2 Copyright 1995, 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 /* ELF linker code. */
22 /* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
25 struct elf_info_failed
28 struct bfd_link_info *info;
31 static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33 static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35 static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39 static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41 static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43 static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45 static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49 static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51 static boolean elf_collect_hash_codes
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53 static boolean elf_link_read_relocs_from_section
54 PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
55 static void elf_link_output_relocs
56 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, Elf_Internal_Rela *));
57 static boolean elf_link_size_reloc_section
58 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
59 static void elf_link_adjust_relocs
60 PARAMS ((bfd *, Elf_Internal_Shdr *, unsigned int,
61 struct elf_link_hash_entry **));
63 /* Given an ELF BFD, add symbols to the global hash table as
67 elf_bfd_link_add_symbols (abfd, info)
69 struct bfd_link_info *info;
71 switch (bfd_get_format (abfd))
74 return elf_link_add_object_symbols (abfd, info);
76 return elf_link_add_archive_symbols (abfd, info);
78 bfd_set_error (bfd_error_wrong_format);
83 /* Search the symbol table of the archive element of the archive ABFD
84 whoes archove map contains a mention of SYMDEF, and determine if
85 the symbol is defined in this element. */
87 elf_link_is_defined_archive_symbol (abfd, symdef)
91 Elf_Internal_Shdr * hdr;
92 Elf_External_Sym * esym;
93 Elf_External_Sym * esymend;
94 Elf_External_Sym * buf = NULL;
98 boolean result = false;
100 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
101 if (abfd == (bfd *) NULL)
104 if (! bfd_check_format (abfd, bfd_object))
107 /* Select the appropriate symbol table. */
108 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
109 hdr = &elf_tdata (abfd)->symtab_hdr;
111 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
113 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
115 /* The sh_info field of the symtab header tells us where the
116 external symbols start. We don't care about the local symbols. */
117 if (elf_bad_symtab (abfd))
119 extsymcount = symcount;
124 extsymcount = symcount - hdr->sh_info;
125 extsymoff = hdr->sh_info;
128 buf = ((Elf_External_Sym *)
129 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
130 if (buf == NULL && extsymcount != 0)
133 /* Read in the symbol table.
134 FIXME: This ought to be cached somewhere. */
136 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
138 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
139 != extsymcount * sizeof (Elf_External_Sym)))
145 /* Scan the symbol table looking for SYMDEF. */
146 esymend = buf + extsymcount;
151 Elf_Internal_Sym sym;
154 elf_swap_symbol_in (abfd, esym, & sym);
156 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
157 if (name == (const char *) NULL)
160 if (strcmp (name, symdef->name) == 0)
163 (ELF_ST_BIND (sym.st_info) == STB_GLOBAL)
164 && (sym.st_shndx != SHN_UNDEF);
175 /* Add symbols from an ELF archive file to the linker hash table. We
176 don't use _bfd_generic_link_add_archive_symbols because of a
177 problem which arises on UnixWare. The UnixWare libc.so is an
178 archive which includes an entry libc.so.1 which defines a bunch of
179 symbols. The libc.so archive also includes a number of other
180 object files, which also define symbols, some of which are the same
181 as those defined in libc.so.1. Correct linking requires that we
182 consider each object file in turn, and include it if it defines any
183 symbols we need. _bfd_generic_link_add_archive_symbols does not do
184 this; it looks through the list of undefined symbols, and includes
185 any object file which defines them. When this algorithm is used on
186 UnixWare, it winds up pulling in libc.so.1 early and defining a
187 bunch of symbols. This means that some of the other objects in the
188 archive are not included in the link, which is incorrect since they
189 precede libc.so.1 in the archive.
191 Fortunately, ELF archive handling is simpler than that done by
192 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
193 oddities. In ELF, if we find a symbol in the archive map, and the
194 symbol is currently undefined, we know that we must pull in that
197 Unfortunately, we do have to make multiple passes over the symbol
198 table until nothing further is resolved. */
201 elf_link_add_archive_symbols (abfd, info)
203 struct bfd_link_info *info;
206 boolean *defined = NULL;
207 boolean *included = NULL;
211 if (! bfd_has_map (abfd))
213 /* An empty archive is a special case. */
214 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
216 bfd_set_error (bfd_error_no_armap);
220 /* Keep track of all symbols we know to be already defined, and all
221 files we know to be already included. This is to speed up the
222 second and subsequent passes. */
223 c = bfd_ardata (abfd)->symdef_count;
226 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
227 included = (boolean *) bfd_malloc (c * sizeof (boolean));
228 if (defined == (boolean *) NULL || included == (boolean *) NULL)
230 memset (defined, 0, c * sizeof (boolean));
231 memset (included, 0, c * sizeof (boolean));
233 symdefs = bfd_ardata (abfd)->symdefs;
246 symdefend = symdef + c;
247 for (i = 0; symdef < symdefend; symdef++, i++)
249 struct elf_link_hash_entry *h;
251 struct bfd_link_hash_entry *undefs_tail;
254 if (defined[i] || included[i])
256 if (symdef->file_offset == last)
262 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
263 false, false, false);
269 /* If this is a default version (the name contains @@),
270 look up the symbol again without the version. The
271 effect is that references to the symbol without the
272 version will be matched by the default symbol in the
275 p = strchr (symdef->name, ELF_VER_CHR);
276 if (p == NULL || p[1] != ELF_VER_CHR)
279 copy = bfd_alloc (abfd, p - symdef->name + 1);
282 memcpy (copy, symdef->name, p - symdef->name);
283 copy[p - symdef->name] = '\0';
285 h = elf_link_hash_lookup (elf_hash_table (info), copy,
286 false, false, false);
288 bfd_release (abfd, copy);
294 if (h->root.type == bfd_link_hash_common)
296 /* We currently have a common symbol. The archive map contains
297 a reference to this symbol, so we may want to include it. We
298 only want to include it however, if this archive element
299 contains a definition of the symbol, not just another common
302 Unfortunately some archivers (including GNU ar) will put
303 declarations of common symbols into their archive maps, as
304 well as real definitions, so we cannot just go by the archive
305 map alone. Instead we must read in the element's symbol
306 table and check that to see what kind of symbol definition
308 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
311 else if (h->root.type != bfd_link_hash_undefined)
313 if (h->root.type != bfd_link_hash_undefweak)
318 /* We need to include this archive member. */
320 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
321 if (element == (bfd *) NULL)
324 if (! bfd_check_format (element, bfd_object))
327 /* Doublecheck that we have not included this object
328 already--it should be impossible, but there may be
329 something wrong with the archive. */
330 if (element->archive_pass != 0)
332 bfd_set_error (bfd_error_bad_value);
335 element->archive_pass = 1;
337 undefs_tail = info->hash->undefs_tail;
339 if (! (*info->callbacks->add_archive_element) (info, element,
342 if (! elf_link_add_object_symbols (element, info))
345 /* If there are any new undefined symbols, we need to make
346 another pass through the archive in order to see whether
347 they can be defined. FIXME: This isn't perfect, because
348 common symbols wind up on undefs_tail and because an
349 undefined symbol which is defined later on in this pass
350 does not require another pass. This isn't a bug, but it
351 does make the code less efficient than it could be. */
352 if (undefs_tail != info->hash->undefs_tail)
355 /* Look backward to mark all symbols from this object file
356 which we have already seen in this pass. */
360 included[mark] = true;
365 while (symdefs[mark].file_offset == symdef->file_offset);
367 /* We mark subsequent symbols from this object file as we go
368 on through the loop. */
369 last = symdef->file_offset;
380 if (defined != (boolean *) NULL)
382 if (included != (boolean *) NULL)
387 /* This function is called when we want to define a new symbol. It
388 handles the various cases which arise when we find a definition in
389 a dynamic object, or when there is already a definition in a
390 dynamic object. The new symbol is described by NAME, SYM, PSEC,
391 and PVALUE. We set SYM_HASH to the hash table entry. We set
392 OVERRIDE if the old symbol is overriding a new definition. We set
393 TYPE_CHANGE_OK if it is OK for the type to change. We set
394 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
395 change, we mean that we shouldn't warn if the type or size does
399 elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
400 override, type_change_ok, size_change_ok)
402 struct bfd_link_info *info;
404 Elf_Internal_Sym *sym;
407 struct elf_link_hash_entry **sym_hash;
409 boolean *type_change_ok;
410 boolean *size_change_ok;
413 struct elf_link_hash_entry *h;
416 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
421 bind = ELF_ST_BIND (sym->st_info);
423 if (! bfd_is_und_section (sec))
424 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
426 h = ((struct elf_link_hash_entry *)
427 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
432 /* This code is for coping with dynamic objects, and is only useful
433 if we are doing an ELF link. */
434 if (info->hash->creator != abfd->xvec)
437 /* For merging, we only care about real symbols. */
439 while (h->root.type == bfd_link_hash_indirect
440 || h->root.type == bfd_link_hash_warning)
441 h = (struct elf_link_hash_entry *) h->root.u.i.link;
443 /* If we just created the symbol, mark it as being an ELF symbol.
444 Other than that, there is nothing to do--there is no merge issue
445 with a newly defined symbol--so we just return. */
447 if (h->root.type == bfd_link_hash_new)
449 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
453 /* OLDBFD is a BFD associated with the existing symbol. */
455 switch (h->root.type)
461 case bfd_link_hash_undefined:
462 case bfd_link_hash_undefweak:
463 oldbfd = h->root.u.undef.abfd;
466 case bfd_link_hash_defined:
467 case bfd_link_hash_defweak:
468 oldbfd = h->root.u.def.section->owner;
471 case bfd_link_hash_common:
472 oldbfd = h->root.u.c.p->section->owner;
476 /* In cases involving weak versioned symbols, we may wind up trying
477 to merge a symbol with itself. Catch that here, to avoid the
478 confusion that results if we try to override a symbol with
479 itself. The additional tests catch cases like
480 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
481 dynamic object, which we do want to handle here. */
483 && ((abfd->flags & DYNAMIC) == 0
484 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
487 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
488 respectively, is from a dynamic object. */
490 if ((abfd->flags & DYNAMIC) != 0)
496 olddyn = (oldbfd->flags & DYNAMIC) != 0;
501 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
502 indices used by MIPS ELF. */
503 switch (h->root.type)
509 case bfd_link_hash_defined:
510 case bfd_link_hash_defweak:
511 hsec = h->root.u.def.section;
514 case bfd_link_hash_common:
515 hsec = h->root.u.c.p->section;
522 olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
525 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
526 respectively, appear to be a definition rather than reference. */
528 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
533 if (h->root.type == bfd_link_hash_undefined
534 || h->root.type == bfd_link_hash_undefweak
535 || h->root.type == bfd_link_hash_common)
540 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
541 symbol, respectively, appears to be a common symbol in a dynamic
542 object. If a symbol appears in an uninitialized section, and is
543 not weak, and is not a function, then it may be a common symbol
544 which was resolved when the dynamic object was created. We want
545 to treat such symbols specially, because they raise special
546 considerations when setting the symbol size: if the symbol
547 appears as a common symbol in a regular object, and the size in
548 the regular object is larger, we must make sure that we use the
549 larger size. This problematic case can always be avoided in C,
550 but it must be handled correctly when using Fortran shared
553 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
554 likewise for OLDDYNCOMMON and OLDDEF.
556 Note that this test is just a heuristic, and that it is quite
557 possible to have an uninitialized symbol in a shared object which
558 is really a definition, rather than a common symbol. This could
559 lead to some minor confusion when the symbol really is a common
560 symbol in some regular object. However, I think it will be
565 && (sec->flags & SEC_ALLOC) != 0
566 && (sec->flags & SEC_LOAD) == 0
569 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
572 newdyncommon = false;
576 && h->root.type == bfd_link_hash_defined
577 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
578 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
579 && (h->root.u.def.section->flags & SEC_LOAD) == 0
581 && h->type != STT_FUNC)
584 olddyncommon = false;
586 /* It's OK to change the type if either the existing symbol or the
587 new symbol is weak. */
589 if (h->root.type == bfd_link_hash_defweak
590 || h->root.type == bfd_link_hash_undefweak
592 *type_change_ok = true;
594 /* It's OK to change the size if either the existing symbol or the
595 new symbol is weak, or if the old symbol is undefined. */
598 || h->root.type == bfd_link_hash_undefined)
599 *size_change_ok = true;
601 /* If both the old and the new symbols look like common symbols in a
602 dynamic object, set the size of the symbol to the larger of the
607 && sym->st_size != h->size)
609 /* Since we think we have two common symbols, issue a multiple
610 common warning if desired. Note that we only warn if the
611 size is different. If the size is the same, we simply let
612 the old symbol override the new one as normally happens with
613 symbols defined in dynamic objects. */
615 if (! ((*info->callbacks->multiple_common)
616 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
617 h->size, abfd, bfd_link_hash_common, sym->st_size)))
620 if (sym->st_size > h->size)
621 h->size = sym->st_size;
623 *size_change_ok = true;
626 /* If we are looking at a dynamic object, and we have found a
627 definition, we need to see if the symbol was already defined by
628 some other object. If so, we want to use the existing
629 definition, and we do not want to report a multiple symbol
630 definition error; we do this by clobbering *PSEC to be
633 We treat a common symbol as a definition if the symbol in the
634 shared library is a function, since common symbols always
635 represent variables; this can cause confusion in principle, but
636 any such confusion would seem to indicate an erroneous program or
637 shared library. We also permit a common symbol in a regular
638 object to override a weak symbol in a shared object.
640 We prefer a non-weak definition in a shared library to a weak
641 definition in the executable. */
646 || (h->root.type == bfd_link_hash_common
648 || ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
649 && (h->root.type != bfd_link_hash_defweak
650 || bind == STB_WEAK))
654 newdyncommon = false;
656 *psec = sec = bfd_und_section_ptr;
657 *size_change_ok = true;
659 /* If we get here when the old symbol is a common symbol, then
660 we are explicitly letting it override a weak symbol or
661 function in a dynamic object, and we don't want to warn about
662 a type change. If the old symbol is a defined symbol, a type
663 change warning may still be appropriate. */
665 if (h->root.type == bfd_link_hash_common)
666 *type_change_ok = true;
669 /* Handle the special case of an old common symbol merging with a
670 new symbol which looks like a common symbol in a shared object.
671 We change *PSEC and *PVALUE to make the new symbol look like a
672 common symbol, and let _bfd_generic_link_add_one_symbol will do
676 && h->root.type == bfd_link_hash_common)
680 newdyncommon = false;
681 *pvalue = sym->st_size;
682 *psec = sec = bfd_com_section_ptr;
683 *size_change_ok = true;
686 /* If the old symbol is from a dynamic object, and the new symbol is
687 a definition which is not from a dynamic object, then the new
688 symbol overrides the old symbol. Symbols from regular files
689 always take precedence over symbols from dynamic objects, even if
690 they are defined after the dynamic object in the link.
692 As above, we again permit a common symbol in a regular object to
693 override a definition in a shared object if the shared object
694 symbol is a function or is weak.
696 As above, we permit a non-weak definition in a shared object to
697 override a weak definition in a regular object. */
701 || (bfd_is_com_section (sec)
702 && (h->root.type == bfd_link_hash_defweak
703 || h->type == STT_FUNC)))
706 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
708 || h->root.type == bfd_link_hash_defweak))
710 /* Change the hash table entry to undefined, and let
711 _bfd_generic_link_add_one_symbol do the right thing with the
714 h->root.type = bfd_link_hash_undefined;
715 h->root.u.undef.abfd = h->root.u.def.section->owner;
716 *size_change_ok = true;
719 olddyncommon = false;
721 /* We again permit a type change when a common symbol may be
722 overriding a function. */
724 if (bfd_is_com_section (sec))
725 *type_change_ok = true;
727 /* This union may have been set to be non-NULL when this symbol
728 was seen in a dynamic object. We must force the union to be
729 NULL, so that it is correct for a regular symbol. */
731 h->verinfo.vertree = NULL;
733 /* In this special case, if H is the target of an indirection,
734 we want the caller to frob with H rather than with the
735 indirect symbol. That will permit the caller to redefine the
736 target of the indirection, rather than the indirect symbol
737 itself. FIXME: This will break the -y option if we store a
738 symbol with a different name. */
742 /* Handle the special case of a new common symbol merging with an
743 old symbol that looks like it might be a common symbol defined in
744 a shared object. Note that we have already handled the case in
745 which a new common symbol should simply override the definition
746 in the shared library. */
749 && bfd_is_com_section (sec)
752 /* It would be best if we could set the hash table entry to a
753 common symbol, but we don't know what to use for the section
755 if (! ((*info->callbacks->multiple_common)
756 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
757 h->size, abfd, bfd_link_hash_common, sym->st_size)))
760 /* If the predumed common symbol in the dynamic object is
761 larger, pretend that the new symbol has its size. */
763 if (h->size > *pvalue)
766 /* FIXME: We no longer know the alignment required by the symbol
767 in the dynamic object, so we just wind up using the one from
768 the regular object. */
771 olddyncommon = false;
773 h->root.type = bfd_link_hash_undefined;
774 h->root.u.undef.abfd = h->root.u.def.section->owner;
776 *size_change_ok = true;
777 *type_change_ok = true;
779 h->verinfo.vertree = NULL;
782 /* Handle the special case of a weak definition in a regular object
783 followed by a non-weak definition in a shared object. In this
784 case, we prefer the definition in the shared object. */
786 && h->root.type == bfd_link_hash_defweak
791 /* To make this work we have to frob the flags so that the rest
792 of the code does not think we are using the regular
794 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
795 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
796 else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
797 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
798 h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
799 | ELF_LINK_HASH_DEF_DYNAMIC);
801 /* If H is the target of an indirection, we want the caller to
802 use H rather than the indirect symbol. Otherwise if we are
803 defining a new indirect symbol we will wind up attaching it
804 to the entry we are overriding. */
808 /* Handle the special case of a non-weak definition in a shared
809 object followed by a weak definition in a regular object. In
810 this case we prefer to definition in the shared object. To make
811 this work we have to tell the caller to not treat the new symbol
815 && h->root.type != bfd_link_hash_defweak
824 /* Add symbols from an ELF object file to the linker hash table. */
827 elf_link_add_object_symbols (abfd, info)
829 struct bfd_link_info *info;
831 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
832 const Elf_Internal_Sym *,
833 const char **, flagword *,
834 asection **, bfd_vma *));
835 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
836 asection *, const Elf_Internal_Rela *));
838 Elf_Internal_Shdr *hdr;
842 Elf_External_Sym *buf = NULL;
843 struct elf_link_hash_entry **sym_hash;
845 bfd_byte *dynver = NULL;
846 Elf_External_Versym *extversym = NULL;
847 Elf_External_Versym *ever;
848 Elf_External_Dyn *dynbuf = NULL;
849 struct elf_link_hash_entry *weaks;
850 Elf_External_Sym *esym;
851 Elf_External_Sym *esymend;
853 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
854 collect = get_elf_backend_data (abfd)->collect;
856 if ((abfd->flags & DYNAMIC) == 0)
862 /* You can't use -r against a dynamic object. Also, there's no
863 hope of using a dynamic object which does not exactly match
864 the format of the output file. */
865 if (info->relocateable || info->hash->creator != abfd->xvec)
867 bfd_set_error (bfd_error_invalid_operation);
872 /* As a GNU extension, any input sections which are named
873 .gnu.warning.SYMBOL are treated as warning symbols for the given
874 symbol. This differs from .gnu.warning sections, which generate
875 warnings when they are included in an output file. */
880 for (s = abfd->sections; s != NULL; s = s->next)
884 name = bfd_get_section_name (abfd, s);
885 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
890 name += sizeof ".gnu.warning." - 1;
892 /* If this is a shared object, then look up the symbol
893 in the hash table. If it is there, and it is already
894 been defined, then we will not be using the entry
895 from this shared object, so we don't need to warn.
896 FIXME: If we see the definition in a regular object
897 later on, we will warn, but we shouldn't. The only
898 fix is to keep track of what warnings we are supposed
899 to emit, and then handle them all at the end of the
901 if (dynamic && abfd->xvec == info->hash->creator)
903 struct elf_link_hash_entry *h;
905 h = elf_link_hash_lookup (elf_hash_table (info), name,
908 /* FIXME: What about bfd_link_hash_common? */
910 && (h->root.type == bfd_link_hash_defined
911 || h->root.type == bfd_link_hash_defweak))
913 /* We don't want to issue this warning. Clobber
914 the section size so that the warning does not
915 get copied into the output file. */
921 sz = bfd_section_size (abfd, s);
922 msg = (char *) bfd_alloc (abfd, sz + 1);
926 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
931 if (! (_bfd_generic_link_add_one_symbol
932 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
933 false, collect, (struct bfd_link_hash_entry **) NULL)))
936 if (! info->relocateable)
938 /* Clobber the section size so that the warning does
939 not get copied into the output file. */
946 /* If this is a dynamic object, we always link against the .dynsym
947 symbol table, not the .symtab symbol table. The dynamic linker
948 will only see the .dynsym symbol table, so there is no reason to
949 look at .symtab for a dynamic object. */
951 if (! dynamic || elf_dynsymtab (abfd) == 0)
952 hdr = &elf_tdata (abfd)->symtab_hdr;
954 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
958 /* Read in any version definitions. */
960 if (! _bfd_elf_slurp_version_tables (abfd))
963 /* Read in the symbol versions, but don't bother to convert them
964 to internal format. */
965 if (elf_dynversym (abfd) != 0)
967 Elf_Internal_Shdr *versymhdr;
969 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
970 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
971 if (extversym == NULL)
973 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
974 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
975 != versymhdr->sh_size))
980 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
982 /* The sh_info field of the symtab header tells us where the
983 external symbols start. We don't care about the local symbols at
985 if (elf_bad_symtab (abfd))
987 extsymcount = symcount;
992 extsymcount = symcount - hdr->sh_info;
993 extsymoff = hdr->sh_info;
996 buf = ((Elf_External_Sym *)
997 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
998 if (buf == NULL && extsymcount != 0)
1001 /* We store a pointer to the hash table entry for each external
1003 sym_hash = ((struct elf_link_hash_entry **)
1005 extsymcount * sizeof (struct elf_link_hash_entry *)));
1006 if (sym_hash == NULL)
1008 elf_sym_hashes (abfd) = sym_hash;
1012 /* If we are creating a shared library, create all the dynamic
1013 sections immediately. We need to attach them to something,
1014 so we attach them to this BFD, provided it is the right
1015 format. FIXME: If there are no input BFD's of the same
1016 format as the output, we can't make a shared library. */
1018 && ! elf_hash_table (info)->dynamic_sections_created
1019 && abfd->xvec == info->hash->creator)
1021 if (! elf_link_create_dynamic_sections (abfd, info))
1030 bfd_size_type oldsize;
1031 bfd_size_type strindex;
1033 /* Find the name to use in a DT_NEEDED entry that refers to this
1034 object. If the object has a DT_SONAME entry, we use it.
1035 Otherwise, if the generic linker stuck something in
1036 elf_dt_name, we use that. Otherwise, we just use the file
1037 name. If the generic linker put a null string into
1038 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
1039 there is a DT_SONAME entry. */
1041 name = bfd_get_filename (abfd);
1042 if (elf_dt_name (abfd) != NULL)
1044 name = elf_dt_name (abfd);
1048 s = bfd_get_section_by_name (abfd, ".dynamic");
1051 Elf_External_Dyn *extdyn;
1052 Elf_External_Dyn *extdynend;
1056 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
1060 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
1061 (file_ptr) 0, s->_raw_size))
1064 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1067 link = elf_elfsections (abfd)[elfsec]->sh_link;
1070 /* The shared libraries distributed with hpux11 have a bogus
1071 sh_link field for the ".dynamic" section. This code detects
1072 when LINK refers to a section that is not a string table and
1073 tries to find the string table for the ".dynsym" section
1075 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[link];
1076 if (hdr->sh_type != SHT_STRTAB)
1078 asection *s = bfd_get_section_by_name (abfd, ".dynsym");
1079 int elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1082 link = elf_elfsections (abfd)[elfsec]->sh_link;
1087 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
1088 for (; extdyn < extdynend; extdyn++)
1090 Elf_Internal_Dyn dyn;
1092 elf_swap_dyn_in (abfd, extdyn, &dyn);
1093 if (dyn.d_tag == DT_SONAME)
1095 name = bfd_elf_string_from_elf_section (abfd, link,
1100 if (dyn.d_tag == DT_NEEDED)
1102 struct bfd_link_needed_list *n, **pn;
1105 n = ((struct bfd_link_needed_list *)
1106 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
1107 fnm = bfd_elf_string_from_elf_section (abfd, link,
1109 if (n == NULL || fnm == NULL)
1111 anm = bfd_alloc (abfd, strlen (fnm) + 1);
1118 for (pn = &elf_hash_table (info)->needed;
1130 /* We do not want to include any of the sections in a dynamic
1131 object in the output file. We hack by simply clobbering the
1132 list of sections in the BFD. This could be handled more
1133 cleanly by, say, a new section flag; the existing
1134 SEC_NEVER_LOAD flag is not the one we want, because that one
1135 still implies that the section takes up space in the output
1137 abfd->sections = NULL;
1138 abfd->section_count = 0;
1140 /* If this is the first dynamic object found in the link, create
1141 the special sections required for dynamic linking. */
1142 if (! elf_hash_table (info)->dynamic_sections_created)
1144 if (! elf_link_create_dynamic_sections (abfd, info))
1150 /* Add a DT_NEEDED entry for this dynamic object. */
1151 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
1152 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
1154 if (strindex == (bfd_size_type) -1)
1157 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
1160 Elf_External_Dyn *dyncon, *dynconend;
1162 /* The hash table size did not change, which means that
1163 the dynamic object name was already entered. If we
1164 have already included this dynamic object in the
1165 link, just ignore it. There is no reason to include
1166 a particular dynamic object more than once. */
1167 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
1169 BFD_ASSERT (sdyn != NULL);
1171 dyncon = (Elf_External_Dyn *) sdyn->contents;
1172 dynconend = (Elf_External_Dyn *) (sdyn->contents +
1174 for (; dyncon < dynconend; dyncon++)
1176 Elf_Internal_Dyn dyn;
1178 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
1180 if (dyn.d_tag == DT_NEEDED
1181 && dyn.d_un.d_val == strindex)
1185 if (extversym != NULL)
1192 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
1196 /* Save the SONAME, if there is one, because sometimes the
1197 linker emulation code will need to know it. */
1199 name = bfd_get_filename (abfd);
1200 elf_dt_name (abfd) = name;
1204 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
1206 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
1207 != extsymcount * sizeof (Elf_External_Sym)))
1212 ever = extversym != NULL ? extversym + extsymoff : NULL;
1213 esymend = buf + extsymcount;
1216 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1218 Elf_Internal_Sym sym;
1224 struct elf_link_hash_entry *h;
1226 boolean size_change_ok, type_change_ok;
1227 boolean new_weakdef;
1228 unsigned int old_alignment;
1230 elf_swap_symbol_in (abfd, esym, &sym);
1232 flags = BSF_NO_FLAGS;
1234 value = sym.st_value;
1237 bind = ELF_ST_BIND (sym.st_info);
1238 if (bind == STB_LOCAL)
1240 /* This should be impossible, since ELF requires that all
1241 global symbols follow all local symbols, and that sh_info
1242 point to the first global symbol. Unfortunatealy, Irix 5
1246 else if (bind == STB_GLOBAL)
1248 if (sym.st_shndx != SHN_UNDEF
1249 && sym.st_shndx != SHN_COMMON)
1254 else if (bind == STB_WEAK)
1258 /* Leave it up to the processor backend. */
1261 if (sym.st_shndx == SHN_UNDEF)
1262 sec = bfd_und_section_ptr;
1263 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1265 sec = section_from_elf_index (abfd, sym.st_shndx);
1267 sec = bfd_abs_section_ptr;
1268 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1271 else if (sym.st_shndx == SHN_ABS)
1272 sec = bfd_abs_section_ptr;
1273 else if (sym.st_shndx == SHN_COMMON)
1275 sec = bfd_com_section_ptr;
1276 /* What ELF calls the size we call the value. What ELF
1277 calls the value we call the alignment. */
1278 value = sym.st_size;
1282 /* Leave it up to the processor backend. */
1285 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1286 if (name == (const char *) NULL)
1289 if (add_symbol_hook)
1291 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1295 /* The hook function sets the name to NULL if this symbol
1296 should be skipped for some reason. */
1297 if (name == (const char *) NULL)
1301 /* Sanity check that all possibilities were handled. */
1302 if (sec == (asection *) NULL)
1304 bfd_set_error (bfd_error_bad_value);
1308 if (bfd_is_und_section (sec)
1309 || bfd_is_com_section (sec))
1314 size_change_ok = false;
1315 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1317 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1319 Elf_Internal_Versym iver;
1320 unsigned int vernum = 0;
1325 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1326 vernum = iver.vs_vers & VERSYM_VERSION;
1328 /* If this is a hidden symbol, or if it is not version
1329 1, we append the version name to the symbol name.
1330 However, we do not modify a non-hidden absolute
1331 symbol, because it might be the version symbol
1332 itself. FIXME: What if it isn't? */
1333 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1334 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1337 int namelen, newlen;
1340 if (sym.st_shndx != SHN_UNDEF)
1342 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1344 (*_bfd_error_handler)
1345 (_("%s: %s: invalid version %u (max %d)"),
1346 bfd_get_filename (abfd), name, vernum,
1347 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1348 bfd_set_error (bfd_error_bad_value);
1351 else if (vernum > 1)
1353 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1359 /* We cannot simply test for the number of
1360 entries in the VERNEED section since the
1361 numbers for the needed versions do not start
1363 Elf_Internal_Verneed *t;
1366 for (t = elf_tdata (abfd)->verref;
1370 Elf_Internal_Vernaux *a;
1372 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1374 if (a->vna_other == vernum)
1376 verstr = a->vna_nodename;
1385 (*_bfd_error_handler)
1386 (_("%s: %s: invalid needed version %d"),
1387 bfd_get_filename (abfd), name, vernum);
1388 bfd_set_error (bfd_error_bad_value);
1393 namelen = strlen (name);
1394 newlen = namelen + strlen (verstr) + 2;
1395 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1398 newname = (char *) bfd_alloc (abfd, newlen);
1399 if (newname == NULL)
1401 strcpy (newname, name);
1402 p = newname + namelen;
1404 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1412 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1413 sym_hash, &override, &type_change_ok,
1421 while (h->root.type == bfd_link_hash_indirect
1422 || h->root.type == bfd_link_hash_warning)
1423 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1425 /* Remember the old alignment if this is a common symbol, so
1426 that we don't reduce the alignment later on. We can't
1427 check later, because _bfd_generic_link_add_one_symbol
1428 will set a default for the alignment which we want to
1430 if (h->root.type == bfd_link_hash_common)
1431 old_alignment = h->root.u.c.p->alignment_power;
1433 if (elf_tdata (abfd)->verdef != NULL
1437 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1440 if (! (_bfd_generic_link_add_one_symbol
1441 (info, abfd, name, flags, sec, value, (const char *) NULL,
1442 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1446 while (h->root.type == bfd_link_hash_indirect
1447 || h->root.type == bfd_link_hash_warning)
1448 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1451 new_weakdef = false;
1454 && (flags & BSF_WEAK) != 0
1455 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1456 && info->hash->creator->flavour == bfd_target_elf_flavour
1457 && h->weakdef == NULL)
1459 /* Keep a list of all weak defined non function symbols from
1460 a dynamic object, using the weakdef field. Later in this
1461 function we will set the weakdef field to the correct
1462 value. We only put non-function symbols from dynamic
1463 objects on this list, because that happens to be the only
1464 time we need to know the normal symbol corresponding to a
1465 weak symbol, and the information is time consuming to
1466 figure out. If the weakdef field is not already NULL,
1467 then this symbol was already defined by some previous
1468 dynamic object, and we will be using that previous
1469 definition anyhow. */
1476 /* Set the alignment of a common symbol. */
1477 if (sym.st_shndx == SHN_COMMON
1478 && h->root.type == bfd_link_hash_common)
1482 align = bfd_log2 (sym.st_value);
1483 if (align > old_alignment)
1484 h->root.u.c.p->alignment_power = align;
1487 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1493 /* Remember the symbol size and type. */
1494 if (sym.st_size != 0
1495 && (definition || h->size == 0))
1497 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1498 (*_bfd_error_handler)
1499 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1500 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1501 bfd_get_filename (abfd));
1503 h->size = sym.st_size;
1506 /* If this is a common symbol, then we always want H->SIZE
1507 to be the size of the common symbol. The code just above
1508 won't fix the size if a common symbol becomes larger. We
1509 don't warn about a size change here, because that is
1510 covered by --warn-common. */
1511 if (h->root.type == bfd_link_hash_common)
1512 h->size = h->root.u.c.size;
1514 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1515 && (definition || h->type == STT_NOTYPE))
1517 if (h->type != STT_NOTYPE
1518 && h->type != ELF_ST_TYPE (sym.st_info)
1519 && ! type_change_ok)
1520 (*_bfd_error_handler)
1521 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1522 name, h->type, ELF_ST_TYPE (sym.st_info),
1523 bfd_get_filename (abfd));
1525 h->type = ELF_ST_TYPE (sym.st_info);
1528 if (sym.st_other != 0
1529 && (definition || h->other == 0))
1530 h->other = sym.st_other;
1532 /* Set a flag in the hash table entry indicating the type of
1533 reference or definition we just found. Keep a count of
1534 the number of dynamic symbols we find. A dynamic symbol
1535 is one which is referenced or defined by both a regular
1536 object and a shared object. */
1537 old_flags = h->elf_link_hash_flags;
1543 new_flag = ELF_LINK_HASH_REF_REGULAR;
1544 if (bind != STB_WEAK)
1545 new_flag |= ELF_LINK_HASH_REF_REGULAR_NONWEAK;
1548 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1550 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1551 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1557 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1559 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1560 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1561 | ELF_LINK_HASH_REF_REGULAR)) != 0
1562 || (h->weakdef != NULL
1564 && h->weakdef->dynindx != -1))
1568 h->elf_link_hash_flags |= new_flag;
1570 /* If this symbol has a version, and it is the default
1571 version, we create an indirect symbol from the default
1572 name to the fully decorated name. This will cause
1573 external references which do not specify a version to be
1574 bound to this version of the symbol. */
1579 p = strchr (name, ELF_VER_CHR);
1580 if (p != NULL && p[1] == ELF_VER_CHR)
1583 struct elf_link_hash_entry *hi;
1586 shortname = bfd_hash_allocate (&info->hash->table,
1588 if (shortname == NULL)
1590 strncpy (shortname, name, p - name);
1591 shortname[p - name] = '\0';
1593 /* We are going to create a new symbol. Merge it
1594 with any existing symbol with this name. For the
1595 purposes of the merge, act as though we were
1596 defining the symbol we just defined, although we
1597 actually going to define an indirect symbol. */
1598 type_change_ok = false;
1599 size_change_ok = false;
1600 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1601 &value, &hi, &override,
1602 &type_change_ok, &size_change_ok))
1607 if (! (_bfd_generic_link_add_one_symbol
1608 (info, abfd, shortname, BSF_INDIRECT,
1609 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1610 collect, (struct bfd_link_hash_entry **) &hi)))
1615 /* In this case the symbol named SHORTNAME is
1616 overriding the indirect symbol we want to
1617 add. We were planning on making SHORTNAME an
1618 indirect symbol referring to NAME. SHORTNAME
1619 is the name without a version. NAME is the
1620 fully versioned name, and it is the default
1623 Overriding means that we already saw a
1624 definition for the symbol SHORTNAME in a
1625 regular object, and it is overriding the
1626 symbol defined in the dynamic object.
1628 When this happens, we actually want to change
1629 NAME, the symbol we just added, to refer to
1630 SHORTNAME. This will cause references to
1631 NAME in the shared object to become
1632 references to SHORTNAME in the regular
1633 object. This is what we expect when we
1634 override a function in a shared object: that
1635 the references in the shared object will be
1636 mapped to the definition in the regular
1639 while (hi->root.type == bfd_link_hash_indirect
1640 || hi->root.type == bfd_link_hash_warning)
1641 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1643 h->root.type = bfd_link_hash_indirect;
1644 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1645 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1647 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1648 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1649 if (hi->elf_link_hash_flags
1650 & (ELF_LINK_HASH_REF_REGULAR
1651 | ELF_LINK_HASH_DEF_REGULAR))
1653 if (! _bfd_elf_link_record_dynamic_symbol (info,
1659 /* Now set HI to H, so that the following code
1660 will set the other fields correctly. */
1664 /* If there is a duplicate definition somewhere,
1665 then HI may not point to an indirect symbol. We
1666 will have reported an error to the user in that
1669 if (hi->root.type == bfd_link_hash_indirect)
1671 struct elf_link_hash_entry *ht;
1673 /* If the symbol became indirect, then we assume
1674 that we have not seen a definition before. */
1675 BFD_ASSERT ((hi->elf_link_hash_flags
1676 & (ELF_LINK_HASH_DEF_DYNAMIC
1677 | ELF_LINK_HASH_DEF_REGULAR))
1680 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1682 /* Copy down any references that we may have
1683 already seen to the symbol which just became
1685 ht->elf_link_hash_flags |=
1686 (hi->elf_link_hash_flags
1687 & (ELF_LINK_HASH_REF_DYNAMIC
1688 | ELF_LINK_HASH_REF_REGULAR
1689 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1690 | ELF_LINK_NON_GOT_REF));
1692 /* Copy over the global and procedure linkage table
1693 offset entries. These may have been already set
1694 up by a check_relocs routine. */
1695 if (ht->got.offset == (bfd_vma) -1)
1697 ht->got.offset = hi->got.offset;
1698 hi->got.offset = (bfd_vma) -1;
1700 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1702 if (ht->plt.offset == (bfd_vma) -1)
1704 ht->plt.offset = hi->plt.offset;
1705 hi->plt.offset = (bfd_vma) -1;
1707 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1709 if (ht->dynindx == -1)
1711 ht->dynindx = hi->dynindx;
1712 ht->dynstr_index = hi->dynstr_index;
1714 hi->dynstr_index = 0;
1716 BFD_ASSERT (hi->dynindx == -1);
1718 /* FIXME: There may be other information to copy
1719 over for particular targets. */
1721 /* See if the new flags lead us to realize that
1722 the symbol must be dynamic. */
1728 || ((hi->elf_link_hash_flags
1729 & ELF_LINK_HASH_REF_DYNAMIC)
1735 if ((hi->elf_link_hash_flags
1736 & ELF_LINK_HASH_REF_REGULAR) != 0)
1742 /* We also need to define an indirection from the
1743 nondefault version of the symbol. */
1745 shortname = bfd_hash_allocate (&info->hash->table,
1747 if (shortname == NULL)
1749 strncpy (shortname, name, p - name);
1750 strcpy (shortname + (p - name), p + 1);
1752 /* Once again, merge with any existing symbol. */
1753 type_change_ok = false;
1754 size_change_ok = false;
1755 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1756 &value, &hi, &override,
1757 &type_change_ok, &size_change_ok))
1762 /* Here SHORTNAME is a versioned name, so we
1763 don't expect to see the type of override we
1764 do in the case above. */
1765 (*_bfd_error_handler)
1766 (_("%s: warning: unexpected redefinition of `%s'"),
1767 bfd_get_filename (abfd), shortname);
1771 if (! (_bfd_generic_link_add_one_symbol
1772 (info, abfd, shortname, BSF_INDIRECT,
1773 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1774 collect, (struct bfd_link_hash_entry **) &hi)))
1777 /* If there is a duplicate definition somewhere,
1778 then HI may not point to an indirect symbol.
1779 We will have reported an error to the user in
1782 if (hi->root.type == bfd_link_hash_indirect)
1784 /* If the symbol became indirect, then we
1785 assume that we have not seen a definition
1787 BFD_ASSERT ((hi->elf_link_hash_flags
1788 & (ELF_LINK_HASH_DEF_DYNAMIC
1789 | ELF_LINK_HASH_DEF_REGULAR))
1792 /* Copy down any references that we may have
1793 already seen to the symbol which just
1795 h->elf_link_hash_flags |=
1796 (hi->elf_link_hash_flags
1797 & (ELF_LINK_HASH_REF_DYNAMIC
1798 | ELF_LINK_HASH_REF_REGULAR
1799 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1800 | ELF_LINK_NON_GOT_REF));
1802 /* Copy over the global and procedure linkage
1803 table offset entries. These may have been
1804 already set up by a check_relocs routine. */
1805 if (h->got.offset == (bfd_vma) -1)
1807 h->got.offset = hi->got.offset;
1808 hi->got.offset = (bfd_vma) -1;
1810 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1812 if (h->plt.offset == (bfd_vma) -1)
1814 h->plt.offset = hi->plt.offset;
1815 hi->plt.offset = (bfd_vma) -1;
1817 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1819 if (h->dynindx == -1)
1821 h->dynindx = hi->dynindx;
1822 h->dynstr_index = hi->dynstr_index;
1824 hi->dynstr_index = 0;
1826 BFD_ASSERT (hi->dynindx == -1);
1828 /* FIXME: There may be other information to
1829 copy over for particular targets. */
1831 /* See if the new flags lead us to realize
1832 that the symbol must be dynamic. */
1838 || ((hi->elf_link_hash_flags
1839 & ELF_LINK_HASH_REF_DYNAMIC)
1845 if ((hi->elf_link_hash_flags
1846 & ELF_LINK_HASH_REF_REGULAR) != 0)
1855 if (dynsym && h->dynindx == -1)
1857 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1859 if (h->weakdef != NULL
1861 && h->weakdef->dynindx == -1)
1863 if (! _bfd_elf_link_record_dynamic_symbol (info,
1871 /* Now set the weakdefs field correctly for all the weak defined
1872 symbols we found. The only way to do this is to search all the
1873 symbols. Since we only need the information for non functions in
1874 dynamic objects, that's the only time we actually put anything on
1875 the list WEAKS. We need this information so that if a regular
1876 object refers to a symbol defined weakly in a dynamic object, the
1877 real symbol in the dynamic object is also put in the dynamic
1878 symbols; we also must arrange for both symbols to point to the
1879 same memory location. We could handle the general case of symbol
1880 aliasing, but a general symbol alias can only be generated in
1881 assembler code, handling it correctly would be very time
1882 consuming, and other ELF linkers don't handle general aliasing
1884 while (weaks != NULL)
1886 struct elf_link_hash_entry *hlook;
1889 struct elf_link_hash_entry **hpp;
1890 struct elf_link_hash_entry **hppend;
1893 weaks = hlook->weakdef;
1894 hlook->weakdef = NULL;
1896 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1897 || hlook->root.type == bfd_link_hash_defweak
1898 || hlook->root.type == bfd_link_hash_common
1899 || hlook->root.type == bfd_link_hash_indirect);
1900 slook = hlook->root.u.def.section;
1901 vlook = hlook->root.u.def.value;
1903 hpp = elf_sym_hashes (abfd);
1904 hppend = hpp + extsymcount;
1905 for (; hpp < hppend; hpp++)
1907 struct elf_link_hash_entry *h;
1910 if (h != NULL && h != hlook
1911 && h->root.type == bfd_link_hash_defined
1912 && h->root.u.def.section == slook
1913 && h->root.u.def.value == vlook)
1917 /* If the weak definition is in the list of dynamic
1918 symbols, make sure the real definition is put there
1920 if (hlook->dynindx != -1
1921 && h->dynindx == -1)
1923 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1927 /* If the real definition is in the list of dynamic
1928 symbols, make sure the weak definition is put there
1929 as well. If we don't do this, then the dynamic
1930 loader might not merge the entries for the real
1931 definition and the weak definition. */
1932 if (h->dynindx != -1
1933 && hlook->dynindx == -1)
1935 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1950 if (extversym != NULL)
1956 /* If this object is the same format as the output object, and it is
1957 not a shared library, then let the backend look through the
1960 This is required to build global offset table entries and to
1961 arrange for dynamic relocs. It is not required for the
1962 particular common case of linking non PIC code, even when linking
1963 against shared libraries, but unfortunately there is no way of
1964 knowing whether an object file has been compiled PIC or not.
1965 Looking through the relocs is not particularly time consuming.
1966 The problem is that we must either (1) keep the relocs in memory,
1967 which causes the linker to require additional runtime memory or
1968 (2) read the relocs twice from the input file, which wastes time.
1969 This would be a good case for using mmap.
1971 I have no idea how to handle linking PIC code into a file of a
1972 different format. It probably can't be done. */
1973 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1975 && abfd->xvec == info->hash->creator
1976 && check_relocs != NULL)
1980 for (o = abfd->sections; o != NULL; o = o->next)
1982 Elf_Internal_Rela *internal_relocs;
1985 if ((o->flags & SEC_RELOC) == 0
1986 || o->reloc_count == 0
1987 || ((info->strip == strip_all || info->strip == strip_debugger)
1988 && (o->flags & SEC_DEBUGGING) != 0)
1989 || bfd_is_abs_section (o->output_section))
1992 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1993 (abfd, o, (PTR) NULL,
1994 (Elf_Internal_Rela *) NULL,
1995 info->keep_memory));
1996 if (internal_relocs == NULL)
1999 ok = (*check_relocs) (abfd, info, o, internal_relocs);
2001 if (! info->keep_memory)
2002 free (internal_relocs);
2009 /* If this is a non-traditional, non-relocateable link, try to
2010 optimize the handling of the .stab/.stabstr sections. */
2012 && ! info->relocateable
2013 && ! info->traditional_format
2014 && info->hash->creator->flavour == bfd_target_elf_flavour
2015 && (info->strip != strip_all && info->strip != strip_debugger))
2017 asection *stab, *stabstr;
2019 stab = bfd_get_section_by_name (abfd, ".stab");
2022 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
2024 if (stabstr != NULL)
2026 struct bfd_elf_section_data *secdata;
2028 secdata = elf_section_data (stab);
2029 if (! _bfd_link_section_stabs (abfd,
2030 &elf_hash_table (info)->stab_info,
2032 &secdata->stab_info))
2047 if (extversym != NULL)
2052 /* Create some sections which will be filled in with dynamic linking
2053 information. ABFD is an input file which requires dynamic sections
2054 to be created. The dynamic sections take up virtual memory space
2055 when the final executable is run, so we need to create them before
2056 addresses are assigned to the output sections. We work out the
2057 actual contents and size of these sections later. */
2060 elf_link_create_dynamic_sections (abfd, info)
2062 struct bfd_link_info *info;
2065 register asection *s;
2066 struct elf_link_hash_entry *h;
2067 struct elf_backend_data *bed;
2069 if (elf_hash_table (info)->dynamic_sections_created)
2072 /* Make sure that all dynamic sections use the same input BFD. */
2073 if (elf_hash_table (info)->dynobj == NULL)
2074 elf_hash_table (info)->dynobj = abfd;
2076 abfd = elf_hash_table (info)->dynobj;
2078 /* Note that we set the SEC_IN_MEMORY flag for all of these
2080 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2081 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
2083 /* A dynamically linked executable has a .interp section, but a
2084 shared library does not. */
2087 s = bfd_make_section (abfd, ".interp");
2089 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2093 /* Create sections to hold version informations. These are removed
2094 if they are not needed. */
2095 s = bfd_make_section (abfd, ".gnu.version_d");
2097 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2098 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2101 s = bfd_make_section (abfd, ".gnu.version");
2103 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2104 || ! bfd_set_section_alignment (abfd, s, 1))
2107 s = bfd_make_section (abfd, ".gnu.version_r");
2109 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2110 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2113 s = bfd_make_section (abfd, ".dynsym");
2115 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2116 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2119 s = bfd_make_section (abfd, ".dynstr");
2121 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
2124 /* Create a strtab to hold the dynamic symbol names. */
2125 if (elf_hash_table (info)->dynstr == NULL)
2127 elf_hash_table (info)->dynstr = elf_stringtab_init ();
2128 if (elf_hash_table (info)->dynstr == NULL)
2132 s = bfd_make_section (abfd, ".dynamic");
2134 || ! bfd_set_section_flags (abfd, s, flags)
2135 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2138 /* The special symbol _DYNAMIC is always set to the start of the
2139 .dynamic section. This call occurs before we have processed the
2140 symbols for any dynamic object, so we don't have to worry about
2141 overriding a dynamic definition. We could set _DYNAMIC in a
2142 linker script, but we only want to define it if we are, in fact,
2143 creating a .dynamic section. We don't want to define it if there
2144 is no .dynamic section, since on some ELF platforms the start up
2145 code examines it to decide how to initialize the process. */
2147 if (! (_bfd_generic_link_add_one_symbol
2148 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
2149 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
2150 (struct bfd_link_hash_entry **) &h)))
2152 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2153 h->type = STT_OBJECT;
2156 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
2159 bed = get_elf_backend_data (abfd);
2161 s = bfd_make_section (abfd, ".hash");
2163 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
2164 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
2166 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
2168 /* Let the backend create the rest of the sections. This lets the
2169 backend set the right flags. The backend will normally create
2170 the .got and .plt sections. */
2171 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
2174 elf_hash_table (info)->dynamic_sections_created = true;
2179 /* Add an entry to the .dynamic table. */
2182 elf_add_dynamic_entry (info, tag, val)
2183 struct bfd_link_info *info;
2187 Elf_Internal_Dyn dyn;
2191 bfd_byte *newcontents;
2193 dynobj = elf_hash_table (info)->dynobj;
2195 s = bfd_get_section_by_name (dynobj, ".dynamic");
2196 BFD_ASSERT (s != NULL);
2198 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
2199 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
2200 if (newcontents == NULL)
2204 dyn.d_un.d_val = val;
2205 elf_swap_dyn_out (dynobj, &dyn,
2206 (Elf_External_Dyn *) (newcontents + s->_raw_size));
2208 s->_raw_size = newsize;
2209 s->contents = newcontents;
2214 /* Record a new local dynamic symbol. */
2217 elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
2218 struct bfd_link_info *info;
2222 struct elf_link_local_dynamic_entry *entry;
2223 struct elf_link_hash_table *eht;
2224 struct bfd_strtab_hash *dynstr;
2225 Elf_External_Sym esym;
2226 unsigned long dynstr_index;
2229 /* See if the entry exists already. */
2230 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
2231 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
2234 entry = (struct elf_link_local_dynamic_entry *)
2235 bfd_alloc (input_bfd, sizeof (*entry));
2239 /* Go find the symbol, so that we can find it's name. */
2240 if (bfd_seek (input_bfd,
2241 (elf_tdata (input_bfd)->symtab_hdr.sh_offset
2242 + input_indx * sizeof (Elf_External_Sym)),
2244 || (bfd_read (&esym, sizeof (Elf_External_Sym), 1, input_bfd)
2245 != sizeof (Elf_External_Sym)))
2247 elf_swap_symbol_in (input_bfd, &esym, &entry->isym);
2249 name = (bfd_elf_string_from_elf_section
2250 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
2251 entry->isym.st_name));
2253 dynstr = elf_hash_table (info)->dynstr;
2256 /* Create a strtab to hold the dynamic symbol names. */
2257 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_stringtab_init ();
2262 dynstr_index = _bfd_stringtab_add (dynstr, name, true, false);
2263 if (dynstr_index == (unsigned long) -1)
2265 entry->isym.st_name = dynstr_index;
2267 eht = elf_hash_table (info);
2269 entry->next = eht->dynlocal;
2270 eht->dynlocal = entry;
2271 entry->input_bfd = input_bfd;
2272 entry->input_indx = input_indx;
2275 /* Whatever binding the symbol had before, it's now local. */
2277 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
2279 /* The dynindx will be set at the end of size_dynamic_sections. */
2285 /* Read and swap the relocs from the section indicated by SHDR. This
2286 may be either a REL or a RELA section. The relocations are
2287 translated into RELA relocations and stored in INTERNAL_RELOCS,
2288 which should have already been allocated to contain enough space.
2289 The EXTERNAL_RELOCS are a buffer where the external form of the
2290 relocations should be stored.
2292 Returns false if something goes wrong. */
2295 elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
2298 Elf_Internal_Shdr *shdr;
2299 PTR external_relocs;
2300 Elf_Internal_Rela *internal_relocs;
2302 struct elf_backend_data *bed;
2304 /* If there aren't any relocations, that's OK. */
2308 /* Position ourselves at the start of the section. */
2309 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2312 /* Read the relocations. */
2313 if (bfd_read (external_relocs, 1, shdr->sh_size, abfd)
2317 bed = get_elf_backend_data (abfd);
2319 /* Convert the external relocations to the internal format. */
2320 if (shdr->sh_entsize == sizeof (Elf_External_Rel))
2322 Elf_External_Rel *erel;
2323 Elf_External_Rel *erelend;
2324 Elf_Internal_Rela *irela;
2325 Elf_Internal_Rel *irel;
2327 erel = (Elf_External_Rel *) external_relocs;
2328 erelend = erel + shdr->sh_size / shdr->sh_entsize;
2329 irela = internal_relocs;
2330 irel = bfd_alloc (abfd, (bed->s->int_rels_per_ext_rel
2331 * sizeof (Elf_Internal_Rel)));
2332 for (; erel < erelend; erel++, irela += bed->s->int_rels_per_ext_rel)
2336 if (bed->s->swap_reloc_in)
2337 (*bed->s->swap_reloc_in) (abfd, (bfd_byte *) erel, irel);
2339 elf_swap_reloc_in (abfd, erel, irel);
2341 for (i = 0; i < bed->s->int_rels_per_ext_rel; ++i)
2343 irela[i].r_offset = irel[i].r_offset;
2344 irela[i].r_info = irel[i].r_info;
2345 irela[i].r_addend = 0;
2351 Elf_External_Rela *erela;
2352 Elf_External_Rela *erelaend;
2353 Elf_Internal_Rela *irela;
2355 BFD_ASSERT (shdr->sh_entsize == sizeof (Elf_External_Rela));
2357 erela = (Elf_External_Rela *) external_relocs;
2358 erelaend = erela + shdr->sh_size / shdr->sh_entsize;
2359 irela = internal_relocs;
2360 for (; erela < erelaend; erela++, irela += bed->s->int_rels_per_ext_rel)
2362 if (bed->s->swap_reloca_in)
2363 (*bed->s->swap_reloca_in) (abfd, (bfd_byte *) erela, irela);
2365 elf_swap_reloca_in (abfd, erela, irela);
2372 /* Read and swap the relocs for a section O. They may have been
2373 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2374 not NULL, they are used as buffers to read into. They are known to
2375 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2376 the return value is allocated using either malloc or bfd_alloc,
2377 according to the KEEP_MEMORY argument. If O has two relocation
2378 sections (both REL and RELA relocations), then the REL_HDR
2379 relocations will appear first in INTERNAL_RELOCS, followed by the
2380 REL_HDR2 relocations. */
2383 NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
2387 PTR external_relocs;
2388 Elf_Internal_Rela *internal_relocs;
2389 boolean keep_memory;
2391 Elf_Internal_Shdr *rel_hdr;
2393 Elf_Internal_Rela *alloc2 = NULL;
2394 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2396 if (elf_section_data (o)->relocs != NULL)
2397 return elf_section_data (o)->relocs;
2399 if (o->reloc_count == 0)
2402 rel_hdr = &elf_section_data (o)->rel_hdr;
2404 if (internal_relocs == NULL)
2408 size = (o->reloc_count * bed->s->int_rels_per_ext_rel
2409 * sizeof (Elf_Internal_Rela));
2411 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2413 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2414 if (internal_relocs == NULL)
2418 if (external_relocs == NULL)
2420 size_t size = (size_t) rel_hdr->sh_size;
2422 if (elf_section_data (o)->rel_hdr2)
2423 size += (size_t) elf_section_data (o)->rel_hdr2->sh_size;
2424 alloc1 = (PTR) bfd_malloc (size);
2427 external_relocs = alloc1;
2430 if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
2434 if (!elf_link_read_relocs_from_section
2436 elf_section_data (o)->rel_hdr2,
2437 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2438 internal_relocs + (rel_hdr->sh_size / rel_hdr->sh_entsize
2439 * bed->s->int_rels_per_ext_rel)))
2442 /* Cache the results for next time, if we can. */
2444 elf_section_data (o)->relocs = internal_relocs;
2449 /* Don't free alloc2, since if it was allocated we are passing it
2450 back (under the name of internal_relocs). */
2452 return internal_relocs;
2463 /* Record an assignment to a symbol made by a linker script. We need
2464 this in case some dynamic object refers to this symbol. */
2468 NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2469 bfd *output_bfd ATTRIBUTE_UNUSED;
2470 struct bfd_link_info *info;
2474 struct elf_link_hash_entry *h;
2476 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2479 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2483 if (h->root.type == bfd_link_hash_new)
2484 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2486 /* If this symbol is being provided by the linker script, and it is
2487 currently defined by a dynamic object, but not by a regular
2488 object, then mark it as undefined so that the generic linker will
2489 force the correct value. */
2491 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2492 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2493 h->root.type = bfd_link_hash_undefined;
2495 /* If this symbol is not being provided by the linker script, and it is
2496 currently defined by a dynamic object, but not by a regular object,
2497 then clear out any version information because the symbol will not be
2498 associated with the dynamic object any more. */
2500 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2501 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2502 h->verinfo.verdef = NULL;
2504 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2506 /* When possible, keep the original type of the symbol */
2507 if (h->type == STT_NOTYPE)
2508 h->type = STT_OBJECT;
2510 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2511 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2513 && h->dynindx == -1)
2515 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2518 /* If this is a weak defined symbol, and we know a corresponding
2519 real symbol from the same dynamic object, make sure the real
2520 symbol is also made into a dynamic symbol. */
2521 if (h->weakdef != NULL
2522 && h->weakdef->dynindx == -1)
2524 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2532 /* This structure is used to pass information to
2533 elf_link_assign_sym_version. */
2535 struct elf_assign_sym_version_info
2539 /* General link information. */
2540 struct bfd_link_info *info;
2542 struct bfd_elf_version_tree *verdefs;
2543 /* Whether we are exporting all dynamic symbols. */
2544 boolean export_dynamic;
2545 /* Whether we had a failure. */
2549 /* This structure is used to pass information to
2550 elf_link_find_version_dependencies. */
2552 struct elf_find_verdep_info
2556 /* General link information. */
2557 struct bfd_link_info *info;
2558 /* The number of dependencies. */
2560 /* Whether we had a failure. */
2564 /* Array used to determine the number of hash table buckets to use
2565 based on the number of symbols there are. If there are fewer than
2566 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2567 fewer than 37 we use 17 buckets, and so forth. We never use more
2568 than 32771 buckets. */
2570 static const size_t elf_buckets[] =
2572 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2576 /* Compute bucket count for hashing table. We do not use a static set
2577 of possible tables sizes anymore. Instead we determine for all
2578 possible reasonable sizes of the table the outcome (i.e., the
2579 number of collisions etc) and choose the best solution. The
2580 weighting functions are not too simple to allow the table to grow
2581 without bounds. Instead one of the weighting factors is the size.
2582 Therefore the result is always a good payoff between few collisions
2583 (= short chain lengths) and table size. */
2585 compute_bucket_count (info)
2586 struct bfd_link_info *info;
2588 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2589 size_t best_size = 0;
2590 unsigned long int *hashcodes;
2591 unsigned long int *hashcodesp;
2592 unsigned long int i;
2594 /* Compute the hash values for all exported symbols. At the same
2595 time store the values in an array so that we could use them for
2597 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2598 * sizeof (unsigned long int));
2599 if (hashcodes == NULL)
2601 hashcodesp = hashcodes;
2603 /* Put all hash values in HASHCODES. */
2604 elf_link_hash_traverse (elf_hash_table (info),
2605 elf_collect_hash_codes, &hashcodesp);
2607 /* We have a problem here. The following code to optimize the table
2608 size requires an integer type with more the 32 bits. If
2609 BFD_HOST_U_64_BIT is set we know about such a type. */
2610 #ifdef BFD_HOST_U_64_BIT
2611 if (info->optimize == true)
2613 unsigned long int nsyms = hashcodesp - hashcodes;
2616 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2617 unsigned long int *counts ;
2619 /* Possible optimization parameters: if we have NSYMS symbols we say
2620 that the hashing table must at least have NSYMS/4 and at most
2622 minsize = nsyms / 4;
2625 best_size = maxsize = nsyms * 2;
2627 /* Create array where we count the collisions in. We must use bfd_malloc
2628 since the size could be large. */
2629 counts = (unsigned long int *) bfd_malloc (maxsize
2630 * sizeof (unsigned long int));
2637 /* Compute the "optimal" size for the hash table. The criteria is a
2638 minimal chain length. The minor criteria is (of course) the size
2640 for (i = minsize; i < maxsize; ++i)
2642 /* Walk through the array of hashcodes and count the collisions. */
2643 BFD_HOST_U_64_BIT max;
2644 unsigned long int j;
2645 unsigned long int fact;
2647 memset (counts, '\0', i * sizeof (unsigned long int));
2649 /* Determine how often each hash bucket is used. */
2650 for (j = 0; j < nsyms; ++j)
2651 ++counts[hashcodes[j] % i];
2653 /* For the weight function we need some information about the
2654 pagesize on the target. This is information need not be 100%
2655 accurate. Since this information is not available (so far) we
2656 define it here to a reasonable default value. If it is crucial
2657 to have a better value some day simply define this value. */
2658 # ifndef BFD_TARGET_PAGESIZE
2659 # define BFD_TARGET_PAGESIZE (4096)
2662 /* We in any case need 2 + NSYMS entries for the size values and
2664 max = (2 + nsyms) * (ARCH_SIZE / 8);
2667 /* Variant 1: optimize for short chains. We add the squares
2668 of all the chain lengths (which favous many small chain
2669 over a few long chains). */
2670 for (j = 0; j < i; ++j)
2671 max += counts[j] * counts[j];
2673 /* This adds penalties for the overall size of the table. */
2674 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2677 /* Variant 2: Optimize a lot more for small table. Here we
2678 also add squares of the size but we also add penalties for
2679 empty slots (the +1 term). */
2680 for (j = 0; j < i; ++j)
2681 max += (1 + counts[j]) * (1 + counts[j]);
2683 /* The overall size of the table is considered, but not as
2684 strong as in variant 1, where it is squared. */
2685 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2689 /* Compare with current best results. */
2690 if (max < best_chlen)
2700 #endif /* defined (BFD_HOST_U_64_BIT) */
2702 /* This is the fallback solution if no 64bit type is available or if we
2703 are not supposed to spend much time on optimizations. We select the
2704 bucket count using a fixed set of numbers. */
2705 for (i = 0; elf_buckets[i] != 0; i++)
2707 best_size = elf_buckets[i];
2708 if (dynsymcount < elf_buckets[i + 1])
2713 /* Free the arrays we needed. */
2719 /* Set up the sizes and contents of the ELF dynamic sections. This is
2720 called by the ELF linker emulation before_allocation routine. We
2721 must set the sizes of the sections before the linker sets the
2722 addresses of the various sections. */
2725 NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2726 export_dynamic, filter_shlib,
2727 auxiliary_filters, info, sinterpptr,
2732 boolean export_dynamic;
2733 const char *filter_shlib;
2734 const char * const *auxiliary_filters;
2735 struct bfd_link_info *info;
2736 asection **sinterpptr;
2737 struct bfd_elf_version_tree *verdefs;
2739 bfd_size_type soname_indx;
2741 struct elf_backend_data *bed;
2742 struct elf_assign_sym_version_info asvinfo;
2746 soname_indx = (bfd_size_type) -1;
2748 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2751 /* The backend may have to create some sections regardless of whether
2752 we're dynamic or not. */
2753 bed = get_elf_backend_data (output_bfd);
2754 if (bed->elf_backend_always_size_sections
2755 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2758 dynobj = elf_hash_table (info)->dynobj;
2760 /* If there were no dynamic objects in the link, there is nothing to
2765 /* If we are supposed to export all symbols into the dynamic symbol
2766 table (this is not the normal case), then do so. */
2769 struct elf_info_failed eif;
2773 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2779 if (elf_hash_table (info)->dynamic_sections_created)
2781 struct elf_info_failed eif;
2782 struct elf_link_hash_entry *h;
2783 bfd_size_type strsize;
2785 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2786 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2790 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2791 soname, true, true);
2792 if (soname_indx == (bfd_size_type) -1
2793 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2799 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2807 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2809 if (indx == (bfd_size_type) -1
2810 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2814 if (filter_shlib != NULL)
2818 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2819 filter_shlib, true, true);
2820 if (indx == (bfd_size_type) -1
2821 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2825 if (auxiliary_filters != NULL)
2827 const char * const *p;
2829 for (p = auxiliary_filters; *p != NULL; p++)
2833 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2835 if (indx == (bfd_size_type) -1
2836 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2841 /* Attach all the symbols to their version information. */
2842 asvinfo.output_bfd = output_bfd;
2843 asvinfo.info = info;
2844 asvinfo.verdefs = verdefs;
2845 asvinfo.export_dynamic = export_dynamic;
2846 asvinfo.failed = false;
2848 elf_link_hash_traverse (elf_hash_table (info),
2849 elf_link_assign_sym_version,
2854 /* Find all symbols which were defined in a dynamic object and make
2855 the backend pick a reasonable value for them. */
2858 elf_link_hash_traverse (elf_hash_table (info),
2859 elf_adjust_dynamic_symbol,
2864 /* Add some entries to the .dynamic section. We fill in some of the
2865 values later, in elf_bfd_final_link, but we must add the entries
2866 now so that we know the final size of the .dynamic section. */
2868 /* If there are initialization and/or finalization functions to
2869 call then add the corresponding DT_INIT/DT_FINI entries. */
2870 h = (info->init_function
2871 ? elf_link_hash_lookup (elf_hash_table (info),
2872 info->init_function, false,
2876 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2877 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2879 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2882 h = (info->fini_function
2883 ? elf_link_hash_lookup (elf_hash_table (info),
2884 info->fini_function, false,
2888 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2889 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2891 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2895 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2896 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2897 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2898 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2899 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2900 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2901 sizeof (Elf_External_Sym)))
2905 /* The backend must work out the sizes of all the other dynamic
2907 if (bed->elf_backend_size_dynamic_sections
2908 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2911 if (elf_hash_table (info)->dynamic_sections_created)
2915 size_t bucketcount = 0;
2916 Elf_Internal_Sym isym;
2917 size_t hash_entry_size;
2919 /* Set up the version definition section. */
2920 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2921 BFD_ASSERT (s != NULL);
2923 /* We may have created additional version definitions if we are
2924 just linking a regular application. */
2925 verdefs = asvinfo.verdefs;
2927 if (verdefs == NULL)
2928 _bfd_strip_section_from_output (s);
2933 struct bfd_elf_version_tree *t;
2935 Elf_Internal_Verdef def;
2936 Elf_Internal_Verdaux defaux;
2941 /* Make space for the base version. */
2942 size += sizeof (Elf_External_Verdef);
2943 size += sizeof (Elf_External_Verdaux);
2946 for (t = verdefs; t != NULL; t = t->next)
2948 struct bfd_elf_version_deps *n;
2950 size += sizeof (Elf_External_Verdef);
2951 size += sizeof (Elf_External_Verdaux);
2954 for (n = t->deps; n != NULL; n = n->next)
2955 size += sizeof (Elf_External_Verdaux);
2958 s->_raw_size = size;
2959 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2960 if (s->contents == NULL && s->_raw_size != 0)
2963 /* Fill in the version definition section. */
2967 def.vd_version = VER_DEF_CURRENT;
2968 def.vd_flags = VER_FLG_BASE;
2971 def.vd_aux = sizeof (Elf_External_Verdef);
2972 def.vd_next = (sizeof (Elf_External_Verdef)
2973 + sizeof (Elf_External_Verdaux));
2975 if (soname_indx != (bfd_size_type) -1)
2977 def.vd_hash = bfd_elf_hash (soname);
2978 defaux.vda_name = soname_indx;
2985 name = output_bfd->filename;
2986 def.vd_hash = bfd_elf_hash (name);
2987 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2989 if (indx == (bfd_size_type) -1)
2991 defaux.vda_name = indx;
2993 defaux.vda_next = 0;
2995 _bfd_elf_swap_verdef_out (output_bfd, &def,
2996 (Elf_External_Verdef *)p);
2997 p += sizeof (Elf_External_Verdef);
2998 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2999 (Elf_External_Verdaux *) p);
3000 p += sizeof (Elf_External_Verdaux);
3002 for (t = verdefs; t != NULL; t = t->next)
3005 struct bfd_elf_version_deps *n;
3006 struct elf_link_hash_entry *h;
3009 for (n = t->deps; n != NULL; n = n->next)
3012 /* Add a symbol representing this version. */
3014 if (! (_bfd_generic_link_add_one_symbol
3015 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
3016 (bfd_vma) 0, (const char *) NULL, false,
3017 get_elf_backend_data (dynobj)->collect,
3018 (struct bfd_link_hash_entry **) &h)))
3020 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
3021 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3022 h->type = STT_OBJECT;
3023 h->verinfo.vertree = t;
3025 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
3028 def.vd_version = VER_DEF_CURRENT;
3030 if (t->globals == NULL && t->locals == NULL && ! t->used)
3031 def.vd_flags |= VER_FLG_WEAK;
3032 def.vd_ndx = t->vernum + 1;
3033 def.vd_cnt = cdeps + 1;
3034 def.vd_hash = bfd_elf_hash (t->name);
3035 def.vd_aux = sizeof (Elf_External_Verdef);
3036 if (t->next != NULL)
3037 def.vd_next = (sizeof (Elf_External_Verdef)
3038 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
3042 _bfd_elf_swap_verdef_out (output_bfd, &def,
3043 (Elf_External_Verdef *) p);
3044 p += sizeof (Elf_External_Verdef);
3046 defaux.vda_name = h->dynstr_index;
3047 if (t->deps == NULL)
3048 defaux.vda_next = 0;
3050 defaux.vda_next = sizeof (Elf_External_Verdaux);
3051 t->name_indx = defaux.vda_name;
3053 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3054 (Elf_External_Verdaux *) p);
3055 p += sizeof (Elf_External_Verdaux);
3057 for (n = t->deps; n != NULL; n = n->next)
3059 if (n->version_needed == NULL)
3061 /* This can happen if there was an error in the
3063 defaux.vda_name = 0;
3066 defaux.vda_name = n->version_needed->name_indx;
3067 if (n->next == NULL)
3068 defaux.vda_next = 0;
3070 defaux.vda_next = sizeof (Elf_External_Verdaux);
3072 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
3073 (Elf_External_Verdaux *) p);
3074 p += sizeof (Elf_External_Verdaux);
3078 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
3079 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
3082 elf_tdata (output_bfd)->cverdefs = cdefs;
3085 /* Work out the size of the version reference section. */
3087 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3088 BFD_ASSERT (s != NULL);
3090 struct elf_find_verdep_info sinfo;
3092 sinfo.output_bfd = output_bfd;
3094 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
3095 if (sinfo.vers == 0)
3097 sinfo.failed = false;
3099 elf_link_hash_traverse (elf_hash_table (info),
3100 elf_link_find_version_dependencies,
3103 if (elf_tdata (output_bfd)->verref == NULL)
3104 _bfd_strip_section_from_output (s);
3107 Elf_Internal_Verneed *t;
3112 /* Build the version definition section. */
3115 for (t = elf_tdata (output_bfd)->verref;
3119 Elf_Internal_Vernaux *a;
3121 size += sizeof (Elf_External_Verneed);
3123 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3124 size += sizeof (Elf_External_Vernaux);
3127 s->_raw_size = size;
3128 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
3129 if (s->contents == NULL)
3133 for (t = elf_tdata (output_bfd)->verref;
3138 Elf_Internal_Vernaux *a;
3142 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3145 t->vn_version = VER_NEED_CURRENT;
3147 if (elf_dt_name (t->vn_bfd) != NULL)
3148 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3149 elf_dt_name (t->vn_bfd),
3152 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3153 t->vn_bfd->filename, true, false);
3154 if (indx == (bfd_size_type) -1)
3157 t->vn_aux = sizeof (Elf_External_Verneed);
3158 if (t->vn_nextref == NULL)
3161 t->vn_next = (sizeof (Elf_External_Verneed)
3162 + caux * sizeof (Elf_External_Vernaux));
3164 _bfd_elf_swap_verneed_out (output_bfd, t,
3165 (Elf_External_Verneed *) p);
3166 p += sizeof (Elf_External_Verneed);
3168 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3170 a->vna_hash = bfd_elf_hash (a->vna_nodename);
3171 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
3172 a->vna_nodename, true, false);
3173 if (indx == (bfd_size_type) -1)
3176 if (a->vna_nextptr == NULL)
3179 a->vna_next = sizeof (Elf_External_Vernaux);
3181 _bfd_elf_swap_vernaux_out (output_bfd, a,
3182 (Elf_External_Vernaux *) p);
3183 p += sizeof (Elf_External_Vernaux);
3187 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
3188 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
3191 elf_tdata (output_bfd)->cverrefs = crefs;
3195 /* Assign dynsym indicies. In a shared library we generate a
3196 section symbol for each output section, which come first.
3197 Next come all of the back-end allocated local dynamic syms,
3198 followed by the rest of the global symbols. */
3200 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3202 /* Work out the size of the symbol version section. */
3203 s = bfd_get_section_by_name (dynobj, ".gnu.version");
3204 BFD_ASSERT (s != NULL);
3205 if (dynsymcount == 0
3206 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
3208 _bfd_strip_section_from_output (s);
3209 /* The DYNSYMCOUNT might have changed if we were going to
3210 output a dynamic symbol table entry for S. */
3211 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info);
3215 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
3216 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
3217 if (s->contents == NULL)
3220 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
3224 /* Set the size of the .dynsym and .hash sections. We counted
3225 the number of dynamic symbols in elf_link_add_object_symbols.
3226 We will build the contents of .dynsym and .hash when we build
3227 the final symbol table, because until then we do not know the
3228 correct value to give the symbols. We built the .dynstr
3229 section as we went along in elf_link_add_object_symbols. */
3230 s = bfd_get_section_by_name (dynobj, ".dynsym");
3231 BFD_ASSERT (s != NULL);
3232 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
3233 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3234 if (s->contents == NULL && s->_raw_size != 0)
3237 /* The first entry in .dynsym is a dummy symbol. */
3244 elf_swap_symbol_out (output_bfd, &isym,
3245 (PTR) (Elf_External_Sym *) s->contents);
3247 /* Compute the size of the hashing table. As a side effect this
3248 computes the hash values for all the names we export. */
3249 bucketcount = compute_bucket_count (info);
3251 s = bfd_get_section_by_name (dynobj, ".hash");
3252 BFD_ASSERT (s != NULL);
3253 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
3254 s->_raw_size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
3255 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
3256 if (s->contents == NULL)
3258 memset (s->contents, 0, (size_t) s->_raw_size);
3260 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
3261 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
3262 s->contents + hash_entry_size);
3264 elf_hash_table (info)->bucketcount = bucketcount;
3266 s = bfd_get_section_by_name (dynobj, ".dynstr");
3267 BFD_ASSERT (s != NULL);
3268 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
3270 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
3277 /* Fix up the flags for a symbol. This handles various cases which
3278 can only be fixed after all the input files are seen. This is
3279 currently called by both adjust_dynamic_symbol and
3280 assign_sym_version, which is unnecessary but perhaps more robust in
3281 the face of future changes. */
3284 elf_fix_symbol_flags (h, eif)
3285 struct elf_link_hash_entry *h;
3286 struct elf_info_failed *eif;
3288 /* If this symbol was mentioned in a non-ELF file, try to set
3289 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
3290 permit a non-ELF file to correctly refer to a symbol defined in
3291 an ELF dynamic object. */
3292 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
3294 if (h->root.type != bfd_link_hash_defined
3295 && h->root.type != bfd_link_hash_defweak)
3296 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3297 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3300 if (h->root.u.def.section->owner != NULL
3301 && (bfd_get_flavour (h->root.u.def.section->owner)
3302 == bfd_target_elf_flavour))
3303 h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
3304 | ELF_LINK_HASH_REF_REGULAR_NONWEAK);
3306 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3309 if (h->dynindx == -1
3310 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3311 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
3313 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3322 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
3323 was first seen in a non-ELF file. Fortunately, if the symbol
3324 was first seen in an ELF file, we're probably OK unless the
3325 symbol was defined in a non-ELF file. Catch that case here.
3326 FIXME: We're still in trouble if the symbol was first seen in
3327 a dynamic object, and then later in a non-ELF regular object. */
3328 if ((h->root.type == bfd_link_hash_defined
3329 || h->root.type == bfd_link_hash_defweak)
3330 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3331 && (h->root.u.def.section->owner != NULL
3332 ? (bfd_get_flavour (h->root.u.def.section->owner)
3333 != bfd_target_elf_flavour)
3334 : (bfd_is_abs_section (h->root.u.def.section)
3335 && (h->elf_link_hash_flags
3336 & ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
3337 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3340 /* If this is a final link, and the symbol was defined as a common
3341 symbol in a regular object file, and there was no definition in
3342 any dynamic object, then the linker will have allocated space for
3343 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
3344 flag will not have been set. */
3345 if (h->root.type == bfd_link_hash_defined
3346 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
3347 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
3348 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3349 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3350 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3352 /* If -Bsymbolic was used (which means to bind references to global
3353 symbols to the definition within the shared object), and this
3354 symbol was defined in a regular object, then it actually doesn't
3355 need a PLT entry. */
3356 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3357 && eif->info->shared
3358 && eif->info->symbolic
3359 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3361 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3362 h->plt.offset = (bfd_vma) -1;
3365 /* If this is a weak defined symbol in a dynamic object, and we know
3366 the real definition in the dynamic object, copy interesting flags
3367 over to the real definition. */
3368 if (h->weakdef != NULL)
3370 struct elf_link_hash_entry *weakdef;
3372 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3373 || h->root.type == bfd_link_hash_defweak);
3374 weakdef = h->weakdef;
3375 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3376 || weakdef->root.type == bfd_link_hash_defweak);
3377 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3379 /* If the real definition is defined by a regular object file,
3380 don't do anything special. See the longer description in
3381 elf_adjust_dynamic_symbol, below. */
3382 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3385 weakdef->elf_link_hash_flags |=
3386 (h->elf_link_hash_flags
3387 & (ELF_LINK_HASH_REF_REGULAR
3388 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
3389 | ELF_LINK_NON_GOT_REF));
3395 /* Make the backend pick a good value for a dynamic symbol. This is
3396 called via elf_link_hash_traverse, and also calls itself
3400 elf_adjust_dynamic_symbol (h, data)
3401 struct elf_link_hash_entry *h;
3404 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3406 struct elf_backend_data *bed;
3408 /* Ignore indirect symbols. These are added by the versioning code. */
3409 if (h->root.type == bfd_link_hash_indirect)
3412 /* Fix the symbol flags. */
3413 if (! elf_fix_symbol_flags (h, eif))
3416 /* If this symbol does not require a PLT entry, and it is not
3417 defined by a dynamic object, or is not referenced by a regular
3418 object, ignore it. We do have to handle a weak defined symbol,
3419 even if no regular object refers to it, if we decided to add it
3420 to the dynamic symbol table. FIXME: Do we normally need to worry
3421 about symbols which are defined by one dynamic object and
3422 referenced by another one? */
3423 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3424 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3425 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3426 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3427 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3429 h->plt.offset = (bfd_vma) -1;
3433 /* If we've already adjusted this symbol, don't do it again. This
3434 can happen via a recursive call. */
3435 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3438 /* Don't look at this symbol again. Note that we must set this
3439 after checking the above conditions, because we may look at a
3440 symbol once, decide not to do anything, and then get called
3441 recursively later after REF_REGULAR is set below. */
3442 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3444 /* If this is a weak definition, and we know a real definition, and
3445 the real symbol is not itself defined by a regular object file,
3446 then get a good value for the real definition. We handle the
3447 real symbol first, for the convenience of the backend routine.
3449 Note that there is a confusing case here. If the real definition
3450 is defined by a regular object file, we don't get the real symbol
3451 from the dynamic object, but we do get the weak symbol. If the
3452 processor backend uses a COPY reloc, then if some routine in the
3453 dynamic object changes the real symbol, we will not see that
3454 change in the corresponding weak symbol. This is the way other
3455 ELF linkers work as well, and seems to be a result of the shared
3458 I will clarify this issue. Most SVR4 shared libraries define the
3459 variable _timezone and define timezone as a weak synonym. The
3460 tzset call changes _timezone. If you write
3461 extern int timezone;
3463 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3464 you might expect that, since timezone is a synonym for _timezone,
3465 the same number will print both times. However, if the processor
3466 backend uses a COPY reloc, then actually timezone will be copied
3467 into your process image, and, since you define _timezone
3468 yourself, _timezone will not. Thus timezone and _timezone will
3469 wind up at different memory locations. The tzset call will set
3470 _timezone, leaving timezone unchanged. */
3472 if (h->weakdef != NULL)
3474 /* If we get to this point, we know there is an implicit
3475 reference by a regular object file via the weak symbol H.
3476 FIXME: Is this really true? What if the traversal finds
3477 H->WEAKDEF before it finds H? */
3478 h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3480 if (! elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
3484 /* If a symbol has no type and no size and does not require a PLT
3485 entry, then we are probably about to do the wrong thing here: we
3486 are probably going to create a COPY reloc for an empty object.
3487 This case can arise when a shared object is built with assembly
3488 code, and the assembly code fails to set the symbol type. */
3490 && h->type == STT_NOTYPE
3491 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3492 (*_bfd_error_handler)
3493 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3494 h->root.root.string);
3496 dynobj = elf_hash_table (eif->info)->dynobj;
3497 bed = get_elf_backend_data (dynobj);
3498 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3507 /* This routine is used to export all defined symbols into the dynamic
3508 symbol table. It is called via elf_link_hash_traverse. */
3511 elf_export_symbol (h, data)
3512 struct elf_link_hash_entry *h;
3515 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3517 /* Ignore indirect symbols. These are added by the versioning code. */
3518 if (h->root.type == bfd_link_hash_indirect)
3521 if (h->dynindx == -1
3522 && (h->elf_link_hash_flags
3523 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3525 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3535 /* Look through the symbols which are defined in other shared
3536 libraries and referenced here. Update the list of version
3537 dependencies. This will be put into the .gnu.version_r section.
3538 This function is called via elf_link_hash_traverse. */
3541 elf_link_find_version_dependencies (h, data)
3542 struct elf_link_hash_entry *h;
3545 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3546 Elf_Internal_Verneed *t;
3547 Elf_Internal_Vernaux *a;
3549 /* We only care about symbols defined in shared objects with version
3551 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3552 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3554 || h->verinfo.verdef == NULL)
3557 /* See if we already know about this version. */
3558 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3560 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3563 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3564 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3570 /* This is a new version. Add it to tree we are building. */
3574 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3577 rinfo->failed = true;
3581 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3582 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3583 elf_tdata (rinfo->output_bfd)->verref = t;
3586 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3588 /* Note that we are copying a string pointer here, and testing it
3589 above. If bfd_elf_string_from_elf_section is ever changed to
3590 discard the string data when low in memory, this will have to be
3592 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3594 a->vna_flags = h->verinfo.verdef->vd_flags;
3595 a->vna_nextptr = t->vn_auxptr;
3597 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3600 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3607 /* Figure out appropriate versions for all the symbols. We may not
3608 have the version number script until we have read all of the input
3609 files, so until that point we don't know which symbols should be
3610 local. This function is called via elf_link_hash_traverse. */
3613 elf_link_assign_sym_version (h, data)
3614 struct elf_link_hash_entry *h;
3617 struct elf_assign_sym_version_info *sinfo =
3618 (struct elf_assign_sym_version_info *) data;
3619 struct bfd_link_info *info = sinfo->info;
3620 struct elf_info_failed eif;
3623 /* Fix the symbol flags. */
3626 if (! elf_fix_symbol_flags (h, &eif))
3629 sinfo->failed = true;
3633 /* We only need version numbers for symbols defined in regular
3635 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3638 p = strchr (h->root.root.string, ELF_VER_CHR);
3639 if (p != NULL && h->verinfo.vertree == NULL)
3641 struct bfd_elf_version_tree *t;
3646 /* There are two consecutive ELF_VER_CHR characters if this is
3647 not a hidden symbol. */
3649 if (*p == ELF_VER_CHR)
3655 /* If there is no version string, we can just return out. */
3659 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3663 /* Look for the version. If we find it, it is no longer weak. */
3664 for (t = sinfo->verdefs; t != NULL; t = t->next)
3666 if (strcmp (t->name, p) == 0)
3670 struct bfd_elf_version_expr *d;
3672 len = p - h->root.root.string;
3673 alc = bfd_alloc (sinfo->output_bfd, len);
3676 strncpy (alc, h->root.root.string, len - 1);
3677 alc[len - 1] = '\0';
3678 if (alc[len - 2] == ELF_VER_CHR)
3679 alc[len - 2] = '\0';
3681 h->verinfo.vertree = t;
3685 if (t->globals != NULL)
3687 for (d = t->globals; d != NULL; d = d->next)
3688 if ((*d->match) (d, alc))
3692 /* See if there is anything to force this symbol to
3694 if (d == NULL && t->locals != NULL)
3696 for (d = t->locals; d != NULL; d = d->next)
3698 if ((*d->match) (d, alc))
3700 if (h->dynindx != -1
3702 && ! sinfo->export_dynamic)
3704 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3705 h->elf_link_hash_flags &=~
3706 ELF_LINK_HASH_NEEDS_PLT;
3708 h->plt.offset = (bfd_vma) -1;
3709 /* FIXME: The name of the symbol has
3710 already been recorded in the dynamic
3711 string table section. */
3719 bfd_release (sinfo->output_bfd, alc);
3724 /* If we are building an application, we need to create a
3725 version node for this version. */
3726 if (t == NULL && ! info->shared)
3728 struct bfd_elf_version_tree **pp;
3731 /* If we aren't going to export this symbol, we don't need
3732 to worry about it. */
3733 if (h->dynindx == -1)
3736 t = ((struct bfd_elf_version_tree *)
3737 bfd_alloc (sinfo->output_bfd, sizeof *t));
3740 sinfo->failed = true;
3749 t->name_indx = (unsigned int) -1;
3753 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3755 t->vernum = version_index;
3759 h->verinfo.vertree = t;
3763 /* We could not find the version for a symbol when
3764 generating a shared archive. Return an error. */
3765 (*_bfd_error_handler)
3766 (_("%s: undefined versioned symbol name %s"),
3767 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3768 bfd_set_error (bfd_error_bad_value);
3769 sinfo->failed = true;
3774 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3777 /* If we don't have a version for this symbol, see if we can find
3779 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3781 struct bfd_elf_version_tree *t;
3782 struct bfd_elf_version_tree *deflt;
3783 struct bfd_elf_version_expr *d;
3785 /* See if can find what version this symbol is in. If the
3786 symbol is supposed to be local, then don't actually register
3789 for (t = sinfo->verdefs; t != NULL; t = t->next)
3791 if (t->globals != NULL)
3793 for (d = t->globals; d != NULL; d = d->next)
3795 if ((*d->match) (d, h->root.root.string))
3797 h->verinfo.vertree = t;
3806 if (t->locals != NULL)
3808 for (d = t->locals; d != NULL; d = d->next)
3810 if (d->pattern[0] == '*' && d->pattern[1] == '\0')
3812 else if ((*d->match) (d, h->root.root.string))
3814 h->verinfo.vertree = t;
3815 if (h->dynindx != -1
3817 && ! sinfo->export_dynamic)
3819 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3820 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3822 h->plt.offset = (bfd_vma) -1;
3823 /* FIXME: The name of the symbol has already
3824 been recorded in the dynamic string table
3836 if (deflt != NULL && h->verinfo.vertree == NULL)
3838 h->verinfo.vertree = deflt;
3839 if (h->dynindx != -1
3841 && ! sinfo->export_dynamic)
3843 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3844 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3846 h->plt.offset = (bfd_vma) -1;
3847 /* FIXME: The name of the symbol has already been
3848 recorded in the dynamic string table section. */
3856 /* Final phase of ELF linker. */
3858 /* A structure we use to avoid passing large numbers of arguments. */
3860 struct elf_final_link_info
3862 /* General link information. */
3863 struct bfd_link_info *info;
3866 /* Symbol string table. */
3867 struct bfd_strtab_hash *symstrtab;
3868 /* .dynsym section. */
3869 asection *dynsym_sec;
3870 /* .hash section. */
3872 /* symbol version section (.gnu.version). */
3873 asection *symver_sec;
3874 /* Buffer large enough to hold contents of any section. */
3876 /* Buffer large enough to hold external relocs of any section. */
3877 PTR external_relocs;
3878 /* Buffer large enough to hold internal relocs of any section. */
3879 Elf_Internal_Rela *internal_relocs;
3880 /* Buffer large enough to hold external local symbols of any input
3882 Elf_External_Sym *external_syms;
3883 /* Buffer large enough to hold internal local symbols of any input
3885 Elf_Internal_Sym *internal_syms;
3886 /* Array large enough to hold a symbol index for each local symbol
3887 of any input BFD. */
3889 /* Array large enough to hold a section pointer for each local
3890 symbol of any input BFD. */
3891 asection **sections;
3892 /* Buffer to hold swapped out symbols. */
3893 Elf_External_Sym *symbuf;
3894 /* Number of swapped out symbols in buffer. */
3895 size_t symbuf_count;
3896 /* Number of symbols which fit in symbuf. */
3900 static boolean elf_link_output_sym
3901 PARAMS ((struct elf_final_link_info *, const char *,
3902 Elf_Internal_Sym *, asection *));
3903 static boolean elf_link_flush_output_syms
3904 PARAMS ((struct elf_final_link_info *));
3905 static boolean elf_link_output_extsym
3906 PARAMS ((struct elf_link_hash_entry *, PTR));
3907 static boolean elf_link_input_bfd
3908 PARAMS ((struct elf_final_link_info *, bfd *));
3909 static boolean elf_reloc_link_order
3910 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3911 struct bfd_link_order *));
3913 /* This struct is used to pass information to elf_link_output_extsym. */
3915 struct elf_outext_info
3919 struct elf_final_link_info *finfo;
3922 /* Compute the size of, and allocate space for, REL_HDR which is the
3923 section header for a section containing relocations for O. */
3926 elf_link_size_reloc_section (abfd, rel_hdr, o)
3928 Elf_Internal_Shdr *rel_hdr;
3931 register struct elf_link_hash_entry **p, **pend;
3932 unsigned reloc_count;
3934 /* Figure out how many relocations there will be. */
3935 if (rel_hdr == &elf_section_data (o)->rel_hdr)
3936 reloc_count = elf_section_data (o)->rel_count;
3938 reloc_count = elf_section_data (o)->rel_count2;
3940 /* That allows us to calculate the size of the section. */
3941 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
3943 /* The contents field must last into write_object_contents, so we
3944 allocate it with bfd_alloc rather than malloc. */
3945 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3946 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3949 /* We only allocate one set of hash entries, so we only do it the
3950 first time we are called. */
3951 if (elf_section_data (o)->rel_hashes == NULL)
3953 p = ((struct elf_link_hash_entry **)
3954 bfd_malloc (o->reloc_count
3955 * sizeof (struct elf_link_hash_entry *)));
3956 if (p == NULL && o->reloc_count != 0)
3959 elf_section_data (o)->rel_hashes = p;
3960 pend = p + o->reloc_count;
3961 for (; p < pend; p++)
3968 /* When performing a relocateable link, the input relocations are
3969 preserved. But, if they reference global symbols, the indices
3970 referenced must be updated. Update all the relocations in
3971 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
3974 elf_link_adjust_relocs (abfd, rel_hdr, count, rel_hash)
3976 Elf_Internal_Shdr *rel_hdr;
3978 struct elf_link_hash_entry **rel_hash;
3982 for (i = 0; i < count; i++, rel_hash++)
3984 if (*rel_hash == NULL)
3987 BFD_ASSERT ((*rel_hash)->indx >= 0);
3989 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
3991 Elf_External_Rel *erel;
3992 Elf_Internal_Rel irel;
3994 erel = (Elf_External_Rel *) rel_hdr->contents + i;
3995 elf_swap_reloc_in (abfd, erel, &irel);
3996 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
3997 ELF_R_TYPE (irel.r_info));
3998 elf_swap_reloc_out (abfd, &irel, erel);
4002 Elf_External_Rela *erela;
4003 Elf_Internal_Rela irela;
4005 BFD_ASSERT (rel_hdr->sh_entsize
4006 == sizeof (Elf_External_Rela));
4008 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4009 elf_swap_reloca_in (abfd, erela, &irela);
4010 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4011 ELF_R_TYPE (irela.r_info));
4012 elf_swap_reloca_out (abfd, &irela, erela);
4017 /* Do the final step of an ELF link. */
4020 elf_bfd_final_link (abfd, info)
4022 struct bfd_link_info *info;
4026 struct elf_final_link_info finfo;
4027 register asection *o;
4028 register struct bfd_link_order *p;
4030 size_t max_contents_size;
4031 size_t max_external_reloc_size;
4032 size_t max_internal_reloc_count;
4033 size_t max_sym_count;
4035 Elf_Internal_Sym elfsym;
4037 Elf_Internal_Shdr *symtab_hdr;
4038 Elf_Internal_Shdr *symstrtab_hdr;
4039 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040 struct elf_outext_info eoinfo;
4043 abfd->flags |= DYNAMIC;
4045 dynamic = elf_hash_table (info)->dynamic_sections_created;
4046 dynobj = elf_hash_table (info)->dynobj;
4049 finfo.output_bfd = abfd;
4050 finfo.symstrtab = elf_stringtab_init ();
4051 if (finfo.symstrtab == NULL)
4056 finfo.dynsym_sec = NULL;
4057 finfo.hash_sec = NULL;
4058 finfo.symver_sec = NULL;
4062 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
4063 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
4064 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
4065 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
4066 /* Note that it is OK if symver_sec is NULL. */
4069 finfo.contents = NULL;
4070 finfo.external_relocs = NULL;
4071 finfo.internal_relocs = NULL;
4072 finfo.external_syms = NULL;
4073 finfo.internal_syms = NULL;
4074 finfo.indices = NULL;
4075 finfo.sections = NULL;
4076 finfo.symbuf = NULL;
4077 finfo.symbuf_count = 0;
4079 /* Count up the number of relocations we will output for each output
4080 section, so that we know the sizes of the reloc sections. We
4081 also figure out some maximum sizes. */
4082 max_contents_size = 0;
4083 max_external_reloc_size = 0;
4084 max_internal_reloc_count = 0;
4086 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
4090 for (p = o->link_order_head; p != NULL; p = p->next)
4092 if (p->type == bfd_section_reloc_link_order
4093 || p->type == bfd_symbol_reloc_link_order)
4095 else if (p->type == bfd_indirect_link_order)
4099 sec = p->u.indirect.section;
4101 /* Mark all sections which are to be included in the
4102 link. This will normally be every section. We need
4103 to do this so that we can identify any sections which
4104 the linker has decided to not include. */
4105 sec->linker_mark = true;
4107 if (info->relocateable)
4108 o->reloc_count += sec->reloc_count;
4110 if (sec->_raw_size > max_contents_size)
4111 max_contents_size = sec->_raw_size;
4112 if (sec->_cooked_size > max_contents_size)
4113 max_contents_size = sec->_cooked_size;
4115 /* We are interested in just local symbols, not all
4117 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
4118 && (sec->owner->flags & DYNAMIC) == 0)
4122 if (elf_bad_symtab (sec->owner))
4123 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
4124 / sizeof (Elf_External_Sym));
4126 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
4128 if (sym_count > max_sym_count)
4129 max_sym_count = sym_count;
4131 if ((sec->flags & SEC_RELOC) != 0)
4135 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
4136 if (ext_size > max_external_reloc_size)
4137 max_external_reloc_size = ext_size;
4138 if (sec->reloc_count > max_internal_reloc_count)
4139 max_internal_reloc_count = sec->reloc_count;
4145 if (o->reloc_count > 0)
4146 o->flags |= SEC_RELOC;
4149 /* Explicitly clear the SEC_RELOC flag. The linker tends to
4150 set it (this is probably a bug) and if it is set
4151 assign_section_numbers will create a reloc section. */
4152 o->flags &=~ SEC_RELOC;
4155 /* If the SEC_ALLOC flag is not set, force the section VMA to
4156 zero. This is done in elf_fake_sections as well, but forcing
4157 the VMA to 0 here will ensure that relocs against these
4158 sections are handled correctly. */
4159 if ((o->flags & SEC_ALLOC) == 0
4160 && ! o->user_set_vma)
4164 /* Figure out the file positions for everything but the symbol table
4165 and the relocs. We set symcount to force assign_section_numbers
4166 to create a symbol table. */
4167 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
4168 BFD_ASSERT (! abfd->output_has_begun);
4169 if (! _bfd_elf_compute_section_file_positions (abfd, info))
4172 /* Figure out how many relocations we will have in each section.
4173 Just using RELOC_COUNT isn't good enough since that doesn't
4174 maintain a separate value for REL vs. RELA relocations. */
4175 if (info->relocateable)
4176 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4177 for (o = sub->sections; o != NULL; o = o->next)
4179 asection *output_section;
4181 if (! o->linker_mark)
4183 /* This section was omitted from the link. */
4187 output_section = o->output_section;
4189 if (output_section != NULL
4190 && (o->flags & SEC_RELOC) != 0)
4192 struct bfd_elf_section_data *esdi
4193 = elf_section_data (o);
4194 struct bfd_elf_section_data *esdo
4195 = elf_section_data (output_section);
4196 unsigned int *rel_count;
4197 unsigned int *rel_count2;
4199 /* We must be careful to add the relocation froms the
4200 input section to the right output count. */
4201 if (esdi->rel_hdr.sh_entsize == esdo->rel_hdr.sh_entsize)
4203 rel_count = &esdo->rel_count;
4204 rel_count2 = &esdo->rel_count2;
4208 rel_count = &esdo->rel_count2;
4209 rel_count2 = &esdo->rel_count;
4212 *rel_count += (esdi->rel_hdr.sh_size
4213 / esdi->rel_hdr.sh_entsize);
4215 *rel_count2 += (esdi->rel_hdr2->sh_size
4216 / esdi->rel_hdr2->sh_entsize);
4220 /* That created the reloc sections. Set their sizes, and assign
4221 them file positions, and allocate some buffers. */
4222 for (o = abfd->sections; o != NULL; o = o->next)
4224 if ((o->flags & SEC_RELOC) != 0)
4226 if (!elf_link_size_reloc_section (abfd,
4227 &elf_section_data (o)->rel_hdr,
4231 if (elf_section_data (o)->rel_hdr2
4232 && !elf_link_size_reloc_section (abfd,
4233 elf_section_data (o)->rel_hdr2,
4238 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
4239 to count upwards while actually outputting the relocations. */
4240 elf_section_data (o)->rel_count = 0;
4241 elf_section_data (o)->rel_count2 = 0;
4244 _bfd_elf_assign_file_positions_for_relocs (abfd);
4246 /* We have now assigned file positions for all the sections except
4247 .symtab and .strtab. We start the .symtab section at the current
4248 file position, and write directly to it. We build the .strtab
4249 section in memory. */
4250 bfd_get_symcount (abfd) = 0;
4251 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4252 /* sh_name is set in prep_headers. */
4253 symtab_hdr->sh_type = SHT_SYMTAB;
4254 symtab_hdr->sh_flags = 0;
4255 symtab_hdr->sh_addr = 0;
4256 symtab_hdr->sh_size = 0;
4257 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
4258 /* sh_link is set in assign_section_numbers. */
4259 /* sh_info is set below. */
4260 /* sh_offset is set just below. */
4261 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
4263 off = elf_tdata (abfd)->next_file_pos;
4264 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
4266 /* Note that at this point elf_tdata (abfd)->next_file_pos is
4267 incorrect. We do not yet know the size of the .symtab section.
4268 We correct next_file_pos below, after we do know the size. */
4270 /* Allocate a buffer to hold swapped out symbols. This is to avoid
4271 continuously seeking to the right position in the file. */
4272 if (! info->keep_memory || max_sym_count < 20)
4273 finfo.symbuf_size = 20;
4275 finfo.symbuf_size = max_sym_count;
4276 finfo.symbuf = ((Elf_External_Sym *)
4277 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
4278 if (finfo.symbuf == NULL)
4281 /* Start writing out the symbol table. The first symbol is always a
4283 if (info->strip != strip_all || info->relocateable)
4285 elfsym.st_value = 0;
4288 elfsym.st_other = 0;
4289 elfsym.st_shndx = SHN_UNDEF;
4290 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4291 &elfsym, bfd_und_section_ptr))
4296 /* Some standard ELF linkers do this, but we don't because it causes
4297 bootstrap comparison failures. */
4298 /* Output a file symbol for the output file as the second symbol.
4299 We output this even if we are discarding local symbols, although
4300 I'm not sure if this is correct. */
4301 elfsym.st_value = 0;
4303 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
4304 elfsym.st_other = 0;
4305 elfsym.st_shndx = SHN_ABS;
4306 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
4307 &elfsym, bfd_abs_section_ptr))
4311 /* Output a symbol for each section. We output these even if we are
4312 discarding local symbols, since they are used for relocs. These
4313 symbols have no names. We store the index of each one in the
4314 index field of the section, so that we can find it again when
4315 outputting relocs. */
4316 if (info->strip != strip_all || info->relocateable)
4319 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4320 elfsym.st_other = 0;
4321 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4323 o = section_from_elf_index (abfd, i);
4325 o->target_index = bfd_get_symcount (abfd);
4326 elfsym.st_shndx = i;
4327 if (info->relocateable || o == NULL)
4328 elfsym.st_value = 0;
4330 elfsym.st_value = o->vma;
4331 if (! elf_link_output_sym (&finfo, (const char *) NULL,
4337 /* Allocate some memory to hold information read in from the input
4339 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
4340 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
4341 finfo.internal_relocs = ((Elf_Internal_Rela *)
4342 bfd_malloc (max_internal_reloc_count
4343 * sizeof (Elf_Internal_Rela)
4344 * bed->s->int_rels_per_ext_rel));
4345 finfo.external_syms = ((Elf_External_Sym *)
4346 bfd_malloc (max_sym_count
4347 * sizeof (Elf_External_Sym)));
4348 finfo.internal_syms = ((Elf_Internal_Sym *)
4349 bfd_malloc (max_sym_count
4350 * sizeof (Elf_Internal_Sym)));
4351 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
4352 finfo.sections = ((asection **)
4353 bfd_malloc (max_sym_count * sizeof (asection *)));
4354 if ((finfo.contents == NULL && max_contents_size != 0)
4355 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
4356 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
4357 || (finfo.external_syms == NULL && max_sym_count != 0)
4358 || (finfo.internal_syms == NULL && max_sym_count != 0)
4359 || (finfo.indices == NULL && max_sym_count != 0)
4360 || (finfo.sections == NULL && max_sym_count != 0))
4363 /* Since ELF permits relocations to be against local symbols, we
4364 must have the local symbols available when we do the relocations.
4365 Since we would rather only read the local symbols once, and we
4366 would rather not keep them in memory, we handle all the
4367 relocations for a single input file at the same time.
4369 Unfortunately, there is no way to know the total number of local
4370 symbols until we have seen all of them, and the local symbol
4371 indices precede the global symbol indices. This means that when
4372 we are generating relocateable output, and we see a reloc against
4373 a global symbol, we can not know the symbol index until we have
4374 finished examining all the local symbols to see which ones we are
4375 going to output. To deal with this, we keep the relocations in
4376 memory, and don't output them until the end of the link. This is
4377 an unfortunate waste of memory, but I don't see a good way around
4378 it. Fortunately, it only happens when performing a relocateable
4379 link, which is not the common case. FIXME: If keep_memory is set
4380 we could write the relocs out and then read them again; I don't
4381 know how bad the memory loss will be. */
4383 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
4384 sub->output_has_begun = false;
4385 for (o = abfd->sections; o != NULL; o = o->next)
4387 for (p = o->link_order_head; p != NULL; p = p->next)
4389 if (p->type == bfd_indirect_link_order
4390 && (bfd_get_flavour (p->u.indirect.section->owner)
4391 == bfd_target_elf_flavour))
4393 sub = p->u.indirect.section->owner;
4394 if (! sub->output_has_begun)
4396 if (! elf_link_input_bfd (&finfo, sub))
4398 sub->output_has_begun = true;
4401 else if (p->type == bfd_section_reloc_link_order
4402 || p->type == bfd_symbol_reloc_link_order)
4404 if (! elf_reloc_link_order (abfd, info, o, p))
4409 if (! _bfd_default_link_order (abfd, info, o, p))
4415 /* That wrote out all the local symbols. Finish up the symbol table
4416 with the global symbols. */
4418 if (info->strip != strip_all && info->shared)
4420 /* Output any global symbols that got converted to local in a
4421 version script. We do this in a separate step since ELF
4422 requires all local symbols to appear prior to any global
4423 symbols. FIXME: We should only do this if some global
4424 symbols were, in fact, converted to become local. FIXME:
4425 Will this work correctly with the Irix 5 linker? */
4426 eoinfo.failed = false;
4427 eoinfo.finfo = &finfo;
4428 eoinfo.localsyms = true;
4429 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4435 /* The sh_info field records the index of the first non local symbol. */
4436 symtab_hdr->sh_info = bfd_get_symcount (abfd);
4440 Elf_Internal_Sym sym;
4441 Elf_External_Sym *dynsym =
4442 (Elf_External_Sym *)finfo.dynsym_sec->contents;
4443 long last_local = 0;
4445 /* Write out the section symbols for the output sections. */
4452 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
4455 for (s = abfd->sections; s != NULL; s = s->next)
4458 indx = elf_section_data (s)->this_idx;
4459 BFD_ASSERT (indx > 0);
4460 sym.st_shndx = indx;
4461 sym.st_value = s->vma;
4463 elf_swap_symbol_out (abfd, &sym,
4464 dynsym + elf_section_data (s)->dynindx);
4467 last_local = bfd_count_sections (abfd);
4470 /* Write out the local dynsyms. */
4471 if (elf_hash_table (info)->dynlocal)
4473 struct elf_link_local_dynamic_entry *e;
4474 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
4478 sym.st_size = e->isym.st_size;
4479 sym.st_other = e->isym.st_other;
4481 /* Copy the internal symbol as is.
4482 Note that we saved a word of storage and overwrote
4483 the original st_name with the dynstr_index. */
4486 if (e->isym.st_shndx > 0 && e->isym.st_shndx < SHN_LORESERVE)
4488 s = bfd_section_from_elf_index (e->input_bfd,
4492 elf_section_data (s->output_section)->this_idx;
4493 sym.st_value = (s->output_section->vma
4495 + e->isym.st_value);
4498 if (last_local < e->dynindx)
4499 last_local = e->dynindx;
4501 elf_swap_symbol_out (abfd, &sym, dynsym + e->dynindx);
4505 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
4509 /* We get the global symbols from the hash table. */
4510 eoinfo.failed = false;
4511 eoinfo.localsyms = false;
4512 eoinfo.finfo = &finfo;
4513 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
4518 /* If backend needs to output some symbols not present in the hash
4519 table, do it now. */
4520 if (bed->elf_backend_output_arch_syms)
4522 if (! (*bed->elf_backend_output_arch_syms)
4523 (abfd, info, (PTR) &finfo,
4524 (boolean (*) PARAMS ((PTR, const char *,
4525 Elf_Internal_Sym *, asection *)))
4526 elf_link_output_sym))
4530 /* Flush all symbols to the file. */
4531 if (! elf_link_flush_output_syms (&finfo))
4534 /* Now we know the size of the symtab section. */
4535 off += symtab_hdr->sh_size;
4537 /* Finish up and write out the symbol string table (.strtab)
4539 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
4540 /* sh_name was set in prep_headers. */
4541 symstrtab_hdr->sh_type = SHT_STRTAB;
4542 symstrtab_hdr->sh_flags = 0;
4543 symstrtab_hdr->sh_addr = 0;
4544 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
4545 symstrtab_hdr->sh_entsize = 0;
4546 symstrtab_hdr->sh_link = 0;
4547 symstrtab_hdr->sh_info = 0;
4548 /* sh_offset is set just below. */
4549 symstrtab_hdr->sh_addralign = 1;
4551 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4552 elf_tdata (abfd)->next_file_pos = off;
4554 if (bfd_get_symcount (abfd) > 0)
4556 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4557 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4561 /* Adjust the relocs to have the correct symbol indices. */
4562 for (o = abfd->sections; o != NULL; o = o->next)
4564 if ((o->flags & SEC_RELOC) == 0)
4567 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
4568 elf_section_data (o)->rel_count,
4569 elf_section_data (o)->rel_hashes);
4570 if (elf_section_data (o)->rel_hdr2 != NULL)
4571 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
4572 elf_section_data (o)->rel_count2,
4573 (elf_section_data (o)->rel_hashes
4574 + elf_section_data (o)->rel_count));
4576 /* Set the reloc_count field to 0 to prevent write_relocs from
4577 trying to swap the relocs out itself. */
4581 /* If we are linking against a dynamic object, or generating a
4582 shared library, finish up the dynamic linking information. */
4585 Elf_External_Dyn *dyncon, *dynconend;
4587 /* Fix up .dynamic entries. */
4588 o = bfd_get_section_by_name (dynobj, ".dynamic");
4589 BFD_ASSERT (o != NULL);
4591 dyncon = (Elf_External_Dyn *) o->contents;
4592 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4593 for (; dyncon < dynconend; dyncon++)
4595 Elf_Internal_Dyn dyn;
4599 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4606 name = info->init_function;
4609 name = info->fini_function;
4612 struct elf_link_hash_entry *h;
4614 h = elf_link_hash_lookup (elf_hash_table (info), name,
4615 false, false, true);
4617 && (h->root.type == bfd_link_hash_defined
4618 || h->root.type == bfd_link_hash_defweak))
4620 dyn.d_un.d_val = h->root.u.def.value;
4621 o = h->root.u.def.section;
4622 if (o->output_section != NULL)
4623 dyn.d_un.d_val += (o->output_section->vma
4624 + o->output_offset);
4627 /* The symbol is imported from another shared
4628 library and does not apply to this one. */
4632 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4647 name = ".gnu.version_d";
4650 name = ".gnu.version_r";
4653 name = ".gnu.version";
4655 o = bfd_get_section_by_name (abfd, name);
4656 BFD_ASSERT (o != NULL);
4657 dyn.d_un.d_ptr = o->vma;
4658 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4665 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4670 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4672 Elf_Internal_Shdr *hdr;
4674 hdr = elf_elfsections (abfd)[i];
4675 if (hdr->sh_type == type
4676 && (hdr->sh_flags & SHF_ALLOC) != 0)
4678 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4679 dyn.d_un.d_val += hdr->sh_size;
4682 if (dyn.d_un.d_val == 0
4683 || hdr->sh_addr < dyn.d_un.d_val)
4684 dyn.d_un.d_val = hdr->sh_addr;
4688 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4694 /* If we have created any dynamic sections, then output them. */
4697 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4700 for (o = dynobj->sections; o != NULL; o = o->next)
4702 if ((o->flags & SEC_HAS_CONTENTS) == 0
4703 || o->_raw_size == 0)
4705 if ((o->flags & SEC_LINKER_CREATED) == 0)
4707 /* At this point, we are only interested in sections
4708 created by elf_link_create_dynamic_sections. */
4711 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4713 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4715 if (! bfd_set_section_contents (abfd, o->output_section,
4716 o->contents, o->output_offset,
4724 /* The contents of the .dynstr section are actually in a
4726 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4727 if (bfd_seek (abfd, off, SEEK_SET) != 0
4728 || ! _bfd_stringtab_emit (abfd,
4729 elf_hash_table (info)->dynstr))
4735 /* If we have optimized stabs strings, output them. */
4736 if (elf_hash_table (info)->stab_info != NULL)
4738 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4742 if (finfo.symstrtab != NULL)
4743 _bfd_stringtab_free (finfo.symstrtab);
4744 if (finfo.contents != NULL)
4745 free (finfo.contents);
4746 if (finfo.external_relocs != NULL)
4747 free (finfo.external_relocs);
4748 if (finfo.internal_relocs != NULL)
4749 free (finfo.internal_relocs);
4750 if (finfo.external_syms != NULL)
4751 free (finfo.external_syms);
4752 if (finfo.internal_syms != NULL)
4753 free (finfo.internal_syms);
4754 if (finfo.indices != NULL)
4755 free (finfo.indices);
4756 if (finfo.sections != NULL)
4757 free (finfo.sections);
4758 if (finfo.symbuf != NULL)
4759 free (finfo.symbuf);
4760 for (o = abfd->sections; o != NULL; o = o->next)
4762 if ((o->flags & SEC_RELOC) != 0
4763 && elf_section_data (o)->rel_hashes != NULL)
4764 free (elf_section_data (o)->rel_hashes);
4767 elf_tdata (abfd)->linker = true;
4772 if (finfo.symstrtab != NULL)
4773 _bfd_stringtab_free (finfo.symstrtab);
4774 if (finfo.contents != NULL)
4775 free (finfo.contents);
4776 if (finfo.external_relocs != NULL)
4777 free (finfo.external_relocs);
4778 if (finfo.internal_relocs != NULL)
4779 free (finfo.internal_relocs);
4780 if (finfo.external_syms != NULL)
4781 free (finfo.external_syms);
4782 if (finfo.internal_syms != NULL)
4783 free (finfo.internal_syms);
4784 if (finfo.indices != NULL)
4785 free (finfo.indices);
4786 if (finfo.sections != NULL)
4787 free (finfo.sections);
4788 if (finfo.symbuf != NULL)
4789 free (finfo.symbuf);
4790 for (o = abfd->sections; o != NULL; o = o->next)
4792 if ((o->flags & SEC_RELOC) != 0
4793 && elf_section_data (o)->rel_hashes != NULL)
4794 free (elf_section_data (o)->rel_hashes);
4800 /* Add a symbol to the output symbol table. */
4803 elf_link_output_sym (finfo, name, elfsym, input_sec)
4804 struct elf_final_link_info *finfo;
4806 Elf_Internal_Sym *elfsym;
4807 asection *input_sec;
4809 boolean (*output_symbol_hook) PARAMS ((bfd *,
4810 struct bfd_link_info *info,
4815 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4816 elf_backend_link_output_symbol_hook;
4817 if (output_symbol_hook != NULL)
4819 if (! ((*output_symbol_hook)
4820 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4824 if (name == (const char *) NULL || *name == '\0')
4825 elfsym->st_name = 0;
4826 else if (input_sec->flags & SEC_EXCLUDE)
4827 elfsym->st_name = 0;
4830 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4833 if (elfsym->st_name == (unsigned long) -1)
4837 if (finfo->symbuf_count >= finfo->symbuf_size)
4839 if (! elf_link_flush_output_syms (finfo))
4843 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4844 (PTR) (finfo->symbuf + finfo->symbuf_count));
4845 ++finfo->symbuf_count;
4847 ++ bfd_get_symcount (finfo->output_bfd);
4852 /* Flush the output symbols to the file. */
4855 elf_link_flush_output_syms (finfo)
4856 struct elf_final_link_info *finfo;
4858 if (finfo->symbuf_count > 0)
4860 Elf_Internal_Shdr *symtab;
4862 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4864 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4866 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4867 sizeof (Elf_External_Sym), finfo->output_bfd)
4868 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4871 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4873 finfo->symbuf_count = 0;
4879 /* Add an external symbol to the symbol table. This is called from
4880 the hash table traversal routine. When generating a shared object,
4881 we go through the symbol table twice. The first time we output
4882 anything that might have been forced to local scope in a version
4883 script. The second time we output the symbols that are still
4887 elf_link_output_extsym (h, data)
4888 struct elf_link_hash_entry *h;
4891 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4892 struct elf_final_link_info *finfo = eoinfo->finfo;
4894 Elf_Internal_Sym sym;
4895 asection *input_sec;
4897 /* Decide whether to output this symbol in this pass. */
4898 if (eoinfo->localsyms)
4900 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4905 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4909 /* If we are not creating a shared library, and this symbol is
4910 referenced by a shared library but is not defined anywhere, then
4911 warn that it is undefined. If we do not do this, the runtime
4912 linker will complain that the symbol is undefined when the
4913 program is run. We don't have to worry about symbols that are
4914 referenced by regular files, because we will already have issued
4915 warnings for them. */
4916 if (! finfo->info->relocateable
4917 && ! (finfo->info->shared
4918 && !finfo->info->no_undefined)
4919 && h->root.type == bfd_link_hash_undefined
4920 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4921 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4923 if (! ((*finfo->info->callbacks->undefined_symbol)
4924 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4925 (asection *) NULL, 0)))
4927 eoinfo->failed = true;
4932 /* We don't want to output symbols that have never been mentioned by
4933 a regular file, or that we have been told to strip. However, if
4934 h->indx is set to -2, the symbol is used by a reloc and we must
4938 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4939 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4940 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4941 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4943 else if (finfo->info->strip == strip_all
4944 || (finfo->info->strip == strip_some
4945 && bfd_hash_lookup (finfo->info->keep_hash,
4946 h->root.root.string,
4947 false, false) == NULL))
4952 /* If we're stripping it, and it's not a dynamic symbol, there's
4953 nothing else to do. */
4954 if (strip && h->dynindx == -1)
4958 sym.st_size = h->size;
4959 sym.st_other = h->other;
4960 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4961 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4962 else if (h->root.type == bfd_link_hash_undefweak
4963 || h->root.type == bfd_link_hash_defweak)
4964 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4966 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4968 switch (h->root.type)
4971 case bfd_link_hash_new:
4975 case bfd_link_hash_undefined:
4976 input_sec = bfd_und_section_ptr;
4977 sym.st_shndx = SHN_UNDEF;
4980 case bfd_link_hash_undefweak:
4981 input_sec = bfd_und_section_ptr;
4982 sym.st_shndx = SHN_UNDEF;
4985 case bfd_link_hash_defined:
4986 case bfd_link_hash_defweak:
4988 input_sec = h->root.u.def.section;
4989 if (input_sec->output_section != NULL)
4992 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4993 input_sec->output_section);
4994 if (sym.st_shndx == (unsigned short) -1)
4996 (*_bfd_error_handler)
4997 (_("%s: could not find output section %s for input section %s"),
4998 bfd_get_filename (finfo->output_bfd),
4999 input_sec->output_section->name,
5001 eoinfo->failed = true;
5005 /* ELF symbols in relocateable files are section relative,
5006 but in nonrelocateable files they are virtual
5008 sym.st_value = h->root.u.def.value + input_sec->output_offset;
5009 if (! finfo->info->relocateable)
5010 sym.st_value += input_sec->output_section->vma;
5014 BFD_ASSERT (input_sec->owner == NULL
5015 || (input_sec->owner->flags & DYNAMIC) != 0);
5016 sym.st_shndx = SHN_UNDEF;
5017 input_sec = bfd_und_section_ptr;
5022 case bfd_link_hash_common:
5023 input_sec = h->root.u.c.p->section;
5024 sym.st_shndx = SHN_COMMON;
5025 sym.st_value = 1 << h->root.u.c.p->alignment_power;
5028 case bfd_link_hash_indirect:
5029 /* These symbols are created by symbol versioning. They point
5030 to the decorated version of the name. For example, if the
5031 symbol foo@@GNU_1.2 is the default, which should be used when
5032 foo is used with no version, then we add an indirect symbol
5033 foo which points to foo@@GNU_1.2. We ignore these symbols,
5034 since the indirected symbol is already in the hash table. If
5035 the indirect symbol is non-ELF, fall through and output it. */
5036 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
5040 case bfd_link_hash_warning:
5041 /* We can't represent these symbols in ELF, although a warning
5042 symbol may have come from a .gnu.warning.SYMBOL section. We
5043 just put the target symbol in the hash table. If the target
5044 symbol does not really exist, don't do anything. */
5045 if (h->root.u.i.link->type == bfd_link_hash_new)
5047 return (elf_link_output_extsym
5048 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
5051 /* Give the processor backend a chance to tweak the symbol value,
5052 and also to finish up anything that needs to be done for this
5054 if ((h->dynindx != -1
5055 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
5056 && elf_hash_table (finfo->info)->dynamic_sections_created)
5058 struct elf_backend_data *bed;
5060 bed = get_elf_backend_data (finfo->output_bfd);
5061 if (! ((*bed->elf_backend_finish_dynamic_symbol)
5062 (finfo->output_bfd, finfo->info, h, &sym)))
5064 eoinfo->failed = true;
5069 /* If we are marking the symbol as undefined, and there are no
5070 non-weak references to this symbol from a regular object, then
5071 mark the symbol as weak undefined; if there are non-weak
5072 references, mark the symbol as strong. We can't do this earlier,
5073 because it might not be marked as undefined until the
5074 finish_dynamic_symbol routine gets through with it. */
5075 if (sym.st_shndx == SHN_UNDEF
5076 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
5077 && (ELF_ST_BIND(sym.st_info) == STB_GLOBAL
5078 || ELF_ST_BIND(sym.st_info) == STB_WEAK))
5082 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK) != 0)
5083 bindtype = STB_GLOBAL;
5085 bindtype = STB_WEAK;
5086 sym.st_info = ELF_ST_INFO (bindtype, ELF_ST_TYPE (sym.st_info));
5089 /* If this symbol should be put in the .dynsym section, then put it
5090 there now. We have already know the symbol index. We also fill
5091 in the entry in the .hash section. */
5092 if (h->dynindx != -1
5093 && elf_hash_table (finfo->info)->dynamic_sections_created)
5097 size_t hash_entry_size;
5098 bfd_byte *bucketpos;
5101 sym.st_name = h->dynstr_index;
5103 elf_swap_symbol_out (finfo->output_bfd, &sym,
5104 (PTR) (((Elf_External_Sym *)
5105 finfo->dynsym_sec->contents)
5108 bucketcount = elf_hash_table (finfo->info)->bucketcount;
5109 bucket = h->elf_hash_value % bucketcount;
5111 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
5112 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
5113 + (bucket + 2) * hash_entry_size);
5114 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
5115 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
5116 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
5117 ((bfd_byte *) finfo->hash_sec->contents
5118 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
5120 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
5122 Elf_Internal_Versym iversym;
5124 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5126 if (h->verinfo.verdef == NULL)
5127 iversym.vs_vers = 0;
5129 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
5133 if (h->verinfo.vertree == NULL)
5134 iversym.vs_vers = 1;
5136 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
5139 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
5140 iversym.vs_vers |= VERSYM_HIDDEN;
5142 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
5143 (((Elf_External_Versym *)
5144 finfo->symver_sec->contents)
5149 /* If we're stripping it, then it was just a dynamic symbol, and
5150 there's nothing else to do. */
5154 h->indx = bfd_get_symcount (finfo->output_bfd);
5156 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
5158 eoinfo->failed = true;
5165 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
5166 originated from the section given by INPUT_REL_HDR) to the
5170 elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
5173 asection *input_section;
5174 Elf_Internal_Shdr *input_rel_hdr;
5175 Elf_Internal_Rela *internal_relocs;
5177 Elf_Internal_Rela *irela;
5178 Elf_Internal_Rela *irelaend;
5179 Elf_Internal_Shdr *output_rel_hdr;
5180 asection *output_section;
5181 unsigned int *rel_countp = NULL;
5183 output_section = input_section->output_section;
5184 output_rel_hdr = NULL;
5186 if (elf_section_data (output_section)->rel_hdr.sh_entsize
5187 == input_rel_hdr->sh_entsize)
5189 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
5190 rel_countp = &elf_section_data (output_section)->rel_count;
5192 else if (elf_section_data (output_section)->rel_hdr2
5193 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
5194 == input_rel_hdr->sh_entsize))
5196 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
5197 rel_countp = &elf_section_data (output_section)->rel_count2;
5200 BFD_ASSERT (output_rel_hdr != NULL);
5202 irela = internal_relocs;
5203 irelaend = irela + input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5204 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5206 Elf_External_Rel *erel;
5208 erel = ((Elf_External_Rel *) output_rel_hdr->contents + *rel_countp);
5209 for (; irela < irelaend; irela++, erel++)
5211 Elf_Internal_Rel irel;
5213 irel.r_offset = irela->r_offset;
5214 irel.r_info = irela->r_info;
5215 BFD_ASSERT (irela->r_addend == 0);
5216 elf_swap_reloc_out (output_bfd, &irel, erel);
5221 Elf_External_Rela *erela;
5223 BFD_ASSERT (input_rel_hdr->sh_entsize
5224 == sizeof (Elf_External_Rela));
5225 erela = ((Elf_External_Rela *) output_rel_hdr->contents + *rel_countp);
5226 for (; irela < irelaend; irela++, erela++)
5227 elf_swap_reloca_out (output_bfd, irela, erela);
5230 /* Bump the counter, so that we know where to add the next set of
5232 *rel_countp += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5235 /* Link an input file into the linker output file. This function
5236 handles all the sections and relocations of the input file at once.
5237 This is so that we only have to read the local symbols once, and
5238 don't have to keep them in memory. */
5241 elf_link_input_bfd (finfo, input_bfd)
5242 struct elf_final_link_info *finfo;
5245 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
5246 bfd *, asection *, bfd_byte *,
5247 Elf_Internal_Rela *,
5248 Elf_Internal_Sym *, asection **));
5250 Elf_Internal_Shdr *symtab_hdr;
5253 Elf_External_Sym *external_syms;
5254 Elf_External_Sym *esym;
5255 Elf_External_Sym *esymend;
5256 Elf_Internal_Sym *isym;
5258 asection **ppsection;
5260 struct elf_backend_data *bed;
5262 output_bfd = finfo->output_bfd;
5263 bed = get_elf_backend_data (output_bfd);
5264 relocate_section = bed->elf_backend_relocate_section;
5266 /* If this is a dynamic object, we don't want to do anything here:
5267 we don't want the local symbols, and we don't want the section
5269 if ((input_bfd->flags & DYNAMIC) != 0)
5272 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5273 if (elf_bad_symtab (input_bfd))
5275 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5280 locsymcount = symtab_hdr->sh_info;
5281 extsymoff = symtab_hdr->sh_info;
5284 /* Read the local symbols. */
5285 if (symtab_hdr->contents != NULL)
5286 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
5287 else if (locsymcount == 0)
5288 external_syms = NULL;
5291 external_syms = finfo->external_syms;
5292 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5293 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
5294 locsymcount, input_bfd)
5295 != locsymcount * sizeof (Elf_External_Sym)))
5299 /* Swap in the local symbols and write out the ones which we know
5300 are going into the output file. */
5301 esym = external_syms;
5302 esymend = esym + locsymcount;
5303 isym = finfo->internal_syms;
5304 pindex = finfo->indices;
5305 ppsection = finfo->sections;
5306 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
5310 Elf_Internal_Sym osym;
5312 elf_swap_symbol_in (input_bfd, esym, isym);
5315 if (elf_bad_symtab (input_bfd))
5317 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
5324 if (isym->st_shndx == SHN_UNDEF)
5325 isec = bfd_und_section_ptr;
5326 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
5327 isec = section_from_elf_index (input_bfd, isym->st_shndx);
5328 else if (isym->st_shndx == SHN_ABS)
5329 isec = bfd_abs_section_ptr;
5330 else if (isym->st_shndx == SHN_COMMON)
5331 isec = bfd_com_section_ptr;
5340 /* Don't output the first, undefined, symbol. */
5341 if (esym == external_syms)
5344 /* If we are stripping all symbols, we don't want to output this
5346 if (finfo->info->strip == strip_all)
5349 /* We never output section symbols. Instead, we use the section
5350 symbol of the corresponding section in the output file. */
5351 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5354 /* If we are discarding all local symbols, we don't want to
5355 output this one. If we are generating a relocateable output
5356 file, then some of the local symbols may be required by
5357 relocs; we output them below as we discover that they are
5359 if (finfo->info->discard == discard_all)
5362 /* If this symbol is defined in a section which we are
5363 discarding, we don't need to keep it, but note that
5364 linker_mark is only reliable for sections that have contents.
5365 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
5366 as well as linker_mark. */
5367 if (isym->st_shndx > 0
5368 && isym->st_shndx < SHN_LORESERVE
5370 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
5371 || (! finfo->info->relocateable
5372 && (isec->flags & SEC_EXCLUDE) != 0)))
5375 /* Get the name of the symbol. */
5376 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
5381 /* See if we are discarding symbols with this name. */
5382 if ((finfo->info->strip == strip_some
5383 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
5385 || (finfo->info->discard == discard_l
5386 && bfd_is_local_label_name (input_bfd, name)))
5389 /* If we get here, we are going to output this symbol. */
5393 /* Adjust the section index for the output file. */
5394 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
5395 isec->output_section);
5396 if (osym.st_shndx == (unsigned short) -1)
5399 *pindex = bfd_get_symcount (output_bfd);
5401 /* ELF symbols in relocateable files are section relative, but
5402 in executable files they are virtual addresses. Note that
5403 this code assumes that all ELF sections have an associated
5404 BFD section with a reasonable value for output_offset; below
5405 we assume that they also have a reasonable value for
5406 output_section. Any special sections must be set up to meet
5407 these requirements. */
5408 osym.st_value += isec->output_offset;
5409 if (! finfo->info->relocateable)
5410 osym.st_value += isec->output_section->vma;
5412 if (! elf_link_output_sym (finfo, name, &osym, isec))
5416 /* Relocate the contents of each section. */
5417 for (o = input_bfd->sections; o != NULL; o = o->next)
5421 if (! o->linker_mark)
5423 /* This section was omitted from the link. */
5427 if ((o->flags & SEC_HAS_CONTENTS) == 0
5428 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
5431 if ((o->flags & SEC_LINKER_CREATED) != 0)
5433 /* Section was created by elf_link_create_dynamic_sections
5438 /* Get the contents of the section. They have been cached by a
5439 relaxation routine. Note that o is a section in an input
5440 file, so the contents field will not have been set by any of
5441 the routines which work on output files. */
5442 if (elf_section_data (o)->this_hdr.contents != NULL)
5443 contents = elf_section_data (o)->this_hdr.contents;
5446 contents = finfo->contents;
5447 if (! bfd_get_section_contents (input_bfd, o, contents,
5448 (file_ptr) 0, o->_raw_size))
5452 if ((o->flags & SEC_RELOC) != 0)
5454 Elf_Internal_Rela *internal_relocs;
5456 /* Get the swapped relocs. */
5457 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5458 (input_bfd, o, finfo->external_relocs,
5459 finfo->internal_relocs, false));
5460 if (internal_relocs == NULL
5461 && o->reloc_count > 0)
5464 /* Relocate the section by invoking a back end routine.
5466 The back end routine is responsible for adjusting the
5467 section contents as necessary, and (if using Rela relocs
5468 and generating a relocateable output file) adjusting the
5469 reloc addend as necessary.
5471 The back end routine does not have to worry about setting
5472 the reloc address or the reloc symbol index.
5474 The back end routine is given a pointer to the swapped in
5475 internal symbols, and can access the hash table entries
5476 for the external symbols via elf_sym_hashes (input_bfd).
5478 When generating relocateable output, the back end routine
5479 must handle STB_LOCAL/STT_SECTION symbols specially. The
5480 output symbol is going to be a section symbol
5481 corresponding to the output section, which will require
5482 the addend to be adjusted. */
5484 if (! (*relocate_section) (output_bfd, finfo->info,
5485 input_bfd, o, contents,
5487 finfo->internal_syms,
5491 if (finfo->info->relocateable)
5493 Elf_Internal_Rela *irela;
5494 Elf_Internal_Rela *irelaend;
5495 struct elf_link_hash_entry **rel_hash;
5496 Elf_Internal_Shdr *input_rel_hdr;
5498 /* Adjust the reloc addresses and symbol indices. */
5500 irela = internal_relocs;
5502 irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
5503 rel_hash = (elf_section_data (o->output_section)->rel_hashes
5504 + elf_section_data (o->output_section)->rel_count
5505 + elf_section_data (o->output_section)->rel_count2);
5506 for (; irela < irelaend; irela++, rel_hash++)
5508 unsigned long r_symndx;
5509 Elf_Internal_Sym *isym;
5512 irela->r_offset += o->output_offset;
5514 r_symndx = ELF_R_SYM (irela->r_info);
5519 if (r_symndx >= locsymcount
5520 || (elf_bad_symtab (input_bfd)
5521 && finfo->sections[r_symndx] == NULL))
5523 struct elf_link_hash_entry *rh;
5526 /* This is a reloc against a global symbol. We
5527 have not yet output all the local symbols, so
5528 we do not know the symbol index of any global
5529 symbol. We set the rel_hash entry for this
5530 reloc to point to the global hash table entry
5531 for this symbol. The symbol index is then
5532 set at the end of elf_bfd_final_link. */
5533 indx = r_symndx - extsymoff;
5534 rh = elf_sym_hashes (input_bfd)[indx];
5535 while (rh->root.type == bfd_link_hash_indirect
5536 || rh->root.type == bfd_link_hash_warning)
5537 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
5539 /* Setting the index to -2 tells
5540 elf_link_output_extsym that this symbol is
5542 BFD_ASSERT (rh->indx < 0);
5550 /* This is a reloc against a local symbol. */
5553 isym = finfo->internal_syms + r_symndx;
5554 sec = finfo->sections[r_symndx];
5555 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
5557 /* I suppose the backend ought to fill in the
5558 section of any STT_SECTION symbol against a
5559 processor specific section. If we have
5560 discarded a section, the output_section will
5561 be the absolute section. */
5563 && (bfd_is_abs_section (sec)
5564 || (sec->output_section != NULL
5565 && bfd_is_abs_section (sec->output_section))))
5567 else if (sec == NULL || sec->owner == NULL)
5569 bfd_set_error (bfd_error_bad_value);
5574 r_symndx = sec->output_section->target_index;
5575 BFD_ASSERT (r_symndx != 0);
5580 if (finfo->indices[r_symndx] == -1)
5586 if (finfo->info->strip == strip_all)
5588 /* You can't do ld -r -s. */
5589 bfd_set_error (bfd_error_invalid_operation);
5593 /* This symbol was skipped earlier, but
5594 since it is needed by a reloc, we
5595 must output it now. */
5596 link = symtab_hdr->sh_link;
5597 name = bfd_elf_string_from_elf_section (input_bfd,
5603 osec = sec->output_section;
5605 _bfd_elf_section_from_bfd_section (output_bfd,
5607 if (isym->st_shndx == (unsigned short) -1)
5610 isym->st_value += sec->output_offset;
5611 if (! finfo->info->relocateable)
5612 isym->st_value += osec->vma;
5614 finfo->indices[r_symndx] = bfd_get_symcount (output_bfd);
5616 if (! elf_link_output_sym (finfo, name, isym, sec))
5620 r_symndx = finfo->indices[r_symndx];
5623 irela->r_info = ELF_R_INFO (r_symndx,
5624 ELF_R_TYPE (irela->r_info));
5627 /* Swap out the relocs. */
5628 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5629 elf_link_output_relocs (output_bfd, o,
5633 += input_rel_hdr->sh_size / input_rel_hdr->sh_entsize;
5634 input_rel_hdr = elf_section_data (o)->rel_hdr2;
5636 elf_link_output_relocs (output_bfd, o,
5642 /* Write out the modified section contents. */
5643 if (elf_section_data (o)->stab_info == NULL)
5645 if (! (o->flags & SEC_EXCLUDE) &&
5646 ! bfd_set_section_contents (output_bfd, o->output_section,
5647 contents, o->output_offset,
5648 (o->_cooked_size != 0
5655 if (! (_bfd_write_section_stabs
5656 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5657 o, &elf_section_data (o)->stab_info, contents)))
5665 /* Generate a reloc when linking an ELF file. This is a reloc
5666 requested by the linker, and does come from any input file. This
5667 is used to build constructor and destructor tables when linking
5671 elf_reloc_link_order (output_bfd, info, output_section, link_order)
5673 struct bfd_link_info *info;
5674 asection *output_section;
5675 struct bfd_link_order *link_order;
5677 reloc_howto_type *howto;
5681 struct elf_link_hash_entry **rel_hash_ptr;
5682 Elf_Internal_Shdr *rel_hdr;
5684 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5687 bfd_set_error (bfd_error_bad_value);
5691 addend = link_order->u.reloc.p->addend;
5693 /* Figure out the symbol index. */
5694 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5695 + elf_section_data (output_section)->rel_count
5696 + elf_section_data (output_section)->rel_count2);
5697 if (link_order->type == bfd_section_reloc_link_order)
5699 indx = link_order->u.reloc.p->u.section->target_index;
5700 BFD_ASSERT (indx != 0);
5701 *rel_hash_ptr = NULL;
5705 struct elf_link_hash_entry *h;
5707 /* Treat a reloc against a defined symbol as though it were
5708 actually against the section. */
5709 h = ((struct elf_link_hash_entry *)
5710 bfd_wrapped_link_hash_lookup (output_bfd, info,
5711 link_order->u.reloc.p->u.name,
5712 false, false, true));
5714 && (h->root.type == bfd_link_hash_defined
5715 || h->root.type == bfd_link_hash_defweak))
5719 section = h->root.u.def.section;
5720 indx = section->output_section->target_index;
5721 *rel_hash_ptr = NULL;
5722 /* It seems that we ought to add the symbol value to the
5723 addend here, but in practice it has already been added
5724 because it was passed to constructor_callback. */
5725 addend += section->output_section->vma + section->output_offset;
5729 /* Setting the index to -2 tells elf_link_output_extsym that
5730 this symbol is used by a reloc. */
5737 if (! ((*info->callbacks->unattached_reloc)
5738 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5739 (asection *) NULL, (bfd_vma) 0)))
5745 /* If this is an inplace reloc, we must write the addend into the
5747 if (howto->partial_inplace && addend != 0)
5750 bfd_reloc_status_type rstat;
5754 size = bfd_get_reloc_size (howto);
5755 buf = (bfd_byte *) bfd_zmalloc (size);
5756 if (buf == (bfd_byte *) NULL)
5758 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5764 case bfd_reloc_outofrange:
5766 case bfd_reloc_overflow:
5767 if (! ((*info->callbacks->reloc_overflow)
5769 (link_order->type == bfd_section_reloc_link_order
5770 ? bfd_section_name (output_bfd,
5771 link_order->u.reloc.p->u.section)
5772 : link_order->u.reloc.p->u.name),
5773 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5781 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5782 (file_ptr) link_order->offset, size);
5788 /* The address of a reloc is relative to the section in a
5789 relocateable file, and is a virtual address in an executable
5791 offset = link_order->offset;
5792 if (! info->relocateable)
5793 offset += output_section->vma;
5795 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5797 if (rel_hdr->sh_type == SHT_REL)
5799 Elf_Internal_Rel irel;
5800 Elf_External_Rel *erel;
5802 irel.r_offset = offset;
5803 irel.r_info = ELF_R_INFO (indx, howto->type);
5804 erel = ((Elf_External_Rel *) rel_hdr->contents
5805 + elf_section_data (output_section)->rel_count);
5806 elf_swap_reloc_out (output_bfd, &irel, erel);
5810 Elf_Internal_Rela irela;
5811 Elf_External_Rela *erela;
5813 irela.r_offset = offset;
5814 irela.r_info = ELF_R_INFO (indx, howto->type);
5815 irela.r_addend = addend;
5816 erela = ((Elf_External_Rela *) rel_hdr->contents
5817 + elf_section_data (output_section)->rel_count);
5818 elf_swap_reloca_out (output_bfd, &irela, erela);
5821 ++elf_section_data (output_section)->rel_count;
5827 /* Allocate a pointer to live in a linker created section. */
5830 elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5832 struct bfd_link_info *info;
5833 elf_linker_section_t *lsect;
5834 struct elf_link_hash_entry *h;
5835 const Elf_Internal_Rela *rel;
5837 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5838 elf_linker_section_pointers_t *linker_section_ptr;
5839 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5841 BFD_ASSERT (lsect != NULL);
5843 /* Is this a global symbol? */
5846 /* Has this symbol already been allocated, if so, our work is done */
5847 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5852 ptr_linker_section_ptr = &h->linker_section_pointer;
5853 /* Make sure this symbol is output as a dynamic symbol. */
5854 if (h->dynindx == -1)
5856 if (! elf_link_record_dynamic_symbol (info, h))
5860 if (lsect->rel_section)
5861 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5864 else /* Allocation of a pointer to a local symbol */
5866 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5868 /* Allocate a table to hold the local symbols if first time */
5871 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5872 register unsigned int i;
5874 ptr = (elf_linker_section_pointers_t **)
5875 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5880 elf_local_ptr_offsets (abfd) = ptr;
5881 for (i = 0; i < num_symbols; i++)
5882 ptr[i] = (elf_linker_section_pointers_t *)0;
5885 /* Has this symbol already been allocated, if so, our work is done */
5886 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5891 ptr_linker_section_ptr = &ptr[r_symndx];
5895 /* If we are generating a shared object, we need to
5896 output a R_<xxx>_RELATIVE reloc so that the
5897 dynamic linker can adjust this GOT entry. */
5898 BFD_ASSERT (lsect->rel_section != NULL);
5899 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5903 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5904 from internal memory. */
5905 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5906 linker_section_ptr = (elf_linker_section_pointers_t *)
5907 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5909 if (!linker_section_ptr)
5912 linker_section_ptr->next = *ptr_linker_section_ptr;
5913 linker_section_ptr->addend = rel->r_addend;
5914 linker_section_ptr->which = lsect->which;
5915 linker_section_ptr->written_address_p = false;
5916 *ptr_linker_section_ptr = linker_section_ptr;
5919 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5921 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5922 lsect->hole_offset += ARCH_SIZE / 8;
5923 lsect->sym_offset += ARCH_SIZE / 8;
5924 if (lsect->sym_hash) /* Bump up symbol value if needed */
5926 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5928 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5929 lsect->sym_hash->root.root.string,
5930 (long)ARCH_SIZE / 8,
5931 (long)lsect->sym_hash->root.u.def.value);
5937 linker_section_ptr->offset = lsect->section->_raw_size;
5939 lsect->section->_raw_size += ARCH_SIZE / 8;
5942 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5943 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5951 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5954 #define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5957 /* Fill in the address for a pointer generated in alinker section. */
5960 elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5963 struct bfd_link_info *info;
5964 elf_linker_section_t *lsect;
5965 struct elf_link_hash_entry *h;
5967 const Elf_Internal_Rela *rel;
5970 elf_linker_section_pointers_t *linker_section_ptr;
5972 BFD_ASSERT (lsect != NULL);
5974 if (h != NULL) /* global symbol */
5976 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5980 BFD_ASSERT (linker_section_ptr != NULL);
5982 if (! elf_hash_table (info)->dynamic_sections_created
5985 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5987 /* This is actually a static link, or it is a
5988 -Bsymbolic link and the symbol is defined
5989 locally. We must initialize this entry in the
5992 When doing a dynamic link, we create a .rela.<xxx>
5993 relocation entry to initialize the value. This
5994 is done in the finish_dynamic_symbol routine. */
5995 if (!linker_section_ptr->written_address_p)
5997 linker_section_ptr->written_address_p = true;
5998 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5999 lsect->section->contents + linker_section_ptr->offset);
6003 else /* local symbol */
6005 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
6006 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
6007 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
6008 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
6012 BFD_ASSERT (linker_section_ptr != NULL);
6014 /* Write out pointer if it hasn't been rewritten out before */
6015 if (!linker_section_ptr->written_address_p)
6017 linker_section_ptr->written_address_p = true;
6018 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
6019 lsect->section->contents + linker_section_ptr->offset);
6023 asection *srel = lsect->rel_section;
6024 Elf_Internal_Rela outrel;
6026 /* We need to generate a relative reloc for the dynamic linker. */
6028 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
6031 BFD_ASSERT (srel != NULL);
6033 outrel.r_offset = (lsect->section->output_section->vma
6034 + lsect->section->output_offset
6035 + linker_section_ptr->offset);
6036 outrel.r_info = ELF_R_INFO (0, relative_reloc);
6037 outrel.r_addend = 0;
6038 elf_swap_reloca_out (output_bfd, &outrel,
6039 (((Elf_External_Rela *)
6040 lsect->section->contents)
6041 + elf_section_data (lsect->section)->rel_count));
6042 ++elf_section_data (lsect->section)->rel_count;
6047 relocation = (lsect->section->output_offset
6048 + linker_section_ptr->offset
6049 - lsect->hole_offset
6050 - lsect->sym_offset);
6053 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
6054 lsect->name, (long)relocation, (long)relocation);
6057 /* Subtract out the addend, because it will get added back in by the normal
6059 return relocation - linker_section_ptr->addend;
6062 /* Garbage collect unused sections. */
6064 static boolean elf_gc_mark
6065 PARAMS ((struct bfd_link_info *info, asection *sec,
6066 asection * (*gc_mark_hook)
6067 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6068 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
6070 static boolean elf_gc_sweep
6071 PARAMS ((struct bfd_link_info *info,
6072 boolean (*gc_sweep_hook)
6073 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6074 const Elf_Internal_Rela *relocs))));
6076 static boolean elf_gc_sweep_symbol
6077 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
6079 static boolean elf_gc_allocate_got_offsets
6080 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
6082 static boolean elf_gc_propagate_vtable_entries_used
6083 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6085 static boolean elf_gc_smash_unused_vtentry_relocs
6086 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
6088 /* The mark phase of garbage collection. For a given section, mark
6089 it, and all the sections which define symbols to which it refers. */
6092 elf_gc_mark (info, sec, gc_mark_hook)
6093 struct bfd_link_info *info;
6095 asection * (*gc_mark_hook)
6096 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
6097 struct elf_link_hash_entry *, Elf_Internal_Sym *));
6103 /* Look through the section relocs. */
6105 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
6107 Elf_Internal_Rela *relstart, *rel, *relend;
6108 Elf_Internal_Shdr *symtab_hdr;
6109 struct elf_link_hash_entry **sym_hashes;
6112 Elf_External_Sym *locsyms, *freesyms = NULL;
6113 bfd *input_bfd = sec->owner;
6114 struct elf_backend_data *bed = get_elf_backend_data (input_bfd);
6116 /* GCFIXME: how to arrange so that relocs and symbols are not
6117 reread continually? */
6119 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6120 sym_hashes = elf_sym_hashes (input_bfd);
6122 /* Read the local symbols. */
6123 if (elf_bad_symtab (input_bfd))
6125 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6129 extsymoff = nlocsyms = symtab_hdr->sh_info;
6130 if (symtab_hdr->contents)
6131 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
6132 else if (nlocsyms == 0)
6136 locsyms = freesyms =
6137 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
6138 if (freesyms == NULL
6139 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
6140 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
6141 nlocsyms, input_bfd)
6142 != nlocsyms * sizeof (Elf_External_Sym)))
6149 /* Read the relocations. */
6150 relstart = (NAME(_bfd_elf,link_read_relocs)
6151 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
6152 info->keep_memory));
6153 if (relstart == NULL)
6158 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6160 for (rel = relstart; rel < relend; rel++)
6162 unsigned long r_symndx;
6164 struct elf_link_hash_entry *h;
6167 r_symndx = ELF_R_SYM (rel->r_info);
6171 if (elf_bad_symtab (sec->owner))
6173 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6174 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
6175 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6178 h = sym_hashes[r_symndx - extsymoff];
6179 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6182 else if (r_symndx >= nlocsyms)
6184 h = sym_hashes[r_symndx - extsymoff];
6185 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
6189 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
6190 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
6193 if (rsec && !rsec->gc_mark)
6194 if (!elf_gc_mark (info, rsec, gc_mark_hook))
6202 if (!info->keep_memory)
6212 /* The sweep phase of garbage collection. Remove all garbage sections. */
6215 elf_gc_sweep (info, gc_sweep_hook)
6216 struct bfd_link_info *info;
6217 boolean (*gc_sweep_hook)
6218 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
6219 const Elf_Internal_Rela *relocs));
6223 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6227 for (o = sub->sections; o != NULL; o = o->next)
6229 /* Keep special sections. Keep .debug sections. */
6230 if ((o->flags & SEC_LINKER_CREATED)
6231 || (o->flags & SEC_DEBUGGING))
6237 /* Skip sweeping sections already excluded. */
6238 if (o->flags & SEC_EXCLUDE)
6241 /* Since this is early in the link process, it is simple
6242 to remove a section from the output. */
6243 o->flags |= SEC_EXCLUDE;
6245 /* But we also have to update some of the relocation
6246 info we collected before. */
6248 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
6250 Elf_Internal_Rela *internal_relocs;
6253 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
6254 (o->owner, o, NULL, NULL, info->keep_memory));
6255 if (internal_relocs == NULL)
6258 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
6260 if (!info->keep_memory)
6261 free (internal_relocs);
6269 /* Remove the symbols that were in the swept sections from the dynamic
6270 symbol table. GCFIXME: Anyone know how to get them out of the
6271 static symbol table as well? */
6275 elf_link_hash_traverse (elf_hash_table (info),
6276 elf_gc_sweep_symbol,
6279 elf_hash_table (info)->dynsymcount = i;
6285 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6288 elf_gc_sweep_symbol (h, idxptr)
6289 struct elf_link_hash_entry *h;
6292 int *idx = (int *) idxptr;
6294 if (h->dynindx != -1
6295 && ((h->root.type != bfd_link_hash_defined
6296 && h->root.type != bfd_link_hash_defweak)
6297 || h->root.u.def.section->gc_mark))
6298 h->dynindx = (*idx)++;
6303 /* Propogate collected vtable information. This is called through
6304 elf_link_hash_traverse. */
6307 elf_gc_propagate_vtable_entries_used (h, okp)
6308 struct elf_link_hash_entry *h;
6311 /* Those that are not vtables. */
6312 if (h->vtable_parent == NULL)
6315 /* Those vtables that do not have parents, we cannot merge. */
6316 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
6319 /* If we've already been done, exit. */
6320 if (h->vtable_entries_used && h->vtable_entries_used[-1])
6323 /* Make sure the parent's table is up to date. */
6324 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
6326 if (h->vtable_entries_used == NULL)
6328 /* None of this table's entries were referenced. Re-use the
6330 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
6331 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
6338 /* Or the parent's entries into ours. */
6339 cu = h->vtable_entries_used;
6341 pu = h->vtable_parent->vtable_entries_used;
6344 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
6347 if (*pu) *cu = true;
6357 elf_gc_smash_unused_vtentry_relocs (h, okp)
6358 struct elf_link_hash_entry *h;
6362 bfd_vma hstart, hend;
6363 Elf_Internal_Rela *relstart, *relend, *rel;
6364 struct elf_backend_data *bed;
6366 /* Take care of both those symbols that do not describe vtables as
6367 well as those that are not loaded. */
6368 if (h->vtable_parent == NULL)
6371 BFD_ASSERT (h->root.type == bfd_link_hash_defined
6372 || h->root.type == bfd_link_hash_defweak);
6374 sec = h->root.u.def.section;
6375 hstart = h->root.u.def.value;
6376 hend = hstart + h->size;
6378 relstart = (NAME(_bfd_elf,link_read_relocs)
6379 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
6381 return *(boolean *)okp = false;
6382 bed = get_elf_backend_data (sec->owner);
6383 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6385 for (rel = relstart; rel < relend; ++rel)
6386 if (rel->r_offset >= hstart && rel->r_offset < hend)
6388 /* If the entry is in use, do nothing. */
6389 if (h->vtable_entries_used
6390 && (rel->r_offset - hstart) < h->vtable_entries_size)
6392 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
6393 if (h->vtable_entries_used[entry])
6396 /* Otherwise, kill it. */
6397 rel->r_offset = rel->r_info = rel->r_addend = 0;
6403 /* Do mark and sweep of unused sections. */
6406 elf_gc_sections (abfd, info)
6408 struct bfd_link_info *info;
6412 asection * (*gc_mark_hook)
6413 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
6414 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
6416 if (!get_elf_backend_data (abfd)->can_gc_sections
6417 || info->relocateable
6418 || elf_hash_table (info)->dynamic_sections_created)
6421 /* Apply transitive closure to the vtable entry usage info. */
6422 elf_link_hash_traverse (elf_hash_table (info),
6423 elf_gc_propagate_vtable_entries_used,
6428 /* Kill the vtable relocations that were not used. */
6429 elf_link_hash_traverse (elf_hash_table (info),
6430 elf_gc_smash_unused_vtentry_relocs,
6435 /* Grovel through relocs to find out who stays ... */
6437 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
6438 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
6441 for (o = sub->sections; o != NULL; o = o->next)
6443 if (o->flags & SEC_KEEP)
6444 if (!elf_gc_mark (info, o, gc_mark_hook))
6449 /* ... and mark SEC_EXCLUDE for those that go. */
6450 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
6456 /* Called from check_relocs to record the existance of a VTINHERIT reloc. */
6459 elf_gc_record_vtinherit (abfd, sec, h, offset)
6462 struct elf_link_hash_entry *h;
6465 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
6466 struct elf_link_hash_entry **search, *child;
6467 bfd_size_type extsymcount;
6469 /* The sh_info field of the symtab header tells us where the
6470 external symbols start. We don't care about the local symbols at
6472 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
6473 if (!elf_bad_symtab (abfd))
6474 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
6476 sym_hashes = elf_sym_hashes (abfd);
6477 sym_hashes_end = sym_hashes + extsymcount;
6479 /* Hunt down the child symbol, which is in this section at the same
6480 offset as the relocation. */
6481 for (search = sym_hashes; search != sym_hashes_end; ++search)
6483 if ((child = *search) != NULL
6484 && (child->root.type == bfd_link_hash_defined
6485 || child->root.type == bfd_link_hash_defweak)
6486 && child->root.u.def.section == sec
6487 && child->root.u.def.value == offset)
6491 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
6492 bfd_get_filename (abfd), sec->name,
6493 (unsigned long)offset);
6494 bfd_set_error (bfd_error_invalid_operation);
6500 /* This *should* only be the absolute section. It could potentially
6501 be that someone has defined a non-global vtable though, which
6502 would be bad. It isn't worth paging in the local symbols to be
6503 sure though; that case should simply be handled by the assembler. */
6505 child->vtable_parent = (struct elf_link_hash_entry *) -1;
6508 child->vtable_parent = h;
6513 /* Called from check_relocs to record the existance of a VTENTRY reloc. */
6516 elf_gc_record_vtentry (abfd, sec, h, addend)
6517 bfd *abfd ATTRIBUTE_UNUSED;
6518 asection *sec ATTRIBUTE_UNUSED;
6519 struct elf_link_hash_entry *h;
6522 if (addend >= h->vtable_entries_size)
6525 boolean *ptr = h->vtable_entries_used;
6527 /* While the symbol is undefined, we have to be prepared to handle
6529 if (h->root.type == bfd_link_hash_undefined)
6536 /* Oops! We've got a reference past the defined end of
6537 the table. This is probably a bug -- shall we warn? */
6542 /* Allocate one extra entry for use as a "done" flag for the
6543 consolidation pass. */
6544 bytes = (size / FILE_ALIGN + 1) * sizeof (boolean);
6548 ptr = bfd_realloc (ptr - 1, bytes);
6554 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof (boolean);
6555 memset (((char *)ptr) + oldbytes, 0, bytes - oldbytes);
6559 ptr = bfd_zmalloc (bytes);
6564 /* And arrange for that done flag to be at index -1. */
6565 h->vtable_entries_used = ptr + 1;
6566 h->vtable_entries_size = size;
6569 h->vtable_entries_used[addend / FILE_ALIGN] = true;
6574 /* And an accompanying bit to work out final got entry offsets once
6575 we're done. Should be called from final_link. */
6578 elf_gc_common_finalize_got_offsets (abfd, info)
6580 struct bfd_link_info *info;
6583 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6586 /* The GOT offset is relative to the .got section, but the GOT header is
6587 put into the .got.plt section, if the backend uses it. */
6588 if (bed->want_got_plt)
6591 gotoff = bed->got_header_size;
6593 /* Do the local .got entries first. */
6594 for (i = info->input_bfds; i; i = i->link_next)
6596 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6597 bfd_size_type j, locsymcount;
6598 Elf_Internal_Shdr *symtab_hdr;
6603 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6604 if (elf_bad_symtab (i))
6605 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6607 locsymcount = symtab_hdr->sh_info;
6609 for (j = 0; j < locsymcount; ++j)
6611 if (local_got[j] > 0)
6613 local_got[j] = gotoff;
6614 gotoff += ARCH_SIZE / 8;
6617 local_got[j] = (bfd_vma) -1;
6621 /* Then the global .got and .plt entries. */
6622 elf_link_hash_traverse (elf_hash_table (info),
6623 elf_gc_allocate_got_offsets,
6628 /* We need a special top-level link routine to convert got reference counts
6629 to real got offsets. */
6632 elf_gc_allocate_got_offsets (h, offarg)
6633 struct elf_link_hash_entry *h;
6636 bfd_vma *off = (bfd_vma *) offarg;
6638 if (h->got.refcount > 0)
6640 h->got.offset = off[0];
6641 off[0] += ARCH_SIZE / 8;
6644 h->got.offset = (bfd_vma) -1;
6649 /* Many folk need no more in the way of final link than this, once
6650 got entry reference counting is enabled. */
6653 elf_gc_common_final_link (abfd, info)
6655 struct bfd_link_info *info;
6657 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6660 /* Invoke the regular ELF backend linker to do all the work. */
6661 return elf_bfd_final_link (abfd, info);
6664 /* This function will be called though elf_link_hash_traverse to store
6665 all hash value of the exported symbols in an array. */
6668 elf_collect_hash_codes (h, data)
6669 struct elf_link_hash_entry *h;
6672 unsigned long **valuep = (unsigned long **) data;
6678 /* Ignore indirect symbols. These are added by the versioning code. */
6679 if (h->dynindx == -1)
6682 name = h->root.root.string;
6683 p = strchr (name, ELF_VER_CHR);
6686 alc = bfd_malloc (p - name + 1);
6687 memcpy (alc, name, p - name);
6688 alc[p - name] = '\0';
6692 /* Compute the hash value. */
6693 ha = bfd_elf_hash (name);
6695 /* Store the found hash value in the array given as the argument. */
6698 /* And store it in the struct so that we can put it in the hash table
6700 h->elf_hash_value = ha;