3 # Architecture commands for GDB, the GNU debugger.
4 # Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
6 # This file is part of GDB.
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 2 of the License, or
11 # (at your option) any later version.
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
18 # You should have received a copy of the GNU General Public License
19 # along with this program; if not, write to the Free Software
20 # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 # Make certain that the script is running in an internationalized
25 LC_ALL=c ; export LC_ALL
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
36 echo "${file} unchanged" 1>&2
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
43 # Format of the input table
44 read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
52 if test "${line}" = ""
55 elif test "${line}" = "#" -a "${comment}" = ""
58 elif expr "${line}" : "#" > /dev/null
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69 OFS="${IFS}" ; IFS="[:]"
70 eval read ${read} <<EOF
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
79 if eval test \"\${${r}}\" = \"\ \"
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
101 if [ "${returntype}" = int ]
105 elif [ "${returntype}" = long ]
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
117 case "${invalid_p}" in
119 if test -n "${predefault}"
121 #invalid_p="gdbarch->${function} == ${predefault}"
122 predicate="gdbarch->${function} != ${predefault}"
123 elif class_is_variable_p
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
128 predicate="gdbarch->${function} != NULL"
132 echo "Predicate function ${function} with invalid_p." 1>&2
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
146 if [ -n "${postdefault}" ]
148 fallbackdefault="${postdefault}"
149 elif [ -n "${predefault}" ]
151 fallbackdefault="${predefault}"
156 #NOT YET: See gdbarch.log for basic verification of
171 fallback_default_p ()
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
177 class_is_variable_p ()
185 class_is_function_p ()
188 *f* | *F* | *m* | *M* ) true ;;
193 class_is_multiarch_p ()
201 class_is_predicate_p ()
204 *F* | *V* | *M* ) true ;;
218 # dump out/verify the doco
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
235 # hiding something from the ``struct info'' object
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
249 # The name of the MACRO that this method is to be accessed by.
253 # For functions, the return type; for variables, the data type
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
286 # If STATICDEFAULT is empty, zero is used.
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
295 # If PREDEFAULT is empty, zero is used.
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
301 # A zero PREDEFAULT function will force the fallback to call
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
313 # If POSTDEFAULT is empty, no post update is performed.
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
331 # A predicate equation that validates MEMBER. Non-zero is
332 # returned if the code creating the new architecture failed to
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
344 # See also PREDEFAULT and POSTDEFAULT.
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
352 # If FMT is empty, ``%ld'' is used.
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
359 # If PRINT is empty, ``(long)'' is used.
363 # An optional indicator for any predicte to wrap around the
366 # () -> Call a custom function to do the dump.
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
370 # If PRINT_P is empty, ``1'' is always used.
377 echo "Bad field ${field}"
385 # See below (DOCO) for description of each field
387 i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
389 i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
391 i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
392 # Number of bits in a char or unsigned char for the target machine.
393 # Just like CHAR_BIT in <limits.h> but describes the target machine.
394 # v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
396 # Number of bits in a short or unsigned short for the target machine.
397 v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
398 # Number of bits in an int or unsigned int for the target machine.
399 v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
400 # Number of bits in a long or unsigned long for the target machine.
401 v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
402 # Number of bits in a long long or unsigned long long for the target
404 v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
405 # Number of bits in a float for the target machine.
406 v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
407 # Number of bits in a double for the target machine.
408 v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
409 # Number of bits in a long double for the target machine.
410 v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
411 # For most targets, a pointer on the target and its representation as an
412 # address in GDB have the same size and "look the same". For such a
413 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414 # / addr_bit will be set from it.
416 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
419 # ptr_bit is the size of a pointer on the target
420 v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
421 # addr_bit is the size of a target address as represented in gdb
422 v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
423 # Number of bits in a BFD_VMA for the target object file format.
424 v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
426 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
427 v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
429 F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
430 f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
432 F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
433 # Function for getting target's idea of a frame pointer. FIXME: GDB's
434 # whole scheme for dealing with "frames" and "frame pointers" needs a
436 f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
438 M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439 M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
441 v:2:NUM_REGS:int:num_regs::::0:-1
442 # This macro gives the number of pseudo-registers that live in the
443 # register namespace but do not get fetched or stored on the target.
444 # These pseudo-registers may be aliases for other registers,
445 # combinations of other registers, or they may be computed by GDB.
446 v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
448 # GDB's standard (or well known) register numbers. These can map onto
449 # a real register or a pseudo (computed) register or not be defined at
451 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
452 v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453 v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
454 v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
455 v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456 v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
457 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458 f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
460 f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
462 f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463 # Convert from an sdb register number to an internal gdb register number.
464 # This should be defined in tm.h, if REGISTER_NAMES is not set up
465 # to map one to one onto the sdb register numbers.
466 f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467 f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
468 f::REGISTER_NAME:const char *:register_name:int regnr:regnr
470 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471 M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
472 # REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473 F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
474 # DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475 # from REGISTER_TYPE.
476 v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
477 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478 # register offsets computed using just REGISTER_TYPE, this can be
479 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480 # function with predicate has a valid (callable) initial value. As a
481 # consequence, even when the predicate is false, the corresponding
482 # function works. This simplifies the migration process - old code,
483 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
484 F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
485 # If all registers have identical raw and virtual sizes and those
486 # sizes agree with the value computed from REGISTER_TYPE,
487 # DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489 F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
490 # If all registers have identical raw and virtual sizes and those
491 # sizes agree with the value computed from REGISTER_TYPE,
492 # DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494 F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
495 # DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496 # replaced by the constant MAX_REGISTER_SIZE.
497 V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
498 # DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499 # replaced by the constant MAX_REGISTER_SIZE.
500 V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
502 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
503 M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
504 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505 # SAVE_DUMMY_FRAME_TOS.
506 F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
507 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508 # DEPRECATED_FP_REGNUM.
509 v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511 # DEPRECATED_TARGET_READ_FP.
512 F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514 # See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515 # replacement for DEPRECATED_PUSH_ARGUMENTS.
516 M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517 # PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518 F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519 # DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520 v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521 # Implement PUSH_RETURN_ADDRESS, and then merge in
522 # DEPRECATED_PUSH_RETURN_ADDRESS.
523 F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
524 # Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525 F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526 # DEPRECATED_REGISTER_SIZE can be deleted.
527 v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528 v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529 F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
530 # DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531 v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532 # DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533 v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534 # DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535 v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536 # DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537 v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539 v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541 V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
542 # DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543 # PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544 F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545 # This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546 M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
547 # Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548 F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
549 # Implement PUSH_DUMMY_CALL, then delete
550 # DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551 v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553 F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
554 m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
555 M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
556 M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
557 # MAP a GDB RAW register number onto a simulator register number. See
558 # also include/...-sim.h.
559 f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
560 F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
561 f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562 f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
563 # setjmp/longjmp support.
564 F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
565 # NOTE: cagney/2002-11-24: This function with predicate has a valid
566 # (callable) initial value. As a consequence, even when the predicate
567 # is false, the corresponding function works. This simplifies the
568 # migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569 # doesn't need to be modified.
570 F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
571 F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
572 F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
574 v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
575 v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
576 F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
578 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579 # For raw <-> cooked register conversions, replaced by pseudo registers.
580 f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582 # For raw <-> cooked register conversions, replaced by pseudo registers.
583 f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584 # For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585 # For raw <-> cooked register conversions, replaced by pseudo registers.
586 f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
588 f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589 f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590 f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
592 f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
593 f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
594 F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
596 f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
597 F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
598 # NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599 F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
601 f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602 f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603 f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604 f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
606 F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607 F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
608 f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
610 F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611 F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
613 f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
614 f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
615 f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
616 f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
617 f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618 f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
619 v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620 v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
622 m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
624 v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
625 f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
626 F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627 F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
628 # DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629 # note, per UNWIND_PC's doco, that while the two have similar
630 # interfaces they have very different underlying implementations.
631 F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632 M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633 M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
634 # DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635 # frame-base. Enable frame-base before frame-unwind.
636 F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638 # frame-base. Enable frame-base before frame-unwind.
639 F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
640 F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
641 F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
643 F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
644 M:::CORE_ADDR:frame_align:CORE_ADDR address:address
645 F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
646 v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
647 v:2:PARM_BOUNDARY:int:parm_boundary
649 v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
650 v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
651 v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
652 f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
653 # On some machines there are bits in addresses which are not really
654 # part of the address, but are used by the kernel, the hardware, etc.
655 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
656 # we get a "real" address such as one would find in a symbol table.
657 # This is used only for addresses of instructions, and even then I'm
658 # not sure it's used in all contexts. It exists to deal with there
659 # being a few stray bits in the PC which would mislead us, not as some
660 # sort of generic thing to handle alignment or segmentation (it's
661 # possible it should be in TARGET_READ_PC instead).
662 f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
663 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
665 f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
666 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
667 # the target needs software single step. An ISA method to implement it.
669 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
670 # using the breakpoint system instead of blatting memory directly (as with rs6000).
672 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
673 # single step. If not, then implement single step using breakpoints.
674 F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
675 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
676 # disassembler. Perhaphs objdump can handle it?
677 f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
678 f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
681 # For SVR4 shared libraries, each call goes through a small piece of
682 # trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
683 # to nonzero if we are currently stopped in one of these.
684 f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
686 # Some systems also have trampoline code for returning from shared libs.
687 f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
689 # Sigtramp is a routine that the kernel calls (which then calls the
690 # signal handler). On most machines it is a library routine that is
691 # linked into the executable.
693 # This macro, given a program counter value and the name of the
694 # function in which that PC resides (which can be null if the name is
695 # not known), returns nonzero if the PC and name show that we are in
698 # On most machines just see if the name is sigtramp (and if we have
699 # no name, assume we are not in sigtramp).
701 # FIXME: cagney/2002-04-21: The function find_pc_partial_function
702 # calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
703 # This means PC_IN_SIGTRAMP function can't be implemented by doing its
704 # own local NAME lookup.
706 # FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
707 # Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
709 f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
710 F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
711 F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
712 # A target might have problems with watchpoints as soon as the stack
713 # frame of the current function has been destroyed. This mostly happens
714 # as the first action in a funtion's epilogue. in_function_epilogue_p()
715 # is defined to return a non-zero value if either the given addr is one
716 # instruction after the stack destroying instruction up to the trailing
717 # return instruction or if we can figure out that the stack frame has
718 # already been invalidated regardless of the value of addr. Targets
719 # which don't suffer from that problem could just let this functionality
721 m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
722 # Given a vector of command-line arguments, return a newly allocated
723 # string which, when passed to the create_inferior function, will be
724 # parsed (on Unix systems, by the shell) to yield the same vector.
725 # This function should call error() if the argument vector is not
726 # representable for this target or if this target does not support
727 # command-line arguments.
728 # ARGC is the number of elements in the vector.
729 # ARGV is an array of strings, one per argument.
730 m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
731 f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
732 f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
733 v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
734 v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
735 v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
736 F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
737 M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
738 M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
739 # Is a register in a group
740 m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
741 # Fetch the pointer to the ith function argument.
742 F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
749 exec > new-gdbarch.log
750 function_list | while do_read
753 ${class} ${macro}(${actual})
754 ${returntype} ${function} ($formal)${attrib}
758 eval echo \"\ \ \ \ ${r}=\${${r}}\"
760 if class_is_predicate_p && fallback_default_p
762 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
766 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
768 echo "Error: postdefault is useless when invalid_p=0" 1>&2
772 if class_is_multiarch_p
774 if class_is_predicate_p ; then :
775 elif test "x${predefault}" = "x"
777 echo "Error: pure multi-arch function must have a predefault" 1>&2
786 compare_new gdbarch.log
792 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
794 /* Dynamic architecture support for GDB, the GNU debugger.
795 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
797 This file is part of GDB.
799 This program is free software; you can redistribute it and/or modify
800 it under the terms of the GNU General Public License as published by
801 the Free Software Foundation; either version 2 of the License, or
802 (at your option) any later version.
804 This program is distributed in the hope that it will be useful,
805 but WITHOUT ANY WARRANTY; without even the implied warranty of
806 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
807 GNU General Public License for more details.
809 You should have received a copy of the GNU General Public License
810 along with this program; if not, write to the Free Software
811 Foundation, Inc., 59 Temple Place - Suite 330,
812 Boston, MA 02111-1307, USA. */
814 /* This file was created with the aid of \`\`gdbarch.sh''.
816 The Bourne shell script \`\`gdbarch.sh'' creates the files
817 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
818 against the existing \`\`gdbarch.[hc]''. Any differences found
821 If editing this file, please also run gdbarch.sh and merge any
822 changes into that script. Conversely, when making sweeping changes
823 to this file, modifying gdbarch.sh and using its output may prove
844 struct minimal_symbol;
847 struct disassemble_info;
849 extern struct gdbarch *current_gdbarch;
852 /* If any of the following are defined, the target wasn't correctly
855 #if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
856 #error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
863 printf "/* The following are pre-initialized by GDBARCH. */\n"
864 function_list | while do_read
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
874 printf "#if !defined (${macro})\n"
875 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
883 printf "/* The following are initialized by the target dependent code. */\n"
884 function_list | while do_read
886 if [ -n "${comment}" ]
888 echo "${comment}" | sed \
893 if class_is_multiarch_p
895 if class_is_predicate_p
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
901 if class_is_predicate_p
904 printf "#if defined (${macro})\n"
905 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
906 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
907 printf "#if !defined (${macro}_P)\n"
908 printf "#define ${macro}_P() (1)\n"
912 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
913 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
914 printf "#error \"Non multi-arch definition of ${macro}\"\n"
916 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
921 if class_is_variable_p
924 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
925 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
926 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
927 printf "#error \"Non multi-arch definition of ${macro}\"\n"
929 printf "#if !defined (${macro})\n"
930 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
933 if class_is_function_p
936 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
938 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
939 elif class_is_multiarch_p
941 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
945 if [ "x${formal}" = "xvoid" ]
947 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
949 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
951 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
952 if class_is_multiarch_p ; then :
954 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
955 printf "#error \"Non multi-arch definition of ${macro}\"\n"
957 if [ "x${actual}" = "x" ]
959 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
960 elif [ "x${actual}" = "x-" ]
962 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
964 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
966 printf "#if !defined (${macro})\n"
967 if [ "x${actual}" = "x" ]
969 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
970 elif [ "x${actual}" = "x-" ]
972 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
974 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
984 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
987 /* Mechanism for co-ordinating the selection of a specific
990 GDB targets (*-tdep.c) can register an interest in a specific
991 architecture. Other GDB components can register a need to maintain
992 per-architecture data.
994 The mechanisms below ensures that there is only a loose connection
995 between the set-architecture command and the various GDB
996 components. Each component can independently register their need
997 to maintain architecture specific data with gdbarch.
1001 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1004 The more traditional mega-struct containing architecture specific
1005 data for all the various GDB components was also considered. Since
1006 GDB is built from a variable number of (fairly independent)
1007 components it was determined that the global aproach was not
1011 /* Register a new architectural family with GDB.
1013 Register support for the specified ARCHITECTURE with GDB. When
1014 gdbarch determines that the specified architecture has been
1015 selected, the corresponding INIT function is called.
1019 The INIT function takes two parameters: INFO which contains the
1020 information available to gdbarch about the (possibly new)
1021 architecture; ARCHES which is a list of the previously created
1022 \`\`struct gdbarch'' for this architecture.
1024 The INFO parameter is, as far as possible, be pre-initialized with
1025 information obtained from INFO.ABFD or the previously selected
1028 The ARCHES parameter is a linked list (sorted most recently used)
1029 of all the previously created architures for this architecture
1030 family. The (possibly NULL) ARCHES->gdbarch can used to access
1031 values from the previously selected architecture for this
1032 architecture family. The global \`\`current_gdbarch'' shall not be
1035 The INIT function shall return any of: NULL - indicating that it
1036 doesn't recognize the selected architecture; an existing \`\`struct
1037 gdbarch'' from the ARCHES list - indicating that the new
1038 architecture is just a synonym for an earlier architecture (see
1039 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1040 - that describes the selected architecture (see gdbarch_alloc()).
1042 The DUMP_TDEP function shall print out all target specific values.
1043 Care should be taken to ensure that the function works in both the
1044 multi-arch and non- multi-arch cases. */
1048 struct gdbarch *gdbarch;
1049 struct gdbarch_list *next;
1054 /* Use default: NULL (ZERO). */
1055 const struct bfd_arch_info *bfd_arch_info;
1057 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1060 /* Use default: NULL (ZERO). */
1063 /* Use default: NULL (ZERO). */
1064 struct gdbarch_tdep_info *tdep_info;
1066 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1067 enum gdb_osabi osabi;
1070 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1071 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1073 /* DEPRECATED - use gdbarch_register() */
1074 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1076 extern void gdbarch_register (enum bfd_architecture architecture,
1077 gdbarch_init_ftype *,
1078 gdbarch_dump_tdep_ftype *);
1081 /* Return a freshly allocated, NULL terminated, array of the valid
1082 architecture names. Since architectures are registered during the
1083 _initialize phase this function only returns useful information
1084 once initialization has been completed. */
1086 extern const char **gdbarch_printable_names (void);
1089 /* Helper function. Search the list of ARCHES for a GDBARCH that
1090 matches the information provided by INFO. */
1092 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1095 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1096 basic initialization using values obtained from the INFO andTDEP
1097 parameters. set_gdbarch_*() functions are called to complete the
1098 initialization of the object. */
1100 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1103 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1104 It is assumed that the caller freeds the \`\`struct
1107 extern void gdbarch_free (struct gdbarch *);
1110 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1111 obstack. The memory is freed when the corresponding architecture
1114 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1115 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1116 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1119 /* Helper function. Force an update of the current architecture.
1121 The actual architecture selected is determined by INFO, \`\`(gdb) set
1122 architecture'' et.al., the existing architecture and BFD's default
1123 architecture. INFO should be initialized to zero and then selected
1124 fields should be updated.
1126 Returns non-zero if the update succeeds */
1128 extern int gdbarch_update_p (struct gdbarch_info info);
1132 /* Register per-architecture data-pointer.
1134 Reserve space for a per-architecture data-pointer. An identifier
1135 for the reserved data-pointer is returned. That identifer should
1136 be saved in a local static variable.
1138 The per-architecture data-pointer is either initialized explicitly
1139 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1142 Memory for the per-architecture data shall be allocated using
1143 gdbarch_obstack_zalloc. That memory will be deleted when the
1144 corresponding architecture object is deleted.
1146 When a previously created architecture is re-selected, the
1147 per-architecture data-pointer for that previous architecture is
1148 restored. INIT() is not re-called.
1150 Multiple registrarants for any architecture are allowed (and
1151 strongly encouraged). */
1153 struct gdbarch_data;
1155 typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1156 extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
1157 extern void set_gdbarch_data (struct gdbarch *gdbarch,
1158 struct gdbarch_data *data,
1161 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1164 /* Register per-architecture memory region.
1166 Provide a memory-region swap mechanism. Per-architecture memory
1167 region are created. These memory regions are swapped whenever the
1168 architecture is changed. For a new architecture, the memory region
1169 is initialized with zero (0) and the INIT function is called.
1171 Memory regions are swapped / initialized in the order that they are
1172 registered. NULL DATA and/or INIT values can be specified.
1174 New code should use register_gdbarch_data(). */
1176 typedef void (gdbarch_swap_ftype) (void);
1177 extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1178 #define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1182 /* The target-system-dependent byte order is dynamic */
1184 extern int target_byte_order;
1185 #ifndef TARGET_BYTE_ORDER
1186 #define TARGET_BYTE_ORDER (target_byte_order + 0)
1189 extern int target_byte_order_auto;
1190 #ifndef TARGET_BYTE_ORDER_AUTO
1191 #define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1196 /* The target-system-dependent BFD architecture is dynamic */
1198 extern int target_architecture_auto;
1199 #ifndef TARGET_ARCHITECTURE_AUTO
1200 #define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1203 extern const struct bfd_arch_info *target_architecture;
1204 #ifndef TARGET_ARCHITECTURE
1205 #define TARGET_ARCHITECTURE (target_architecture + 0)
1209 /* Set the dynamic target-system-dependent parameters (architecture,
1210 byte-order, ...) using information found in the BFD */
1212 extern void set_gdbarch_from_file (bfd *);
1215 /* Initialize the current architecture to the "first" one we find on
1218 extern void initialize_current_architecture (void);
1220 /* For non-multiarched targets, do any initialization of the default
1221 gdbarch object necessary after the _initialize_MODULE functions
1223 extern void initialize_non_multiarch (void);
1225 /* gdbarch trace variable */
1226 extern int gdbarch_debug;
1228 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1233 #../move-if-change new-gdbarch.h gdbarch.h
1234 compare_new gdbarch.h
1241 exec > new-gdbarch.c
1246 #include "arch-utils.h"
1249 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1252 #include "floatformat.h"
1254 #include "gdb_assert.h"
1255 #include "gdb_string.h"
1256 #include "gdb-events.h"
1257 #include "reggroups.h"
1259 #include "symfile.h" /* For entry_point_address. */
1260 #include "gdb_obstack.h"
1262 /* Static function declarations */
1264 static void verify_gdbarch (struct gdbarch *gdbarch);
1265 static void alloc_gdbarch_data (struct gdbarch *);
1266 static void init_gdbarch_swap (struct gdbarch *);
1267 static void clear_gdbarch_swap (struct gdbarch *);
1268 static void swapout_gdbarch_swap (struct gdbarch *);
1269 static void swapin_gdbarch_swap (struct gdbarch *);
1271 /* Non-zero if we want to trace architecture code. */
1273 #ifndef GDBARCH_DEBUG
1274 #define GDBARCH_DEBUG 0
1276 int gdbarch_debug = GDBARCH_DEBUG;
1280 # gdbarch open the gdbarch object
1282 printf "/* Maintain the struct gdbarch object */\n"
1284 printf "struct gdbarch\n"
1286 printf " /* Has this architecture been fully initialized? */\n"
1287 printf " int initialized_p;\n"
1289 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1290 printf " struct obstack *obstack;\n"
1292 printf " /* basic architectural information */\n"
1293 function_list | while do_read
1297 printf " ${returntype} ${function};\n"
1301 printf " /* target specific vector. */\n"
1302 printf " struct gdbarch_tdep *tdep;\n"
1303 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1305 printf " /* per-architecture data-pointers */\n"
1306 printf " unsigned nr_data;\n"
1307 printf " void **data;\n"
1309 printf " /* per-architecture swap-regions */\n"
1310 printf " struct gdbarch_swap *swap;\n"
1313 /* Multi-arch values.
1315 When extending this structure you must:
1317 Add the field below.
1319 Declare set/get functions and define the corresponding
1322 gdbarch_alloc(): If zero/NULL is not a suitable default,
1323 initialize the new field.
1325 verify_gdbarch(): Confirm that the target updated the field
1328 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1331 \`\`startup_gdbarch()'': Append an initial value to the static
1332 variable (base values on the host's c-type system).
1334 get_gdbarch(): Implement the set/get functions (probably using
1335 the macro's as shortcuts).
1340 function_list | while do_read
1342 if class_is_variable_p
1344 printf " ${returntype} ${function};\n"
1345 elif class_is_function_p
1347 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
1352 # A pre-initialized vector
1356 /* The default architecture uses host values (for want of a better
1360 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1362 printf "struct gdbarch startup_gdbarch =\n"
1364 printf " 1, /* Always initialized. */\n"
1365 printf " NULL, /* The obstack. */\n"
1366 printf " /* basic architecture information */\n"
1367 function_list | while do_read
1371 printf " ${staticdefault}, /* ${function} */\n"
1375 /* target specific vector and its dump routine */
1377 /*per-architecture data-pointers and swap regions */
1379 /* Multi-arch values */
1381 function_list | while do_read
1383 if class_is_function_p || class_is_variable_p
1385 printf " ${staticdefault}, /* ${function} */\n"
1389 /* startup_gdbarch() */
1392 struct gdbarch *current_gdbarch = &startup_gdbarch;
1394 /* Do any initialization needed for a non-multiarch configuration
1395 after the _initialize_MODULE functions have been run. */
1397 initialize_non_multiarch (void)
1399 alloc_gdbarch_data (&startup_gdbarch);
1400 /* Ensure that all swap areas are zeroed so that they again think
1401 they are starting from scratch. */
1402 clear_gdbarch_swap (&startup_gdbarch);
1403 init_gdbarch_swap (&startup_gdbarch);
1407 # Create a new gdbarch struct
1411 /* Create a new \`\`struct gdbarch'' based on information provided by
1412 \`\`struct gdbarch_info''. */
1417 gdbarch_alloc (const struct gdbarch_info *info,
1418 struct gdbarch_tdep *tdep)
1420 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1421 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1422 the current local architecture and not the previous global
1423 architecture. This ensures that the new architectures initial
1424 values are not influenced by the previous architecture. Once
1425 everything is parameterised with gdbarch, this will go away. */
1426 struct gdbarch *current_gdbarch;
1428 /* Create an obstack for allocating all the per-architecture memory,
1429 then use that to allocate the architecture vector. */
1430 struct obstack *obstack = XMALLOC (struct obstack);
1431 obstack_init (obstack);
1432 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1433 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1434 current_gdbarch->obstack = obstack;
1436 alloc_gdbarch_data (current_gdbarch);
1438 current_gdbarch->tdep = tdep;
1441 function_list | while do_read
1445 printf " current_gdbarch->${function} = info->${function};\n"
1449 printf " /* Force the explicit initialization of these. */\n"
1450 function_list | while do_read
1452 if class_is_function_p || class_is_variable_p
1454 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1456 printf " current_gdbarch->${function} = ${predefault};\n"
1461 /* gdbarch_alloc() */
1463 return current_gdbarch;
1467 # Free a gdbarch struct.
1471 /* Allocate extra space using the per-architecture obstack. */
1474 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1476 void *data = obstack_alloc (arch->obstack, size);
1477 memset (data, 0, size);
1482 /* Free a gdbarch struct. This should never happen in normal
1483 operation --- once you've created a gdbarch, you keep it around.
1484 However, if an architecture's init function encounters an error
1485 building the structure, it may need to clean up a partially
1486 constructed gdbarch. */
1489 gdbarch_free (struct gdbarch *arch)
1491 struct obstack *obstack;
1492 gdb_assert (arch != NULL);
1493 gdb_assert (!arch->initialized_p);
1494 obstack = arch->obstack;
1495 obstack_free (obstack, 0); /* Includes the ARCH. */
1500 # verify a new architecture
1503 printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1507 verify_gdbarch (struct gdbarch *gdbarch)
1509 struct ui_file *log;
1510 struct cleanup *cleanups;
1513 log = mem_fileopen ();
1514 cleanups = make_cleanup_ui_file_delete (log);
1516 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1517 fprintf_unfiltered (log, "\n\tbyte-order");
1518 if (gdbarch->bfd_arch_info == NULL)
1519 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1520 /* Check those that need to be defined for the given multi-arch level. */
1522 function_list | while do_read
1524 if class_is_function_p || class_is_variable_p
1526 if [ "x${invalid_p}" = "x0" ]
1528 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1529 elif class_is_predicate_p
1531 printf " /* Skip verify of ${function}, has predicate */\n"
1532 # FIXME: See do_read for potential simplification
1533 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1535 printf " if (${invalid_p})\n"
1536 printf " gdbarch->${function} = ${postdefault};\n"
1537 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1539 printf " if (gdbarch->${function} == ${predefault})\n"
1540 printf " gdbarch->${function} = ${postdefault};\n"
1541 elif [ -n "${postdefault}" ]
1543 printf " if (gdbarch->${function} == 0)\n"
1544 printf " gdbarch->${function} = ${postdefault};\n"
1545 elif [ -n "${invalid_p}" ]
1547 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1548 printf " && (${invalid_p}))\n"
1549 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1550 elif [ -n "${predefault}" ]
1552 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
1553 printf " && (gdbarch->${function} == ${predefault}))\n"
1554 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1559 buf = ui_file_xstrdup (log, &dummy);
1560 make_cleanup (xfree, buf);
1561 if (strlen (buf) > 0)
1562 internal_error (__FILE__, __LINE__,
1563 "verify_gdbarch: the following are invalid ...%s",
1565 do_cleanups (cleanups);
1569 # dump the structure
1573 /* Print out the details of the current architecture. */
1575 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1576 just happens to match the global variable \`\`current_gdbarch''. That
1577 way macros refering to that variable get the local and not the global
1578 version - ulgh. Once everything is parameterised with gdbarch, this
1582 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1584 fprintf_unfiltered (file,
1585 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1588 function_list | sort -t: -k 3 | while do_read
1590 # First the predicate
1591 if class_is_predicate_p
1593 if class_is_multiarch_p
1595 printf " fprintf_unfiltered (file,\n"
1596 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1597 printf " gdbarch_${function}_p (current_gdbarch));\n"
1599 printf "#ifdef ${macro}_P\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1602 printf " \"${macro}_P()\",\n"
1603 printf " XSTRING (${macro}_P ()));\n"
1604 printf " fprintf_unfiltered (file,\n"
1605 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1606 printf " ${macro}_P ());\n"
1610 # multiarch functions don't have macros.
1611 if class_is_multiarch_p
1613 printf " fprintf_unfiltered (file,\n"
1614 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1615 printf " (long) current_gdbarch->${function});\n"
1618 # Print the macro definition.
1619 printf "#ifdef ${macro}\n"
1620 if class_is_function_p
1622 printf " fprintf_unfiltered (file,\n"
1623 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1624 printf " \"${macro}(${actual})\",\n"
1625 printf " XSTRING (${macro} (${actual})));\n"
1627 printf " fprintf_unfiltered (file,\n"
1628 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1629 printf " XSTRING (${macro}));\n"
1631 if [ "x${print_p}" = "x()" ]
1633 printf " gdbarch_dump_${function} (current_gdbarch);\n"
1634 elif [ "x${print_p}" = "x0" ]
1636 printf " /* skip print of ${macro}, print_p == 0. */\n"
1637 elif [ -n "${print_p}" ]
1639 printf " if (${print_p})\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1642 printf " ${print});\n"
1643 elif class_is_function_p
1645 printf " fprintf_unfiltered (file,\n"
1646 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1647 printf " (long) current_gdbarch->${function}\n"
1648 printf " /*${macro} ()*/);\n"
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1652 printf " ${print});\n"
1657 if (current_gdbarch->dump_tdep != NULL)
1658 current_gdbarch->dump_tdep (current_gdbarch, file);
1666 struct gdbarch_tdep *
1667 gdbarch_tdep (struct gdbarch *gdbarch)
1669 if (gdbarch_debug >= 2)
1670 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1671 return gdbarch->tdep;
1675 function_list | while do_read
1677 if class_is_predicate_p
1681 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1683 printf " gdb_assert (gdbarch != NULL);\n"
1684 printf " return ${predicate};\n"
1687 if class_is_function_p
1690 printf "${returntype}\n"
1691 if [ "x${formal}" = "xvoid" ]
1693 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1698 printf " gdb_assert (gdbarch != NULL);\n"
1699 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1700 if class_is_predicate_p && test -n "${predefault}"
1702 # Allow a call to a function with a predicate.
1703 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1705 printf " if (gdbarch_debug >= 2)\n"
1706 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1707 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1709 if class_is_multiarch_p
1716 if class_is_multiarch_p
1718 params="gdbarch, ${actual}"
1723 if [ "x${returntype}" = "xvoid" ]
1725 printf " gdbarch->${function} (${params});\n"
1727 printf " return gdbarch->${function} (${params});\n"
1732 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1733 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1735 printf " gdbarch->${function} = ${function};\n"
1737 elif class_is_variable_p
1740 printf "${returntype}\n"
1741 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1743 printf " gdb_assert (gdbarch != NULL);\n"
1744 if [ "x${invalid_p}" = "x0" ]
1746 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1747 elif [ -n "${invalid_p}" ]
1749 printf " /* Check variable is valid. */\n"
1750 printf " gdb_assert (!(${invalid_p}));\n"
1751 elif [ -n "${predefault}" ]
1753 printf " /* Check variable changed from pre-default. */\n"
1754 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1756 printf " if (gdbarch_debug >= 2)\n"
1757 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1758 printf " return gdbarch->${function};\n"
1762 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1763 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1765 printf " gdbarch->${function} = ${function};\n"
1767 elif class_is_info_p
1770 printf "${returntype}\n"
1771 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1773 printf " gdb_assert (gdbarch != NULL);\n"
1774 printf " if (gdbarch_debug >= 2)\n"
1775 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1776 printf " return gdbarch->${function};\n"
1781 # All the trailing guff
1785 /* Keep a registry of per-architecture data-pointers required by GDB
1792 gdbarch_data_init_ftype *init;
1795 struct gdbarch_data_registration
1797 struct gdbarch_data *data;
1798 struct gdbarch_data_registration *next;
1801 struct gdbarch_data_registry
1804 struct gdbarch_data_registration *registrations;
1807 struct gdbarch_data_registry gdbarch_data_registry =
1812 struct gdbarch_data *
1813 register_gdbarch_data (gdbarch_data_init_ftype *init)
1815 struct gdbarch_data_registration **curr;
1816 /* Append the new registraration. */
1817 for (curr = &gdbarch_data_registry.registrations;
1819 curr = &(*curr)->next);
1820 (*curr) = XMALLOC (struct gdbarch_data_registration);
1821 (*curr)->next = NULL;
1822 (*curr)->data = XMALLOC (struct gdbarch_data);
1823 (*curr)->data->index = gdbarch_data_registry.nr++;
1824 (*curr)->data->init = init;
1825 (*curr)->data->init_p = 1;
1826 return (*curr)->data;
1830 /* Create/delete the gdbarch data vector. */
1833 alloc_gdbarch_data (struct gdbarch *gdbarch)
1835 gdb_assert (gdbarch->data == NULL);
1836 gdbarch->nr_data = gdbarch_data_registry.nr;
1837 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1840 /* Initialize the current value of the specified per-architecture
1844 set_gdbarch_data (struct gdbarch *gdbarch,
1845 struct gdbarch_data *data,
1848 gdb_assert (data->index < gdbarch->nr_data);
1849 gdb_assert (gdbarch->data[data->index] == NULL);
1850 gdbarch->data[data->index] = pointer;
1853 /* Return the current value of the specified per-architecture
1857 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1859 gdb_assert (data->index < gdbarch->nr_data);
1860 /* The data-pointer isn't initialized, call init() to get a value but
1861 only if the architecture initializaiton has completed. Otherwise
1862 punt - hope that the caller knows what they are doing. */
1863 if (gdbarch->data[data->index] == NULL
1864 && gdbarch->initialized_p)
1866 /* Be careful to detect an initialization cycle. */
1867 gdb_assert (data->init_p);
1869 gdb_assert (data->init != NULL);
1870 gdbarch->data[data->index] = data->init (gdbarch);
1872 gdb_assert (gdbarch->data[data->index] != NULL);
1874 return gdbarch->data[data->index];
1879 /* Keep a registry of swapped data required by GDB modules. */
1884 struct gdbarch_swap_registration *source;
1885 struct gdbarch_swap *next;
1888 struct gdbarch_swap_registration
1891 unsigned long sizeof_data;
1892 gdbarch_swap_ftype *init;
1893 struct gdbarch_swap_registration *next;
1896 struct gdbarch_swap_registry
1899 struct gdbarch_swap_registration *registrations;
1902 struct gdbarch_swap_registry gdbarch_swap_registry =
1908 register_gdbarch_swap (void *data,
1909 unsigned long sizeof_data,
1910 gdbarch_swap_ftype *init)
1912 struct gdbarch_swap_registration **rego;
1913 for (rego = &gdbarch_swap_registry.registrations;
1915 rego = &(*rego)->next);
1916 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1917 (*rego)->next = NULL;
1918 (*rego)->init = init;
1919 (*rego)->data = data;
1920 (*rego)->sizeof_data = sizeof_data;
1924 clear_gdbarch_swap (struct gdbarch *gdbarch)
1926 struct gdbarch_swap *curr;
1927 for (curr = gdbarch->swap;
1931 memset (curr->source->data, 0, curr->source->sizeof_data);
1936 init_gdbarch_swap (struct gdbarch *gdbarch)
1938 struct gdbarch_swap_registration *rego;
1939 struct gdbarch_swap **curr = &gdbarch->swap;
1940 for (rego = gdbarch_swap_registry.registrations;
1944 if (rego->data != NULL)
1946 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
1947 (*curr)->source = rego;
1948 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
1949 (*curr)->next = NULL;
1950 curr = &(*curr)->next;
1952 if (rego->init != NULL)
1958 swapout_gdbarch_swap (struct gdbarch *gdbarch)
1960 struct gdbarch_swap *curr;
1961 for (curr = gdbarch->swap;
1964 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1968 swapin_gdbarch_swap (struct gdbarch *gdbarch)
1970 struct gdbarch_swap *curr;
1971 for (curr = gdbarch->swap;
1974 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1978 /* Keep a registry of the architectures known by GDB. */
1980 struct gdbarch_registration
1982 enum bfd_architecture bfd_architecture;
1983 gdbarch_init_ftype *init;
1984 gdbarch_dump_tdep_ftype *dump_tdep;
1985 struct gdbarch_list *arches;
1986 struct gdbarch_registration *next;
1989 static struct gdbarch_registration *gdbarch_registry = NULL;
1992 append_name (const char ***buf, int *nr, const char *name)
1994 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2000 gdbarch_printable_names (void)
2002 /* Accumulate a list of names based on the registed list of
2004 enum bfd_architecture a;
2006 const char **arches = NULL;
2007 struct gdbarch_registration *rego;
2008 for (rego = gdbarch_registry;
2012 const struct bfd_arch_info *ap;
2013 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2015 internal_error (__FILE__, __LINE__,
2016 "gdbarch_architecture_names: multi-arch unknown");
2019 append_name (&arches, &nr_arches, ap->printable_name);
2024 append_name (&arches, &nr_arches, NULL);
2030 gdbarch_register (enum bfd_architecture bfd_architecture,
2031 gdbarch_init_ftype *init,
2032 gdbarch_dump_tdep_ftype *dump_tdep)
2034 struct gdbarch_registration **curr;
2035 const struct bfd_arch_info *bfd_arch_info;
2036 /* Check that BFD recognizes this architecture */
2037 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2038 if (bfd_arch_info == NULL)
2040 internal_error (__FILE__, __LINE__,
2041 "gdbarch: Attempt to register unknown architecture (%d)",
2044 /* Check that we haven't seen this architecture before */
2045 for (curr = &gdbarch_registry;
2047 curr = &(*curr)->next)
2049 if (bfd_architecture == (*curr)->bfd_architecture)
2050 internal_error (__FILE__, __LINE__,
2051 "gdbarch: Duplicate registraration of architecture (%s)",
2052 bfd_arch_info->printable_name);
2056 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2057 bfd_arch_info->printable_name,
2060 (*curr) = XMALLOC (struct gdbarch_registration);
2061 (*curr)->bfd_architecture = bfd_architecture;
2062 (*curr)->init = init;
2063 (*curr)->dump_tdep = dump_tdep;
2064 (*curr)->arches = NULL;
2065 (*curr)->next = NULL;
2069 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2070 gdbarch_init_ftype *init)
2072 gdbarch_register (bfd_architecture, init, NULL);
2076 /* Look for an architecture using gdbarch_info. Base search on only
2077 BFD_ARCH_INFO and BYTE_ORDER. */
2079 struct gdbarch_list *
2080 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2081 const struct gdbarch_info *info)
2083 for (; arches != NULL; arches = arches->next)
2085 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2087 if (info->byte_order != arches->gdbarch->byte_order)
2089 if (info->osabi != arches->gdbarch->osabi)
2097 /* Update the current architecture. Return ZERO if the update request
2101 gdbarch_update_p (struct gdbarch_info info)
2103 struct gdbarch *new_gdbarch;
2104 struct gdbarch *old_gdbarch;
2105 struct gdbarch_registration *rego;
2107 /* Fill in missing parts of the INFO struct using a number of
2108 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2110 /* \`\`(gdb) set architecture ...'' */
2111 if (info.bfd_arch_info == NULL
2112 && !TARGET_ARCHITECTURE_AUTO)
2113 info.bfd_arch_info = TARGET_ARCHITECTURE;
2114 if (info.bfd_arch_info == NULL
2115 && info.abfd != NULL
2116 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2117 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2118 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
2119 if (info.bfd_arch_info == NULL)
2120 info.bfd_arch_info = TARGET_ARCHITECTURE;
2122 /* \`\`(gdb) set byte-order ...'' */
2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2124 && !TARGET_BYTE_ORDER_AUTO)
2125 info.byte_order = TARGET_BYTE_ORDER;
2126 /* From the INFO struct. */
2127 if (info.byte_order == BFD_ENDIAN_UNKNOWN
2128 && info.abfd != NULL)
2129 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
2130 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
2131 : BFD_ENDIAN_UNKNOWN);
2132 /* From the current target. */
2133 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
2134 info.byte_order = TARGET_BYTE_ORDER;
2136 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2137 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2138 info.osabi = gdbarch_lookup_osabi (info.abfd);
2139 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2140 info.osabi = current_gdbarch->osabi;
2142 /* Must have found some sort of architecture. */
2143 gdb_assert (info.bfd_arch_info != NULL);
2147 fprintf_unfiltered (gdb_stdlog,
2148 "gdbarch_update: info.bfd_arch_info %s\n",
2149 (info.bfd_arch_info != NULL
2150 ? info.bfd_arch_info->printable_name
2152 fprintf_unfiltered (gdb_stdlog,
2153 "gdbarch_update: info.byte_order %d (%s)\n",
2155 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2156 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2158 fprintf_unfiltered (gdb_stdlog,
2159 "gdbarch_update: info.osabi %d (%s)\n",
2160 info.osabi, gdbarch_osabi_name (info.osabi));
2161 fprintf_unfiltered (gdb_stdlog,
2162 "gdbarch_update: info.abfd 0x%lx\n",
2164 fprintf_unfiltered (gdb_stdlog,
2165 "gdbarch_update: info.tdep_info 0x%lx\n",
2166 (long) info.tdep_info);
2169 /* Find the target that knows about this architecture. */
2170 for (rego = gdbarch_registry;
2173 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2178 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2182 /* Swap the data belonging to the old target out setting the
2183 installed data to zero. This stops the ->init() function trying
2184 to refer to the previous architecture's global data structures. */
2185 swapout_gdbarch_swap (current_gdbarch);
2186 clear_gdbarch_swap (current_gdbarch);
2188 /* Save the previously selected architecture, setting the global to
2189 NULL. This stops ->init() trying to use the previous
2190 architecture's configuration. The previous architecture may not
2191 even be of the same architecture family. The most recent
2192 architecture of the same family is found at the head of the
2193 rego->arches list. */
2194 old_gdbarch = current_gdbarch;
2195 current_gdbarch = NULL;
2197 /* Ask the target for a replacement architecture. */
2198 new_gdbarch = rego->init (info, rego->arches);
2200 /* Did the target like it? No. Reject the change and revert to the
2201 old architecture. */
2202 if (new_gdbarch == NULL)
2205 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
2206 swapin_gdbarch_swap (old_gdbarch);
2207 current_gdbarch = old_gdbarch;
2211 /* Did the architecture change? No. Oops, put the old architecture
2213 if (old_gdbarch == new_gdbarch)
2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
2218 new_gdbarch->bfd_arch_info->printable_name);
2219 swapin_gdbarch_swap (old_gdbarch);
2220 current_gdbarch = old_gdbarch;
2224 /* Is this a pre-existing architecture? Yes. Move it to the front
2225 of the list of architectures (keeping the list sorted Most
2226 Recently Used) and then copy it in. */
2228 struct gdbarch_list **list;
2229 for (list = ®o->arches;
2231 list = &(*list)->next)
2233 if ((*list)->gdbarch == new_gdbarch)
2235 struct gdbarch_list *this;
2237 fprintf_unfiltered (gdb_stdlog,
2238 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2240 new_gdbarch->bfd_arch_info->printable_name);
2243 (*list) = this->next;
2244 /* Insert in the front. */
2245 this->next = rego->arches;
2246 rego->arches = this;
2247 /* Copy the new architecture in. */
2248 current_gdbarch = new_gdbarch;
2249 swapin_gdbarch_swap (new_gdbarch);
2250 architecture_changed_event ();
2256 /* Prepend this new architecture to the architecture list (keep the
2257 list sorted Most Recently Used). */
2259 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2260 this->next = rego->arches;
2261 this->gdbarch = new_gdbarch;
2262 rego->arches = this;
2265 /* Switch to this new architecture marking it initialized. */
2266 current_gdbarch = new_gdbarch;
2267 current_gdbarch->initialized_p = 1;
2270 fprintf_unfiltered (gdb_stdlog,
2271 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
2273 new_gdbarch->bfd_arch_info->printable_name);
2276 /* Check that the newly installed architecture is valid. Plug in
2277 any post init values. */
2278 new_gdbarch->dump_tdep = rego->dump_tdep;
2279 verify_gdbarch (new_gdbarch);
2281 /* Initialize the per-architecture memory (swap) areas.
2282 CURRENT_GDBARCH must be update before these modules are
2284 init_gdbarch_swap (new_gdbarch);
2286 /* Initialize the per-architecture data. CURRENT_GDBARCH
2287 must be updated before these modules are called. */
2288 architecture_changed_event ();
2291 gdbarch_dump (current_gdbarch, gdb_stdlog);
2297 extern void _initialize_gdbarch (void);
2300 _initialize_gdbarch (void)
2302 struct cmd_list_element *c;
2304 add_show_from_set (add_set_cmd ("arch",
2307 (char *)&gdbarch_debug,
2308 "Set architecture debugging.\\n\\
2309 When non-zero, architecture debugging is enabled.", &setdebuglist),
2311 c = add_set_cmd ("archdebug",
2314 (char *)&gdbarch_debug,
2315 "Set architecture debugging.\\n\\
2316 When non-zero, architecture debugging is enabled.", &setlist);
2318 deprecate_cmd (c, "set debug arch");
2319 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
2325 #../move-if-change new-gdbarch.c gdbarch.c
2326 compare_new gdbarch.c