1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
46 #include "elf/dwarf.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "complaints.h"
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
65 /* Some macros to provide DIE info for complaints. */
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
70 /* Complaints that can be issued during DWARF debug info reading. */
72 struct complaint no_bfd_get_N =
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
77 struct complaint malformed_die =
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
82 struct complaint bad_die_ref =
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
87 struct complaint unknown_attribute_form =
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
92 struct complaint unknown_attribute_length =
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
97 struct complaint unexpected_fund_type =
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
102 struct complaint unknown_type_modifier =
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
107 struct complaint volatile_ignored =
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
112 struct complaint const_ignored =
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
117 struct complaint botched_modified_type =
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
122 struct complaint op_deref2 =
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
127 struct complaint op_deref4 =
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
132 struct complaint basereg_not_handled =
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
137 struct complaint dup_user_type_allocation =
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
142 struct complaint dup_user_type_definition =
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
147 struct complaint missing_tag =
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
152 struct complaint bad_array_element_type =
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
157 struct complaint subscript_data_items =
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
162 struct complaint unhandled_array_subscript_format =
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
167 struct complaint unknown_array_subscript_format =
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
172 struct complaint not_row_major =
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
180 #define GCC_PRODUCER "GNU C "
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
188 #define LCC_PRODUCER "NCR C/C++"
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
195 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196 #ifndef DWARF_REG_TO_REGNUM
197 #define DWARF_REG_TO_REGNUM(num) (num)
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
227 /* Macros that return the sizes of various types of data in the target
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
249 /* External variables referenced. */
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
304 CORE_ADDR at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
333 /* Which base register is it relative to? */
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
345 /* Each partial symbol table entry contains a pointer to private data for the
346 sym_read function to use when expanding a partial symbol table entry
347 to a full symbol table entry. */
350 /* Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed. */
353 /* Relative offset from the start of the ".debug" section to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion. */
361 /* The size of the chunk of DIE's being examined, in bytes. */
363 /* The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit. */
371 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
372 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
373 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
374 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
376 /* The generic symbol table building routines have separate lists for
377 file scope symbols and all all other scopes (local scopes). So
378 we need to select the right one to pass to add_symbol_to_list().
379 We do it by keeping a pointer to the correct list in list_in_scope.
381 FIXME: The original dwarf code just treated the file scope as the first
382 local scope, and all other local scopes as nested local scopes, and worked
383 fine. Check to see if we really need to distinguish these in buildsym.c */
385 struct pending **list_in_scope = &file_symbols;
387 /* DIES which have user defined types or modified user defined types refer to
388 other DIES for the type information. Thus we need to associate the offset
389 of a DIE for a user defined type with a pointer to the type information.
391 Originally this was done using a simple but expensive algorithm, with an
392 array of unsorted structures, each containing an offset/type-pointer pair.
393 This array was scanned linearly each time a lookup was done. The result
394 was that gdb was spending over half it's startup time munging through this
395 array of pointers looking for a structure that had the right offset member.
397 The second attempt used the same array of structures, but the array was
398 sorted using qsort each time a new offset/type was recorded, and a binary
399 search was used to find the type pointer for a given DIE offset. This was
400 even slower, due to the overhead of sorting the array each time a new
401 offset/type pair was entered.
403 The third attempt uses a fixed size array of type pointers, indexed by a
404 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
405 we can divide any DIE offset by 4 to obtain a unique index into this fixed
406 size array. Since each element is a 4 byte pointer, it takes exactly as
407 much memory to hold this array as to hold the DWARF info for a given
408 compilation unit. But it gets freed as soon as we are done with it.
409 This has worked well in practice, as a reasonable tradeoff between memory
410 consumption and speed, without having to resort to much more complicated
413 static struct type **utypes; /* Pointer to array of user type pointers */
414 static int numutypes; /* Max number of user type pointers */
416 /* Maintain an array of referenced fundamental types for the current
417 compilation unit being read. For DWARF version 1, we have to construct
418 the fundamental types on the fly, since no information about the
419 fundamental types is supplied. Each such fundamental type is created by
420 calling a language dependent routine to create the type, and then a
421 pointer to that type is then placed in the array at the index specified
422 by it's FT_<TYPENAME> value. The array has a fixed size set by the
423 FT_NUM_MEMBERS compile time constant, which is the number of predefined
424 fundamental types gdb knows how to construct. */
426 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
428 /* Record the language for the compilation unit which is currently being
429 processed. We know it once we have seen the TAG_compile_unit DIE,
430 and we need it while processing the DIE's for that compilation unit.
431 It is eventually saved in the symtab structure, but we don't finalize
432 the symtab struct until we have processed all the DIE's for the
433 compilation unit. We also need to get and save a pointer to the
434 language struct for this language, so we can call the language
435 dependent routines for doing things such as creating fundamental
438 static enum language cu_language;
439 static const struct language_defn *cu_language_defn;
441 /* Forward declarations of static functions so we don't have to worry
442 about ordering within this file. */
445 attribute_size PARAMS ((unsigned int));
448 target_to_host PARAMS ((char *, int, int, struct objfile *));
451 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
454 handle_producer PARAMS ((char *));
457 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
460 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
463 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
467 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
470 scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 file_ptr, struct objfile *));
474 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
477 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
480 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
483 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
486 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
489 read_ofile_symtab PARAMS ((struct partial_symtab *));
492 process_dies PARAMS ((char *, char *, struct objfile *));
495 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
499 decode_array_element_type PARAMS ((char *));
502 decode_subscript_data_item PARAMS ((char *, char *));
505 dwarf_read_array_type PARAMS ((struct dieinfo *));
508 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
511 read_tag_string_type PARAMS ((struct dieinfo *dip));
514 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
517 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
520 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
523 enum_type PARAMS ((struct dieinfo *, struct objfile *));
526 decode_line_numbers PARAMS ((char *));
529 decode_die_type PARAMS ((struct dieinfo *));
532 decode_mod_fund_type PARAMS ((char *));
535 decode_mod_u_d_type PARAMS ((char *));
538 decode_modified_type PARAMS ((char *, unsigned int, int));
541 decode_fund_type PARAMS ((unsigned int));
544 create_name PARAMS ((char *, struct obstack *));
547 lookup_utype PARAMS ((DIE_REF));
550 alloc_utype PARAMS ((DIE_REF, struct type *));
552 static struct symbol *
553 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
556 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
560 locval PARAMS ((char *));
563 set_cu_language PARAMS ((struct dieinfo *));
566 dwarf_fundamental_type PARAMS ((struct objfile *, int));
573 dwarf_fundamental_type -- lookup or create a fundamental type
578 dwarf_fundamental_type (struct objfile *objfile, int typeid)
582 DWARF version 1 doesn't supply any fundamental type information,
583 so gdb has to construct such types. It has a fixed number of
584 fundamental types that it knows how to construct, which is the
585 union of all types that it knows how to construct for all languages
586 that it knows about. These are enumerated in gdbtypes.h.
588 As an example, assume we find a DIE that references a DWARF
589 fundamental type of FT_integer. We first look in the ftypes
590 array to see if we already have such a type, indexed by the
591 gdb internal value of FT_INTEGER. If so, we simply return a
592 pointer to that type. If not, then we ask an appropriate
593 language dependent routine to create a type FT_INTEGER, using
594 defaults reasonable for the current target machine, and install
595 that type in ftypes for future reference.
599 Pointer to a fundamental type.
604 dwarf_fundamental_type (objfile, typeid)
605 struct objfile *objfile;
608 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
610 error ("internal error - invalid fundamental type id %d", typeid);
613 /* Look for this particular type in the fundamental type vector. If one is
614 not found, create and install one appropriate for the current language
615 and the current target machine. */
617 if (ftypes[typeid] == NULL)
619 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
622 return (ftypes[typeid]);
629 set_cu_language -- set local copy of language for compilation unit
634 set_cu_language (struct dieinfo *dip)
638 Decode the language attribute for a compilation unit DIE and
639 remember what the language was. We use this at various times
640 when processing DIE's for a given compilation unit.
649 set_cu_language (dip)
652 switch (dip -> at_language)
656 cu_language = language_c;
658 case LANG_C_PLUS_PLUS:
659 cu_language = language_cplus;
662 cu_language = language_chill;
665 cu_language = language_m2;
673 /* We don't know anything special about these yet. */
674 cu_language = language_unknown;
677 /* If no at_language, try to deduce one from the filename */
678 cu_language = deduce_language_from_filename (dip -> at_name);
681 cu_language_defn = language_def (cu_language);
688 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
692 void dwarf_build_psymtabs (struct objfile *objfile,
693 struct section_offsets *section_offsets,
694 int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 file_ptr lnoffset, unsigned int lnsize)
699 This function is called upon to build partial symtabs from files
700 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
702 It is passed a bfd* containing the DIES
703 and line number information, the corresponding filename for that
704 file, a base address for relocating the symbols, a flag indicating
705 whether or not this debugging information is from a "main symbol
706 table" rather than a shared library or dynamically linked file,
707 and file offset/size pairs for the DIE information and line number
717 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
719 struct objfile *objfile;
720 struct section_offsets *section_offsets;
723 unsigned int dbfsize;
727 bfd *abfd = objfile->obfd;
728 struct cleanup *back_to;
730 current_objfile = objfile;
732 dbbase = xmalloc (dbsize);
734 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
735 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
738 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
740 back_to = make_cleanup (free, dbbase);
742 /* If we are reinitializing, or if we have never loaded syms yet, init.
743 Since we have no idea how many DIES we are looking at, we just guess
744 some arbitrary value. */
746 if (mainline || objfile -> global_psymbols.size == 0 ||
747 objfile -> static_psymbols.size == 0)
749 init_psymbol_list (objfile, 1024);
752 /* Save the relocation factor where everybody can see it. */
754 base_section_offsets = section_offsets;
755 baseaddr = ANOFFSET (section_offsets, 0);
757 /* Follow the compilation unit sibling chain, building a partial symbol
758 table entry for each one. Save enough information about each compilation
759 unit to locate the full DWARF information later. */
761 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
763 do_cleanups (back_to);
764 current_objfile = NULL;
771 read_lexical_block_scope -- process all dies in a lexical block
775 static void read_lexical_block_scope (struct dieinfo *dip,
776 char *thisdie, char *enddie)
780 Process all the DIES contained within a lexical block scope.
781 Start a new scope, process the dies, and then close the scope.
786 read_lexical_block_scope (dip, thisdie, enddie, objfile)
790 struct objfile *objfile;
792 register struct context_stack *new;
794 push_context (0, dip -> at_low_pc);
795 process_dies (thisdie + dip -> die_length, enddie, objfile);
796 new = pop_context ();
797 if (local_symbols != NULL)
799 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
800 dip -> at_high_pc, objfile);
802 local_symbols = new -> locals;
809 lookup_utype -- look up a user defined type from die reference
813 static type *lookup_utype (DIE_REF die_ref)
817 Given a DIE reference, lookup the user defined type associated with
818 that DIE, if it has been registered already. If not registered, then
819 return NULL. Alloc_utype() can be called to register an empty
820 type for this reference, which will be filled in later when the
821 actual referenced DIE is processed.
825 lookup_utype (die_ref)
828 struct type *type = NULL;
831 utypeidx = (die_ref - dbroff) / 4;
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
838 type = *(utypes + utypeidx);
848 alloc_utype -- add a user defined type for die reference
852 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
856 Given a die reference DIE_REF, and a possible pointer to a user
857 defined type UTYPEP, register that this reference has a user
858 defined type and either use the specified type in UTYPEP or
859 make a new empty type that will be filled in later.
861 We should only be called after calling lookup_utype() to verify that
862 there is not currently a type registered for DIE_REF.
866 alloc_utype (die_ref, utypep)
873 utypeidx = (die_ref - dbroff) / 4;
874 typep = utypes + utypeidx;
875 if ((utypeidx < 0) || (utypeidx >= numutypes))
877 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
878 complain (&bad_die_ref, DIE_ID, DIE_NAME);
880 else if (*typep != NULL)
883 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
889 utypep = alloc_type (current_objfile);
900 decode_die_type -- return a type for a specified die
904 static struct type *decode_die_type (struct dieinfo *dip)
908 Given a pointer to a die information structure DIP, decode the
909 type of the die and return a pointer to the decoded type. All
910 dies without specific types default to type int.
914 decode_die_type (dip)
917 struct type *type = NULL;
919 if (dip -> at_fund_type != 0)
921 type = decode_fund_type (dip -> at_fund_type);
923 else if (dip -> at_mod_fund_type != NULL)
925 type = decode_mod_fund_type (dip -> at_mod_fund_type);
927 else if (dip -> at_user_def_type)
929 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
931 type = alloc_utype (dip -> at_user_def_type, NULL);
934 else if (dip -> at_mod_u_d_type)
936 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
940 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
949 struct_type -- compute and return the type for a struct or union
953 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
954 char *enddie, struct objfile *objfile)
958 Given pointer to a die information structure for a die which
959 defines a union or structure (and MUST define one or the other),
960 and pointers to the raw die data that define the range of dies which
961 define the members, compute and return the user defined type for the
966 struct_type (dip, thisdie, enddie, objfile)
970 struct objfile *objfile;
974 struct nextfield *next;
977 struct nextfield *list = NULL;
978 struct nextfield *new;
985 if ((type = lookup_utype (dip -> die_ref)) == NULL)
987 /* No forward references created an empty type, so install one now */
988 type = alloc_utype (dip -> die_ref, NULL);
990 INIT_CPLUS_SPECIFIC(type);
991 switch (dip -> die_tag)
994 TYPE_CODE (type) = TYPE_CODE_CLASS;
996 case TAG_structure_type:
997 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1000 TYPE_CODE (type) = TYPE_CODE_UNION;
1003 /* Should never happen */
1004 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1005 complain (&missing_tag, DIE_ID, DIE_NAME);
1008 /* Some compilers try to be helpful by inventing "fake" names for
1009 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1010 Thanks, but no thanks... */
1011 if (dip -> at_name != NULL
1012 && *dip -> at_name != '~'
1013 && *dip -> at_name != '.')
1015 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1016 "", "", dip -> at_name);
1018 /* Use whatever size is known. Zero is a valid size. We might however
1019 wish to check has_at_byte_size to make sure that some byte size was
1020 given explicitly, but DWARF doesn't specify that explicit sizes of
1021 zero have to present, so complaining about missing sizes should
1022 probably not be the default. */
1023 TYPE_LENGTH (type) = dip -> at_byte_size;
1024 thisdie += dip -> die_length;
1025 while (thisdie < enddie)
1027 basicdieinfo (&mbr, thisdie, objfile);
1028 completedieinfo (&mbr, objfile);
1029 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1033 else if (mbr.at_sibling != 0)
1035 nextdie = dbbase + mbr.at_sibling - dbroff;
1039 nextdie = thisdie + mbr.die_length;
1041 switch (mbr.die_tag)
1044 /* Get space to record the next field's data. */
1045 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1048 /* Save the data. */
1049 list -> field.name =
1050 obsavestring (mbr.at_name, strlen (mbr.at_name),
1051 &objfile -> type_obstack);
1052 list -> field.type = decode_die_type (&mbr);
1053 list -> field.bitpos = 8 * locval (mbr.at_location);
1054 /* Handle bit fields. */
1055 list -> field.bitsize = mbr.at_bit_size;
1056 if (BITS_BIG_ENDIAN)
1058 /* For big endian bits, the at_bit_offset gives the
1059 additional bit offset from the MSB of the containing
1060 anonymous object to the MSB of the field. We don't
1061 have to do anything special since we don't need to
1062 know the size of the anonymous object. */
1063 list -> field.bitpos += mbr.at_bit_offset;
1067 /* For little endian bits, we need to have a non-zero
1068 at_bit_size, so that we know we are in fact dealing
1069 with a bitfield. Compute the bit offset to the MSB
1070 of the anonymous object, subtract off the number of
1071 bits from the MSB of the field to the MSB of the
1072 object, and then subtract off the number of bits of
1073 the field itself. The result is the bit offset of
1074 the LSB of the field. */
1075 if (mbr.at_bit_size > 0)
1077 if (mbr.has_at_byte_size)
1079 /* The size of the anonymous object containing
1080 the bit field is explicit, so use the
1081 indicated size (in bytes). */
1082 anonymous_size = mbr.at_byte_size;
1086 /* The size of the anonymous object containing
1087 the bit field matches the size of an object
1088 of the bit field's type. DWARF allows
1089 at_byte_size to be left out in such cases, as
1090 a debug information size optimization. */
1091 anonymous_size = TYPE_LENGTH (list -> field.type);
1093 list -> field.bitpos +=
1094 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1100 process_dies (thisdie, nextdie, objfile);
1105 /* Now create the vector of fields, and record how big it is. We may
1106 not even have any fields, if this DIE was generated due to a reference
1107 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1108 set, which clues gdb in to the fact that it needs to search elsewhere
1109 for the full structure definition. */
1112 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1116 TYPE_NFIELDS (type) = nfields;
1117 TYPE_FIELDS (type) = (struct field *)
1118 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1119 /* Copy the saved-up fields into the field vector. */
1120 for (n = nfields; list; list = list -> next)
1122 TYPE_FIELD (type, --n) = list -> field;
1132 read_structure_scope -- process all dies within struct or union
1136 static void read_structure_scope (struct dieinfo *dip,
1137 char *thisdie, char *enddie, struct objfile *objfile)
1141 Called when we find the DIE that starts a structure or union
1142 scope (definition) to process all dies that define the members
1143 of the structure or union. DIP is a pointer to the die info
1144 struct for the DIE that names the structure or union.
1148 Note that we need to call struct_type regardless of whether or not
1149 the DIE has an at_name attribute, since it might be an anonymous
1150 structure or union. This gets the type entered into our set of
1153 However, if the structure is incomplete (an opaque struct/union)
1154 then suppress creating a symbol table entry for it since gdb only
1155 wants to find the one with the complete definition. Note that if
1156 it is complete, we just call new_symbol, which does it's own
1157 checking about whether the struct/union is anonymous or not (and
1158 suppresses creating a symbol table entry itself).
1163 read_structure_scope (dip, thisdie, enddie, objfile)
1164 struct dieinfo *dip;
1167 struct objfile *objfile;
1172 type = struct_type (dip, thisdie, enddie, objfile);
1173 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1175 sym = new_symbol (dip, objfile);
1178 SYMBOL_TYPE (sym) = type;
1179 if (cu_language == language_cplus)
1181 synthesize_typedef (dip, objfile, type);
1191 decode_array_element_type -- decode type of the array elements
1195 static struct type *decode_array_element_type (char *scan, char *end)
1199 As the last step in decoding the array subscript information for an
1200 array DIE, we need to decode the type of the array elements. We are
1201 passed a pointer to this last part of the subscript information and
1202 must return the appropriate type. If the type attribute is not
1203 recognized, just warn about the problem and return type int.
1206 static struct type *
1207 decode_array_element_type (scan)
1212 unsigned short attribute;
1213 unsigned short fundtype;
1216 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1218 scan += SIZEOF_ATTRIBUTE;
1219 if ((nbytes = attribute_size (attribute)) == -1)
1221 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1229 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1231 typep = decode_fund_type (fundtype);
1233 case AT_mod_fund_type:
1234 typep = decode_mod_fund_type (scan);
1236 case AT_user_def_type:
1237 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1239 if ((typep = lookup_utype (die_ref)) == NULL)
1241 typep = alloc_utype (die_ref, NULL);
1244 case AT_mod_u_d_type:
1245 typep = decode_mod_u_d_type (scan);
1248 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1260 decode_subscript_data_item -- decode array subscript item
1264 static struct type *
1265 decode_subscript_data_item (char *scan, char *end)
1269 The array subscripts and the data type of the elements of an
1270 array are described by a list of data items, stored as a block
1271 of contiguous bytes. There is a data item describing each array
1272 dimension, and a final data item describing the element type.
1273 The data items are ordered the same as their appearance in the
1274 source (I.E. leftmost dimension first, next to leftmost second,
1277 The data items describing each array dimension consist of four
1278 parts: (1) a format specifier, (2) type type of the subscript
1279 index, (3) a description of the low bound of the array dimension,
1280 and (4) a description of the high bound of the array dimension.
1282 The last data item is the description of the type of each of
1285 We are passed a pointer to the start of the block of bytes
1286 containing the remaining data items, and a pointer to the first
1287 byte past the data. This function recursively decodes the
1288 remaining data items and returns a type.
1290 If we somehow fail to decode some data, we complain about it
1291 and return a type "array of int".
1294 FIXME: This code only implements the forms currently used
1295 by the AT&T and GNU C compilers.
1297 The end pointer is supplied for error checking, maybe we should
1301 static struct type *
1302 decode_subscript_data_item (scan, end)
1306 struct type *typep = NULL; /* Array type we are building */
1307 struct type *nexttype; /* Type of each element (may be array) */
1308 struct type *indextype; /* Type of this index */
1309 struct type *rangetype;
1310 unsigned int format;
1311 unsigned short fundtype;
1312 unsigned long lowbound;
1313 unsigned long highbound;
1316 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1318 scan += SIZEOF_FORMAT_SPECIFIER;
1322 typep = decode_array_element_type (scan);
1325 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1327 indextype = decode_fund_type (fundtype);
1328 scan += SIZEOF_FMT_FT;
1329 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1330 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1332 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1334 nexttype = decode_subscript_data_item (scan, end);
1335 if (nexttype == NULL)
1337 /* Munged subscript data or other problem, fake it. */
1338 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1339 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1341 rangetype = create_range_type ((struct type *) NULL, indextype,
1342 lowbound, highbound);
1343 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1352 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1353 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1354 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1355 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1358 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1359 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1360 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1361 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1371 dwarf_read_array_type -- read TAG_array_type DIE
1375 static void dwarf_read_array_type (struct dieinfo *dip)
1379 Extract all information from a TAG_array_type DIE and add to
1380 the user defined type vector.
1384 dwarf_read_array_type (dip)
1385 struct dieinfo *dip;
1391 unsigned short blocksz;
1394 if (dip -> at_ordering != ORD_row_major)
1396 /* FIXME: Can gdb even handle column major arrays? */
1397 complain (¬_row_major, DIE_ID, DIE_NAME);
1399 if ((sub = dip -> at_subscr_data) != NULL)
1401 nbytes = attribute_size (AT_subscr_data);
1402 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1403 subend = sub + nbytes + blocksz;
1405 type = decode_subscript_data_item (sub, subend);
1406 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1408 /* Install user defined type that has not been referenced yet. */
1409 alloc_utype (dip -> die_ref, type);
1411 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1413 /* Ick! A forward ref has already generated a blank type in our
1414 slot, and this type probably already has things pointing to it
1415 (which is what caused it to be created in the first place).
1416 If it's just a place holder we can plop our fully defined type
1417 on top of it. We can't recover the space allocated for our
1418 new type since it might be on an obstack, but we could reuse
1419 it if we kept a list of them, but it might not be worth it
1425 /* Double ick! Not only is a type already in our slot, but
1426 someone has decorated it. Complain and leave it alone. */
1427 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1436 read_tag_pointer_type -- read TAG_pointer_type DIE
1440 static void read_tag_pointer_type (struct dieinfo *dip)
1444 Extract all information from a TAG_pointer_type DIE and add to
1445 the user defined type vector.
1449 read_tag_pointer_type (dip)
1450 struct dieinfo *dip;
1455 type = decode_die_type (dip);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1458 utype = lookup_pointer_type (type);
1459 alloc_utype (dip -> die_ref, utype);
1463 TYPE_TARGET_TYPE (utype) = type;
1464 TYPE_POINTER_TYPE (type) = utype;
1466 /* We assume the machine has only one representation for pointers! */
1467 /* FIXME: This confuses host<->target data representations, and is a
1468 poor assumption besides. */
1470 TYPE_LENGTH (utype) = sizeof (char *);
1471 TYPE_CODE (utype) = TYPE_CODE_PTR;
1479 read_tag_string_type -- read TAG_string_type DIE
1483 static void read_tag_string_type (struct dieinfo *dip)
1487 Extract all information from a TAG_string_type DIE and add to
1488 the user defined type vector. It isn't really a user defined
1489 type, but it behaves like one, with other DIE's using an
1490 AT_user_def_type attribute to reference it.
1494 read_tag_string_type (dip)
1495 struct dieinfo *dip;
1498 struct type *indextype;
1499 struct type *rangetype;
1500 unsigned long lowbound = 0;
1501 unsigned long highbound;
1503 if (dip -> has_at_byte_size)
1505 /* A fixed bounds string */
1506 highbound = dip -> at_byte_size - 1;
1510 /* A varying length string. Stub for now. (FIXME) */
1513 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1514 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1517 utype = lookup_utype (dip -> die_ref);
1520 /* No type defined, go ahead and create a blank one to use. */
1521 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1525 /* Already a type in our slot due to a forward reference. Make sure it
1526 is a blank one. If not, complain and leave it alone. */
1527 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1529 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1534 /* Create the string type using the blank type we either found or created. */
1535 utype = create_string_type (utype, rangetype);
1542 read_subroutine_type -- process TAG_subroutine_type dies
1546 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1551 Handle DIES due to C code like:
1554 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1560 The parameter DIES are currently ignored. See if gdb has a way to
1561 include this info in it's type system, and decode them if so. Is
1562 this what the type structure's "arg_types" field is for? (FIXME)
1566 read_subroutine_type (dip, thisdie, enddie)
1567 struct dieinfo *dip;
1571 struct type *type; /* Type that this function returns */
1572 struct type *ftype; /* Function that returns above type */
1574 /* Decode the type that this subroutine returns */
1576 type = decode_die_type (dip);
1578 /* Check to see if we already have a partially constructed user
1579 defined type for this DIE, from a forward reference. */
1581 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1583 /* This is the first reference to one of these types. Make
1584 a new one and place it in the user defined types. */
1585 ftype = lookup_function_type (type);
1586 alloc_utype (dip -> die_ref, ftype);
1588 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1590 /* We have an existing partially constructed type, so bash it
1591 into the correct type. */
1592 TYPE_TARGET_TYPE (ftype) = type;
1593 TYPE_LENGTH (ftype) = 1;
1594 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1598 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1606 read_enumeration -- process dies which define an enumeration
1610 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1611 char *enddie, struct objfile *objfile)
1615 Given a pointer to a die which begins an enumeration, process all
1616 the dies that define the members of the enumeration.
1620 Note that we need to call enum_type regardless of whether or not we
1621 have a symbol, since we might have an enum without a tag name (thus
1622 no symbol for the tagname).
1626 read_enumeration (dip, thisdie, enddie, objfile)
1627 struct dieinfo *dip;
1630 struct objfile *objfile;
1635 type = enum_type (dip, objfile);
1636 sym = new_symbol (dip, objfile);
1639 SYMBOL_TYPE (sym) = type;
1640 if (cu_language == language_cplus)
1642 synthesize_typedef (dip, objfile, type);
1651 enum_type -- decode and return a type for an enumeration
1655 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1659 Given a pointer to a die information structure for the die which
1660 starts an enumeration, process all the dies that define the members
1661 of the enumeration and return a type pointer for the enumeration.
1663 At the same time, for each member of the enumeration, create a
1664 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1665 and give it the type of the enumeration itself.
1669 Note that the DWARF specification explicitly mandates that enum
1670 constants occur in reverse order from the source program order,
1671 for "consistency" and because this ordering is easier for many
1672 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1673 Entries). Because gdb wants to see the enum members in program
1674 source order, we have to ensure that the order gets reversed while
1675 we are processing them.
1678 static struct type *
1679 enum_type (dip, objfile)
1680 struct dieinfo *dip;
1681 struct objfile *objfile;
1685 struct nextfield *next;
1688 struct nextfield *list = NULL;
1689 struct nextfield *new;
1694 unsigned short blocksz;
1698 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1700 /* No forward references created an empty type, so install one now */
1701 type = alloc_utype (dip -> die_ref, NULL);
1703 TYPE_CODE (type) = TYPE_CODE_ENUM;
1704 /* Some compilers try to be helpful by inventing "fake" names for
1705 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1706 Thanks, but no thanks... */
1707 if (dip -> at_name != NULL
1708 && *dip -> at_name != '~'
1709 && *dip -> at_name != '.')
1711 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1712 "", "", dip -> at_name);
1714 if (dip -> at_byte_size != 0)
1716 TYPE_LENGTH (type) = dip -> at_byte_size;
1718 if ((scan = dip -> at_element_list) != NULL)
1720 if (dip -> short_element_list)
1722 nbytes = attribute_size (AT_short_element_list);
1726 nbytes = attribute_size (AT_element_list);
1728 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1729 listend = scan + nbytes + blocksz;
1731 while (scan < listend)
1733 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1736 list -> field.type = NULL;
1737 list -> field.bitsize = 0;
1738 list -> field.bitpos =
1739 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1741 scan += TARGET_FT_LONG_SIZE (objfile);
1742 list -> field.name = obsavestring (scan, strlen (scan),
1743 &objfile -> type_obstack);
1744 scan += strlen (scan) + 1;
1746 /* Handcraft a new symbol for this enum member. */
1747 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1748 sizeof (struct symbol));
1749 memset (sym, 0, sizeof (struct symbol));
1750 SYMBOL_NAME (sym) = create_name (list -> field.name,
1751 &objfile->symbol_obstack);
1752 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 SYMBOL_CLASS (sym) = LOC_CONST;
1755 SYMBOL_TYPE (sym) = type;
1756 SYMBOL_VALUE (sym) = list -> field.bitpos;
1757 add_symbol_to_list (sym, list_in_scope);
1759 /* Now create the vector of fields, and record how big it is. This is
1760 where we reverse the order, by pulling the members off the list in
1761 reverse order from how they were inserted. If we have no fields
1762 (this is apparently possible in C++) then skip building a field
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1772 TYPE_FIELD (type, n++) = list -> field;
1783 read_func_scope -- process all dies within a function scope
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1801 read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1805 struct objfile *objfile;
1807 register struct context_stack *new;
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1820 new = push_context (0, dip -> at_low_pc);
1821 new -> name = new_symbol (dip, objfile);
1822 list_in_scope = &local_symbols;
1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1827 new -> start_addr, dip -> at_high_pc, objfile);
1828 list_in_scope = &file_symbols;
1836 handle_producer -- process the AT_producer attribute
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1846 handle_producer (producer)
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1863 if (AUTO_DEMANGLING)
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1881 read_file_scope -- process all dies within a file scope
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1900 read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1904 struct objfile *objfile;
1906 struct cleanup *back_to;
1907 struct symtab *symtab;
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1915 set_cu_language (dip);
1916 if (dip -> at_producer != NULL)
1918 handle_producer (dip -> at_producer);
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
1923 memset (utypes, 0, numutypes * sizeof (struct type *));
1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1926 decode_line_numbers (lnbase);
1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1932 symtab -> language = cu_language;
1934 do_cleanups (back_to);
1943 process_dies -- process a range of DWARF Information Entries
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1957 process_dies (thisdie, enddie, objfile)
1960 struct objfile *objfile;
1965 while (thisdie < enddie)
1967 basicdieinfo (&di, thisdie, objfile);
1968 if (di.die_length < SIZEOF_DIE_LENGTH)
1972 else if (di.die_tag == TAG_padding)
1974 nextdie = thisdie + di.die_length;
1978 completedieinfo (&di, objfile);
1979 if (di.at_sibling != 0)
1981 nextdie = dbbase + di.at_sibling - dbroff;
1985 nextdie = thisdie + di.die_length;
1987 #ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1994 case TAG_compile_unit:
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2001 nextdie = thisdie + di.die_length;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2005 if (di.has_at_low_pc)
2007 read_func_scope (&di, thisdie, nextdie, objfile);
2010 case TAG_lexical_block:
2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2013 case TAG_class_type:
2014 case TAG_structure_type:
2015 case TAG_union_type:
2016 read_structure_scope (&di, thisdie, nextdie, objfile);
2018 case TAG_enumeration_type:
2019 read_enumeration (&di, thisdie, nextdie, objfile);
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2024 case TAG_array_type:
2025 dwarf_read_array_type (&di);
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2034 new_symbol (&di, objfile);
2046 decode_line_numbers -- decode a line number table fragment
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2055 Translate the DWARF line number information to gdb form.
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2064 The table itself has the following structure:
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2072 The base address is the address of the first instruction generated
2073 for the source file.
2075 Each source statement entry has the following structure:
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2080 The line number is relative to the start of the file, starting with
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2103 decode_line_numbers (linetable)
2108 unsigned long length;
2113 if (linetable != NULL)
2115 tblscan = tblend = linetable;
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2118 tblscan += SIZEOF_LINETBL_LENGTH;
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2124 while (tblscan < tblend)
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2131 tblscan += SIZEOF_LINETBL_DELTA;
2135 record_line (current_subfile, line, pc);
2145 locval -- compute the value of a location attribute
2149 static int locval (char *loc)
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
2156 When computing values involving the current value of the frame pointer,
2157 the value zero is used, which results in a value relative to the frame
2158 pointer, rather than the absolute value. This is what GDB wants
2161 When the result is a register number, the global isreg flag is set,
2162 otherwise it is cleared. This is a kludge until we figure out a better
2163 way to handle the problem. Gdb's design does not mesh well with the
2164 DWARF notion of a location computing interpreter, which is a shame
2165 because the flexibility goes unused.
2169 Note that stack[0] is unused except as a default error return.
2170 Note that stack overflow is not yet handled.
2177 unsigned short nbytes;
2178 unsigned short locsize;
2179 auto long stack[64];
2185 nbytes = attribute_size (AT_location);
2186 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2188 end = loc + locsize;
2193 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2196 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2198 loc += SIZEOF_LOC_ATOM_CODE;
2199 switch (loc_atom_code)
2206 /* push register (number) */
2208 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2211 loc += loc_value_size;
2215 /* push value of register (number) */
2216 /* Actually, we compute the value as if register has 0, so the
2217 value ends up being the offset from that register. */
2219 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2221 loc += loc_value_size;
2222 stack[++stacki] = 0;
2225 /* push address (relocated address) */
2226 stack[++stacki] = target_to_host (loc, loc_value_size,
2227 GET_UNSIGNED, current_objfile);
2228 loc += loc_value_size;
2231 /* push constant (number) FIXME: signed or unsigned! */
2232 stack[++stacki] = target_to_host (loc, loc_value_size,
2233 GET_SIGNED, current_objfile);
2234 loc += loc_value_size;
2237 /* pop, deref and push 2 bytes (as a long) */
2238 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2240 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2241 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2243 case OP_ADD: /* pop top 2 items, add, push result */
2244 stack[stacki - 1] += stack[stacki];
2249 return (stack[stacki]);
2256 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2260 static void read_ofile_symtab (struct partial_symtab *pst)
2264 When expanding a partial symbol table entry to a full symbol table
2265 entry, this is the function that gets called to read in the symbols
2266 for the compilation unit. A pointer to the newly constructed symtab,
2267 which is now the new first one on the objfile's symtab list, is
2268 stashed in the partial symbol table entry.
2272 read_ofile_symtab (pst)
2273 struct partial_symtab *pst;
2275 struct cleanup *back_to;
2276 unsigned long lnsize;
2279 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2281 abfd = pst -> objfile -> obfd;
2282 current_objfile = pst -> objfile;
2284 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2285 unit, seek to the location in the file, and read in all the DIE's. */
2288 dbsize = DBLENGTH (pst);
2289 dbbase = xmalloc (dbsize);
2290 dbroff = DBROFF(pst);
2291 foffset = DBFOFF(pst) + dbroff;
2292 base_section_offsets = pst->section_offsets;
2293 baseaddr = ANOFFSET (pst->section_offsets, 0);
2294 if (bfd_seek (abfd, foffset, L_SET) ||
2295 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2298 error ("can't read DWARF data");
2300 back_to = make_cleanup (free, dbbase);
2302 /* If there is a line number table associated with this compilation unit
2303 then read the size of this fragment in bytes, from the fragment itself.
2304 Allocate a buffer for the fragment and read it in for future
2310 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2311 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2312 sizeof (lnsizedata)))
2314 error ("can't read DWARF line number table size");
2316 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2317 GET_UNSIGNED, pst -> objfile);
2318 lnbase = xmalloc (lnsize);
2319 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2320 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2323 error ("can't read DWARF line numbers");
2325 make_cleanup (free, lnbase);
2328 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2329 do_cleanups (back_to);
2330 current_objfile = NULL;
2331 pst -> symtab = pst -> objfile -> symtabs;
2338 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2342 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2346 Called once for each partial symbol table entry that needs to be
2347 expanded into a full symbol table entry.
2352 psymtab_to_symtab_1 (pst)
2353 struct partial_symtab *pst;
2356 struct cleanup *old_chain;
2362 warning ("psymtab for %s already read in. Shouldn't happen.",
2367 /* Read in all partial symtabs on which this one is dependent */
2368 for (i = 0; i < pst -> number_of_dependencies; i++)
2370 if (!pst -> dependencies[i] -> readin)
2372 /* Inform about additional files that need to be read in. */
2375 fputs_filtered (" ", gdb_stdout);
2377 fputs_filtered ("and ", gdb_stdout);
2379 printf_filtered ("%s...",
2380 pst -> dependencies[i] -> filename);
2382 gdb_flush (gdb_stdout); /* Flush output */
2384 psymtab_to_symtab_1 (pst -> dependencies[i]);
2387 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2390 old_chain = make_cleanup (really_free_pendings, 0);
2391 read_ofile_symtab (pst);
2394 printf_filtered ("%d DIE's, sorting...", diecount);
2396 gdb_flush (gdb_stdout);
2398 sort_symtab_syms (pst -> symtab);
2399 do_cleanups (old_chain);
2410 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2414 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2418 This is the DWARF support entry point for building a full symbol
2419 table entry from a partial symbol table entry. We are passed a
2420 pointer to the partial symbol table entry that needs to be expanded.
2425 dwarf_psymtab_to_symtab (pst)
2426 struct partial_symtab *pst;
2433 warning ("psymtab for %s already read in. Shouldn't happen.",
2438 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2440 /* Print the message now, before starting serious work, to avoid
2441 disconcerting pauses. */
2444 printf_filtered ("Reading in symbols for %s...",
2446 gdb_flush (gdb_stdout);
2449 psymtab_to_symtab_1 (pst);
2451 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2452 we need to do an equivalent or is this something peculiar to
2454 Match with global symbols. This only needs to be done once,
2455 after all of the symtabs and dependencies have been read in.
2457 scan_file_globals (pst -> objfile);
2460 /* Finish up the verbose info message. */
2463 printf_filtered ("done.\n");
2464 gdb_flush (gdb_stdout);
2475 add_enum_psymbol -- add enumeration members to partial symbol table
2479 Given pointer to a DIE that is known to be for an enumeration,
2480 extract the symbolic names of the enumeration members and add
2481 partial symbols for them.
2485 add_enum_psymbol (dip, objfile)
2486 struct dieinfo *dip;
2487 struct objfile *objfile;
2491 unsigned short blocksz;
2494 if ((scan = dip -> at_element_list) != NULL)
2496 if (dip -> short_element_list)
2498 nbytes = attribute_size (AT_short_element_list);
2502 nbytes = attribute_size (AT_element_list);
2504 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2506 listend = scan + blocksz;
2507 while (scan < listend)
2509 scan += TARGET_FT_LONG_SIZE (objfile);
2510 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2511 objfile -> static_psymbols, 0, cu_language,
2513 scan += strlen (scan) + 1;
2522 add_partial_symbol -- add symbol to partial symbol table
2526 Given a DIE, if it is one of the types that we want to
2527 add to a partial symbol table, finish filling in the die info
2528 and then add a partial symbol table entry for it.
2532 The caller must ensure that the DIE has a valid name attribute.
2536 add_partial_symbol (dip, objfile)
2537 struct dieinfo *dip;
2538 struct objfile *objfile;
2540 switch (dip -> die_tag)
2542 case TAG_global_subroutine:
2543 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2544 VAR_NAMESPACE, LOC_BLOCK,
2545 objfile -> global_psymbols,
2546 dip -> at_low_pc, cu_language, objfile);
2548 case TAG_global_variable:
2549 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2550 VAR_NAMESPACE, LOC_STATIC,
2551 objfile -> global_psymbols,
2552 0, cu_language, objfile);
2554 case TAG_subroutine:
2555 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2556 VAR_NAMESPACE, LOC_BLOCK,
2557 objfile -> static_psymbols,
2558 dip -> at_low_pc, cu_language, objfile);
2560 case TAG_local_variable:
2561 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2562 VAR_NAMESPACE, LOC_STATIC,
2563 objfile -> static_psymbols,
2564 0, cu_language, objfile);
2567 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2568 VAR_NAMESPACE, LOC_TYPEDEF,
2569 objfile -> static_psymbols,
2570 0, cu_language, objfile);
2572 case TAG_class_type:
2573 case TAG_structure_type:
2574 case TAG_union_type:
2575 case TAG_enumeration_type:
2576 /* Do not add opaque aggregate definitions to the psymtab. */
2577 if (!dip -> has_at_byte_size)
2579 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2580 STRUCT_NAMESPACE, LOC_TYPEDEF,
2581 objfile -> static_psymbols,
2582 0, cu_language, objfile);
2583 if (cu_language == language_cplus)
2585 /* For C++, these implicitly act as typedefs as well. */
2586 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2587 VAR_NAMESPACE, LOC_TYPEDEF,
2588 objfile -> static_psymbols,
2589 0, cu_language, objfile);
2599 scan_partial_symbols -- scan DIE's within a single compilation unit
2603 Process the DIE's within a single compilation unit, looking for
2604 interesting DIE's that contribute to the partial symbol table entry
2605 for this compilation unit.
2609 There are some DIE's that may appear both at file scope and within
2610 the scope of a function. We are only interested in the ones at file
2611 scope, and the only way to tell them apart is to keep track of the
2612 scope. For example, consider the test case:
2617 for which the relevant DWARF segment has the structure:
2620 0x23 global subrtn sibling 0x9b
2622 fund_type FT_integer
2627 0x23 local var sibling 0x97
2629 fund_type FT_integer
2630 location OP_BASEREG 0xe
2637 0x1d local var sibling 0xb8
2639 fund_type FT_integer
2640 location OP_ADDR 0x800025dc
2645 We want to include the symbol 'i' in the partial symbol table, but
2646 not the symbol 'j'. In essence, we want to skip all the dies within
2647 the scope of a TAG_global_subroutine DIE.
2649 Don't attempt to add anonymous structures or unions since they have
2650 no name. Anonymous enumerations however are processed, because we
2651 want to extract their member names (the check for a tag name is
2654 Also, for variables and subroutines, check that this is the place
2655 where the actual definition occurs, rather than just a reference
2660 scan_partial_symbols (thisdie, enddie, objfile)
2663 struct objfile *objfile;
2669 while (thisdie < enddie)
2671 basicdieinfo (&di, thisdie, objfile);
2672 if (di.die_length < SIZEOF_DIE_LENGTH)
2678 nextdie = thisdie + di.die_length;
2679 /* To avoid getting complete die information for every die, we
2680 only do it (below) for the cases we are interested in. */
2683 case TAG_global_subroutine:
2684 case TAG_subroutine:
2685 completedieinfo (&di, objfile);
2686 if (di.at_name && (di.has_at_low_pc || di.at_location))
2688 add_partial_symbol (&di, objfile);
2689 /* If there is a sibling attribute, adjust the nextdie
2690 pointer to skip the entire scope of the subroutine.
2691 Apply some sanity checking to make sure we don't
2692 overrun or underrun the range of remaining DIE's */
2693 if (di.at_sibling != 0)
2695 temp = dbbase + di.at_sibling - dbroff;
2696 if ((temp < thisdie) || (temp >= enddie))
2698 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2708 case TAG_global_variable:
2709 case TAG_local_variable:
2710 completedieinfo (&di, objfile);
2711 if (di.at_name && (di.has_at_low_pc || di.at_location))
2713 add_partial_symbol (&di, objfile);
2717 case TAG_class_type:
2718 case TAG_structure_type:
2719 case TAG_union_type:
2720 completedieinfo (&di, objfile);
2723 add_partial_symbol (&di, objfile);
2726 case TAG_enumeration_type:
2727 completedieinfo (&di, objfile);
2730 add_partial_symbol (&di, objfile);
2732 add_enum_psymbol (&di, objfile);
2744 scan_compilation_units -- build a psymtab entry for each compilation
2748 This is the top level dwarf parsing routine for building partial
2751 It scans from the beginning of the DWARF table looking for the first
2752 TAG_compile_unit DIE, and then follows the sibling chain to locate
2753 each additional TAG_compile_unit DIE.
2755 For each TAG_compile_unit DIE it creates a partial symtab structure,
2756 calls a subordinate routine to collect all the compilation unit's
2757 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2758 new partial symtab structure into the partial symbol table. It also
2759 records the appropriate information in the partial symbol table entry
2760 to allow the chunk of DIE's and line number table for this compilation
2761 unit to be located and re-read later, to generate a complete symbol
2762 table entry for the compilation unit.
2764 Thus it effectively partitions up a chunk of DIE's for multiple
2765 compilation units into smaller DIE chunks and line number tables,
2766 and associates them with a partial symbol table entry.
2770 If any compilation unit has no line number table associated with
2771 it for some reason (a missing at_stmt_list attribute, rather than
2772 just one with a value of zero, which is valid) then we ensure that
2773 the recorded file offset is zero so that the routine which later
2774 reads line number table fragments knows that there is no fragment
2784 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2789 struct objfile *objfile;
2793 struct partial_symtab *pst;
2796 file_ptr curlnoffset;
2798 while (thisdie < enddie)
2800 basicdieinfo (&di, thisdie, objfile);
2801 if (di.die_length < SIZEOF_DIE_LENGTH)
2805 else if (di.die_tag != TAG_compile_unit)
2807 nextdie = thisdie + di.die_length;
2811 completedieinfo (&di, objfile);
2812 set_cu_language (&di);
2813 if (di.at_sibling != 0)
2815 nextdie = dbbase + di.at_sibling - dbroff;
2819 nextdie = thisdie + di.die_length;
2821 curoff = thisdie - dbbase;
2822 culength = nextdie - thisdie;
2823 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2825 /* First allocate a new partial symbol table structure */
2827 pst = start_psymtab_common (objfile, base_section_offsets,
2828 di.at_name, di.at_low_pc,
2829 objfile -> global_psymbols.next,
2830 objfile -> static_psymbols.next);
2832 pst -> texthigh = di.at_high_pc;
2833 pst -> read_symtab_private = (char *)
2834 obstack_alloc (&objfile -> psymbol_obstack,
2835 sizeof (struct dwfinfo));
2836 DBFOFF (pst) = dbfoff;
2837 DBROFF (pst) = curoff;
2838 DBLENGTH (pst) = culength;
2839 LNFOFF (pst) = curlnoffset;
2840 pst -> read_symtab = dwarf_psymtab_to_symtab;
2842 /* Now look for partial symbols */
2844 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2846 pst -> n_global_syms = objfile -> global_psymbols.next -
2847 (objfile -> global_psymbols.list + pst -> globals_offset);
2848 pst -> n_static_syms = objfile -> static_psymbols.next -
2849 (objfile -> static_psymbols.list + pst -> statics_offset);
2850 sort_pst_symbols (pst);
2851 /* If there is already a psymtab or symtab for a file of this name,
2852 remove it. (If there is a symtab, more drastic things also
2853 happen.) This happens in VxWorks. */
2854 free_named_symtabs (pst -> filename);
2864 new_symbol -- make a symbol table entry for a new symbol
2868 static struct symbol *new_symbol (struct dieinfo *dip,
2869 struct objfile *objfile)
2873 Given a pointer to a DWARF information entry, figure out if we need
2874 to make a symbol table entry for it, and if so, create a new entry
2875 and return a pointer to it.
2878 static struct symbol *
2879 new_symbol (dip, objfile)
2880 struct dieinfo *dip;
2881 struct objfile *objfile;
2883 struct symbol *sym = NULL;
2885 if (dip -> at_name != NULL)
2887 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2888 sizeof (struct symbol));
2889 memset (sym, 0, sizeof (struct symbol));
2890 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2891 &objfile->symbol_obstack);
2892 /* default assumptions */
2893 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2894 SYMBOL_CLASS (sym) = LOC_STATIC;
2895 SYMBOL_TYPE (sym) = decode_die_type (dip);
2897 /* If this symbol is from a C++ compilation, then attempt to cache the
2898 demangled form for future reference. This is a typical time versus
2899 space tradeoff, that was decided in favor of time because it sped up
2900 C++ symbol lookups by a factor of about 20. */
2902 SYMBOL_LANGUAGE (sym) = cu_language;
2903 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2904 switch (dip -> die_tag)
2907 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2908 SYMBOL_CLASS (sym) = LOC_LABEL;
2910 case TAG_global_subroutine:
2911 case TAG_subroutine:
2912 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2913 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2914 SYMBOL_CLASS (sym) = LOC_BLOCK;
2915 if (dip -> die_tag == TAG_global_subroutine)
2917 add_symbol_to_list (sym, &global_symbols);
2921 add_symbol_to_list (sym, list_in_scope);
2924 case TAG_global_variable:
2925 if (dip -> at_location != NULL)
2927 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2928 add_symbol_to_list (sym, &global_symbols);
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_VALUE (sym) += baseaddr;
2933 case TAG_local_variable:
2934 if (dip -> at_location != NULL)
2936 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2937 add_symbol_to_list (sym, list_in_scope);
2940 SYMBOL_CLASS (sym) = LOC_REGISTER;
2944 SYMBOL_CLASS (sym) = LOC_BASEREG;
2945 SYMBOL_BASEREG (sym) = basereg;
2949 SYMBOL_CLASS (sym) = LOC_STATIC;
2950 SYMBOL_VALUE (sym) += baseaddr;
2954 case TAG_formal_parameter:
2955 if (dip -> at_location != NULL)
2957 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2959 add_symbol_to_list (sym, list_in_scope);
2962 SYMBOL_CLASS (sym) = LOC_REGPARM;
2966 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2967 SYMBOL_BASEREG (sym) = basereg;
2971 SYMBOL_CLASS (sym) = LOC_ARG;
2974 case TAG_unspecified_parameters:
2975 /* From varargs functions; gdb doesn't seem to have any interest in
2976 this information, so just ignore it for now. (FIXME?) */
2978 case TAG_class_type:
2979 case TAG_structure_type:
2980 case TAG_union_type:
2981 case TAG_enumeration_type:
2982 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2983 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2984 add_symbol_to_list (sym, list_in_scope);
2987 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2988 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2989 add_symbol_to_list (sym, list_in_scope);
2992 /* Not a tag we recognize. Hopefully we aren't processing trash
2993 data, but since we must specifically ignore things we don't
2994 recognize, there is nothing else we should do at this point. */
3005 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3009 static void synthesize_typedef (struct dieinfo *dip,
3010 struct objfile *objfile,
3015 Given a pointer to a DWARF information entry, synthesize a typedef
3016 for the name in the DIE, using the specified type.
3018 This is used for C++ class, structs, unions, and enumerations to
3019 set up the tag name as a type.
3024 synthesize_typedef (dip, objfile, type)
3025 struct dieinfo *dip;
3026 struct objfile *objfile;
3029 struct symbol *sym = NULL;
3031 if (dip -> at_name != NULL)
3033 sym = (struct symbol *)
3034 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3035 memset (sym, 0, sizeof (struct symbol));
3036 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3037 &objfile->symbol_obstack);
3038 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3039 SYMBOL_TYPE (sym) = type;
3040 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3041 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3042 add_symbol_to_list (sym, list_in_scope);
3050 decode_mod_fund_type -- decode a modified fundamental type
3054 static struct type *decode_mod_fund_type (char *typedata)
3058 Decode a block of data containing a modified fundamental
3059 type specification. TYPEDATA is a pointer to the block,
3060 which starts with a length containing the size of the rest
3061 of the block. At the end of the block is a fundmental type
3062 code value that gives the fundamental type. Everything
3063 in between are type modifiers.
3065 We simply compute the number of modifiers and call the general
3066 function decode_modified_type to do the actual work.
3069 static struct type *
3070 decode_mod_fund_type (typedata)
3073 struct type *typep = NULL;
3074 unsigned short modcount;
3077 /* Get the total size of the block, exclusive of the size itself */
3079 nbytes = attribute_size (AT_mod_fund_type);
3080 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3083 /* Deduct the size of the fundamental type bytes at the end of the block. */
3085 modcount -= attribute_size (AT_fund_type);
3087 /* Now do the actual decoding */
3089 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3097 decode_mod_u_d_type -- decode a modified user defined type
3101 static struct type *decode_mod_u_d_type (char *typedata)
3105 Decode a block of data containing a modified user defined
3106 type specification. TYPEDATA is a pointer to the block,
3107 which consists of a two byte length, containing the size
3108 of the rest of the block. At the end of the block is a
3109 four byte value that gives a reference to a user defined type.
3110 Everything in between are type modifiers.
3112 We simply compute the number of modifiers and call the general
3113 function decode_modified_type to do the actual work.
3116 static struct type *
3117 decode_mod_u_d_type (typedata)
3120 struct type *typep = NULL;
3121 unsigned short modcount;
3124 /* Get the total size of the block, exclusive of the size itself */
3126 nbytes = attribute_size (AT_mod_u_d_type);
3127 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3130 /* Deduct the size of the reference type bytes at the end of the block. */
3132 modcount -= attribute_size (AT_user_def_type);
3134 /* Now do the actual decoding */
3136 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3144 decode_modified_type -- decode modified user or fundamental type
3148 static struct type *decode_modified_type (char *modifiers,
3149 unsigned short modcount, int mtype)
3153 Decode a modified type, either a modified fundamental type or
3154 a modified user defined type. MODIFIERS is a pointer to the
3155 block of bytes that define MODCOUNT modifiers. Immediately
3156 following the last modifier is a short containing the fundamental
3157 type or a long containing the reference to the user defined
3158 type. Which one is determined by MTYPE, which is either
3159 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3160 type we are generating.
3162 We call ourself recursively to generate each modified type,`
3163 until MODCOUNT reaches zero, at which point we have consumed
3164 all the modifiers and generate either the fundamental type or
3165 user defined type. When the recursion unwinds, each modifier
3166 is applied in turn to generate the full modified type.
3170 If we find a modifier that we don't recognize, and it is not one
3171 of those reserved for application specific use, then we issue a
3172 warning and simply ignore the modifier.
3176 We currently ignore MOD_const and MOD_volatile. (FIXME)
3180 static struct type *
3181 decode_modified_type (modifiers, modcount, mtype)
3183 unsigned int modcount;
3186 struct type *typep = NULL;
3187 unsigned short fundtype;
3196 case AT_mod_fund_type:
3197 nbytes = attribute_size (AT_fund_type);
3198 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3200 typep = decode_fund_type (fundtype);
3202 case AT_mod_u_d_type:
3203 nbytes = attribute_size (AT_user_def_type);
3204 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3206 if ((typep = lookup_utype (die_ref)) == NULL)
3208 typep = alloc_utype (die_ref, NULL);
3212 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3213 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3219 modifier = *modifiers++;
3220 typep = decode_modified_type (modifiers, --modcount, mtype);
3223 case MOD_pointer_to:
3224 typep = lookup_pointer_type (typep);
3226 case MOD_reference_to:
3227 typep = lookup_reference_type (typep);
3230 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3233 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3236 if (!(MOD_lo_user <= (unsigned char) modifier
3237 && (unsigned char) modifier <= MOD_hi_user))
3239 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3251 decode_fund_type -- translate basic DWARF type to gdb base type
3255 Given an integer that is one of the fundamental DWARF types,
3256 translate it to one of the basic internal gdb types and return
3257 a pointer to the appropriate gdb type (a "struct type *").
3261 For robustness, if we are asked to translate a fundamental
3262 type that we are unprepared to deal with, we return int so
3263 callers can always depend upon a valid type being returned,
3264 and so gdb may at least do something reasonable by default.
3265 If the type is not in the range of those types defined as
3266 application specific types, we also issue a warning.
3269 static struct type *
3270 decode_fund_type (fundtype)
3271 unsigned int fundtype;
3273 struct type *typep = NULL;
3279 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3282 case FT_boolean: /* Was FT_set in AT&T version */
3283 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3286 case FT_pointer: /* (void *) */
3287 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3288 typep = lookup_pointer_type (typep);
3292 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3295 case FT_signed_char:
3296 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3299 case FT_unsigned_char:
3300 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3304 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3307 case FT_signed_short:
3308 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3311 case FT_unsigned_short:
3312 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3316 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3319 case FT_signed_integer:
3320 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3323 case FT_unsigned_integer:
3324 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3328 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3331 case FT_signed_long:
3332 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3335 case FT_unsigned_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3340 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3343 case FT_signed_long_long:
3344 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3347 case FT_unsigned_long_long:
3348 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3352 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3355 case FT_dbl_prec_float:
3356 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3359 case FT_ext_prec_float:
3360 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3364 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3367 case FT_dbl_prec_complex:
3368 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3371 case FT_ext_prec_complex:
3372 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3379 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3380 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3382 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3393 create_name -- allocate a fresh copy of a string on an obstack
3397 Given a pointer to a string and a pointer to an obstack, allocates
3398 a fresh copy of the string on the specified obstack.
3403 create_name (name, obstackp)
3405 struct obstack *obstackp;
3410 length = strlen (name) + 1;
3411 newname = (char *) obstack_alloc (obstackp, length);
3412 strcpy (newname, name);
3420 basicdieinfo -- extract the minimal die info from raw die data
3424 void basicdieinfo (char *diep, struct dieinfo *dip,
3425 struct objfile *objfile)
3429 Given a pointer to raw DIE data, and a pointer to an instance of a
3430 die info structure, this function extracts the basic information
3431 from the DIE data required to continue processing this DIE, along
3432 with some bookkeeping information about the DIE.
3434 The information we absolutely must have includes the DIE tag,
3435 and the DIE length. If we need the sibling reference, then we
3436 will have to call completedieinfo() to process all the remaining
3439 Note that since there is no guarantee that the data is properly
3440 aligned in memory for the type of access required (indirection
3441 through anything other than a char pointer), and there is no
3442 guarantee that it is in the same byte order as the gdb host,
3443 we call a function which deals with both alignment and byte
3444 swapping issues. Possibly inefficient, but quite portable.
3446 We also take care of some other basic things at this point, such
3447 as ensuring that the instance of the die info structure starts
3448 out completely zero'd and that curdie is initialized for use
3449 in error reporting if we have a problem with the current die.
3453 All DIE's must have at least a valid length, thus the minimum
3454 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3455 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3456 are forced to be TAG_padding DIES.
3458 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3459 that if a padding DIE is used for alignment and the amount needed is
3460 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3461 enough to align to the next alignment boundry.
3463 We do some basic sanity checking here, such as verifying that the
3464 length of the die would not cause it to overrun the recorded end of
3465 the buffer holding the DIE info. If we find a DIE that is either
3466 too small or too large, we force it's length to zero which should
3467 cause the caller to take appropriate action.
3471 basicdieinfo (dip, diep, objfile)
3472 struct dieinfo *dip;
3474 struct objfile *objfile;
3477 memset (dip, 0, sizeof (struct dieinfo));
3479 dip -> die_ref = dbroff + (diep - dbbase);
3480 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3482 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3483 ((diep + dip -> die_length) > (dbbase + dbsize)))
3485 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3486 dip -> die_length = 0;
3488 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3490 dip -> die_tag = TAG_padding;
3494 diep += SIZEOF_DIE_LENGTH;
3495 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3504 completedieinfo -- finish reading the information for a given DIE
3508 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3512 Given a pointer to an already partially initialized die info structure,
3513 scan the raw DIE data and finish filling in the die info structure
3514 from the various attributes found.
3516 Note that since there is no guarantee that the data is properly
3517 aligned in memory for the type of access required (indirection
3518 through anything other than a char pointer), and there is no
3519 guarantee that it is in the same byte order as the gdb host,
3520 we call a function which deals with both alignment and byte
3521 swapping issues. Possibly inefficient, but quite portable.
3525 Each time we are called, we increment the diecount variable, which
3526 keeps an approximate count of the number of dies processed for
3527 each compilation unit. This information is presented to the user
3528 if the info_verbose flag is set.
3533 completedieinfo (dip, objfile)
3534 struct dieinfo *dip;
3535 struct objfile *objfile;
3537 char *diep; /* Current pointer into raw DIE data */
3538 char *end; /* Terminate DIE scan here */
3539 unsigned short attr; /* Current attribute being scanned */
3540 unsigned short form; /* Form of the attribute */
3541 int nbytes; /* Size of next field to read */
3545 end = diep + dip -> die_length;
3546 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3549 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3550 diep += SIZEOF_ATTRIBUTE;
3551 if ((nbytes = attribute_size (attr)) == -1)
3553 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3560 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3564 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3568 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3572 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3576 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3578 dip -> has_at_stmt_list = 1;
3581 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3583 dip -> at_low_pc += baseaddr;
3584 dip -> has_at_low_pc = 1;
3587 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3589 dip -> at_high_pc += baseaddr;
3592 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3595 case AT_user_def_type:
3596 dip -> at_user_def_type = target_to_host (diep, nbytes,
3597 GET_UNSIGNED, objfile);
3600 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 dip -> has_at_byte_size = 1;
3605 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3609 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3613 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3617 dip -> at_location = diep;
3619 case AT_mod_fund_type:
3620 dip -> at_mod_fund_type = diep;
3622 case AT_subscr_data:
3623 dip -> at_subscr_data = diep;
3625 case AT_mod_u_d_type:
3626 dip -> at_mod_u_d_type = diep;
3628 case AT_element_list:
3629 dip -> at_element_list = diep;
3630 dip -> short_element_list = 0;
3632 case AT_short_element_list:
3633 dip -> at_element_list = diep;
3634 dip -> short_element_list = 1;
3636 case AT_discr_value:
3637 dip -> at_discr_value = diep;
3639 case AT_string_length:
3640 dip -> at_string_length = diep;
3643 dip -> at_name = diep;
3646 /* For now, ignore any "hostname:" portion, since gdb doesn't
3647 know how to deal with it. (FIXME). */
3648 dip -> at_comp_dir = strrchr (diep, ':');
3649 if (dip -> at_comp_dir != NULL)
3651 dip -> at_comp_dir++;
3655 dip -> at_comp_dir = diep;
3659 dip -> at_producer = diep;
3661 case AT_start_scope:
3662 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 case AT_stride_size:
3666 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3670 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3674 dip -> at_prototyped = diep;
3677 /* Found an attribute that we are unprepared to handle. However
3678 it is specifically one of the design goals of DWARF that
3679 consumers should ignore unknown attributes. As long as the
3680 form is one that we recognize (so we know how to skip it),
3681 we can just ignore the unknown attribute. */
3684 form = FORM_FROM_ATTR (attr);
3698 diep += TARGET_FT_POINTER_SIZE (objfile);
3701 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3704 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3707 diep += strlen (diep) + 1;
3710 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3721 target_to_host -- swap in target data to host
3725 target_to_host (char *from, int nbytes, int signextend,
3726 struct objfile *objfile)
3730 Given pointer to data in target format in FROM, a byte count for
3731 the size of the data in NBYTES, a flag indicating whether or not
3732 the data is signed in SIGNEXTEND, and a pointer to the current
3733 objfile in OBJFILE, convert the data to host format and return
3734 the converted value.
3738 FIXME: If we read data that is known to be signed, and expect to
3739 use it as signed data, then we need to explicitly sign extend the
3740 result until the bfd library is able to do this for us.
3742 FIXME: Would a 32 bit target ever need an 8 byte result?
3747 target_to_host (from, nbytes, signextend, objfile)
3750 int signextend; /* FIXME: Unused */
3751 struct objfile *objfile;
3758 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3761 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3764 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3767 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3770 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3781 attribute_size -- compute size of data for a DWARF attribute
3785 static int attribute_size (unsigned int attr)
3789 Given a DWARF attribute in ATTR, compute the size of the first
3790 piece of data associated with this attribute and return that
3793 Returns -1 for unrecognized attributes.
3798 attribute_size (attr)
3801 int nbytes; /* Size of next data for this attribute */
3802 unsigned short form; /* Form of the attribute */
3804 form = FORM_FROM_ATTR (attr);
3807 case FORM_STRING: /* A variable length field is next */
3810 case FORM_DATA2: /* Next 2 byte field is the data itself */
3811 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3814 case FORM_DATA4: /* Next 4 byte field is the data itself */
3815 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3816 case FORM_REF: /* Next 4 byte field is a DIE offset */
3819 case FORM_DATA8: /* Next 8 byte field is the data itself */
3822 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3823 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3826 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);