1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
32 /* Local function prototypes. */
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 static void show_values PARAMS ((char *, int));
39 static void show_convenience PARAMS ((char *, int));
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
47 #define VALUE_HISTORY_CHUNK 60
49 struct value_history_chunk
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
55 /* Chain of chunks now in use. */
57 static struct value_history_chunk *value_history_chain;
59 static int value_history_count; /* Abs number of last entry stored */
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
65 static value_ptr all_values;
67 /* Allocate a value that has the correct length for type TYPE. */
73 register value_ptr val;
75 check_stub_type (type);
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
91 VALUE_OPTIMIZED_OUT (val) = 0;
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
100 allocate_repeat_value (type, count)
104 register value_ptr val;
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
137 value_free_to_mark (mark)
142 for (val = all_values; val && val != mark; val = next)
144 next = VALUE_NEXT (val);
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
156 register value_ptr val, next;
158 for (val = all_values; val; val = next)
160 next = VALUE_NEXT (val);
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
172 register value_ptr val;
174 register value_ptr v;
176 if (all_values == val)
178 all_values = val->next;
182 for (v = all_values; v; v = v->next)
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
200 register value_ptr val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 val->modifiable = arg->modifiable;
214 if (!VALUE_LAZY (val))
216 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
217 TYPE_LENGTH (VALUE_TYPE (arg))
218 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
223 /* Access to the value history. */
225 /* Record a new value in the value history.
226 Returns the absolute history index of the entry.
227 Result of -1 indicates the value was not saved; otherwise it is the
228 value history index of this new item. */
231 record_latest_value (val)
236 /* Check error now if about to store an invalid float. We return -1
237 to the caller, but allow them to continue, e.g. to print it as "Nan". */
238 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
240 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
241 if (i) return -1; /* Indicate value not saved in history */
244 /* Here we treat value_history_count as origin-zero
245 and applying to the value being stored now. */
247 i = value_history_count % VALUE_HISTORY_CHUNK;
250 register struct value_history_chunk *new
251 = (struct value_history_chunk *)
252 xmalloc (sizeof (struct value_history_chunk));
253 memset (new->values, 0, sizeof new->values);
254 new->next = value_history_chain;
255 value_history_chain = new;
258 value_history_chain->values[i] = val;
260 /* We don't want this value to have anything to do with the inferior anymore.
261 In particular, "set $1 = 50" should not affect the variable from which
262 the value was taken, and fast watchpoints should be able to assume that
263 a value on the value history never changes. */
264 if (VALUE_LAZY (val))
265 value_fetch_lazy (val);
266 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
267 from. This is a bit dubious, because then *&$1 does not just return $1
268 but the current contents of that location. c'est la vie... */
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
275 return ++value_history_count;
278 /* Return a copy of the value in the history with sequence number NUM. */
281 access_value_history (num)
284 register struct value_history_chunk *chunk;
286 register int absnum = num;
289 absnum += value_history_count;
294 error ("The history is empty.");
296 error ("There is only one value in the history.");
298 error ("History does not go back to $$%d.", -num);
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
305 /* Now absnum is always absolute and origin zero. */
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
320 clear_value_history ()
322 register struct value_history_chunk *next;
324 register value_ptr val;
326 while (value_history_chain)
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
335 value_history_count = 0;
339 show_values (num_exp, from_tty)
344 register value_ptr val;
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
371 /* The next "info history +" should start after what we just printed. */
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
389 static struct internalvar *internalvars;
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
398 lookup_internalvar (name)
401 register struct internalvar *var;
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
417 value_of_internalvar (var)
418 struct internalvar *var;
420 register value_ptr val;
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
449 modify_field (addr, value_as_long (newval),
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
456 set_internalvar (var, val)
457 struct internalvar *var;
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
467 newval = value_copy (val);
469 /* Force the value to be fetched from the target now, to avoid problems
470 later when this internalvar is referenced and the target is gone or
472 if (VALUE_LAZY (newval))
473 value_fetch_lazy (newval);
475 /* Begin code which must not call error(). If var->value points to
476 something free'd, an error() obviously leaves a dangling pointer.
477 But we also get a danling pointer if var->value points to
478 something in the value chain (i.e., before release_value is
479 called), because after the error free_all_values will get called before
481 free ((PTR)var->value);
483 release_value (newval);
484 /* End code which must not call error(). */
488 internalvar_name (var)
489 struct internalvar *var;
494 /* Free all internalvars. Done when new symtabs are loaded,
495 because that makes the values invalid. */
498 clear_internalvars ()
500 register struct internalvar *var;
505 internalvars = var->next;
506 free ((PTR)var->name);
507 free ((PTR)var->value);
513 show_convenience (ignore, from_tty)
517 register struct internalvar *var;
520 for (var = internalvars; var; var = var->next)
522 #ifdef IS_TRAPPED_INTERNALVAR
523 if (IS_TRAPPED_INTERNALVAR (var->name))
530 printf_filtered ("$%s = ", var->name);
531 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
532 printf_filtered ("\n");
535 printf_unfiltered ("No debugger convenience variables now defined.\n\
536 Convenience variables have names starting with \"$\";\n\
537 use \"set\" as in \"set $foo = 5\" to define them.\n");
540 /* Extract a value as a C number (either long or double).
541 Knows how to convert fixed values to double, or
542 floating values to long.
543 Does not deallocate the value. */
547 register value_ptr val;
549 /* This coerces arrays and functions, which is necessary (e.g.
550 in disassemble_command). It also dereferences references, which
551 I suspect is the most logical thing to do. */
552 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
558 value_as_double (val)
559 register value_ptr val;
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
566 error ("Invalid floating value found in program.");
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
572 value_as_pointer (val)
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
583 return value_as_long (val);
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
602 unpack_long (type, valaddr)
606 register enum type_code code = TYPE_CODE (type);
607 register int len = TYPE_LENGTH (type);
608 register int nosign = TYPE_UNSIGNED (type);
616 case TYPE_CODE_RANGE:
618 return extract_unsigned_integer (valaddr, len);
620 return extract_signed_integer (valaddr, len);
623 return extract_floating (valaddr, len);
627 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
628 whether we want this to be true eventually. */
629 return extract_address (valaddr, len);
631 case TYPE_CODE_MEMBER:
632 error ("not implemented: member types in unpack_long");
635 error ("Value can't be converted to integer.");
637 return 0; /* Placate lint. */
640 /* Return a double value from the specified type and address.
641 INVP points to an int which is set to 0 for valid value,
642 1 for invalid value (bad float format). In either case,
643 the returned double is OK to use. Argument is in target
644 format, result is in host format. */
647 unpack_double (type, valaddr, invp)
652 register enum type_code code = TYPE_CODE (type);
653 register int len = TYPE_LENGTH (type);
654 register int nosign = TYPE_UNSIGNED (type);
656 *invp = 0; /* Assume valid. */
657 if (code == TYPE_CODE_FLT)
659 if (INVALID_FLOAT (valaddr, len))
662 return 1.234567891011121314;
664 return extract_floating (valaddr, len);
668 /* Unsigned -- be sure we compensate for signed LONGEST. */
669 return (unsigned LONGEST) unpack_long (type, valaddr);
673 /* Signed -- we are OK with unpack_long. */
674 return unpack_long (type, valaddr);
678 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
679 as a CORE_ADDR, assuming the raw data is described by type TYPE.
680 We don't assume any alignment for the raw data. Return value is in
683 If you want functions and arrays to be coerced to pointers, and
684 references to be dereferenced, call value_as_pointer() instead.
686 C++: It is assumed that the front-end has taken care of
687 all matters concerning pointers to members. A pointer
688 to member which reaches here is considered to be equivalent
689 to an INT (or some size). After all, it is only an offset. */
692 unpack_pointer (type, valaddr)
696 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
697 whether we want this to be true eventually. */
698 return unpack_long (type, valaddr);
701 /* Given a value ARG1 (offset by OFFSET bytes)
702 of a struct or union type ARG_TYPE,
703 extract and return the value of one of its fields.
704 FIELDNO says which field.
706 For C++, must also be able to return values from static fields */
709 value_primitive_field (arg1, offset, fieldno, arg_type)
710 register value_ptr arg1;
712 register int fieldno;
713 register struct type *arg_type;
715 register value_ptr v;
716 register struct type *type;
718 check_stub_type (arg_type);
719 type = TYPE_FIELD_TYPE (arg_type, fieldno);
721 /* Handle packed fields */
723 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
724 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
726 v = value_from_longest (type,
727 unpack_field_as_long (arg_type,
728 VALUE_CONTENTS (arg1),
730 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
731 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
735 v = allocate_value (type);
736 if (VALUE_LAZY (arg1))
739 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
742 VALUE_LVAL (v) = VALUE_LVAL (arg1);
743 if (VALUE_LVAL (arg1) == lval_internalvar)
744 VALUE_LVAL (v) = lval_internalvar_component;
745 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
746 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
750 /* Given a value ARG1 of a struct or union type,
751 extract and return the value of one of its fields.
752 FIELDNO says which field.
754 For C++, must also be able to return values from static fields */
757 value_field (arg1, fieldno)
758 register value_ptr arg1;
759 register int fieldno;
761 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
764 /* Return a non-virtual function as a value.
765 F is the list of member functions which contains the desired method.
766 J is an index into F which provides the desired method. */
769 value_fn_field (arg1p, f, j, type, offset)
776 register value_ptr v;
777 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
780 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
781 0, VAR_NAMESPACE, 0, NULL);
785 error ("Internal error: could not find physical method named %s",
786 TYPE_FN_FIELD_PHYSNAME (f, j));
789 v = allocate_value (ftype);
790 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
791 VALUE_TYPE (v) = ftype;
795 if (type != VALUE_TYPE (*arg1p))
796 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
797 value_addr (*arg1p)));
799 /* Move the `this' pointer according to the offset.
800 VALUE_OFFSET (*arg1p) += offset;
807 /* Return a virtual function as a value.
808 ARG1 is the object which provides the virtual function
809 table pointer. *ARG1P is side-effected in calling this function.
810 F is the list of member functions which contains the desired virtual
812 J is an index into F which provides the desired virtual function.
814 TYPE is the type in which F is located. */
816 value_virtual_fn_field (arg1p, f, j, type, offset)
823 value_ptr arg1 = *arg1p;
824 /* First, get the virtual function table pointer. That comes
825 with a strange type, so cast it to type `pointer to long' (which
826 should serve just fine as a function type). Then, index into
827 the table, and convert final value to appropriate function type. */
828 value_ptr entry, vfn, vtbl;
829 value_ptr vi = value_from_longest (builtin_type_int,
830 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
831 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
832 struct type *context;
833 if (fcontext == NULL)
834 /* We don't have an fcontext (e.g. the program was compiled with
835 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
836 This won't work right for multiple inheritance, but at least we
837 should do as well as GDB 3.x did. */
838 fcontext = TYPE_VPTR_BASETYPE (type);
839 context = lookup_pointer_type (fcontext);
840 /* Now context is a pointer to the basetype containing the vtbl. */
841 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
842 arg1 = value_ind (value_cast (context, value_addr (arg1)));
844 context = VALUE_TYPE (arg1);
845 /* Now context is the basetype containing the vtbl. */
847 /* This type may have been defined before its virtual function table
848 was. If so, fill in the virtual function table entry for the
850 if (TYPE_VPTR_FIELDNO (context) < 0)
851 fill_in_vptr_fieldno (context);
853 /* The virtual function table is now an array of structures
854 which have the form { int16 offset, delta; void *pfn; }. */
855 vtbl = value_ind (value_primitive_field (arg1, 0,
856 TYPE_VPTR_FIELDNO (context),
857 TYPE_VPTR_BASETYPE (context)));
859 /* Index into the virtual function table. This is hard-coded because
860 looking up a field is not cheap, and it may be important to save
861 time, e.g. if the user has set a conditional breakpoint calling
862 a virtual function. */
863 entry = value_subscript (vtbl, vi);
865 /* Move the `this' pointer according to the virtual function table. */
866 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
868 if (! VALUE_LAZY (arg1))
870 VALUE_LAZY (arg1) = 1;
871 value_fetch_lazy (arg1);
874 vfn = value_field (entry, 2);
875 /* Reinstantiate the function pointer with the correct type. */
876 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
882 /* ARG is a pointer to an object we know to be at least
883 a DTYPE. BTYPE is the most derived basetype that has
884 already been searched (and need not be searched again).
885 After looking at the vtables between BTYPE and DTYPE,
886 return the most derived type we find. The caller must
887 be satisfied when the return value == DTYPE.
889 FIXME-tiemann: should work with dossier entries as well. */
892 value_headof (in_arg, btype, dtype)
894 struct type *btype, *dtype;
896 /* First collect the vtables we must look at for this object. */
897 /* FIXME-tiemann: right now, just look at top-most vtable. */
898 value_ptr arg, vtbl, entry, best_entry = 0;
900 int offset, best_offset = 0;
902 CORE_ADDR pc_for_sym;
903 char *demangled_name;
904 struct minimal_symbol *msymbol;
906 btype = TYPE_VPTR_BASETYPE (dtype);
907 check_stub_type (btype);
910 arg = value_cast (lookup_pointer_type (btype), arg);
911 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
913 /* Check that VTBL looks like it points to a virtual function table. */
914 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
916 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
918 /* If we expected to find a vtable, but did not, let the user
919 know that we aren't happy, but don't throw an error.
920 FIXME: there has to be a better way to do this. */
921 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
922 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
923 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
924 VALUE_TYPE (in_arg) = error_type;
928 /* Now search through the virtual function table. */
929 entry = value_ind (vtbl);
930 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
931 for (i = 1; i <= nelems; i++)
933 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
935 offset = longest_to_int (value_as_long (value_field (entry, 0)));
936 /* If we use '<=' we can handle single inheritance
937 * where all offsets are zero - just use the first entry found. */
938 if (offset <= best_offset)
940 best_offset = offset;
944 /* Move the pointer according to BEST_ENTRY's offset, and figure
945 out what type we should return as the new pointer. */
948 /* An alternative method (which should no longer be necessary).
949 * But we leave it in for future use, when we will hopefully
950 * have optimizes the vtable to use thunks instead of offsets. */
951 /* Use the name of vtable itself to extract a base type. */
952 demangled_name += 4; /* Skip _vt$ prefix. */
956 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
957 sym = find_pc_function (pc_for_sym);
958 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
959 *(strchr (demangled_name, ':')) = '\0';
961 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
963 error ("could not find type declaration for `%s'", demangled_name);
966 free (demangled_name);
967 arg = value_add (value_cast (builtin_type_int, arg),
968 value_field (best_entry, 0));
971 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
975 /* ARG is a pointer object of type TYPE. If TYPE has virtual
976 function tables, probe ARG's tables (including the vtables
977 of its baseclasses) to figure out the most derived type that ARG
978 could actually be a pointer to. */
981 value_from_vtable_info (arg, type)
985 /* Take care of preliminaries. */
986 if (TYPE_VPTR_FIELDNO (type) < 0)
987 fill_in_vptr_fieldno (type);
988 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
991 return value_headof (arg, 0, type);
994 /* Return true if the INDEXth field of TYPE is a virtual baseclass
995 pointer which is for the base class whose type is BASECLASS. */
998 vb_match (type, index, basetype)
1001 struct type *basetype;
1003 struct type *fieldtype;
1004 char *name = TYPE_FIELD_NAME (type, index);
1005 char *field_class_name = NULL;
1009 /* gcc 2.4 uses _vb$. */
1010 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1011 field_class_name = name + 4;
1012 /* gcc 2.5 will use __vb_. */
1013 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1014 field_class_name = name + 5;
1016 if (field_class_name == NULL)
1017 /* This field is not a virtual base class pointer. */
1020 /* It's a virtual baseclass pointer, now we just need to find out whether
1021 it is for this baseclass. */
1022 fieldtype = TYPE_FIELD_TYPE (type, index);
1023 if (fieldtype == NULL
1024 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1025 /* "Can't happen". */
1028 /* What we check for is that either the types are equal (needed for
1029 nameless types) or have the same name. This is ugly, and a more
1030 elegant solution should be devised (which would probably just push
1031 the ugliness into symbol reading unless we change the stabs format). */
1032 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1035 if (TYPE_NAME (basetype) != NULL
1036 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1037 && STREQ (TYPE_NAME (basetype),
1038 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1043 /* Compute the offset of the baseclass which is
1044 the INDEXth baseclass of class TYPE, for a value ARG,
1045 wih extra offset of OFFSET.
1046 The result is the offste of the baseclass value relative
1047 to (the address of)(ARG) + OFFSET.
1049 -1 is returned on error. */
1052 baseclass_offset (type, index, arg, offset)
1058 struct type *basetype = TYPE_BASECLASS (type, index);
1060 if (BASETYPE_VIA_VIRTUAL (type, index))
1062 /* Must hunt for the pointer to this virtual baseclass. */
1063 register int i, len = TYPE_NFIELDS (type);
1064 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1066 /* First look for the virtual baseclass pointer
1068 for (i = n_baseclasses; i < len; i++)
1070 if (vb_match (type, i, basetype))
1073 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1074 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1076 + (TYPE_FIELD_BITPOS (type, i) / 8));
1078 if (VALUE_LVAL (arg) != lval_memory)
1082 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1085 /* Not in the fields, so try looking through the baseclasses. */
1086 for (i = index+1; i < n_baseclasses; i++)
1089 baseclass_offset (type, i, arg, offset);
1097 /* Baseclass is easily computed. */
1098 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1101 /* Compute the address of the baseclass which is
1102 the INDEXth baseclass of class TYPE. The TYPE base
1103 of the object is at VALADDR.
1105 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1106 or 0 if no error. In that case the return value is not the address
1107 of the baseclasss, but the address which could not be read
1110 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1113 baseclass_addr (type, index, valaddr, valuep, errp)
1120 struct type *basetype = TYPE_BASECLASS (type, index);
1125 if (BASETYPE_VIA_VIRTUAL (type, index))
1127 /* Must hunt for the pointer to this virtual baseclass. */
1128 register int i, len = TYPE_NFIELDS (type);
1129 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1131 /* First look for the virtual baseclass pointer
1133 for (i = n_baseclasses; i < len; i++)
1135 if (vb_match (type, i, basetype))
1137 value_ptr val = allocate_value (basetype);
1142 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1143 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1145 status = target_read_memory (addr,
1146 VALUE_CONTENTS_RAW (val),
1147 TYPE_LENGTH (basetype));
1148 VALUE_LVAL (val) = lval_memory;
1149 VALUE_ADDRESS (val) = addr;
1155 release_value (val);
1159 return (char *)addr;
1165 return (char *) VALUE_CONTENTS (val);
1169 /* Not in the fields, so try looking through the baseclasses. */
1170 for (i = index+1; i < n_baseclasses; i++)
1174 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1184 /* Baseclass is easily computed. */
1187 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1190 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1193 Extracting bits depends on endianness of the machine. Compute the
1194 number of least significant bits to discard. For big endian machines,
1195 we compute the total number of bits in the anonymous object, subtract
1196 off the bit count from the MSB of the object to the MSB of the
1197 bitfield, then the size of the bitfield, which leaves the LSB discard
1198 count. For little endian machines, the discard count is simply the
1199 number of bits from the LSB of the anonymous object to the LSB of the
1202 If the field is signed, we also do sign extension. */
1205 unpack_field_as_long (type, valaddr, fieldno)
1210 unsigned LONGEST val;
1211 unsigned LONGEST valmask;
1212 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1213 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1216 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1218 /* Extract bits. See comment above. */
1221 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1223 lsbcount = (bitpos % 8);
1227 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1228 If the field is signed, and is negative, then sign extend. */
1230 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1232 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1234 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1236 if (val & (valmask ^ (valmask >> 1)))
1245 /* Modify the value of a bitfield. ADDR points to a block of memory in
1246 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1247 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1248 indicate which bits (in target bit order) comprise the bitfield. */
1251 modify_field (addr, fieldval, bitpos, bitsize)
1254 int bitpos, bitsize;
1258 /* Reject values too big to fit in the field in question,
1259 otherwise adjoining fields may be corrupted. */
1260 if (bitsize < (8 * sizeof (fieldval))
1261 && 0 != (fieldval & ~((1<<bitsize)-1)))
1263 /* FIXME: would like to include fieldval in the message, but
1264 we don't have a sprintf_longest. */
1265 error ("Value does not fit in %d bits.", bitsize);
1268 oword = extract_signed_integer (addr, sizeof oword);
1270 /* Shifting for bit field depends on endianness of the target machine. */
1272 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1275 /* Mask out old value, while avoiding shifts >= size of oword */
1276 if (bitsize < 8 * sizeof (oword))
1277 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1279 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1280 oword |= fieldval << bitpos;
1282 store_signed_integer (addr, sizeof oword, oword);
1285 /* Convert C numbers into newly allocated values */
1288 value_from_longest (type, num)
1290 register LONGEST num;
1292 register value_ptr val = allocate_value (type);
1293 register enum type_code code = TYPE_CODE (type);
1294 register int len = TYPE_LENGTH (type);
1299 case TYPE_CODE_CHAR:
1300 case TYPE_CODE_ENUM:
1301 case TYPE_CODE_BOOL:
1302 case TYPE_CODE_RANGE:
1303 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1308 /* This assumes that all pointers of a given length
1309 have the same form. */
1310 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1314 error ("Unexpected type encountered for integer constant.");
1320 value_from_double (type, num)
1324 register value_ptr val = allocate_value (type);
1325 register enum type_code code = TYPE_CODE (type);
1326 register int len = TYPE_LENGTH (type);
1328 if (code == TYPE_CODE_FLT)
1330 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1333 error ("Unexpected type encountered for floating constant.");
1338 /* Deal with the value that is "about to be returned". */
1340 /* Return the value that a function returning now
1341 would be returning to its caller, assuming its type is VALTYPE.
1342 RETBUF is where we look for what ought to be the contents
1343 of the registers (in raw form). This is because it is often
1344 desirable to restore old values to those registers
1345 after saving the contents of interest, and then call
1346 this function using the saved values.
1347 struct_return is non-zero when the function in question is
1348 using the structure return conventions on the machine in question;
1349 0 when it is using the value returning conventions (this often
1350 means returning pointer to where structure is vs. returning value). */
1353 value_being_returned (valtype, retbuf, struct_return)
1354 register struct type *valtype;
1355 char retbuf[REGISTER_BYTES];
1359 register value_ptr val;
1362 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1363 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1364 if (struct_return) {
1365 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1367 error ("Function return value unknown");
1368 return value_at (valtype, addr);
1372 val = allocate_value (valtype);
1373 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1378 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1379 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1380 and TYPE is the type (which is known to be struct, union or array).
1382 On most machines, the struct convention is used unless we are
1383 using gcc and the type is of a special size. */
1384 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1385 native compiler. GCC 2.3.3 was the last release that did it the
1386 old way. Since gcc2_compiled was not changed, we have no
1387 way to correctly win in all cases, so we just do the right thing
1388 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1389 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1390 would cause more chaos than dealing with some struct returns being
1392 #if !defined (USE_STRUCT_CONVENTION)
1393 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1394 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1395 || TYPE_LENGTH (value_type) == 2 \
1396 || TYPE_LENGTH (value_type) == 4 \
1397 || TYPE_LENGTH (value_type) == 8 \
1402 /* Return true if the function specified is using the structure returning
1403 convention on this machine to return arguments, or 0 if it is using
1404 the value returning convention. FUNCTION is the value representing
1405 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1406 is the type returned by the function. GCC_P is nonzero if compiled
1410 using_struct_return (function, funcaddr, value_type, gcc_p)
1413 struct type *value_type;
1417 register enum type_code code = TYPE_CODE (value_type);
1419 if (code == TYPE_CODE_ERROR)
1420 error ("Function return type unknown.");
1422 if (code == TYPE_CODE_STRUCT ||
1423 code == TYPE_CODE_UNION ||
1424 code == TYPE_CODE_ARRAY)
1425 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1430 /* Store VAL so it will be returned if a function returns now.
1431 Does not verify that VAL's type matches what the current
1432 function wants to return. */
1435 set_return_value (val)
1438 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1442 if (code == TYPE_CODE_ERROR)
1443 error ("Function return type unknown.");
1445 if ( code == TYPE_CODE_STRUCT
1446 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1447 error ("GDB does not support specifying a struct or union return value.");
1449 /* FIXME, this is bogus. We don't know what the return conventions
1450 are, or how values should be promoted.... */
1451 if (code == TYPE_CODE_FLT)
1453 dbuf = value_as_double (val);
1455 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1459 lbuf = value_as_long (val);
1460 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1465 _initialize_values ()
1467 add_cmd ("convenience", no_class, show_convenience,
1468 "Debugger convenience (\"$foo\") variables.\n\
1469 These variables are created when you assign them values;\n\
1470 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1471 A few convenience variables are given values automatically:\n\
1472 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1473 \"$__\" holds the contents of the last address examined with \"x\".",
1476 add_cmd ("values", no_class, show_values,
1477 "Elements of value history around item number IDX (or last ten).",