473 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8474 nargs, argvec + 1));
8477 error (_("Attempt to index or call something other than an "
8478 "array or function"));
8483 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8484 struct value *low_bound_val =
8485 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8486 struct value *high_bound_val =
8487 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 low_bound_val = coerce_ref (low_bound_val);
8491 high_bound_val = coerce_ref (high_bound_val);
8492 low_bound = pos_atr (low_bound_val);
8493 high_bound = pos_atr (high_bound_val);
8495 if (noside == EVAL_SKIP)
8498 /* If this is a reference to an aligner type, then remove all
8500 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8501 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8502 TYPE_TARGET_TYPE (value_type (array)) =
8503 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8505 if (ada_is_packed_array_type (value_type (array)))
8506 error (_("cannot slice a packed array"));
8508 /* If this is a reference to an array or an array lvalue,
8509 convert to a pointer. */
8510 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8511 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8512 && VALUE_LVAL (array) == lval_memory))
8513 array = value_addr (array);
8515 if (noside == EVAL_AVOID_SIDE_EFFECTS
8516 && ada_is_array_descriptor_type (ada_check_typedef
8517 (value_type (array))))
8518 return empty_array (ada_type_of_array (array, 0), low_bound);
8520 array = ada_coerce_to_simple_array_ptr (array);
8522 /* If we have more than one level of pointer indirection,
8523 dereference the value until we get only one level. */
8524 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8525 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8527 array = value_ind (array);
8529 /* Make sure we really do have an array type before going further,
8530 to avoid a SEGV when trying to get the index type or the target
8531 type later down the road if the debug info generated by
8532 the compiler is incorrect or incomplete. */
8533 if (!ada_is_simple_array_type (value_type (array)))
8534 error (_("cannot take slice of non-array"));
8536 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8538 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8539 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8543 struct type *arr_type0 =
8544 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8546 return ada_value_slice_ptr (array, arr_type0,
8547 longest_to_int (low_bound),
8548 longest_to_int (high_bound));
8551 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8553 else if (high_bound < low_bound)
8554 return empty_array (value_type (array), low_bound);
8556 return ada_value_slice (array, longest_to_int (low_bound),
8557 longest_to_int (high_bound));
8562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8563 type = exp->elts[pc + 1].type;
8565 if (noside == EVAL_SKIP)
8568 switch (TYPE_CODE (type))
8571 lim_warning (_("Membership test incompletely implemented; "
8572 "always returns true"));
8573 return value_from_longest (builtin_type_int, (LONGEST) 1);
8575 case TYPE_CODE_RANGE:
8576 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8577 arg3 = value_from_longest (builtin_type_int,
8578 TYPE_HIGH_BOUND (type));
8580 value_from_longest (builtin_type_int,
8581 (value_less (arg1, arg3)
8582 || value_equal (arg1, arg3))
8583 && (value_less (arg2, arg1)
8584 || value_equal (arg2, arg1)));
8587 case BINOP_IN_BOUNDS:
8589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8590 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8592 if (noside == EVAL_SKIP)
8595 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8596 return value_zero (builtin_type_int, not_lval);
8598 tem = longest_to_int (exp->elts[pc + 1].longconst);
8600 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8601 error (_("invalid dimension number to 'range"));
8603 arg3 = ada_array_bound (arg2, tem, 1);
8604 arg2 = ada_array_bound (arg2, tem, 0);
8607 value_from_longest (builtin_type_int,
8608 (value_less (arg1, arg3)
8609 || value_equal (arg1, arg3))
8610 && (value_less (arg2, arg1)
8611 || value_equal (arg2, arg1)));
8613 case TERNOP_IN_RANGE:
8614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8615 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8616 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8618 if (noside == EVAL_SKIP)
8622 value_from_longest (builtin_type_int,
8623 (value_less (arg1, arg3)
8624 || value_equal (arg1, arg3))
8625 && (value_less (arg2, arg1)
8626 || value_equal (arg2, arg1)));
8632 struct type *type_arg;
8633 if (exp->elts[*pos].opcode == OP_TYPE)
8635 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8637 type_arg = exp->elts[pc + 2].type;
8641 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8645 if (exp->elts[*pos].opcode != OP_LONG)
8646 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8647 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8650 if (noside == EVAL_SKIP)
8653 if (type_arg == NULL)
8655 arg1 = ada_coerce_ref (arg1);
8657 if (ada_is_packed_array_type (value_type (arg1)))
8658 arg1 = ada_coerce_to_simple_array (arg1);
8660 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8661 error (_("invalid dimension number to '%s"),
8662 ada_attribute_name (op));
8664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8666 type = ada_index_type (value_type (arg1), tem);
8669 (_("attempt to take bound of something that is not an array"));
8670 return allocate_value (type);
8675 default: /* Should never happen. */
8676 error (_("unexpected attribute encountered"));
8678 return ada_array_bound (arg1, tem, 0);
8680 return ada_array_bound (arg1, tem, 1);
8682 return ada_array_length (arg1, tem);
8685 else if (discrete_type_p (type_arg))
8687 struct type *range_type;
8688 char *name = ada_type_name (type_arg);
8690 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8692 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8693 if (range_type == NULL)
8694 range_type = type_arg;
8698 error (_("unexpected attribute encountered"));
8700 return discrete_type_low_bound (range_type);
8702 return discrete_type_high_bound (range_type);
8704 error (_("the 'length attribute applies only to array types"));
8707 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8708 error (_("unimplemented type attribute"));
8713 if (ada_is_packed_array_type (type_arg))
8714 type_arg = decode_packed_array_type (type_arg);
8716 if (tem < 1 || tem > ada_array_arity (type_arg))
8717 error (_("invalid dimension number to '%s"),
8718 ada_attribute_name (op));
8720 type = ada_index_type (type_arg, tem);
8723 (_("attempt to take bound of something that is not an array"));
8724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8725 return allocate_value (type);
8730 error (_("unexpected attribute encountered"));
8732 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8733 return value_from_longest (type, low);
8735 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8736 return value_from_longest (type, high);
8738 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8739 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8740 return value_from_longest (type, high - low + 1);
8746 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8747 if (noside == EVAL_SKIP)
8750 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8751 return value_zero (ada_tag_type (arg1), not_lval);
8753 return ada_value_tag (arg1);
8757 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8759 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8760 if (noside == EVAL_SKIP)
8762 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8763 return value_zero (value_type (arg1), not_lval);
8765 return value_binop (arg1, arg2,
8766 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8768 case OP_ATR_MODULUS:
8770 struct type *type_arg = exp->elts[pc + 2].type;
8771 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8773 if (noside == EVAL_SKIP)
8776 if (!ada_is_modular_type (type_arg))
8777 error (_("'modulus must be applied to modular type"));
8779 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8780 ada_modulus (type_arg));
8785 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8786 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8787 if (noside == EVAL_SKIP)
8789 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8790 return value_zero (builtin_type_int, not_lval);
8792 return value_pos_atr (arg1);
8795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8796 if (noside == EVAL_SKIP)
8798 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8799 return value_zero (builtin_type_int, not_lval);
8801 return value_from_longest (builtin_type_int,
8803 * TYPE_LENGTH (value_type (arg1)));
8806 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8807 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8808 type = exp->elts[pc + 2].type;
8809 if (noside == EVAL_SKIP)
8811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8812 return value_zero (type, not_lval);
8814 return value_val_atr (type, arg1);
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 if (noside == EVAL_SKIP)
8821 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8822 return value_zero (value_type (arg1), not_lval);
8824 return value_binop (arg1, arg2, op);
8827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 if (noside == EVAL_SKIP)
8834 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8835 if (noside == EVAL_SKIP)
8837 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8838 return value_neg (arg1);
8843 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8844 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8845 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8846 if (noside == EVAL_SKIP)
8848 type = ada_check_typedef (value_type (arg1));
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8851 if (ada_is_array_descriptor_type (type))
8852 /* GDB allows dereferencing GNAT array descriptors. */
8854 struct type *arrType = ada_type_of_array (arg1, 0);
8855 if (arrType == NULL)
8856 error (_("Attempt to dereference null array pointer."));
8857 return value_at_lazy (arrType, 0);
8859 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8860 || TYPE_CODE (type) == TYPE_CODE_REF
8861 /* In C you can dereference an array to get the 1st elt. */
8862 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8864 type = to_static_fixed_type
8866 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8868 return value_zero (type, lval_memory);
8870 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8871 /* GDB allows dereferencing an int. */
8872 return value_zero (builtin_type_int, lval_memory);
8874 error (_("Attempt to take contents of a non-pointer value."));
8876 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8877 type = ada_check_typedef (value_type (arg1));
8879 if (ada_is_array_descriptor_type (type))
8880 /* GDB allows dereferencing GNAT array descriptors. */
8881 return ada_coerce_to_simple_array (arg1);
8883 return ada_value_ind (arg1);
8885 case STRUCTOP_STRUCT:
8886 tem = longest_to_int (exp->elts[pc + 1].longconst);
8887 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8888 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8889 if (noside == EVAL_SKIP)
8891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 struct type *type1 = value_type (arg1);
8894 if (ada_is_tagged_type (type1, 1))
8896 type = ada_lookup_struct_elt_type (type1,
8897 &exp->elts[pc + 2].string,
8900 /* In this case, we assume that the field COULD exist
8901 in some extension of the type. Return an object of
8902 "type" void, which will match any formal
8903 (see ada_type_match). */
8904 return value_zero (builtin_type_void, lval_memory);
8908 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8911 return value_zero (ada_aligned_type (type), lval_memory);
8915 ada_to_fixed_value (unwrap_value
8916 (ada_value_struct_elt
8917 (arg1, &exp->elts[pc + 2].string, 0)));
8919 /* The value is not supposed to be used. This is here to make it
8920 easier to accommodate expressions that contain types. */
8922 if (noside == EVAL_SKIP)
8924 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8925 return allocate_value (exp->elts[pc + 1].type);
8927 error (_("Attempt to use a type name as an expression"));
8932 case OP_DISCRETE_RANGE:
8935 if (noside == EVAL_NORMAL)
8939 error (_("Undefined name, ambiguous name, or renaming used in "
8940 "component association: %s."), &exp->elts[pc+2].string);
8942 error (_("Aggregates only allowed on the right of an assignment"));
8944 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8947 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8949 for (tem = 0; tem < nargs; tem += 1)
8950 ada_evaluate_subexp (NULL, exp, pos, noside);
8955 return value_from_longest (builtin_type_long, (LONGEST) 1);
8961 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8962 type name that encodes the 'small and 'delta information.
8963 Otherwise, return NULL. */
8966 fixed_type_info (struct type *type)
8968 const char *name = ada_type_name (type);
8969 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8971 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8973 const char *tail = strstr (name, "___XF_");
8979 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8980 return fixed_type_info (TYPE_TARGET_TYPE (type));
8985 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8988 ada_is_fixed_point_type (struct type *type)
8990 return fixed_type_info (type) != NULL;
8993 /* Return non-zero iff TYPE represents a System.Address type. */
8996 ada_is_system_address_type (struct type *type)
8998 return (TYPE_NAME (type)
8999 && strcmp (TYPE_NAME (type), "system__address") == 0);
9002 /* Assuming that TYPE is the representation of an Ada fixed-point
9003 type, return its delta, or -1 if the type is malformed and the
9004 delta cannot be determined. */
9007 ada_delta (struct type *type)
9009 const char *encoding = fixed_type_info (type);
9012 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9015 return (DOUBLEST) num / (DOUBLEST) den;
9018 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9019 factor ('SMALL value) associated with the type. */
9022 scaling_factor (struct type *type)
9024 const char *encoding = fixed_type_info (type);
9025 unsigned long num0, den0, num1, den1;
9028 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9033 return (DOUBLEST) num1 / (DOUBLEST) den1;
9035 return (DOUBLEST) num0 / (DOUBLEST) den0;
9039 /* Assuming that X is the representation of a value of fixed-point
9040 type TYPE, return its floating-point equivalent. */
9043 ada_fixed_to_float (struct type *type, LONGEST x)
9045 return (DOUBLEST) x *scaling_factor (type);
9048 /* The representation of a fixed-point value of type TYPE
9049 corresponding to the value X. */
9052 ada_float_to_fixed (struct type *type, DOUBLEST x)
9054 return (LONGEST) (x / scaling_factor (type) + 0.5);
9058 /* VAX floating formats */
9060 /* Non-zero iff TYPE represents one of the special VAX floating-point
9064 ada_is_vax_floating_type (struct type *type)
9067 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9070 && (TYPE_CODE (type) == TYPE_CODE_INT
9071 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9072 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9075 /* The type of special VAX floating-point type this is, assuming
9076 ada_is_vax_floating_point. */
9079 ada_vax_float_type_suffix (struct type *type)
9081 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9084 /* A value representing the special debugging function that outputs
9085 VAX floating-point values of the type represented by TYPE. Assumes
9086 ada_is_vax_floating_type (TYPE). */
9089 ada_vax_float_print_function (struct type *type)
9091 switch (ada_vax_float_type_suffix (type))
9094 return get_var_value ("DEBUG_STRING_F", 0);
9096 return get_var_value ("DEBUG_STRING_D", 0);
9098 return get_var_value ("DEBUG_STRING_G", 0);
9100 error (_("invalid VAX floating-point type"));
9107 /* Scan STR beginning at position K for a discriminant name, and
9108 return the value of that discriminant field of DVAL in *PX. If
9109 PNEW_K is not null, put the position of the character beyond the
9110 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9111 not alter *PX and *PNEW_K if unsuccessful. */
9114 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9117 static char *bound_buffer = NULL;
9118 static size_t bound_buffer_len = 0;
9121 struct value *bound_val;
9123 if (dval == NULL || str == NULL || str[k] == '\0')
9126 pend = strstr (str + k, "__");
9130 k += strlen (bound);
9134 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9135 bound = bound_buffer;
9136 strncpy (bound_buffer, str + k, pend - (str + k));
9137 bound[pend - (str + k)] = '\0';
9141 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9142 if (bound_val == NULL)
9145 *px = value_as_long (bound_val);
9151 /* Value of variable named NAME in the current environment. If
9152 no such variable found, then if ERR_MSG is null, returns 0, and
9153 otherwise causes an error with message ERR_MSG. */
9155 static struct value *
9156 get_var_value (char *name, char *err_msg)
9158 struct ada_symbol_info *syms;
9161 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9166 if (err_msg == NULL)
9169 error (("%s"), err_msg);
9172 return value_of_variable (syms[0].sym, syms[0].block);
9175 /* Value of integer variable named NAME in the current environment. If
9176 no such variable found, returns 0, and sets *FLAG to 0. If
9177 successful, sets *FLAG to 1. */
9180 get_int_var_value (char *name, int *flag)
9182 struct value *var_val = get_var_value (name, 0);
9194 return value_as_long (var_val);
9199 /* Return a range type whose base type is that of the range type named
9200 NAME in the current environment, and whose bounds are calculated
9201 from NAME according to the GNAT range encoding conventions.
9202 Extract discriminant values, if needed, from DVAL. If a new type
9203 must be created, allocate in OBJFILE's space. The bounds
9204 information, in general, is encoded in NAME, the base type given in
9205 the named range type. */
9207 static struct type *
9208 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9210 struct type *raw_type = ada_find_any_type (name);
9211 struct type *base_type;
9214 if (raw_type == NULL)
9215 base_type = builtin_type_int;
9216 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9217 base_type = TYPE_TARGET_TYPE (raw_type);
9219 base_type = raw_type;
9221 subtype_info = strstr (name, "___XD");
9222 if (subtype_info == NULL)
9226 static char *name_buf = NULL;
9227 static size_t name_len = 0;
9228 int prefix_len = subtype_info - name;
9234 GROW_VECT (name_buf, name_len, prefix_len + 5);
9235 strncpy (name_buf, name, prefix_len);
9236 name_buf[prefix_len] = '\0';
9239 bounds_str = strchr (subtype_info, '_');
9242 if (*subtype_info == 'L')
9244 if (!ada_scan_number (bounds_str, n, &L, &n)
9245 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9247 if (bounds_str[n] == '_')
9249 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9256 strcpy (name_buf + prefix_len, "___L");
9257 L = get_int_var_value (name_buf, &ok);
9260 lim_warning (_("Unknown lower bound, using 1."));
9265 if (*subtype_info == 'U')
9267 if (!ada_scan_number (bounds_str, n, &U, &n)
9268 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9274 strcpy (name_buf + prefix_len, "___U");
9275 U = get_int_var_value (name_buf, &ok);
9278 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9283 if (objfile == NULL)
9284 objfile = TYPE_OBJFILE (base_type);
9285 type = create_range_type (alloc_type (objfile), base_type, L, U);
9286 TYPE_NAME (type) = name;
9291 /* True iff NAME is the name of a range type. */
9294 ada_is_range_type_name (const char *name)
9296 return (name != NULL && strstr (name, "___XD"));
9302 /* True iff TYPE is an Ada modular type. */
9305 ada_is_modular_type (struct type *type)
9307 struct type *subranged_type = base_type (type);
9309 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9310 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9311 && TYPE_UNSIGNED (subranged_type));
9314 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9317 ada_modulus (struct type * type)
9319 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9323 /* Ada exception catchpoint support:
9324 ---------------------------------
9326 We support 3 kinds of exception catchpoints:
9327 . catchpoints on Ada exceptions
9328 . catchpoints on unhandled Ada exceptions
9329 . catchpoints on failed assertions
9331 Exceptions raised during failed assertions, or unhandled exceptions
9332 could perfectly be caught with the general catchpoint on Ada exceptions.
9333 However, we can easily differentiate these two special cases, and having
9334 the option to distinguish these two cases from the rest can be useful
9335 to zero-in on certain situations.
9337 Exception catchpoints are a specialized form of breakpoint,
9338 since they rely on inserting breakpoints inside known routines
9339 of the GNAT runtime. The implementation therefore uses a standard
9340 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9343 Support in the runtime for exception catchpoints have been changed
9344 a few times already, and these changes affect the implementation
9345 of these catchpoints. In order to be able to support several
9346 variants of the runtime, we use a sniffer that will determine
9347 the runtime variant used by the program being debugged.
9349 At this time, we do not support the use of conditions on Ada exception
9350 catchpoints. The COND and COND_STRING fields are therefore set
9351 to NULL (most of the time, see below).
9353 Conditions where EXP_STRING, COND, and COND_STRING are used:
9355 When a user specifies the name of a specific exception in the case
9356 of catchpoints on Ada exceptions, we store the name of that exception
9357 in the EXP_STRING. We then translate this request into an actual
9358 condition stored in COND_STRING, and then parse it into an expression
9361 /* The different types of catchpoints that we introduced for catching
9364 enum exception_catchpoint_kind
9367 ex_catch_exception_unhandled,
9371 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9373 /* A structure that describes how to support exception catchpoints
9374 for a given executable. */
9376 struct exception_support_info
9378 /* The name of the symbol to break on in order to insert
9379 a catchpoint on exceptions. */
9380 const char *catch_exception_sym;
9382 /* The name of the symbol to break on in order to insert
9383 a catchpoint on unhandled exceptions. */
9384 const char *catch_exception_unhandled_sym;
9386 /* The name of the symbol to break on in order to insert
9387 a catchpoint on failed assertions. */
9388 const char *catch_assert_sym;
9390 /* Assuming that the inferior just triggered an unhandled exception
9391 catchpoint, this function is responsible for returning the address
9392 in inferior memory where the name of that exception is stored.
9393 Return zero if the address could not be computed. */
9394 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9397 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9398 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9400 /* The following exception support info structure describes how to
9401 implement exception catchpoints with the latest version of the
9402 Ada runtime (as of 2007-03-06). */
9404 static const struct exception_support_info default_exception_support_info =
9406 "__gnat_debug_raise_exception", /* catch_exception_sym */
9407 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9408 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9409 ada_unhandled_exception_name_addr
9412 /* The following exception support info structure describes how to
9413 implement exception catchpoints with a slightly older version
9414 of the Ada runtime. */
9416 static const struct exception_support_info exception_support_info_fallback =
9418 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9419 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9420 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9421 ada_unhandled_exception_name_addr_from_raise
9424 /* For each executable, we sniff which exception info structure to use
9425 and cache it in the following global variable. */
9427 static const struct exception_support_info *exception_info = NULL;
9429 /* Inspect the Ada runtime and determine which exception info structure
9430 should be used to provide support for exception catchpoints.
9432 This function will always set exception_info, or raise an error. */
9435 ada_exception_support_info_sniffer (void)
9439 /* If the exception info is already known, then no need to recompute it. */
9440 if (exception_info != NULL)
9443 /* Check the latest (default) exception support info. */
9444 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9448 exception_info = &default_exception_support_info;
9452 /* Try our fallback exception suport info. */
9453 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9457 exception_info = &exception_support_info_fallback;
9461 /* Sometimes, it is normal for us to not be able to find the routine
9462 we are looking for. This happens when the program is linked with
9463 the shared version of the GNAT runtime, and the program has not been
9464 started yet. Inform the user of these two possible causes if
9467 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9468 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9470 /* If the symbol does not exist, then check that the program is
9471 already started, to make sure that shared libraries have been
9472 loaded. If it is not started, this may mean that the symbol is
9473 in a shared library. */
9475 if (ptid_get_pid (inferior_ptid) == 0)
9476 error (_("Unable to insert catchpoint. Try to start the program first."));
9478 /* At this point, we know that we are debugging an Ada program and
9479 that the inferior has been started, but we still are not able to
9480 find the run-time symbols. That can mean that we are in
9481 configurable run time mode, or that a-except as been optimized
9482 out by the linker... In any case, at this point it is not worth
9483 supporting this feature. */
9485 error (_("Cannot insert catchpoints in this configuration."));
9488 /* An observer of "executable_changed" events.
9489 Its role is to clear certain cached values that need to be recomputed
9490 each time a new executable is loaded by GDB. */
9493 ada_executable_changed_observer (void *unused)
9495 /* If the executable changed, then it is possible that the Ada runtime
9496 is different. So we need to invalidate the exception support info
9498 exception_info = NULL;
9501 /* Return the name of the function at PC, NULL if could not find it.
9502 This function only checks the debugging information, not the symbol
9506 function_name_from_pc (CORE_ADDR pc)
9510 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9516 /* True iff FRAME is very likely to be that of a function that is
9517 part of the runtime system. This is all very heuristic, but is
9518 intended to be used as advice as to what frames are uninteresting
9522 is_known_support_routine (struct frame_info *frame)
9524 struct symtab_and_line sal;
9528 /* If this code does not have any debugging information (no symtab),
9529 This cannot be any user code. */
9531 find_frame_sal (frame, &sal);
9532 if (sal.symtab == NULL)
9535 /* If there is a symtab, but the associated source file cannot be
9536 located, then assume this is not user code: Selecting a frame
9537 for which we cannot display the code would not be very helpful
9538 for the user. This should also take care of case such as VxWorks
9539 where the kernel has some debugging info provided for a few units. */
9541 if (symtab_to_fullname (sal.symtab) == NULL)
9544 /* Check the unit filename againt the Ada runtime file naming.
9545 We also check the name of the objfile against the name of some
9546 known system libraries that sometimes come with debugging info
9549 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9551 re_comp (known_runtime_file_name_patterns[i]);
9552 if (re_exec (sal.symtab->filename))
9554 if (sal.symtab->objfile != NULL
9555 && re_exec (sal.symtab->objfile->name))
9559 /* Check whether the function is a GNAT-generated entity. */
9561 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9562 if (func_name == NULL)
9565 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9567 re_comp (known_auxiliary_function_name_patterns[i]);
9568 if (re_exec (func_name))
9575 /* Find the first frame that contains debugging information and that is not
9576 part of the Ada run-time, starting from FI and moving upward. */
9579 ada_find_printable_frame (struct frame_info *fi)
9581 for (; fi != NULL; fi = get_prev_frame (fi))
9583 if (!is_known_support_routine (fi))
9592 /* Assuming that the inferior just triggered an unhandled exception
9593 catchpoint, return the address in inferior memory where the name
9594 of the exception is stored.
9596 Return zero if the address could not be computed. */
9599 ada_unhandled_exception_name_addr (void)
9601 return parse_and_eval_address ("e.full_name");
9604 /* Same as ada_unhandled_exception_name_addr, except that this function
9605 should be used when the inferior uses an older version of the runtime,
9606 where the exception name needs to be extracted from a specific frame
9607 several frames up in the callstack. */
9610 ada_unhandled_exception_name_addr_from_raise (void)
9613 struct frame_info *fi;
9615 /* To determine the name of this exception, we need to select
9616 the frame corresponding to RAISE_SYM_NAME. This frame is
9617 at least 3 levels up, so we simply skip the first 3 frames
9618 without checking the name of their associated function. */
9619 fi = get_current_frame ();
9620 for (frame_level = 0; frame_level < 3; frame_level += 1)
9622 fi = get_prev_frame (fi);
9626 const char *func_name =
9627 function_name_from_pc (get_frame_address_in_block (fi));
9628 if (func_name != NULL
9629 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9630 break; /* We found the frame we were looking for... */
9631 fi = get_prev_frame (fi);
9638 return parse_and_eval_address ("id.full_name");
9641 /* Assuming the inferior just triggered an Ada exception catchpoint
9642 (of any type), return the address in inferior memory where the name
9643 of the exception is stored, if applicable.
9645 Return zero if the address could not be computed, or if not relevant. */
9648 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9649 struct breakpoint *b)
9653 case ex_catch_exception:
9654 return (parse_and_eval_address ("e.full_name"));
9657 case ex_catch_exception_unhandled:
9658 return exception_info->unhandled_exception_name_addr ();
9661 case ex_catch_assert:
9662 return 0; /* Exception name is not relevant in this case. */
9666 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9670 return 0; /* Should never be reached. */
9673 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9674 any error that ada_exception_name_addr_1 might cause to be thrown.
9675 When an error is intercepted, a warning with the error message is printed,
9676 and zero is returned. */
9679 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9680 struct breakpoint *b)
9682 struct gdb_exception e;
9683 CORE_ADDR result = 0;
9685 TRY_CATCH (e, RETURN_MASK_ERROR)
9687 result = ada_exception_name_addr_1 (ex, b);
9692 warning (_("failed to get exception name: %s"), e.message);
9699 /* Implement the PRINT_IT method in the breakpoint_ops structure
9700 for all exception catchpoint kinds. */
9702 static enum print_stop_action
9703 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9705 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9706 char exception_name[256];
9710 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9711 exception_name [sizeof (exception_name) - 1] = '\0';
9714 ada_find_printable_frame (get_current_frame ());
9716 annotate_catchpoint (b->number);
9719 case ex_catch_exception:
9721 printf_filtered (_("\nCatchpoint %d, %s at "),
9722 b->number, exception_name);
9724 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9726 case ex_catch_exception_unhandled:
9728 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9729 b->number, exception_name);
9731 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9734 case ex_catch_assert:
9735 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9740 return PRINT_SRC_AND_LOC;
9743 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9744 for all exception catchpoint kinds. */
9747 print_one_exception (enum exception_catchpoint_kind ex,
9748 struct breakpoint *b, CORE_ADDR *last_addr)
9753 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9757 *last_addr = b->loc->address;
9760 case ex_catch_exception:
9761 if (b->exp_string != NULL)
9763 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9765 ui_out_field_string (uiout, "what", msg);
9769 ui_out_field_string (uiout, "what", "all Ada exceptions");
9773 case ex_catch_exception_unhandled:
9774 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9777 case ex_catch_assert:
9778 ui_out_field_string (uiout, "what", "failed Ada assertions");
9782 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9787 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9788 for all exception catchpoint kinds. */
9791 print_mention_exception (enum exception_catchpoint_kind ex,
9792 struct breakpoint *b)
9796 case ex_catch_exception:
9797 if (b->exp_string != NULL)
9798 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9799 b->number, b->exp_string);
9801 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9805 case ex_catch_exception_unhandled:
9806 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9810 case ex_catch_assert:
9811 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9815 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9820 /* Virtual table for "catch exception" breakpoints. */
9822 static enum print_stop_action
9823 print_it_catch_exception (struct breakpoint *b)
9825 return print_it_exception (ex_catch_exception, b);
9829 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9831 print_one_exception (ex_catch_exception, b, last_addr);
9835 print_mention_catch_exception (struct breakpoint *b)
9837 print_mention_exception (ex_catch_exception, b);
9840 static struct breakpoint_ops catch_exception_breakpoint_ops =
9842 print_it_catch_exception,
9843 print_one_catch_exception,
9844 print_mention_catch_exception
9847 /* Virtual table for "catch exception unhandled" breakpoints. */
9849 static enum print_stop_action
9850 print_it_catch_exception_unhandled (struct breakpoint *b)
9852 return print_it_exception (ex_catch_exception_unhandled, b);
9856 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9858 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9862 print_mention_catch_exception_unhandled (struct breakpoint *b)
9864 print_mention_exception (ex_catch_exception_unhandled, b);
9867 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9868 print_it_catch_exception_unhandled,
9869 print_one_catch_exception_unhandled,
9870 print_mention_catch_exception_unhandled
9873 /* Virtual table for "catch assert" breakpoints. */
9875 static enum print_stop_action
9876 print_it_catch_assert (struct breakpoint *b)
9878 return print_it_exception (ex_catch_assert, b);
9882 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9884 print_one_exception (ex_catch_assert, b, last_addr);
9888 print_mention_catch_assert (struct breakpoint *b)
9890 print_mention_exception (ex_catch_assert, b);
9893 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9894 print_it_catch_assert,
9895 print_one_catch_assert,
9896 print_mention_catch_assert
9899 /* Return non-zero if B is an Ada exception catchpoint. */
9902 ada_exception_catchpoint_p (struct breakpoint *b)
9904 return (b->ops == &catch_exception_breakpoint_ops
9905 || b->ops == &catch_exception_unhandled_breakpoint_ops
9906 || b->ops == &catch_assert_breakpoint_ops);
9909 /* Return a newly allocated copy of the first space-separated token
9910 in ARGSP, and then adjust ARGSP to point immediately after that
9913 Return NULL if ARGPS does not contain any more tokens. */
9916 ada_get_next_arg (char **argsp)
9918 char *args = *argsp;
9922 /* Skip any leading white space. */
9924 while (isspace (*args))
9927 if (args[0] == '\0')
9928 return NULL; /* No more arguments. */
9930 /* Find the end of the current argument. */
9933 while (*end != '\0' && !isspace (*end))
9936 /* Adjust ARGSP to point to the start of the next argument. */
9940 /* Make a copy of the current argument and return it. */
9942 result = xmalloc (end - args + 1);
9943 strncpy (result, args, end - args);
9944 result[end - args] = '\0';
9949 /* Split the arguments specified in a "catch exception" command.
9950 Set EX to the appropriate catchpoint type.
9951 Set EXP_STRING to the name of the specific exception if
9952 specified by the user. */
9955 catch_ada_exception_command_split (char *args,
9956 enum exception_catchpoint_kind *ex,
9959 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9960 char *exception_name;
9962 exception_name = ada_get_next_arg (&args);
9963 make_cleanup (xfree, exception_name);
9965 /* Check that we do not have any more arguments. Anything else
9968 while (isspace (*args))
9971 if (args[0] != '\0')
9972 error (_("Junk at end of expression"));
9974 discard_cleanups (old_chain);
9976 if (exception_name == NULL)
9978 /* Catch all exceptions. */
9979 *ex = ex_catch_exception;
9982 else if (strcmp (exception_name, "unhandled") == 0)
9984 /* Catch unhandled exceptions. */
9985 *ex = ex_catch_exception_unhandled;
9990 /* Catch a specific exception. */
9991 *ex = ex_catch_exception;
9992 *exp_string = exception_name;
9996 /* Return the name of the symbol on which we should break in order to
9997 implement a catchpoint of the EX kind. */
10000 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10002 gdb_assert (exception_info != NULL);
10006 case ex_catch_exception:
10007 return (exception_info->catch_exception_sym);
10009 case ex_catch_exception_unhandled:
10010 return (exception_info->catch_exception_unhandled_sym);
10012 case ex_catch_assert:
10013 return (exception_info->catch_assert_sym);
10016 internal_error (__FILE__, __LINE__,
10017 _("unexpected catchpoint kind (%d)"), ex);
10021 /* Return the breakpoint ops "virtual table" used for catchpoints
10024 static struct breakpoint_ops *
10025 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10029 case ex_catch_exception:
10030 return (&catch_exception_breakpoint_ops);
10032 case ex_catch_exception_unhandled:
10033 return (&catch_exception_unhandled_breakpoint_ops);
10035 case ex_catch_assert:
10036 return (&catch_assert_breakpoint_ops);
10039 internal_error (__FILE__, __LINE__,
10040 _("unexpected catchpoint kind (%d)"), ex);
10044 /* Return the condition that will be used to match the current exception
10045 being raised with the exception that the user wants to catch. This
10046 assumes that this condition is used when the inferior just triggered
10047 an exception catchpoint.
10049 The string returned is a newly allocated string that needs to be
10050 deallocated later. */
10053 ada_exception_catchpoint_cond_string (const char *exp_string)
10055 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10058 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10060 static struct expression *
10061 ada_parse_catchpoint_condition (char *cond_string,
10062 struct symtab_and_line sal)
10064 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10067 /* Return the symtab_and_line that should be used to insert an exception
10068 catchpoint of the TYPE kind.
10070 EX_STRING should contain the name of a specific exception
10071 that the catchpoint should catch, or NULL otherwise.
10073 The idea behind all the remaining parameters is that their names match
10074 the name of certain fields in the breakpoint structure that are used to
10075 handle exception catchpoints. This function returns the value to which
10076 these fields should be set, depending on the type of catchpoint we need
10079 If COND and COND_STRING are both non-NULL, any value they might
10080 hold will be free'ed, and then replaced by newly allocated ones.
10081 These parameters are left untouched otherwise. */
10083 static struct symtab_and_line
10084 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10085 char **addr_string, char **cond_string,
10086 struct expression **cond, struct breakpoint_ops **ops)
10088 const char *sym_name;
10089 struct symbol *sym;
10090 struct symtab_and_line sal;
10092 /* First, find out which exception support info to use. */
10093 ada_exception_support_info_sniffer ();
10095 /* Then lookup the function on which we will break in order to catch
10096 the Ada exceptions requested by the user. */
10098 sym_name = ada_exception_sym_name (ex);
10099 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10101 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10102 that should be compiled with debugging information. As a result, we
10103 expect to find that symbol in the symtabs. If we don't find it, then
10104 the target most likely does not support Ada exceptions, or we cannot
10105 insert exception breakpoints yet, because the GNAT runtime hasn't been
10108 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10109 in such a way that no debugging information is produced for the symbol
10110 we are looking for. In this case, we could search the minimal symbols
10111 as a fall-back mechanism. This would still be operating in degraded
10112 mode, however, as we would still be missing the debugging information
10113 that is needed in order to extract the name of the exception being
10114 raised (this name is printed in the catchpoint message, and is also
10115 used when trying to catch a specific exception). We do not handle
10116 this case for now. */
10119 error (_("Unable to break on '%s' in this configuration."), sym_name);
10121 /* Make sure that the symbol we found corresponds to a function. */
10122 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10123 error (_("Symbol \"%s\" is not a function (class = %d)"),
10124 sym_name, SYMBOL_CLASS (sym));
10126 sal = find_function_start_sal (sym, 1);
10128 /* Set ADDR_STRING. */
10130 *addr_string = xstrdup (sym_name);
10132 /* Set the COND and COND_STRING (if not NULL). */
10134 if (cond_string != NULL && cond != NULL)
10136 if (*cond_string != NULL)
10138 xfree (*cond_string);
10139 *cond_string = NULL;
10146 if (exp_string != NULL)
10148 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10149 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10154 *ops = ada_exception_breakpoint_ops (ex);
10159 /* Parse the arguments (ARGS) of the "catch exception" command.
10161 Set TYPE to the appropriate exception catchpoint type.
10162 If the user asked the catchpoint to catch only a specific
10163 exception, then save the exception name in ADDR_STRING.
10165 See ada_exception_sal for a description of all the remaining
10166 function arguments of this function. */
10168 struct symtab_and_line
10169 ada_decode_exception_location (char *args, char **addr_string,
10170 char **exp_string, char **cond_string,
10171 struct expression **cond,
10172 struct breakpoint_ops **ops)
10174 enum exception_catchpoint_kind ex;
10176 catch_ada_exception_command_split (args, &ex, exp_string);
10177 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10181 struct symtab_and_line
10182 ada_decode_assert_location (char *args, char **addr_string,
10183 struct breakpoint_ops **ops)
10185 /* Check that no argument where provided at the end of the command. */
10189 while (isspace (*args))
10192 error (_("Junk at end of arguments."));
10195 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10200 /* Information about operators given special treatment in functions
10202 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10204 #define ADA_OPERATORS \
10205 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10206 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10207 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10208 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10209 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10210 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10211 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10212 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10213 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10214 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10215 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10216 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10217 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10218 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10219 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10220 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10221 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10222 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10223 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10226 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10228 switch (exp->elts[pc - 1].opcode)
10231 operator_length_standard (exp, pc, oplenp, argsp);
10234 #define OP_DEFN(op, len, args, binop) \
10235 case op: *oplenp = len; *argsp = args; break;
10241 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10246 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10252 ada_op_name (enum exp_opcode opcode)
10257 return op_name_standard (opcode);
10259 #define OP_DEFN(op, len, args, binop) case op: return #op;
10264 return "OP_AGGREGATE";
10266 return "OP_CHOICES";
10272 /* As for operator_length, but assumes PC is pointing at the first
10273 element of the operator, and gives meaningful results only for the
10274 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10277 ada_forward_operator_length (struct expression *exp, int pc,
10278 int *oplenp, int *argsp)
10280 switch (exp->elts[pc].opcode)
10283 *oplenp = *argsp = 0;
10286 #define OP_DEFN(op, len, args, binop) \
10287 case op: *oplenp = len; *argsp = args; break;
10293 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10298 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10304 int len = longest_to_int (exp->elts[pc + 1].longconst);
10305 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10313 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10315 enum exp_opcode op = exp->elts[elt].opcode;
10320 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10324 /* Ada attributes ('Foo). */
10327 case OP_ATR_LENGTH:
10331 case OP_ATR_MODULUS:
10338 case UNOP_IN_RANGE:
10340 /* XXX: gdb_sprint_host_address, type_sprint */
10341 fprintf_filtered (stream, _("Type @"));
10342 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10343 fprintf_filtered (stream, " (");
10344 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10345 fprintf_filtered (stream, ")");
10347 case BINOP_IN_BOUNDS:
10348 fprintf_filtered (stream, " (%d)",
10349 longest_to_int (exp->elts[pc + 2].longconst));
10351 case TERNOP_IN_RANGE:
10356 case OP_DISCRETE_RANGE:
10357 case OP_POSITIONAL:
10364 char *name = &exp->elts[elt + 2].string;
10365 int len = longest_to_int (exp->elts[elt + 1].longconst);
10366 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10371 return dump_subexp_body_standard (exp, stream, elt);
10375 for (i = 0; i < nargs; i += 1)
10376 elt = dump_subexp (exp, stream, elt);
10381 /* The Ada extension of print_subexp (q.v.). */
10384 ada_print_subexp (struct expression *exp, int *pos,
10385 struct ui_file *stream, enum precedence prec)
10387 int oplen, nargs, i;
10389 enum exp_opcode op = exp->elts[pc].opcode;
10391 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10398 print_subexp_standard (exp, pos, stream, prec);
10402 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10405 case BINOP_IN_BOUNDS:
10406 /* XXX: sprint_subexp */
10407 print_subexp (exp, pos, stream, PREC_SUFFIX);
10408 fputs_filtered (" in ", stream);
10409 print_subexp (exp, pos, stream, PREC_SUFFIX);
10410 fputs_filtered ("'range", stream);
10411 if (exp->elts[pc + 1].longconst > 1)
10412 fprintf_filtered (stream, "(%ld)",
10413 (long) exp->elts[pc + 1].longconst);
10416 case TERNOP_IN_RANGE:
10417 if (prec >= PREC_EQUAL)
10418 fputs_filtered ("(", stream);
10419 /* XXX: sprint_subexp */
10420 print_subexp (exp, pos, stream, PREC_SUFFIX);
10421 fputs_filtered (" in ", stream);
10422 print_subexp (exp, pos, stream, PREC_EQUAL);
10423 fputs_filtered (" .. ", stream);
10424 print_subexp (exp, pos, stream, PREC_EQUAL);
10425 if (prec >= PREC_EQUAL)
10426 fputs_filtered (")", stream);
10431 case OP_ATR_LENGTH:
10435 case OP_ATR_MODULUS:
10440 if (exp->elts[*pos].opcode == OP_TYPE)
10442 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10443 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10447 print_subexp (exp, pos, stream, PREC_SUFFIX);
10448 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10452 for (tem = 1; tem < nargs; tem += 1)
10454 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10455 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10457 fputs_filtered (")", stream);
10462 type_print (exp->elts[pc + 1].type, "", stream, 0);
10463 fputs_filtered ("'(", stream);
10464 print_subexp (exp, pos, stream, PREC_PREFIX);
10465 fputs_filtered (")", stream);
10468 case UNOP_IN_RANGE:
10469 /* XXX: sprint_subexp */
10470 print_subexp (exp, pos, stream, PREC_SUFFIX);
10471 fputs_filtered (" in ", stream);
10472 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10475 case OP_DISCRETE_RANGE:
10476 print_subexp (exp, pos, stream, PREC_SUFFIX);
10477 fputs_filtered ("..", stream);
10478 print_subexp (exp, pos, stream, PREC_SUFFIX);
10482 fputs_filtered ("others => ", stream);
10483 print_subexp (exp, pos, stream, PREC_SUFFIX);
10487 for (i = 0; i < nargs-1; i += 1)
10490 fputs_filtered ("|", stream);
10491 print_subexp (exp, pos, stream, PREC_SUFFIX);
10493 fputs_filtered (" => ", stream);
10494 print_subexp (exp, pos, stream, PREC_SUFFIX);
10497 case OP_POSITIONAL:
10498 print_subexp (exp, pos, stream, PREC_SUFFIX);
10502 fputs_filtered ("(", stream);
10503 for (i = 0; i < nargs; i += 1)
10506 fputs_filtered (", ", stream);
10507 print_subexp (exp, pos, stream, PREC_SUFFIX);
10509 fputs_filtered (")", stream);
10514 /* Table mapping opcodes into strings for printing operators
10515 and precedences of the operators. */
10517 static const struct op_print ada_op_print_tab[] = {
10518 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10519 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10520 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10521 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10522 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10523 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10524 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10525 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10526 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10527 {">=", BINOP_GEQ, PREC_ORDER, 0},
10528 {">", BINOP_GTR, PREC_ORDER, 0},
10529 {"<", BINOP_LESS, PREC_ORDER, 0},
10530 {">>", BINOP_RSH, PREC_SHIFT, 0},
10531 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10532 {"+", BINOP_ADD, PREC_ADD, 0},
10533 {"-", BINOP_SUB, PREC_ADD, 0},
10534 {"&", BINOP_CONCAT, PREC_ADD, 0},
10535 {"*", BINOP_MUL, PREC_MUL, 0},
10536 {"/", BINOP_DIV, PREC_MUL, 0},
10537 {"rem", BINOP_REM, PREC_MUL, 0},
10538 {"mod", BINOP_MOD, PREC_MUL, 0},
10539 {"**", BINOP_EXP, PREC_REPEAT, 0},
10540 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10541 {"-", UNOP_NEG, PREC_PREFIX, 0},
10542 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10543 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10544 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10545 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10546 {".all", UNOP_IND, PREC_SUFFIX, 1},
10547 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10548 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10552 enum ada_primitive_types {
10553 ada_primitive_type_int,
10554 ada_primitive_type_long,
10555 ada_primitive_type_short,
10556 ada_primitive_type_char,
10557 ada_primitive_type_float,
10558 ada_primitive_type_double,
10559 ada_primitive_type_void,
10560 ada_primitive_type_long_long,
10561 ada_primitive_type_long_double,
10562 ada_primitive_type_natural,
10563 ada_primitive_type_positive,
10564 ada_primitive_type_system_address,
10565 nr_ada_primitive_types
10569 ada_language_arch_info (struct gdbarch *gdbarch,
10570 struct language_arch_info *lai)
10572 const struct builtin_type *builtin = builtin_type (gdbarch);
10573 lai->primitive_type_vector
10574 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10576 lai->primitive_type_vector [ada_primitive_type_int] =
10577 init_type (TYPE_CODE_INT,
10578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10579 0, "integer", (struct objfile *) NULL);
10580 lai->primitive_type_vector [ada_primitive_type_long] =
10581 init_type (TYPE_CODE_INT,
10582 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10583 0, "long_integer", (struct objfile *) NULL);
10584 lai->primitive_type_vector [ada_primitive_type_short] =
10585 init_type (TYPE_CODE_INT,
10586 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10587 0, "short_integer", (struct objfile *) NULL);
10588 lai->string_char_type =
10589 lai->primitive_type_vector [ada_primitive_type_char] =
10590 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10591 0, "character", (struct objfile *) NULL);
10592 lai->primitive_type_vector [ada_primitive_type_float] =
10593 init_type (TYPE_CODE_FLT,
10594 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10595 0, "float", (struct objfile *) NULL);
10596 lai->primitive_type_vector [ada_primitive_type_double] =
10597 init_type (TYPE_CODE_FLT,
10598 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10599 0, "long_float", (struct objfile *) NULL);
10600 lai->primitive_type_vector [ada_primitive_type_long_long] =
10601 init_type (TYPE_CODE_INT,
10602 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10603 0, "long_long_integer", (struct objfile *) NULL);
10604 lai->primitive_type_vector [ada_primitive_type_long_double] =
10605 init_type (TYPE_CODE_FLT,
10606 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10607 0, "long_long_float", (struct objfile *) NULL);
10608 lai->primitive_type_vector [ada_primitive_type_natural] =
10609 init_type (TYPE_CODE_INT,
10610 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10611 0, "natural", (struct objfile *) NULL);
10612 lai->primitive_type_vector [ada_primitive_type_positive] =
10613 init_type (TYPE_CODE_INT,
10614 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10615 0, "positive", (struct objfile *) NULL);
10616 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10618 lai->primitive_type_vector [ada_primitive_type_system_address] =
10619 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10620 (struct objfile *) NULL));
10621 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10622 = "system__address";
10625 /* Language vector */
10627 /* Not really used, but needed in the ada_language_defn. */
10630 emit_char (int c, struct ui_file *stream, int quoter)
10632 ada_emit_char (c, stream, quoter, 1);
10638 warnings_issued = 0;
10639 return ada_parse ();
10642 static const struct exp_descriptor ada_exp_descriptor = {
10644 ada_operator_length,
10646 ada_dump_subexp_body,
10647 ada_evaluate_subexp
10650 const struct language_defn ada_language_defn = {
10651 "ada", /* Language name */
10655 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10656 that's not quite what this means. */
10658 &ada_exp_descriptor,
10662 ada_printchar, /* Print a character constant */
10663 ada_printstr, /* Function to print string constant */
10664 emit_char, /* Function to print single char (not used) */
10665 ada_print_type, /* Print a type using appropriate syntax */
10666 ada_val_print, /* Print a value using appropriate syntax */
10667 ada_value_print, /* Print a top-level value */
10668 NULL, /* Language specific skip_trampoline */
10669 NULL, /* value_of_this */
10670 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10671 basic_lookup_transparent_type, /* lookup_transparent_type */
10672 ada_la_decode, /* Language specific symbol demangler */
10673 NULL, /* Language specific class_name_from_physname */
10674 ada_op_print_tab, /* expression operators for printing */
10675 0, /* c-style arrays */
10676 1, /* String lower bound */
10677 ada_get_gdb_completer_word_break_characters,
10678 ada_language_arch_info,
10679 ada_print_array_index,
10680 default_pass_by_reference,
10685 _initialize_ada_language (void)
10687 add_language (&ada_language_defn);
10689 varsize_limit = 65536;
10691 obstack_init (&symbol_list_obstack);
10693 decoded_names_store = htab_create_alloc
10694 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10695 NULL, xcalloc, xfree);
10697 observer_attach_executable_changed (ada_executable_changed_observer);