1 /* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
2 Copyright (C) 2004, 2007, 2008, 2009 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "gdb_string.h"
33 #include "exceptions.h"
35 /* Flag which indicates whether internal debug messages should be printed. */
36 static int solib_frv_debug;
38 /* FR-V pointers are four bytes wide. */
39 enum { FRV_PTR_SIZE = 4 };
41 /* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
43 /* External versions; the size and alignment of the fields should be
44 the same as those on the target. When loaded, the placement of
45 the bits in each field will be the same as on the target. */
46 typedef gdb_byte ext_Elf32_Half[2];
47 typedef gdb_byte ext_Elf32_Addr[4];
48 typedef gdb_byte ext_Elf32_Word[4];
50 struct ext_elf32_fdpic_loadseg
52 /* Core address to which the segment is mapped. */
54 /* VMA recorded in the program header. */
55 ext_Elf32_Addr p_vaddr;
56 /* Size of this segment in memory. */
57 ext_Elf32_Word p_memsz;
60 struct ext_elf32_fdpic_loadmap {
61 /* Protocol version number, must be zero. */
62 ext_Elf32_Half version;
63 /* Number of segments in this map. */
65 /* The actual memory map. */
66 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
69 /* Internal versions; the types are GDB types and the data in each
70 of the fields is (or will be) decoded from the external struct
71 for ease of consumption. */
72 struct int_elf32_fdpic_loadseg
74 /* Core address to which the segment is mapped. */
76 /* VMA recorded in the program header. */
78 /* Size of this segment in memory. */
82 struct int_elf32_fdpic_loadmap {
83 /* Protocol version number, must be zero. */
85 /* Number of segments in this map. */
87 /* The actual memory map. */
88 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
91 /* Given address LDMADDR, fetch and decode the loadmap at that address.
92 Return NULL if there is a problem reading the target memory or if
93 there doesn't appear to be a loadmap at the given address. The
94 allocated space (representing the loadmap) returned by this
95 function may be freed via a single call to xfree(). */
97 static struct int_elf32_fdpic_loadmap *
98 fetch_loadmap (CORE_ADDR ldmaddr)
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
106 /* Fetch initial portion of the loadmap. */
107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
108 sizeof ext_ldmbuf_partial))
110 /* Problem reading the target's memory. */
114 /* Extract the version. */
115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
116 sizeof ext_ldmbuf_partial.version);
119 /* We only handle version 0. */
123 /* Extract the number of segments. */
124 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
125 sizeof ext_ldmbuf_partial.nsegs);
130 /* Allocate space for the complete (external) loadmap. */
131 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
132 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
133 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
135 /* Copy over the portion of the loadmap that's already been read. */
136 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
138 /* Read the rest of the loadmap from the target. */
139 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
140 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
141 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
143 /* Couldn't read rest of the loadmap. */
148 /* Allocate space into which to put information extract from the
149 external loadsegs. I.e, allocate the internal loadsegs. */
150 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
151 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
152 int_ldmbuf = xmalloc (int_ldmbuf_size);
154 /* Place extracted information in internal structs. */
155 int_ldmbuf->version = version;
156 int_ldmbuf->nsegs = nsegs;
157 for (seg = 0; seg < nsegs; seg++)
159 int_ldmbuf->segs[seg].addr
160 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
161 sizeof (ext_ldmbuf->segs[seg].addr));
162 int_ldmbuf->segs[seg].p_vaddr
163 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
164 sizeof (ext_ldmbuf->segs[seg].p_vaddr));
165 int_ldmbuf->segs[seg].p_memsz
166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
167 sizeof (ext_ldmbuf->segs[seg].p_memsz));
174 /* External link_map and elf32_fdpic_loadaddr struct definitions. */
176 typedef gdb_byte ext_ptr[4];
178 struct ext_elf32_fdpic_loadaddr
180 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
181 ext_ptr got_value; /* void *got_value; */
186 struct ext_elf32_fdpic_loadaddr l_addr;
188 /* Absolute file name object was found in. */
189 ext_ptr l_name; /* char *l_name; */
191 /* Dynamic section of the shared object. */
192 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
194 /* Chain of loaded objects. */
195 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
198 /* Link map info to include in an allocated so_list entry */
202 /* The loadmap, digested into an easier to use form. */
203 struct int_elf32_fdpic_loadmap *map;
204 /* The GOT address for this link map entry. */
206 /* The link map address, needed for frv_fetch_objfile_link_map(). */
209 /* Cached dynamic symbol table and dynamic relocs initialized and
210 used only by find_canonical_descriptor_in_load_object().
212 Note: kevinb/2004-02-26: It appears that calls to
213 bfd_canonicalize_dynamic_reloc() will use the same symbols as
214 those supplied to the first call to this function. Therefore,
215 it's important to NOT free the asymbol ** data structure
216 supplied to the first call. Thus the caching of the dynamic
217 symbols (dyn_syms) is critical for correct operation. The
218 caching of the dynamic relocations could be dispensed with. */
220 arelent **dyn_relocs;
221 int dyn_reloc_count; /* number of dynamic relocs. */
225 /* The load map, got value, etc. are not available from the chain
226 of loaded shared objects. ``main_executable_lm_info'' provides
227 a way to get at this information so that it doesn't need to be
228 frequently recomputed. Initialized by frv_relocate_main_executable(). */
229 static struct lm_info *main_executable_lm_info;
231 static void frv_relocate_main_executable (void);
232 static CORE_ADDR main_got (void);
233 static int enable_break2 (void);
239 bfd_lookup_symbol -- lookup the value for a specific symbol
243 CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
247 An expensive way to lookup the value of a single symbol for
248 bfd's that are only temporary anyway. This is used by the
249 shared library support to find the address of the debugger
250 interface structures in the shared library.
252 Note that 0 is specifically allowed as an error return (no
257 bfd_lookup_symbol (bfd *abfd, char *symname)
261 asymbol **symbol_table;
262 unsigned int number_of_symbols;
264 struct cleanup *back_to;
265 CORE_ADDR symaddr = 0;
267 storage_needed = bfd_get_symtab_upper_bound (abfd);
269 if (storage_needed > 0)
271 symbol_table = (asymbol **) xmalloc (storage_needed);
272 back_to = make_cleanup (xfree, symbol_table);
273 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
275 for (i = 0; i < number_of_symbols; i++)
277 sym = *symbol_table++;
278 if (strcmp (sym->name, symname) == 0)
280 /* Bfd symbols are section relative. */
281 symaddr = sym->value + sym->section->vma;
285 do_cleanups (back_to);
291 /* Look for the symbol in the dynamic string table too. */
293 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
295 if (storage_needed > 0)
297 symbol_table = (asymbol **) xmalloc (storage_needed);
298 back_to = make_cleanup (xfree, symbol_table);
299 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
301 for (i = 0; i < number_of_symbols; i++)
303 sym = *symbol_table++;
304 if (strcmp (sym->name, symname) == 0)
306 /* Bfd symbols are section relative. */
307 symaddr = sym->value + sym->section->vma;
311 do_cleanups (back_to);
322 open_symbol_file_object
326 void open_symbol_file_object (void *from_tty)
330 If no open symbol file, attempt to locate and open the main symbol
333 If FROM_TTYP dereferences to a non-zero integer, allow messages to
334 be printed. This parameter is a pointer rather than an int because
335 open_symbol_file_object() is called via catch_errors() and
336 catch_errors() requires a pointer argument. */
339 open_symbol_file_object (void *from_ttyp)
345 /* Cached value for lm_base(), below. */
346 static CORE_ADDR lm_base_cache = 0;
348 /* Link map address for main module. */
349 static CORE_ADDR main_lm_addr = 0;
351 /* Return the address from which the link map chain may be found. On
352 the FR-V, this may be found in a number of ways. Assuming that the
353 main executable has already been relocated, the easiest way to find
354 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
355 pointer to the start of the link map will be located at the word found
356 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
357 reserve area mandated by the ABI.) */
362 struct minimal_symbol *got_sym;
364 gdb_byte buf[FRV_PTR_SIZE];
366 /* One of our assumptions is that the main executable has been relocated.
367 Bail out if this has not happened. (Note that post_create_inferior()
368 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
369 If we allow this to happen, lm_base_cache will be initialized with
371 if (main_executable_lm_info == 0)
374 /* If we already have a cached value, return it. */
376 return lm_base_cache;
378 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
383 fprintf_unfiltered (gdb_stdlog,
384 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
388 addr = SYMBOL_VALUE_ADDRESS (got_sym) + 8;
391 fprintf_unfiltered (gdb_stdlog,
392 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
393 hex_string_custom (addr, 8));
395 if (target_read_memory (addr, buf, sizeof buf) != 0)
397 lm_base_cache = extract_unsigned_integer (buf, sizeof buf);
400 fprintf_unfiltered (gdb_stdlog,
401 "lm_base: lm_base_cache = %s\n",
402 hex_string_custom (lm_base_cache, 8));
404 return lm_base_cache;
410 frv_current_sos -- build a list of currently loaded shared objects
414 struct so_list *frv_current_sos ()
418 Build a list of `struct so_list' objects describing the shared
419 objects currently loaded in the inferior. This list does not
420 include an entry for the main executable file.
422 Note that we only gather information directly available from the
423 inferior --- we don't examine any of the shared library files
424 themselves. The declaration of `struct so_list' says which fields
425 we provide values for. */
427 static struct so_list *
428 frv_current_sos (void)
430 CORE_ADDR lm_addr, mgot;
431 struct so_list *sos_head = NULL;
432 struct so_list **sos_next_ptr = &sos_head;
434 /* Make sure that the main executable has been relocated. This is
435 required in order to find the address of the global offset table,
436 which in turn is used to find the link map info. (See lm_base()
439 Note that the relocation of the main executable is also performed
440 by SOLIB_CREATE_INFERIOR_HOOK(), however, in the case of core
441 files, this hook is called too late in order to be of benefit to
442 SOLIB_ADD. SOLIB_ADD eventually calls this this function,
443 frv_current_sos, and also precedes the call to
444 SOLIB_CREATE_INFERIOR_HOOK(). (See post_create_inferior() in
446 if (main_executable_lm_info == 0 && core_bfd != NULL)
447 frv_relocate_main_executable ();
449 /* Fetch the GOT corresponding to the main executable. */
452 /* Locate the address of the first link map struct. */
453 lm_addr = lm_base ();
455 /* We have at least one link map entry. Fetch the the lot of them,
456 building the solist chain. */
459 struct ext_link_map lm_buf;
463 fprintf_unfiltered (gdb_stdlog,
464 "current_sos: reading link_map entry at %s\n",
465 hex_string_custom (lm_addr, 8));
467 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf, sizeof (lm_buf)) != 0)
469 warning (_("frv_current_sos: Unable to read link map entry. Shared object chain may be incomplete."));
474 = extract_unsigned_integer (lm_buf.l_addr.got_value,
475 sizeof (lm_buf.l_addr.got_value));
476 /* If the got_addr is the same as mgotr, then we're looking at the
477 entry for the main executable. By convention, we don't include
478 this in the list of shared objects. */
479 if (got_addr != mgot)
483 struct int_elf32_fdpic_loadmap *loadmap;
487 /* Fetch the load map address. */
488 addr = extract_unsigned_integer (lm_buf.l_addr.map,
489 sizeof lm_buf.l_addr.map);
490 loadmap = fetch_loadmap (addr);
493 warning (_("frv_current_sos: Unable to fetch load map. Shared object chain may be incomplete."));
497 sop = xcalloc (1, sizeof (struct so_list));
498 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
499 sop->lm_info->map = loadmap;
500 sop->lm_info->got_value = got_addr;
501 sop->lm_info->lm_addr = lm_addr;
502 /* Fetch the name. */
503 addr = extract_unsigned_integer (lm_buf.l_name,
504 sizeof (lm_buf.l_name));
505 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
509 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
513 warning (_("Can't read pathname for link map entry: %s."),
514 safe_strerror (errcode));
517 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
518 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
520 strcpy (sop->so_original_name, sop->so_name);
524 sos_next_ptr = &sop->next;
528 main_lm_addr = lm_addr;
531 lm_addr = extract_unsigned_integer (lm_buf.l_next, sizeof (lm_buf.l_next));
540 /* Return 1 if PC lies in the dynamic symbol resolution code of the
543 static CORE_ADDR interp_text_sect_low;
544 static CORE_ADDR interp_text_sect_high;
545 static CORE_ADDR interp_plt_sect_low;
546 static CORE_ADDR interp_plt_sect_high;
549 frv_in_dynsym_resolve_code (CORE_ADDR pc)
551 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
552 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
553 || in_plt_section (pc, NULL));
556 /* Given a loadmap and an address, return the displacement needed
557 to relocate the address. */
560 displacement_from_map (struct int_elf32_fdpic_loadmap *map,
565 for (seg = 0; seg < map->nsegs; seg++)
567 if (map->segs[seg].p_vaddr <= addr
568 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
570 return map->segs[seg].addr - map->segs[seg].p_vaddr;
577 /* Print a warning about being unable to set the dynamic linker
581 enable_break_failure_warning (void)
583 warning (_("Unable to find dynamic linker breakpoint function.\n"
584 "GDB will be unable to debug shared library initializers\n"
585 "and track explicitly loaded dynamic code."));
592 enable_break -- arrange for dynamic linker to hit breakpoint
596 int enable_break (void)
600 The dynamic linkers has, as part of its debugger interface, support
601 for arranging for the inferior to hit a breakpoint after mapping in
602 the shared libraries. This function enables that breakpoint.
604 On the FR-V, using the shared library (FDPIC) ABI, the symbol
605 _dl_debug_addr points to the r_debug struct which contains
606 a field called r_brk. r_brk is the address of the function
607 descriptor upon which a breakpoint must be placed. Being a
608 function descriptor, we must extract the entry point in order
609 to set the breakpoint.
611 Our strategy will be to get the .interp section from the
612 executable. This section will provide us with the name of the
613 interpreter. We'll open the interpreter and then look up
614 the address of _dl_debug_addr. We then relocate this address
615 using the interpreter's loadmap. Once the relocated address
616 is known, we fetch the value (address) corresponding to r_brk
617 and then use that value to fetch the entry point of the function
622 static int enable_break1_done = 0;
623 static int enable_break2_done = 0;
630 asection *interp_sect;
632 if (!enable_break1_done || enable_break2_done)
635 enable_break2_done = 1;
637 /* First, remove all the solib event breakpoints. Their addresses
638 may have changed since the last time we ran the program. */
639 remove_solib_event_breakpoints ();
641 interp_text_sect_low = interp_text_sect_high = 0;
642 interp_plt_sect_low = interp_plt_sect_high = 0;
644 /* Find the .interp section; if not found, warn the user and drop
645 into the old breakpoint at symbol code. */
646 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
649 unsigned int interp_sect_size;
653 CORE_ADDR addr, interp_loadmap_addr;
654 gdb_byte addr_buf[FRV_PTR_SIZE];
655 struct int_elf32_fdpic_loadmap *ldm;
656 volatile struct gdb_exception ex;
658 /* Read the contents of the .interp section into a local buffer;
659 the contents specify the dynamic linker this program uses. */
660 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
661 buf = alloca (interp_sect_size);
662 bfd_get_section_contents (exec_bfd, interp_sect,
663 buf, 0, interp_sect_size);
665 /* Now we need to figure out where the dynamic linker was
666 loaded so that we can load its symbols and place a breakpoint
667 in the dynamic linker itself.
669 This address is stored on the stack. However, I've been unable
670 to find any magic formula to find it for Solaris (appears to
671 be trivial on GNU/Linux). Therefore, we have to try an alternate
672 mechanism to find the dynamic linker's base address. */
674 TRY_CATCH (ex, RETURN_MASK_ALL)
676 tmp_bfd = solib_bfd_open (buf);
680 enable_break_failure_warning ();
684 status = frv_fdpic_loadmap_addresses (target_gdbarch,
685 &interp_loadmap_addr, 0);
688 warning (_("Unable to determine dynamic linker loadmap address."));
689 enable_break_failure_warning ();
695 fprintf_unfiltered (gdb_stdlog,
696 "enable_break: interp_loadmap_addr = %s\n",
697 hex_string_custom (interp_loadmap_addr, 8));
699 ldm = fetch_loadmap (interp_loadmap_addr);
702 warning (_("Unable to load dynamic linker loadmap at address %s."),
703 hex_string_custom (interp_loadmap_addr, 8));
704 enable_break_failure_warning ();
709 /* Record the relocated start and end address of the dynamic linker
710 text and plt section for svr4_in_dynsym_resolve_code. */
711 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
715 = bfd_section_vma (tmp_bfd, interp_sect);
717 += displacement_from_map (ldm, interp_text_sect_low);
718 interp_text_sect_high
719 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
721 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
724 interp_plt_sect_low =
725 bfd_section_vma (tmp_bfd, interp_sect);
727 += displacement_from_map (ldm, interp_plt_sect_low);
728 interp_plt_sect_high =
729 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
732 addr = bfd_lookup_symbol (tmp_bfd, "_dl_debug_addr");
735 warning (_("Could not find symbol _dl_debug_addr in dynamic linker"));
736 enable_break_failure_warning ();
742 fprintf_unfiltered (gdb_stdlog,
743 "enable_break: _dl_debug_addr (prior to relocation) = %s\n",
744 hex_string_custom (addr, 8));
746 addr += displacement_from_map (ldm, addr);
749 fprintf_unfiltered (gdb_stdlog,
750 "enable_break: _dl_debug_addr (after relocation) = %s\n",
751 hex_string_custom (addr, 8));
753 /* Fetch the address of the r_debug struct. */
754 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
756 warning (_("Unable to fetch contents of _dl_debug_addr (at address %s) from dynamic linker"),
757 hex_string_custom (addr, 8));
759 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
761 /* Fetch the r_brk field. It's 8 bytes from the start of
763 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
765 warning (_("Unable to fetch _dl_debug_addr->r_brk (at address %s) from dynamic linker"),
766 hex_string_custom (addr + 8, 8));
767 enable_break_failure_warning ();
771 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
773 /* Now fetch the function entry point. */
774 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
776 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point (at address %s) from dynamic linker"),
777 hex_string_custom (addr, 8));
778 enable_break_failure_warning ();
782 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf);
784 /* We're done with the temporary bfd. */
787 /* We're also done with the loadmap. */
790 /* Now (finally!) create the solib breakpoint. */
791 create_solib_event_breakpoint (target_gdbarch, addr);
796 /* Tell the user we couldn't set a dynamic linker breakpoint. */
797 enable_break_failure_warning ();
799 /* Failure return. */
806 asection *interp_sect;
808 /* Remove all the solib event breakpoints. Their addresses
809 may have changed since the last time we ran the program. */
810 remove_solib_event_breakpoints ();
812 /* Check for the presence of a .interp section. If there is no
813 such section, the executable is statically linked. */
815 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
819 enable_break1_done = 1;
820 create_solib_event_breakpoint (target_gdbarch,
821 symfile_objfile->ei.entry_point);
824 fprintf_unfiltered (gdb_stdlog,
825 "enable_break: solib event breakpoint placed at entry point: %s\n",
827 (symfile_objfile->ei.entry_point, 8));
832 fprintf_unfiltered (gdb_stdlog,
833 "enable_break: No .interp section found.\n");
843 special_symbol_handling -- additional shared library symbol handling
847 void special_symbol_handling ()
851 Once the symbols from a shared object have been loaded in the usual
852 way, we are called to do any system specific symbol handling that
858 frv_special_symbol_handling (void)
860 /* Nothing needed (yet) for FRV. */
864 frv_relocate_main_executable (void)
867 CORE_ADDR exec_addr, interp_addr;
868 struct int_elf32_fdpic_loadmap *ldm;
869 struct cleanup *old_chain;
870 struct section_offsets *new_offsets;
872 struct obj_section *osect;
874 status = frv_fdpic_loadmap_addresses (target_gdbarch,
875 &interp_addr, &exec_addr);
877 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
879 /* Not using FDPIC ABI, so do nothing. */
883 /* Fetch the loadmap located at ``exec_addr''. */
884 ldm = fetch_loadmap (exec_addr);
886 error (_("Unable to load the executable's loadmap."));
888 if (main_executable_lm_info)
889 xfree (main_executable_lm_info);
890 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
891 main_executable_lm_info->map = ldm;
893 new_offsets = xcalloc (symfile_objfile->num_sections,
894 sizeof (struct section_offsets));
895 old_chain = make_cleanup (xfree, new_offsets);
898 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
900 CORE_ADDR orig_addr, addr, offset;
904 osect_idx = osect->the_bfd_section->index;
906 /* Current address of section. */
907 addr = obj_section_addr (osect);
908 /* Offset from where this section started. */
909 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
910 /* Original address prior to any past relocations. */
911 orig_addr = addr - offset;
913 for (seg = 0; seg < ldm->nsegs; seg++)
915 if (ldm->segs[seg].p_vaddr <= orig_addr
916 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
918 new_offsets->offsets[osect_idx]
919 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
921 if (new_offsets->offsets[osect_idx] != offset)
929 objfile_relocate (symfile_objfile, new_offsets);
931 do_cleanups (old_chain);
933 /* Now that symfile_objfile has been relocated, we can compute the
934 GOT value and stash it away. */
935 main_executable_lm_info->got_value = main_got ();
942 frv_solib_create_inferior_hook -- shared library startup support
946 void frv_solib_create_inferior_hook ()
950 When gdb starts up the inferior, it nurses it along (through the
951 shell) until it is ready to execute it's first instruction. At this
952 point, this function gets called via expansion of the macro
953 SOLIB_CREATE_INFERIOR_HOOK.
955 For the FR-V shared library ABI (FDPIC), the main executable
956 needs to be relocated. The shared library breakpoints also need
961 frv_solib_create_inferior_hook (void)
963 /* Relocate main executable. */
964 frv_relocate_main_executable ();
966 /* Enable shared library breakpoints. */
967 if (!enable_break ())
969 warning (_("shared library handler failed to enable breakpoint"));
975 frv_clear_solib (void)
978 enable_break1_done = 0;
979 enable_break2_done = 0;
981 if (main_executable_lm_info != 0)
983 xfree (main_executable_lm_info->map);
984 xfree (main_executable_lm_info->dyn_syms);
985 xfree (main_executable_lm_info->dyn_relocs);
986 xfree (main_executable_lm_info);
987 main_executable_lm_info = 0;
992 frv_free_so (struct so_list *so)
994 xfree (so->lm_info->map);
995 xfree (so->lm_info->dyn_syms);
996 xfree (so->lm_info->dyn_relocs);
1001 frv_relocate_section_addresses (struct so_list *so,
1002 struct target_section *sec)
1005 struct int_elf32_fdpic_loadmap *map;
1007 map = so->lm_info->map;
1009 for (seg = 0; seg < map->nsegs; seg++)
1011 if (map->segs[seg].p_vaddr <= sec->addr
1012 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
1014 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
1016 sec->endaddr += displ;
1022 /* Return the GOT address associated with the main executable. Return
1023 0 if it can't be found. */
1028 struct minimal_symbol *got_sym;
1030 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL, symfile_objfile);
1034 return SYMBOL_VALUE_ADDRESS (got_sym);
1037 /* Find the global pointer for the given function address ADDR. */
1040 frv_fdpic_find_global_pointer (CORE_ADDR addr)
1044 so = master_so_list ();
1048 struct int_elf32_fdpic_loadmap *map;
1050 map = so->lm_info->map;
1052 for (seg = 0; seg < map->nsegs; seg++)
1054 if (map->segs[seg].addr <= addr
1055 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
1056 return so->lm_info->got_value;
1062 /* Didn't find it it any of the shared objects. So assume it's in the
1067 /* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
1068 static CORE_ADDR find_canonical_descriptor_in_load_object
1069 (CORE_ADDR, CORE_ADDR, char *, bfd *, struct lm_info *);
1071 /* Given a function entry point, attempt to find the canonical descriptor
1072 associated with that entry point. Return 0 if no canonical descriptor
1076 frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
1080 CORE_ADDR got_value;
1081 struct int_elf32_fdpic_loadmap *ldm = 0;
1084 CORE_ADDR exec_loadmap_addr;
1086 /* Fetch the corresponding global pointer for the entry point. */
1087 got_value = frv_fdpic_find_global_pointer (entry_point);
1089 /* Attempt to find the name of the function. If the name is available,
1090 it'll be used as an aid in finding matching functions in the dynamic
1092 sym = find_pc_function (entry_point);
1096 name = SYMBOL_LINKAGE_NAME (sym);
1098 /* Check the main executable. */
1099 addr = find_canonical_descriptor_in_load_object
1100 (entry_point, got_value, name, symfile_objfile->obfd,
1101 main_executable_lm_info);
1103 /* If descriptor not found via main executable, check each load object
1104 in list of shared objects. */
1109 so = master_so_list ();
1112 addr = find_canonical_descriptor_in_load_object
1113 (entry_point, got_value, name, so->abfd, so->lm_info);
1126 find_canonical_descriptor_in_load_object
1127 (CORE_ADDR entry_point, CORE_ADDR got_value, char *name, bfd *abfd,
1134 /* Nothing to do if no bfd. */
1138 /* Nothing to do if no link map. */
1142 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1143 (More about this later.) But in order to fetch the relocs, we
1144 need to first fetch the dynamic symbols. These symbols need to
1145 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1146 works. (See the comments in the declaration of struct lm_info
1147 for more information.) */
1148 if (lm->dyn_syms == NULL)
1150 long storage_needed;
1151 unsigned int number_of_symbols;
1153 /* Determine amount of space needed to hold the dynamic symbol table. */
1154 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1156 /* If there are no dynamic symbols, there's nothing to do. */
1157 if (storage_needed <= 0)
1160 /* Allocate space for the dynamic symbol table. */
1161 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1163 /* Fetch the dynamic symbol table. */
1164 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1166 if (number_of_symbols == 0)
1170 /* Fetch the dynamic relocations if not already cached. */
1171 if (lm->dyn_relocs == NULL)
1173 long storage_needed;
1175 /* Determine amount of space needed to hold the dynamic relocs. */
1176 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1178 /* Bail out if there are no dynamic relocs. */
1179 if (storage_needed <= 0)
1182 /* Allocate space for the relocs. */
1183 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1185 /* Fetch the dynamic relocs. */
1187 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1190 /* Search the dynamic relocs. */
1191 for (i = 0; i < lm->dyn_reloc_count; i++)
1193 rel = lm->dyn_relocs[i];
1195 /* Relocs of interest are those which meet the following
1198 - the names match (assuming the caller could provide
1199 a name which matches ``entry_point'').
1200 - the relocation type must be R_FRV_FUNCDESC. Relocs
1201 of this type are used (by the dynamic linker) to
1202 look up the address of a canonical descriptor (allocating
1203 it if need be) and initializing the GOT entry referred
1204 to by the offset to the address of the descriptor.
1206 These relocs of interest may be used to obtain a
1207 candidate descriptor by first adjusting the reloc's
1208 address according to the link map and then dereferencing
1209 this address (which is a GOT entry) to obtain a descriptor
1211 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1212 && rel->howto->type == R_FRV_FUNCDESC)
1214 gdb_byte buf [FRV_PTR_SIZE];
1216 /* Compute address of address of candidate descriptor. */
1217 addr = rel->address + displacement_from_map (lm->map, rel->address);
1219 /* Fetch address of candidate descriptor. */
1220 if (target_read_memory (addr, buf, sizeof buf) != 0)
1222 addr = extract_unsigned_integer (buf, sizeof buf);
1224 /* Check for matching entry point. */
1225 if (target_read_memory (addr, buf, sizeof buf) != 0)
1227 if (extract_unsigned_integer (buf, sizeof buf) != entry_point)
1230 /* Check for matching got value. */
1231 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1233 if (extract_unsigned_integer (buf, sizeof buf) != got_value)
1236 /* Match was successful! Exit loop. */
1244 /* Given an objfile, return the address of its link map. This value is
1245 needed for TLS support. */
1247 frv_fetch_objfile_link_map (struct objfile *objfile)
1251 /* Cause frv_current_sos() to be run if it hasn't been already. */
1252 if (main_lm_addr == 0)
1253 solib_add (0, 0, 0, 1);
1255 /* frv_current_sos() will set main_lm_addr for the main executable. */
1256 if (objfile == symfile_objfile)
1257 return main_lm_addr;
1259 /* The other link map addresses may be found by examining the list
1260 of shared libraries. */
1261 for (so = master_so_list (); so; so = so->next)
1263 if (so->objfile == objfile)
1264 return so->lm_info->lm_addr;
1271 struct target_so_ops frv_so_ops;
1273 /* Provide a prototype to silence -Wmissing-prototypes. */
1274 extern initialize_file_ftype _initialize_frv_solib;
1277 _initialize_frv_solib (void)
1279 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1280 frv_so_ops.free_so = frv_free_so;
1281 frv_so_ops.clear_solib = frv_clear_solib;
1282 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1283 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1284 frv_so_ops.current_sos = frv_current_sos;
1285 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1286 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
1288 /* Debug this file's internals. */
1289 add_setshow_zinteger_cmd ("solib-frv", class_maintenance,
1290 &solib_frv_debug, _("\
1291 Set internal debugging of shared library code for FR-V."), _("\
1292 Show internal debugging of shared library code for FR-V."), _("\
1293 When non-zero, FR-V solib specific internal debugging is enabled."),
1295 NULL, /* FIXME: i18n: */
1296 &setdebuglist, &showdebuglist);