3 # Architecture commands for GDB, the GNU debugger.
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 # 2008, 2009 Free Software Foundation, Inc.
8 # This file is part of GDB.
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
23 # Make certain that the script is not running in an internationalized
26 LC_ALL=c ; export LC_ALL
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
37 echo "${file} unchanged" 1>&2
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
44 # Format of the input table
45 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
53 if test "${line}" = ""
56 elif test "${line}" = "#" -a "${comment}" = ""
59 elif expr "${line}" : "#" > /dev/null
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
76 if test -n "${garbage_at_eol}"
78 echo "Garbage at end-of-line in ${line}" 1>&2
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
87 if eval test \"\${${r}}\" = \"\ \"
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
101 case "${invalid_p}" in
103 if test -n "${predefault}"
105 #invalid_p="gdbarch->${function} == ${predefault}"
106 predicate="gdbarch->${function} != ${predefault}"
107 elif class_is_variable_p
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
112 predicate="gdbarch->${function} != NULL"
116 echo "Predicate function ${function} with invalid_p." 1>&2
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
130 if [ -n "${postdefault}" ]
132 fallbackdefault="${postdefault}"
133 elif [ -n "${predefault}" ]
135 fallbackdefault="${predefault}"
140 #NOT YET: See gdbarch.log for basic verification of
155 fallback_default_p ()
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 class_is_variable_p ()
169 class_is_function_p ()
172 *f* | *F* | *m* | *M* ) true ;;
177 class_is_multiarch_p ()
185 class_is_predicate_p ()
188 *F* | *V* | *M* ) true ;;
202 # dump out/verify the doco
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
219 # hiding something from the ``struct info'' object
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
227 # For functions, the return type; for variables, the data type
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
250 # To help with the GDB startup a static gdbarch object is
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
255 # If STATICDEFAULT is empty, zero is used.
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
264 # If PREDEFAULT is empty, zero is used.
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
270 # A zero PREDEFAULT function will force the fallback to call
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
278 # A value to assign to MEMBER of the new gdbarch object should
279 # the target architecture code fail to change the PREDEFAULT
282 # If POSTDEFAULT is empty, no post update is performed.
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
295 # Variable declarations can refer to ``gdbarch'' which
296 # will contain the current architecture. Care should be
301 # A predicate equation that validates MEMBER. Non-zero is
302 # returned if the code creating the new architecture failed to
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
314 # See also PREDEFAULT and POSTDEFAULT.
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
324 garbage_at_eol ) : ;;
326 # Catches stray fields.
329 echo "Bad field ${field}"
337 # See below (DOCO) for description of each field
339 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
341 i:int:byte_order:::BFD_ENDIAN_BIG
342 i:int:byte_order_for_code:::BFD_ENDIAN_BIG
344 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
346 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
348 # The bit byte-order has to do just with numbering of bits in debugging symbols
349 # and such. Conceptually, it's quite separate from byte/word byte order.
350 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
352 # Number of bits in a char or unsigned char for the target machine.
353 # Just like CHAR_BIT in <limits.h> but describes the target machine.
354 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
356 # Number of bits in a short or unsigned short for the target machine.
357 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
358 # Number of bits in an int or unsigned int for the target machine.
359 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
360 # Number of bits in a long or unsigned long for the target machine.
361 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long long or unsigned long long for the target
364 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
366 # The ABI default bit-size and format for "float", "double", and "long
367 # double". These bit/format pairs should eventually be combined into
368 # a single object. For the moment, just initialize them as a pair.
369 # Each format describes both the big and little endian layouts (if
372 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
373 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
374 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
375 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
376 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
377 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
379 # For most targets, a pointer on the target and its representation as an
380 # address in GDB have the same size and "look the same". For such a
381 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
382 # / addr_bit will be set from it.
384 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
385 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
388 # ptr_bit is the size of a pointer on the target
389 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
390 # addr_bit is the size of a target address as represented in gdb
391 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
393 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
394 v:int:char_signed:::1:-1:1
396 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
398 # Function for getting target's idea of a frame pointer. FIXME: GDB's
399 # whole scheme for dealing with "frames" and "frame pointers" needs a
401 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
403 M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
406 v:int:num_regs:::0:-1
407 # This macro gives the number of pseudo-registers that live in the
408 # register namespace but do not get fetched or stored on the target.
409 # These pseudo-registers may be aliases for other registers,
410 # combinations of other registers, or they may be computed by GDB.
411 v:int:num_pseudo_regs:::0:0::0
413 # GDB's standard (or well known) register numbers. These can map onto
414 # a real register or a pseudo (computed) register or not be defined at
416 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
417 v:int:sp_regnum:::-1:-1::0
418 v:int:pc_regnum:::-1:-1::0
419 v:int:ps_regnum:::-1:-1::0
420 v:int:fp0_regnum:::0:-1::0
421 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
422 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
423 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
424 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
425 # Convert from an sdb register number to an internal gdb register number.
426 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
427 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
428 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
429 m:const char *:register_name:int regnr:regnr::0
431 # Return the type of a register specified by the architecture. Only
432 # the register cache should call this function directly; others should
433 # use "register_type".
434 M:struct type *:register_type:int reg_nr:reg_nr
436 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
437 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
439 # deprecated_fp_regnum.
440 v:int:deprecated_fp_regnum:::-1:-1::0
442 # See gdbint.texinfo. See infcall.c.
443 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444 v:int:call_dummy_location::::AT_ENTRY_POINT::0
445 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
447 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448 M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
450 # MAP a GDB RAW register number onto a simulator register number. See
451 # also include/...-sim.h.
452 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
453 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
455 # setjmp/longjmp support.
456 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
458 v:int:believe_pcc_promotion:::::::
460 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
461 f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
463 # Construct a value representing the contents of register REGNUM in
464 # frame FRAME, interpreted as type TYPE. The routine needs to
465 # allocate and return a struct value with all value attributes
466 # (but not the value contents) filled in.
467 f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
469 f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470 f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
473 # Return the return-value convention that will be used by FUNCTYPE
474 # to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475 # case the return convention is computed based only on VALTYPE.
477 # If READBUF is not NULL, extract the return value and save it in this buffer.
479 # If WRITEBUF is not NULL, it contains a return value which will be
480 # stored into the appropriate register. This can be used when we want
481 # to force the value returned by a function (see the "return" command
483 M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
485 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
486 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
487 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
488 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
489 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
490 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
492 v:CORE_ADDR:decr_pc_after_break:::0:::0
494 # A function can be addressed by either it's "pointer" (possibly a
495 # descriptor address) or "entry point" (first executable instruction).
496 # The method "convert_from_func_ptr_addr" converting the former to the
497 # latter. gdbarch_deprecated_function_start_offset is being used to implement
498 # a simplified subset of that functionality - the function's address
499 # corresponds to the "function pointer" and the function's start
500 # corresponds to the "function entry point" - and hence is redundant.
502 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
504 # Return the remote protocol register number associated with this
505 # register. Normally the identity mapping.
506 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
508 # Fetch the target specific address used to represent a load module.
509 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
511 v:CORE_ADDR:frame_args_skip:::0:::0
512 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
514 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515 # frame-base. Enable frame-base before frame-unwind.
516 F:int:frame_num_args:struct frame_info *frame:frame
518 M:CORE_ADDR:frame_align:CORE_ADDR address:address
519 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520 v:int:frame_red_zone_size
522 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
523 # On some machines there are bits in addresses which are not really
524 # part of the address, but are used by the kernel, the hardware, etc.
525 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
526 # we get a "real" address such as one would find in a symbol table.
527 # This is used only for addresses of instructions, and even then I'm
528 # not sure it's used in all contexts. It exists to deal with there
529 # being a few stray bits in the PC which would mislead us, not as some
530 # sort of generic thing to handle alignment or segmentation (it's
531 # possible it should be in TARGET_READ_PC instead).
532 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
533 # It is not at all clear why gdbarch_smash_text_address is not folded into
534 # gdbarch_addr_bits_remove.
535 m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
537 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
538 # indicates if the target needs software single step. An ISA method to
541 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542 # breakpoints using the breakpoint system instead of blatting memory directly
545 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546 # target can single step. If not, then implement single step using breakpoints.
548 # A return value of 1 means that the software_single_step breakpoints
549 # were inserted; 0 means they were not.
550 F:int:software_single_step:struct frame_info *frame:frame
552 # Return non-zero if the processor is executing a delay slot and a
553 # further single-step is needed before the instruction finishes.
554 M:int:single_step_through_delay:struct frame_info *frame:frame
555 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
556 # disassembler. Perhaps objdump can handle it?
557 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
561 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
562 # evaluates non-zero, this is the address where the debugger will place
563 # a step-resume breakpoint to get us past the dynamic linker.
564 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
565 # Some systems also have trampoline code for returning from shared libs.
566 f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
568 # A target might have problems with watchpoints as soon as the stack
569 # frame of the current function has been destroyed. This mostly happens
570 # as the first action in a funtion's epilogue. in_function_epilogue_p()
571 # is defined to return a non-zero value if either the given addr is one
572 # instruction after the stack destroying instruction up to the trailing
573 # return instruction or if we can figure out that the stack frame has
574 # already been invalidated regardless of the value of addr. Targets
575 # which don't suffer from that problem could just let this functionality
577 m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
578 f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
580 v:int:cannot_step_breakpoint:::0:0::0
581 v:int:have_nonsteppable_watchpoint:::0:0::0
582 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
585 # Is a register in a group
586 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
587 # Fetch the pointer to the ith function argument.
588 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
590 # Return the appropriate register set for a core file section with
591 # name SECT_NAME and size SECT_SIZE.
592 M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
594 # When creating core dumps, some systems encode the PID in addition
595 # to the LWP id in core file register section names. In those cases, the
596 # "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597 # is set to true for such architectures; false if "XXX" represents an LWP
598 # or thread id with no special encoding.
599 v:int:core_reg_section_encodes_pid:::0:0::0
601 # Supported register notes in a core file.
602 v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
604 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605 # core file into buffer READBUF with length LEN.
606 M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
608 # How the core_stratum layer converts a PTID from a core file to a
610 M:char *:core_pid_to_str:ptid_t ptid:ptid
612 # BFD target to use when generating a core file.
613 V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
615 # If the elements of C++ vtables are in-place function descriptors rather
616 # than normal function pointers (which may point to code or a descriptor),
618 v:int:vtable_function_descriptors:::0:0::0
620 # Set if the least significant bit of the delta is used instead of the least
621 # significant bit of the pfn for pointers to virtual member functions.
622 v:int:vbit_in_delta:::0:0::0
624 # Advance PC to next instruction in order to skip a permanent breakpoint.
625 F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
627 # The maximum length of an instruction on this architecture.
628 V:ULONGEST:max_insn_length:::0:0
630 # Copy the instruction at FROM to TO, and make any adjustments
631 # necessary to single-step it at that address.
633 # REGS holds the state the thread's registers will have before
634 # executing the copied instruction; the PC in REGS will refer to FROM,
635 # not the copy at TO. The caller should update it to point at TO later.
637 # Return a pointer to data of the architecture's choice to be passed
638 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639 # the instruction's effects have been completely simulated, with the
640 # resulting state written back to REGS.
642 # For a general explanation of displaced stepping and how GDB uses it,
643 # see the comments in infrun.c.
645 # The TO area is only guaranteed to have space for
646 # gdbarch_max_insn_length (arch) bytes, so this function must not
647 # write more bytes than that to that area.
649 # If you do not provide this function, GDB assumes that the
650 # architecture does not support displaced stepping.
652 # If your architecture doesn't need to adjust instructions before
653 # single-stepping them, consider using simple_displaced_step_copy_insn
655 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
657 # Fix up the state resulting from successfully single-stepping a
658 # displaced instruction, to give the result we would have gotten from
659 # stepping the instruction in its original location.
661 # REGS is the register state resulting from single-stepping the
662 # displaced instruction.
664 # CLOSURE is the result from the matching call to
665 # gdbarch_displaced_step_copy_insn.
667 # If you provide gdbarch_displaced_step_copy_insn.but not this
668 # function, then GDB assumes that no fixup is needed after
669 # single-stepping the instruction.
671 # For a general explanation of displaced stepping and how GDB uses it,
672 # see the comments in infrun.c.
673 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
675 # Free a closure returned by gdbarch_displaced_step_copy_insn.
677 # If you provide gdbarch_displaced_step_copy_insn, you must provide
678 # this function as well.
680 # If your architecture uses closures that don't need to be freed, then
681 # you can use simple_displaced_step_free_closure here.
683 # For a general explanation of displaced stepping and how GDB uses it,
684 # see the comments in infrun.c.
685 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
687 # Return the address of an appropriate place to put displaced
688 # instructions while we step over them. There need only be one such
689 # place, since we're only stepping one thread over a breakpoint at a
692 # For a general explanation of displaced stepping and how GDB uses it,
693 # see the comments in infrun.c.
694 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
696 # Refresh overlay mapped state for section OSECT.
697 F:void:overlay_update:struct obj_section *osect:osect
699 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
701 # Handle special encoding of static variables in stabs debug info.
702 F:char *:static_transform_name:char *name:name
703 # Set if the address in N_SO or N_FUN stabs may be zero.
704 v:int:sofun_address_maybe_missing:::0:0::0
706 # Parse the instruction at ADDR storing in the record execution log
707 # the registers REGCACHE and memory ranges that will be affected when
708 # the instruction executes, along with their current values.
709 # Return -1 if something goes wrong, 0 otherwise.
710 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
712 # Signal translation: translate inferior's signal (host's) number into
713 # GDB's representation.
714 m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715 # Signal translation: translate GDB's signal number into inferior's host
717 m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
719 # Extra signal info inspection.
721 # Return a type suitable to inspect extra signal information.
722 M:struct type *:get_siginfo_type:void:
724 # Record architecture-specific information from the symbol table.
725 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
727 # True if the list of shared libraries is one and only for all
728 # processes, as opposed to a list of shared libraries per inferior.
729 # This usually means that all processes, although may or may not share
730 # an address space, will see the same set of symbols at the same
732 v:int:has_global_solist:::0:0::0
734 # On some targets, even though each inferior has its own private
735 # address space, the debug interface takes care of making breakpoints
736 # visible to all address spaces automatically. For such cases,
737 # this property should be set to true.
738 v:int:has_global_breakpoints:::0:0::0
745 exec > new-gdbarch.log
746 function_list | while do_read
749 ${class} ${returntype} ${function} ($formal)
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
755 if class_is_predicate_p && fallback_default_p
757 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
767 if class_is_multiarch_p
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
772 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
781 compare_new gdbarch.log
787 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
789 /* Dynamic architecture support for GDB, the GNU debugger.
791 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
792 Free Software Foundation, Inc.
794 This file is part of GDB.
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 3 of the License, or
799 (at your option) any later version.
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
806 You should have received a copy of the GNU General Public License
807 along with this program. If not, see <http://www.gnu.org/licenses/>. */
809 /* This file was created with the aid of \`\`gdbarch.sh''.
811 The Bourne shell script \`\`gdbarch.sh'' creates the files
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
816 If editing this file, please also run gdbarch.sh and merge any
817 changes into that script. Conversely, when making sweeping changes
818 to this file, modifying gdbarch.sh and using its output may prove
840 struct minimal_symbol;
844 struct disassemble_info;
847 struct bp_target_info;
849 struct displaced_step_closure;
850 struct core_regset_section;
852 extern struct gdbarch *current_gdbarch;
854 /* The architecture associated with the connection to the target.
856 The architecture vector provides some information that is really
857 a property of the target: The layout of certain packets, for instance;
858 or the solib_ops vector. Etc. To differentiate architecture accesses
859 to per-target properties from per-thread/per-frame/per-objfile properties,
860 accesses to per-target properties should be made through target_gdbarch.
862 Eventually, when support for multiple targets is implemented in
863 GDB, this global should be made target-specific. */
864 extern struct gdbarch *target_gdbarch;
870 printf "/* The following are pre-initialized by GDBARCH. */\n"
871 function_list | while do_read
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
877 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
884 printf "/* The following are initialized by the target dependent code. */\n"
885 function_list | while do_read
887 if [ -n "${comment}" ]
889 echo "${comment}" | sed \
895 if class_is_predicate_p
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
900 if class_is_variable_p
903 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
904 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
906 if class_is_function_p
909 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
912 elif class_is_multiarch_p
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
916 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
918 if [ "x${formal}" = "xvoid" ]
920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
924 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
931 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
934 /* Mechanism for co-ordinating the selection of a specific
937 GDB targets (*-tdep.c) can register an interest in a specific
938 architecture. Other GDB components can register a need to maintain
939 per-architecture data.
941 The mechanisms below ensures that there is only a loose connection
942 between the set-architecture command and the various GDB
943 components. Each component can independently register their need
944 to maintain architecture specific data with gdbarch.
948 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
951 The more traditional mega-struct containing architecture specific
952 data for all the various GDB components was also considered. Since
953 GDB is built from a variable number of (fairly independent)
954 components it was determined that the global aproach was not
958 /* Register a new architectural family with GDB.
960 Register support for the specified ARCHITECTURE with GDB. When
961 gdbarch determines that the specified architecture has been
962 selected, the corresponding INIT function is called.
966 The INIT function takes two parameters: INFO which contains the
967 information available to gdbarch about the (possibly new)
968 architecture; ARCHES which is a list of the previously created
969 \`\`struct gdbarch'' for this architecture.
971 The INFO parameter is, as far as possible, be pre-initialized with
972 information obtained from INFO.ABFD or the global defaults.
974 The ARCHES parameter is a linked list (sorted most recently used)
975 of all the previously created architures for this architecture
976 family. The (possibly NULL) ARCHES->gdbarch can used to access
977 values from the previously selected architecture for this
978 architecture family. The global \`\`current_gdbarch'' shall not be
981 The INIT function shall return any of: NULL - indicating that it
982 doesn't recognize the selected architecture; an existing \`\`struct
983 gdbarch'' from the ARCHES list - indicating that the new
984 architecture is just a synonym for an earlier architecture (see
985 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
986 - that describes the selected architecture (see gdbarch_alloc()).
988 The DUMP_TDEP function shall print out all target specific values.
989 Care should be taken to ensure that the function works in both the
990 multi-arch and non- multi-arch cases. */
994 struct gdbarch *gdbarch;
995 struct gdbarch_list *next;
1000 /* Use default: NULL (ZERO). */
1001 const struct bfd_arch_info *bfd_arch_info;
1003 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1006 int byte_order_for_code;
1008 /* Use default: NULL (ZERO). */
1011 /* Use default: NULL (ZERO). */
1012 struct gdbarch_tdep_info *tdep_info;
1014 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1015 enum gdb_osabi osabi;
1017 /* Use default: NULL (ZERO). */
1018 const struct target_desc *target_desc;
1021 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1022 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1024 /* DEPRECATED - use gdbarch_register() */
1025 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1027 extern void gdbarch_register (enum bfd_architecture architecture,
1028 gdbarch_init_ftype *,
1029 gdbarch_dump_tdep_ftype *);
1032 /* Return a freshly allocated, NULL terminated, array of the valid
1033 architecture names. Since architectures are registered during the
1034 _initialize phase this function only returns useful information
1035 once initialization has been completed. */
1037 extern const char **gdbarch_printable_names (void);
1040 /* Helper function. Search the list of ARCHES for a GDBARCH that
1041 matches the information provided by INFO. */
1043 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1047 basic initialization using values obtained from the INFO and TDEP
1048 parameters. set_gdbarch_*() functions are called to complete the
1049 initialization of the object. */
1051 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1055 It is assumed that the caller freeds the \`\`struct
1058 extern void gdbarch_free (struct gdbarch *);
1061 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1062 obstack. The memory is freed when the corresponding architecture
1065 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1066 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1067 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1070 /* Helper function. Force an update of the current architecture.
1072 The actual architecture selected is determined by INFO, \`\`(gdb) set
1073 architecture'' et.al., the existing architecture and BFD's default
1074 architecture. INFO should be initialized to zero and then selected
1075 fields should be updated.
1077 Returns non-zero if the update succeeds */
1079 extern int gdbarch_update_p (struct gdbarch_info info);
1082 /* Helper function. Find an architecture matching info.
1084 INFO should be initialized using gdbarch_info_init, relevant fields
1085 set, and then finished using gdbarch_info_fill.
1087 Returns the corresponding architecture, or NULL if no matching
1088 architecture was found. "current_gdbarch" is not updated. */
1090 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1093 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1095 FIXME: kettenis/20031124: Of the functions that follow, only
1096 gdbarch_from_bfd is supposed to survive. The others will
1097 dissappear since in the future GDB will (hopefully) be truly
1098 multi-arch. However, for now we're still stuck with the concept of
1099 a single active architecture. */
1101 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1104 /* Register per-architecture data-pointer.
1106 Reserve space for a per-architecture data-pointer. An identifier
1107 for the reserved data-pointer is returned. That identifer should
1108 be saved in a local static variable.
1110 Memory for the per-architecture data shall be allocated using
1111 gdbarch_obstack_zalloc. That memory will be deleted when the
1112 corresponding architecture object is deleted.
1114 When a previously created architecture is re-selected, the
1115 per-architecture data-pointer for that previous architecture is
1116 restored. INIT() is not re-called.
1118 Multiple registrarants for any architecture are allowed (and
1119 strongly encouraged). */
1121 struct gdbarch_data;
1123 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1124 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1125 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1126 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1127 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1128 struct gdbarch_data *data,
1131 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1134 /* Set the dynamic target-system-dependent parameters (architecture,
1135 byte-order, ...) using information found in the BFD */
1137 extern void set_gdbarch_from_file (bfd *);
1140 /* Initialize the current architecture to the "first" one we find on
1143 extern void initialize_current_architecture (void);
1145 /* gdbarch trace variable */
1146 extern int gdbarch_debug;
1148 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1153 #../move-if-change new-gdbarch.h gdbarch.h
1154 compare_new gdbarch.h
1161 exec > new-gdbarch.c
1166 #include "arch-utils.h"
1169 #include "inferior.h"
1172 #include "floatformat.h"
1174 #include "gdb_assert.h"
1175 #include "gdb_string.h"
1176 #include "reggroups.h"
1178 #include "gdb_obstack.h"
1179 #include "observer.h"
1180 #include "regcache.h"
1182 /* Static function declarations */
1184 static void alloc_gdbarch_data (struct gdbarch *);
1186 /* Non-zero if we want to trace architecture code. */
1188 #ifndef GDBARCH_DEBUG
1189 #define GDBARCH_DEBUG 0
1191 int gdbarch_debug = GDBARCH_DEBUG;
1193 show_gdbarch_debug (struct ui_file *file, int from_tty,
1194 struct cmd_list_element *c, const char *value)
1196 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1200 pformat (const struct floatformat **format)
1205 /* Just print out one of them - this is only for diagnostics. */
1206 return format[0]->name;
1211 # gdbarch open the gdbarch object
1213 printf "/* Maintain the struct gdbarch object */\n"
1215 printf "struct gdbarch\n"
1217 printf " /* Has this architecture been fully initialized? */\n"
1218 printf " int initialized_p;\n"
1220 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1221 printf " struct obstack *obstack;\n"
1223 printf " /* basic architectural information */\n"
1224 function_list | while do_read
1228 printf " ${returntype} ${function};\n"
1232 printf " /* target specific vector. */\n"
1233 printf " struct gdbarch_tdep *tdep;\n"
1234 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1236 printf " /* per-architecture data-pointers */\n"
1237 printf " unsigned nr_data;\n"
1238 printf " void **data;\n"
1240 printf " /* per-architecture swap-regions */\n"
1241 printf " struct gdbarch_swap *swap;\n"
1244 /* Multi-arch values.
1246 When extending this structure you must:
1248 Add the field below.
1250 Declare set/get functions and define the corresponding
1253 gdbarch_alloc(): If zero/NULL is not a suitable default,
1254 initialize the new field.
1256 verify_gdbarch(): Confirm that the target updated the field
1259 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1262 \`\`startup_gdbarch()'': Append an initial value to the static
1263 variable (base values on the host's c-type system).
1265 get_gdbarch(): Implement the set/get functions (probably using
1266 the macro's as shortcuts).
1271 function_list | while do_read
1273 if class_is_variable_p
1275 printf " ${returntype} ${function};\n"
1276 elif class_is_function_p
1278 printf " gdbarch_${function}_ftype *${function};\n"
1283 # A pre-initialized vector
1287 /* The default architecture uses host values (for want of a better
1291 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1293 printf "struct gdbarch startup_gdbarch =\n"
1295 printf " 1, /* Always initialized. */\n"
1296 printf " NULL, /* The obstack. */\n"
1297 printf " /* basic architecture information */\n"
1298 function_list | while do_read
1302 printf " ${staticdefault}, /* ${function} */\n"
1306 /* target specific vector and its dump routine */
1308 /*per-architecture data-pointers and swap regions */
1310 /* Multi-arch values */
1312 function_list | while do_read
1314 if class_is_function_p || class_is_variable_p
1316 printf " ${staticdefault}, /* ${function} */\n"
1320 /* startup_gdbarch() */
1323 struct gdbarch *current_gdbarch = &startup_gdbarch;
1324 struct gdbarch *target_gdbarch = &startup_gdbarch;
1327 # Create a new gdbarch struct
1330 /* Create a new \`\`struct gdbarch'' based on information provided by
1331 \`\`struct gdbarch_info''. */
1336 gdbarch_alloc (const struct gdbarch_info *info,
1337 struct gdbarch_tdep *tdep)
1339 struct gdbarch *gdbarch;
1341 /* Create an obstack for allocating all the per-architecture memory,
1342 then use that to allocate the architecture vector. */
1343 struct obstack *obstack = XMALLOC (struct obstack);
1344 obstack_init (obstack);
1345 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1346 memset (gdbarch, 0, sizeof (*gdbarch));
1347 gdbarch->obstack = obstack;
1349 alloc_gdbarch_data (gdbarch);
1351 gdbarch->tdep = tdep;
1354 function_list | while do_read
1358 printf " gdbarch->${function} = info->${function};\n"
1362 printf " /* Force the explicit initialization of these. */\n"
1363 function_list | while do_read
1365 if class_is_function_p || class_is_variable_p
1367 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1369 printf " gdbarch->${function} = ${predefault};\n"
1374 /* gdbarch_alloc() */
1380 # Free a gdbarch struct.
1384 /* Allocate extra space using the per-architecture obstack. */
1387 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1389 void *data = obstack_alloc (arch->obstack, size);
1390 memset (data, 0, size);
1395 /* Free a gdbarch struct. This should never happen in normal
1396 operation --- once you've created a gdbarch, you keep it around.
1397 However, if an architecture's init function encounters an error
1398 building the structure, it may need to clean up a partially
1399 constructed gdbarch. */
1402 gdbarch_free (struct gdbarch *arch)
1404 struct obstack *obstack;
1405 gdb_assert (arch != NULL);
1406 gdb_assert (!arch->initialized_p);
1407 obstack = arch->obstack;
1408 obstack_free (obstack, 0); /* Includes the ARCH. */
1413 # verify a new architecture
1417 /* Ensure that all values in a GDBARCH are reasonable. */
1420 verify_gdbarch (struct gdbarch *gdbarch)
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1426 log = mem_fileopen ();
1427 cleanups = make_cleanup_ui_file_delete (log);
1429 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1430 fprintf_unfiltered (log, "\n\tbyte-order");
1431 if (gdbarch->bfd_arch_info == NULL)
1432 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1433 /* Check those that need to be defined for the given multi-arch level. */
1435 function_list | while do_read
1437 if class_is_function_p || class_is_variable_p
1439 if [ "x${invalid_p}" = "x0" ]
1441 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1442 elif class_is_predicate_p
1444 printf " /* Skip verify of ${function}, has predicate */\n"
1445 # FIXME: See do_read for potential simplification
1446 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1448 printf " if (${invalid_p})\n"
1449 printf " gdbarch->${function} = ${postdefault};\n"
1450 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1452 printf " if (gdbarch->${function} == ${predefault})\n"
1453 printf " gdbarch->${function} = ${postdefault};\n"
1454 elif [ -n "${postdefault}" ]
1456 printf " if (gdbarch->${function} == 0)\n"
1457 printf " gdbarch->${function} = ${postdefault};\n"
1458 elif [ -n "${invalid_p}" ]
1460 printf " if (${invalid_p})\n"
1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1462 elif [ -n "${predefault}" ]
1464 printf " if (gdbarch->${function} == ${predefault})\n"
1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1470 buf = ui_file_xstrdup (log, &dummy);
1471 make_cleanup (xfree, buf);
1472 if (strlen (buf) > 0)
1473 internal_error (__FILE__, __LINE__,
1474 _("verify_gdbarch: the following are invalid ...%s"),
1476 do_cleanups (cleanups);
1480 # dump the structure
1484 /* Print out the details of the current architecture. */
1487 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1489 const char *gdb_nm_file = "<not-defined>";
1490 #if defined (GDB_NM_FILE)
1491 gdb_nm_file = GDB_NM_FILE;
1493 fprintf_unfiltered (file,
1494 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1497 function_list | sort -t: -k 3 | while do_read
1499 # First the predicate
1500 if class_is_predicate_p
1502 printf " fprintf_unfiltered (file,\n"
1503 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1504 printf " gdbarch_${function}_p (gdbarch));\n"
1506 # Print the corresponding value.
1507 if class_is_function_p
1509 printf " fprintf_unfiltered (file,\n"
1510 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1511 printf " host_address_to_string (gdbarch->${function}));\n"
1514 case "${print}:${returntype}" in
1517 print="core_addr_to_string_nz (gdbarch->${function})"
1521 print="plongest (gdbarch->${function})"
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1529 printf " ${print});\n"
1533 if (gdbarch->dump_tdep != NULL)
1534 gdbarch->dump_tdep (gdbarch, file);
1542 struct gdbarch_tdep *
1543 gdbarch_tdep (struct gdbarch *gdbarch)
1545 if (gdbarch_debug >= 2)
1546 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1547 return gdbarch->tdep;
1551 function_list | while do_read
1553 if class_is_predicate_p
1557 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1559 printf " gdb_assert (gdbarch != NULL);\n"
1560 printf " return ${predicate};\n"
1563 if class_is_function_p
1566 printf "${returntype}\n"
1567 if [ "x${formal}" = "xvoid" ]
1569 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1571 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1574 printf " gdb_assert (gdbarch != NULL);\n"
1575 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1576 if class_is_predicate_p && test -n "${predefault}"
1578 # Allow a call to a function with a predicate.
1579 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1581 printf " if (gdbarch_debug >= 2)\n"
1582 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1583 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1585 if class_is_multiarch_p
1592 if class_is_multiarch_p
1594 params="gdbarch, ${actual}"
1599 if [ "x${returntype}" = "xvoid" ]
1601 printf " gdbarch->${function} (${params});\n"
1603 printf " return gdbarch->${function} (${params});\n"
1608 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1609 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1611 printf " gdbarch->${function} = ${function};\n"
1613 elif class_is_variable_p
1616 printf "${returntype}\n"
1617 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1619 printf " gdb_assert (gdbarch != NULL);\n"
1620 if [ "x${invalid_p}" = "x0" ]
1622 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1623 elif [ -n "${invalid_p}" ]
1625 printf " /* Check variable is valid. */\n"
1626 printf " gdb_assert (!(${invalid_p}));\n"
1627 elif [ -n "${predefault}" ]
1629 printf " /* Check variable changed from pre-default. */\n"
1630 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1632 printf " if (gdbarch_debug >= 2)\n"
1633 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1634 printf " return gdbarch->${function};\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1641 printf " gdbarch->${function} = ${function};\n"
1643 elif class_is_info_p
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1649 printf " gdb_assert (gdbarch != NULL);\n"
1650 printf " if (gdbarch_debug >= 2)\n"
1651 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1652 printf " return gdbarch->${function};\n"
1657 # All the trailing guff
1661 /* Keep a registry of per-architecture data-pointers required by GDB
1668 gdbarch_data_pre_init_ftype *pre_init;
1669 gdbarch_data_post_init_ftype *post_init;
1672 struct gdbarch_data_registration
1674 struct gdbarch_data *data;
1675 struct gdbarch_data_registration *next;
1678 struct gdbarch_data_registry
1681 struct gdbarch_data_registration *registrations;
1684 struct gdbarch_data_registry gdbarch_data_registry =
1689 static struct gdbarch_data *
1690 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1691 gdbarch_data_post_init_ftype *post_init)
1693 struct gdbarch_data_registration **curr;
1694 /* Append the new registraration. */
1695 for (curr = &gdbarch_data_registry.registrations;
1697 curr = &(*curr)->next);
1698 (*curr) = XMALLOC (struct gdbarch_data_registration);
1699 (*curr)->next = NULL;
1700 (*curr)->data = XMALLOC (struct gdbarch_data);
1701 (*curr)->data->index = gdbarch_data_registry.nr++;
1702 (*curr)->data->pre_init = pre_init;
1703 (*curr)->data->post_init = post_init;
1704 (*curr)->data->init_p = 1;
1705 return (*curr)->data;
1708 struct gdbarch_data *
1709 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1711 return gdbarch_data_register (pre_init, NULL);
1714 struct gdbarch_data *
1715 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1717 return gdbarch_data_register (NULL, post_init);
1720 /* Create/delete the gdbarch data vector. */
1723 alloc_gdbarch_data (struct gdbarch *gdbarch)
1725 gdb_assert (gdbarch->data == NULL);
1726 gdbarch->nr_data = gdbarch_data_registry.nr;
1727 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1730 /* Initialize the current value of the specified per-architecture
1734 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1735 struct gdbarch_data *data,
1738 gdb_assert (data->index < gdbarch->nr_data);
1739 gdb_assert (gdbarch->data[data->index] == NULL);
1740 gdb_assert (data->pre_init == NULL);
1741 gdbarch->data[data->index] = pointer;
1744 /* Return the current value of the specified per-architecture
1748 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1750 gdb_assert (data->index < gdbarch->nr_data);
1751 if (gdbarch->data[data->index] == NULL)
1753 /* The data-pointer isn't initialized, call init() to get a
1755 if (data->pre_init != NULL)
1756 /* Mid architecture creation: pass just the obstack, and not
1757 the entire architecture, as that way it isn't possible for
1758 pre-init code to refer to undefined architecture
1760 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1761 else if (gdbarch->initialized_p
1762 && data->post_init != NULL)
1763 /* Post architecture creation: pass the entire architecture
1764 (as all fields are valid), but be careful to also detect
1765 recursive references. */
1767 gdb_assert (data->init_p);
1769 gdbarch->data[data->index] = data->post_init (gdbarch);
1773 /* The architecture initialization hasn't completed - punt -
1774 hope that the caller knows what they are doing. Once
1775 deprecated_set_gdbarch_data has been initialized, this can be
1776 changed to an internal error. */
1778 gdb_assert (gdbarch->data[data->index] != NULL);
1780 return gdbarch->data[data->index];
1784 /* Keep a registry of the architectures known by GDB. */
1786 struct gdbarch_registration
1788 enum bfd_architecture bfd_architecture;
1789 gdbarch_init_ftype *init;
1790 gdbarch_dump_tdep_ftype *dump_tdep;
1791 struct gdbarch_list *arches;
1792 struct gdbarch_registration *next;
1795 static struct gdbarch_registration *gdbarch_registry = NULL;
1798 append_name (const char ***buf, int *nr, const char *name)
1800 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1806 gdbarch_printable_names (void)
1808 /* Accumulate a list of names based on the registed list of
1810 enum bfd_architecture a;
1812 const char **arches = NULL;
1813 struct gdbarch_registration *rego;
1814 for (rego = gdbarch_registry;
1818 const struct bfd_arch_info *ap;
1819 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1821 internal_error (__FILE__, __LINE__,
1822 _("gdbarch_architecture_names: multi-arch unknown"));
1825 append_name (&arches, &nr_arches, ap->printable_name);
1830 append_name (&arches, &nr_arches, NULL);
1836 gdbarch_register (enum bfd_architecture bfd_architecture,
1837 gdbarch_init_ftype *init,
1838 gdbarch_dump_tdep_ftype *dump_tdep)
1840 struct gdbarch_registration **curr;
1841 const struct bfd_arch_info *bfd_arch_info;
1842 /* Check that BFD recognizes this architecture */
1843 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1844 if (bfd_arch_info == NULL)
1846 internal_error (__FILE__, __LINE__,
1847 _("gdbarch: Attempt to register unknown architecture (%d)"),
1850 /* Check that we haven't seen this architecture before */
1851 for (curr = &gdbarch_registry;
1853 curr = &(*curr)->next)
1855 if (bfd_architecture == (*curr)->bfd_architecture)
1856 internal_error (__FILE__, __LINE__,
1857 _("gdbarch: Duplicate registraration of architecture (%s)"),
1858 bfd_arch_info->printable_name);
1862 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
1863 bfd_arch_info->printable_name,
1864 host_address_to_string (init));
1866 (*curr) = XMALLOC (struct gdbarch_registration);
1867 (*curr)->bfd_architecture = bfd_architecture;
1868 (*curr)->init = init;
1869 (*curr)->dump_tdep = dump_tdep;
1870 (*curr)->arches = NULL;
1871 (*curr)->next = NULL;
1875 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1876 gdbarch_init_ftype *init)
1878 gdbarch_register (bfd_architecture, init, NULL);
1882 /* Look for an architecture using gdbarch_info. */
1884 struct gdbarch_list *
1885 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1886 const struct gdbarch_info *info)
1888 for (; arches != NULL; arches = arches->next)
1890 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1892 if (info->byte_order != arches->gdbarch->byte_order)
1894 if (info->osabi != arches->gdbarch->osabi)
1896 if (info->target_desc != arches->gdbarch->target_desc)
1904 /* Find an architecture that matches the specified INFO. Create a new
1905 architecture if needed. Return that new architecture. Assumes
1906 that there is no current architecture. */
1908 static struct gdbarch *
1909 find_arch_by_info (struct gdbarch_info info)
1911 struct gdbarch *new_gdbarch;
1912 struct gdbarch_registration *rego;
1914 /* The existing architecture has been swapped out - all this code
1915 works from a clean slate. */
1916 gdb_assert (current_gdbarch == NULL);
1918 /* Fill in missing parts of the INFO struct using a number of
1919 sources: "set ..."; INFOabfd supplied; and the global
1921 gdbarch_info_fill (&info);
1923 /* Must have found some sort of architecture. */
1924 gdb_assert (info.bfd_arch_info != NULL);
1928 fprintf_unfiltered (gdb_stdlog,
1929 "find_arch_by_info: info.bfd_arch_info %s\n",
1930 (info.bfd_arch_info != NULL
1931 ? info.bfd_arch_info->printable_name
1933 fprintf_unfiltered (gdb_stdlog,
1934 "find_arch_by_info: info.byte_order %d (%s)\n",
1936 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1937 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1939 fprintf_unfiltered (gdb_stdlog,
1940 "find_arch_by_info: info.osabi %d (%s)\n",
1941 info.osabi, gdbarch_osabi_name (info.osabi));
1942 fprintf_unfiltered (gdb_stdlog,
1943 "find_arch_by_info: info.abfd %s\n",
1944 host_address_to_string (info.abfd));
1945 fprintf_unfiltered (gdb_stdlog,
1946 "find_arch_by_info: info.tdep_info %s\n",
1947 host_address_to_string (info.tdep_info));
1950 /* Find the tdep code that knows about this architecture. */
1951 for (rego = gdbarch_registry;
1954 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1959 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1960 "No matching architecture\n");
1964 /* Ask the tdep code for an architecture that matches "info". */
1965 new_gdbarch = rego->init (info, rego->arches);
1967 /* Did the tdep code like it? No. Reject the change and revert to
1968 the old architecture. */
1969 if (new_gdbarch == NULL)
1972 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1973 "Target rejected architecture\n");
1977 /* Is this a pre-existing architecture (as determined by already
1978 being initialized)? Move it to the front of the architecture
1979 list (keeping the list sorted Most Recently Used). */
1980 if (new_gdbarch->initialized_p)
1982 struct gdbarch_list **list;
1983 struct gdbarch_list *this;
1985 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1986 "Previous architecture %s (%s) selected\n",
1987 host_address_to_string (new_gdbarch),
1988 new_gdbarch->bfd_arch_info->printable_name);
1989 /* Find the existing arch in the list. */
1990 for (list = ®o->arches;
1991 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1992 list = &(*list)->next);
1993 /* It had better be in the list of architectures. */
1994 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1997 (*list) = this->next;
1998 /* Insert THIS at the front. */
1999 this->next = rego->arches;
2000 rego->arches = this;
2005 /* It's a new architecture. */
2007 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2008 "New architecture %s (%s) selected\n",
2009 host_address_to_string (new_gdbarch),
2010 new_gdbarch->bfd_arch_info->printable_name);
2012 /* Insert the new architecture into the front of the architecture
2013 list (keep the list sorted Most Recently Used). */
2015 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2016 this->next = rego->arches;
2017 this->gdbarch = new_gdbarch;
2018 rego->arches = this;
2021 /* Check that the newly installed architecture is valid. Plug in
2022 any post init values. */
2023 new_gdbarch->dump_tdep = rego->dump_tdep;
2024 verify_gdbarch (new_gdbarch);
2025 new_gdbarch->initialized_p = 1;
2028 gdbarch_dump (new_gdbarch, gdb_stdlog);
2034 gdbarch_find_by_info (struct gdbarch_info info)
2036 struct gdbarch *new_gdbarch;
2038 /* Save the previously selected architecture, setting the global to
2039 NULL. This stops things like gdbarch->init() trying to use the
2040 previous architecture's configuration. The previous architecture
2041 may not even be of the same architecture family. The most recent
2042 architecture of the same family is found at the head of the
2043 rego->arches list. */
2044 struct gdbarch *old_gdbarch = current_gdbarch;
2045 current_gdbarch = NULL;
2047 /* Find the specified architecture. */
2048 new_gdbarch = find_arch_by_info (info);
2050 /* Restore the existing architecture. */
2051 gdb_assert (current_gdbarch == NULL);
2052 current_gdbarch = old_gdbarch;
2057 /* Make the specified architecture current. */
2060 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2062 gdb_assert (new_gdbarch != NULL);
2063 gdb_assert (current_gdbarch != NULL);
2064 gdb_assert (new_gdbarch->initialized_p);
2065 current_gdbarch = new_gdbarch;
2066 target_gdbarch = new_gdbarch;
2067 observer_notify_architecture_changed (new_gdbarch);
2068 registers_changed ();
2071 extern void _initialize_gdbarch (void);
2074 _initialize_gdbarch (void)
2076 struct cmd_list_element *c;
2078 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2079 Set architecture debugging."), _("\\
2080 Show architecture debugging."), _("\\
2081 When non-zero, architecture debugging is enabled."),
2084 &setdebuglist, &showdebuglist);
2090 #../move-if-change new-gdbarch.c gdbarch.c
2091 compare_new gdbarch.c