1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
31 #include "opcode/cris.h"
32 #include "arch-utils.h"
35 /* To get entry_point_address. */
38 #include "solib.h" /* Support for shared libraries. */
39 #include "solib-svr4.h" /* For struct link_map_offsets. */
40 #include "gdb_string.h"
45 /* There are no floating point registers. Used in gdbserver low-linux.c. */
48 /* There are 16 general registers. */
51 /* There are 16 special registers. */
55 /* Register numbers of various important registers.
56 FP_REGNUM Contains address of executing stack frame.
57 STR_REGNUM Contains the address of structure return values.
58 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
59 ARG1_REGNUM Contains the first parameter to a function.
60 ARG2_REGNUM Contains the second parameter to a function.
61 ARG3_REGNUM Contains the third parameter to a function.
62 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
63 SP_REGNUM Contains address of top of stack.
64 PC_REGNUM Contains address of next instruction.
65 SRP_REGNUM Subroutine return pointer register.
66 BRP_REGNUM Breakpoint return pointer register. */
68 /* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated
69 into the multi-arch framework. */
73 /* Enums with respect to the general registers, valid for all
82 /* Enums with respect to the special registers, some of which may not be
83 applicable to all CRIS versions. */
101 extern const struct cris_spec_reg cris_spec_regs[];
103 /* CRIS version, set via the user command 'set cris-version'. Affects
104 register names and sizes.*/
105 static int usr_cmd_cris_version;
107 /* Indicates whether to trust the above variable. */
108 static int usr_cmd_cris_version_valid = 0;
110 /* CRIS mode, set via the user command 'set cris-mode'. Affects availability
111 of some registers. */
112 static const char *usr_cmd_cris_mode;
114 /* Indicates whether to trust the above variable. */
115 static int usr_cmd_cris_mode_valid = 0;
117 static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
118 static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
119 static const char *cris_mode_enums[] =
122 CRIS_MODE_SUPERVISOR,
126 /* CRIS ABI, set via the user command 'set cris-abi'.
127 There are two flavours:
128 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
130 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
132 static const char *usr_cmd_cris_abi;
134 /* Indicates whether to trust the above variable. */
135 static int usr_cmd_cris_abi_valid = 0;
137 /* These variables are strings instead of enums to make them usable as
138 parameters to add_set_enum_cmd. */
139 static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
140 static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
141 static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
142 static const char *cris_abi_enums[] =
149 /* CRIS architecture specific information. */
153 const char *cris_mode;
154 const char *cris_abi;
157 /* Functions for accessing target dependent data. */
162 return (gdbarch_tdep (current_gdbarch)->cris_version);
168 return (gdbarch_tdep (current_gdbarch)->cris_mode);
174 return (gdbarch_tdep (current_gdbarch)->cris_abi);
177 /* For saving call-clobbered contents in R9 when returning structs. */
178 static CORE_ADDR struct_return_address;
180 struct frame_extra_info
186 /* The instruction environment needed to find single-step breakpoints. */
188 struct instruction_environment
190 unsigned long reg[NUM_GENREGS];
191 unsigned long preg[NUM_SPECREGS];
192 unsigned long branch_break_address;
193 unsigned long delay_slot_pc;
194 unsigned long prefix_value;
199 int delay_slot_pc_active;
201 int disable_interrupt;
204 /* Save old breakpoints in order to restore the state before a single_step.
205 At most, two breakpoints will have to be remembered. */
207 char binsn_quantum[BREAKPOINT_MAX];
208 static binsn_quantum break_mem[2];
209 static CORE_ADDR next_pc = 0;
210 static CORE_ADDR branch_target_address = 0;
211 static unsigned char branch_break_inserted = 0;
213 /* Machine-dependencies in CRIS for opcodes. */
215 /* Instruction sizes. */
216 enum cris_instruction_sizes
223 /* Addressing modes. */
224 enum cris_addressing_modes
231 /* Prefix addressing modes. */
232 enum cris_prefix_addressing_modes
234 PREFIX_INDEX_MODE = 2,
235 PREFIX_ASSIGN_MODE = 3,
237 /* Handle immediate byte offset addressing mode prefix format. */
238 PREFIX_OFFSET_MODE = 2
241 /* Masks for opcodes. */
242 enum cris_opcode_masks
244 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
245 SIGNED_EXTEND_BIT_MASK = 0x2,
246 SIGNED_BYTE_MASK = 0x80,
247 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
248 SIGNED_WORD_MASK = 0x8000,
249 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
250 SIGNED_DWORD_MASK = 0x80000000,
251 SIGNED_QUICK_VALUE_MASK = 0x20,
252 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
255 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
263 cris_get_operand2 (unsigned short insn)
265 return ((insn & 0xF000) >> 12);
269 cris_get_mode (unsigned short insn)
271 return ((insn & 0x0C00) >> 10);
275 cris_get_opcode (unsigned short insn)
277 return ((insn & 0x03C0) >> 6);
281 cris_get_size (unsigned short insn)
283 return ((insn & 0x0030) >> 4);
287 cris_get_operand1 (unsigned short insn)
289 return (insn & 0x000F);
292 /* Additional functions in order to handle opcodes. */
295 cris_get_wide_opcode (unsigned short insn)
297 return ((insn & 0x03E0) >> 5);
301 cris_get_short_size (unsigned short insn)
303 return ((insn & 0x0010) >> 4);
307 cris_get_quick_value (unsigned short insn)
309 return (insn & 0x003F);
313 cris_get_bdap_quick_offset (unsigned short insn)
315 return (insn & 0x00FF);
319 cris_get_branch_short_offset (unsigned short insn)
321 return (insn & 0x00FF);
325 cris_get_asr_shift_steps (unsigned long value)
327 return (value & 0x3F);
331 cris_get_asr_quick_shift_steps (unsigned short insn)
333 return (insn & 0x1F);
337 cris_get_clear_size (unsigned short insn)
339 return ((insn) & 0xC000);
343 cris_is_signed_extend_bit_on (unsigned short insn)
345 return (((insn) & 0x20) == 0x20);
349 cris_is_xflag_bit_on (unsigned short insn)
351 return (((insn) & 0x1000) == 0x1000);
355 cris_set_size_to_dword (unsigned short *insn)
362 cris_get_signed_offset (unsigned short insn)
364 return ((signed char) (insn & 0x00FF));
367 /* Calls an op function given the op-type, working on the insn and the
369 static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
371 static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
373 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
374 struct gdbarch_list *);
376 static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *);
378 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
380 static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
383 static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
386 static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
389 static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
391 /* Frames information. The definition of the struct frame_info is
395 enum frame_type type;
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
423 move.d sp,r8 move.d sp,r8
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
428 where 1 is a non-terminal function, and 2 is a leaf-function.
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
455 move.S [r8+U],rZ ; P4
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
460 /* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
468 cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
471 /* Present instruction. */
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
478 /* Is there a push fp? */
481 /* Number of byte on stack used for local variables and movem. */
484 /* Highest register number in a movem. */
487 /* move.d r<source_register>,rS */
488 short source_register;
490 /* This frame is with respect to a leaf until a push srp is found. */
491 fi->extra_info->leaf_function = 1;
493 /* This frame is without the FP until a push fp is found. */
496 /* Assume nothing on stack. */
500 /* No information about register contents so far. */
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
504 if (get_frame_saved_regs (fi))
506 for (regno = 0; regno < NUM_REGS; regno++)
507 get_frame_saved_regs (fi)[regno] = 0;
510 /* Find the prologue instructions. */
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
530 fi->extra_info->leaf_function = 0;
532 else if (regno == FP_REGNUM)
537 else if (insn == 0x866E)
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
551 val = cris_get_quick_value (insn);
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
558 /* movem r<regsave>,[sp] */
563 regsave = cris_get_operand2 (insn);
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
585 regsave = cris_get_operand2 (insn_next);
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
598 /* move.d r<10..13>,r<0..15> */
603 source_register = cris_get_operand1 (insn);
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
619 else if (cris_get_operand2 (insn) == FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
633 /* move.S rZ,[r8-U] */
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
643 else if (cris_get_operand2 (insn) == FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
658 /* move.S [r8+U],rZ */
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
679 if (!get_frame_saved_regs (fi))
684 get_frame_saved_regs (fi)[FP_REGNUM] = get_frame_base (fi);
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
689 get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
692 if (fi->extra_info->leaf_function)
694 /* Set the register SP to contain the stack pointer of
696 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
700 /* Set the register SP to contain the stack pointer of
702 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
704 /* Set the register SRP to contain the return address of
706 get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
712 /* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
716 cris_skip_prologue (CORE_ADDR pc)
718 return cris_skip_prologue_main (pc, 0);
721 /* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
726 cris_skip_prologue_frameless_p (CORE_ADDR pc)
728 return cris_skip_prologue_main (pc, 1);
731 /* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
735 cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
739 struct symtab_and_line sal = find_pc_line (pc, 0);
741 CORE_ADDR pc_after_prologue;
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
751 best_limit = sal.end;
753 best_limit = pc + 100;
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
757 return pc_after_prologue;
760 /* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
766 const unsigned char *
767 cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
769 static unsigned char break_insn[] = {0x38, 0xe9};
775 /* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
779 cris_saved_pc_after_call (struct frame_info *frame)
781 return read_register (SRP_REGNUM);
784 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
788 cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
790 int version = cris_version ();
792 switch (spec_reg.applicable_version)
794 case cris_ver_version_all:
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
800 /* Simulator only. */
803 return (version >= 0 && version <= 3);
805 return (version >= 3);
807 return (version == 8 || version == 9);
809 return (version >= 8);
811 return (version >= 10);
813 /* Invalid cris version. */
818 /* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
822 cris_register_size (int regno)
827 if (regno >= 0 && regno < NUM_GENREGS)
829 /* General registers (R0 - R15) are 32 bits. */
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
847 /* Special register not applicable to this CRIS version. */
852 /* Invalid register. */
857 /* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
861 cris_cannot_fetch_register (int regno)
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
867 /* Nonzero if regno should not be written to the target, for various
871 cris_cannot_store_register (int regno)
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
883 else if (regno == VR_REGNUM)
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
891 else if (cris_mode () == CRIS_MODE_USER)
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
902 /* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
907 cris_register_offset (int regno)
913 if (regno >= 0 && regno < NUM_REGS)
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
924 /* Invalid register. */
929 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
933 cris_register_virtual_type (int regno)
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
955 return builtin_type_unsigned_char;
959 /* Invalid register. */
960 return builtin_type_void;
964 /* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
967 /* In the original CRIS ABI, R10 is used to store return values. */
970 cris_abi_original_store_return_value (struct type *type, char *valbuf)
972 int len = TYPE_LENGTH (type);
974 if (len <= REGISTER_SIZE)
975 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len);
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
980 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
983 cris_abi_v2_store_return_value (struct type *type, char *valbuf)
985 int len = TYPE_LENGTH (type);
987 if (len <= 2 * REGISTER_SIZE)
989 /* Note that this works since R10 and R11 are consecutive registers. */
990 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf,
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
997 /* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
1001 cris_register_name (int regno)
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1012 if (regno >= 0 && regno < NUM_GENREGS)
1014 /* General register. */
1015 return cris_genreg_names[regno];
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1032 /* Special register not applicable to this CRIS version. */
1037 /* Invalid register. */
1043 cris_register_bytes_ok (long bytes)
1045 return (bytes == REGISTER_BYTES);
1048 /* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1052 /* In the original CRIS ABI, R10 is used to return values. */
1055 cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1058 int len = TYPE_LENGTH (type);
1060 if (len <= REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1066 /* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1069 cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1072 int len = TYPE_LENGTH (type);
1074 if (len <= 2 * REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1080 /* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1087 cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1093 /* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1098 cris_extract_struct_value_address (char *regbuf)
1100 return struct_return_address;
1103 /* Returns 1 if a value of the given type being returned from a function
1104 must have space allocated for it on the stack. gcc_p is true if the
1105 function being considered is known to have been compiled by GCC.
1106 In the CRIS ABI, structure return values are passed to the called
1107 function by reference in register R9 to a caller-allocated area, so
1108 this is always true. */
1111 cris_use_struct_convention (int gcc_p, struct type *type)
1116 /* Returns 1 if the given type will be passed by pointer rather than
1119 /* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1123 cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1125 return (TYPE_LENGTH (type) > 4);
1128 /* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1132 cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1134 return (TYPE_LENGTH (type) > 8);
1137 /* Returns 1 if the function invocation represented by fi does not have a
1138 stack frame associated with it. Otherwise return 0. */
1141 cris_frameless_function_invocation (struct frame_info *fi)
1143 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1146 return frameless_look_for_prologue (fi);
1149 /* See frame.h. Determines the address of all registers in the current stack
1150 frame storing each in frame->saved_regs. Space for frame->saved_regs shall
1151 be allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc
1152 or frame_obstack_alloc. */
1155 cris_frame_init_saved_regs (struct frame_info *fi)
1158 struct symtab_and_line sal;
1160 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi), fi->frame);
1162 /* Examine the entire prologue. */
1163 register int frameless_p = 0;
1165 /* Has this frame's registers already been initialized? */
1166 if (get_frame_saved_regs (fi))
1169 frame_saved_regs_zalloc (fi);
1173 /* I don't see this ever happening, considering the context in which
1174 cris_frame_init_saved_regs is called (always when we're not in
1176 memcpy (&fi->saved_regs, dummy_regs, sizeof (fi->saved_regs));
1180 ip = get_pc_function_start (get_frame_pc (fi));
1181 sal = find_pc_line (ip, 0);
1183 /* If there is no symbol information then sal.end == 0, and we end up
1184 examining only the first instruction in the function prologue.
1185 Exaggerating the limit seems to be harmless. */
1187 best_limit = sal.end;
1189 best_limit = ip + 100;
1191 cris_examine (ip, best_limit, fi, frameless_p);
1195 /* Initialises the extra frame information at the creation of a new frame.
1196 The inparameter fromleaf is 0 when the call is from create_new_frame.
1197 When the call is from get_prev_frame_info, fromleaf is determined by
1198 cris_frameless_function_invocation. */
1201 cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1205 /* Called from get_prev_frame. */
1206 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (fi->next));
1209 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
1211 fi->extra_info->return_pc = 0;
1212 fi->extra_info->leaf_function = 0;
1214 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1216 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1217 by assuming it's always FP. */
1218 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), fi->frame,
1220 fi->extra_info->return_pc =
1221 deprecated_read_register_dummy (get_frame_pc (fi), fi->frame, PC_REGNUM);
1223 /* FIXME: Is this necessarily true? */
1224 fi->extra_info->leaf_function = 0;
1228 cris_frame_init_saved_regs (fi);
1230 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1232 if (get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
1234 /* SRP was saved on the stack; non-leaf function. */
1235 fi->extra_info->return_pc =
1236 read_memory_integer (get_frame_saved_regs (fi)[SRP_REGNUM],
1237 REGISTER_RAW_SIZE (SRP_REGNUM));
1241 /* SRP is still in a register; leaf function. */
1242 fi->extra_info->return_pc = read_register (SRP_REGNUM);
1243 /* FIXME: Should leaf_function be set to 1 here? */
1244 fi->extra_info->leaf_function = 1;
1249 /* Return the content of the frame pointer in the present frame. In other
1250 words, determine the address of the calling function's frame. */
1253 cris_frame_chain (struct frame_info *fi)
1255 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1259 else if (!inside_entry_file (get_frame_pc (fi)))
1261 return read_memory_unsigned_integer (get_frame_base (fi), 4);
1269 /* Return the saved PC (which equals the return address) of this frame. */
1272 cris_frame_saved_pc (struct frame_info *fi)
1274 return fi->extra_info->return_pc;
1277 /* Setup the function arguments for calling a function in the inferior. */
1280 cris_abi_original_push_arguments (int nargs, struct value **args,
1281 CORE_ADDR sp, int struct_return,
1282 CORE_ADDR struct_addr)
1293 /* Data and parameters reside in different areas on the stack.
1294 Both frame pointers grow toward higher addresses. */
1295 CORE_ADDR fp_params;
1298 /* Are we returning a value using a structure return or a normal value
1299 return? struct_addr is the address of the reserved space for the return
1300 structure to be written on the stack. */
1303 write_register (STR_REGNUM, struct_addr);
1306 /* Make sure there's space on the stack. Allocate space for data and a
1307 parameter to refer to that data. */
1308 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1309 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE);
1311 /* We may over-allocate a little here, but that won't hurt anything. */
1313 /* Initialize stack frame pointers. */
1315 fp_data = sp + (nargs * REGISTER_SIZE);
1317 /* Now load as many as possible of the first arguments into
1318 registers, and push the rest onto the stack. */
1319 argreg = ARG1_REGNUM;
1322 for (argnum = 0; argnum < nargs; argnum++)
1324 type = VALUE_TYPE (args[argnum]);
1325 len = TYPE_LENGTH (type);
1326 val = (char *) VALUE_CONTENTS (args[argnum]);
1328 if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM)
1330 /* Data fits in a register; put it in the first available
1332 write_register (argreg, *(unsigned long *) val);
1335 else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM)
1337 /* Data does not fit in register; pass it on the stack and
1338 put its address in the first available register. */
1339 write_memory (fp_data, val, len);
1340 write_register (argreg, fp_data);
1344 else if (len > REGISTER_SIZE)
1346 /* Data does not fit in register; put both data and
1347 parameter on the stack. */
1348 write_memory (fp_data, val, len);
1349 write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE);
1351 fp_params += REGISTER_SIZE;
1355 /* Data fits in a register, but we are out of registers;
1356 put the parameter on the stack. */
1357 write_memory (fp_params, val, REGISTER_SIZE);
1358 fp_params += REGISTER_SIZE;
1366 cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1367 int struct_return, CORE_ADDR struct_addr)
1376 /* The function's arguments and memory allocated by gdb for the arguments to
1377 point at reside in separate areas on the stack.
1378 Both frame pointers grow toward higher addresses. */
1382 /* Are we returning a value using a structure return or a normal value
1383 return? struct_addr is the address of the reserved space for the return
1384 structure to be written on the stack. */
1387 write_register (STR_REGNUM, struct_addr);
1390 /* Allocate enough to keep things word-aligned on both parts of the
1393 for (argnum = 0; argnum < nargs; argnum++)
1398 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1399 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1401 /* reg_demand * REGISTER_SIZE is the amount of memory we might need to
1402 allocate for this argument. 2 * REGISTER_SIZE is the amount of stack
1403 space we might need to pass the argument itself (either by value or by
1405 stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE);
1408 /* We may over-allocate a little here, but that won't hurt anything. */
1410 /* Initialize frame pointers. */
1412 fp_mem = sp + (nargs * (2 * REGISTER_SIZE));
1414 /* Now load as many as possible of the first arguments into registers,
1415 and push the rest onto the stack. */
1416 argreg = ARG1_REGNUM;
1419 for (argnum = 0; argnum < nargs; argnum++)
1426 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1427 val = (char *) VALUE_CONTENTS (args[argnum]);
1429 /* How may registers worth of storage do we need for this argument? */
1430 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1432 if (len <= (2 * REGISTER_SIZE)
1433 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1435 /* Data passed by value. Fits in available register(s). */
1436 for (i = 0; i < reg_demand; i++)
1438 write_register (argreg, *(unsigned long *) val);
1440 val += REGISTER_SIZE;
1443 else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1445 /* Data passed by value. Does not fit in available register(s).
1446 Use the register(s) first, then the stack. */
1447 for (i = 0; i < reg_demand; i++)
1449 if (argreg <= ARG4_REGNUM)
1451 write_register (argreg, *(unsigned long *) val);
1453 val += REGISTER_SIZE;
1457 /* I guess this memory write could write the remaining data
1458 all at once instead of in REGISTER_SIZE chunks. */
1459 write_memory (fp_arg, val, REGISTER_SIZE);
1460 fp_arg += REGISTER_SIZE;
1461 val += REGISTER_SIZE;
1465 else if (len > (2 * REGISTER_SIZE))
1467 /* Data passed by reference. Put it on the stack. */
1468 write_memory (fp_mem, val, len);
1469 write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE);
1471 /* fp_mem need not be word-aligned since it's just a chunk of
1472 memory being pointed at. That is, += len would do. */
1473 fp_mem += reg_demand * REGISTER_SIZE;
1474 fp_arg += REGISTER_SIZE;
1478 /* Data passed by value. No available registers. Put it on
1480 write_memory (fp_arg, val, len);
1482 /* fp_arg must be word-aligned (i.e., don't += len) to match
1483 the function prologue. */
1484 fp_arg += reg_demand * REGISTER_SIZE;
1491 /* Never put the return address on the stack. The register SRP is pushed
1492 by the called function unless it is a leaf-function. Due to the BRP
1493 register the PC will change when continue is sent. */
1496 cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1498 write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ());
1502 /* Restore the machine to the state it had before the current frame
1503 was created. Discard the innermost frame from the stack and restore
1504 all saved registers. */
1507 cris_pop_frame (void)
1509 register struct frame_info *fi = get_current_frame ();
1511 register int stack_offset = 0;
1513 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), fi->frame, fi->frame))
1515 /* This happens when we hit a breakpoint set at the entry point,
1516 when returning from a dummy frame. */
1517 generic_pop_dummy_frame ();
1521 cris_frame_init_saved_regs (fi);
1523 /* For each register, the address of where it was saved on entry to
1524 the frame now lies in fi->saved_regs[regno], or zero if it was not
1525 saved. This includes special registers such as PC and FP saved in
1526 special ways in the stack frame. The SP_REGNUM is even more
1527 special, the address here is the SP for the next frame, not the
1528 address where the SP was saved. */
1530 /* Restore general registers R0 - R7. They were pushed on the stack
1531 after SP was saved. */
1532 for (regno = 0; regno < FP_REGNUM; regno++)
1534 if (get_frame_saved_regs (fi)[regno])
1536 write_register (regno,
1537 read_memory_integer (get_frame_saved_regs (fi)[regno], 4));
1541 if (get_frame_saved_regs (fi)[FP_REGNUM])
1543 /* Pop the frame pointer (R8). It was pushed before SP
1545 write_register (FP_REGNUM,
1546 read_memory_integer (get_frame_saved_regs (fi)[FP_REGNUM], 4));
1549 /* Not a leaf function. */
1550 if (get_frame_saved_regs (fi)[SRP_REGNUM])
1552 /* SRP was pushed before SP was saved. */
1556 /* Restore the SP and adjust for R8 and (possibly) SRP. */
1557 write_register (SP_REGNUM, get_frame_saved_regs (fi)[FP_REGNUM] + stack_offset);
1561 /* Currently, we can't get the correct info into fi->saved_regs
1562 without a frame pointer. */
1565 /* Restore the PC. */
1566 write_register (PC_REGNUM, fi->extra_info->return_pc);
1568 flush_cached_frames ();
1571 /* Calculates a value that measures how good inst_args constraints an
1572 instruction. It stems from cris_constraint, found in cris-dis.c. */
1575 constraint (unsigned int insn, const signed char *inst_args,
1576 inst_env_type *inst_env)
1581 const char *s = inst_args;
1587 if ((insn & 0x30) == 0x30)
1592 /* A prefix operand. */
1593 if (inst_env->prefix_found)
1599 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1600 valid "push" size. In case of special register, it may be != 4. */
1601 if (inst_env->prefix_found)
1607 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1615 tmp = (insn >> 0xC) & 0xF;
1617 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1619 /* Since we match four bits, we will give a value of
1620 4 - 1 = 3 in a match. If there is a corresponding
1621 exact match of a special register in another pattern, it
1622 will get a value of 4, which will be higher. This should
1623 be correct in that an exact pattern would match better that
1625 Note that there is a reason for not returning zero; the
1626 pattern for "clear" is partly matched in the bit-pattern
1627 (the two lower bits must be zero), while the bit-pattern
1628 for a move from a special register is matched in the
1629 register constraint.
1630 This also means we will will have a race condition if
1631 there is a partly match in three bits in the bit pattern. */
1632 if (tmp == cris_spec_regs[i].number)
1639 if (cris_spec_regs[i].name == NULL)
1646 /* Returns the number of bits set in the variable value. */
1649 number_of_bits (unsigned int value)
1651 int number_of_bits = 0;
1655 number_of_bits += 1;
1656 value &= (value - 1);
1658 return number_of_bits;
1661 /* Finds the address that should contain the single step breakpoint(s).
1662 It stems from code in cris-dis.c. */
1665 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1668 int max_level_of_match = -1;
1669 int max_matched = -1;
1672 for (i = 0; cris_opcodes[i].name != NULL; i++)
1674 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1675 && ((cris_opcodes[i].lose & insn) == 0))
1677 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1678 if (level_of_match >= 0)
1681 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1682 if (level_of_match > max_level_of_match)
1685 max_level_of_match = level_of_match;
1686 if (level_of_match == 16)
1688 /* All bits matched, cannot find better. */
1698 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1699 actually an internal error. */
1702 find_step_target (inst_env_type *inst_env)
1706 unsigned short insn;
1708 /* Create a local register image and set the initial state. */
1709 for (i = 0; i < NUM_GENREGS; i++)
1711 inst_env->reg[i] = (unsigned long) read_register (i);
1713 offset = NUM_GENREGS;
1714 for (i = 0; i < NUM_SPECREGS; i++)
1716 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1718 inst_env->branch_found = 0;
1719 inst_env->slot_needed = 0;
1720 inst_env->delay_slot_pc_active = 0;
1721 inst_env->prefix_found = 0;
1722 inst_env->invalid = 0;
1723 inst_env->xflag_found = 0;
1724 inst_env->disable_interrupt = 0;
1726 /* Look for a step target. */
1729 /* Read an instruction from the client. */
1730 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1732 /* If the instruction is not in a delay slot the new content of the
1733 PC is [PC] + 2. If the instruction is in a delay slot it is not
1734 that simple. Since a instruction in a delay slot cannot change
1735 the content of the PC, it does not matter what value PC will have.
1736 Just make sure it is a valid instruction. */
1737 if (!inst_env->delay_slot_pc_active)
1739 inst_env->reg[PC_REGNUM] += 2;
1743 inst_env->delay_slot_pc_active = 0;
1744 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1746 /* Analyse the present instruction. */
1747 i = find_cris_op (insn, inst_env);
1750 inst_env->invalid = 1;
1754 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1756 } while (!inst_env->invalid
1757 && (inst_env->prefix_found || inst_env->xflag_found
1758 || inst_env->slot_needed));
1762 /* There is no hardware single-step support. The function find_step_target
1763 digs through the opcodes in order to find all possible targets.
1764 Either one ordinary target or two targets for branches may be found. */
1767 cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1769 inst_env_type inst_env;
1771 if (insert_breakpoints)
1773 /* Analyse the present instruction environment and insert
1775 int status = find_step_target (&inst_env);
1778 /* Could not find a target. FIXME: Should do something. */
1782 /* Insert at most two breakpoints. One for the next PC content
1783 and possibly another one for a branch, jump, etc. */
1784 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1785 target_insert_breakpoint (next_pc, break_mem[0]);
1786 if (inst_env.branch_found
1787 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1789 branch_target_address =
1790 (CORE_ADDR) inst_env.branch_break_address;
1791 target_insert_breakpoint (branch_target_address, break_mem[1]);
1792 branch_break_inserted = 1;
1798 /* Remove breakpoints. */
1799 target_remove_breakpoint (next_pc, break_mem[0]);
1800 if (branch_break_inserted)
1802 target_remove_breakpoint (branch_target_address, break_mem[1]);
1803 branch_break_inserted = 0;
1808 /* Calculates the prefix value for quick offset addressing mode. */
1811 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1813 /* It's invalid to be in a delay slot. You can't have a prefix to this
1814 instruction (not 100% sure). */
1815 if (inst_env->slot_needed || inst_env->prefix_found)
1817 inst_env->invalid = 1;
1821 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1822 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1824 /* A prefix doesn't change the xflag_found. But the rest of the flags
1826 inst_env->slot_needed = 0;
1827 inst_env->prefix_found = 1;
1830 /* Updates the autoincrement register. The size of the increment is derived
1831 from the size of the operation. The PC is always kept aligned on even
1835 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1837 if (size == INST_BYTE_SIZE)
1839 inst_env->reg[cris_get_operand1 (inst)] += 1;
1841 /* The PC must be word aligned, so increase the PC with one
1842 word even if the size is byte. */
1843 if (cris_get_operand1 (inst) == REG_PC)
1845 inst_env->reg[REG_PC] += 1;
1848 else if (size == INST_WORD_SIZE)
1850 inst_env->reg[cris_get_operand1 (inst)] += 2;
1852 else if (size == INST_DWORD_SIZE)
1854 inst_env->reg[cris_get_operand1 (inst)] += 4;
1859 inst_env->invalid = 1;
1863 /* Just a forward declaration. */
1866 get_data_from_address (unsigned short *inst, CORE_ADDR address);
1868 /* Calculates the prefix value for the general case of offset addressing
1872 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1877 /* It's invalid to be in a delay slot. */
1878 if (inst_env->slot_needed || inst_env->prefix_found)
1880 inst_env->invalid = 1;
1884 /* The calculation of prefix_value used to be after process_autoincrement,
1885 but that fails for an instruction such as jsr [$r0+12] which is encoded
1886 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1887 mustn't be incremented until we have read it and what it points at. */
1888 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1890 /* The offset is an indirection of the contents of the operand1 register. */
1891 inst_env->prefix_value +=
1892 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1894 if (cris_get_mode (inst) == AUTOINC_MODE)
1896 process_autoincrement (cris_get_size (inst), inst, inst_env);
1899 /* A prefix doesn't change the xflag_found. But the rest of the flags
1901 inst_env->slot_needed = 0;
1902 inst_env->prefix_found = 1;
1905 /* Calculates the prefix value for the index addressing mode. */
1908 biap_prefix (unsigned short inst, inst_env_type *inst_env)
1910 /* It's invalid to be in a delay slot. I can't see that it's possible to
1911 have a prefix to this instruction. So I will treat this as invalid. */
1912 if (inst_env->slot_needed || inst_env->prefix_found)
1914 inst_env->invalid = 1;
1918 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1920 /* The offset is the operand2 value shifted the size of the instruction
1922 inst_env->prefix_value +=
1923 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1925 /* If the PC is operand1 (base) the address used is the address after
1926 the main instruction, i.e. address + 2 (the PC is already compensated
1927 for the prefix operation). */
1928 if (cris_get_operand1 (inst) == REG_PC)
1930 inst_env->prefix_value += 2;
1933 /* A prefix doesn't change the xflag_found. But the rest of the flags
1935 inst_env->slot_needed = 0;
1936 inst_env->xflag_found = 0;
1937 inst_env->prefix_found = 1;
1940 /* Calculates the prefix value for the double indirect addressing mode. */
1943 dip_prefix (unsigned short inst, inst_env_type *inst_env)
1948 /* It's invalid to be in a delay slot. */
1949 if (inst_env->slot_needed || inst_env->prefix_found)
1951 inst_env->invalid = 1;
1955 /* The prefix value is one dereference of the contents of the operand1
1957 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1958 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1960 /* Check if the mode is autoincrement. */
1961 if (cris_get_mode (inst) == AUTOINC_MODE)
1963 inst_env->reg[cris_get_operand1 (inst)] += 4;
1966 /* A prefix doesn't change the xflag_found. But the rest of the flags
1968 inst_env->slot_needed = 0;
1969 inst_env->xflag_found = 0;
1970 inst_env->prefix_found = 1;
1973 /* Finds the destination for a branch with 8-bits offset. */
1976 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1981 /* If we have a prefix or are in a delay slot it's bad. */
1982 if (inst_env->slot_needed || inst_env->prefix_found)
1984 inst_env->invalid = 1;
1988 /* We have a branch, find out where the branch will land. */
1989 offset = cris_get_branch_short_offset (inst);
1991 /* Check if the offset is signed. */
1992 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1997 /* The offset ends with the sign bit, set it to zero. The address
1998 should always be word aligned. */
1999 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2001 inst_env->branch_found = 1;
2002 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2004 inst_env->slot_needed = 1;
2005 inst_env->prefix_found = 0;
2006 inst_env->xflag_found = 0;
2007 inst_env->disable_interrupt = 1;
2010 /* Finds the destination for a branch with 16-bits offset. */
2013 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2017 /* If we have a prefix or is in a delay slot it's bad. */
2018 if (inst_env->slot_needed || inst_env->prefix_found)
2020 inst_env->invalid = 1;
2024 /* We have a branch, find out the offset for the branch. */
2025 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2027 /* The instruction is one word longer than normal, so add one word
2029 inst_env->reg[REG_PC] += 2;
2031 inst_env->branch_found = 1;
2032 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2035 inst_env->slot_needed = 1;
2036 inst_env->prefix_found = 0;
2037 inst_env->xflag_found = 0;
2038 inst_env->disable_interrupt = 1;
2041 /* Handles the ABS instruction. */
2044 abs_op (unsigned short inst, inst_env_type *inst_env)
2049 /* ABS can't have a prefix, so it's bad if it does. */
2050 if (inst_env->prefix_found)
2052 inst_env->invalid = 1;
2056 /* Check if the operation affects the PC. */
2057 if (cris_get_operand2 (inst) == REG_PC)
2060 /* It's invalid to change to the PC if we are in a delay slot. */
2061 if (inst_env->slot_needed)
2063 inst_env->invalid = 1;
2067 value = (long) inst_env->reg[REG_PC];
2069 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2070 if (value != SIGNED_DWORD_MASK)
2073 inst_env->reg[REG_PC] = (long) value;
2077 inst_env->slot_needed = 0;
2078 inst_env->prefix_found = 0;
2079 inst_env->xflag_found = 0;
2080 inst_env->disable_interrupt = 0;
2083 /* Handles the ADDI instruction. */
2086 addi_op (unsigned short inst, inst_env_type *inst_env)
2088 /* It's invalid to have the PC as base register. And ADDI can't have
2090 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2092 inst_env->invalid = 1;
2096 inst_env->slot_needed = 0;
2097 inst_env->prefix_found = 0;
2098 inst_env->xflag_found = 0;
2099 inst_env->disable_interrupt = 0;
2102 /* Handles the ASR instruction. */
2105 asr_op (unsigned short inst, inst_env_type *inst_env)
2108 unsigned long value;
2109 unsigned long signed_extend_mask = 0;
2111 /* ASR can't have a prefix, so check that it doesn't. */
2112 if (inst_env->prefix_found)
2114 inst_env->invalid = 1;
2118 /* Check if the PC is the target register. */
2119 if (cris_get_operand2 (inst) == REG_PC)
2121 /* It's invalid to change the PC in a delay slot. */
2122 if (inst_env->slot_needed)
2124 inst_env->invalid = 1;
2127 /* Get the number of bits to shift. */
2128 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2129 value = inst_env->reg[REG_PC];
2131 /* Find out how many bits the operation should apply to. */
2132 if (cris_get_size (inst) == INST_BYTE_SIZE)
2134 if (value & SIGNED_BYTE_MASK)
2136 signed_extend_mask = 0xFF;
2137 signed_extend_mask = signed_extend_mask >> shift_steps;
2138 signed_extend_mask = ~signed_extend_mask;
2140 value = value >> shift_steps;
2141 value |= signed_extend_mask;
2143 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2144 inst_env->reg[REG_PC] |= value;
2146 else if (cris_get_size (inst) == INST_WORD_SIZE)
2148 if (value & SIGNED_WORD_MASK)
2150 signed_extend_mask = 0xFFFF;
2151 signed_extend_mask = signed_extend_mask >> shift_steps;
2152 signed_extend_mask = ~signed_extend_mask;
2154 value = value >> shift_steps;
2155 value |= signed_extend_mask;
2157 inst_env->reg[REG_PC] &= 0xFFFF0000;
2158 inst_env->reg[REG_PC] |= value;
2160 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2162 if (value & SIGNED_DWORD_MASK)
2164 signed_extend_mask = 0xFFFFFFFF;
2165 signed_extend_mask = signed_extend_mask >> shift_steps;
2166 signed_extend_mask = ~signed_extend_mask;
2168 value = value >> shift_steps;
2169 value |= signed_extend_mask;
2170 inst_env->reg[REG_PC] = value;
2173 inst_env->slot_needed = 0;
2174 inst_env->prefix_found = 0;
2175 inst_env->xflag_found = 0;
2176 inst_env->disable_interrupt = 0;
2179 /* Handles the ASRQ instruction. */
2182 asrq_op (unsigned short inst, inst_env_type *inst_env)
2186 unsigned long value;
2187 unsigned long signed_extend_mask = 0;
2189 /* ASRQ can't have a prefix, so check that it doesn't. */
2190 if (inst_env->prefix_found)
2192 inst_env->invalid = 1;
2196 /* Check if the PC is the target register. */
2197 if (cris_get_operand2 (inst) == REG_PC)
2200 /* It's invalid to change the PC in a delay slot. */
2201 if (inst_env->slot_needed)
2203 inst_env->invalid = 1;
2206 /* The shift size is given as a 5 bit quick value, i.e. we don't
2207 want the the sign bit of the quick value. */
2208 shift_steps = cris_get_asr_shift_steps (inst);
2209 value = inst_env->reg[REG_PC];
2210 if (value & SIGNED_DWORD_MASK)
2212 signed_extend_mask = 0xFFFFFFFF;
2213 signed_extend_mask = signed_extend_mask >> shift_steps;
2214 signed_extend_mask = ~signed_extend_mask;
2216 value = value >> shift_steps;
2217 value |= signed_extend_mask;
2218 inst_env->reg[REG_PC] = value;
2220 inst_env->slot_needed = 0;
2221 inst_env->prefix_found = 0;
2222 inst_env->xflag_found = 0;
2223 inst_env->disable_interrupt = 0;
2226 /* Handles the AX, EI and SETF instruction. */
2229 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2231 if (inst_env->prefix_found)
2233 inst_env->invalid = 1;
2236 /* Check if the instruction is setting the X flag. */
2237 if (cris_is_xflag_bit_on (inst))
2239 inst_env->xflag_found = 1;
2243 inst_env->xflag_found = 0;
2245 inst_env->slot_needed = 0;
2246 inst_env->prefix_found = 0;
2247 inst_env->disable_interrupt = 1;
2250 /* Checks if the instruction is in assign mode. If so, it updates the assign
2251 register. Note that check_assign assumes that the caller has checked that
2252 there is a prefix to this instruction. The mode check depends on this. */
2255 check_assign (unsigned short inst, inst_env_type *inst_env)
2257 /* Check if it's an assign addressing mode. */
2258 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2260 /* Assign the prefix value to operand 1. */
2261 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2265 /* Handles the 2-operand BOUND instruction. */
2268 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2270 /* It's invalid to have the PC as the index operand. */
2271 if (cris_get_operand2 (inst) == REG_PC)
2273 inst_env->invalid = 1;
2276 /* Check if we have a prefix. */
2277 if (inst_env->prefix_found)
2279 check_assign (inst, inst_env);
2281 /* Check if this is an autoincrement mode. */
2282 else if (cris_get_mode (inst) == AUTOINC_MODE)
2284 /* It's invalid to change the PC in a delay slot. */
2285 if (inst_env->slot_needed)
2287 inst_env->invalid = 1;
2290 process_autoincrement (cris_get_size (inst), inst, inst_env);
2292 inst_env->slot_needed = 0;
2293 inst_env->prefix_found = 0;
2294 inst_env->xflag_found = 0;
2295 inst_env->disable_interrupt = 0;
2298 /* Handles the 3-operand BOUND instruction. */
2301 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2303 /* It's an error if we haven't got a prefix. And it's also an error
2304 if the PC is the destination register. */
2305 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2307 inst_env->invalid = 1;
2310 inst_env->slot_needed = 0;
2311 inst_env->prefix_found = 0;
2312 inst_env->xflag_found = 0;
2313 inst_env->disable_interrupt = 0;
2316 /* Clears the status flags in inst_env. */
2319 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2321 /* It's an error if we have got a prefix. */
2322 if (inst_env->prefix_found)
2324 inst_env->invalid = 1;
2328 inst_env->slot_needed = 0;
2329 inst_env->prefix_found = 0;
2330 inst_env->xflag_found = 0;
2331 inst_env->disable_interrupt = 0;
2334 /* Clears the status flags in inst_env. */
2337 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2339 /* It's an error if we have got a prefix. */
2340 if (inst_env->prefix_found)
2342 inst_env->invalid = 1;
2346 inst_env->slot_needed = 0;
2347 inst_env->prefix_found = 0;
2348 inst_env->xflag_found = 0;
2349 inst_env->disable_interrupt = 1;
2352 /* Handles the CLEAR instruction if it's in register mode. */
2355 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2357 /* Check if the target is the PC. */
2358 if (cris_get_operand2 (inst) == REG_PC)
2360 /* The instruction will clear the instruction's size bits. */
2361 int clear_size = cris_get_clear_size (inst);
2362 if (clear_size == INST_BYTE_SIZE)
2364 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2366 if (clear_size == INST_WORD_SIZE)
2368 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2370 if (clear_size == INST_DWORD_SIZE)
2372 inst_env->delay_slot_pc = 0x0;
2374 /* The jump will be delayed with one delay slot. So we need a delay
2376 inst_env->slot_needed = 1;
2377 inst_env->delay_slot_pc_active = 1;
2381 /* The PC will not change => no delay slot. */
2382 inst_env->slot_needed = 0;
2384 inst_env->prefix_found = 0;
2385 inst_env->xflag_found = 0;
2386 inst_env->disable_interrupt = 0;
2389 /* Handles the TEST instruction if it's in register mode. */
2392 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2394 /* It's an error if we have got a prefix. */
2395 if (inst_env->prefix_found)
2397 inst_env->invalid = 1;
2400 inst_env->slot_needed = 0;
2401 inst_env->prefix_found = 0;
2402 inst_env->xflag_found = 0;
2403 inst_env->disable_interrupt = 0;
2407 /* Handles the CLEAR and TEST instruction if the instruction isn't
2408 in register mode. */
2411 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2413 /* Check if we are in a prefix mode. */
2414 if (inst_env->prefix_found)
2416 /* The only way the PC can change is if this instruction is in
2417 assign addressing mode. */
2418 check_assign (inst, inst_env);
2420 /* Indirect mode can't change the PC so just check if the mode is
2422 else if (cris_get_mode (inst) == AUTOINC_MODE)
2424 process_autoincrement (cris_get_size (inst), inst, inst_env);
2426 inst_env->slot_needed = 0;
2427 inst_env->prefix_found = 0;
2428 inst_env->xflag_found = 0;
2429 inst_env->disable_interrupt = 0;
2432 /* Checks that the PC isn't the destination register or the instructions has
2436 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2438 /* It's invalid to have the PC as the destination. The instruction can't
2440 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2442 inst_env->invalid = 1;
2446 inst_env->slot_needed = 0;
2447 inst_env->prefix_found = 0;
2448 inst_env->xflag_found = 0;
2449 inst_env->disable_interrupt = 0;
2452 /* Checks that the instruction doesn't have a prefix. */
2455 break_op (unsigned short inst, inst_env_type *inst_env)
2457 /* The instruction can't have a prefix. */
2458 if (inst_env->prefix_found)
2460 inst_env->invalid = 1;
2464 inst_env->slot_needed = 0;
2465 inst_env->prefix_found = 0;
2466 inst_env->xflag_found = 0;
2467 inst_env->disable_interrupt = 1;
2470 /* Checks that the PC isn't the destination register and that the instruction
2471 doesn't have a prefix. */
2474 scc_op (unsigned short inst, inst_env_type *inst_env)
2476 /* It's invalid to have the PC as the destination. The instruction can't
2478 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2480 inst_env->invalid = 1;
2484 inst_env->slot_needed = 0;
2485 inst_env->prefix_found = 0;
2486 inst_env->xflag_found = 0;
2487 inst_env->disable_interrupt = 1;
2490 /* Handles the register mode JUMP instruction. */
2493 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2495 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2496 you can't have a prefix. */
2497 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2499 inst_env->invalid = 1;
2503 /* Just change the PC. */
2504 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2505 inst_env->slot_needed = 0;
2506 inst_env->prefix_found = 0;
2507 inst_env->xflag_found = 0;
2508 inst_env->disable_interrupt = 1;
2511 /* Handles the JUMP instruction for all modes except register. */
2513 void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2515 unsigned long newpc;
2518 /* It's invalid to do a JUMP in a delay slot. */
2519 if (inst_env->slot_needed)
2521 inst_env->invalid = 1;
2525 /* Check if we have a prefix. */
2526 if (inst_env->prefix_found)
2528 check_assign (inst, inst_env);
2530 /* Get the new value for the the PC. */
2532 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2537 /* Get the new value for the PC. */
2538 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2539 newpc = read_memory_unsigned_integer (address, 4);
2541 /* Check if we should increment a register. */
2542 if (cris_get_mode (inst) == AUTOINC_MODE)
2544 inst_env->reg[cris_get_operand1 (inst)] += 4;
2547 inst_env->reg[REG_PC] = newpc;
2549 inst_env->slot_needed = 0;
2550 inst_env->prefix_found = 0;
2551 inst_env->xflag_found = 0;
2552 inst_env->disable_interrupt = 1;
2555 /* Handles moves to special registers (aka P-register) for all modes. */
2558 move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2560 if (inst_env->prefix_found)
2562 /* The instruction has a prefix that means we are only interested if
2563 the instruction is in assign mode. */
2564 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2566 /* The prefix handles the problem if we are in a delay slot. */
2567 if (cris_get_operand1 (inst) == REG_PC)
2569 /* Just take care of the assign. */
2570 check_assign (inst, inst_env);
2574 else if (cris_get_mode (inst) == AUTOINC_MODE)
2576 /* The instruction doesn't have a prefix, the only case left that we
2577 are interested in is the autoincrement mode. */
2578 if (cris_get_operand1 (inst) == REG_PC)
2580 /* If the PC is to be incremented it's invalid to be in a
2582 if (inst_env->slot_needed)
2584 inst_env->invalid = 1;
2588 /* The increment depends on the size of the special register. */
2589 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2591 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2593 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2595 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2599 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2603 inst_env->slot_needed = 0;
2604 inst_env->prefix_found = 0;
2605 inst_env->xflag_found = 0;
2606 inst_env->disable_interrupt = 1;
2609 /* Handles moves from special registers (aka P-register) for all modes
2613 none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2615 if (inst_env->prefix_found)
2617 /* The instruction has a prefix that means we are only interested if
2618 the instruction is in assign mode. */
2619 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2621 /* The prefix handles the problem if we are in a delay slot. */
2622 if (cris_get_operand1 (inst) == REG_PC)
2624 /* Just take care of the assign. */
2625 check_assign (inst, inst_env);
2629 /* The instruction doesn't have a prefix, the only case left that we
2630 are interested in is the autoincrement mode. */
2631 else if (cris_get_mode (inst) == AUTOINC_MODE)
2633 if (cris_get_operand1 (inst) == REG_PC)
2635 /* If the PC is to be incremented it's invalid to be in a
2637 if (inst_env->slot_needed)
2639 inst_env->invalid = 1;
2643 /* The increment depends on the size of the special register. */
2644 if (cris_register_size (cris_get_operand2 (inst)) == 1)
2646 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2648 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
2650 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2654 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2658 inst_env->slot_needed = 0;
2659 inst_env->prefix_found = 0;
2660 inst_env->xflag_found = 0;
2661 inst_env->disable_interrupt = 1;
2664 /* Handles moves from special registers (aka P-register) when the mode
2668 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2670 /* Register mode move from special register can't have a prefix. */
2671 if (inst_env->prefix_found)
2673 inst_env->invalid = 1;
2677 if (cris_get_operand1 (inst) == REG_PC)
2679 /* It's invalid to change the PC in a delay slot. */
2680 if (inst_env->slot_needed)
2682 inst_env->invalid = 1;
2685 /* The destination is the PC, the jump will have a delay slot. */
2686 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2687 inst_env->slot_needed = 1;
2688 inst_env->delay_slot_pc_active = 1;
2692 /* If the destination isn't PC, there will be no jump. */
2693 inst_env->slot_needed = 0;
2695 inst_env->prefix_found = 0;
2696 inst_env->xflag_found = 0;
2697 inst_env->disable_interrupt = 1;
2700 /* Handles the MOVEM from memory to general register instruction. */
2703 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2705 if (inst_env->prefix_found)
2707 /* The prefix handles the problem if we are in a delay slot. Is the
2708 MOVEM instruction going to change the PC? */
2709 if (cris_get_operand2 (inst) >= REG_PC)
2711 inst_env->reg[REG_PC] =
2712 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2714 /* The assign value is the value after the increment. Normally, the
2715 assign value is the value before the increment. */
2716 if ((cris_get_operand1 (inst) == REG_PC)
2717 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2719 inst_env->reg[REG_PC] = inst_env->prefix_value;
2720 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2725 /* Is the MOVEM instruction going to change the PC? */
2726 if (cris_get_operand2 (inst) == REG_PC)
2728 /* It's invalid to change the PC in a delay slot. */
2729 if (inst_env->slot_needed)
2731 inst_env->invalid = 1;
2734 inst_env->reg[REG_PC] =
2735 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2738 /* The increment is not depending on the size, instead it's depending
2739 on the number of registers loaded from memory. */
2740 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2742 /* It's invalid to change the PC in a delay slot. */
2743 if (inst_env->slot_needed)
2745 inst_env->invalid = 1;
2748 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2751 inst_env->slot_needed = 0;
2752 inst_env->prefix_found = 0;
2753 inst_env->xflag_found = 0;
2754 inst_env->disable_interrupt = 0;
2757 /* Handles the MOVEM to memory from general register instruction. */
2760 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2762 if (inst_env->prefix_found)
2764 /* The assign value is the value after the increment. Normally, the
2765 assign value is the value before the increment. */
2766 if ((cris_get_operand1 (inst) == REG_PC) &&
2767 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2769 /* The prefix handles the problem if we are in a delay slot. */
2770 inst_env->reg[REG_PC] = inst_env->prefix_value;
2771 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2776 /* The increment is not depending on the size, instead it's depending
2777 on the number of registers loaded to memory. */
2778 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2780 /* It's invalid to change the PC in a delay slot. */
2781 if (inst_env->slot_needed)
2783 inst_env->invalid = 1;
2786 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2789 inst_env->slot_needed = 0;
2790 inst_env->prefix_found = 0;
2791 inst_env->xflag_found = 0;
2792 inst_env->disable_interrupt = 0;
2795 /* Handles the pop instruction to a general register.
2796 POP is a assembler macro for MOVE.D [SP+], Rd. */
2799 reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2801 /* POP can't have a prefix. */
2802 if (inst_env->prefix_found)
2804 inst_env->invalid = 1;
2807 if (cris_get_operand2 (inst) == REG_PC)
2809 /* It's invalid to change the PC in a delay slot. */
2810 if (inst_env->slot_needed)
2812 inst_env->invalid = 1;
2815 inst_env->reg[REG_PC] =
2816 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2818 inst_env->slot_needed = 0;
2819 inst_env->prefix_found = 0;
2820 inst_env->xflag_found = 0;
2821 inst_env->disable_interrupt = 0;
2824 /* Handles moves from register to memory. */
2827 move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2829 /* Check if we have a prefix. */
2830 if (inst_env->prefix_found)
2832 /* The only thing that can change the PC is an assign. */
2833 check_assign (inst, inst_env);
2835 else if ((cris_get_operand1 (inst) == REG_PC)
2836 && (cris_get_mode (inst) == AUTOINC_MODE))
2838 /* It's invalid to change the PC in a delay slot. */
2839 if (inst_env->slot_needed)
2841 inst_env->invalid = 1;
2844 process_autoincrement (cris_get_size (inst), inst, inst_env);
2846 inst_env->slot_needed = 0;
2847 inst_env->prefix_found = 0;
2848 inst_env->xflag_found = 0;
2849 inst_env->disable_interrupt = 0;
2852 /* Handles the intructions that's not yet implemented, by setting
2853 inst_env->invalid to true. */
2856 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2858 inst_env->invalid = 1;
2861 /* Handles the XOR instruction. */
2864 xor_op (unsigned short inst, inst_env_type *inst_env)
2866 /* XOR can't have a prefix. */
2867 if (inst_env->prefix_found)
2869 inst_env->invalid = 1;
2873 /* Check if the PC is the target. */
2874 if (cris_get_operand2 (inst) == REG_PC)
2876 /* It's invalid to change the PC in a delay slot. */
2877 if (inst_env->slot_needed)
2879 inst_env->invalid = 1;
2882 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2884 inst_env->slot_needed = 0;
2885 inst_env->prefix_found = 0;
2886 inst_env->xflag_found = 0;
2887 inst_env->disable_interrupt = 0;
2890 /* Handles the MULS instruction. */
2893 muls_op (unsigned short inst, inst_env_type *inst_env)
2895 /* MULS/U can't have a prefix. */
2896 if (inst_env->prefix_found)
2898 inst_env->invalid = 1;
2902 /* Consider it invalid if the PC is the target. */
2903 if (cris_get_operand2 (inst) == REG_PC)
2905 inst_env->invalid = 1;
2908 inst_env->slot_needed = 0;
2909 inst_env->prefix_found = 0;
2910 inst_env->xflag_found = 0;
2911 inst_env->disable_interrupt = 0;
2914 /* Handles the MULU instruction. */
2917 mulu_op (unsigned short inst, inst_env_type *inst_env)
2919 /* MULS/U can't have a prefix. */
2920 if (inst_env->prefix_found)
2922 inst_env->invalid = 1;
2926 /* Consider it invalid if the PC is the target. */
2927 if (cris_get_operand2 (inst) == REG_PC)
2929 inst_env->invalid = 1;
2932 inst_env->slot_needed = 0;
2933 inst_env->prefix_found = 0;
2934 inst_env->xflag_found = 0;
2935 inst_env->disable_interrupt = 0;
2938 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2939 The MOVE instruction is the move from source to register. */
2942 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2943 unsigned long source1, unsigned long source2)
2945 unsigned long pc_mask;
2946 unsigned long operation_mask;
2948 /* Find out how many bits the operation should apply to. */
2949 if (cris_get_size (inst) == INST_BYTE_SIZE)
2951 pc_mask = 0xFFFFFF00;
2952 operation_mask = 0xFF;
2954 else if (cris_get_size (inst) == INST_WORD_SIZE)
2956 pc_mask = 0xFFFF0000;
2957 operation_mask = 0xFFFF;
2959 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2962 operation_mask = 0xFFFFFFFF;
2966 /* The size is out of range. */
2967 inst_env->invalid = 1;
2971 /* The instruction just works on uw_operation_mask bits. */
2972 source2 &= operation_mask;
2973 source1 &= operation_mask;
2975 /* Now calculate the result. The opcode's 3 first bits separates
2976 the different actions. */
2977 switch (cris_get_opcode (inst) & 7)
2987 case 2: /* subtract */
2991 case 3: /* compare */
3003 inst_env->invalid = 1;
3009 /* Make sure that the result doesn't contain more than the instruction
3011 source2 &= operation_mask;
3013 /* Calculate the new breakpoint address. */
3014 inst_env->reg[REG_PC] &= pc_mask;
3015 inst_env->reg[REG_PC] |= source1;
3019 /* Extends the value from either byte or word size to a dword. If the mode
3020 is zero extend then the value is extended with zero. If instead the mode
3021 is signed extend the sign bit of the value is taken into consideration. */
3024 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3026 /* The size can be either byte or word, check which one it is.
3027 Don't check the highest bit, it's indicating if it's a zero
3029 if (cris_get_size (*inst) & INST_WORD_SIZE)
3034 /* Check if the instruction is signed extend. If so, check if value has
3036 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3038 value |= SIGNED_WORD_EXTEND_MASK;
3046 /* Check if the instruction is signed extend. If so, check if value has
3048 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3050 value |= SIGNED_BYTE_EXTEND_MASK;
3053 /* The size should now be dword. */
3054 cris_set_size_to_dword (inst);
3058 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3059 instruction. The MOVE instruction is the move from source to register. */
3062 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3063 inst_env_type *inst_env)
3065 unsigned long operand1;
3066 unsigned long operand2;
3068 /* It's invalid to have a prefix to the instruction. This is a register
3069 mode instruction and can't have a prefix. */
3070 if (inst_env->prefix_found)
3072 inst_env->invalid = 1;
3075 /* Check if the instruction has PC as its target. */
3076 if (cris_get_operand2 (inst) == REG_PC)
3078 if (inst_env->slot_needed)
3080 inst_env->invalid = 1;
3083 /* The instruction has the PC as its target register. */
3084 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3085 operand2 = inst_env->reg[REG_PC];
3087 /* Check if it's a extend, signed or zero instruction. */
3088 if (cris_get_opcode (inst) < 4)
3090 operand1 = do_sign_or_zero_extend (operand1, &inst);
3092 /* Calculate the PC value after the instruction, i.e. where the
3093 breakpoint should be. The order of the udw_operands is vital. */
3094 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3096 inst_env->slot_needed = 0;
3097 inst_env->prefix_found = 0;
3098 inst_env->xflag_found = 0;
3099 inst_env->disable_interrupt = 0;
3102 /* Returns the data contained at address. The size of the data is derived from
3103 the size of the operation. If the instruction is a zero or signed
3104 extend instruction, the size field is changed in instruction. */
3107 get_data_from_address (unsigned short *inst, CORE_ADDR address)
3109 int size = cris_get_size (*inst);
3110 unsigned long value;
3112 /* If it's an extend instruction we don't want the signed extend bit,
3113 because it influences the size. */
3114 if (cris_get_opcode (*inst) < 4)
3116 size &= ~SIGNED_EXTEND_BIT_MASK;
3118 /* Is there a need for checking the size? Size should contain the number of
3121 value = read_memory_unsigned_integer (address, size);
3123 /* Check if it's an extend, signed or zero instruction. */
3124 if (cris_get_opcode (*inst) < 4)
3126 value = do_sign_or_zero_extend (value, inst);
3131 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3132 instructions. The MOVE instruction is the move from source to register. */
3135 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3136 inst_env_type *inst_env)
3138 unsigned long operand2;
3139 unsigned long operand3;
3141 check_assign (inst, inst_env);
3142 if (cris_get_operand2 (inst) == REG_PC)
3144 operand2 = inst_env->reg[REG_PC];
3146 /* Get the value of the third operand. */
3147 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3149 /* Calculate the PC value after the instruction, i.e. where the
3150 breakpoint should be. The order of the udw_operands is vital. */
3151 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3153 inst_env->slot_needed = 0;
3154 inst_env->prefix_found = 0;
3155 inst_env->xflag_found = 0;
3156 inst_env->disable_interrupt = 0;
3159 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3160 OR instructions. Note that for this to work as expected, the calling
3161 function must have made sure that there is a prefix to this instruction. */
3164 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3165 inst_env_type *inst_env)
3167 unsigned long operand2;
3168 unsigned long operand3;
3170 if (cris_get_operand1 (inst) == REG_PC)
3172 /* The PC will be changed by the instruction. */
3173 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3175 /* Get the value of the third operand. */
3176 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3178 /* Calculate the PC value after the instruction, i.e. where the
3179 breakpoint should be. */
3180 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3182 inst_env->slot_needed = 0;
3183 inst_env->prefix_found = 0;
3184 inst_env->xflag_found = 0;
3185 inst_env->disable_interrupt = 0;
3188 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3189 instructions. The MOVE instruction is the move from source to register. */
3192 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3193 inst_env_type *inst_env)
3195 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3197 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3198 SUB, AND or OR something weird is going on (if everything works these
3199 instructions should end up in the three operand version). */
3200 inst_env->invalid = 1;
3205 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3207 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3209 inst_env->slot_needed = 0;
3210 inst_env->prefix_found = 0;
3211 inst_env->xflag_found = 0;
3212 inst_env->disable_interrupt = 0;
3215 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3216 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3217 source to register. */
3220 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3221 inst_env_type *inst_env)
3223 unsigned long operand1;
3224 unsigned long operand2;
3225 unsigned long operand3;
3228 /* The instruction is either an indirect or autoincrement addressing mode.
3229 Check if the destination register is the PC. */
3230 if (cris_get_operand2 (inst) == REG_PC)
3232 /* Must be done here, get_data_from_address may change the size
3234 size = cris_get_size (inst);
3235 operand2 = inst_env->reg[REG_PC];
3237 /* Get the value of the third operand, i.e. the indirect operand. */
3238 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3239 operand3 = get_data_from_address (&inst, operand1);
3241 /* Calculate the PC value after the instruction, i.e. where the
3242 breakpoint should be. The order of the udw_operands is vital. */
3243 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3245 /* If this is an autoincrement addressing mode, check if the increment
3247 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3249 /* Get the size field. */
3250 size = cris_get_size (inst);
3252 /* If it's an extend instruction we don't want the signed extend bit,
3253 because it influences the size. */
3254 if (cris_get_opcode (inst) < 4)
3256 size &= ~SIGNED_EXTEND_BIT_MASK;
3258 process_autoincrement (size, inst, inst_env);
3260 inst_env->slot_needed = 0;
3261 inst_env->prefix_found = 0;
3262 inst_env->xflag_found = 0;
3263 inst_env->disable_interrupt = 0;
3266 /* Handles the two-operand addressing mode, all modes except register, for
3267 the ADD, SUB CMP, AND and OR instruction. */
3270 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3271 inst_env_type *inst_env)
3273 if (inst_env->prefix_found)
3275 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3277 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3279 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3281 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3285 /* The mode is invalid for a prefixed base instruction. */
3286 inst_env->invalid = 1;
3292 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3296 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3299 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3301 unsigned long operand1;
3302 unsigned long operand2;
3304 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3305 instruction and can't have a prefix. */
3306 if (inst_env->prefix_found)
3308 inst_env->invalid = 1;
3312 /* Check if the instruction has PC as its target. */
3313 if (cris_get_operand2 (inst) == REG_PC)
3315 if (inst_env->slot_needed)
3317 inst_env->invalid = 1;
3320 operand1 = cris_get_quick_value (inst);
3321 operand2 = inst_env->reg[REG_PC];
3323 /* The size should now be dword. */
3324 cris_set_size_to_dword (&inst);
3326 /* Calculate the PC value after the instruction, i.e. where the
3327 breakpoint should be. */
3328 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3330 inst_env->slot_needed = 0;
3331 inst_env->prefix_found = 0;
3332 inst_env->xflag_found = 0;
3333 inst_env->disable_interrupt = 0;
3336 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3339 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3341 unsigned long operand1;
3342 unsigned long operand2;
3344 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3345 instruction and can't have a prefix. */
3346 if (inst_env->prefix_found)
3348 inst_env->invalid = 1;
3351 /* Check if the instruction has PC as its target. */
3352 if (cris_get_operand2 (inst) == REG_PC)
3354 if (inst_env->slot_needed)
3356 inst_env->invalid = 1;
3359 /* The instruction has the PC as its target register. */
3360 operand1 = cris_get_quick_value (inst);
3361 operand2 = inst_env->reg[REG_PC];
3363 /* The quick value is signed, so check if we must do a signed extend. */
3364 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3367 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3369 /* The size should now be dword. */
3370 cris_set_size_to_dword (&inst);
3372 /* Calculate the PC value after the instruction, i.e. where the
3373 breakpoint should be. */
3374 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3376 inst_env->slot_needed = 0;
3377 inst_env->prefix_found = 0;
3378 inst_env->xflag_found = 0;
3379 inst_env->disable_interrupt = 0;
3382 /* Translate op_type to a function and call it. */
3384 static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3385 inst_env_type *inst_env)
3389 case cris_not_implemented_op:
3390 not_implemented_op (inst, inst_env);
3394 abs_op (inst, inst_env);
3398 addi_op (inst, inst_env);
3402 asr_op (inst, inst_env);
3406 asrq_op (inst, inst_env);
3409 case cris_ax_ei_setf_op:
3410 ax_ei_setf_op (inst, inst_env);
3413 case cris_bdap_prefix:
3414 bdap_prefix (inst, inst_env);
3417 case cris_biap_prefix:
3418 biap_prefix (inst, inst_env);
3422 break_op (inst, inst_env);
3425 case cris_btst_nop_op:
3426 btst_nop_op (inst, inst_env);
3429 case cris_clearf_di_op:
3430 clearf_di_op (inst, inst_env);
3433 case cris_dip_prefix:
3434 dip_prefix (inst, inst_env);
3437 case cris_dstep_logshift_mstep_neg_not_op:
3438 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3441 case cris_eight_bit_offset_branch_op:
3442 eight_bit_offset_branch_op (inst, inst_env);
3445 case cris_move_mem_to_reg_movem_op:
3446 move_mem_to_reg_movem_op (inst, inst_env);
3449 case cris_move_reg_to_mem_movem_op:
3450 move_reg_to_mem_movem_op (inst, inst_env);
3453 case cris_move_to_preg_op:
3454 move_to_preg_op (inst, inst_env);
3458 muls_op (inst, inst_env);
3462 mulu_op (inst, inst_env);
3465 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3466 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3469 case cris_none_reg_mode_clear_test_op:
3470 none_reg_mode_clear_test_op (inst, inst_env);
3473 case cris_none_reg_mode_jump_op:
3474 none_reg_mode_jump_op (inst, inst_env);
3477 case cris_none_reg_mode_move_from_preg_op:
3478 none_reg_mode_move_from_preg_op (inst, inst_env);
3481 case cris_quick_mode_add_sub_op:
3482 quick_mode_add_sub_op (inst, inst_env);
3485 case cris_quick_mode_and_cmp_move_or_op:
3486 quick_mode_and_cmp_move_or_op (inst, inst_env);
3489 case cris_quick_mode_bdap_prefix:
3490 quick_mode_bdap_prefix (inst, inst_env);
3493 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3494 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3497 case cris_reg_mode_clear_op:
3498 reg_mode_clear_op (inst, inst_env);
3501 case cris_reg_mode_jump_op:
3502 reg_mode_jump_op (inst, inst_env);
3505 case cris_reg_mode_move_from_preg_op:
3506 reg_mode_move_from_preg_op (inst, inst_env);
3509 case cris_reg_mode_test_op:
3510 reg_mode_test_op (inst, inst_env);
3514 scc_op (inst, inst_env);
3517 case cris_sixteen_bit_offset_branch_op:
3518 sixteen_bit_offset_branch_op (inst, inst_env);
3521 case cris_three_operand_add_sub_cmp_and_or_op:
3522 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3525 case cris_three_operand_bound_op:
3526 three_operand_bound_op (inst, inst_env);
3529 case cris_two_operand_bound_op:
3530 two_operand_bound_op (inst, inst_env);
3534 xor_op (inst, inst_env);
3539 /* This wrapper is to avoid cris_get_assembler being called before
3540 exec_bfd has been set. */
3543 cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info)
3545 tm_print_insn = cris_get_disassembler (exec_bfd);
3546 return TARGET_PRINT_INSN (addr, info);
3549 /* Copied from <asm/elf.h>. */
3550 typedef unsigned long elf_greg_t;
3552 /* Same as user_regs_struct struct in <asm/user.h>. */
3553 typedef elf_greg_t elf_gregset_t[35];
3555 /* Unpack an elf_gregset_t into GDB's register cache. */
3558 supply_gregset (elf_gregset_t *gregsetp)
3561 elf_greg_t *regp = *gregsetp;
3562 static char zerobuf[4] = {0};
3564 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3565 knows about the actual size of each register so that's no problem. */
3566 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3568 supply_register (i, (char *)®p[i]);
3572 /* Use a local version of this function to get the correct types for
3573 regsets, until multi-arch core support is ready. */
3576 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3577 int which, CORE_ADDR reg_addr)
3579 elf_gregset_t gregset;
3584 if (core_reg_size != sizeof (gregset))
3586 warning ("wrong size gregset struct in core file");
3590 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3591 supply_gregset (&gregset);
3595 /* We've covered all the kinds of registers we know about here,
3596 so this must be something we wouldn't know what to do with
3597 anyway. Just ignore it. */
3602 static struct core_fns cris_elf_core_fns =
3604 bfd_target_elf_flavour, /* core_flavour */
3605 default_check_format, /* check_format */
3606 default_core_sniffer, /* core_sniffer */
3607 fetch_core_registers, /* core_read_registers */
3611 /* Fetch (and possibly build) an appropriate link_map_offsets
3612 structure for native GNU/Linux CRIS targets using the struct
3613 offsets defined in link.h (but without actual reference to that
3616 This makes it possible to access GNU/Linux CRIS shared libraries
3617 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3620 See gdb/solib-svr4.h for an explanation of these fields. */
3622 struct link_map_offsets *
3623 cris_linux_svr4_fetch_link_map_offsets (void)
3625 static struct link_map_offsets lmo;
3626 static struct link_map_offsets *lmp = NULL;
3632 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3633 this is all we need. */
3634 lmo.r_map_offset = 4;
3637 lmo.link_map_size = 20;
3639 lmo.l_addr_offset = 0;
3640 lmo.l_addr_size = 4;
3642 lmo.l_name_offset = 4;
3643 lmo.l_name_size = 4;
3645 lmo.l_next_offset = 12;
3646 lmo.l_next_size = 4;
3648 lmo.l_prev_offset = 16;
3649 lmo.l_prev_size = 4;
3656 cris_fpless_backtrace (char *noargs, int from_tty)
3658 /* Points at the instruction after the jsr (except when in innermost frame
3659 where it points at the original pc). */
3662 /* Temporary variable, used for parsing from the start of the function that
3663 the pc is in, up to the pc. */
3664 CORE_ADDR tmp_pc = 0;
3667 /* Information about current frame. */
3668 struct symtab_and_line sal;
3671 /* Present instruction. */
3672 unsigned short insn;
3674 /* Next instruction, lookahead. */
3675 unsigned short insn_next;
3677 /* This is to store the offset between sp at start of function and until we
3678 reach push srp (if any). */
3679 int sp_add_later = 0;
3680 int push_srp_found = 0;
3684 /* Frame counter. */
3687 /* For the innermost frame, we want to look at srp in case it's a leaf
3688 function (since there's no push srp in that case). */
3689 int innermost_frame = 1;
3691 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3692 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
3694 /* We make an explicit return when we can't find an outer frame. */
3697 /* Get file name and line number. */
3698 sal = find_pc_line (pc, 0);
3700 /* Get function name. */
3701 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3702 (CORE_ADDR *) NULL);
3704 /* Print information about current frame. */
3705 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3708 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3710 printf_unfiltered ("\n");
3712 /* Get the start address of this function. */
3713 tmp_pc = get_pc_function_start (pc);
3715 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3716 of the function, up to the pc. */
3719 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3720 tmp_pc += sizeof (short);
3723 /* push <reg> 32 bit instruction */
3724 insn_next = read_memory_unsigned_integer (tmp_pc,
3726 tmp_pc += sizeof (short);
3728 /* Recognize srp. */
3729 if (insn_next == 0xBE7E)
3731 /* For subsequent (not this one though) push or sub which
3732 affects sp, adjust sp immediately. */
3735 /* Note: this will break if we ever encounter a
3736 push vr (1 byte) or push ccr (2 bytes). */
3741 /* Some other register was pushed. */
3752 else if (cris_get_operand2 (insn) == SP_REGNUM
3753 && cris_get_mode (insn) == 0x0000
3754 && cris_get_opcode (insn) == 0x000A)
3757 val = cris_get_quick_value (insn);
3765 sp_add_later += val;
3769 else if (cris_get_operand2 (insn) == SP_REGNUM
3770 /* Autoincrement addressing mode. */
3771 && cris_get_mode (insn) == 0x0003
3773 && ((insn) & 0x03E0) >> 5 == 0x0004)
3776 val = get_data_from_address (&insn, tmp_pc);
3784 sp_add_later += val;
3787 else if (cris_get_operand2 (insn) == SP_REGNUM
3788 && ((insn & 0x0F00) >> 8) == 0x0001
3789 && (cris_get_signed_offset (insn) < 0))
3791 /* Immediate byte offset addressing prefix word with sp as base
3792 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3793 is between 64 and 128.
3794 movem r<regsave>,[sp=sp-<val>] */
3795 val = -cris_get_signed_offset (insn);
3796 insn_next = read_memory_unsigned_integer (tmp_pc,
3798 tmp_pc += sizeof (short);
3800 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3801 && cris_get_opcode (insn_next) == 0x000F
3802 && cris_get_size (insn_next) == 0x0003
3803 && cris_get_operand1 (insn_next) == SP_REGNUM)
3811 sp_add_later += val;
3822 /* sp should now point at where srp is stored on the stack. Update
3823 the pc to the srp. */
3824 pc = read_memory_unsigned_integer (sp, 4);
3826 else if (innermost_frame)
3828 /* We couldn't find a push srp in the prologue, so this must be
3829 a leaf function, and thus we use the srp register directly.
3830 This should happen at most once, for the innermost function. */
3831 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
3835 /* Couldn't find an outer frame. */
3839 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3840 want to look at the srp register later either). */
3841 innermost_frame = 0;
3843 /* Now, add the offset for everything up to, and including push srp,
3844 that was held back during the prologue parsing. */
3851 _initialize_cris_tdep (void)
3853 struct cmd_list_element *c;
3855 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3857 /* Used in disassembly. */
3858 tm_print_insn = cris_delayed_get_disassembler;
3860 /* CRIS-specific user-commands. */
3861 c = add_set_cmd ("cris-version", class_support, var_integer,
3862 (char *) &usr_cmd_cris_version,
3863 "Set the current CRIS version.", &setlist);
3864 set_cmd_sfunc (c, cris_version_update);
3865 add_show_from_set (c, &showlist);
3867 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3869 "Set the current CRIS mode.", &setlist);
3870 set_cmd_sfunc (c, cris_mode_update);
3871 add_show_from_set (c, &showlist);
3873 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3875 "Set the current CRIS ABI version.", &setlist);
3876 set_cmd_sfunc (c, cris_abi_update);
3877 add_show_from_set (c, &showlist);
3879 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3880 "Display call chain using the subroutine return pointer.\n"
3881 "Note that this displays the address after the jump to the "
3882 "subroutine.", &cmdlist);
3884 add_core_fns (&cris_elf_core_fns);
3888 /* Prints out all target specific values. */
3891 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3893 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3896 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3897 tdep->cris_version);
3898 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3900 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3907 cris_version_update (char *ignore_args, int from_tty,
3908 struct cmd_list_element *c)
3910 struct gdbarch_info info;
3912 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3913 the set command passed as a parameter. The clone operation will
3914 include (BUG?) any ``set'' command callback, if present.
3915 Commands like ``info set'' call all the ``show'' command
3916 callbacks. Unfortunatly, for ``show'' commands cloned from
3917 ``set'', this includes callbacks belonging to ``set'' commands.
3918 Making this worse, this only occures if add_show_from_set() is
3919 called after add_cmd_sfunc() (BUG?). */
3921 /* From here on, trust the user's CRIS version setting. */
3922 if (cmd_type (c) == set_cmd)
3924 usr_cmd_cris_version_valid = 1;
3926 /* Update the current architecture, if needed. */
3927 gdbarch_info_init (&info);
3928 if (!gdbarch_update_p (info))
3929 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3934 cris_mode_update (char *ignore_args, int from_tty,
3935 struct cmd_list_element *c)
3937 struct gdbarch_info info;
3939 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3940 the set command passed as a parameter. The clone operation will
3941 include (BUG?) any ``set'' command callback, if present.
3942 Commands like ``info set'' call all the ``show'' command
3943 callbacks. Unfortunatly, for ``show'' commands cloned from
3944 ``set'', this includes callbacks belonging to ``set'' commands.
3945 Making this worse, this only occures if add_show_from_set() is
3946 called after add_cmd_sfunc() (BUG?). */
3948 /* From here on, trust the user's CRIS mode setting. */
3949 if (cmd_type (c) == set_cmd)
3951 usr_cmd_cris_mode_valid = 1;
3953 /* Update the current architecture, if needed. */
3954 gdbarch_info_init (&info);
3955 if (!gdbarch_update_p (info))
3956 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3961 cris_abi_update (char *ignore_args, int from_tty,
3962 struct cmd_list_element *c)
3964 struct gdbarch_info info;
3966 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3967 the set command passed as a parameter. The clone operation will
3968 include (BUG?) any ``set'' command callback, if present.
3969 Commands like ``info set'' call all the ``show'' command
3970 callbacks. Unfortunatly, for ``show'' commands cloned from
3971 ``set'', this includes callbacks belonging to ``set'' commands.
3972 Making this worse, this only occures if add_show_from_set() is
3973 called after add_cmd_sfunc() (BUG?). */
3975 /* From here on, trust the user's CRIS ABI setting. */
3976 if (cmd_type (c) == set_cmd)
3978 usr_cmd_cris_abi_valid = 1;
3980 /* Update the current architecture, if needed. */
3981 gdbarch_info_init (&info);
3982 if (!gdbarch_update_p (info))
3983 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3987 /* Copied from pa64solib.c, with a couple of minor changes. */
3990 bfd_lookup_symbol (bfd *abfd, const char *symname)
3992 unsigned int storage_needed;
3994 asymbol **symbol_table;
3995 unsigned int number_of_symbols;
3997 struct cleanup *back_to;
3998 CORE_ADDR symaddr = 0;
4000 storage_needed = bfd_get_symtab_upper_bound (abfd);
4002 if (storage_needed > 0)
4004 symbol_table = (asymbol **) xmalloc (storage_needed);
4005 back_to = make_cleanup (free, (PTR) symbol_table);
4006 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4008 for (i = 0; i < number_of_symbols; i++)
4010 sym = *symbol_table++;
4011 if (!strcmp (sym->name, symname))
4013 /* Bfd symbols are section relative. */
4014 symaddr = sym->value + sym->section->vma;
4018 do_cleanups (back_to);
4023 static struct gdbarch *
4024 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4026 struct gdbarch *gdbarch;
4027 struct gdbarch_tdep *tdep;
4029 const char *cris_mode;
4030 const char *cris_abi;
4031 CORE_ADDR cris_abi_sym = 0;
4034 if (usr_cmd_cris_version_valid)
4036 /* Trust the user's CRIS version setting. */
4037 cris_version = usr_cmd_cris_version;
4041 /* Assume it's CRIS version 10. */
4045 if (usr_cmd_cris_mode_valid)
4047 /* Trust the user's CRIS mode setting. */
4048 cris_mode = usr_cmd_cris_mode;
4050 else if (cris_version == 10)
4052 /* Assume CRIS version 10 is in user mode. */
4053 cris_mode = CRIS_MODE_USER;
4057 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4058 but we regard its only mode as supervisor mode. */
4059 cris_mode = CRIS_MODE_SUPERVISOR;
4062 if (usr_cmd_cris_abi_valid)
4064 /* Trust the user's ABI setting. */
4065 cris_abi = usr_cmd_cris_abi;
4069 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4071 /* An elf target uses the new ABI. */
4072 cris_abi = CRIS_ABI_V2;
4074 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4076 /* An a.out target may use either ABI. Look for hints in the
4078 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4079 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4083 /* Unknown bfd flavour. Assume it's the new ABI. */
4084 cris_abi = CRIS_ABI_V2;
4087 else if (arches != NULL)
4089 /* No bfd available. Stick with the ABI from the most recently
4090 selected architecture of this same family (the head of arches
4091 always points to this). (This is to avoid changing the ABI
4092 when the user updates the architecture with the 'set
4093 cris-version' command.) */
4094 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
4098 /* No bfd, and no previously selected architecture available.
4099 Assume it's the new ABI. */
4100 cris_abi = CRIS_ABI_V2;
4103 /* Make the current settings visible to the user. */
4104 usr_cmd_cris_version = cris_version;
4105 usr_cmd_cris_mode = cris_mode;
4106 usr_cmd_cris_abi = cris_abi;
4108 /* Find a candidate among the list of pre-declared architectures. Both
4109 CRIS version and ABI must match. */
4110 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4112 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4114 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4115 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4116 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4117 return arches->gdbarch;
4120 /* No matching architecture was found. Create a new one. */
4121 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4122 gdbarch = gdbarch_alloc (&info, tdep);
4124 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4125 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4126 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
4128 tdep->cris_version = cris_version;
4129 tdep->cris_mode = cris_mode;
4130 tdep->cris_abi = cris_abi;
4132 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4133 switch (info.byte_order)
4135 case BFD_ENDIAN_LITTLE:
4139 case BFD_ENDIAN_BIG:
4140 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4144 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4147 /* Initialize the ABI dependent things. */
4148 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4150 set_gdbarch_double_bit (gdbarch, 32);
4151 set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments);
4152 set_gdbarch_deprecated_store_return_value (gdbarch,
4153 cris_abi_original_store_return_value);
4154 set_gdbarch_deprecated_extract_return_value
4155 (gdbarch, cris_abi_original_extract_return_value);
4156 set_gdbarch_reg_struct_has_addr
4157 (gdbarch, cris_abi_original_reg_struct_has_addr);
4159 else if (tdep->cris_abi == CRIS_ABI_V2)
4161 set_gdbarch_double_bit (gdbarch, 64);
4162 set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments);
4163 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
4164 set_gdbarch_deprecated_extract_return_value
4165 (gdbarch, cris_abi_v2_extract_return_value);
4166 set_gdbarch_reg_struct_has_addr (gdbarch,
4167 cris_abi_v2_reg_struct_has_addr);
4170 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4172 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4173 which means we have to set this explicitly. */
4174 set_gdbarch_long_double_bit (gdbarch, 64);
4176 /* There are 32 registers (some of which may not be implemented). */
4177 set_gdbarch_num_regs (gdbarch, 32);
4178 set_gdbarch_sp_regnum (gdbarch, 14);
4179 set_gdbarch_fp_regnum (gdbarch, 8);
4180 set_gdbarch_pc_regnum (gdbarch, 15);
4182 set_gdbarch_register_name (gdbarch, cris_register_name);
4184 /* Length of ordinary registers used in push_word and a few other places.
4185 REGISTER_RAW_SIZE is the real way to know how big a register is. */
4186 set_gdbarch_register_size (gdbarch, 4);
4189 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4190 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4193 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4194 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4197 /* The total amount of space needed to store (in an array called registers)
4198 GDB's copy of the machine's register state. Note: We can not use
4199 cris_register_size at this point, since it relies on current_gdbarch
4201 switch (tdep->cris_version)
4207 /* Support for these may be added later. */
4208 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4213 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4214 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4215 and P8 - P14 (32 bits). */
4216 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4221 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4222 P7 (32 bits), and P15 (32 bits) have been implemented. */
4223 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4227 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4230 set_gdbarch_register_bytes (gdbarch, register_bytes);
4232 /* Returns the register offset for the first byte of register regno's space
4233 in the saved register state. */
4234 set_gdbarch_register_byte (gdbarch, cris_register_offset);
4236 /* The length of the registers in the actual machine representation. */
4237 set_gdbarch_register_raw_size (gdbarch, cris_register_size);
4239 /* The largest value REGISTER_RAW_SIZE can have. */
4240 set_gdbarch_max_register_raw_size (gdbarch, 32);
4242 /* The length of the registers in the program's representation. */
4243 set_gdbarch_register_virtual_size (gdbarch, cris_register_size);
4245 /* The largest value REGISTER_VIRTUAL_SIZE can have. */
4246 set_gdbarch_max_register_virtual_size (gdbarch, 32);
4248 set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type);
4250 /* Use generic dummy frames. */
4252 /* Where to execute the call in the memory segments. */
4253 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
4255 /* Start execution at the beginning of dummy. */
4256 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4257 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4259 /* Set to 1 since call_dummy_breakpoint_offset was defined. */
4260 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4262 /* Read all about dummy frames in blockframe.c. */
4263 set_gdbarch_call_dummy_length (gdbarch, 0);
4264 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4266 /* Defined to 1 to indicate that the target supports inferior function
4268 set_gdbarch_call_dummy_p (gdbarch, 1);
4269 set_gdbarch_call_dummy_words (gdbarch, 0);
4270 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
4272 /* No stack adjustment needed when peforming an inferior function call. */
4273 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4274 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
4276 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
4278 /* No register requires conversion from raw format to virtual format. */
4279 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4281 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
4282 set_gdbarch_push_return_address (gdbarch, cris_push_return_address);
4283 set_gdbarch_pop_frame (gdbarch, cris_pop_frame);
4285 set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return);
4286 set_gdbarch_deprecated_extract_struct_value_address
4287 (gdbarch, cris_extract_struct_value_address);
4288 set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention);
4290 set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4291 set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4292 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4293 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4295 /* The stack grows downward. */
4296 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4298 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4300 /* The PC must not be decremented after a breakpoint. (The breakpoint
4301 handler takes care of that.) */
4302 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4304 /* Offset from address of function to start of its code. */
4305 set_gdbarch_function_start_offset (gdbarch, 0);
4307 /* The number of bytes at the start of arglist that are not really args,
4308 0 in the CRIS ABI. */
4309 set_gdbarch_frame_args_skip (gdbarch, 0);
4310 set_gdbarch_frameless_function_invocation
4311 (gdbarch, cris_frameless_function_invocation);
4312 set_gdbarch_frame_chain (gdbarch, cris_frame_chain);
4314 set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc);
4315 set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4317 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
4319 /* No extra stack alignment needed. Set to 1 by default. */
4320 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4322 /* Helpful for backtracing and returning in a call dummy. */
4323 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4325 /* Use target_specific function to define link map offsets. */
4326 set_solib_svr4_fetch_link_map_offsets
4327 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);