1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
45 #include "target-debug.h"
47 #include "event-top.h"
49 #include "gdbsupport/byte-vector.h"
51 #include <unordered_map>
52 #include "target-connection.h"
55 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
57 static void default_terminal_info (struct target_ops *, const char *, int);
59 static int default_watchpoint_addr_within_range (struct target_ops *,
60 CORE_ADDR, CORE_ADDR, int);
62 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
67 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
70 static void default_mourn_inferior (struct target_ops *self);
72 static int default_search_memory (struct target_ops *ops,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
77 CORE_ADDR *found_addrp);
79 static int default_verify_memory (struct target_ops *self,
81 CORE_ADDR memaddr, ULONGEST size);
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
85 static struct target_ops *find_default_run_target (const char *);
87 static int dummy_find_memory_regions (struct target_ops *self,
88 find_memory_region_ftype ignore1,
91 static char *dummy_make_corefile_notes (struct target_ops *self,
92 bfd *ignore1, int *ignore2);
94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96 static enum exec_direction_kind default_execution_direction
97 (struct target_ops *self);
99 /* Mapping between target_info objects (which have address identity)
100 and corresponding open/factory function/callback. Each add_target
101 call adds one entry to this map, and registers a "target
102 TARGET_NAME" command that when invoked calls the factory registered
103 here. The target_info object is associated with the command via
104 the command's context. */
105 static std::unordered_map<const target_info *, target_open_ftype *>
108 /* The singleton debug target. */
110 static struct target_ops *the_debug_target;
112 /* Top of target stack. */
113 /* The target structure we are currently using to talk to a process
114 or file or whatever "inferior" we have. */
117 current_top_target ()
119 return current_inferior ()->top_target ();
122 /* Command list for target. */
124 static struct cmd_list_element *targetlist = NULL;
126 /* True if we should trust readonly sections from the
127 executable when reading memory. */
129 static bool trust_readonly = false;
131 /* Nonzero if we should show true memory content including
132 memory breakpoint inserted by gdb. */
134 static int show_memory_breakpoints = 0;
136 /* These globals control whether GDB attempts to perform these
137 operations; they are useful for targets that need to prevent
138 inadvertent disruption, such as in non-stop mode. */
140 bool may_write_registers = true;
142 bool may_write_memory = true;
144 bool may_insert_breakpoints = true;
146 bool may_insert_tracepoints = true;
148 bool may_insert_fast_tracepoints = true;
150 bool may_stop = true;
152 /* Non-zero if we want to see trace of target level stuff. */
154 static unsigned int targetdebug = 0;
157 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
160 push_target (the_debug_target);
162 unpush_target (the_debug_target);
166 show_targetdebug (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
169 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
176 if (t->has_memory ())
183 target_has_stack_1 (void)
185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
193 target_has_registers_1 (void)
195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196 if (t->has_registers ())
203 target_has_execution_1 (inferior *inf)
205 for (target_ops *t = inf->top_target ();
207 t = inf->find_target_beneath (t))
208 if (t->has_execution (inf))
215 target_has_execution_current (void)
217 return target_has_execution_1 (current_inferior ());
220 /* This is used to implement the various target commands. */
223 open_target (const char *args, int from_tty, struct cmd_list_element *command)
225 auto *ti = static_cast<target_info *> (get_cmd_context (command));
226 target_open_ftype *func = target_factories[ti];
229 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
232 func (args, from_tty);
235 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
236 ti->shortname, args, from_tty);
242 add_target (const target_info &t, target_open_ftype *func,
243 completer_ftype *completer)
245 struct cmd_list_element *c;
247 auto &func_slot = target_factories[&t];
248 if (func_slot != nullptr)
249 internal_error (__FILE__, __LINE__,
250 _("target already added (\"%s\")."), t.shortname);
253 if (targetlist == NULL)
254 add_basic_prefix_cmd ("target", class_run, _("\
255 Connect to a target machine or process.\n\
256 The first argument is the type or protocol of the target machine.\n\
257 Remaining arguments are interpreted by the target protocol. For more\n\
258 information on the arguments for a particular protocol, type\n\
259 `help target ' followed by the protocol name."),
260 &targetlist, "target ", 0, &cmdlist);
261 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
262 set_cmd_context (c, (void *) &t);
263 set_cmd_sfunc (c, open_target);
264 if (completer != NULL)
265 set_cmd_completer (c, completer);
271 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
273 struct cmd_list_element *c;
276 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
278 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
279 set_cmd_sfunc (c, open_target);
280 set_cmd_context (c, (void *) &tinfo);
281 alt = xstrprintf ("target %s", tinfo.shortname);
282 deprecate_cmd (c, alt);
290 current_top_target ()->kill ();
294 target_load (const char *arg, int from_tty)
296 target_dcache_invalidate ();
297 current_top_target ()->load (arg, from_tty);
302 target_terminal_state target_terminal::m_terminal_state
303 = target_terminal_state::is_ours;
305 /* See target/target.h. */
308 target_terminal::init (void)
310 current_top_target ()->terminal_init ();
312 m_terminal_state = target_terminal_state::is_ours;
315 /* See target/target.h. */
318 target_terminal::inferior (void)
320 struct ui *ui = current_ui;
322 /* A background resume (``run&'') should leave GDB in control of the
324 if (ui->prompt_state != PROMPT_BLOCKED)
327 /* Since we always run the inferior in the main console (unless "set
328 inferior-tty" is in effect), when some UI other than the main one
329 calls target_terminal::inferior, then we leave the main UI's
330 terminal settings as is. */
334 /* If GDB is resuming the inferior in the foreground, install
335 inferior's terminal modes. */
337 struct inferior *inf = current_inferior ();
339 if (inf->terminal_state != target_terminal_state::is_inferior)
341 current_top_target ()->terminal_inferior ();
342 inf->terminal_state = target_terminal_state::is_inferior;
345 m_terminal_state = target_terminal_state::is_inferior;
347 /* If the user hit C-c before, pretend that it was hit right
349 if (check_quit_flag ())
350 target_pass_ctrlc ();
353 /* See target/target.h. */
356 target_terminal::restore_inferior (void)
358 struct ui *ui = current_ui;
360 /* See target_terminal::inferior(). */
361 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
364 /* Restore the terminal settings of inferiors that were in the
365 foreground but are now ours_for_output due to a temporary
366 target_target::ours_for_output() call. */
369 scoped_restore_current_inferior restore_inferior;
371 for (::inferior *inf : all_inferiors ())
373 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
375 set_current_inferior (inf);
376 current_top_target ()->terminal_inferior ();
377 inf->terminal_state = target_terminal_state::is_inferior;
382 m_terminal_state = target_terminal_state::is_inferior;
384 /* If the user hit C-c before, pretend that it was hit right
386 if (check_quit_flag ())
387 target_pass_ctrlc ();
390 /* Switch terminal state to DESIRED_STATE, either is_ours, or
391 is_ours_for_output. */
394 target_terminal_is_ours_kind (target_terminal_state desired_state)
396 scoped_restore_current_inferior restore_inferior;
398 /* Must do this in two passes. First, have all inferiors save the
399 current terminal settings. Then, after all inferiors have add a
400 chance to safely save the terminal settings, restore GDB's
401 terminal settings. */
403 for (inferior *inf : all_inferiors ())
405 if (inf->terminal_state == target_terminal_state::is_inferior)
407 set_current_inferior (inf);
408 current_top_target ()->terminal_save_inferior ();
412 for (inferior *inf : all_inferiors ())
414 /* Note we don't check is_inferior here like above because we
415 need to handle 'is_ours_for_output -> is_ours' too. Careful
416 to never transition from 'is_ours' to 'is_ours_for_output',
418 if (inf->terminal_state != target_terminal_state::is_ours
419 && inf->terminal_state != desired_state)
421 set_current_inferior (inf);
422 if (desired_state == target_terminal_state::is_ours)
423 current_top_target ()->terminal_ours ();
424 else if (desired_state == target_terminal_state::is_ours_for_output)
425 current_top_target ()->terminal_ours_for_output ();
427 gdb_assert_not_reached ("unhandled desired state");
428 inf->terminal_state = desired_state;
433 /* See target/target.h. */
436 target_terminal::ours ()
438 struct ui *ui = current_ui;
440 /* See target_terminal::inferior. */
444 if (m_terminal_state == target_terminal_state::is_ours)
447 target_terminal_is_ours_kind (target_terminal_state::is_ours);
448 m_terminal_state = target_terminal_state::is_ours;
451 /* See target/target.h. */
454 target_terminal::ours_for_output ()
456 struct ui *ui = current_ui;
458 /* See target_terminal::inferior. */
462 if (!target_terminal::is_inferior ())
465 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
466 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
469 /* See target/target.h. */
472 target_terminal::info (const char *arg, int from_tty)
474 current_top_target ()->terminal_info (arg, from_tty);
480 target_supports_terminal_ours (void)
482 /* The current top target is the target at the top of the target
483 stack of the current inferior. While normally there's always an
484 inferior, we must check for nullptr here because we can get here
485 very early during startup, before the initial inferior is first
487 inferior *inf = current_inferior ();
491 return inf->top_target ()->supports_terminal_ours ();
497 error (_("You can't do that when your target is `%s'"),
498 current_top_target ()->shortname ());
504 error (_("You can't do that without a process to debug."));
508 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
510 printf_unfiltered (_("No saved terminal information.\n"));
513 /* A default implementation for the to_get_ada_task_ptid target method.
515 This function builds the PTID by using both LWP and TID as part of
516 the PTID lwp and tid elements. The pid used is the pid of the
520 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
522 return ptid_t (inferior_ptid.pid (), lwp, tid);
525 static enum exec_direction_kind
526 default_execution_direction (struct target_ops *self)
528 if (!target_can_execute_reverse)
530 else if (!target_can_async_p ())
533 gdb_assert_not_reached ("\
534 to_execution_direction must be implemented for reverse async");
540 decref_target (target_ops *t)
543 if (t->refcount () == 0)
545 if (t->stratum () == process_stratum)
546 connection_list_remove (as_process_stratum_target (t));
554 target_stack::push (target_ops *t)
558 strata stratum = t->stratum ();
560 if (stratum == process_stratum)
561 connection_list_add (as_process_stratum_target (t));
563 /* If there's already a target at this stratum, remove it. */
565 if (m_stack[stratum] != NULL)
566 unpush (m_stack[stratum]);
568 /* Now add the new one. */
569 m_stack[stratum] = t;
578 push_target (struct target_ops *t)
580 current_inferior ()->push_target (t);
586 push_target (target_ops_up &&t)
588 current_inferior ()->push_target (t.get ());
595 unpush_target (struct target_ops *t)
597 return current_inferior ()->unpush_target (t);
603 target_stack::unpush (target_ops *t)
605 gdb_assert (t != NULL);
607 strata stratum = t->stratum ();
609 if (stratum == dummy_stratum)
610 internal_error (__FILE__, __LINE__,
611 _("Attempt to unpush the dummy target"));
613 /* Look for the specified target. Note that a target can only occur
614 once in the target stack. */
616 if (m_stack[stratum] != t)
618 /* If T wasn't pushed, quit. Only open targets should be
623 /* Unchain the target. */
624 m_stack[stratum] = NULL;
626 if (m_top == stratum)
627 m_top = t->beneath ()->stratum ();
629 /* Finally close the target, if there are no inferiors
630 referencing this target still. Note we do this after unchaining,
631 so any target method calls from within the target_close
632 implementation don't end up in T anymore. Do leave the target
633 open if we have are other inferiors referencing this target
640 /* Unpush TARGET and assert that it worked. */
643 unpush_target_and_assert (struct target_ops *target)
645 if (!unpush_target (target))
647 fprintf_unfiltered (gdb_stderr,
648 "pop_all_targets couldn't find target %s\n",
649 target->shortname ());
650 internal_error (__FILE__, __LINE__,
651 _("failed internal consistency check"));
656 pop_all_targets_above (enum strata above_stratum)
658 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
659 unpush_target_and_assert (current_top_target ());
665 pop_all_targets_at_and_above (enum strata stratum)
667 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
668 unpush_target_and_assert (current_top_target ());
672 pop_all_targets (void)
674 pop_all_targets_above (dummy_stratum);
677 /* Return true if T is now pushed in the current inferior's target
678 stack. Return false otherwise. */
681 target_is_pushed (target_ops *t)
683 return current_inferior ()->target_is_pushed (t);
686 /* Default implementation of to_get_thread_local_address. */
689 generic_tls_error (void)
691 throw_error (TLS_GENERIC_ERROR,
692 _("Cannot find thread-local variables on this target"));
695 /* Using the objfile specified in OBJFILE, find the address for the
696 current thread's thread-local storage with offset OFFSET. */
698 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
700 volatile CORE_ADDR addr = 0;
701 struct target_ops *target = current_top_target ();
702 struct gdbarch *gdbarch = target_gdbarch ();
704 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
706 ptid_t ptid = inferior_ptid;
712 /* Fetch the load module address for this objfile. */
713 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
716 if (gdbarch_get_thread_local_address_p (gdbarch))
717 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
720 addr = target->get_thread_local_address (ptid, lm_addr, offset);
722 /* If an error occurred, print TLS related messages here. Otherwise,
723 throw the error to some higher catcher. */
724 catch (const gdb_exception &ex)
726 int objfile_is_library = (objfile->flags & OBJF_SHARED);
730 case TLS_NO_LIBRARY_SUPPORT_ERROR:
731 error (_("Cannot find thread-local variables "
732 "in this thread library."));
734 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
735 if (objfile_is_library)
736 error (_("Cannot find shared library `%s' in dynamic"
737 " linker's load module list"), objfile_name (objfile));
739 error (_("Cannot find executable file `%s' in dynamic"
740 " linker's load module list"), objfile_name (objfile));
742 case TLS_NOT_ALLOCATED_YET_ERROR:
743 if (objfile_is_library)
744 error (_("The inferior has not yet allocated storage for"
745 " thread-local variables in\n"
746 "the shared library `%s'\n"
748 objfile_name (objfile),
749 target_pid_to_str (ptid).c_str ());
751 error (_("The inferior has not yet allocated storage for"
752 " thread-local variables in\n"
753 "the executable `%s'\n"
755 objfile_name (objfile),
756 target_pid_to_str (ptid).c_str ());
758 case TLS_GENERIC_ERROR:
759 if (objfile_is_library)
760 error (_("Cannot find thread-local storage for %s, "
761 "shared library %s:\n%s"),
762 target_pid_to_str (ptid).c_str (),
763 objfile_name (objfile), ex.what ());
765 error (_("Cannot find thread-local storage for %s, "
766 "executable file %s:\n%s"),
767 target_pid_to_str (ptid).c_str (),
768 objfile_name (objfile), ex.what ());
777 error (_("Cannot find thread-local variables on this target"));
783 target_xfer_status_to_string (enum target_xfer_status status)
785 #define CASE(X) case X: return #X
788 CASE(TARGET_XFER_E_IO);
789 CASE(TARGET_XFER_UNAVAILABLE);
799 gdb::unique_xmalloc_ptr<char>
800 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
802 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
805 if (bytes_read == nullptr)
806 bytes_read = &ignore;
808 /* Note that the endian-ness does not matter here. */
809 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
810 &buffer, bytes_read);
814 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
817 struct target_section_table *
818 target_get_section_table (struct target_ops *target)
820 return target->get_section_table ();
823 /* Find a section containing ADDR. */
825 struct target_section *
826 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
828 struct target_section_table *table = target_get_section_table (target);
829 struct target_section *secp;
834 for (secp = table->sections; secp < table->sections_end; secp++)
836 if (addr >= secp->addr && addr < secp->endaddr)
843 /* Helper for the memory xfer routines. Checks the attributes of the
844 memory region of MEMADDR against the read or write being attempted.
845 If the access is permitted returns true, otherwise returns false.
846 REGION_P is an optional output parameter. If not-NULL, it is
847 filled with a pointer to the memory region of MEMADDR. REG_LEN
848 returns LEN trimmed to the end of the region. This is how much the
849 caller can continue requesting, if the access is permitted. A
850 single xfer request must not straddle memory region boundaries. */
853 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
854 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
855 struct mem_region **region_p)
857 struct mem_region *region;
859 region = lookup_mem_region (memaddr);
861 if (region_p != NULL)
864 switch (region->attrib.mode)
867 if (writebuf != NULL)
877 /* We only support writing to flash during "load" for now. */
878 if (writebuf != NULL)
879 error (_("Writing to flash memory forbidden in this context"));
886 /* region->hi == 0 means there's no upper bound. */
887 if (memaddr + len < region->hi || region->hi == 0)
890 *reg_len = region->hi - memaddr;
895 /* Read memory from more than one valid target. A core file, for
896 instance, could have some of memory but delegate other bits to
897 the target below it. So, we must manually try all targets. */
899 enum target_xfer_status
900 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
901 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
902 ULONGEST *xfered_len)
904 enum target_xfer_status res;
908 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
909 readbuf, writebuf, memaddr, len,
911 if (res == TARGET_XFER_OK)
914 /* Stop if the target reports that the memory is not available. */
915 if (res == TARGET_XFER_UNAVAILABLE)
918 /* Don't continue past targets which have all the memory.
919 At one time, this code was necessary to read data from
920 executables / shared libraries when data for the requested
921 addresses weren't available in the core file. But now the
922 core target handles this case itself. */
923 if (ops->has_all_memory ())
926 ops = ops->beneath ();
930 /* The cache works at the raw memory level. Make sure the cache
931 gets updated with raw contents no matter what kind of memory
932 object was originally being written. Note we do write-through
933 first, so that if it fails, we don't write to the cache contents
934 that never made it to the target. */
936 && inferior_ptid != null_ptid
937 && target_dcache_init_p ()
938 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
940 DCACHE *dcache = target_dcache_get ();
942 /* Note that writing to an area of memory which wasn't present
943 in the cache doesn't cause it to be loaded in. */
944 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
950 /* Perform a partial memory transfer.
951 For docs see target.h, to_xfer_partial. */
953 static enum target_xfer_status
954 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
955 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
956 ULONGEST len, ULONGEST *xfered_len)
958 enum target_xfer_status res;
960 struct mem_region *region;
961 struct inferior *inf;
963 /* For accesses to unmapped overlay sections, read directly from
964 files. Must do this first, as MEMADDR may need adjustment. */
965 if (readbuf != NULL && overlay_debugging)
967 struct obj_section *section = find_pc_overlay (memaddr);
969 if (pc_in_unmapped_range (memaddr, section))
971 struct target_section_table *table
972 = target_get_section_table (ops);
973 const char *section_name = section->the_bfd_section->name;
975 memaddr = overlay_mapped_address (memaddr, section);
977 auto match_cb = [=] (const struct target_section *s)
979 return (strcmp (section_name, s->the_bfd_section->name) == 0);
982 return section_table_xfer_memory_partial (readbuf, writebuf,
983 memaddr, len, xfered_len,
990 /* Try the executable files, if "trust-readonly-sections" is set. */
991 if (readbuf != NULL && trust_readonly)
993 struct target_section *secp;
994 struct target_section_table *table;
996 secp = target_section_by_addr (ops, memaddr);
998 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1000 table = target_get_section_table (ops);
1001 return section_table_xfer_memory_partial (readbuf, writebuf,
1002 memaddr, len, xfered_len,
1004 table->sections_end);
1008 /* Try GDB's internal data cache. */
1010 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
1012 return TARGET_XFER_E_IO;
1014 if (inferior_ptid != null_ptid)
1015 inf = current_inferior ();
1021 /* The dcache reads whole cache lines; that doesn't play well
1022 with reading from a trace buffer, because reading outside of
1023 the collected memory range fails. */
1024 && get_traceframe_number () == -1
1025 && (region->attrib.cache
1026 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1027 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1029 DCACHE *dcache = target_dcache_get_or_init ();
1031 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1032 reg_len, xfered_len);
1035 /* If none of those methods found the memory we wanted, fall back
1036 to a target partial transfer. Normally a single call to
1037 to_xfer_partial is enough; if it doesn't recognize an object
1038 it will call the to_xfer_partial of the next target down.
1039 But for memory this won't do. Memory is the only target
1040 object which can be read from more than one valid target.
1041 A core file, for instance, could have some of memory but
1042 delegate other bits to the target below it. So, we must
1043 manually try all targets. */
1045 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1048 /* If we still haven't got anything, return the last error. We
1053 /* Perform a partial memory transfer. For docs see target.h,
1056 static enum target_xfer_status
1057 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1058 gdb_byte *readbuf, const gdb_byte *writebuf,
1059 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1061 enum target_xfer_status res;
1063 /* Zero length requests are ok and require no work. */
1065 return TARGET_XFER_EOF;
1067 memaddr = address_significant (target_gdbarch (), memaddr);
1069 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1070 breakpoint insns, thus hiding out from higher layers whether
1071 there are software breakpoints inserted in the code stream. */
1072 if (readbuf != NULL)
1074 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1077 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1078 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1082 /* A large write request is likely to be partially satisfied
1083 by memory_xfer_partial_1. We will continually malloc
1084 and free a copy of the entire write request for breakpoint
1085 shadow handling even though we only end up writing a small
1086 subset of it. Cap writes to a limit specified by the target
1087 to mitigate this. */
1088 len = std::min (ops->get_memory_xfer_limit (), len);
1090 gdb::byte_vector buf (writebuf, writebuf + len);
1091 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1092 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1099 scoped_restore_tmpl<int>
1100 make_scoped_restore_show_memory_breakpoints (int show)
1102 return make_scoped_restore (&show_memory_breakpoints, show);
1105 /* For docs see target.h, to_xfer_partial. */
1107 enum target_xfer_status
1108 target_xfer_partial (struct target_ops *ops,
1109 enum target_object object, const char *annex,
1110 gdb_byte *readbuf, const gdb_byte *writebuf,
1111 ULONGEST offset, ULONGEST len,
1112 ULONGEST *xfered_len)
1114 enum target_xfer_status retval;
1116 /* Transfer is done when LEN is zero. */
1118 return TARGET_XFER_EOF;
1120 if (writebuf && !may_write_memory)
1121 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1122 core_addr_to_string_nz (offset), plongest (len));
1126 /* If this is a memory transfer, let the memory-specific code
1127 have a look at it instead. Memory transfers are more
1129 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1130 || object == TARGET_OBJECT_CODE_MEMORY)
1131 retval = memory_xfer_partial (ops, object, readbuf,
1132 writebuf, offset, len, xfered_len);
1133 else if (object == TARGET_OBJECT_RAW_MEMORY)
1135 /* Skip/avoid accessing the target if the memory region
1136 attributes block the access. Check this here instead of in
1137 raw_memory_xfer_partial as otherwise we'd end up checking
1138 this twice in the case of the memory_xfer_partial path is
1139 taken; once before checking the dcache, and another in the
1140 tail call to raw_memory_xfer_partial. */
1141 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1143 return TARGET_XFER_E_IO;
1145 /* Request the normal memory object from other layers. */
1146 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1150 retval = ops->xfer_partial (object, annex, readbuf,
1151 writebuf, offset, len, xfered_len);
1155 const unsigned char *myaddr = NULL;
1157 fprintf_unfiltered (gdb_stdlog,
1158 "%s:target_xfer_partial "
1159 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1162 (annex ? annex : "(null)"),
1163 host_address_to_string (readbuf),
1164 host_address_to_string (writebuf),
1165 core_addr_to_string_nz (offset),
1166 pulongest (len), retval,
1167 pulongest (*xfered_len));
1173 if (retval == TARGET_XFER_OK && myaddr != NULL)
1177 fputs_unfiltered (", bytes =", gdb_stdlog);
1178 for (i = 0; i < *xfered_len; i++)
1180 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1182 if (targetdebug < 2 && i > 0)
1184 fprintf_unfiltered (gdb_stdlog, " ...");
1187 fprintf_unfiltered (gdb_stdlog, "\n");
1190 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1194 fputc_unfiltered ('\n', gdb_stdlog);
1197 /* Check implementations of to_xfer_partial update *XFERED_LEN
1198 properly. Do assertion after printing debug messages, so that we
1199 can find more clues on assertion failure from debugging messages. */
1200 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1201 gdb_assert (*xfered_len > 0);
1206 /* Read LEN bytes of target memory at address MEMADDR, placing the
1207 results in GDB's memory at MYADDR. Returns either 0 for success or
1208 -1 if any error occurs.
1210 If an error occurs, no guarantee is made about the contents of the data at
1211 MYADDR. In particular, the caller should not depend upon partial reads
1212 filling the buffer with good data. There is no way for the caller to know
1213 how much good data might have been transfered anyway. Callers that can
1214 deal with partial reads should call target_read (which will retry until
1215 it makes no progress, and then return how much was transferred). */
1218 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1220 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1221 myaddr, memaddr, len) == len)
1227 /* See target/target.h. */
1230 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1235 r = target_read_memory (memaddr, buf, sizeof buf);
1238 *result = extract_unsigned_integer (buf, sizeof buf,
1239 gdbarch_byte_order (target_gdbarch ()));
1243 /* Like target_read_memory, but specify explicitly that this is a read
1244 from the target's raw memory. That is, this read bypasses the
1245 dcache, breakpoint shadowing, etc. */
1248 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1250 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1251 myaddr, memaddr, len) == len)
1257 /* Like target_read_memory, but specify explicitly that this is a read from
1258 the target's stack. This may trigger different cache behavior. */
1261 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1263 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1264 myaddr, memaddr, len) == len)
1270 /* Like target_read_memory, but specify explicitly that this is a read from
1271 the target's code. This may trigger different cache behavior. */
1274 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1276 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1277 myaddr, memaddr, len) == len)
1283 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1284 Returns either 0 for success or -1 if any error occurs. If an
1285 error occurs, no guarantee is made about how much data got written.
1286 Callers that can deal with partial writes should call
1290 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1292 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1293 myaddr, memaddr, len) == len)
1299 /* Write LEN bytes from MYADDR to target raw memory at address
1300 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1301 If an error occurs, no guarantee is made about how much data got
1302 written. Callers that can deal with partial writes should call
1306 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1308 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1309 myaddr, memaddr, len) == len)
1315 /* Fetch the target's memory map. */
1317 std::vector<mem_region>
1318 target_memory_map (void)
1320 std::vector<mem_region> result = current_top_target ()->memory_map ();
1321 if (result.empty ())
1324 std::sort (result.begin (), result.end ());
1326 /* Check that regions do not overlap. Simultaneously assign
1327 a numbering for the "mem" commands to use to refer to
1329 mem_region *last_one = NULL;
1330 for (size_t ix = 0; ix < result.size (); ix++)
1332 mem_region *this_one = &result[ix];
1333 this_one->number = ix;
1335 if (last_one != NULL && last_one->hi > this_one->lo)
1337 warning (_("Overlapping regions in memory map: ignoring"));
1338 return std::vector<mem_region> ();
1341 last_one = this_one;
1348 target_flash_erase (ULONGEST address, LONGEST length)
1350 current_top_target ()->flash_erase (address, length);
1354 target_flash_done (void)
1356 current_top_target ()->flash_done ();
1360 show_trust_readonly (struct ui_file *file, int from_tty,
1361 struct cmd_list_element *c, const char *value)
1363 fprintf_filtered (file,
1364 _("Mode for reading from readonly sections is %s.\n"),
1368 /* Target vector read/write partial wrapper functions. */
1370 static enum target_xfer_status
1371 target_read_partial (struct target_ops *ops,
1372 enum target_object object,
1373 const char *annex, gdb_byte *buf,
1374 ULONGEST offset, ULONGEST len,
1375 ULONGEST *xfered_len)
1377 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1381 static enum target_xfer_status
1382 target_write_partial (struct target_ops *ops,
1383 enum target_object object,
1384 const char *annex, const gdb_byte *buf,
1385 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1387 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1391 /* Wrappers to perform the full transfer. */
1393 /* For docs on target_read see target.h. */
1396 target_read (struct target_ops *ops,
1397 enum target_object object,
1398 const char *annex, gdb_byte *buf,
1399 ULONGEST offset, LONGEST len)
1401 LONGEST xfered_total = 0;
1404 /* If we are reading from a memory object, find the length of an addressable
1405 unit for that architecture. */
1406 if (object == TARGET_OBJECT_MEMORY
1407 || object == TARGET_OBJECT_STACK_MEMORY
1408 || object == TARGET_OBJECT_CODE_MEMORY
1409 || object == TARGET_OBJECT_RAW_MEMORY)
1410 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1412 while (xfered_total < len)
1414 ULONGEST xfered_partial;
1415 enum target_xfer_status status;
1417 status = target_read_partial (ops, object, annex,
1418 buf + xfered_total * unit_size,
1419 offset + xfered_total, len - xfered_total,
1422 /* Call an observer, notifying them of the xfer progress? */
1423 if (status == TARGET_XFER_EOF)
1424 return xfered_total;
1425 else if (status == TARGET_XFER_OK)
1427 xfered_total += xfered_partial;
1431 return TARGET_XFER_E_IO;
1437 /* Assuming that the entire [begin, end) range of memory cannot be
1438 read, try to read whatever subrange is possible to read.
1440 The function returns, in RESULT, either zero or one memory block.
1441 If there's a readable subrange at the beginning, it is completely
1442 read and returned. Any further readable subrange will not be read.
1443 Otherwise, if there's a readable subrange at the end, it will be
1444 completely read and returned. Any readable subranges before it
1445 (obviously, not starting at the beginning), will be ignored. In
1446 other cases -- either no readable subrange, or readable subrange(s)
1447 that is neither at the beginning, or end, nothing is returned.
1449 The purpose of this function is to handle a read across a boundary
1450 of accessible memory in a case when memory map is not available.
1451 The above restrictions are fine for this case, but will give
1452 incorrect results if the memory is 'patchy'. However, supporting
1453 'patchy' memory would require trying to read every single byte,
1454 and it seems unacceptable solution. Explicit memory map is
1455 recommended for this case -- and target_read_memory_robust will
1456 take care of reading multiple ranges then. */
1459 read_whatever_is_readable (struct target_ops *ops,
1460 const ULONGEST begin, const ULONGEST end,
1462 std::vector<memory_read_result> *result)
1464 ULONGEST current_begin = begin;
1465 ULONGEST current_end = end;
1467 ULONGEST xfered_len;
1469 /* If we previously failed to read 1 byte, nothing can be done here. */
1470 if (end - begin <= 1)
1473 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1475 /* Check that either first or the last byte is readable, and give up
1476 if not. This heuristic is meant to permit reading accessible memory
1477 at the boundary of accessible region. */
1478 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1479 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1484 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1485 buf.get () + (end - begin) - 1, end - 1, 1,
1486 &xfered_len) == TARGET_XFER_OK)
1494 /* Loop invariant is that the [current_begin, current_end) was previously
1495 found to be not readable as a whole.
1497 Note loop condition -- if the range has 1 byte, we can't divide the range
1498 so there's no point trying further. */
1499 while (current_end - current_begin > 1)
1501 ULONGEST first_half_begin, first_half_end;
1502 ULONGEST second_half_begin, second_half_end;
1504 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1508 first_half_begin = current_begin;
1509 first_half_end = middle;
1510 second_half_begin = middle;
1511 second_half_end = current_end;
1515 first_half_begin = middle;
1516 first_half_end = current_end;
1517 second_half_begin = current_begin;
1518 second_half_end = middle;
1521 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1522 buf.get () + (first_half_begin - begin) * unit_size,
1524 first_half_end - first_half_begin);
1526 if (xfer == first_half_end - first_half_begin)
1528 /* This half reads up fine. So, the error must be in the
1530 current_begin = second_half_begin;
1531 current_end = second_half_end;
1535 /* This half is not readable. Because we've tried one byte, we
1536 know some part of this half if actually readable. Go to the next
1537 iteration to divide again and try to read.
1539 We don't handle the other half, because this function only tries
1540 to read a single readable subrange. */
1541 current_begin = first_half_begin;
1542 current_end = first_half_end;
1548 /* The [begin, current_begin) range has been read. */
1549 result->emplace_back (begin, current_end, std::move (buf));
1553 /* The [current_end, end) range has been read. */
1554 LONGEST region_len = end - current_end;
1556 gdb::unique_xmalloc_ptr<gdb_byte> data
1557 ((gdb_byte *) xmalloc (region_len * unit_size));
1558 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1559 region_len * unit_size);
1560 result->emplace_back (current_end, end, std::move (data));
1564 std::vector<memory_read_result>
1565 read_memory_robust (struct target_ops *ops,
1566 const ULONGEST offset, const LONGEST len)
1568 std::vector<memory_read_result> result;
1569 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1571 LONGEST xfered_total = 0;
1572 while (xfered_total < len)
1574 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1577 /* If there is no explicit region, a fake one should be created. */
1578 gdb_assert (region);
1580 if (region->hi == 0)
1581 region_len = len - xfered_total;
1583 region_len = region->hi - offset;
1585 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1587 /* Cannot read this region. Note that we can end up here only
1588 if the region is explicitly marked inaccessible, or
1589 'inaccessible-by-default' is in effect. */
1590 xfered_total += region_len;
1594 LONGEST to_read = std::min (len - xfered_total, region_len);
1595 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1596 ((gdb_byte *) xmalloc (to_read * unit_size));
1598 LONGEST xfered_partial =
1599 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1600 offset + xfered_total, to_read);
1601 /* Call an observer, notifying them of the xfer progress? */
1602 if (xfered_partial <= 0)
1604 /* Got an error reading full chunk. See if maybe we can read
1606 read_whatever_is_readable (ops, offset + xfered_total,
1607 offset + xfered_total + to_read,
1608 unit_size, &result);
1609 xfered_total += to_read;
1613 result.emplace_back (offset + xfered_total,
1614 offset + xfered_total + xfered_partial,
1615 std::move (buffer));
1616 xfered_total += xfered_partial;
1626 /* An alternative to target_write with progress callbacks. */
1629 target_write_with_progress (struct target_ops *ops,
1630 enum target_object object,
1631 const char *annex, const gdb_byte *buf,
1632 ULONGEST offset, LONGEST len,
1633 void (*progress) (ULONGEST, void *), void *baton)
1635 LONGEST xfered_total = 0;
1638 /* If we are writing to a memory object, find the length of an addressable
1639 unit for that architecture. */
1640 if (object == TARGET_OBJECT_MEMORY
1641 || object == TARGET_OBJECT_STACK_MEMORY
1642 || object == TARGET_OBJECT_CODE_MEMORY
1643 || object == TARGET_OBJECT_RAW_MEMORY)
1644 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1646 /* Give the progress callback a chance to set up. */
1648 (*progress) (0, baton);
1650 while (xfered_total < len)
1652 ULONGEST xfered_partial;
1653 enum target_xfer_status status;
1655 status = target_write_partial (ops, object, annex,
1656 buf + xfered_total * unit_size,
1657 offset + xfered_total, len - xfered_total,
1660 if (status != TARGET_XFER_OK)
1661 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1664 (*progress) (xfered_partial, baton);
1666 xfered_total += xfered_partial;
1672 /* For docs on target_write see target.h. */
1675 target_write (struct target_ops *ops,
1676 enum target_object object,
1677 const char *annex, const gdb_byte *buf,
1678 ULONGEST offset, LONGEST len)
1680 return target_write_with_progress (ops, object, annex, buf, offset, len,
1684 /* Help for target_read_alloc and target_read_stralloc. See their comments
1687 template <typename T>
1688 gdb::optional<gdb::def_vector<T>>
1689 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1692 gdb::def_vector<T> buf;
1694 const int chunk = 4096;
1696 /* This function does not have a length parameter; it reads the
1697 entire OBJECT). Also, it doesn't support objects fetched partly
1698 from one target and partly from another (in a different stratum,
1699 e.g. a core file and an executable). Both reasons make it
1700 unsuitable for reading memory. */
1701 gdb_assert (object != TARGET_OBJECT_MEMORY);
1703 /* Start by reading up to 4K at a time. The target will throttle
1704 this number down if necessary. */
1707 ULONGEST xfered_len;
1708 enum target_xfer_status status;
1710 buf.resize (buf_pos + chunk);
1712 status = target_read_partial (ops, object, annex,
1713 (gdb_byte *) &buf[buf_pos],
1717 if (status == TARGET_XFER_EOF)
1719 /* Read all there was. */
1720 buf.resize (buf_pos);
1723 else if (status != TARGET_XFER_OK)
1725 /* An error occurred. */
1729 buf_pos += xfered_len;
1737 gdb::optional<gdb::byte_vector>
1738 target_read_alloc (struct target_ops *ops, enum target_object object,
1741 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1746 gdb::optional<gdb::char_vector>
1747 target_read_stralloc (struct target_ops *ops, enum target_object object,
1750 gdb::optional<gdb::char_vector> buf
1751 = target_read_alloc_1<char> (ops, object, annex);
1756 if (buf->empty () || buf->back () != '\0')
1757 buf->push_back ('\0');
1759 /* Check for embedded NUL bytes; but allow trailing NULs. */
1760 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1761 it != buf->end (); it++)
1764 warning (_("target object %d, annex %s, "
1765 "contained unexpected null characters"),
1766 (int) object, annex ? annex : "(none)");
1773 /* Memory transfer methods. */
1776 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1779 /* This method is used to read from an alternate, non-current
1780 target. This read must bypass the overlay support (as symbols
1781 don't match this target), and GDB's internal cache (wrong cache
1782 for this target). */
1783 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1785 memory_error (TARGET_XFER_E_IO, addr);
1789 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1790 int len, enum bfd_endian byte_order)
1792 gdb_byte buf[sizeof (ULONGEST)];
1794 gdb_assert (len <= sizeof (buf));
1795 get_target_memory (ops, addr, buf, len);
1796 return extract_unsigned_integer (buf, len, byte_order);
1802 target_insert_breakpoint (struct gdbarch *gdbarch,
1803 struct bp_target_info *bp_tgt)
1805 if (!may_insert_breakpoints)
1807 warning (_("May not insert breakpoints"));
1811 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1817 target_remove_breakpoint (struct gdbarch *gdbarch,
1818 struct bp_target_info *bp_tgt,
1819 enum remove_bp_reason reason)
1821 /* This is kind of a weird case to handle, but the permission might
1822 have been changed after breakpoints were inserted - in which case
1823 we should just take the user literally and assume that any
1824 breakpoints should be left in place. */
1825 if (!may_insert_breakpoints)
1827 warning (_("May not remove breakpoints"));
1831 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1835 info_target_command (const char *args, int from_tty)
1837 int has_all_mem = 0;
1839 if (symfile_objfile != NULL)
1840 printf_unfiltered (_("Symbols from \"%s\".\n"),
1841 objfile_name (symfile_objfile));
1843 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1845 if (!t->has_memory ())
1848 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1851 printf_unfiltered (_("\tWhile running this, "
1852 "GDB does not access memory from...\n"));
1853 printf_unfiltered ("%s:\n", t->longname ());
1855 has_all_mem = t->has_all_memory ();
1859 /* This function is called before any new inferior is created, e.g.
1860 by running a program, attaching, or connecting to a target.
1861 It cleans up any state from previous invocations which might
1862 change between runs. This is a subset of what target_preopen
1863 resets (things which might change between targets). */
1866 target_pre_inferior (int from_tty)
1868 /* Clear out solib state. Otherwise the solib state of the previous
1869 inferior might have survived and is entirely wrong for the new
1870 target. This has been observed on GNU/Linux using glibc 2.3. How
1882 Cannot access memory at address 0xdeadbeef
1885 /* In some OSs, the shared library list is the same/global/shared
1886 across inferiors. If code is shared between processes, so are
1887 memory regions and features. */
1888 if (!gdbarch_has_global_solist (target_gdbarch ()))
1890 no_shared_libraries (NULL, from_tty);
1892 invalidate_target_mem_regions ();
1894 target_clear_description ();
1897 /* attach_flag may be set if the previous process associated with
1898 the inferior was attached to. */
1899 current_inferior ()->attach_flag = 0;
1901 current_inferior ()->highest_thread_num = 0;
1903 agent_capability_invalidate ();
1906 /* This is to be called by the open routine before it does
1910 target_preopen (int from_tty)
1914 if (current_inferior ()->pid != 0)
1917 || !target_has_execution
1918 || query (_("A program is being debugged already. Kill it? ")))
1920 /* Core inferiors actually should be detached, not
1922 if (target_has_execution)
1925 target_detach (current_inferior (), 0);
1928 error (_("Program not killed."));
1931 /* Calling target_kill may remove the target from the stack. But if
1932 it doesn't (which seems like a win for UDI), remove it now. */
1933 /* Leave the exec target, though. The user may be switching from a
1934 live process to a core of the same program. */
1935 pop_all_targets_above (file_stratum);
1937 target_pre_inferior (from_tty);
1943 target_detach (inferior *inf, int from_tty)
1945 /* After we have detached, we will clear the register cache for this inferior
1946 by calling registers_changed_ptid. We must save the pid_ptid before
1947 detaching, as the target detach method will clear inf->pid. */
1948 ptid_t save_pid_ptid = ptid_t (inf->pid);
1950 /* As long as some to_detach implementations rely on the current_inferior
1951 (either directly, or indirectly, like through target_gdbarch or by
1952 reading memory), INF needs to be the current inferior. When that
1953 requirement will become no longer true, then we can remove this
1955 gdb_assert (inf == current_inferior ());
1957 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1958 /* Don't remove global breakpoints here. They're removed on
1959 disconnection from the target. */
1962 /* If we're in breakpoints-always-inserted mode, have to remove
1963 breakpoints before detaching. */
1964 remove_breakpoints_inf (current_inferior ());
1966 prepare_for_detach ();
1968 /* Hold a strong reference because detaching may unpush the
1970 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1972 current_top_target ()->detach (inf, from_tty);
1974 process_stratum_target *proc_target
1975 = as_process_stratum_target (proc_target_ref.get ());
1977 registers_changed_ptid (proc_target, save_pid_ptid);
1979 /* We have to ensure we have no frame cache left. Normally,
1980 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1981 inferior_ptid matches save_pid_ptid, but in our case, it does not
1982 call it, as inferior_ptid has been reset. */
1983 reinit_frame_cache ();
1987 target_disconnect (const char *args, int from_tty)
1989 /* If we're in breakpoints-always-inserted mode or if breakpoints
1990 are global across processes, we have to remove them before
1992 remove_breakpoints ();
1994 current_top_target ()->disconnect (args, from_tty);
1997 /* See target/target.h. */
2000 target_wait (ptid_t ptid, struct target_waitstatus *status,
2001 target_wait_flags options)
2003 return current_top_target ()->wait (ptid, status, options);
2009 default_target_wait (struct target_ops *ops,
2010 ptid_t ptid, struct target_waitstatus *status,
2011 target_wait_flags options)
2013 status->kind = TARGET_WAITKIND_IGNORE;
2014 return minus_one_ptid;
2018 target_pid_to_str (ptid_t ptid)
2020 return current_top_target ()->pid_to_str (ptid);
2024 target_thread_name (struct thread_info *info)
2026 gdb_assert (info->inf == current_inferior ());
2028 return current_top_target ()->thread_name (info);
2031 struct thread_info *
2032 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2034 struct inferior *inf)
2036 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2043 target_thread_info_to_thread_handle (struct thread_info *tip)
2045 return current_top_target ()->thread_info_to_thread_handle (tip);
2049 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2051 process_stratum_target *curr_target = current_inferior ()->process_target ();
2053 target_dcache_invalidate ();
2055 current_top_target ()->resume (ptid, step, signal);
2057 registers_changed_ptid (curr_target, ptid);
2058 /* We only set the internal executing state here. The user/frontend
2059 running state is set at a higher level. This also clears the
2060 thread's stop_pc as side effect. */
2061 set_executing (curr_target, ptid, true);
2062 clear_inline_frame_state (curr_target, ptid);
2065 /* If true, target_commit_resume is a nop. */
2066 static int defer_target_commit_resume;
2071 target_commit_resume (void)
2073 if (defer_target_commit_resume)
2076 current_top_target ()->commit_resume ();
2081 scoped_restore_tmpl<int>
2082 make_scoped_defer_target_commit_resume ()
2084 return make_scoped_restore (&defer_target_commit_resume, 1);
2088 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2090 current_top_target ()->pass_signals (pass_signals);
2094 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2096 current_top_target ()->program_signals (program_signals);
2100 default_follow_fork (struct target_ops *self, bool follow_child,
2103 /* Some target returned a fork event, but did not know how to follow it. */
2104 internal_error (__FILE__, __LINE__,
2105 _("could not find a target to follow fork"));
2108 /* Look through the list of possible targets for a target that can
2112 target_follow_fork (bool follow_child, bool detach_fork)
2114 return current_top_target ()->follow_fork (follow_child, detach_fork);
2117 /* Target wrapper for follow exec hook. */
2120 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2122 current_top_target ()->follow_exec (inf, execd_pathname);
2126 default_mourn_inferior (struct target_ops *self)
2128 internal_error (__FILE__, __LINE__,
2129 _("could not find a target to follow mourn inferior"));
2133 target_mourn_inferior (ptid_t ptid)
2135 gdb_assert (ptid == inferior_ptid);
2136 current_top_target ()->mourn_inferior ();
2138 /* We no longer need to keep handles on any of the object files.
2139 Make sure to release them to avoid unnecessarily locking any
2140 of them while we're not actually debugging. */
2141 bfd_cache_close_all ();
2144 /* Look for a target which can describe architectural features, starting
2145 from TARGET. If we find one, return its description. */
2147 const struct target_desc *
2148 target_read_description (struct target_ops *target)
2150 return target->read_description ();
2153 /* This implements a basic search of memory, reading target memory and
2154 performing the search here (as opposed to performing the search in on the
2155 target side with, for example, gdbserver). */
2158 simple_search_memory (struct target_ops *ops,
2159 CORE_ADDR start_addr, ULONGEST search_space_len,
2160 const gdb_byte *pattern, ULONGEST pattern_len,
2161 CORE_ADDR *found_addrp)
2163 /* NOTE: also defined in find.c testcase. */
2164 #define SEARCH_CHUNK_SIZE 16000
2165 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2166 /* Buffer to hold memory contents for searching. */
2167 unsigned search_buf_size;
2169 search_buf_size = chunk_size + pattern_len - 1;
2171 /* No point in trying to allocate a buffer larger than the search space. */
2172 if (search_space_len < search_buf_size)
2173 search_buf_size = search_space_len;
2175 gdb::byte_vector search_buf (search_buf_size);
2177 /* Prime the search buffer. */
2179 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2180 search_buf.data (), start_addr, search_buf_size)
2183 warning (_("Unable to access %s bytes of target "
2184 "memory at %s, halting search."),
2185 pulongest (search_buf_size), hex_string (start_addr));
2189 /* Perform the search.
2191 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2192 When we've scanned N bytes we copy the trailing bytes to the start and
2193 read in another N bytes. */
2195 while (search_space_len >= pattern_len)
2197 gdb_byte *found_ptr;
2198 unsigned nr_search_bytes
2199 = std::min (search_space_len, (ULONGEST) search_buf_size);
2201 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2202 pattern, pattern_len);
2204 if (found_ptr != NULL)
2206 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2208 *found_addrp = found_addr;
2212 /* Not found in this chunk, skip to next chunk. */
2214 /* Don't let search_space_len wrap here, it's unsigned. */
2215 if (search_space_len >= chunk_size)
2216 search_space_len -= chunk_size;
2218 search_space_len = 0;
2220 if (search_space_len >= pattern_len)
2222 unsigned keep_len = search_buf_size - chunk_size;
2223 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2226 /* Copy the trailing part of the previous iteration to the front
2227 of the buffer for the next iteration. */
2228 gdb_assert (keep_len == pattern_len - 1);
2229 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2231 nr_to_read = std::min (search_space_len - keep_len,
2232 (ULONGEST) chunk_size);
2234 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2235 &search_buf[keep_len], read_addr,
2236 nr_to_read) != nr_to_read)
2238 warning (_("Unable to access %s bytes of target "
2239 "memory at %s, halting search."),
2240 plongest (nr_to_read),
2241 hex_string (read_addr));
2245 start_addr += chunk_size;
2254 /* Default implementation of memory-searching. */
2257 default_search_memory (struct target_ops *self,
2258 CORE_ADDR start_addr, ULONGEST search_space_len,
2259 const gdb_byte *pattern, ULONGEST pattern_len,
2260 CORE_ADDR *found_addrp)
2262 /* Start over from the top of the target stack. */
2263 return simple_search_memory (current_top_target (),
2264 start_addr, search_space_len,
2265 pattern, pattern_len, found_addrp);
2268 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2269 sequence of bytes in PATTERN with length PATTERN_LEN.
2271 The result is 1 if found, 0 if not found, and -1 if there was an error
2272 requiring halting of the search (e.g. memory read error).
2273 If the pattern is found the address is recorded in FOUND_ADDRP. */
2276 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2277 const gdb_byte *pattern, ULONGEST pattern_len,
2278 CORE_ADDR *found_addrp)
2280 return current_top_target ()->search_memory (start_addr, search_space_len,
2281 pattern, pattern_len, found_addrp);
2284 /* Look through the currently pushed targets. If none of them will
2285 be able to restart the currently running process, issue an error
2289 target_require_runnable (void)
2291 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2293 /* If this target knows how to create a new program, then
2294 assume we will still be able to after killing the current
2295 one. Either killing and mourning will not pop T, or else
2296 find_default_run_target will find it again. */
2297 if (t->can_create_inferior ())
2300 /* Do not worry about targets at certain strata that can not
2301 create inferiors. Assume they will be pushed again if
2302 necessary, and continue to the process_stratum. */
2303 if (t->stratum () > process_stratum)
2306 error (_("The \"%s\" target does not support \"run\". "
2307 "Try \"help target\" or \"continue\"."),
2311 /* This function is only called if the target is running. In that
2312 case there should have been a process_stratum target and it
2313 should either know how to create inferiors, or not... */
2314 internal_error (__FILE__, __LINE__, _("No targets found"));
2317 /* Whether GDB is allowed to fall back to the default run target for
2318 "run", "attach", etc. when no target is connected yet. */
2319 static bool auto_connect_native_target = true;
2322 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2323 struct cmd_list_element *c, const char *value)
2325 fprintf_filtered (file,
2326 _("Whether GDB may automatically connect to the "
2327 "native target is %s.\n"),
2331 /* A pointer to the target that can respond to "run" or "attach".
2332 Native targets are always singletons and instantiated early at GDB
2334 static target_ops *the_native_target;
2339 set_native_target (target_ops *target)
2341 if (the_native_target != NULL)
2342 internal_error (__FILE__, __LINE__,
2343 _("native target already set (\"%s\")."),
2344 the_native_target->longname ());
2346 the_native_target = target;
2352 get_native_target ()
2354 return the_native_target;
2357 /* Look through the list of possible targets for a target that can
2358 execute a run or attach command without any other data. This is
2359 used to locate the default process stratum.
2361 If DO_MESG is not NULL, the result is always valid (error() is
2362 called for errors); else, return NULL on error. */
2364 static struct target_ops *
2365 find_default_run_target (const char *do_mesg)
2367 if (auto_connect_native_target && the_native_target != NULL)
2368 return the_native_target;
2370 if (do_mesg != NULL)
2371 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2378 find_attach_target (void)
2380 /* If a target on the current stack can attach, use it. */
2381 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2383 if (t->can_attach ())
2387 /* Otherwise, use the default run target for attaching. */
2388 return find_default_run_target ("attach");
2394 find_run_target (void)
2396 /* If a target on the current stack can run, use it. */
2397 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2399 if (t->can_create_inferior ())
2403 /* Otherwise, use the default run target. */
2404 return find_default_run_target ("run");
2408 target_ops::info_proc (const char *args, enum info_proc_what what)
2413 /* Implement the "info proc" command. */
2416 target_info_proc (const char *args, enum info_proc_what what)
2418 struct target_ops *t;
2420 /* If we're already connected to something that can get us OS
2421 related data, use it. Otherwise, try using the native
2423 t = find_target_at (process_stratum);
2425 t = find_default_run_target (NULL);
2427 for (; t != NULL; t = t->beneath ())
2429 if (t->info_proc (args, what))
2432 fprintf_unfiltered (gdb_stdlog,
2433 "target_info_proc (\"%s\", %d)\n", args, what);
2443 find_default_supports_disable_randomization (struct target_ops *self)
2445 struct target_ops *t;
2447 t = find_default_run_target (NULL);
2449 return t->supports_disable_randomization ();
2454 target_supports_disable_randomization (void)
2456 return current_top_target ()->supports_disable_randomization ();
2459 /* See target/target.h. */
2462 target_supports_multi_process (void)
2464 return current_top_target ()->supports_multi_process ();
2469 gdb::optional<gdb::char_vector>
2470 target_get_osdata (const char *type)
2472 struct target_ops *t;
2474 /* If we're already connected to something that can get us OS
2475 related data, use it. Otherwise, try using the native
2477 t = find_target_at (process_stratum);
2479 t = find_default_run_target ("get OS data");
2484 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2487 /* Determine the current address space of thread PTID. */
2489 struct address_space *
2490 target_thread_address_space (ptid_t ptid)
2492 struct address_space *aspace;
2494 aspace = current_top_target ()->thread_address_space (ptid);
2495 gdb_assert (aspace != NULL);
2503 target_ops::beneath () const
2505 return current_inferior ()->find_target_beneath (this);
2509 target_ops::close ()
2514 target_ops::can_attach ()
2520 target_ops::attach (const char *, int)
2522 gdb_assert_not_reached ("target_ops::attach called");
2526 target_ops::can_create_inferior ()
2532 target_ops::create_inferior (const char *, const std::string &,
2535 gdb_assert_not_reached ("target_ops::create_inferior called");
2539 target_ops::can_run ()
2547 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2556 /* Target file operations. */
2558 static struct target_ops *
2559 default_fileio_target (void)
2561 struct target_ops *t;
2563 /* If we're already connected to something that can perform
2564 file I/O, use it. Otherwise, try using the native target. */
2565 t = find_target_at (process_stratum);
2568 return find_default_run_target ("file I/O");
2571 /* File handle for target file operations. */
2575 /* The target on which this file is open. NULL if the target is
2576 meanwhile closed while the handle is open. */
2579 /* The file descriptor on the target. */
2582 /* Check whether this fileio_fh_t represents a closed file. */
2585 return target_fd < 0;
2589 /* Vector of currently open file handles. The value returned by
2590 target_fileio_open and passed as the FD argument to other
2591 target_fileio_* functions is an index into this vector. This
2592 vector's entries are never freed; instead, files are marked as
2593 closed, and the handle becomes available for reuse. */
2594 static std::vector<fileio_fh_t> fileio_fhandles;
2596 /* Index into fileio_fhandles of the lowest handle that might be
2597 closed. This permits handle reuse without searching the whole
2598 list each time a new file is opened. */
2599 static int lowest_closed_fd;
2601 /* Invalidate the target associated with open handles that were open
2602 on target TARG, since we're about to close (and maybe destroy) the
2603 target. The handles remain open from the client's perspective, but
2604 trying to do anything with them other than closing them will fail
2608 fileio_handles_invalidate_target (target_ops *targ)
2610 for (fileio_fh_t &fh : fileio_fhandles)
2611 if (fh.target == targ)
2615 /* Acquire a target fileio file descriptor. */
2618 acquire_fileio_fd (target_ops *target, int target_fd)
2620 /* Search for closed handles to reuse. */
2621 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2623 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2625 if (fh.is_closed ())
2629 /* Push a new handle if no closed handles were found. */
2630 if (lowest_closed_fd == fileio_fhandles.size ())
2631 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2633 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2635 /* Should no longer be marked closed. */
2636 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2638 /* Return its index, and start the next lookup at
2640 return lowest_closed_fd++;
2643 /* Release a target fileio file descriptor. */
2646 release_fileio_fd (int fd, fileio_fh_t *fh)
2649 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2652 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2654 static fileio_fh_t *
2655 fileio_fd_to_fh (int fd)
2657 return &fileio_fhandles[fd];
2661 /* Default implementations of file i/o methods. We don't want these
2662 to delegate automatically, because we need to know which target
2663 supported the method, in order to call it directly from within
2664 pread/pwrite, etc. */
2667 target_ops::fileio_open (struct inferior *inf, const char *filename,
2668 int flags, int mode, int warn_if_slow,
2671 *target_errno = FILEIO_ENOSYS;
2676 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2677 ULONGEST offset, int *target_errno)
2679 *target_errno = FILEIO_ENOSYS;
2684 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2685 ULONGEST offset, int *target_errno)
2687 *target_errno = FILEIO_ENOSYS;
2692 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2694 *target_errno = FILEIO_ENOSYS;
2699 target_ops::fileio_close (int fd, int *target_errno)
2701 *target_errno = FILEIO_ENOSYS;
2706 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2709 *target_errno = FILEIO_ENOSYS;
2713 gdb::optional<std::string>
2714 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2717 *target_errno = FILEIO_ENOSYS;
2724 target_fileio_open (struct inferior *inf, const char *filename,
2725 int flags, int mode, bool warn_if_slow, int *target_errno)
2727 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2729 int fd = t->fileio_open (inf, filename, flags, mode,
2730 warn_if_slow, target_errno);
2732 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2738 fd = acquire_fileio_fd (t, fd);
2741 fprintf_unfiltered (gdb_stdlog,
2742 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2744 inf == NULL ? 0 : inf->num,
2745 filename, flags, mode,
2747 fd != -1 ? 0 : *target_errno);
2751 *target_errno = FILEIO_ENOSYS;
2758 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2759 ULONGEST offset, int *target_errno)
2761 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2764 if (fh->is_closed ())
2765 *target_errno = EBADF;
2766 else if (fh->target == NULL)
2767 *target_errno = EIO;
2769 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2770 len, offset, target_errno);
2773 fprintf_unfiltered (gdb_stdlog,
2774 "target_fileio_pwrite (%d,...,%d,%s) "
2776 fd, len, pulongest (offset),
2777 ret, ret != -1 ? 0 : *target_errno);
2784 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2785 ULONGEST offset, int *target_errno)
2787 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2790 if (fh->is_closed ())
2791 *target_errno = EBADF;
2792 else if (fh->target == NULL)
2793 *target_errno = EIO;
2795 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2796 len, offset, target_errno);
2799 fprintf_unfiltered (gdb_stdlog,
2800 "target_fileio_pread (%d,...,%d,%s) "
2802 fd, len, pulongest (offset),
2803 ret, ret != -1 ? 0 : *target_errno);
2810 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2812 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2815 if (fh->is_closed ())
2816 *target_errno = EBADF;
2817 else if (fh->target == NULL)
2818 *target_errno = EIO;
2820 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2823 fprintf_unfiltered (gdb_stdlog,
2824 "target_fileio_fstat (%d) = %d (%d)\n",
2825 fd, ret, ret != -1 ? 0 : *target_errno);
2832 target_fileio_close (int fd, int *target_errno)
2834 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2837 if (fh->is_closed ())
2838 *target_errno = EBADF;
2841 if (fh->target != NULL)
2842 ret = fh->target->fileio_close (fh->target_fd,
2846 release_fileio_fd (fd, fh);
2850 fprintf_unfiltered (gdb_stdlog,
2851 "target_fileio_close (%d) = %d (%d)\n",
2852 fd, ret, ret != -1 ? 0 : *target_errno);
2859 target_fileio_unlink (struct inferior *inf, const char *filename,
2862 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2864 int ret = t->fileio_unlink (inf, filename, target_errno);
2866 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2870 fprintf_unfiltered (gdb_stdlog,
2871 "target_fileio_unlink (%d,%s)"
2873 inf == NULL ? 0 : inf->num, filename,
2874 ret, ret != -1 ? 0 : *target_errno);
2878 *target_errno = FILEIO_ENOSYS;
2884 gdb::optional<std::string>
2885 target_fileio_readlink (struct inferior *inf, const char *filename,
2888 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2890 gdb::optional<std::string> ret
2891 = t->fileio_readlink (inf, filename, target_errno);
2893 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2897 fprintf_unfiltered (gdb_stdlog,
2898 "target_fileio_readlink (%d,%s)"
2900 inf == NULL ? 0 : inf->num,
2901 filename, ret ? ret->c_str () : "(nil)",
2902 ret ? 0 : *target_errno);
2906 *target_errno = FILEIO_ENOSYS;
2910 /* Like scoped_fd, but specific to target fileio. */
2912 class scoped_target_fd
2915 explicit scoped_target_fd (int fd) noexcept
2920 ~scoped_target_fd ()
2926 target_fileio_close (m_fd, &target_errno);
2930 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2932 int get () const noexcept
2941 /* Read target file FILENAME, in the filesystem as seen by INF. If
2942 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2943 remote targets, the remote stub). Store the result in *BUF_P and
2944 return the size of the transferred data. PADDING additional bytes
2945 are available in *BUF_P. This is a helper function for
2946 target_fileio_read_alloc; see the declaration of that function for
2947 more information. */
2950 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2951 gdb_byte **buf_p, int padding)
2953 size_t buf_alloc, buf_pos;
2958 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2959 0700, false, &target_errno));
2960 if (fd.get () == -1)
2963 /* Start by reading up to 4K at a time. The target will throttle
2964 this number down if necessary. */
2966 buf = (gdb_byte *) xmalloc (buf_alloc);
2970 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2971 buf_alloc - buf_pos - padding, buf_pos,
2975 /* An error occurred. */
2981 /* Read all there was. */
2991 /* If the buffer is filling up, expand it. */
2992 if (buf_alloc < buf_pos * 2)
2995 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3005 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3008 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3013 gdb::unique_xmalloc_ptr<char>
3014 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3018 LONGEST i, transferred;
3020 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3021 bufstr = (char *) buffer;
3023 if (transferred < 0)
3024 return gdb::unique_xmalloc_ptr<char> (nullptr);
3026 if (transferred == 0)
3027 return make_unique_xstrdup ("");
3029 bufstr[transferred] = 0;
3031 /* Check for embedded NUL bytes; but allow trailing NULs. */
3032 for (i = strlen (bufstr); i < transferred; i++)
3035 warning (_("target file %s "
3036 "contained unexpected null characters"),
3041 return gdb::unique_xmalloc_ptr<char> (bufstr);
3046 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3047 CORE_ADDR addr, int len)
3049 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3053 default_watchpoint_addr_within_range (struct target_ops *target,
3055 CORE_ADDR start, int length)
3057 return addr >= start && addr < start + length;
3063 target_stack::find_beneath (const target_ops *t) const
3065 /* Look for a non-empty slot at stratum levels beneath T's. */
3066 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3067 if (m_stack[stratum] != NULL)
3068 return m_stack[stratum];
3076 find_target_at (enum strata stratum)
3078 return current_inferior ()->target_at (stratum);
3086 target_announce_detach (int from_tty)
3089 const char *exec_file;
3094 exec_file = get_exec_file (0);
3095 if (exec_file == NULL)
3098 pid = inferior_ptid.pid ();
3099 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3100 target_pid_to_str (ptid_t (pid)).c_str ());
3103 /* The inferior process has died. Long live the inferior! */
3106 generic_mourn_inferior (void)
3108 inferior *inf = current_inferior ();
3110 switch_to_no_thread ();
3112 /* Mark breakpoints uninserted in case something tries to delete a
3113 breakpoint while we delete the inferior's threads (which would
3114 fail, since the inferior is long gone). */
3115 mark_breakpoints_out ();
3118 exit_inferior (inf);
3120 /* Note this wipes step-resume breakpoints, so needs to be done
3121 after exit_inferior, which ends up referencing the step-resume
3122 breakpoints through clear_thread_inferior_resources. */
3123 breakpoint_init_inferior (inf_exited);
3125 registers_changed ();
3127 reopen_exec_file ();
3128 reinit_frame_cache ();
3130 if (deprecated_detach_hook)
3131 deprecated_detach_hook ();
3134 /* Convert a normal process ID to a string. Returns the string in a
3138 normal_pid_to_str (ptid_t ptid)
3140 return string_printf ("process %d", ptid.pid ());
3144 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3146 return normal_pid_to_str (ptid);
3149 /* Error-catcher for target_find_memory_regions. */
3151 dummy_find_memory_regions (struct target_ops *self,
3152 find_memory_region_ftype ignore1, void *ignore2)
3154 error (_("Command not implemented for this target."));
3158 /* Error-catcher for target_make_corefile_notes. */
3160 dummy_make_corefile_notes (struct target_ops *self,
3161 bfd *ignore1, int *ignore2)
3163 error (_("Command not implemented for this target."));
3167 #include "target-delegates.c"
3169 /* The initial current target, so that there is always a semi-valid
3172 static dummy_target the_dummy_target;
3179 return &the_dummy_target;
3182 static const target_info dummy_target_info = {
3189 dummy_target::stratum () const
3191 return dummy_stratum;
3195 debug_target::stratum () const
3197 return debug_stratum;
3201 dummy_target::info () const
3203 return dummy_target_info;
3207 debug_target::info () const
3209 return beneath ()->info ();
3215 target_close (struct target_ops *targ)
3217 gdb_assert (!target_is_pushed (targ));
3219 fileio_handles_invalidate_target (targ);
3224 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3228 target_thread_alive (ptid_t ptid)
3230 return current_top_target ()->thread_alive (ptid);
3234 target_update_thread_list (void)
3236 current_top_target ()->update_thread_list ();
3240 target_stop (ptid_t ptid)
3244 warning (_("May not interrupt or stop the target, ignoring attempt"));
3248 current_top_target ()->stop (ptid);
3256 warning (_("May not interrupt or stop the target, ignoring attempt"));
3260 current_top_target ()->interrupt ();
3266 target_pass_ctrlc (void)
3268 /* Pass the Ctrl-C to the first target that has a thread
3270 for (inferior *inf : all_inferiors ())
3272 target_ops *proc_target = inf->process_target ();
3273 if (proc_target == NULL)
3276 for (thread_info *thr : inf->non_exited_threads ())
3278 /* A thread can be THREAD_STOPPED and executing, while
3279 running an infcall. */
3280 if (thr->state == THREAD_RUNNING || thr->executing)
3282 /* We can get here quite deep in target layers. Avoid
3283 switching thread context or anything that would
3284 communicate with the target (e.g., to fetch
3285 registers), or flushing e.g., the frame cache. We
3286 just switch inferior in order to be able to call
3287 through the target_stack. */
3288 scoped_restore_current_inferior restore_inferior;
3289 set_current_inferior (inf);
3290 current_top_target ()->pass_ctrlc ();
3300 default_target_pass_ctrlc (struct target_ops *ops)
3302 target_interrupt ();
3305 /* See target/target.h. */
3308 target_stop_and_wait (ptid_t ptid)
3310 struct target_waitstatus status;
3311 bool was_non_stop = non_stop;
3316 memset (&status, 0, sizeof (status));
3317 target_wait (ptid, &status, 0);
3319 non_stop = was_non_stop;
3322 /* See target/target.h. */
3325 target_continue_no_signal (ptid_t ptid)
3327 target_resume (ptid, 0, GDB_SIGNAL_0);
3330 /* See target/target.h. */
3333 target_continue (ptid_t ptid, enum gdb_signal signal)
3335 target_resume (ptid, 0, signal);
3338 /* Concatenate ELEM to LIST, a comma-separated list. */
3341 str_comma_list_concat_elem (std::string *list, const char *elem)
3343 if (!list->empty ())
3344 list->append (", ");
3346 list->append (elem);
3349 /* Helper for target_options_to_string. If OPT is present in
3350 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3351 OPT is removed from TARGET_OPTIONS. */
3354 do_option (target_wait_flags *target_options, std::string *ret,
3355 target_wait_flag opt, const char *opt_str)
3357 if ((*target_options & opt) != 0)
3359 str_comma_list_concat_elem (ret, opt_str);
3360 *target_options &= ~opt;
3367 target_options_to_string (target_wait_flags target_options)
3371 #define DO_TARG_OPTION(OPT) \
3372 do_option (&target_options, &ret, OPT, #OPT)
3374 DO_TARG_OPTION (TARGET_WNOHANG);
3376 if (target_options != 0)
3377 str_comma_list_concat_elem (&ret, "unknown???");
3383 target_fetch_registers (struct regcache *regcache, int regno)
3385 current_top_target ()->fetch_registers (regcache, regno);
3387 regcache->debug_print_register ("target_fetch_registers", regno);
3391 target_store_registers (struct regcache *regcache, int regno)
3393 if (!may_write_registers)
3394 error (_("Writing to registers is not allowed (regno %d)"), regno);
3396 current_top_target ()->store_registers (regcache, regno);
3399 regcache->debug_print_register ("target_store_registers", regno);
3404 target_core_of_thread (ptid_t ptid)
3406 return current_top_target ()->core_of_thread (ptid);
3410 simple_verify_memory (struct target_ops *ops,
3411 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3413 LONGEST total_xfered = 0;
3415 while (total_xfered < size)
3417 ULONGEST xfered_len;
3418 enum target_xfer_status status;
3420 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3422 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3423 buf, NULL, lma + total_xfered, howmuch,
3425 if (status == TARGET_XFER_OK
3426 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3428 total_xfered += xfered_len;
3437 /* Default implementation of memory verification. */
3440 default_verify_memory (struct target_ops *self,
3441 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3443 /* Start over from the top of the target stack. */
3444 return simple_verify_memory (current_top_target (),
3445 data, memaddr, size);
3449 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3451 return current_top_target ()->verify_memory (data, memaddr, size);
3454 /* The documentation for this function is in its prototype declaration in
3458 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3459 enum target_hw_bp_type rw)
3461 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3464 /* The documentation for this function is in its prototype declaration in
3468 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3469 enum target_hw_bp_type rw)
3471 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3474 /* The documentation for this function is in its prototype declaration
3478 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3480 return current_top_target ()->masked_watch_num_registers (addr, mask);
3483 /* The documentation for this function is in its prototype declaration
3487 target_ranged_break_num_registers (void)
3489 return current_top_target ()->ranged_break_num_registers ();
3494 struct btrace_target_info *
3495 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3497 return current_top_target ()->enable_btrace (ptid, conf);
3503 target_disable_btrace (struct btrace_target_info *btinfo)
3505 current_top_target ()->disable_btrace (btinfo);
3511 target_teardown_btrace (struct btrace_target_info *btinfo)
3513 current_top_target ()->teardown_btrace (btinfo);
3519 target_read_btrace (struct btrace_data *btrace,
3520 struct btrace_target_info *btinfo,
3521 enum btrace_read_type type)
3523 return current_top_target ()->read_btrace (btrace, btinfo, type);
3528 const struct btrace_config *
3529 target_btrace_conf (const struct btrace_target_info *btinfo)
3531 return current_top_target ()->btrace_conf (btinfo);
3537 target_stop_recording (void)
3539 current_top_target ()->stop_recording ();
3545 target_save_record (const char *filename)
3547 current_top_target ()->save_record (filename);
3553 target_supports_delete_record ()
3555 return current_top_target ()->supports_delete_record ();
3561 target_delete_record (void)
3563 current_top_target ()->delete_record ();
3569 target_record_method (ptid_t ptid)
3571 return current_top_target ()->record_method (ptid);
3577 target_record_is_replaying (ptid_t ptid)
3579 return current_top_target ()->record_is_replaying (ptid);
3585 target_record_will_replay (ptid_t ptid, int dir)
3587 return current_top_target ()->record_will_replay (ptid, dir);
3593 target_record_stop_replaying (void)
3595 current_top_target ()->record_stop_replaying ();
3601 target_goto_record_begin (void)
3603 current_top_target ()->goto_record_begin ();
3609 target_goto_record_end (void)
3611 current_top_target ()->goto_record_end ();
3617 target_goto_record (ULONGEST insn)
3619 current_top_target ()->goto_record (insn);
3625 target_insn_history (int size, gdb_disassembly_flags flags)
3627 current_top_target ()->insn_history (size, flags);
3633 target_insn_history_from (ULONGEST from, int size,
3634 gdb_disassembly_flags flags)
3636 current_top_target ()->insn_history_from (from, size, flags);
3642 target_insn_history_range (ULONGEST begin, ULONGEST end,
3643 gdb_disassembly_flags flags)
3645 current_top_target ()->insn_history_range (begin, end, flags);
3651 target_call_history (int size, record_print_flags flags)
3653 current_top_target ()->call_history (size, flags);
3659 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3661 current_top_target ()->call_history_from (begin, size, flags);
3667 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3669 current_top_target ()->call_history_range (begin, end, flags);
3674 const struct frame_unwind *
3675 target_get_unwinder (void)
3677 return current_top_target ()->get_unwinder ();
3682 const struct frame_unwind *
3683 target_get_tailcall_unwinder (void)
3685 return current_top_target ()->get_tailcall_unwinder ();
3691 target_prepare_to_generate_core (void)
3693 current_top_target ()->prepare_to_generate_core ();
3699 target_done_generating_core (void)
3701 current_top_target ()->done_generating_core ();
3706 static char targ_desc[] =
3707 "Names of targets and files being debugged.\nShows the entire \
3708 stack of targets currently in use (including the exec-file,\n\
3709 core-file, and process, if any), as well as the symbol file name.";
3712 default_rcmd (struct target_ops *self, const char *command,
3713 struct ui_file *output)
3715 error (_("\"monitor\" command not supported by this target."));
3719 do_monitor_command (const char *cmd, int from_tty)
3721 target_rcmd (cmd, gdb_stdtarg);
3724 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3728 flash_erase_command (const char *cmd, int from_tty)
3730 /* Used to communicate termination of flash operations to the target. */
3731 bool found_flash_region = false;
3732 struct gdbarch *gdbarch = target_gdbarch ();
3734 std::vector<mem_region> mem_regions = target_memory_map ();
3736 /* Iterate over all memory regions. */
3737 for (const mem_region &m : mem_regions)
3739 /* Is this a flash memory region? */
3740 if (m.attrib.mode == MEM_FLASH)
3742 found_flash_region = true;
3743 target_flash_erase (m.lo, m.hi - m.lo);
3745 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3747 current_uiout->message (_("Erasing flash memory region at address "));
3748 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3749 current_uiout->message (", size = ");
3750 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3751 current_uiout->message ("\n");
3755 /* Did we do any flash operations? If so, we need to finalize them. */
3756 if (found_flash_region)
3757 target_flash_done ();
3759 current_uiout->message (_("No flash memory regions found.\n"));
3762 /* Print the name of each layers of our target stack. */
3765 maintenance_print_target_stack (const char *cmd, int from_tty)
3767 printf_filtered (_("The current target stack is:\n"));
3769 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3771 if (t->stratum () == debug_stratum)
3773 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3780 target_async (int enable)
3782 infrun_async (enable);
3783 current_top_target ()->async (enable);
3789 target_thread_events (int enable)
3791 current_top_target ()->thread_events (enable);
3794 /* Controls if targets can report that they can/are async. This is
3795 just for maintainers to use when debugging gdb. */
3796 bool target_async_permitted = true;
3798 /* The set command writes to this variable. If the inferior is
3799 executing, target_async_permitted is *not* updated. */
3800 static bool target_async_permitted_1 = true;
3803 maint_set_target_async_command (const char *args, int from_tty,
3804 struct cmd_list_element *c)
3806 if (have_live_inferiors ())
3808 target_async_permitted_1 = target_async_permitted;
3809 error (_("Cannot change this setting while the inferior is running."));
3812 target_async_permitted = target_async_permitted_1;
3816 maint_show_target_async_command (struct ui_file *file, int from_tty,
3817 struct cmd_list_element *c,
3820 fprintf_filtered (file,
3821 _("Controlling the inferior in "
3822 "asynchronous mode is %s.\n"), value);
3825 /* Return true if the target operates in non-stop mode even with "set
3829 target_always_non_stop_p (void)
3831 return current_top_target ()->always_non_stop_p ();
3837 target_is_non_stop_p (void)
3840 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3841 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3842 && target_always_non_stop_p ()));
3848 exists_non_stop_target ()
3850 if (target_is_non_stop_p ())
3853 scoped_restore_current_thread restore_thread;
3855 for (inferior *inf : all_inferiors ())
3857 switch_to_inferior_no_thread (inf);
3858 if (target_is_non_stop_p ())
3865 /* Controls if targets can report that they always run in non-stop
3866 mode. This is just for maintainers to use when debugging gdb. */
3867 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3869 /* The set command writes to this variable. If the inferior is
3870 executing, target_non_stop_enabled is *not* updated. */
3871 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3873 /* Implementation of "maint set target-non-stop". */
3876 maint_set_target_non_stop_command (const char *args, int from_tty,
3877 struct cmd_list_element *c)
3879 if (have_live_inferiors ())
3881 target_non_stop_enabled_1 = target_non_stop_enabled;
3882 error (_("Cannot change this setting while the inferior is running."));
3885 target_non_stop_enabled = target_non_stop_enabled_1;
3888 /* Implementation of "maint show target-non-stop". */
3891 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3892 struct cmd_list_element *c,
3895 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3896 fprintf_filtered (file,
3897 _("Whether the target is always in non-stop mode "
3898 "is %s (currently %s).\n"), value,
3899 target_always_non_stop_p () ? "on" : "off");
3901 fprintf_filtered (file,
3902 _("Whether the target is always in non-stop mode "
3903 "is %s.\n"), value);
3906 /* Temporary copies of permission settings. */
3908 static bool may_write_registers_1 = true;
3909 static bool may_write_memory_1 = true;
3910 static bool may_insert_breakpoints_1 = true;
3911 static bool may_insert_tracepoints_1 = true;
3912 static bool may_insert_fast_tracepoints_1 = true;
3913 static bool may_stop_1 = true;
3915 /* Make the user-set values match the real values again. */
3918 update_target_permissions (void)
3920 may_write_registers_1 = may_write_registers;
3921 may_write_memory_1 = may_write_memory;
3922 may_insert_breakpoints_1 = may_insert_breakpoints;
3923 may_insert_tracepoints_1 = may_insert_tracepoints;
3924 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3925 may_stop_1 = may_stop;
3928 /* The one function handles (most of) the permission flags in the same
3932 set_target_permissions (const char *args, int from_tty,
3933 struct cmd_list_element *c)
3935 if (target_has_execution)
3937 update_target_permissions ();
3938 error (_("Cannot change this setting while the inferior is running."));
3941 /* Make the real values match the user-changed values. */
3942 may_write_registers = may_write_registers_1;
3943 may_insert_breakpoints = may_insert_breakpoints_1;
3944 may_insert_tracepoints = may_insert_tracepoints_1;
3945 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3946 may_stop = may_stop_1;
3947 update_observer_mode ();
3950 /* Set memory write permission independently of observer mode. */
3953 set_write_memory_permission (const char *args, int from_tty,
3954 struct cmd_list_element *c)
3956 /* Make the real values match the user-changed values. */
3957 may_write_memory = may_write_memory_1;
3958 update_observer_mode ();
3961 void _initialize_target ();
3964 _initialize_target ()
3966 the_debug_target = new debug_target ();
3968 add_info ("target", info_target_command, targ_desc);
3969 add_info ("files", info_target_command, targ_desc);
3971 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3972 Set target debugging."), _("\
3973 Show target debugging."), _("\
3974 When non-zero, target debugging is enabled. Higher numbers are more\n\
3978 &setdebuglist, &showdebuglist);
3980 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3981 &trust_readonly, _("\
3982 Set mode for reading from readonly sections."), _("\
3983 Show mode for reading from readonly sections."), _("\
3984 When this mode is on, memory reads from readonly sections (such as .text)\n\
3985 will be read from the object file instead of from the target. This will\n\
3986 result in significant performance improvement for remote targets."),
3988 show_trust_readonly,
3989 &setlist, &showlist);
3991 add_com ("monitor", class_obscure, do_monitor_command,
3992 _("Send a command to the remote monitor (remote targets only)."));
3994 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3995 _("Print the name of each layer of the internal target stack."),
3996 &maintenanceprintlist);
3998 add_setshow_boolean_cmd ("target-async", no_class,
3999 &target_async_permitted_1, _("\
4000 Set whether gdb controls the inferior in asynchronous mode."), _("\
4001 Show whether gdb controls the inferior in asynchronous mode."), _("\
4002 Tells gdb whether to control the inferior in asynchronous mode."),
4003 maint_set_target_async_command,
4004 maint_show_target_async_command,
4005 &maintenance_set_cmdlist,
4006 &maintenance_show_cmdlist);
4008 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4009 &target_non_stop_enabled_1, _("\
4010 Set whether gdb always controls the inferior in non-stop mode."), _("\
4011 Show whether gdb always controls the inferior in non-stop mode."), _("\
4012 Tells gdb whether to control the inferior in non-stop mode."),
4013 maint_set_target_non_stop_command,
4014 maint_show_target_non_stop_command,
4015 &maintenance_set_cmdlist,
4016 &maintenance_show_cmdlist);
4018 add_setshow_boolean_cmd ("may-write-registers", class_support,
4019 &may_write_registers_1, _("\
4020 Set permission to write into registers."), _("\
4021 Show permission to write into registers."), _("\
4022 When this permission is on, GDB may write into the target's registers.\n\
4023 Otherwise, any sort of write attempt will result in an error."),
4024 set_target_permissions, NULL,
4025 &setlist, &showlist);
4027 add_setshow_boolean_cmd ("may-write-memory", class_support,
4028 &may_write_memory_1, _("\
4029 Set permission to write into target memory."), _("\
4030 Show permission to write into target memory."), _("\
4031 When this permission is on, GDB may write into the target's memory.\n\
4032 Otherwise, any sort of write attempt will result in an error."),
4033 set_write_memory_permission, NULL,
4034 &setlist, &showlist);
4036 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4037 &may_insert_breakpoints_1, _("\
4038 Set permission to insert breakpoints in the target."), _("\
4039 Show permission to insert breakpoints in the target."), _("\
4040 When this permission is on, GDB may insert breakpoints in the program.\n\
4041 Otherwise, any sort of insertion attempt will result in an error."),
4042 set_target_permissions, NULL,
4043 &setlist, &showlist);
4045 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4046 &may_insert_tracepoints_1, _("\
4047 Set permission to insert tracepoints in the target."), _("\
4048 Show permission to insert tracepoints in the target."), _("\
4049 When this permission is on, GDB may insert tracepoints in the program.\n\
4050 Otherwise, any sort of insertion attempt will result in an error."),
4051 set_target_permissions, NULL,
4052 &setlist, &showlist);
4054 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4055 &may_insert_fast_tracepoints_1, _("\
4056 Set permission to insert fast tracepoints in the target."), _("\
4057 Show permission to insert fast tracepoints in the target."), _("\
4058 When this permission is on, GDB may insert fast tracepoints.\n\
4059 Otherwise, any sort of insertion attempt will result in an error."),
4060 set_target_permissions, NULL,
4061 &setlist, &showlist);
4063 add_setshow_boolean_cmd ("may-interrupt", class_support,
4065 Set permission to interrupt or signal the target."), _("\
4066 Show permission to interrupt or signal the target."), _("\
4067 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4068 Otherwise, any attempt to interrupt or stop will be ignored."),
4069 set_target_permissions, NULL,
4070 &setlist, &showlist);
4072 add_com ("flash-erase", no_class, flash_erase_command,
4073 _("Erase all flash memory regions."));
4075 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4076 &auto_connect_native_target, _("\
4077 Set whether GDB may automatically connect to the native target."), _("\
4078 Show whether GDB may automatically connect to the native target."), _("\
4079 When on, and GDB is not connected to a target yet, GDB\n\
4080 attempts \"run\" and other commands with the native target."),
4081 NULL, show_auto_connect_native_target,
4082 &setlist, &showlist);