1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
27 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "parser-defs.h"
39 #include "breakpoint.h"
42 #include "gdb_obstack.h"
44 #include "completer.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
60 #include "typeprint.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
77 static struct type *desc_base_type (struct type *);
79 static struct type *desc_bounds_type (struct type *);
81 static struct value *desc_bounds (struct value *);
83 static int fat_pntr_bounds_bitpos (struct type *);
85 static int fat_pntr_bounds_bitsize (struct type *);
87 static struct type *desc_data_target_type (struct type *);
89 static struct value *desc_data (struct value *);
91 static int fat_pntr_data_bitpos (struct type *);
93 static int fat_pntr_data_bitsize (struct type *);
95 static struct value *desc_one_bound (struct value *, int, int);
97 static int desc_bound_bitpos (struct type *, int, int);
99 static int desc_bound_bitsize (struct type *, int, int);
101 static struct type *desc_index_type (struct type *, int);
103 static int desc_arity (struct type *);
105 static int ada_type_match (struct type *, struct type *, int);
107 static int ada_args_match (struct symbol *, struct value **, int);
109 static int full_match (const char *, const char *);
111 static struct value *make_array_descriptor (struct type *, struct value *);
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
117 static int is_nonfunction (struct ada_symbol_info *, int);
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 static int num_defns_collected (struct obstack *);
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126 static struct value *resolve_subexp (struct expression **, int *, int,
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 static char *ada_op_name (enum exp_opcode);
136 static const char *ada_decoded_op_name (enum exp_opcode);
138 static int numeric_type_p (struct type *);
140 static int integer_type_p (struct type *);
142 static int scalar_type_p (struct type *);
144 static int discrete_type_p (struct type *);
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 static struct value *evaluate_subexp_type (struct expression *, int *);
159 static struct type *ada_find_parallel_type_with_name (struct type *,
162 static int is_dynamic_field (struct type *, int);
164 static struct type *to_fixed_variant_branch_type (struct type *,
166 CORE_ADDR, struct value *);
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 static struct type *to_fixed_range_type (struct type *, struct value *);
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
175 static struct value *unwrap_value (struct value *);
177 static struct type *constrained_packed_array_type (struct type *, long *);
179 static struct type *decode_constrained_packed_array_type (struct type *);
181 static long decode_packed_array_bitsize (struct type *);
183 static struct value *decode_constrained_packed_array (struct value *);
185 static int ada_is_packed_array_type (struct type *);
187 static int ada_is_unconstrained_packed_array_type (struct type *);
189 static struct value *value_subscript_packed (struct value *, int,
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194 static struct value *coerce_unspec_val_to_type (struct value *,
197 static struct value *get_var_value (char *, char *);
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
201 static int equiv_types (struct type *, struct type *);
203 static int is_name_suffix (const char *);
205 static int advance_wild_match (const char **, const char *, int);
207 static int wild_match (const char *, const char *);
209 static struct value *ada_coerce_ref (struct value *);
211 static LONGEST pos_atr (struct value *);
213 static struct value *value_pos_atr (struct type *, struct value *);
215 static struct value *value_val_atr (struct type *, struct value *);
217 static struct symbol *standard_lookup (const char *, const struct block *,
220 static struct value *ada_search_struct_field (char *, struct value *, int,
223 static struct value *ada_value_primitive_field (struct value *, int, int,
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
236 static int ada_is_direct_array_type (struct type *);
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
241 static void check_size (const struct type *);
243 static struct value *ada_index_struct_field (int, struct value *, int,
246 static struct value *assign_aggregate (struct value *, struct value *,
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
275 static struct type *ada_find_any_type (const char *name);
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
313 /* Inferior-specific data. */
315 /* Per-inferior data for this module. */
317 struct ada_inferior_data
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
328 const struct exception_support_info *exception_info;
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
334 /* A cleanup routine for our inferior data. */
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 struct ada_inferior_data *data;
340 data = inferior_data (inf, ada_inferior_data);
345 /* Return our inferior data for the given inferior (INF).
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
356 struct ada_inferior_data *data;
358 data = inferior_data (inf, ada_inferior_data);
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
372 ada_inferior_exit (struct inferior *inf)
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
408 ada_typedef_target_type (struct type *type)
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
420 ada_unqualified_name (const char *decoded_name)
422 const char *result = strrchr (decoded_name, '.');
425 result++; /* Skip the dot... */
427 result = decoded_name;
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
436 add_angle_brackets (const char *str)
438 static char *result = NULL;
441 result = xstrprintf ("<%s>", str);
446 ada_get_gdb_completer_word_break_characters (void)
448 return ada_completer_word_break_characters;
451 /* Print an array element index using the Ada syntax. */
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 if (*size < min_size)
471 if (*size < min_size)
473 vect = xrealloc (vect, *size * element_size);
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
482 field_name_match (const char *field_name, const char *target)
484 int len = strlen (target);
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
504 ada_get_field_index (const struct type *type, const char *field_name,
508 struct type *struct_type = check_typedef ((struct type *) type);
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
521 /* The length of the prefix of NAME prior to any "___" suffix. */
524 ada_name_prefix_len (const char *name)
530 const char *p = strstr (name, "___");
533 return strlen (name);
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
543 is_suffix (const char *str, const char *suffix)
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
565 struct value *result;
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
595 return valaddr + offset;
599 cond_offset_target (CORE_ADDR address, long offset)
604 return address + offset;
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
617 lim_warning (const char *format, ...)
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
634 check_size (const struct type *type)
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
640 /* Maximum value of a SIZE-byte signed integer type. */
642 max_of_size (int size)
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646 return top_bit | (top_bit - 1);
649 /* Minimum value of a SIZE-byte signed integer type. */
651 min_of_size (int size)
653 return -max_of_size (size) - 1;
656 /* Maximum value of a SIZE-byte unsigned integer type. */
658 umax_of_size (int size)
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662 return top_bit | (top_bit - 1);
665 /* Maximum value of integral type T, as a signed quantity. */
667 max_of_type (struct type *t)
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 return max_of_size (TYPE_LENGTH (t));
675 /* Minimum value of integral type T, as a signed quantity. */
677 min_of_type (struct type *t)
679 if (TYPE_UNSIGNED (t))
682 return min_of_size (TYPE_LENGTH (t));
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 ada_discrete_type_high_bound (struct type *type)
689 switch (TYPE_CODE (type))
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
699 return max_of_type (type);
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 ada_discrete_type_low_bound (struct type *type)
709 switch (TYPE_CODE (type))
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
714 return TYPE_FIELD_ENUMVAL (type, 0);
719 return min_of_type (type);
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
729 get_base_type (struct type *type)
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 type = TYPE_TARGET_TYPE (type);
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
746 ada_get_decoded_value (struct value *value)
748 struct type *type = ada_check_typedef (value_type (value));
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
757 value = ada_coerce_to_simple_array (value);
760 value = ada_to_fixed_value (value);
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
771 ada_get_decoded_type (struct type *type)
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
781 /* Language Selection */
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
787 ada_update_initial_language (enum language lang)
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
815 CORE_ADDR main_program_name_addr;
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
828 return main_program_name;
831 /* The main procedure doesn't seem to be in Ada. */
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
869 ada_encode (const char *decoded)
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
883 for (p = decoded; *p != '\0'; p += 1)
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
892 const struct ada_opname_map *mapping;
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
907 encoding_buffer[k] = *p;
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
921 ada_fold_name (const char *name)
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
948 is_lower_alphanum (const char c)
950 return (isdigit (c) || (isalpha (c) && islower (c)));
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
966 ada_remove_trailing_digits (const char *encoded, int *len)
968 if (*len > 1 && isdigit (encoded[*len - 1]))
972 while (i > 0 && isdigit (encoded[i]))
974 if (i >= 0 && encoded[i] == '.')
976 else if (i >= 0 && encoded[i] == '$')
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
985 /* Remove the suffix introduced by the compiler for protected object
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 /* Remove trailing N. */
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1017 if (encoded[i] != 'X')
1023 if (isalnum (encoded[i-1]))
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1036 ada_decode (const char *encoded)
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1058 len0 = strlen (encoded);
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1096 /* Make decoded big enough for possible expansion by operator name. */
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 else if (encoded[i] == '$')
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 && !isalnum (encoded[i + op_len]))
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1139 j += strlen (ada_opname_table[k].decoded);
1143 if (ada_opname_table[k].encoded != NULL)
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1173 /* Remove _E{DIGITS}+[sb] */
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1191 while (k < len0 && isdigit (encoded[k]))
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1202 || (k < len0 && encoded[k] == '_'))
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 /* Replace '__' by '.'. */
1250 /* It's a character part of the decoded name, so just copy it
1252 decoded[j] = encoded[i];
1257 decoded[j] = '\000';
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1266 if (strcmp (decoded, encoded) == 0)
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 struct general_symbol_info *gsymbol_rw
1303 = (struct general_symbol_info *) gsymbol;
1304 const char **resultp
1305 = &gsymbol_rw->language_specific.mangled_lang.demangled_name;
1307 if (*resultp == NULL)
1309 const char *decoded = ada_decode (gsymbol->name);
1311 if (gsymbol->obj_section != NULL)
1313 struct objfile *objf = gsymbol->obj_section->objfile;
1315 *resultp = obstack_copy0 (&objf->objfile_obstack,
1316 decoded, strlen (decoded));
1318 /* Sometimes, we can't find a corresponding objfile, in which
1319 case, we put the result on the heap. Since we only decode
1320 when needed, we hope this usually does not cause a
1321 significant memory leak (FIXME). */
1322 if (*resultp == NULL)
1324 char **slot = (char **) htab_find_slot (decoded_names_store,
1328 *slot = xstrdup (decoded);
1337 ada_la_decode (const char *encoded, int options)
1339 return xstrdup (ada_decode (encoded));
1342 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1343 suffixes that encode debugging information or leading _ada_ on
1344 SYM_NAME (see is_name_suffix commentary for the debugging
1345 information that is ignored). If WILD, then NAME need only match a
1346 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1347 either argument is NULL. */
1350 match_name (const char *sym_name, const char *name, int wild)
1352 if (sym_name == NULL || name == NULL)
1355 return wild_match (sym_name, name) == 0;
1358 int len_name = strlen (name);
1360 return (strncmp (sym_name, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name))
1362 || (strncmp (sym_name, "_ada_", 5) == 0
1363 && strncmp (sym_name + 5, name, len_name) == 0
1364 && is_name_suffix (sym_name + len_name + 5));
1371 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1372 generated by the GNAT compiler to describe the index type used
1373 for each dimension of an array, check whether it follows the latest
1374 known encoding. If not, fix it up to conform to the latest encoding.
1375 Otherwise, do nothing. This function also does nothing if
1376 INDEX_DESC_TYPE is NULL.
1378 The GNAT encoding used to describle the array index type evolved a bit.
1379 Initially, the information would be provided through the name of each
1380 field of the structure type only, while the type of these fields was
1381 described as unspecified and irrelevant. The debugger was then expected
1382 to perform a global type lookup using the name of that field in order
1383 to get access to the full index type description. Because these global
1384 lookups can be very expensive, the encoding was later enhanced to make
1385 the global lookup unnecessary by defining the field type as being
1386 the full index type description.
1388 The purpose of this routine is to allow us to support older versions
1389 of the compiler by detecting the use of the older encoding, and by
1390 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1391 we essentially replace each field's meaningless type by the associated
1395 ada_fixup_array_indexes_type (struct type *index_desc_type)
1399 if (index_desc_type == NULL)
1401 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1403 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1404 to check one field only, no need to check them all). If not, return
1407 If our INDEX_DESC_TYPE was generated using the older encoding,
1408 the field type should be a meaningless integer type whose name
1409 is not equal to the field name. */
1410 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1411 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1412 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1415 /* Fixup each field of INDEX_DESC_TYPE. */
1416 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1418 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1419 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1422 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1426 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1428 static char *bound_name[] = {
1429 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1430 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1433 /* Maximum number of array dimensions we are prepared to handle. */
1435 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1438 /* The desc_* routines return primitive portions of array descriptors
1441 /* The descriptor or array type, if any, indicated by TYPE; removes
1442 level of indirection, if needed. */
1444 static struct type *
1445 desc_base_type (struct type *type)
1449 type = ada_check_typedef (type);
1450 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 type = ada_typedef_target_type (type);
1454 && (TYPE_CODE (type) == TYPE_CODE_PTR
1455 || TYPE_CODE (type) == TYPE_CODE_REF))
1456 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1461 /* True iff TYPE indicates a "thin" array pointer type. */
1464 is_thin_pntr (struct type *type)
1467 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1468 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1471 /* The descriptor type for thin pointer type TYPE. */
1473 static struct type *
1474 thin_descriptor_type (struct type *type)
1476 struct type *base_type = desc_base_type (type);
1478 if (base_type == NULL)
1480 if (is_suffix (ada_type_name (base_type), "___XVE"))
1484 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1486 if (alt_type == NULL)
1493 /* A pointer to the array data for thin-pointer value VAL. */
1495 static struct value *
1496 thin_data_pntr (struct value *val)
1498 struct type *type = ada_check_typedef (value_type (val));
1499 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1501 data_type = lookup_pointer_type (data_type);
1503 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1504 return value_cast (data_type, value_copy (val));
1506 return value_from_longest (data_type, value_address (val));
1509 /* True iff TYPE indicates a "thick" array pointer type. */
1512 is_thick_pntr (struct type *type)
1514 type = desc_base_type (type);
1515 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1516 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1519 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1520 pointer to one, the type of its bounds data; otherwise, NULL. */
1522 static struct type *
1523 desc_bounds_type (struct type *type)
1527 type = desc_base_type (type);
1531 else if (is_thin_pntr (type))
1533 type = thin_descriptor_type (type);
1536 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1538 return ada_check_typedef (r);
1540 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1542 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1544 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1549 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1550 one, a pointer to its bounds data. Otherwise NULL. */
1552 static struct value *
1553 desc_bounds (struct value *arr)
1555 struct type *type = ada_check_typedef (value_type (arr));
1557 if (is_thin_pntr (type))
1559 struct type *bounds_type =
1560 desc_bounds_type (thin_descriptor_type (type));
1563 if (bounds_type == NULL)
1564 error (_("Bad GNAT array descriptor"));
1566 /* NOTE: The following calculation is not really kosher, but
1567 since desc_type is an XVE-encoded type (and shouldn't be),
1568 the correct calculation is a real pain. FIXME (and fix GCC). */
1569 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1570 addr = value_as_long (arr);
1572 addr = value_address (arr);
1575 value_from_longest (lookup_pointer_type (bounds_type),
1576 addr - TYPE_LENGTH (bounds_type));
1579 else if (is_thick_pntr (type))
1581 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1582 _("Bad GNAT array descriptor"));
1583 struct type *p_bounds_type = value_type (p_bounds);
1586 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1588 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1590 if (TYPE_STUB (target_type))
1591 p_bounds = value_cast (lookup_pointer_type
1592 (ada_check_typedef (target_type)),
1596 error (_("Bad GNAT array descriptor"));
1604 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1605 position of the field containing the address of the bounds data. */
1608 fat_pntr_bounds_bitpos (struct type *type)
1610 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1613 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1614 size of the field containing the address of the bounds data. */
1617 fat_pntr_bounds_bitsize (struct type *type)
1619 type = desc_base_type (type);
1621 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1622 return TYPE_FIELD_BITSIZE (type, 1);
1624 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1627 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its array data (a array-with-no-bounds type);
1629 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1632 static struct type *
1633 desc_data_target_type (struct type *type)
1635 type = desc_base_type (type);
1637 /* NOTE: The following is bogus; see comment in desc_bounds. */
1638 if (is_thin_pntr (type))
1639 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1640 else if (is_thick_pntr (type))
1642 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1645 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1646 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1652 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1655 static struct value *
1656 desc_data (struct value *arr)
1658 struct type *type = value_type (arr);
1660 if (is_thin_pntr (type))
1661 return thin_data_pntr (arr);
1662 else if (is_thick_pntr (type))
1663 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1664 _("Bad GNAT array descriptor"));
1670 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1671 position of the field containing the address of the data. */
1674 fat_pntr_data_bitpos (struct type *type)
1676 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1679 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1680 size of the field containing the address of the data. */
1683 fat_pntr_data_bitsize (struct type *type)
1685 type = desc_base_type (type);
1687 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1688 return TYPE_FIELD_BITSIZE (type, 0);
1690 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1693 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1694 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1695 bound, if WHICH is 1. The first bound is I=1. */
1697 static struct value *
1698 desc_one_bound (struct value *bounds, int i, int which)
1700 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1701 _("Bad GNAT array descriptor bounds"));
1704 /* If BOUNDS is an array-bounds structure type, return the bit position
1705 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1706 bound, if WHICH is 1. The first bound is I=1. */
1709 desc_bound_bitpos (struct type *type, int i, int which)
1711 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1714 /* If BOUNDS is an array-bounds structure type, return the bit field size
1715 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1716 bound, if WHICH is 1. The first bound is I=1. */
1719 desc_bound_bitsize (struct type *type, int i, int which)
1721 type = desc_base_type (type);
1723 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1724 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1726 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1729 /* If TYPE is the type of an array-bounds structure, the type of its
1730 Ith bound (numbering from 1). Otherwise, NULL. */
1732 static struct type *
1733 desc_index_type (struct type *type, int i)
1735 type = desc_base_type (type);
1737 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1738 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1743 /* The number of index positions in the array-bounds type TYPE.
1744 Return 0 if TYPE is NULL. */
1747 desc_arity (struct type *type)
1749 type = desc_base_type (type);
1752 return TYPE_NFIELDS (type) / 2;
1756 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1757 an array descriptor type (representing an unconstrained array
1761 ada_is_direct_array_type (struct type *type)
1765 type = ada_check_typedef (type);
1766 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1767 || ada_is_array_descriptor_type (type));
1770 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1774 ada_is_array_type (struct type *type)
1777 && (TYPE_CODE (type) == TYPE_CODE_PTR
1778 || TYPE_CODE (type) == TYPE_CODE_REF))
1779 type = TYPE_TARGET_TYPE (type);
1780 return ada_is_direct_array_type (type);
1783 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1786 ada_is_simple_array_type (struct type *type)
1790 type = ada_check_typedef (type);
1791 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1792 || (TYPE_CODE (type) == TYPE_CODE_PTR
1793 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1794 == TYPE_CODE_ARRAY));
1797 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1800 ada_is_array_descriptor_type (struct type *type)
1802 struct type *data_type = desc_data_target_type (type);
1806 type = ada_check_typedef (type);
1807 return (data_type != NULL
1808 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1809 && desc_arity (desc_bounds_type (type)) > 0);
1812 /* Non-zero iff type is a partially mal-formed GNAT array
1813 descriptor. FIXME: This is to compensate for some problems with
1814 debugging output from GNAT. Re-examine periodically to see if it
1818 ada_is_bogus_array_descriptor (struct type *type)
1822 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1824 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1825 && !ada_is_array_descriptor_type (type);
1829 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1830 (fat pointer) returns the type of the array data described---specifically,
1831 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1832 in from the descriptor; otherwise, they are left unspecified. If
1833 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1834 returns NULL. The result is simply the type of ARR if ARR is not
1837 ada_type_of_array (struct value *arr, int bounds)
1839 if (ada_is_constrained_packed_array_type (value_type (arr)))
1840 return decode_constrained_packed_array_type (value_type (arr));
1842 if (!ada_is_array_descriptor_type (value_type (arr)))
1843 return value_type (arr);
1847 struct type *array_type =
1848 ada_check_typedef (desc_data_target_type (value_type (arr)));
1850 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1851 TYPE_FIELD_BITSIZE (array_type, 0) =
1852 decode_packed_array_bitsize (value_type (arr));
1858 struct type *elt_type;
1860 struct value *descriptor;
1862 elt_type = ada_array_element_type (value_type (arr), -1);
1863 arity = ada_array_arity (value_type (arr));
1865 if (elt_type == NULL || arity == 0)
1866 return ada_check_typedef (value_type (arr));
1868 descriptor = desc_bounds (arr);
1869 if (value_as_long (descriptor) == 0)
1873 struct type *range_type = alloc_type_copy (value_type (arr));
1874 struct type *array_type = alloc_type_copy (value_type (arr));
1875 struct value *low = desc_one_bound (descriptor, arity, 0);
1876 struct value *high = desc_one_bound (descriptor, arity, 1);
1879 create_range_type (range_type, value_type (low),
1880 longest_to_int (value_as_long (low)),
1881 longest_to_int (value_as_long (high)));
1882 elt_type = create_array_type (array_type, elt_type, range_type);
1884 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1886 /* We need to store the element packed bitsize, as well as
1887 recompute the array size, because it was previously
1888 computed based on the unpacked element size. */
1889 LONGEST lo = value_as_long (low);
1890 LONGEST hi = value_as_long (high);
1892 TYPE_FIELD_BITSIZE (elt_type, 0) =
1893 decode_packed_array_bitsize (value_type (arr));
1894 /* If the array has no element, then the size is already
1895 zero, and does not need to be recomputed. */
1899 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1901 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1906 return lookup_pointer_type (elt_type);
1910 /* If ARR does not represent an array, returns ARR unchanged.
1911 Otherwise, returns either a standard GDB array with bounds set
1912 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1913 GDB array. Returns NULL if ARR is a null fat pointer. */
1916 ada_coerce_to_simple_array_ptr (struct value *arr)
1918 if (ada_is_array_descriptor_type (value_type (arr)))
1920 struct type *arrType = ada_type_of_array (arr, 1);
1922 if (arrType == NULL)
1924 return value_cast (arrType, value_copy (desc_data (arr)));
1926 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1927 return decode_constrained_packed_array (arr);
1932 /* If ARR does not represent an array, returns ARR unchanged.
1933 Otherwise, returns a standard GDB array describing ARR (which may
1934 be ARR itself if it already is in the proper form). */
1937 ada_coerce_to_simple_array (struct value *arr)
1939 if (ada_is_array_descriptor_type (value_type (arr)))
1941 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1944 error (_("Bounds unavailable for null array pointer."));
1945 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1946 return value_ind (arrVal);
1948 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1949 return decode_constrained_packed_array (arr);
1954 /* If TYPE represents a GNAT array type, return it translated to an
1955 ordinary GDB array type (possibly with BITSIZE fields indicating
1956 packing). For other types, is the identity. */
1959 ada_coerce_to_simple_array_type (struct type *type)
1961 if (ada_is_constrained_packed_array_type (type))
1962 return decode_constrained_packed_array_type (type);
1964 if (ada_is_array_descriptor_type (type))
1965 return ada_check_typedef (desc_data_target_type (type));
1970 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1973 ada_is_packed_array_type (struct type *type)
1977 type = desc_base_type (type);
1978 type = ada_check_typedef (type);
1980 ada_type_name (type) != NULL
1981 && strstr (ada_type_name (type), "___XP") != NULL;
1984 /* Non-zero iff TYPE represents a standard GNAT constrained
1985 packed-array type. */
1988 ada_is_constrained_packed_array_type (struct type *type)
1990 return ada_is_packed_array_type (type)
1991 && !ada_is_array_descriptor_type (type);
1994 /* Non-zero iff TYPE represents an array descriptor for a
1995 unconstrained packed-array type. */
1998 ada_is_unconstrained_packed_array_type (struct type *type)
2000 return ada_is_packed_array_type (type)
2001 && ada_is_array_descriptor_type (type);
2004 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2005 return the size of its elements in bits. */
2008 decode_packed_array_bitsize (struct type *type)
2010 const char *raw_name;
2014 /* Access to arrays implemented as fat pointers are encoded as a typedef
2015 of the fat pointer type. We need the name of the fat pointer type
2016 to do the decoding, so strip the typedef layer. */
2017 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2018 type = ada_typedef_target_type (type);
2020 raw_name = ada_type_name (ada_check_typedef (type));
2022 raw_name = ada_type_name (desc_base_type (type));
2027 tail = strstr (raw_name, "___XP");
2028 gdb_assert (tail != NULL);
2030 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2033 (_("could not understand bit size information on packed array"));
2040 /* Given that TYPE is a standard GDB array type with all bounds filled
2041 in, and that the element size of its ultimate scalar constituents
2042 (that is, either its elements, or, if it is an array of arrays, its
2043 elements' elements, etc.) is *ELT_BITS, return an identical type,
2044 but with the bit sizes of its elements (and those of any
2045 constituent arrays) recorded in the BITSIZE components of its
2046 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2049 static struct type *
2050 constrained_packed_array_type (struct type *type, long *elt_bits)
2052 struct type *new_elt_type;
2053 struct type *new_type;
2054 struct type *index_type_desc;
2055 struct type *index_type;
2056 LONGEST low_bound, high_bound;
2058 type = ada_check_typedef (type);
2059 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2062 index_type_desc = ada_find_parallel_type (type, "___XA");
2063 if (index_type_desc)
2064 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2067 index_type = TYPE_INDEX_TYPE (type);
2069 new_type = alloc_type_copy (type);
2071 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2073 create_array_type (new_type, new_elt_type, index_type);
2074 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2075 TYPE_NAME (new_type) = ada_type_name (type);
2077 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2078 low_bound = high_bound = 0;
2079 if (high_bound < low_bound)
2080 *elt_bits = TYPE_LENGTH (new_type) = 0;
2083 *elt_bits *= (high_bound - low_bound + 1);
2084 TYPE_LENGTH (new_type) =
2085 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2088 TYPE_FIXED_INSTANCE (new_type) = 1;
2092 /* The array type encoded by TYPE, where
2093 ada_is_constrained_packed_array_type (TYPE). */
2095 static struct type *
2096 decode_constrained_packed_array_type (struct type *type)
2098 const char *raw_name = ada_type_name (ada_check_typedef (type));
2101 struct type *shadow_type;
2105 raw_name = ada_type_name (desc_base_type (type));
2110 name = (char *) alloca (strlen (raw_name) + 1);
2111 tail = strstr (raw_name, "___XP");
2112 type = desc_base_type (type);
2114 memcpy (name, raw_name, tail - raw_name);
2115 name[tail - raw_name] = '\000';
2117 shadow_type = ada_find_parallel_type_with_name (type, name);
2119 if (shadow_type == NULL)
2121 lim_warning (_("could not find bounds information on packed array"));
2124 CHECK_TYPEDEF (shadow_type);
2126 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2128 lim_warning (_("could not understand bounds "
2129 "information on packed array"));
2133 bits = decode_packed_array_bitsize (type);
2134 return constrained_packed_array_type (shadow_type, &bits);
2137 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2138 array, returns a simple array that denotes that array. Its type is a
2139 standard GDB array type except that the BITSIZEs of the array
2140 target types are set to the number of bits in each element, and the
2141 type length is set appropriately. */
2143 static struct value *
2144 decode_constrained_packed_array (struct value *arr)
2148 arr = ada_coerce_ref (arr);
2150 /* If our value is a pointer, then dererence it. Make sure that
2151 this operation does not cause the target type to be fixed, as
2152 this would indirectly cause this array to be decoded. The rest
2153 of the routine assumes that the array hasn't been decoded yet,
2154 so we use the basic "value_ind" routine to perform the dereferencing,
2155 as opposed to using "ada_value_ind". */
2156 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2157 arr = value_ind (arr);
2159 type = decode_constrained_packed_array_type (value_type (arr));
2162 error (_("can't unpack array"));
2166 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2167 && ada_is_modular_type (value_type (arr)))
2169 /* This is a (right-justified) modular type representing a packed
2170 array with no wrapper. In order to interpret the value through
2171 the (left-justified) packed array type we just built, we must
2172 first left-justify it. */
2173 int bit_size, bit_pos;
2176 mod = ada_modulus (value_type (arr)) - 1;
2183 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2184 arr = ada_value_primitive_packed_val (arr, NULL,
2185 bit_pos / HOST_CHAR_BIT,
2186 bit_pos % HOST_CHAR_BIT,
2191 return coerce_unspec_val_to_type (arr, type);
2195 /* The value of the element of packed array ARR at the ARITY indices
2196 given in IND. ARR must be a simple array. */
2198 static struct value *
2199 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2202 int bits, elt_off, bit_off;
2203 long elt_total_bit_offset;
2204 struct type *elt_type;
2208 elt_total_bit_offset = 0;
2209 elt_type = ada_check_typedef (value_type (arr));
2210 for (i = 0; i < arity; i += 1)
2212 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2213 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2215 (_("attempt to do packed indexing of "
2216 "something other than a packed array"));
2219 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2220 LONGEST lowerbound, upperbound;
2223 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2225 lim_warning (_("don't know bounds of array"));
2226 lowerbound = upperbound = 0;
2229 idx = pos_atr (ind[i]);
2230 if (idx < lowerbound || idx > upperbound)
2231 lim_warning (_("packed array index %ld out of bounds"),
2233 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2234 elt_total_bit_offset += (idx - lowerbound) * bits;
2235 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2238 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2239 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2241 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2246 /* Non-zero iff TYPE includes negative integer values. */
2249 has_negatives (struct type *type)
2251 switch (TYPE_CODE (type))
2256 return !TYPE_UNSIGNED (type);
2257 case TYPE_CODE_RANGE:
2258 return TYPE_LOW_BOUND (type) < 0;
2263 /* Create a new value of type TYPE from the contents of OBJ starting
2264 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2265 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2266 assigning through the result will set the field fetched from.
2267 VALADDR is ignored unless OBJ is NULL, in which case,
2268 VALADDR+OFFSET must address the start of storage containing the
2269 packed value. The value returned in this case is never an lval.
2270 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2273 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2274 long offset, int bit_offset, int bit_size,
2278 int src, /* Index into the source area */
2279 targ, /* Index into the target area */
2280 srcBitsLeft, /* Number of source bits left to move */
2281 nsrc, ntarg, /* Number of source and target bytes */
2282 unusedLS, /* Number of bits in next significant
2283 byte of source that are unused */
2284 accumSize; /* Number of meaningful bits in accum */
2285 unsigned char *bytes; /* First byte containing data to unpack */
2286 unsigned char *unpacked;
2287 unsigned long accum; /* Staging area for bits being transferred */
2289 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2290 /* Transmit bytes from least to most significant; delta is the direction
2291 the indices move. */
2292 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2294 type = ada_check_typedef (type);
2298 v = allocate_value (type);
2299 bytes = (unsigned char *) (valaddr + offset);
2301 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2303 v = value_at (type, value_address (obj));
2304 bytes = (unsigned char *) alloca (len);
2305 read_memory (value_address (v) + offset, bytes, len);
2309 v = allocate_value (type);
2310 bytes = (unsigned char *) value_contents (obj) + offset;
2315 long new_offset = offset;
2317 set_value_component_location (v, obj);
2318 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2319 set_value_bitsize (v, bit_size);
2320 if (value_bitpos (v) >= HOST_CHAR_BIT)
2323 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2325 set_value_offset (v, new_offset);
2327 /* Also set the parent value. This is needed when trying to
2328 assign a new value (in inferior memory). */
2329 set_value_parent (v, obj);
2333 set_value_bitsize (v, bit_size);
2334 unpacked = (unsigned char *) value_contents (v);
2336 srcBitsLeft = bit_size;
2338 ntarg = TYPE_LENGTH (type);
2342 memset (unpacked, 0, TYPE_LENGTH (type));
2345 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2348 if (has_negatives (type)
2349 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2353 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2356 switch (TYPE_CODE (type))
2358 case TYPE_CODE_ARRAY:
2359 case TYPE_CODE_UNION:
2360 case TYPE_CODE_STRUCT:
2361 /* Non-scalar values must be aligned at a byte boundary... */
2363 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2364 /* ... And are placed at the beginning (most-significant) bytes
2366 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2371 targ = TYPE_LENGTH (type) - 1;
2377 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2380 unusedLS = bit_offset;
2383 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2390 /* Mask for removing bits of the next source byte that are not
2391 part of the value. */
2392 unsigned int unusedMSMask =
2393 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2395 /* Sign-extend bits for this byte. */
2396 unsigned int signMask = sign & ~unusedMSMask;
2399 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2400 accumSize += HOST_CHAR_BIT - unusedLS;
2401 if (accumSize >= HOST_CHAR_BIT)
2403 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2404 accumSize -= HOST_CHAR_BIT;
2405 accum >>= HOST_CHAR_BIT;
2409 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2416 accum |= sign << accumSize;
2417 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2418 accumSize -= HOST_CHAR_BIT;
2419 accum >>= HOST_CHAR_BIT;
2427 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2428 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2431 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2432 int src_offset, int n, int bits_big_endian_p)
2434 unsigned int accum, mask;
2435 int accum_bits, chunk_size;
2437 target += targ_offset / HOST_CHAR_BIT;
2438 targ_offset %= HOST_CHAR_BIT;
2439 source += src_offset / HOST_CHAR_BIT;
2440 src_offset %= HOST_CHAR_BIT;
2441 if (bits_big_endian_p)
2443 accum = (unsigned char) *source;
2445 accum_bits = HOST_CHAR_BIT - src_offset;
2451 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2452 accum_bits += HOST_CHAR_BIT;
2454 chunk_size = HOST_CHAR_BIT - targ_offset;
2457 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2458 mask = ((1 << chunk_size) - 1) << unused_right;
2461 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2463 accum_bits -= chunk_size;
2470 accum = (unsigned char) *source >> src_offset;
2472 accum_bits = HOST_CHAR_BIT - src_offset;
2476 accum = accum + ((unsigned char) *source << accum_bits);
2477 accum_bits += HOST_CHAR_BIT;
2479 chunk_size = HOST_CHAR_BIT - targ_offset;
2482 mask = ((1 << chunk_size) - 1) << targ_offset;
2483 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2485 accum_bits -= chunk_size;
2486 accum >>= chunk_size;
2493 /* Store the contents of FROMVAL into the location of TOVAL.
2494 Return a new value with the location of TOVAL and contents of
2495 FROMVAL. Handles assignment into packed fields that have
2496 floating-point or non-scalar types. */
2498 static struct value *
2499 ada_value_assign (struct value *toval, struct value *fromval)
2501 struct type *type = value_type (toval);
2502 int bits = value_bitsize (toval);
2504 toval = ada_coerce_ref (toval);
2505 fromval = ada_coerce_ref (fromval);
2507 if (ada_is_direct_array_type (value_type (toval)))
2508 toval = ada_coerce_to_simple_array (toval);
2509 if (ada_is_direct_array_type (value_type (fromval)))
2510 fromval = ada_coerce_to_simple_array (fromval);
2512 if (!deprecated_value_modifiable (toval))
2513 error (_("Left operand of assignment is not a modifiable lvalue."));
2515 if (VALUE_LVAL (toval) == lval_memory
2517 && (TYPE_CODE (type) == TYPE_CODE_FLT
2518 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2520 int len = (value_bitpos (toval)
2521 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2523 char *buffer = (char *) alloca (len);
2525 CORE_ADDR to_addr = value_address (toval);
2527 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2528 fromval = value_cast (type, fromval);
2530 read_memory (to_addr, buffer, len);
2531 from_size = value_bitsize (fromval);
2533 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2534 if (gdbarch_bits_big_endian (get_type_arch (type)))
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), from_size - bits, bits, 1);
2538 move_bits (buffer, value_bitpos (toval),
2539 value_contents (fromval), 0, bits, 0);
2540 write_memory_with_notification (to_addr, buffer, len);
2542 val = value_copy (toval);
2543 memcpy (value_contents_raw (val), value_contents (fromval),
2544 TYPE_LENGTH (type));
2545 deprecated_set_value_type (val, type);
2550 return value_assign (toval, fromval);
2554 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2555 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2556 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2557 * COMPONENT, and not the inferior's memory. The current contents
2558 * of COMPONENT are ignored. */
2560 value_assign_to_component (struct value *container, struct value *component,
2563 LONGEST offset_in_container =
2564 (LONGEST) (value_address (component) - value_address (container));
2565 int bit_offset_in_container =
2566 value_bitpos (component) - value_bitpos (container);
2569 val = value_cast (value_type (component), val);
2571 if (value_bitsize (component) == 0)
2572 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2574 bits = value_bitsize (component);
2576 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2577 move_bits (value_contents_writeable (container) + offset_in_container,
2578 value_bitpos (container) + bit_offset_in_container,
2579 value_contents (val),
2580 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2583 move_bits (value_contents_writeable (container) + offset_in_container,
2584 value_bitpos (container) + bit_offset_in_container,
2585 value_contents (val), 0, bits, 0);
2588 /* The value of the element of array ARR at the ARITY indices given in IND.
2589 ARR may be either a simple array, GNAT array descriptor, or pointer
2593 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2597 struct type *elt_type;
2599 elt = ada_coerce_to_simple_array (arr);
2601 elt_type = ada_check_typedef (value_type (elt));
2602 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2603 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2604 return value_subscript_packed (elt, arity, ind);
2606 for (k = 0; k < arity; k += 1)
2608 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2609 error (_("too many subscripts (%d expected)"), k);
2610 elt = value_subscript (elt, pos_atr (ind[k]));
2615 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2616 value of the element of *ARR at the ARITY indices given in
2617 IND. Does not read the entire array into memory. */
2619 static struct value *
2620 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2625 for (k = 0; k < arity; k += 1)
2629 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2630 error (_("too many subscripts (%d expected)"), k);
2631 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2633 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2634 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2635 type = TYPE_TARGET_TYPE (type);
2638 return value_ind (arr);
2641 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2642 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2643 elements starting at index LOW. The lower bound of this array is LOW, as
2645 static struct value *
2646 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2649 struct type *type0 = ada_check_typedef (type);
2650 CORE_ADDR base = value_as_address (array_ptr)
2651 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2652 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2653 struct type *index_type =
2654 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2656 struct type *slice_type =
2657 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2659 return value_at_lazy (slice_type, base);
2663 static struct value *
2664 ada_value_slice (struct value *array, int low, int high)
2666 struct type *type = ada_check_typedef (value_type (array));
2667 struct type *index_type =
2668 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2669 struct type *slice_type =
2670 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2672 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2675 /* If type is a record type in the form of a standard GNAT array
2676 descriptor, returns the number of dimensions for type. If arr is a
2677 simple array, returns the number of "array of"s that prefix its
2678 type designation. Otherwise, returns 0. */
2681 ada_array_arity (struct type *type)
2688 type = desc_base_type (type);
2691 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2692 return desc_arity (desc_bounds_type (type));
2694 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2697 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2703 /* If TYPE is a record type in the form of a standard GNAT array
2704 descriptor or a simple array type, returns the element type for
2705 TYPE after indexing by NINDICES indices, or by all indices if
2706 NINDICES is -1. Otherwise, returns NULL. */
2709 ada_array_element_type (struct type *type, int nindices)
2711 type = desc_base_type (type);
2713 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2716 struct type *p_array_type;
2718 p_array_type = desc_data_target_type (type);
2720 k = ada_array_arity (type);
2724 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2725 if (nindices >= 0 && k > nindices)
2727 while (k > 0 && p_array_type != NULL)
2729 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2732 return p_array_type;
2734 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2738 type = TYPE_TARGET_TYPE (type);
2747 /* The type of nth index in arrays of given type (n numbering from 1).
2748 Does not examine memory. Throws an error if N is invalid or TYPE
2749 is not an array type. NAME is the name of the Ada attribute being
2750 evaluated ('range, 'first, 'last, or 'length); it is used in building
2751 the error message. */
2753 static struct type *
2754 ada_index_type (struct type *type, int n, const char *name)
2756 struct type *result_type;
2758 type = desc_base_type (type);
2760 if (n < 0 || n > ada_array_arity (type))
2761 error (_("invalid dimension number to '%s"), name);
2763 if (ada_is_simple_array_type (type))
2767 for (i = 1; i < n; i += 1)
2768 type = TYPE_TARGET_TYPE (type);
2769 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2770 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2771 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2772 perhaps stabsread.c would make more sense. */
2773 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2778 result_type = desc_index_type (desc_bounds_type (type), n);
2779 if (result_type == NULL)
2780 error (_("attempt to take bound of something that is not an array"));
2786 /* Given that arr is an array type, returns the lower bound of the
2787 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2788 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2789 array-descriptor type. It works for other arrays with bounds supplied
2790 by run-time quantities other than discriminants. */
2793 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2795 struct type *type, *elt_type, *index_type_desc, *index_type;
2798 gdb_assert (which == 0 || which == 1);
2800 if (ada_is_constrained_packed_array_type (arr_type))
2801 arr_type = decode_constrained_packed_array_type (arr_type);
2803 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2804 return (LONGEST) - which;
2806 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2807 type = TYPE_TARGET_TYPE (arr_type);
2812 for (i = n; i > 1; i--)
2813 elt_type = TYPE_TARGET_TYPE (type);
2815 index_type_desc = ada_find_parallel_type (type, "___XA");
2816 ada_fixup_array_indexes_type (index_type_desc);
2817 if (index_type_desc != NULL)
2818 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2821 index_type = TYPE_INDEX_TYPE (elt_type);
2824 (LONGEST) (which == 0
2825 ? ada_discrete_type_low_bound (index_type)
2826 : ada_discrete_type_high_bound (index_type));
2829 /* Given that arr is an array value, returns the lower bound of the
2830 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2831 WHICH is 1. This routine will also work for arrays with bounds
2832 supplied by run-time quantities other than discriminants. */
2835 ada_array_bound (struct value *arr, int n, int which)
2837 struct type *arr_type = value_type (arr);
2839 if (ada_is_constrained_packed_array_type (arr_type))
2840 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2841 else if (ada_is_simple_array_type (arr_type))
2842 return ada_array_bound_from_type (arr_type, n, which);
2844 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2847 /* Given that arr is an array value, returns the length of the
2848 nth index. This routine will also work for arrays with bounds
2849 supplied by run-time quantities other than discriminants.
2850 Does not work for arrays indexed by enumeration types with representation
2851 clauses at the moment. */
2854 ada_array_length (struct value *arr, int n)
2856 struct type *arr_type = ada_check_typedef (value_type (arr));
2858 if (ada_is_constrained_packed_array_type (arr_type))
2859 return ada_array_length (decode_constrained_packed_array (arr), n);
2861 if (ada_is_simple_array_type (arr_type))
2862 return (ada_array_bound_from_type (arr_type, n, 1)
2863 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2865 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2866 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2869 /* An empty array whose type is that of ARR_TYPE (an array type),
2870 with bounds LOW to LOW-1. */
2872 static struct value *
2873 empty_array (struct type *arr_type, int low)
2875 struct type *arr_type0 = ada_check_typedef (arr_type);
2876 struct type *index_type =
2877 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2879 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2881 return allocate_value (create_array_type (NULL, elt_type, index_type));
2885 /* Name resolution */
2887 /* The "decoded" name for the user-definable Ada operator corresponding
2891 ada_decoded_op_name (enum exp_opcode op)
2895 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2897 if (ada_opname_table[i].op == op)
2898 return ada_opname_table[i].decoded;
2900 error (_("Could not find operator name for opcode"));
2904 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2905 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2906 undefined namespace) and converts operators that are
2907 user-defined into appropriate function calls. If CONTEXT_TYPE is
2908 non-null, it provides a preferred result type [at the moment, only
2909 type void has any effect---causing procedures to be preferred over
2910 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2911 return type is preferred. May change (expand) *EXP. */
2914 resolve (struct expression **expp, int void_context_p)
2916 struct type *context_type = NULL;
2920 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2922 resolve_subexp (expp, &pc, 1, context_type);
2925 /* Resolve the operator of the subexpression beginning at
2926 position *POS of *EXPP. "Resolving" consists of replacing
2927 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2928 with their resolutions, replacing built-in operators with
2929 function calls to user-defined operators, where appropriate, and,
2930 when DEPROCEDURE_P is non-zero, converting function-valued variables
2931 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2932 are as in ada_resolve, above. */
2934 static struct value *
2935 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2936 struct type *context_type)
2940 struct expression *exp; /* Convenience: == *expp. */
2941 enum exp_opcode op = (*expp)->elts[pc].opcode;
2942 struct value **argvec; /* Vector of operand types (alloca'ed). */
2943 int nargs; /* Number of operands. */
2950 /* Pass one: resolve operands, saving their types and updating *pos,
2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2961 resolve_subexp (expp, pos, 0, NULL);
2963 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2968 resolve_subexp (expp, pos, 0, NULL);
2973 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2976 case OP_ATR_MODULUS:
2986 case TERNOP_IN_RANGE:
2987 case BINOP_IN_BOUNDS:
2993 case OP_DISCRETE_RANGE:
2995 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3004 arg1 = resolve_subexp (expp, pos, 0, NULL);
3006 resolve_subexp (expp, pos, 1, NULL);
3008 resolve_subexp (expp, pos, 1, value_type (arg1));
3025 case BINOP_LOGICAL_AND:
3026 case BINOP_LOGICAL_OR:
3027 case BINOP_BITWISE_AND:
3028 case BINOP_BITWISE_IOR:
3029 case BINOP_BITWISE_XOR:
3032 case BINOP_NOTEQUAL:
3039 case BINOP_SUBSCRIPT:
3047 case UNOP_LOGICAL_NOT:
3063 case OP_INTERNALVAR:
3073 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 case STRUCTOP_STRUCT:
3077 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3090 error (_("Unexpected operator during name resolution"));
3093 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3094 for (i = 0; i < nargs; i += 1)
3095 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3099 /* Pass two: perform any resolution on principal operator. */
3106 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3108 struct ada_symbol_info *candidates;
3112 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3113 (exp->elts[pc + 2].symbol),
3114 exp->elts[pc + 1].block, VAR_DOMAIN,
3117 if (n_candidates > 1)
3119 /* Types tend to get re-introduced locally, so if there
3120 are any local symbols that are not types, first filter
3123 for (j = 0; j < n_candidates; j += 1)
3124 switch (SYMBOL_CLASS (candidates[j].sym))
3129 case LOC_REGPARM_ADDR:
3137 if (j < n_candidates)
3140 while (j < n_candidates)
3142 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3144 candidates[j] = candidates[n_candidates - 1];
3153 if (n_candidates == 0)
3154 error (_("No definition found for %s"),
3155 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3156 else if (n_candidates == 1)
3158 else if (deprocedure_p
3159 && !is_nonfunction (candidates, n_candidates))
3161 i = ada_resolve_function
3162 (candidates, n_candidates, NULL, 0,
3163 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3166 error (_("Could not find a match for %s"),
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 printf_filtered (_("Multiple matches for %s\n"),
3172 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3173 user_select_syms (candidates, n_candidates, 1);
3177 exp->elts[pc + 1].block = candidates[i].block;
3178 exp->elts[pc + 2].symbol = candidates[i].sym;
3179 if (innermost_block == NULL
3180 || contained_in (candidates[i].block, innermost_block))
3181 innermost_block = candidates[i].block;
3185 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3188 replace_operator_with_call (expp, pc, 0, 0,
3189 exp->elts[pc + 2].symbol,
3190 exp->elts[pc + 1].block);
3197 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3198 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3200 struct ada_symbol_info *candidates;
3204 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3205 (exp->elts[pc + 5].symbol),
3206 exp->elts[pc + 4].block, VAR_DOMAIN,
3208 if (n_candidates == 1)
3212 i = ada_resolve_function
3213 (candidates, n_candidates,
3215 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3218 error (_("Could not find a match for %s"),
3219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3222 exp->elts[pc + 4].block = candidates[i].block;
3223 exp->elts[pc + 5].symbol = candidates[i].sym;
3224 if (innermost_block == NULL
3225 || contained_in (candidates[i].block, innermost_block))
3226 innermost_block = candidates[i].block;
3237 case BINOP_BITWISE_AND:
3238 case BINOP_BITWISE_IOR:
3239 case BINOP_BITWISE_XOR:
3241 case BINOP_NOTEQUAL:
3249 case UNOP_LOGICAL_NOT:
3251 if (possible_user_operator_p (op, argvec))
3253 struct ada_symbol_info *candidates;
3257 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3258 (struct block *) NULL, VAR_DOMAIN,
3260 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3261 ada_decoded_op_name (op), NULL);
3265 replace_operator_with_call (expp, pc, nargs, 1,
3266 candidates[i].sym, candidates[i].block);
3277 return evaluate_subexp_type (exp, pos);
3280 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3281 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3283 /* The term "match" here is rather loose. The match is heuristic and
3287 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3289 ftype = ada_check_typedef (ftype);
3290 atype = ada_check_typedef (atype);
3292 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3293 ftype = TYPE_TARGET_TYPE (ftype);
3294 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3295 atype = TYPE_TARGET_TYPE (atype);
3297 switch (TYPE_CODE (ftype))
3300 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3302 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3303 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3304 TYPE_TARGET_TYPE (atype), 0);
3307 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 switch (TYPE_CODE (atype))
3314 case TYPE_CODE_ENUM:
3315 case TYPE_CODE_RANGE:
3321 case TYPE_CODE_ARRAY:
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
3325 case TYPE_CODE_STRUCT:
3326 if (ada_is_array_descriptor_type (ftype))
3327 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3328 || ada_is_array_descriptor_type (atype));
3330 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3331 && !ada_is_array_descriptor_type (atype));
3333 case TYPE_CODE_UNION:
3335 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3339 /* Return non-zero if the formals of FUNC "sufficiently match" the
3340 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3341 may also be an enumeral, in which case it is treated as a 0-
3342 argument function. */
3345 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3348 struct type *func_type = SYMBOL_TYPE (func);
3350 if (SYMBOL_CLASS (func) == LOC_CONST
3351 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3352 return (n_actuals == 0);
3353 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3356 if (TYPE_NFIELDS (func_type) != n_actuals)
3359 for (i = 0; i < n_actuals; i += 1)
3361 if (actuals[i] == NULL)
3365 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3367 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3369 if (!ada_type_match (ftype, atype, 1))
3376 /* False iff function type FUNC_TYPE definitely does not produce a value
3377 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3378 FUNC_TYPE is not a valid function type with a non-null return type
3379 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3382 return_match (struct type *func_type, struct type *context_type)
3384 struct type *return_type;
3386 if (func_type == NULL)
3389 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3390 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3392 return_type = get_base_type (func_type);
3393 if (return_type == NULL)
3396 context_type = get_base_type (context_type);
3398 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3399 return context_type == NULL || return_type == context_type;
3400 else if (context_type == NULL)
3401 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3403 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3407 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3408 function (if any) that matches the types of the NARGS arguments in
3409 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3410 that returns that type, then eliminate matches that don't. If
3411 CONTEXT_TYPE is void and there is at least one match that does not
3412 return void, eliminate all matches that do.
3414 Asks the user if there is more than one match remaining. Returns -1
3415 if there is no such symbol or none is selected. NAME is used
3416 solely for messages. May re-arrange and modify SYMS in
3417 the process; the index returned is for the modified vector. */
3420 ada_resolve_function (struct ada_symbol_info syms[],
3421 int nsyms, struct value **args, int nargs,
3422 const char *name, struct type *context_type)
3426 int m; /* Number of hits */
3429 /* In the first pass of the loop, we only accept functions matching
3430 context_type. If none are found, we add a second pass of the loop
3431 where every function is accepted. */
3432 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3434 for (k = 0; k < nsyms; k += 1)
3436 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3438 if (ada_args_match (syms[k].sym, args, nargs)
3439 && (fallback || return_match (type, context_type)))
3451 printf_filtered (_("Multiple matches for %s\n"), name);
3452 user_select_syms (syms, m, 1);
3458 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3459 in a listing of choices during disambiguation (see sort_choices, below).
3460 The idea is that overloadings of a subprogram name from the
3461 same package should sort in their source order. We settle for ordering
3462 such symbols by their trailing number (__N or $N). */
3465 encoded_ordered_before (const char *N0, const char *N1)
3469 else if (N0 == NULL)
3475 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3477 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3479 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3480 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3485 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3488 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3490 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3491 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3493 return (strcmp (N0, N1) < 0);
3497 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3501 sort_choices (struct ada_symbol_info syms[], int nsyms)
3505 for (i = 1; i < nsyms; i += 1)
3507 struct ada_symbol_info sym = syms[i];
3510 for (j = i - 1; j >= 0; j -= 1)
3512 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3513 SYMBOL_LINKAGE_NAME (sym.sym)))
3515 syms[j + 1] = syms[j];
3521 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3522 by asking the user (if necessary), returning the number selected,
3523 and setting the first elements of SYMS items. Error if no symbols
3526 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3527 to be re-integrated one of these days. */
3530 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3533 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3535 int first_choice = (max_results == 1) ? 1 : 2;
3536 const char *select_mode = multiple_symbols_select_mode ();
3538 if (max_results < 1)
3539 error (_("Request to select 0 symbols!"));
3543 if (select_mode == multiple_symbols_cancel)
3545 canceled because the command is ambiguous\n\
3546 See set/show multiple-symbol."));
3548 /* If select_mode is "all", then return all possible symbols.
3549 Only do that if more than one symbol can be selected, of course.
3550 Otherwise, display the menu as usual. */
3551 if (select_mode == multiple_symbols_all && max_results > 1)
3554 printf_unfiltered (_("[0] cancel\n"));
3555 if (max_results > 1)
3556 printf_unfiltered (_("[1] all\n"));
3558 sort_choices (syms, nsyms);
3560 for (i = 0; i < nsyms; i += 1)
3562 if (syms[i].sym == NULL)
3565 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3567 struct symtab_and_line sal =
3568 find_function_start_sal (syms[i].sym, 1);
3570 if (sal.symtab == NULL)
3571 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3573 SYMBOL_PRINT_NAME (syms[i].sym),
3576 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3577 SYMBOL_PRINT_NAME (syms[i].sym),
3578 symtab_to_filename_for_display (sal.symtab),
3585 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3586 && SYMBOL_TYPE (syms[i].sym) != NULL
3587 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3588 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3590 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3591 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3593 SYMBOL_PRINT_NAME (syms[i].sym),
3594 symtab_to_filename_for_display (symtab),
3595 SYMBOL_LINE (syms[i].sym));
3596 else if (is_enumeral
3597 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3599 printf_unfiltered (("[%d] "), i + first_choice);
3600 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3601 gdb_stdout, -1, 0, &type_print_raw_options);
3602 printf_unfiltered (_("'(%s) (enumeral)\n"),
3603 SYMBOL_PRINT_NAME (syms[i].sym));
3605 else if (symtab != NULL)
3606 printf_unfiltered (is_enumeral
3607 ? _("[%d] %s in %s (enumeral)\n")
3608 : _("[%d] %s at %s:?\n"),
3610 SYMBOL_PRINT_NAME (syms[i].sym),
3611 symtab_to_filename_for_display (symtab));
3613 printf_unfiltered (is_enumeral
3614 ? _("[%d] %s (enumeral)\n")
3615 : _("[%d] %s at ?\n"),
3617 SYMBOL_PRINT_NAME (syms[i].sym));
3621 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3624 for (i = 0; i < n_chosen; i += 1)
3625 syms[i] = syms[chosen[i]];
3630 /* Read and validate a set of numeric choices from the user in the
3631 range 0 .. N_CHOICES-1. Place the results in increasing
3632 order in CHOICES[0 .. N-1], and return N.
3634 The user types choices as a sequence of numbers on one line
3635 separated by blanks, encoding them as follows:
3637 + A choice of 0 means to cancel the selection, throwing an error.
3638 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3639 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3641 The user is not allowed to choose more than MAX_RESULTS values.
3643 ANNOTATION_SUFFIX, if present, is used to annotate the input
3644 prompts (for use with the -f switch). */
3647 get_selections (int *choices, int n_choices, int max_results,
3648 int is_all_choice, char *annotation_suffix)
3653 int first_choice = is_all_choice ? 2 : 1;
3655 prompt = getenv ("PS2");
3659 args = command_line_input (prompt, 0, annotation_suffix);
3662 error_no_arg (_("one or more choice numbers"));
3666 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3667 order, as given in args. Choices are validated. */
3673 args = skip_spaces (args);
3674 if (*args == '\0' && n_chosen == 0)
3675 error_no_arg (_("one or more choice numbers"));
3676 else if (*args == '\0')
3679 choice = strtol (args, &args2, 10);
3680 if (args == args2 || choice < 0
3681 || choice > n_choices + first_choice - 1)
3682 error (_("Argument must be choice number"));
3686 error (_("cancelled"));
3688 if (choice < first_choice)
3690 n_chosen = n_choices;
3691 for (j = 0; j < n_choices; j += 1)
3695 choice -= first_choice;
3697 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3701 if (j < 0 || choice != choices[j])
3705 for (k = n_chosen - 1; k > j; k -= 1)
3706 choices[k + 1] = choices[k];
3707 choices[j + 1] = choice;
3712 if (n_chosen > max_results)
3713 error (_("Select no more than %d of the above"), max_results);
3718 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3719 on the function identified by SYM and BLOCK, and taking NARGS
3720 arguments. Update *EXPP as needed to hold more space. */
3723 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3724 int oplen, struct symbol *sym,
3725 const struct block *block)
3727 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3728 symbol, -oplen for operator being replaced). */
3729 struct expression *newexp = (struct expression *)
3730 xzalloc (sizeof (struct expression)
3731 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3732 struct expression *exp = *expp;
3734 newexp->nelts = exp->nelts + 7 - oplen;
3735 newexp->language_defn = exp->language_defn;
3736 newexp->gdbarch = exp->gdbarch;
3737 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3738 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3739 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3741 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3742 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3744 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3745 newexp->elts[pc + 4].block = block;
3746 newexp->elts[pc + 5].symbol = sym;
3752 /* Type-class predicates */
3754 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3758 numeric_type_p (struct type *type)
3764 switch (TYPE_CODE (type))
3769 case TYPE_CODE_RANGE:
3770 return (type == TYPE_TARGET_TYPE (type)
3771 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3778 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3781 integer_type_p (struct type *type)
3787 switch (TYPE_CODE (type))
3791 case TYPE_CODE_RANGE:
3792 return (type == TYPE_TARGET_TYPE (type)
3793 || integer_type_p (TYPE_TARGET_TYPE (type)));
3800 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3803 scalar_type_p (struct type *type)
3809 switch (TYPE_CODE (type))
3812 case TYPE_CODE_RANGE:
3813 case TYPE_CODE_ENUM:
3822 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3825 discrete_type_p (struct type *type)
3831 switch (TYPE_CODE (type))
3834 case TYPE_CODE_RANGE:
3835 case TYPE_CODE_ENUM:
3836 case TYPE_CODE_BOOL:
3844 /* Returns non-zero if OP with operands in the vector ARGS could be
3845 a user-defined function. Errs on the side of pre-defined operators
3846 (i.e., result 0). */
3849 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3851 struct type *type0 =
3852 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3853 struct type *type1 =
3854 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3868 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3872 case BINOP_BITWISE_AND:
3873 case BINOP_BITWISE_IOR:
3874 case BINOP_BITWISE_XOR:
3875 return (!(integer_type_p (type0) && integer_type_p (type1)));
3878 case BINOP_NOTEQUAL:
3883 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3886 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3889 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3893 case UNOP_LOGICAL_NOT:
3895 return (!numeric_type_p (type0));
3904 1. In the following, we assume that a renaming type's name may
3905 have an ___XD suffix. It would be nice if this went away at some
3907 2. We handle both the (old) purely type-based representation of
3908 renamings and the (new) variable-based encoding. At some point,
3909 it is devoutly to be hoped that the former goes away
3910 (FIXME: hilfinger-2007-07-09).
3911 3. Subprogram renamings are not implemented, although the XRS
3912 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3914 /* If SYM encodes a renaming,
3916 <renaming> renames <renamed entity>,
3918 sets *LEN to the length of the renamed entity's name,
3919 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3920 the string describing the subcomponent selected from the renamed
3921 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3922 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3923 are undefined). Otherwise, returns a value indicating the category
3924 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3925 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3926 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3927 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3928 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3929 may be NULL, in which case they are not assigned.
3931 [Currently, however, GCC does not generate subprogram renamings.] */
3933 enum ada_renaming_category
3934 ada_parse_renaming (struct symbol *sym,
3935 const char **renamed_entity, int *len,
3936 const char **renaming_expr)
3938 enum ada_renaming_category kind;
3943 return ADA_NOT_RENAMING;
3944 switch (SYMBOL_CLASS (sym))
3947 return ADA_NOT_RENAMING;
3949 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3950 renamed_entity, len, renaming_expr);
3954 case LOC_OPTIMIZED_OUT:
3955 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3957 return ADA_NOT_RENAMING;
3961 kind = ADA_OBJECT_RENAMING;
3965 kind = ADA_EXCEPTION_RENAMING;
3969 kind = ADA_PACKAGE_RENAMING;
3973 kind = ADA_SUBPROGRAM_RENAMING;
3977 return ADA_NOT_RENAMING;
3981 if (renamed_entity != NULL)
3982 *renamed_entity = info;
3983 suffix = strstr (info, "___XE");
3984 if (suffix == NULL || suffix == info)
3985 return ADA_NOT_RENAMING;
3987 *len = strlen (info) - strlen (suffix);
3989 if (renaming_expr != NULL)
3990 *renaming_expr = suffix;
3994 /* Assuming TYPE encodes a renaming according to the old encoding in
3995 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3996 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3997 ADA_NOT_RENAMING otherwise. */
3998 static enum ada_renaming_category
3999 parse_old_style_renaming (struct type *type,
4000 const char **renamed_entity, int *len,
4001 const char **renaming_expr)
4003 enum ada_renaming_category kind;
4008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4009 || TYPE_NFIELDS (type) != 1)
4010 return ADA_NOT_RENAMING;
4012 name = type_name_no_tag (type);
4014 return ADA_NOT_RENAMING;
4016 name = strstr (name, "___XR");
4018 return ADA_NOT_RENAMING;
4023 kind = ADA_OBJECT_RENAMING;
4026 kind = ADA_EXCEPTION_RENAMING;
4029 kind = ADA_PACKAGE_RENAMING;
4032 kind = ADA_SUBPROGRAM_RENAMING;
4035 return ADA_NOT_RENAMING;
4038 info = TYPE_FIELD_NAME (type, 0);
4040 return ADA_NOT_RENAMING;
4041 if (renamed_entity != NULL)
4042 *renamed_entity = info;
4043 suffix = strstr (info, "___XE");
4044 if (renaming_expr != NULL)
4045 *renaming_expr = suffix + 5;
4046 if (suffix == NULL || suffix == info)
4047 return ADA_NOT_RENAMING;
4049 *len = suffix - info;
4053 /* Compute the value of the given RENAMING_SYM, which is expected to
4054 be a symbol encoding a renaming expression. BLOCK is the block
4055 used to evaluate the renaming. */
4057 static struct value *
4058 ada_read_renaming_var_value (struct symbol *renaming_sym,
4059 struct block *block)
4061 const char *sym_name;
4062 struct expression *expr;
4063 struct value *value;
4064 struct cleanup *old_chain = NULL;
4066 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4067 expr = parse_exp_1 (&sym_name, 0, block, 0);
4068 old_chain = make_cleanup (free_current_contents, &expr);
4069 value = evaluate_expression (expr);
4071 do_cleanups (old_chain);
4076 /* Evaluation: Function Calls */
4078 /* Return an lvalue containing the value VAL. This is the identity on
4079 lvalues, and otherwise has the side-effect of allocating memory
4080 in the inferior where a copy of the value contents is copied. */
4082 static struct value *
4083 ensure_lval (struct value *val)
4085 if (VALUE_LVAL (val) == not_lval
4086 || VALUE_LVAL (val) == lval_internalvar)
4088 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4089 const CORE_ADDR addr =
4090 value_as_long (value_allocate_space_in_inferior (len));
4092 set_value_address (val, addr);
4093 VALUE_LVAL (val) = lval_memory;
4094 write_memory (addr, value_contents (val), len);
4100 /* Return the value ACTUAL, converted to be an appropriate value for a
4101 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4102 allocating any necessary descriptors (fat pointers), or copies of
4103 values not residing in memory, updating it as needed. */
4106 ada_convert_actual (struct value *actual, struct type *formal_type0)
4108 struct type *actual_type = ada_check_typedef (value_type (actual));
4109 struct type *formal_type = ada_check_typedef (formal_type0);
4110 struct type *formal_target =
4111 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4113 struct type *actual_target =
4114 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4115 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4117 if (ada_is_array_descriptor_type (formal_target)
4118 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4119 return make_array_descriptor (formal_type, actual);
4120 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4121 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4123 struct value *result;
4125 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4126 && ada_is_array_descriptor_type (actual_target))
4127 result = desc_data (actual);
4128 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4130 if (VALUE_LVAL (actual) != lval_memory)
4134 actual_type = ada_check_typedef (value_type (actual));
4135 val = allocate_value (actual_type);
4136 memcpy ((char *) value_contents_raw (val),
4137 (char *) value_contents (actual),
4138 TYPE_LENGTH (actual_type));
4139 actual = ensure_lval (val);
4141 result = value_addr (actual);
4145 return value_cast_pointers (formal_type, result, 0);
4147 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4148 return ada_value_ind (actual);
4153 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4154 type TYPE. This is usually an inefficient no-op except on some targets
4155 (such as AVR) where the representation of a pointer and an address
4159 value_pointer (struct value *value, struct type *type)
4161 struct gdbarch *gdbarch = get_type_arch (type);
4162 unsigned len = TYPE_LENGTH (type);
4163 gdb_byte *buf = alloca (len);
4166 addr = value_address (value);
4167 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4168 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4173 /* Push a descriptor of type TYPE for array value ARR on the stack at
4174 *SP, updating *SP to reflect the new descriptor. Return either
4175 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4176 to-descriptor type rather than a descriptor type), a struct value *
4177 representing a pointer to this descriptor. */
4179 static struct value *
4180 make_array_descriptor (struct type *type, struct value *arr)
4182 struct type *bounds_type = desc_bounds_type (type);
4183 struct type *desc_type = desc_base_type (type);
4184 struct value *descriptor = allocate_value (desc_type);
4185 struct value *bounds = allocate_value (bounds_type);
4188 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 0),
4193 desc_bound_bitpos (bounds_type, i, 0),
4194 desc_bound_bitsize (bounds_type, i, 0));
4195 modify_field (value_type (bounds), value_contents_writeable (bounds),
4196 ada_array_bound (arr, i, 1),
4197 desc_bound_bitpos (bounds_type, i, 1),
4198 desc_bound_bitsize (bounds_type, i, 1));
4201 bounds = ensure_lval (bounds);
4203 modify_field (value_type (descriptor),
4204 value_contents_writeable (descriptor),
4205 value_pointer (ensure_lval (arr),
4206 TYPE_FIELD_TYPE (desc_type, 0)),
4207 fat_pntr_data_bitpos (desc_type),
4208 fat_pntr_data_bitsize (desc_type));
4210 modify_field (value_type (descriptor),
4211 value_contents_writeable (descriptor),
4212 value_pointer (bounds,
4213 TYPE_FIELD_TYPE (desc_type, 1)),
4214 fat_pntr_bounds_bitpos (desc_type),
4215 fat_pntr_bounds_bitsize (desc_type));
4217 descriptor = ensure_lval (descriptor);
4219 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4220 return value_addr (descriptor);
4225 /* Dummy definitions for an experimental caching module that is not
4226 * used in the public sources. */
4229 lookup_cached_symbol (const char *name, domain_enum namespace,
4230 struct symbol **sym, struct block **block)
4236 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4237 const struct block *block)
4243 /* Return nonzero if wild matching should be used when searching for
4244 all symbols matching LOOKUP_NAME.
4246 LOOKUP_NAME is expected to be a symbol name after transformation
4247 for Ada lookups (see ada_name_for_lookup). */
4250 should_use_wild_match (const char *lookup_name)
4252 return (strstr (lookup_name, "__") == NULL);
4255 /* Return the result of a standard (literal, C-like) lookup of NAME in
4256 given DOMAIN, visible from lexical block BLOCK. */
4258 static struct symbol *
4259 standard_lookup (const char *name, const struct block *block,
4262 /* Initialize it just to avoid a GCC false warning. */
4263 struct symbol *sym = NULL;
4265 if (lookup_cached_symbol (name, domain, &sym, NULL))
4267 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4268 cache_symbol (name, domain, sym, block_found);
4273 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4274 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4275 since they contend in overloading in the same way. */
4277 is_nonfunction (struct ada_symbol_info syms[], int n)
4281 for (i = 0; i < n; i += 1)
4282 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4283 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4284 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4290 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4291 struct types. Otherwise, they may not. */
4294 equiv_types (struct type *type0, struct type *type1)
4298 if (type0 == NULL || type1 == NULL
4299 || TYPE_CODE (type0) != TYPE_CODE (type1))
4301 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4302 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4303 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4304 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4310 /* True iff SYM0 represents the same entity as SYM1, or one that is
4311 no more defined than that of SYM1. */
4314 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4318 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4319 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4322 switch (SYMBOL_CLASS (sym0))
4328 struct type *type0 = SYMBOL_TYPE (sym0);
4329 struct type *type1 = SYMBOL_TYPE (sym1);
4330 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4331 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4332 int len0 = strlen (name0);
4335 TYPE_CODE (type0) == TYPE_CODE (type1)
4336 && (equiv_types (type0, type1)
4337 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4338 && strncmp (name1 + len0, "___XV", 5) == 0));
4341 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4342 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4348 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4349 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4352 add_defn_to_vec (struct obstack *obstackp,
4354 struct block *block)
4357 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4359 /* Do not try to complete stub types, as the debugger is probably
4360 already scanning all symbols matching a certain name at the
4361 time when this function is called. Trying to replace the stub
4362 type by its associated full type will cause us to restart a scan
4363 which may lead to an infinite recursion. Instead, the client
4364 collecting the matching symbols will end up collecting several
4365 matches, with at least one of them complete. It can then filter
4366 out the stub ones if needed. */
4368 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4370 if (lesseq_defined_than (sym, prevDefns[i].sym))
4372 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4374 prevDefns[i].sym = sym;
4375 prevDefns[i].block = block;
4381 struct ada_symbol_info info;
4385 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4389 /* Number of ada_symbol_info structures currently collected in
4390 current vector in *OBSTACKP. */
4393 num_defns_collected (struct obstack *obstackp)
4395 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4398 /* Vector of ada_symbol_info structures currently collected in current
4399 vector in *OBSTACKP. If FINISH, close off the vector and return
4400 its final address. */
4402 static struct ada_symbol_info *
4403 defns_collected (struct obstack *obstackp, int finish)
4406 return obstack_finish (obstackp);
4408 return (struct ada_symbol_info *) obstack_base (obstackp);
4411 /* Return a minimal symbol matching NAME according to Ada decoding
4412 rules. Returns NULL if there is no such minimal symbol. Names
4413 prefixed with "standard__" are handled specially: "standard__" is
4414 first stripped off, and only static and global symbols are searched. */
4416 struct minimal_symbol *
4417 ada_lookup_simple_minsym (const char *name)
4419 struct objfile *objfile;
4420 struct minimal_symbol *msymbol;
4421 const int wild_match_p = should_use_wild_match (name);
4423 /* Special case: If the user specifies a symbol name inside package
4424 Standard, do a non-wild matching of the symbol name without
4425 the "standard__" prefix. This was primarily introduced in order
4426 to allow the user to specifically access the standard exceptions
4427 using, for instance, Standard.Constraint_Error when Constraint_Error
4428 is ambiguous (due to the user defining its own Constraint_Error
4429 entity inside its program). */
4430 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4431 name += sizeof ("standard__") - 1;
4433 ALL_MSYMBOLS (objfile, msymbol)
4435 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4436 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4443 /* For all subprograms that statically enclose the subprogram of the
4444 selected frame, add symbols matching identifier NAME in DOMAIN
4445 and their blocks to the list of data in OBSTACKP, as for
4446 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4447 with a wildcard prefix. */
4450 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4451 const char *name, domain_enum namespace,
4456 /* True if TYPE is definitely an artificial type supplied to a symbol
4457 for which no debugging information was given in the symbol file. */
4460 is_nondebugging_type (struct type *type)
4462 const char *name = ada_type_name (type);
4464 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4467 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4468 that are deemed "identical" for practical purposes.
4470 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4471 types and that their number of enumerals is identical (in other
4472 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4475 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4479 /* The heuristic we use here is fairly conservative. We consider
4480 that 2 enumerate types are identical if they have the same
4481 number of enumerals and that all enumerals have the same
4482 underlying value and name. */
4484 /* All enums in the type should have an identical underlying value. */
4485 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4486 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4489 /* All enumerals should also have the same name (modulo any numerical
4491 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4493 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4494 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4495 int len_1 = strlen (name_1);
4496 int len_2 = strlen (name_2);
4498 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4499 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4501 || strncmp (TYPE_FIELD_NAME (type1, i),
4502 TYPE_FIELD_NAME (type2, i),
4510 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4511 that are deemed "identical" for practical purposes. Sometimes,
4512 enumerals are not strictly identical, but their types are so similar
4513 that they can be considered identical.
4515 For instance, consider the following code:
4517 type Color is (Black, Red, Green, Blue, White);
4518 type RGB_Color is new Color range Red .. Blue;
4520 Type RGB_Color is a subrange of an implicit type which is a copy
4521 of type Color. If we call that implicit type RGB_ColorB ("B" is
4522 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4523 As a result, when an expression references any of the enumeral
4524 by name (Eg. "print green"), the expression is technically
4525 ambiguous and the user should be asked to disambiguate. But
4526 doing so would only hinder the user, since it wouldn't matter
4527 what choice he makes, the outcome would always be the same.
4528 So, for practical purposes, we consider them as the same. */
4531 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4535 /* Before performing a thorough comparison check of each type,
4536 we perform a series of inexpensive checks. We expect that these
4537 checks will quickly fail in the vast majority of cases, and thus
4538 help prevent the unnecessary use of a more expensive comparison.
4539 Said comparison also expects us to make some of these checks
4540 (see ada_identical_enum_types_p). */
4542 /* Quick check: All symbols should have an enum type. */
4543 for (i = 0; i < nsyms; i++)
4544 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4547 /* Quick check: They should all have the same value. */
4548 for (i = 1; i < nsyms; i++)
4549 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4552 /* Quick check: They should all have the same number of enumerals. */
4553 for (i = 1; i < nsyms; i++)
4554 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4555 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4558 /* All the sanity checks passed, so we might have a set of
4559 identical enumeration types. Perform a more complete
4560 comparison of the type of each symbol. */
4561 for (i = 1; i < nsyms; i++)
4562 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4563 SYMBOL_TYPE (syms[0].sym)))
4569 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4570 duplicate other symbols in the list (The only case I know of where
4571 this happens is when object files containing stabs-in-ecoff are
4572 linked with files containing ordinary ecoff debugging symbols (or no
4573 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4574 Returns the number of items in the modified list. */
4577 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4581 /* We should never be called with less than 2 symbols, as there
4582 cannot be any extra symbol in that case. But it's easy to
4583 handle, since we have nothing to do in that case. */
4592 /* If two symbols have the same name and one of them is a stub type,
4593 the get rid of the stub. */
4595 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4596 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4598 for (j = 0; j < nsyms; j++)
4601 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4602 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4603 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4604 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4609 /* Two symbols with the same name, same class and same address
4610 should be identical. */
4612 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4613 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4614 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4616 for (j = 0; j < nsyms; j += 1)
4619 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4620 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4621 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4622 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4623 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4624 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4631 for (j = i + 1; j < nsyms; j += 1)
4632 syms[j - 1] = syms[j];
4639 /* If all the remaining symbols are identical enumerals, then
4640 just keep the first one and discard the rest.
4642 Unlike what we did previously, we do not discard any entry
4643 unless they are ALL identical. This is because the symbol
4644 comparison is not a strict comparison, but rather a practical
4645 comparison. If all symbols are considered identical, then
4646 we can just go ahead and use the first one and discard the rest.
4647 But if we cannot reduce the list to a single element, we have
4648 to ask the user to disambiguate anyways. And if we have to
4649 present a multiple-choice menu, it's less confusing if the list
4650 isn't missing some choices that were identical and yet distinct. */
4651 if (symbols_are_identical_enums (syms, nsyms))
4657 /* Given a type that corresponds to a renaming entity, use the type name
4658 to extract the scope (package name or function name, fully qualified,
4659 and following the GNAT encoding convention) where this renaming has been
4660 defined. The string returned needs to be deallocated after use. */
4663 xget_renaming_scope (struct type *renaming_type)
4665 /* The renaming types adhere to the following convention:
4666 <scope>__<rename>___<XR extension>.
4667 So, to extract the scope, we search for the "___XR" extension,
4668 and then backtrack until we find the first "__". */
4670 const char *name = type_name_no_tag (renaming_type);
4671 char *suffix = strstr (name, "___XR");
4676 /* Now, backtrack a bit until we find the first "__". Start looking
4677 at suffix - 3, as the <rename> part is at least one character long. */
4679 for (last = suffix - 3; last > name; last--)
4680 if (last[0] == '_' && last[1] == '_')
4683 /* Make a copy of scope and return it. */
4685 scope_len = last - name;
4686 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4688 strncpy (scope, name, scope_len);
4689 scope[scope_len] = '\0';
4694 /* Return nonzero if NAME corresponds to a package name. */
4697 is_package_name (const char *name)
4699 /* Here, We take advantage of the fact that no symbols are generated
4700 for packages, while symbols are generated for each function.
4701 So the condition for NAME represent a package becomes equivalent
4702 to NAME not existing in our list of symbols. There is only one
4703 small complication with library-level functions (see below). */
4707 /* If it is a function that has not been defined at library level,
4708 then we should be able to look it up in the symbols. */
4709 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4712 /* Library-level function names start with "_ada_". See if function
4713 "_ada_" followed by NAME can be found. */
4715 /* Do a quick check that NAME does not contain "__", since library-level
4716 functions names cannot contain "__" in them. */
4717 if (strstr (name, "__") != NULL)
4720 fun_name = xstrprintf ("_ada_%s", name);
4722 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4725 /* Return nonzero if SYM corresponds to a renaming entity that is
4726 not visible from FUNCTION_NAME. */
4729 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4733 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4736 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4738 make_cleanup (xfree, scope);
4740 /* If the rename has been defined in a package, then it is visible. */
4741 if (is_package_name (scope))
4744 /* Check that the rename is in the current function scope by checking
4745 that its name starts with SCOPE. */
4747 /* If the function name starts with "_ada_", it means that it is
4748 a library-level function. Strip this prefix before doing the
4749 comparison, as the encoding for the renaming does not contain
4751 if (strncmp (function_name, "_ada_", 5) == 0)
4754 return (strncmp (function_name, scope, strlen (scope)) != 0);
4757 /* Remove entries from SYMS that corresponds to a renaming entity that
4758 is not visible from the function associated with CURRENT_BLOCK or
4759 that is superfluous due to the presence of more specific renaming
4760 information. Places surviving symbols in the initial entries of
4761 SYMS and returns the number of surviving symbols.
4764 First, in cases where an object renaming is implemented as a
4765 reference variable, GNAT may produce both the actual reference
4766 variable and the renaming encoding. In this case, we discard the
4769 Second, GNAT emits a type following a specified encoding for each renaming
4770 entity. Unfortunately, STABS currently does not support the definition
4771 of types that are local to a given lexical block, so all renamings types
4772 are emitted at library level. As a consequence, if an application
4773 contains two renaming entities using the same name, and a user tries to
4774 print the value of one of these entities, the result of the ada symbol
4775 lookup will also contain the wrong renaming type.
4777 This function partially covers for this limitation by attempting to
4778 remove from the SYMS list renaming symbols that should be visible
4779 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4780 method with the current information available. The implementation
4781 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4783 - When the user tries to print a rename in a function while there
4784 is another rename entity defined in a package: Normally, the
4785 rename in the function has precedence over the rename in the
4786 package, so the latter should be removed from the list. This is
4787 currently not the case.
4789 - This function will incorrectly remove valid renames if
4790 the CURRENT_BLOCK corresponds to a function which symbol name
4791 has been changed by an "Export" pragma. As a consequence,
4792 the user will be unable to print such rename entities. */
4795 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4796 int nsyms, const struct block *current_block)
4798 struct symbol *current_function;
4799 const char *current_function_name;
4801 int is_new_style_renaming;
4803 /* If there is both a renaming foo___XR... encoded as a variable and
4804 a simple variable foo in the same block, discard the latter.
4805 First, zero out such symbols, then compress. */
4806 is_new_style_renaming = 0;
4807 for (i = 0; i < nsyms; i += 1)
4809 struct symbol *sym = syms[i].sym;
4810 const struct block *block = syms[i].block;
4814 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4816 name = SYMBOL_LINKAGE_NAME (sym);
4817 suffix = strstr (name, "___XR");
4821 int name_len = suffix - name;
4824 is_new_style_renaming = 1;
4825 for (j = 0; j < nsyms; j += 1)
4826 if (i != j && syms[j].sym != NULL
4827 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4829 && block == syms[j].block)
4833 if (is_new_style_renaming)
4837 for (j = k = 0; j < nsyms; j += 1)
4838 if (syms[j].sym != NULL)
4846 /* Extract the function name associated to CURRENT_BLOCK.
4847 Abort if unable to do so. */
4849 if (current_block == NULL)
4852 current_function = block_linkage_function (current_block);
4853 if (current_function == NULL)
4856 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4857 if (current_function_name == NULL)
4860 /* Check each of the symbols, and remove it from the list if it is
4861 a type corresponding to a renaming that is out of the scope of
4862 the current block. */
4867 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4868 == ADA_OBJECT_RENAMING
4869 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4873 for (j = i + 1; j < nsyms; j += 1)
4874 syms[j - 1] = syms[j];
4884 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4885 whose name and domain match NAME and DOMAIN respectively.
4886 If no match was found, then extend the search to "enclosing"
4887 routines (in other words, if we're inside a nested function,
4888 search the symbols defined inside the enclosing functions).
4889 If WILD_MATCH_P is nonzero, perform the naming matching in
4890 "wild" mode (see function "wild_match" for more info).
4892 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4895 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4896 struct block *block, domain_enum domain,
4899 int block_depth = 0;
4901 while (block != NULL)
4904 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4907 /* If we found a non-function match, assume that's the one. */
4908 if (is_nonfunction (defns_collected (obstackp, 0),
4909 num_defns_collected (obstackp)))
4912 block = BLOCK_SUPERBLOCK (block);
4915 /* If no luck so far, try to find NAME as a local symbol in some lexically
4916 enclosing subprogram. */
4917 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4918 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4921 /* An object of this type is used as the user_data argument when
4922 calling the map_matching_symbols method. */
4926 struct objfile *objfile;
4927 struct obstack *obstackp;
4928 struct symbol *arg_sym;
4932 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4933 to a list of symbols. DATA0 is a pointer to a struct match_data *
4934 containing the obstack that collects the symbol list, the file that SYM
4935 must come from, a flag indicating whether a non-argument symbol has
4936 been found in the current block, and the last argument symbol
4937 passed in SYM within the current block (if any). When SYM is null,
4938 marking the end of a block, the argument symbol is added if no
4939 other has been found. */
4942 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4944 struct match_data *data = (struct match_data *) data0;
4948 if (!data->found_sym && data->arg_sym != NULL)
4949 add_defn_to_vec (data->obstackp,
4950 fixup_symbol_section (data->arg_sym, data->objfile),
4952 data->found_sym = 0;
4953 data->arg_sym = NULL;
4957 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4959 else if (SYMBOL_IS_ARGUMENT (sym))
4960 data->arg_sym = sym;
4963 data->found_sym = 1;
4964 add_defn_to_vec (data->obstackp,
4965 fixup_symbol_section (sym, data->objfile),
4972 /* Compare STRING1 to STRING2, with results as for strcmp.
4973 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4974 implies compare_names (STRING1, STRING2) (they may differ as to
4975 what symbols compare equal). */
4978 compare_names (const char *string1, const char *string2)
4980 while (*string1 != '\0' && *string2 != '\0')
4982 if (isspace (*string1) || isspace (*string2))
4983 return strcmp_iw_ordered (string1, string2);
4984 if (*string1 != *string2)
4992 return strcmp_iw_ordered (string1, string2);
4994 if (*string2 == '\0')
4996 if (is_name_suffix (string1))
5003 if (*string2 == '(')
5004 return strcmp_iw_ordered (string1, string2);
5006 return *string1 - *string2;
5010 /* Add to OBSTACKP all non-local symbols whose name and domain match
5011 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5012 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5015 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5016 domain_enum domain, int global,
5019 struct objfile *objfile;
5020 struct match_data data;
5022 memset (&data, 0, sizeof data);
5023 data.obstackp = obstackp;
5025 ALL_OBJFILES (objfile)
5027 data.objfile = objfile;
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5034 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5035 aux_add_nonlocal_symbols, &data,
5036 full_match, compare_names);
5039 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5041 ALL_OBJFILES (objfile)
5043 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5044 strcpy (name1, "_ada_");
5045 strcpy (name1 + sizeof ("_ada_") - 1, name);
5046 data.objfile = objfile;
5047 objfile->sf->qf->map_matching_symbols (name1, domain,
5049 aux_add_nonlocal_symbols,
5051 full_match, compare_names);
5056 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5057 non-zero, enclosing scope and in global scopes, returning the number of
5059 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5060 indicating the symbols found and the blocks and symbol tables (if
5061 any) in which they were found. This vector is transient---good only to
5062 the next call of ada_lookup_symbol_list.
5064 When full_search is non-zero, any non-function/non-enumeral
5065 symbol match within the nest of blocks whose innermost member is BLOCK0,
5066 is the one match returned (no other matches in that or
5067 enclosing blocks is returned). If there are any matches in or
5068 surrounding BLOCK0, then these alone are returned.
5070 Names prefixed with "standard__" are handled specially: "standard__"
5071 is first stripped off, and only static and global symbols are searched. */
5074 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5075 domain_enum namespace,
5076 struct ada_symbol_info **results,
5080 struct block *block;
5082 const int wild_match_p = should_use_wild_match (name0);
5086 obstack_free (&symbol_list_obstack, NULL);
5087 obstack_init (&symbol_list_obstack);
5091 /* Search specified block and its superiors. */
5094 block = (struct block *) block0; /* FIXME: No cast ought to be
5095 needed, but adding const will
5096 have a cascade effect. */
5098 /* Special case: If the user specifies a symbol name inside package
5099 Standard, do a non-wild matching of the symbol name without
5100 the "standard__" prefix. This was primarily introduced in order
5101 to allow the user to specifically access the standard exceptions
5102 using, for instance, Standard.Constraint_Error when Constraint_Error
5103 is ambiguous (due to the user defining its own Constraint_Error
5104 entity inside its program). */
5105 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5108 name = name0 + sizeof ("standard__") - 1;
5111 /* Check the non-global symbols. If we have ANY match, then we're done. */
5117 ada_add_local_symbols (&symbol_list_obstack, name, block,
5118 namespace, wild_match_p);
5122 /* In the !full_search case we're are being called by
5123 ada_iterate_over_symbols, and we don't want to search
5125 ada_add_block_symbols (&symbol_list_obstack, block, name,
5126 namespace, NULL, wild_match_p);
5128 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5132 /* No non-global symbols found. Check our cache to see if we have
5133 already performed this search before. If we have, then return
5137 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5140 add_defn_to_vec (&symbol_list_obstack, sym, block);
5144 /* Search symbols from all global blocks. */
5146 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5149 /* Now add symbols from all per-file blocks if we've gotten no hits
5150 (not strictly correct, but perhaps better than an error). */
5152 if (num_defns_collected (&symbol_list_obstack) == 0)
5153 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5157 ndefns = num_defns_collected (&symbol_list_obstack);
5158 *results = defns_collected (&symbol_list_obstack, 1);
5160 ndefns = remove_extra_symbols (*results, ndefns);
5162 if (ndefns == 0 && full_search)
5163 cache_symbol (name0, namespace, NULL, NULL);
5165 if (ndefns == 1 && full_search && cacheIfUnique)
5166 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5168 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5173 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5174 in global scopes, returning the number of matches, and setting *RESULTS
5175 to a vector of (SYM,BLOCK) tuples.
5176 See ada_lookup_symbol_list_worker for further details. */
5179 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5180 domain_enum domain, struct ada_symbol_info **results)
5182 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5185 /* Implementation of the la_iterate_over_symbols method. */
5188 ada_iterate_over_symbols (const struct block *block,
5189 const char *name, domain_enum domain,
5190 symbol_found_callback_ftype *callback,
5194 struct ada_symbol_info *results;
5196 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5197 for (i = 0; i < ndefs; ++i)
5199 if (! (*callback) (results[i].sym, data))
5204 /* If NAME is the name of an entity, return a string that should
5205 be used to look that entity up in Ada units. This string should
5206 be deallocated after use using xfree.
5208 NAME can have any form that the "break" or "print" commands might
5209 recognize. In other words, it does not have to be the "natural"
5210 name, or the "encoded" name. */
5213 ada_name_for_lookup (const char *name)
5216 int nlen = strlen (name);
5218 if (name[0] == '<' && name[nlen - 1] == '>')
5220 canon = xmalloc (nlen - 1);
5221 memcpy (canon, name + 1, nlen - 2);
5222 canon[nlen - 2] = '\0';
5225 canon = xstrdup (ada_encode (ada_fold_name (name)));
5229 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5230 to 1, but choosing the first symbol found if there are multiple
5233 The result is stored in *INFO, which must be non-NULL.
5234 If no match is found, INFO->SYM is set to NULL. */
5237 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5238 domain_enum namespace,
5239 struct ada_symbol_info *info)
5241 struct ada_symbol_info *candidates;
5244 gdb_assert (info != NULL);
5245 memset (info, 0, sizeof (struct ada_symbol_info));
5247 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5248 if (n_candidates == 0)
5251 *info = candidates[0];
5252 info->sym = fixup_symbol_section (info->sym, NULL);
5255 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5256 scope and in global scopes, or NULL if none. NAME is folded and
5257 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5258 choosing the first symbol if there are multiple choices.
5259 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5262 ada_lookup_symbol (const char *name, const struct block *block0,
5263 domain_enum namespace, int *is_a_field_of_this)
5265 struct ada_symbol_info info;
5267 if (is_a_field_of_this != NULL)
5268 *is_a_field_of_this = 0;
5270 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5271 block0, namespace, &info);
5275 static struct symbol *
5276 ada_lookup_symbol_nonlocal (const char *name,
5277 const struct block *block,
5278 const domain_enum domain)
5280 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5284 /* True iff STR is a possible encoded suffix of a normal Ada name
5285 that is to be ignored for matching purposes. Suffixes of parallel
5286 names (e.g., XVE) are not included here. Currently, the possible suffixes
5287 are given by any of the regular expressions:
5289 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5290 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5291 TKB [subprogram suffix for task bodies]
5292 _E[0-9]+[bs]$ [protected object entry suffixes]
5293 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5295 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5296 match is performed. This sequence is used to differentiate homonyms,
5297 is an optional part of a valid name suffix. */
5300 is_name_suffix (const char *str)
5303 const char *matching;
5304 const int len = strlen (str);
5306 /* Skip optional leading __[0-9]+. */
5308 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5311 while (isdigit (str[0]))
5317 if (str[0] == '.' || str[0] == '$')
5320 while (isdigit (matching[0]))
5322 if (matching[0] == '\0')
5328 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5331 while (isdigit (matching[0]))
5333 if (matching[0] == '\0')
5337 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5339 if (strcmp (str, "TKB") == 0)
5343 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5344 with a N at the end. Unfortunately, the compiler uses the same
5345 convention for other internal types it creates. So treating
5346 all entity names that end with an "N" as a name suffix causes
5347 some regressions. For instance, consider the case of an enumerated
5348 type. To support the 'Image attribute, it creates an array whose
5350 Having a single character like this as a suffix carrying some
5351 information is a bit risky. Perhaps we should change the encoding
5352 to be something like "_N" instead. In the meantime, do not do
5353 the following check. */
5354 /* Protected Object Subprograms */
5355 if (len == 1 && str [0] == 'N')
5360 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5363 while (isdigit (matching[0]))
5365 if ((matching[0] == 'b' || matching[0] == 's')
5366 && matching [1] == '\0')
5370 /* ??? We should not modify STR directly, as we are doing below. This
5371 is fine in this case, but may become problematic later if we find
5372 that this alternative did not work, and want to try matching
5373 another one from the begining of STR. Since we modified it, we
5374 won't be able to find the begining of the string anymore! */
5378 while (str[0] != '_' && str[0] != '\0')
5380 if (str[0] != 'n' && str[0] != 'b')
5386 if (str[0] == '\000')
5391 if (str[1] != '_' || str[2] == '\000')
5395 if (strcmp (str + 3, "JM") == 0)
5397 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5398 the LJM suffix in favor of the JM one. But we will
5399 still accept LJM as a valid suffix for a reasonable
5400 amount of time, just to allow ourselves to debug programs
5401 compiled using an older version of GNAT. */
5402 if (strcmp (str + 3, "LJM") == 0)
5406 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5407 || str[4] == 'U' || str[4] == 'P')
5409 if (str[4] == 'R' && str[5] != 'T')
5413 if (!isdigit (str[2]))
5415 for (k = 3; str[k] != '\0'; k += 1)
5416 if (!isdigit (str[k]) && str[k] != '_')
5420 if (str[0] == '$' && isdigit (str[1]))
5422 for (k = 2; str[k] != '\0'; k += 1)
5423 if (!isdigit (str[k]) && str[k] != '_')
5430 /* Return non-zero if the string starting at NAME and ending before
5431 NAME_END contains no capital letters. */
5434 is_valid_name_for_wild_match (const char *name0)
5436 const char *decoded_name = ada_decode (name0);
5439 /* If the decoded name starts with an angle bracket, it means that
5440 NAME0 does not follow the GNAT encoding format. It should then
5441 not be allowed as a possible wild match. */
5442 if (decoded_name[0] == '<')
5445 for (i=0; decoded_name[i] != '\0'; i++)
5446 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5452 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5453 that could start a simple name. Assumes that *NAMEP points into
5454 the string beginning at NAME0. */
5457 advance_wild_match (const char **namep, const char *name0, int target0)
5459 const char *name = *namep;
5469 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5472 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5477 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5478 || name[2] == target0))
5486 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5496 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5497 informational suffixes of NAME (i.e., for which is_name_suffix is
5498 true). Assumes that PATN is a lower-cased Ada simple name. */
5501 wild_match (const char *name, const char *patn)
5504 const char *name0 = name;
5508 const char *match = name;
5512 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5515 if (*p == '\0' && is_name_suffix (name))
5516 return match != name0 && !is_valid_name_for_wild_match (name0);
5518 if (name[-1] == '_')
5521 if (!advance_wild_match (&name, name0, *patn))
5526 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5527 informational suffix. */
5530 full_match (const char *sym_name, const char *search_name)
5532 return !match_name (sym_name, search_name, 0);
5536 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5537 vector *defn_symbols, updating the list of symbols in OBSTACKP
5538 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5539 OBJFILE is the section containing BLOCK. */
5542 ada_add_block_symbols (struct obstack *obstackp,
5543 struct block *block, const char *name,
5544 domain_enum domain, struct objfile *objfile,
5547 struct block_iterator iter;
5548 int name_len = strlen (name);
5549 /* A matching argument symbol, if any. */
5550 struct symbol *arg_sym;
5551 /* Set true when we find a matching non-argument symbol. */
5559 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5560 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5562 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5563 SYMBOL_DOMAIN (sym), domain)
5564 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5566 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5568 else if (SYMBOL_IS_ARGUMENT (sym))
5573 add_defn_to_vec (obstackp,
5574 fixup_symbol_section (sym, objfile),
5582 for (sym = block_iter_match_first (block, name, full_match, &iter);
5583 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5585 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5586 SYMBOL_DOMAIN (sym), domain))
5588 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5590 if (SYMBOL_IS_ARGUMENT (sym))
5595 add_defn_to_vec (obstackp,
5596 fixup_symbol_section (sym, objfile),
5604 if (!found_sym && arg_sym != NULL)
5606 add_defn_to_vec (obstackp,
5607 fixup_symbol_section (arg_sym, objfile),
5616 ALL_BLOCK_SYMBOLS (block, iter, sym)
5618 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5619 SYMBOL_DOMAIN (sym), domain))
5623 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5626 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5628 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5633 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5635 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5637 if (SYMBOL_IS_ARGUMENT (sym))
5642 add_defn_to_vec (obstackp,
5643 fixup_symbol_section (sym, objfile),
5651 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5652 They aren't parameters, right? */
5653 if (!found_sym && arg_sym != NULL)
5655 add_defn_to_vec (obstackp,
5656 fixup_symbol_section (arg_sym, objfile),
5663 /* Symbol Completion */
5665 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5666 name in a form that's appropriate for the completion. The result
5667 does not need to be deallocated, but is only good until the next call.
5669 TEXT_LEN is equal to the length of TEXT.
5670 Perform a wild match if WILD_MATCH_P is set.
5671 ENCODED_P should be set if TEXT represents the start of a symbol name
5672 in its encoded form. */
5675 symbol_completion_match (const char *sym_name,
5676 const char *text, int text_len,
5677 int wild_match_p, int encoded_p)
5679 const int verbatim_match = (text[0] == '<');
5684 /* Strip the leading angle bracket. */
5689 /* First, test against the fully qualified name of the symbol. */
5691 if (strncmp (sym_name, text, text_len) == 0)
5694 if (match && !encoded_p)
5696 /* One needed check before declaring a positive match is to verify
5697 that iff we are doing a verbatim match, the decoded version
5698 of the symbol name starts with '<'. Otherwise, this symbol name
5699 is not a suitable completion. */
5700 const char *sym_name_copy = sym_name;
5701 int has_angle_bracket;
5703 sym_name = ada_decode (sym_name);
5704 has_angle_bracket = (sym_name[0] == '<');
5705 match = (has_angle_bracket == verbatim_match);
5706 sym_name = sym_name_copy;
5709 if (match && !verbatim_match)
5711 /* When doing non-verbatim match, another check that needs to
5712 be done is to verify that the potentially matching symbol name
5713 does not include capital letters, because the ada-mode would
5714 not be able to understand these symbol names without the
5715 angle bracket notation. */
5718 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5723 /* Second: Try wild matching... */
5725 if (!match && wild_match_p)
5727 /* Since we are doing wild matching, this means that TEXT
5728 may represent an unqualified symbol name. We therefore must
5729 also compare TEXT against the unqualified name of the symbol. */
5730 sym_name = ada_unqualified_name (ada_decode (sym_name));
5732 if (strncmp (sym_name, text, text_len) == 0)
5736 /* Finally: If we found a mach, prepare the result to return. */
5742 sym_name = add_angle_brackets (sym_name);
5745 sym_name = ada_decode (sym_name);
5750 /* A companion function to ada_make_symbol_completion_list().
5751 Check if SYM_NAME represents a symbol which name would be suitable
5752 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5753 it is appended at the end of the given string vector SV.
5755 ORIG_TEXT is the string original string from the user command
5756 that needs to be completed. WORD is the entire command on which
5757 completion should be performed. These two parameters are used to
5758 determine which part of the symbol name should be added to the
5760 if WILD_MATCH_P is set, then wild matching is performed.
5761 ENCODED_P should be set if TEXT represents a symbol name in its
5762 encoded formed (in which case the completion should also be
5766 symbol_completion_add (VEC(char_ptr) **sv,
5767 const char *sym_name,
5768 const char *text, int text_len,
5769 const char *orig_text, const char *word,
5770 int wild_match_p, int encoded_p)
5772 const char *match = symbol_completion_match (sym_name, text, text_len,
5773 wild_match_p, encoded_p);
5779 /* We found a match, so add the appropriate completion to the given
5782 if (word == orig_text)
5784 completion = xmalloc (strlen (match) + 5);
5785 strcpy (completion, match);
5787 else if (word > orig_text)
5789 /* Return some portion of sym_name. */
5790 completion = xmalloc (strlen (match) + 5);
5791 strcpy (completion, match + (word - orig_text));
5795 /* Return some of ORIG_TEXT plus sym_name. */
5796 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5797 strncpy (completion, word, orig_text - word);
5798 completion[orig_text - word] = '\0';
5799 strcat (completion, match);
5802 VEC_safe_push (char_ptr, *sv, completion);
5805 /* An object of this type is passed as the user_data argument to the
5806 expand_partial_symbol_names method. */
5807 struct add_partial_datum
5809 VEC(char_ptr) **completions;
5818 /* A callback for expand_partial_symbol_names. */
5820 ada_expand_partial_symbol_name (const char *name, void *user_data)
5822 struct add_partial_datum *data = user_data;
5824 return symbol_completion_match (name, data->text, data->text_len,
5825 data->wild_match, data->encoded) != NULL;
5828 /* Return a list of possible symbol names completing TEXT0. WORD is
5829 the entire command on which completion is made. */
5831 static VEC (char_ptr) *
5832 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5838 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5841 struct minimal_symbol *msymbol;
5842 struct objfile *objfile;
5843 struct block *b, *surrounding_static_block = 0;
5845 struct block_iterator iter;
5847 gdb_assert (code == TYPE_CODE_UNDEF);
5849 if (text0[0] == '<')
5851 text = xstrdup (text0);
5852 make_cleanup (xfree, text);
5853 text_len = strlen (text);
5859 text = xstrdup (ada_encode (text0));
5860 make_cleanup (xfree, text);
5861 text_len = strlen (text);
5862 for (i = 0; i < text_len; i++)
5863 text[i] = tolower (text[i]);
5865 encoded_p = (strstr (text0, "__") != NULL);
5866 /* If the name contains a ".", then the user is entering a fully
5867 qualified entity name, and the match must not be done in wild
5868 mode. Similarly, if the user wants to complete what looks like
5869 an encoded name, the match must not be done in wild mode. */
5870 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5873 /* First, look at the partial symtab symbols. */
5875 struct add_partial_datum data;
5877 data.completions = &completions;
5879 data.text_len = text_len;
5882 data.wild_match = wild_match_p;
5883 data.encoded = encoded_p;
5884 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5887 /* At this point scan through the misc symbol vectors and add each
5888 symbol you find to the list. Eventually we want to ignore
5889 anything that isn't a text symbol (everything else will be
5890 handled by the psymtab code above). */
5892 ALL_MSYMBOLS (objfile, msymbol)
5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5896 text, text_len, text0, word, wild_match_p,
5900 /* Search upwards from currently selected frame (so that we can
5901 complete on local vars. */
5903 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5905 if (!BLOCK_SUPERBLOCK (b))
5906 surrounding_static_block = b; /* For elmin of dups */
5908 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5911 text, text_len, text0, word,
5912 wild_match_p, encoded_p);
5916 /* Go through the symtabs and check the externs and statics for
5917 symbols which match. */
5919 ALL_SYMTABS (objfile, s)
5922 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5923 ALL_BLOCK_SYMBOLS (b, iter, sym)
5925 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5926 text, text_len, text0, word,
5927 wild_match_p, encoded_p);
5931 ALL_SYMTABS (objfile, s)
5934 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5935 /* Don't do this block twice. */
5936 if (b == surrounding_static_block)
5938 ALL_BLOCK_SYMBOLS (b, iter, sym)
5940 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5941 text, text_len, text0, word,
5942 wild_match_p, encoded_p);
5951 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5952 for tagged types. */
5955 ada_is_dispatch_table_ptr_type (struct type *type)
5959 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5962 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5966 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5969 /* Return non-zero if TYPE is an interface tag. */
5972 ada_is_interface_tag (struct type *type)
5974 const char *name = TYPE_NAME (type);
5979 return (strcmp (name, "ada__tags__interface_tag") == 0);
5982 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5983 to be invisible to users. */
5986 ada_is_ignored_field (struct type *type, int field_num)
5988 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5991 /* Check the name of that field. */
5993 const char *name = TYPE_FIELD_NAME (type, field_num);
5995 /* Anonymous field names should not be printed.
5996 brobecker/2007-02-20: I don't think this can actually happen
5997 but we don't want to print the value of annonymous fields anyway. */
6001 /* Normally, fields whose name start with an underscore ("_")
6002 are fields that have been internally generated by the compiler,
6003 and thus should not be printed. The "_parent" field is special,
6004 however: This is a field internally generated by the compiler
6005 for tagged types, and it contains the components inherited from
6006 the parent type. This field should not be printed as is, but
6007 should not be ignored either. */
6008 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6012 /* If this is the dispatch table of a tagged type or an interface tag,
6014 if (ada_is_tagged_type (type, 1)
6015 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6016 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6019 /* Not a special field, so it should not be ignored. */
6023 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6024 pointer or reference type whose ultimate target has a tag field. */
6027 ada_is_tagged_type (struct type *type, int refok)
6029 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6032 /* True iff TYPE represents the type of X'Tag */
6035 ada_is_tag_type (struct type *type)
6037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6041 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6043 return (name != NULL
6044 && strcmp (name, "ada__tags__dispatch_table") == 0);
6048 /* The type of the tag on VAL. */
6051 ada_tag_type (struct value *val)
6053 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6056 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6057 retired at Ada 05). */
6060 is_ada95_tag (struct value *tag)
6062 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6065 /* The value of the tag on VAL. */
6068 ada_value_tag (struct value *val)
6070 return ada_value_struct_elt (val, "_tag", 0);
6073 /* The value of the tag on the object of type TYPE whose contents are
6074 saved at VALADDR, if it is non-null, or is at memory address
6077 static struct value *
6078 value_tag_from_contents_and_address (struct type *type,
6079 const gdb_byte *valaddr,
6082 int tag_byte_offset;
6083 struct type *tag_type;
6085 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6088 const gdb_byte *valaddr1 = ((valaddr == NULL)
6090 : valaddr + tag_byte_offset);
6091 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6093 return value_from_contents_and_address (tag_type, valaddr1, address1);
6098 static struct type *
6099 type_from_tag (struct value *tag)
6101 const char *type_name = ada_tag_name (tag);
6103 if (type_name != NULL)
6104 return ada_find_any_type (ada_encode (type_name));
6108 /* Given a value OBJ of a tagged type, return a value of this
6109 type at the base address of the object. The base address, as
6110 defined in Ada.Tags, it is the address of the primary tag of
6111 the object, and therefore where the field values of its full
6112 view can be fetched. */
6115 ada_tag_value_at_base_address (struct value *obj)
6117 volatile struct gdb_exception e;
6119 LONGEST offset_to_top = 0;
6120 struct type *ptr_type, *obj_type;
6122 CORE_ADDR base_address;
6124 obj_type = value_type (obj);
6126 /* It is the responsability of the caller to deref pointers. */
6128 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6129 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6132 tag = ada_value_tag (obj);
6136 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6138 if (is_ada95_tag (tag))
6141 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6142 ptr_type = lookup_pointer_type (ptr_type);
6143 val = value_cast (ptr_type, tag);
6147 /* It is perfectly possible that an exception be raised while
6148 trying to determine the base address, just like for the tag;
6149 see ada_tag_name for more details. We do not print the error
6150 message for the same reason. */
6152 TRY_CATCH (e, RETURN_MASK_ERROR)
6154 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6160 /* If offset is null, nothing to do. */
6162 if (offset_to_top == 0)
6165 /* -1 is a special case in Ada.Tags; however, what should be done
6166 is not quite clear from the documentation. So do nothing for
6169 if (offset_to_top == -1)
6172 base_address = value_address (obj) - offset_to_top;
6173 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6175 /* Make sure that we have a proper tag at the new address.
6176 Otherwise, offset_to_top is bogus (which can happen when
6177 the object is not initialized yet). */
6182 obj_type = type_from_tag (tag);
6187 return value_from_contents_and_address (obj_type, NULL, base_address);
6190 /* Return the "ada__tags__type_specific_data" type. */
6192 static struct type *
6193 ada_get_tsd_type (struct inferior *inf)
6195 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6197 if (data->tsd_type == 0)
6198 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6199 return data->tsd_type;
6202 /* Return the TSD (type-specific data) associated to the given TAG.
6203 TAG is assumed to be the tag of a tagged-type entity.
6205 May return NULL if we are unable to get the TSD. */
6207 static struct value *
6208 ada_get_tsd_from_tag (struct value *tag)
6213 /* First option: The TSD is simply stored as a field of our TAG.
6214 Only older versions of GNAT would use this format, but we have
6215 to test it first, because there are no visible markers for
6216 the current approach except the absence of that field. */
6218 val = ada_value_struct_elt (tag, "tsd", 1);
6222 /* Try the second representation for the dispatch table (in which
6223 there is no explicit 'tsd' field in the referent of the tag pointer,
6224 and instead the tsd pointer is stored just before the dispatch
6227 type = ada_get_tsd_type (current_inferior());
6230 type = lookup_pointer_type (lookup_pointer_type (type));
6231 val = value_cast (type, tag);
6234 return value_ind (value_ptradd (val, -1));
6237 /* Given the TSD of a tag (type-specific data), return a string
6238 containing the name of the associated type.
6240 The returned value is good until the next call. May return NULL
6241 if we are unable to determine the tag name. */
6244 ada_tag_name_from_tsd (struct value *tsd)
6246 static char name[1024];
6250 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6253 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6254 for (p = name; *p != '\0'; p += 1)
6260 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6263 Return NULL if the TAG is not an Ada tag, or if we were unable to
6264 determine the name of that tag. The result is good until the next
6268 ada_tag_name (struct value *tag)
6270 volatile struct gdb_exception e;
6273 if (!ada_is_tag_type (value_type (tag)))
6276 /* It is perfectly possible that an exception be raised while trying
6277 to determine the TAG's name, even under normal circumstances:
6278 The associated variable may be uninitialized or corrupted, for
6279 instance. We do not let any exception propagate past this point.
6280 instead we return NULL.
6282 We also do not print the error message either (which often is very
6283 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6284 the caller print a more meaningful message if necessary. */
6285 TRY_CATCH (e, RETURN_MASK_ERROR)
6287 struct value *tsd = ada_get_tsd_from_tag (tag);
6290 name = ada_tag_name_from_tsd (tsd);
6296 /* The parent type of TYPE, or NULL if none. */
6299 ada_parent_type (struct type *type)
6303 type = ada_check_typedef (type);
6305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6309 if (ada_is_parent_field (type, i))
6311 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6313 /* If the _parent field is a pointer, then dereference it. */
6314 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6315 parent_type = TYPE_TARGET_TYPE (parent_type);
6316 /* If there is a parallel XVS type, get the actual base type. */
6317 parent_type = ada_get_base_type (parent_type);
6319 return ada_check_typedef (parent_type);
6325 /* True iff field number FIELD_NUM of structure type TYPE contains the
6326 parent-type (inherited) fields of a derived type. Assumes TYPE is
6327 a structure type with at least FIELD_NUM+1 fields. */
6330 ada_is_parent_field (struct type *type, int field_num)
6332 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6334 return (name != NULL
6335 && (strncmp (name, "PARENT", 6) == 0
6336 || strncmp (name, "_parent", 7) == 0));
6339 /* True iff field number FIELD_NUM of structure type TYPE is a
6340 transparent wrapper field (which should be silently traversed when doing
6341 field selection and flattened when printing). Assumes TYPE is a
6342 structure type with at least FIELD_NUM+1 fields. Such fields are always
6346 ada_is_wrapper_field (struct type *type, int field_num)
6348 const char *name = TYPE_FIELD_NAME (type, field_num);
6350 return (name != NULL
6351 && (strncmp (name, "PARENT", 6) == 0
6352 || strcmp (name, "REP") == 0
6353 || strncmp (name, "_parent", 7) == 0
6354 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6357 /* True iff field number FIELD_NUM of structure or union type TYPE
6358 is a variant wrapper. Assumes TYPE is a structure type with at least
6359 FIELD_NUM+1 fields. */
6362 ada_is_variant_part (struct type *type, int field_num)
6364 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6366 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6367 || (is_dynamic_field (type, field_num)
6368 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6369 == TYPE_CODE_UNION)));
6372 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6373 whose discriminants are contained in the record type OUTER_TYPE,
6374 returns the type of the controlling discriminant for the variant.
6375 May return NULL if the type could not be found. */
6378 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6380 char *name = ada_variant_discrim_name (var_type);
6382 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6385 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6386 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6387 represents a 'when others' clause; otherwise 0. */
6390 ada_is_others_clause (struct type *type, int field_num)
6392 const char *name = TYPE_FIELD_NAME (type, field_num);
6394 return (name != NULL && name[0] == 'O');
6397 /* Assuming that TYPE0 is the type of the variant part of a record,
6398 returns the name of the discriminant controlling the variant.
6399 The value is valid until the next call to ada_variant_discrim_name. */
6402 ada_variant_discrim_name (struct type *type0)
6404 static char *result = NULL;
6405 static size_t result_len = 0;
6408 const char *discrim_end;
6409 const char *discrim_start;
6411 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6412 type = TYPE_TARGET_TYPE (type0);
6416 name = ada_type_name (type);
6418 if (name == NULL || name[0] == '\000')
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6424 if (strncmp (discrim_end, "___XVN", 6) == 0)
6427 if (discrim_end == name)
6430 for (discrim_start = discrim_end; discrim_start != name + 3;
6433 if (discrim_start == name + 1)
6435 if ((discrim_start > name + 3
6436 && strncmp (discrim_start - 3, "___", 3) == 0)
6437 || discrim_start[-1] == '.')
6441 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6442 strncpy (result, discrim_start, discrim_end - discrim_start);
6443 result[discrim_end - discrim_start] = '\0';
6447 /* Scan STR for a subtype-encoded number, beginning at position K.
6448 Put the position of the character just past the number scanned in
6449 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6450 Return 1 if there was a valid number at the given position, and 0
6451 otherwise. A "subtype-encoded" number consists of the absolute value
6452 in decimal, followed by the letter 'm' to indicate a negative number.
6453 Assumes 0m does not occur. */
6456 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6460 if (!isdigit (str[k]))
6463 /* Do it the hard way so as not to make any assumption about
6464 the relationship of unsigned long (%lu scan format code) and
6467 while (isdigit (str[k]))
6469 RU = RU * 10 + (str[k] - '0');
6476 *R = (-(LONGEST) (RU - 1)) - 1;
6482 /* NOTE on the above: Technically, C does not say what the results of
6483 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6484 number representable as a LONGEST (although either would probably work
6485 in most implementations). When RU>0, the locution in the then branch
6486 above is always equivalent to the negative of RU. */
6493 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6494 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6495 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6498 ada_in_variant (LONGEST val, struct type *type, int field_num)
6500 const char *name = TYPE_FIELD_NAME (type, field_num);
6514 if (!ada_scan_number (name, p + 1, &W, &p))
6524 if (!ada_scan_number (name, p + 1, &L, &p)
6525 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6527 if (val >= L && val <= U)
6539 /* FIXME: Lots of redundancy below. Try to consolidate. */
6541 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6542 ARG_TYPE, extract and return the value of one of its (non-static)
6543 fields. FIELDNO says which field. Differs from value_primitive_field
6544 only in that it can handle packed values of arbitrary type. */
6546 static struct value *
6547 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6548 struct type *arg_type)
6552 arg_type = ada_check_typedef (arg_type);
6553 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6555 /* Handle packed fields. */
6557 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6559 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6560 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6562 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6570 /* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6583 Returns 1 if found, 0 otherwise. */
6586 find_struct_field (const char *name, struct type *type, int offset,
6587 struct type **field_type_p,
6588 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6593 type = ada_check_typedef (type);
6595 if (field_type_p != NULL)
6596 *field_type_p = NULL;
6597 if (byte_offset_p != NULL)
6599 if (bit_offset_p != NULL)
6601 if (bit_size_p != NULL)
6604 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6606 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6607 int fld_offset = offset + bit_pos / 8;
6608 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6610 if (t_field_name == NULL)
6613 else if (name != NULL && field_name_match (t_field_name, name))
6615 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6617 if (field_type_p != NULL)
6618 *field_type_p = TYPE_FIELD_TYPE (type, i);
6619 if (byte_offset_p != NULL)
6620 *byte_offset_p = fld_offset;
6621 if (bit_offset_p != NULL)
6622 *bit_offset_p = bit_pos % 8;
6623 if (bit_size_p != NULL)
6624 *bit_size_p = bit_size;
6627 else if (ada_is_wrapper_field (type, i))
6629 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6630 field_type_p, byte_offset_p, bit_offset_p,
6631 bit_size_p, index_p))
6634 else if (ada_is_variant_part (type, i))
6636 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6639 struct type *field_type
6640 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6642 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6644 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6646 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6647 field_type_p, byte_offset_p,
6648 bit_offset_p, bit_size_p, index_p))
6652 else if (index_p != NULL)
6658 /* Number of user-visible fields in record type TYPE. */
6661 num_visible_fields (struct type *type)
6666 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6670 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6671 and search in it assuming it has (class) type TYPE.
6672 If found, return value, else return NULL.
6674 Searches recursively through wrapper fields (e.g., '_parent'). */
6676 static struct value *
6677 ada_search_struct_field (char *name, struct value *arg, int offset,
6682 type = ada_check_typedef (type);
6683 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6685 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6687 if (t_field_name == NULL)
6690 else if (field_name_match (t_field_name, name))
6691 return ada_value_primitive_field (arg, offset, i, type);
6693 else if (ada_is_wrapper_field (type, i))
6695 struct value *v = /* Do not let indent join lines here. */
6696 ada_search_struct_field (name, arg,
6697 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6698 TYPE_FIELD_TYPE (type, i));
6704 else if (ada_is_variant_part (type, i))
6706 /* PNH: Do we ever get here? See find_struct_field. */
6708 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6710 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6712 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6714 struct value *v = ada_search_struct_field /* Force line
6717 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6718 TYPE_FIELD_TYPE (field_type, j));
6728 static struct value *ada_index_struct_field_1 (int *, struct value *,
6729 int, struct type *);
6732 /* Return field #INDEX in ARG, where the index is that returned by
6733 * find_struct_field through its INDEX_P argument. Adjust the address
6734 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6735 * If found, return value, else return NULL. */
6737 static struct value *
6738 ada_index_struct_field (int index, struct value *arg, int offset,
6741 return ada_index_struct_field_1 (&index, arg, offset, type);
6745 /* Auxiliary function for ada_index_struct_field. Like
6746 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6749 static struct value *
6750 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6754 type = ada_check_typedef (type);
6756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6758 if (TYPE_FIELD_NAME (type, i) == NULL)
6760 else if (ada_is_wrapper_field (type, i))
6762 struct value *v = /* Do not let indent join lines here. */
6763 ada_index_struct_field_1 (index_p, arg,
6764 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6765 TYPE_FIELD_TYPE (type, i));
6771 else if (ada_is_variant_part (type, i))
6773 /* PNH: Do we ever get here? See ada_search_struct_field,
6774 find_struct_field. */
6775 error (_("Cannot assign this kind of variant record"));
6777 else if (*index_p == 0)
6778 return ada_value_primitive_field (arg, offset, i, type);
6785 /* Given ARG, a value of type (pointer or reference to a)*
6786 structure/union, extract the component named NAME from the ultimate
6787 target structure/union and return it as a value with its
6790 The routine searches for NAME among all members of the structure itself
6791 and (recursively) among all members of any wrapper members
6794 If NO_ERR, then simply return NULL in case of error, rather than
6798 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6800 struct type *t, *t1;
6804 t1 = t = ada_check_typedef (value_type (arg));
6805 if (TYPE_CODE (t) == TYPE_CODE_REF)
6807 t1 = TYPE_TARGET_TYPE (t);
6810 t1 = ada_check_typedef (t1);
6811 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6813 arg = coerce_ref (arg);
6818 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6820 t1 = TYPE_TARGET_TYPE (t);
6823 t1 = ada_check_typedef (t1);
6824 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6826 arg = value_ind (arg);
6833 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6837 v = ada_search_struct_field (name, arg, 0, t);
6840 int bit_offset, bit_size, byte_offset;
6841 struct type *field_type;
6844 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6845 address = value_address (ada_value_ind (arg));
6847 address = value_address (ada_coerce_ref (arg));
6849 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6850 if (find_struct_field (name, t1, 0,
6851 &field_type, &byte_offset, &bit_offset,
6856 if (TYPE_CODE (t) == TYPE_CODE_REF)
6857 arg = ada_coerce_ref (arg);
6859 arg = ada_value_ind (arg);
6860 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6861 bit_offset, bit_size,
6865 v = value_at_lazy (field_type, address + byte_offset);
6869 if (v != NULL || no_err)
6872 error (_("There is no member named %s."), name);
6878 error (_("Attempt to extract a component of "
6879 "a value that is not a record."));
6882 /* Given a type TYPE, look up the type of the component of type named NAME.
6883 If DISPP is non-null, add its byte displacement from the beginning of a
6884 structure (pointed to by a value) of type TYPE to *DISPP (does not
6885 work for packed fields).
6887 Matches any field whose name has NAME as a prefix, possibly
6890 TYPE can be either a struct or union. If REFOK, TYPE may also
6891 be a (pointer or reference)+ to a struct or union, and the
6892 ultimate target type will be searched.
6894 Looks recursively into variant clauses and parent types.
6896 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6897 TYPE is not a type of the right kind. */
6899 static struct type *
6900 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6901 int noerr, int *dispp)
6908 if (refok && type != NULL)
6911 type = ada_check_typedef (type);
6912 if (TYPE_CODE (type) != TYPE_CODE_PTR
6913 && TYPE_CODE (type) != TYPE_CODE_REF)
6915 type = TYPE_TARGET_TYPE (type);
6919 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6920 && TYPE_CODE (type) != TYPE_CODE_UNION))
6926 target_terminal_ours ();
6927 gdb_flush (gdb_stdout);
6929 error (_("Type (null) is not a structure or union type"));
6932 /* XXX: type_sprint */
6933 fprintf_unfiltered (gdb_stderr, _("Type "));
6934 type_print (type, "", gdb_stderr, -1);
6935 error (_(" is not a structure or union type"));
6940 type = to_static_fixed_type (type);
6942 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6944 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6948 if (t_field_name == NULL)
6951 else if (field_name_match (t_field_name, name))
6954 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6955 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6958 else if (ada_is_wrapper_field (type, i))
6961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6971 else if (ada_is_variant_part (type, i))
6974 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6977 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6979 /* FIXME pnh 2008/01/26: We check for a field that is
6980 NOT wrapped in a struct, since the compiler sometimes
6981 generates these for unchecked variant types. Revisit
6982 if the compiler changes this practice. */
6983 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6985 if (v_field_name != NULL
6986 && field_name_match (v_field_name, name))
6987 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6989 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6996 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7007 target_terminal_ours ();
7008 gdb_flush (gdb_stdout);
7011 /* XXX: type_sprint */
7012 fprintf_unfiltered (gdb_stderr, _("Type "));
7013 type_print (type, "", gdb_stderr, -1);
7014 error (_(" has no component named <null>"));
7018 /* XXX: type_sprint */
7019 fprintf_unfiltered (gdb_stderr, _("Type "));
7020 type_print (type, "", gdb_stderr, -1);
7021 error (_(" has no component named %s"), name);
7028 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7029 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7030 represents an unchecked union (that is, the variant part of a
7031 record that is named in an Unchecked_Union pragma). */
7034 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7036 char *discrim_name = ada_variant_discrim_name (var_type);
7038 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7043 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7044 within a value of type OUTER_TYPE that is stored in GDB at
7045 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7046 numbering from 0) is applicable. Returns -1 if none are. */
7049 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7050 const gdb_byte *outer_valaddr)
7054 char *discrim_name = ada_variant_discrim_name (var_type);
7055 struct value *outer;
7056 struct value *discrim;
7057 LONGEST discrim_val;
7059 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7060 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7061 if (discrim == NULL)
7063 discrim_val = value_as_long (discrim);
7066 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7068 if (ada_is_others_clause (var_type, i))
7070 else if (ada_in_variant (discrim_val, var_type, i))
7074 return others_clause;
7079 /* Dynamic-Sized Records */
7081 /* Strategy: The type ostensibly attached to a value with dynamic size
7082 (i.e., a size that is not statically recorded in the debugging
7083 data) does not accurately reflect the size or layout of the value.
7084 Our strategy is to convert these values to values with accurate,
7085 conventional types that are constructed on the fly. */
7087 /* There is a subtle and tricky problem here. In general, we cannot
7088 determine the size of dynamic records without its data. However,
7089 the 'struct value' data structure, which GDB uses to represent
7090 quantities in the inferior process (the target), requires the size
7091 of the type at the time of its allocation in order to reserve space
7092 for GDB's internal copy of the data. That's why the
7093 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7094 rather than struct value*s.
7096 However, GDB's internal history variables ($1, $2, etc.) are
7097 struct value*s containing internal copies of the data that are not, in
7098 general, the same as the data at their corresponding addresses in
7099 the target. Fortunately, the types we give to these values are all
7100 conventional, fixed-size types (as per the strategy described
7101 above), so that we don't usually have to perform the
7102 'to_fixed_xxx_type' conversions to look at their values.
7103 Unfortunately, there is one exception: if one of the internal
7104 history variables is an array whose elements are unconstrained
7105 records, then we will need to create distinct fixed types for each
7106 element selected. */
7108 /* The upshot of all of this is that many routines take a (type, host
7109 address, target address) triple as arguments to represent a value.
7110 The host address, if non-null, is supposed to contain an internal
7111 copy of the relevant data; otherwise, the program is to consult the
7112 target at the target address. */
7114 /* Assuming that VAL0 represents a pointer value, the result of
7115 dereferencing it. Differs from value_ind in its treatment of
7116 dynamic-sized types. */
7119 ada_value_ind (struct value *val0)
7121 struct value *val = value_ind (val0);
7123 if (ada_is_tagged_type (value_type (val), 0))
7124 val = ada_tag_value_at_base_address (val);
7126 return ada_to_fixed_value (val);
7129 /* The value resulting from dereferencing any "reference to"
7130 qualifiers on VAL0. */
7132 static struct value *
7133 ada_coerce_ref (struct value *val0)
7135 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7137 struct value *val = val0;
7139 val = coerce_ref (val);
7141 if (ada_is_tagged_type (value_type (val), 0))
7142 val = ada_tag_value_at_base_address (val);
7144 return ada_to_fixed_value (val);
7150 /* Return OFF rounded upward if necessary to a multiple of
7151 ALIGNMENT (a power of 2). */
7154 align_value (unsigned int off, unsigned int alignment)
7156 return (off + alignment - 1) & ~(alignment - 1);
7159 /* Return the bit alignment required for field #F of template type TYPE. */
7162 field_alignment (struct type *type, int f)
7164 const char *name = TYPE_FIELD_NAME (type, f);
7168 /* The field name should never be null, unless the debugging information
7169 is somehow malformed. In this case, we assume the field does not
7170 require any alignment. */
7174 len = strlen (name);
7176 if (!isdigit (name[len - 1]))
7179 if (isdigit (name[len - 2]))
7180 align_offset = len - 2;
7182 align_offset = len - 1;
7184 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7185 return TARGET_CHAR_BIT;
7187 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7190 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7192 static struct symbol *
7193 ada_find_any_type_symbol (const char *name)
7197 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7198 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7201 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7205 /* Find a type named NAME. Ignores ambiguity. This routine will look
7206 solely for types defined by debug info, it will not search the GDB
7209 static struct type *
7210 ada_find_any_type (const char *name)
7212 struct symbol *sym = ada_find_any_type_symbol (name);
7215 return SYMBOL_TYPE (sym);
7220 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7221 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7222 symbol, in which case it is returned. Otherwise, this looks for
7223 symbols whose name is that of NAME_SYM suffixed with "___XR".
7224 Return symbol if found, and NULL otherwise. */
7227 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7229 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7232 if (strstr (name, "___XR") != NULL)
7235 sym = find_old_style_renaming_symbol (name, block);
7240 /* Not right yet. FIXME pnh 7/20/2007. */
7241 sym = ada_find_any_type_symbol (name);
7242 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7248 static struct symbol *
7249 find_old_style_renaming_symbol (const char *name, const struct block *block)
7251 const struct symbol *function_sym = block_linkage_function (block);
7254 if (function_sym != NULL)
7256 /* If the symbol is defined inside a function, NAME is not fully
7257 qualified. This means we need to prepend the function name
7258 as well as adding the ``___XR'' suffix to build the name of
7259 the associated renaming symbol. */
7260 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7261 /* Function names sometimes contain suffixes used
7262 for instance to qualify nested subprograms. When building
7263 the XR type name, we need to make sure that this suffix is
7264 not included. So do not include any suffix in the function
7265 name length below. */
7266 int function_name_len = ada_name_prefix_len (function_name);
7267 const int rename_len = function_name_len + 2 /* "__" */
7268 + strlen (name) + 6 /* "___XR\0" */ ;
7270 /* Strip the suffix if necessary. */
7271 ada_remove_trailing_digits (function_name, &function_name_len);
7272 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7273 ada_remove_Xbn_suffix (function_name, &function_name_len);
7275 /* Library-level functions are a special case, as GNAT adds
7276 a ``_ada_'' prefix to the function name to avoid namespace
7277 pollution. However, the renaming symbols themselves do not
7278 have this prefix, so we need to skip this prefix if present. */
7279 if (function_name_len > 5 /* "_ada_" */
7280 && strstr (function_name, "_ada_") == function_name)
7283 function_name_len -= 5;
7286 rename = (char *) alloca (rename_len * sizeof (char));
7287 strncpy (rename, function_name, function_name_len);
7288 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7293 const int rename_len = strlen (name) + 6;
7295 rename = (char *) alloca (rename_len * sizeof (char));
7296 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7299 return ada_find_any_type_symbol (rename);
7302 /* Because of GNAT encoding conventions, several GDB symbols may match a
7303 given type name. If the type denoted by TYPE0 is to be preferred to
7304 that of TYPE1 for purposes of type printing, return non-zero;
7305 otherwise return 0. */
7308 ada_prefer_type (struct type *type0, struct type *type1)
7312 else if (type0 == NULL)
7314 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7316 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7318 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7320 else if (ada_is_constrained_packed_array_type (type0))
7322 else if (ada_is_array_descriptor_type (type0)
7323 && !ada_is_array_descriptor_type (type1))
7327 const char *type0_name = type_name_no_tag (type0);
7328 const char *type1_name = type_name_no_tag (type1);
7330 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7331 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7337 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7338 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7341 ada_type_name (struct type *type)
7345 else if (TYPE_NAME (type) != NULL)
7346 return TYPE_NAME (type);
7348 return TYPE_TAG_NAME (type);
7351 /* Search the list of "descriptive" types associated to TYPE for a type
7352 whose name is NAME. */
7354 static struct type *
7355 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7357 struct type *result;
7359 /* If there no descriptive-type info, then there is no parallel type
7361 if (!HAVE_GNAT_AUX_INFO (type))
7364 result = TYPE_DESCRIPTIVE_TYPE (type);
7365 while (result != NULL)
7367 const char *result_name = ada_type_name (result);
7369 if (result_name == NULL)
7371 warning (_("unexpected null name on descriptive type"));
7375 /* If the names match, stop. */
7376 if (strcmp (result_name, name) == 0)
7379 /* Otherwise, look at the next item on the list, if any. */
7380 if (HAVE_GNAT_AUX_INFO (result))
7381 result = TYPE_DESCRIPTIVE_TYPE (result);
7386 /* If we didn't find a match, see whether this is a packed array. With
7387 older compilers, the descriptive type information is either absent or
7388 irrelevant when it comes to packed arrays so the above lookup fails.
7389 Fall back to using a parallel lookup by name in this case. */
7390 if (result == NULL && ada_is_constrained_packed_array_type (type))
7391 return ada_find_any_type (name);
7396 /* Find a parallel type to TYPE with the specified NAME, using the
7397 descriptive type taken from the debugging information, if available,
7398 and otherwise using the (slower) name-based method. */
7400 static struct type *
7401 ada_find_parallel_type_with_name (struct type *type, const char *name)
7403 struct type *result = NULL;
7405 if (HAVE_GNAT_AUX_INFO (type))
7406 result = find_parallel_type_by_descriptive_type (type, name);
7408 result = ada_find_any_type (name);
7413 /* Same as above, but specify the name of the parallel type by appending
7414 SUFFIX to the name of TYPE. */
7417 ada_find_parallel_type (struct type *type, const char *suffix)
7420 const char *typename = ada_type_name (type);
7423 if (typename == NULL)
7426 len = strlen (typename);
7428 name = (char *) alloca (len + strlen (suffix) + 1);
7430 strcpy (name, typename);
7431 strcpy (name + len, suffix);
7433 return ada_find_parallel_type_with_name (type, name);
7436 /* If TYPE is a variable-size record type, return the corresponding template
7437 type describing its fields. Otherwise, return NULL. */
7439 static struct type *
7440 dynamic_template_type (struct type *type)
7442 type = ada_check_typedef (type);
7444 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7445 || ada_type_name (type) == NULL)
7449 int len = strlen (ada_type_name (type));
7451 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7454 return ada_find_parallel_type (type, "___XVE");
7458 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7459 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7462 is_dynamic_field (struct type *templ_type, int field_num)
7464 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7467 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7468 && strstr (name, "___XVL") != NULL;
7471 /* The index of the variant field of TYPE, or -1 if TYPE does not
7472 represent a variant record type. */
7475 variant_field_index (struct type *type)
7479 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7482 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7484 if (ada_is_variant_part (type, f))
7490 /* A record type with no fields. */
7492 static struct type *
7493 empty_record (struct type *template)
7495 struct type *type = alloc_type_copy (template);
7497 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7498 TYPE_NFIELDS (type) = 0;
7499 TYPE_FIELDS (type) = NULL;
7500 INIT_CPLUS_SPECIFIC (type);
7501 TYPE_NAME (type) = "<empty>";
7502 TYPE_TAG_NAME (type) = NULL;
7503 TYPE_LENGTH (type) = 0;
7507 /* An ordinary record type (with fixed-length fields) that describes
7508 the value of type TYPE at VALADDR or ADDRESS (see comments at
7509 the beginning of this section) VAL according to GNAT conventions.
7510 DVAL0 should describe the (portion of a) record that contains any
7511 necessary discriminants. It should be NULL if value_type (VAL) is
7512 an outer-level type (i.e., as opposed to a branch of a variant.) A
7513 variant field (unless unchecked) is replaced by a particular branch
7516 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7517 length are not statically known are discarded. As a consequence,
7518 VALADDR, ADDRESS and DVAL0 are ignored.
7520 NOTE: Limitations: For now, we assume that dynamic fields and
7521 variants occupy whole numbers of bytes. However, they need not be
7525 ada_template_to_fixed_record_type_1 (struct type *type,
7526 const gdb_byte *valaddr,
7527 CORE_ADDR address, struct value *dval0,
7528 int keep_dynamic_fields)
7530 struct value *mark = value_mark ();
7533 int nfields, bit_len;
7539 /* Compute the number of fields in this record type that are going
7540 to be processed: unless keep_dynamic_fields, this includes only
7541 fields whose position and length are static will be processed. */
7542 if (keep_dynamic_fields)
7543 nfields = TYPE_NFIELDS (type);
7547 while (nfields < TYPE_NFIELDS (type)
7548 && !ada_is_variant_part (type, nfields)
7549 && !is_dynamic_field (type, nfields))
7553 rtype = alloc_type_copy (type);
7554 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7555 INIT_CPLUS_SPECIFIC (rtype);
7556 TYPE_NFIELDS (rtype) = nfields;
7557 TYPE_FIELDS (rtype) = (struct field *)
7558 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7559 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7560 TYPE_NAME (rtype) = ada_type_name (type);
7561 TYPE_TAG_NAME (rtype) = NULL;
7562 TYPE_FIXED_INSTANCE (rtype) = 1;
7568 for (f = 0; f < nfields; f += 1)
7570 off = align_value (off, field_alignment (type, f))
7571 + TYPE_FIELD_BITPOS (type, f);
7572 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7573 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7575 if (ada_is_variant_part (type, f))
7580 else if (is_dynamic_field (type, f))
7582 const gdb_byte *field_valaddr = valaddr;
7583 CORE_ADDR field_address = address;
7584 struct type *field_type =
7585 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7589 /* rtype's length is computed based on the run-time
7590 value of discriminants. If the discriminants are not
7591 initialized, the type size may be completely bogus and
7592 GDB may fail to allocate a value for it. So check the
7593 size first before creating the value. */
7595 dval = value_from_contents_and_address (rtype, valaddr, address);
7600 /* If the type referenced by this field is an aligner type, we need
7601 to unwrap that aligner type, because its size might not be set.
7602 Keeping the aligner type would cause us to compute the wrong
7603 size for this field, impacting the offset of the all the fields
7604 that follow this one. */
7605 if (ada_is_aligner_type (field_type))
7607 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7609 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7610 field_address = cond_offset_target (field_address, field_offset);
7611 field_type = ada_aligned_type (field_type);
7614 field_valaddr = cond_offset_host (field_valaddr,
7615 off / TARGET_CHAR_BIT);
7616 field_address = cond_offset_target (field_address,
7617 off / TARGET_CHAR_BIT);
7619 /* Get the fixed type of the field. Note that, in this case,
7620 we do not want to get the real type out of the tag: if
7621 the current field is the parent part of a tagged record,
7622 we will get the tag of the object. Clearly wrong: the real
7623 type of the parent is not the real type of the child. We
7624 would end up in an infinite loop. */
7625 field_type = ada_get_base_type (field_type);
7626 field_type = ada_to_fixed_type (field_type, field_valaddr,
7627 field_address, dval, 0);
7628 /* If the field size is already larger than the maximum
7629 object size, then the record itself will necessarily
7630 be larger than the maximum object size. We need to make
7631 this check now, because the size might be so ridiculously
7632 large (due to an uninitialized variable in the inferior)
7633 that it would cause an overflow when adding it to the
7635 check_size (field_type);
7637 TYPE_FIELD_TYPE (rtype, f) = field_type;
7638 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7639 /* The multiplication can potentially overflow. But because
7640 the field length has been size-checked just above, and
7641 assuming that the maximum size is a reasonable value,
7642 an overflow should not happen in practice. So rather than
7643 adding overflow recovery code to this already complex code,
7644 we just assume that it's not going to happen. */
7646 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7650 /* Note: If this field's type is a typedef, it is important
7651 to preserve the typedef layer.
7653 Otherwise, we might be transforming a typedef to a fat
7654 pointer (encoding a pointer to an unconstrained array),
7655 into a basic fat pointer (encoding an unconstrained
7656 array). As both types are implemented using the same
7657 structure, the typedef is the only clue which allows us
7658 to distinguish between the two options. Stripping it
7659 would prevent us from printing this field appropriately. */
7660 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7661 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7662 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7664 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7667 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7669 /* We need to be careful of typedefs when computing
7670 the length of our field. If this is a typedef,
7671 get the length of the target type, not the length
7673 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7674 field_type = ada_typedef_target_type (field_type);
7677 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7680 if (off + fld_bit_len > bit_len)
7681 bit_len = off + fld_bit_len;
7683 TYPE_LENGTH (rtype) =
7684 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7687 /* We handle the variant part, if any, at the end because of certain
7688 odd cases in which it is re-ordered so as NOT to be the last field of
7689 the record. This can happen in the presence of representation
7691 if (variant_field >= 0)
7693 struct type *branch_type;
7695 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7698 dval = value_from_contents_and_address (rtype, valaddr, address);
7703 to_fixed_variant_branch_type
7704 (TYPE_FIELD_TYPE (type, variant_field),
7705 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7706 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7707 if (branch_type == NULL)
7709 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7710 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7711 TYPE_NFIELDS (rtype) -= 1;
7715 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7716 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7718 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7720 if (off + fld_bit_len > bit_len)
7721 bit_len = off + fld_bit_len;
7722 TYPE_LENGTH (rtype) =
7723 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7727 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7728 should contain the alignment of that record, which should be a strictly
7729 positive value. If null or negative, then something is wrong, most
7730 probably in the debug info. In that case, we don't round up the size
7731 of the resulting type. If this record is not part of another structure,
7732 the current RTYPE length might be good enough for our purposes. */
7733 if (TYPE_LENGTH (type) <= 0)
7735 if (TYPE_NAME (rtype))
7736 warning (_("Invalid type size for `%s' detected: %d."),
7737 TYPE_NAME (rtype), TYPE_LENGTH (type));
7739 warning (_("Invalid type size for <unnamed> detected: %d."),
7740 TYPE_LENGTH (type));
7744 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7745 TYPE_LENGTH (type));
7748 value_free_to_mark (mark);
7749 if (TYPE_LENGTH (rtype) > varsize_limit)
7750 error (_("record type with dynamic size is larger than varsize-limit"));
7754 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7757 static struct type *
7758 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7759 CORE_ADDR address, struct value *dval0)
7761 return ada_template_to_fixed_record_type_1 (type, valaddr,
7765 /* An ordinary record type in which ___XVL-convention fields and
7766 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7767 static approximations, containing all possible fields. Uses
7768 no runtime values. Useless for use in values, but that's OK,
7769 since the results are used only for type determinations. Works on both
7770 structs and unions. Representation note: to save space, we memorize
7771 the result of this function in the TYPE_TARGET_TYPE of the
7774 static struct type *
7775 template_to_static_fixed_type (struct type *type0)
7781 if (TYPE_TARGET_TYPE (type0) != NULL)
7782 return TYPE_TARGET_TYPE (type0);
7784 nfields = TYPE_NFIELDS (type0);
7787 for (f = 0; f < nfields; f += 1)
7789 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7790 struct type *new_type;
7792 if (is_dynamic_field (type0, f))
7793 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7795 new_type = static_unwrap_type (field_type);
7796 if (type == type0 && new_type != field_type)
7798 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7799 TYPE_CODE (type) = TYPE_CODE (type0);
7800 INIT_CPLUS_SPECIFIC (type);
7801 TYPE_NFIELDS (type) = nfields;
7802 TYPE_FIELDS (type) = (struct field *)
7803 TYPE_ALLOC (type, nfields * sizeof (struct field));
7804 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7805 sizeof (struct field) * nfields);
7806 TYPE_NAME (type) = ada_type_name (type0);
7807 TYPE_TAG_NAME (type) = NULL;
7808 TYPE_FIXED_INSTANCE (type) = 1;
7809 TYPE_LENGTH (type) = 0;
7811 TYPE_FIELD_TYPE (type, f) = new_type;
7812 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7817 /* Given an object of type TYPE whose contents are at VALADDR and
7818 whose address in memory is ADDRESS, returns a revision of TYPE,
7819 which should be a non-dynamic-sized record, in which the variant
7820 part, if any, is replaced with the appropriate branch. Looks
7821 for discriminant values in DVAL0, which can be NULL if the record
7822 contains the necessary discriminant values. */
7824 static struct type *
7825 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7826 CORE_ADDR address, struct value *dval0)
7828 struct value *mark = value_mark ();
7831 struct type *branch_type;
7832 int nfields = TYPE_NFIELDS (type);
7833 int variant_field = variant_field_index (type);
7835 if (variant_field == -1)
7839 dval = value_from_contents_and_address (type, valaddr, address);
7843 rtype = alloc_type_copy (type);
7844 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7845 INIT_CPLUS_SPECIFIC (rtype);
7846 TYPE_NFIELDS (rtype) = nfields;
7847 TYPE_FIELDS (rtype) =
7848 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7849 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7850 sizeof (struct field) * nfields);
7851 TYPE_NAME (rtype) = ada_type_name (type);
7852 TYPE_TAG_NAME (rtype) = NULL;
7853 TYPE_FIXED_INSTANCE (rtype) = 1;
7854 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7856 branch_type = to_fixed_variant_branch_type
7857 (TYPE_FIELD_TYPE (type, variant_field),
7858 cond_offset_host (valaddr,
7859 TYPE_FIELD_BITPOS (type, variant_field)
7861 cond_offset_target (address,
7862 TYPE_FIELD_BITPOS (type, variant_field)
7863 / TARGET_CHAR_BIT), dval);
7864 if (branch_type == NULL)
7868 for (f = variant_field + 1; f < nfields; f += 1)
7869 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7870 TYPE_NFIELDS (rtype) -= 1;
7874 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7875 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7876 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7877 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7879 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7881 value_free_to_mark (mark);
7885 /* An ordinary record type (with fixed-length fields) that describes
7886 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7887 beginning of this section]. Any necessary discriminants' values
7888 should be in DVAL, a record value; it may be NULL if the object
7889 at ADDR itself contains any necessary discriminant values.
7890 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7891 values from the record are needed. Except in the case that DVAL,
7892 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7893 unchecked) is replaced by a particular branch of the variant.
7895 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7896 is questionable and may be removed. It can arise during the
7897 processing of an unconstrained-array-of-record type where all the
7898 variant branches have exactly the same size. This is because in
7899 such cases, the compiler does not bother to use the XVS convention
7900 when encoding the record. I am currently dubious of this
7901 shortcut and suspect the compiler should be altered. FIXME. */
7903 static struct type *
7904 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7905 CORE_ADDR address, struct value *dval)
7907 struct type *templ_type;
7909 if (TYPE_FIXED_INSTANCE (type0))
7912 templ_type = dynamic_template_type (type0);
7914 if (templ_type != NULL)
7915 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7916 else if (variant_field_index (type0) >= 0)
7918 if (dval == NULL && valaddr == NULL && address == 0)
7920 return to_record_with_fixed_variant_part (type0, valaddr, address,
7925 TYPE_FIXED_INSTANCE (type0) = 1;
7931 /* An ordinary record type (with fixed-length fields) that describes
7932 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7933 union type. Any necessary discriminants' values should be in DVAL,
7934 a record value. That is, this routine selects the appropriate
7935 branch of the union at ADDR according to the discriminant value
7936 indicated in the union's type name. Returns VAR_TYPE0 itself if
7937 it represents a variant subject to a pragma Unchecked_Union. */
7939 static struct type *
7940 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7941 CORE_ADDR address, struct value *dval)
7944 struct type *templ_type;
7945 struct type *var_type;
7947 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7948 var_type = TYPE_TARGET_TYPE (var_type0);
7950 var_type = var_type0;
7952 templ_type = ada_find_parallel_type (var_type, "___XVU");
7954 if (templ_type != NULL)
7955 var_type = templ_type;
7957 if (is_unchecked_variant (var_type, value_type (dval)))
7960 ada_which_variant_applies (var_type,
7961 value_type (dval), value_contents (dval));
7964 return empty_record (var_type);
7965 else if (is_dynamic_field (var_type, which))
7966 return to_fixed_record_type
7967 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7968 valaddr, address, dval);
7969 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7971 to_fixed_record_type
7972 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7974 return TYPE_FIELD_TYPE (var_type, which);
7977 /* Assuming that TYPE0 is an array type describing the type of a value
7978 at ADDR, and that DVAL describes a record containing any
7979 discriminants used in TYPE0, returns a type for the value that
7980 contains no dynamic components (that is, no components whose sizes
7981 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7982 true, gives an error message if the resulting type's size is over
7985 static struct type *
7986 to_fixed_array_type (struct type *type0, struct value *dval,
7989 struct type *index_type_desc;
7990 struct type *result;
7991 int constrained_packed_array_p;
7993 type0 = ada_check_typedef (type0);
7994 if (TYPE_FIXED_INSTANCE (type0))
7997 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7998 if (constrained_packed_array_p)
7999 type0 = decode_constrained_packed_array_type (type0);
8001 index_type_desc = ada_find_parallel_type (type0, "___XA");
8002 ada_fixup_array_indexes_type (index_type_desc);
8003 if (index_type_desc == NULL)
8005 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8007 /* NOTE: elt_type---the fixed version of elt_type0---should never
8008 depend on the contents of the array in properly constructed
8010 /* Create a fixed version of the array element type.
8011 We're not providing the address of an element here,
8012 and thus the actual object value cannot be inspected to do
8013 the conversion. This should not be a problem, since arrays of
8014 unconstrained objects are not allowed. In particular, all
8015 the elements of an array of a tagged type should all be of
8016 the same type specified in the debugging info. No need to
8017 consult the object tag. */
8018 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8020 /* Make sure we always create a new array type when dealing with
8021 packed array types, since we're going to fix-up the array
8022 type length and element bitsize a little further down. */
8023 if (elt_type0 == elt_type && !constrained_packed_array_p)
8026 result = create_array_type (alloc_type_copy (type0),
8027 elt_type, TYPE_INDEX_TYPE (type0));
8032 struct type *elt_type0;
8035 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8036 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8038 /* NOTE: result---the fixed version of elt_type0---should never
8039 depend on the contents of the array in properly constructed
8041 /* Create a fixed version of the array element type.
8042 We're not providing the address of an element here,
8043 and thus the actual object value cannot be inspected to do
8044 the conversion. This should not be a problem, since arrays of
8045 unconstrained objects are not allowed. In particular, all
8046 the elements of an array of a tagged type should all be of
8047 the same type specified in the debugging info. No need to
8048 consult the object tag. */
8050 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8053 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8055 struct type *range_type =
8056 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8058 result = create_array_type (alloc_type_copy (elt_type0),
8059 result, range_type);
8060 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8062 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8063 error (_("array type with dynamic size is larger than varsize-limit"));
8066 /* We want to preserve the type name. This can be useful when
8067 trying to get the type name of a value that has already been
8068 printed (for instance, if the user did "print VAR; whatis $". */
8069 TYPE_NAME (result) = TYPE_NAME (type0);
8071 if (constrained_packed_array_p)
8073 /* So far, the resulting type has been created as if the original
8074 type was a regular (non-packed) array type. As a result, the
8075 bitsize of the array elements needs to be set again, and the array
8076 length needs to be recomputed based on that bitsize. */
8077 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8078 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8080 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8081 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8082 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8083 TYPE_LENGTH (result)++;
8086 TYPE_FIXED_INSTANCE (result) = 1;
8091 /* A standard type (containing no dynamically sized components)
8092 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8093 DVAL describes a record containing any discriminants used in TYPE0,
8094 and may be NULL if there are none, or if the object of type TYPE at
8095 ADDRESS or in VALADDR contains these discriminants.
8097 If CHECK_TAG is not null, in the case of tagged types, this function
8098 attempts to locate the object's tag and use it to compute the actual
8099 type. However, when ADDRESS is null, we cannot use it to determine the
8100 location of the tag, and therefore compute the tagged type's actual type.
8101 So we return the tagged type without consulting the tag. */
8103 static struct type *
8104 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8105 CORE_ADDR address, struct value *dval, int check_tag)
8107 type = ada_check_typedef (type);
8108 switch (TYPE_CODE (type))
8112 case TYPE_CODE_STRUCT:
8114 struct type *static_type = to_static_fixed_type (type);
8115 struct type *fixed_record_type =
8116 to_fixed_record_type (type, valaddr, address, NULL);
8118 /* If STATIC_TYPE is a tagged type and we know the object's address,
8119 then we can determine its tag, and compute the object's actual
8120 type from there. Note that we have to use the fixed record
8121 type (the parent part of the record may have dynamic fields
8122 and the way the location of _tag is expressed may depend on
8125 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8128 value_tag_from_contents_and_address
8132 struct type *real_type = type_from_tag (tag);
8134 value_from_contents_and_address (fixed_record_type,
8137 if (real_type != NULL)
8138 return to_fixed_record_type
8140 value_address (ada_tag_value_at_base_address (obj)), NULL);
8143 /* Check to see if there is a parallel ___XVZ variable.
8144 If there is, then it provides the actual size of our type. */
8145 else if (ada_type_name (fixed_record_type) != NULL)
8147 const char *name = ada_type_name (fixed_record_type);
8148 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8152 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8153 size = get_int_var_value (xvz_name, &xvz_found);
8154 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8156 fixed_record_type = copy_type (fixed_record_type);
8157 TYPE_LENGTH (fixed_record_type) = size;
8159 /* The FIXED_RECORD_TYPE may have be a stub. We have
8160 observed this when the debugging info is STABS, and
8161 apparently it is something that is hard to fix.
8163 In practice, we don't need the actual type definition
8164 at all, because the presence of the XVZ variable allows us
8165 to assume that there must be a XVS type as well, which we
8166 should be able to use later, when we need the actual type
8169 In the meantime, pretend that the "fixed" type we are
8170 returning is NOT a stub, because this can cause trouble
8171 when using this type to create new types targeting it.
8172 Indeed, the associated creation routines often check
8173 whether the target type is a stub and will try to replace
8174 it, thus using a type with the wrong size. This, in turn,
8175 might cause the new type to have the wrong size too.
8176 Consider the case of an array, for instance, where the size
8177 of the array is computed from the number of elements in
8178 our array multiplied by the size of its element. */
8179 TYPE_STUB (fixed_record_type) = 0;
8182 return fixed_record_type;
8184 case TYPE_CODE_ARRAY:
8185 return to_fixed_array_type (type, dval, 1);
8186 case TYPE_CODE_UNION:
8190 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8194 /* The same as ada_to_fixed_type_1, except that it preserves the type
8195 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8197 The typedef layer needs be preserved in order to differentiate between
8198 arrays and array pointers when both types are implemented using the same
8199 fat pointer. In the array pointer case, the pointer is encoded as
8200 a typedef of the pointer type. For instance, considering:
8202 type String_Access is access String;
8203 S1 : String_Access := null;
8205 To the debugger, S1 is defined as a typedef of type String. But
8206 to the user, it is a pointer. So if the user tries to print S1,
8207 we should not dereference the array, but print the array address
8210 If we didn't preserve the typedef layer, we would lose the fact that
8211 the type is to be presented as a pointer (needs de-reference before
8212 being printed). And we would also use the source-level type name. */
8215 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8216 CORE_ADDR address, struct value *dval, int check_tag)
8219 struct type *fixed_type =
8220 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8222 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8223 then preserve the typedef layer.
8225 Implementation note: We can only check the main-type portion of
8226 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8227 from TYPE now returns a type that has the same instance flags
8228 as TYPE. For instance, if TYPE is a "typedef const", and its
8229 target type is a "struct", then the typedef elimination will return
8230 a "const" version of the target type. See check_typedef for more
8231 details about how the typedef layer elimination is done.
8233 brobecker/2010-11-19: It seems to me that the only case where it is
8234 useful to preserve the typedef layer is when dealing with fat pointers.
8235 Perhaps, we could add a check for that and preserve the typedef layer
8236 only in that situation. But this seems unecessary so far, probably
8237 because we call check_typedef/ada_check_typedef pretty much everywhere.
8239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8240 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8241 == TYPE_MAIN_TYPE (fixed_type)))
8247 /* A standard (static-sized) type corresponding as well as possible to
8248 TYPE0, but based on no runtime data. */
8250 static struct type *
8251 to_static_fixed_type (struct type *type0)
8258 if (TYPE_FIXED_INSTANCE (type0))
8261 type0 = ada_check_typedef (type0);
8263 switch (TYPE_CODE (type0))
8267 case TYPE_CODE_STRUCT:
8268 type = dynamic_template_type (type0);
8270 return template_to_static_fixed_type (type);
8272 return template_to_static_fixed_type (type0);
8273 case TYPE_CODE_UNION:
8274 type = ada_find_parallel_type (type0, "___XVU");
8276 return template_to_static_fixed_type (type);
8278 return template_to_static_fixed_type (type0);
8282 /* A static approximation of TYPE with all type wrappers removed. */
8284 static struct type *
8285 static_unwrap_type (struct type *type)
8287 if (ada_is_aligner_type (type))
8289 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8290 if (ada_type_name (type1) == NULL)
8291 TYPE_NAME (type1) = ada_type_name (type);
8293 return static_unwrap_type (type1);
8297 struct type *raw_real_type = ada_get_base_type (type);
8299 if (raw_real_type == type)
8302 return to_static_fixed_type (raw_real_type);
8306 /* In some cases, incomplete and private types require
8307 cross-references that are not resolved as records (for example,
8309 type FooP is access Foo;
8311 type Foo is array ...;
8312 ). In these cases, since there is no mechanism for producing
8313 cross-references to such types, we instead substitute for FooP a
8314 stub enumeration type that is nowhere resolved, and whose tag is
8315 the name of the actual type. Call these types "non-record stubs". */
8317 /* A type equivalent to TYPE that is not a non-record stub, if one
8318 exists, otherwise TYPE. */
8321 ada_check_typedef (struct type *type)
8326 /* If our type is a typedef type of a fat pointer, then we're done.
8327 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8328 what allows us to distinguish between fat pointers that represent
8329 array types, and fat pointers that represent array access types
8330 (in both cases, the compiler implements them as fat pointers). */
8331 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8332 && is_thick_pntr (ada_typedef_target_type (type)))
8335 CHECK_TYPEDEF (type);
8336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8337 || !TYPE_STUB (type)
8338 || TYPE_TAG_NAME (type) == NULL)
8342 const char *name = TYPE_TAG_NAME (type);
8343 struct type *type1 = ada_find_any_type (name);
8348 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8349 stubs pointing to arrays, as we don't create symbols for array
8350 types, only for the typedef-to-array types). If that's the case,
8351 strip the typedef layer. */
8352 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8353 type1 = ada_check_typedef (type1);
8359 /* A value representing the data at VALADDR/ADDRESS as described by
8360 type TYPE0, but with a standard (static-sized) type that correctly
8361 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8362 type, then return VAL0 [this feature is simply to avoid redundant
8363 creation of struct values]. */
8365 static struct value *
8366 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8369 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8371 if (type == type0 && val0 != NULL)
8374 return value_from_contents_and_address (type, 0, address);
8377 /* A value representing VAL, but with a standard (static-sized) type
8378 that correctly describes it. Does not necessarily create a new
8382 ada_to_fixed_value (struct value *val)
8384 val = unwrap_value (val);
8385 val = ada_to_fixed_value_create (value_type (val),
8386 value_address (val),
8394 /* Table mapping attribute numbers to names.
8395 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8397 static const char *attribute_names[] = {
8415 ada_attribute_name (enum exp_opcode n)
8417 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8418 return attribute_names[n - OP_ATR_FIRST + 1];
8420 return attribute_names[0];
8423 /* Evaluate the 'POS attribute applied to ARG. */
8426 pos_atr (struct value *arg)
8428 struct value *val = coerce_ref (arg);
8429 struct type *type = value_type (val);
8431 if (!discrete_type_p (type))
8432 error (_("'POS only defined on discrete types"));
8434 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8437 LONGEST v = value_as_long (val);
8439 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8441 if (v == TYPE_FIELD_ENUMVAL (type, i))
8444 error (_("enumeration value is invalid: can't find 'POS"));
8447 return value_as_long (val);
8450 static struct value *
8451 value_pos_atr (struct type *type, struct value *arg)
8453 return value_from_longest (type, pos_atr (arg));
8456 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8458 static struct value *
8459 value_val_atr (struct type *type, struct value *arg)
8461 if (!discrete_type_p (type))
8462 error (_("'VAL only defined on discrete types"));
8463 if (!integer_type_p (value_type (arg)))
8464 error (_("'VAL requires integral argument"));
8466 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8468 long pos = value_as_long (arg);
8470 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8471 error (_("argument to 'VAL out of range"));
8472 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8475 return value_from_longest (type, value_as_long (arg));
8481 /* True if TYPE appears to be an Ada character type.
8482 [At the moment, this is true only for Character and Wide_Character;
8483 It is a heuristic test that could stand improvement]. */
8486 ada_is_character_type (struct type *type)
8490 /* If the type code says it's a character, then assume it really is,
8491 and don't check any further. */
8492 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8495 /* Otherwise, assume it's a character type iff it is a discrete type
8496 with a known character type name. */
8497 name = ada_type_name (type);
8498 return (name != NULL
8499 && (TYPE_CODE (type) == TYPE_CODE_INT
8500 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8501 && (strcmp (name, "character") == 0
8502 || strcmp (name, "wide_character") == 0
8503 || strcmp (name, "wide_wide_character") == 0
8504 || strcmp (name, "unsigned char") == 0));
8507 /* True if TYPE appears to be an Ada string type. */
8510 ada_is_string_type (struct type *type)
8512 type = ada_check_typedef (type);
8514 && TYPE_CODE (type) != TYPE_CODE_PTR
8515 && (ada_is_simple_array_type (type)
8516 || ada_is_array_descriptor_type (type))
8517 && ada_array_arity (type) == 1)
8519 struct type *elttype = ada_array_element_type (type, 1);
8521 return ada_is_character_type (elttype);
8527 /* The compiler sometimes provides a parallel XVS type for a given
8528 PAD type. Normally, it is safe to follow the PAD type directly,
8529 but older versions of the compiler have a bug that causes the offset
8530 of its "F" field to be wrong. Following that field in that case
8531 would lead to incorrect results, but this can be worked around
8532 by ignoring the PAD type and using the associated XVS type instead.
8534 Set to True if the debugger should trust the contents of PAD types.
8535 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8536 static int trust_pad_over_xvs = 1;
8538 /* True if TYPE is a struct type introduced by the compiler to force the
8539 alignment of a value. Such types have a single field with a
8540 distinctive name. */
8543 ada_is_aligner_type (struct type *type)
8545 type = ada_check_typedef (type);
8547 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8550 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8551 && TYPE_NFIELDS (type) == 1
8552 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8555 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8556 the parallel type. */
8559 ada_get_base_type (struct type *raw_type)
8561 struct type *real_type_namer;
8562 struct type *raw_real_type;
8564 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8567 if (ada_is_aligner_type (raw_type))
8568 /* The encoding specifies that we should always use the aligner type.
8569 So, even if this aligner type has an associated XVS type, we should
8572 According to the compiler gurus, an XVS type parallel to an aligner
8573 type may exist because of a stabs limitation. In stabs, aligner
8574 types are empty because the field has a variable-sized type, and
8575 thus cannot actually be used as an aligner type. As a result,
8576 we need the associated parallel XVS type to decode the type.
8577 Since the policy in the compiler is to not change the internal
8578 representation based on the debugging info format, we sometimes
8579 end up having a redundant XVS type parallel to the aligner type. */
8582 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8583 if (real_type_namer == NULL
8584 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8585 || TYPE_NFIELDS (real_type_namer) != 1)
8588 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8590 /* This is an older encoding form where the base type needs to be
8591 looked up by name. We prefer the newer enconding because it is
8593 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8594 if (raw_real_type == NULL)
8597 return raw_real_type;
8600 /* The field in our XVS type is a reference to the base type. */
8601 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8604 /* The type of value designated by TYPE, with all aligners removed. */
8607 ada_aligned_type (struct type *type)
8609 if (ada_is_aligner_type (type))
8610 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8612 return ada_get_base_type (type);
8616 /* The address of the aligned value in an object at address VALADDR
8617 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8620 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8622 if (ada_is_aligner_type (type))
8623 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8625 TYPE_FIELD_BITPOS (type,
8626 0) / TARGET_CHAR_BIT);
8633 /* The printed representation of an enumeration literal with encoded
8634 name NAME. The value is good to the next call of ada_enum_name. */
8636 ada_enum_name (const char *name)
8638 static char *result;
8639 static size_t result_len = 0;
8642 /* First, unqualify the enumeration name:
8643 1. Search for the last '.' character. If we find one, then skip
8644 all the preceding characters, the unqualified name starts
8645 right after that dot.
8646 2. Otherwise, we may be debugging on a target where the compiler
8647 translates dots into "__". Search forward for double underscores,
8648 but stop searching when we hit an overloading suffix, which is
8649 of the form "__" followed by digits. */
8651 tmp = strrchr (name, '.');
8656 while ((tmp = strstr (name, "__")) != NULL)
8658 if (isdigit (tmp[2]))
8669 if (name[1] == 'U' || name[1] == 'W')
8671 if (sscanf (name + 2, "%x", &v) != 1)
8677 GROW_VECT (result, result_len, 16);
8678 if (isascii (v) && isprint (v))
8679 xsnprintf (result, result_len, "'%c'", v);
8680 else if (name[1] == 'U')
8681 xsnprintf (result, result_len, "[\"%02x\"]", v);
8683 xsnprintf (result, result_len, "[\"%04x\"]", v);
8689 tmp = strstr (name, "__");
8691 tmp = strstr (name, "$");
8694 GROW_VECT (result, result_len, tmp - name + 1);
8695 strncpy (result, name, tmp - name);
8696 result[tmp - name] = '\0';
8704 /* Evaluate the subexpression of EXP starting at *POS as for
8705 evaluate_type, updating *POS to point just past the evaluated
8708 static struct value *
8709 evaluate_subexp_type (struct expression *exp, int *pos)
8711 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8714 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8717 static struct value *
8718 unwrap_value (struct value *val)
8720 struct type *type = ada_check_typedef (value_type (val));
8722 if (ada_is_aligner_type (type))
8724 struct value *v = ada_value_struct_elt (val, "F", 0);
8725 struct type *val_type = ada_check_typedef (value_type (v));
8727 if (ada_type_name (val_type) == NULL)
8728 TYPE_NAME (val_type) = ada_type_name (type);
8730 return unwrap_value (v);
8734 struct type *raw_real_type =
8735 ada_check_typedef (ada_get_base_type (type));
8737 /* If there is no parallel XVS or XVE type, then the value is
8738 already unwrapped. Return it without further modification. */
8739 if ((type == raw_real_type)
8740 && ada_find_parallel_type (type, "___XVE") == NULL)
8744 coerce_unspec_val_to_type
8745 (val, ada_to_fixed_type (raw_real_type, 0,
8746 value_address (val),
8751 static struct value *
8752 cast_to_fixed (struct type *type, struct value *arg)
8756 if (type == value_type (arg))
8758 else if (ada_is_fixed_point_type (value_type (arg)))
8759 val = ada_float_to_fixed (type,
8760 ada_fixed_to_float (value_type (arg),
8761 value_as_long (arg)));
8764 DOUBLEST argd = value_as_double (arg);
8766 val = ada_float_to_fixed (type, argd);
8769 return value_from_longest (type, val);
8772 static struct value *
8773 cast_from_fixed (struct type *type, struct value *arg)
8775 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8776 value_as_long (arg));
8778 return value_from_double (type, val);
8781 /* Given two array types T1 and T2, return nonzero iff both arrays
8782 contain the same number of elements. */
8785 ada_same_array_size_p (struct type *t1, struct type *t2)
8787 LONGEST lo1, hi1, lo2, hi2;
8789 /* Get the array bounds in order to verify that the size of
8790 the two arrays match. */
8791 if (!get_array_bounds (t1, &lo1, &hi1)
8792 || !get_array_bounds (t2, &lo2, &hi2))
8793 error (_("unable to determine array bounds"));
8795 /* To make things easier for size comparison, normalize a bit
8796 the case of empty arrays by making sure that the difference
8797 between upper bound and lower bound is always -1. */
8803 return (hi1 - lo1 == hi2 - lo2);
8806 /* Assuming that VAL is an array of integrals, and TYPE represents
8807 an array with the same number of elements, but with wider integral
8808 elements, return an array "casted" to TYPE. In practice, this
8809 means that the returned array is built by casting each element
8810 of the original array into TYPE's (wider) element type. */
8812 static struct value *
8813 ada_promote_array_of_integrals (struct type *type, struct value *val)
8815 struct type *elt_type = TYPE_TARGET_TYPE (type);
8820 /* Verify that both val and type are arrays of scalars, and
8821 that the size of val's elements is smaller than the size
8822 of type's element. */
8823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8825 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8826 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8827 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8828 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8830 if (!get_array_bounds (type, &lo, &hi))
8831 error (_("unable to determine array bounds"));
8833 res = allocate_value (type);
8835 /* Promote each array element. */
8836 for (i = 0; i < hi - lo + 1; i++)
8838 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8840 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8841 value_contents_all (elt), TYPE_LENGTH (elt_type));
8847 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8848 return the converted value. */
8850 static struct value *
8851 coerce_for_assign (struct type *type, struct value *val)
8853 struct type *type2 = value_type (val);
8858 type2 = ada_check_typedef (type2);
8859 type = ada_check_typedef (type);
8861 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8862 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8864 val = ada_value_ind (val);
8865 type2 = value_type (val);
8868 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8869 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8871 if (!ada_same_array_size_p (type, type2))
8872 error (_("cannot assign arrays of different length"));
8874 if (is_integral_type (TYPE_TARGET_TYPE (type))
8875 && is_integral_type (TYPE_TARGET_TYPE (type2))
8876 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8877 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8879 /* Allow implicit promotion of the array elements to
8881 return ada_promote_array_of_integrals (type, val);
8884 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8885 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8886 error (_("Incompatible types in assignment"));
8887 deprecated_set_value_type (val, type);
8892 static struct value *
8893 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8896 struct type *type1, *type2;
8899 arg1 = coerce_ref (arg1);
8900 arg2 = coerce_ref (arg2);
8901 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8902 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8904 if (TYPE_CODE (type1) != TYPE_CODE_INT
8905 || TYPE_CODE (type2) != TYPE_CODE_INT)
8906 return value_binop (arg1, arg2, op);
8915 return value_binop (arg1, arg2, op);
8918 v2 = value_as_long (arg2);
8920 error (_("second operand of %s must not be zero."), op_string (op));
8922 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8923 return value_binop (arg1, arg2, op);
8925 v1 = value_as_long (arg1);
8930 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8931 v += v > 0 ? -1 : 1;
8939 /* Should not reach this point. */
8943 val = allocate_value (type1);
8944 store_unsigned_integer (value_contents_raw (val),
8945 TYPE_LENGTH (value_type (val)),
8946 gdbarch_byte_order (get_type_arch (type1)), v);
8951 ada_value_equal (struct value *arg1, struct value *arg2)
8953 if (ada_is_direct_array_type (value_type (arg1))
8954 || ada_is_direct_array_type (value_type (arg2)))
8956 /* Automatically dereference any array reference before
8957 we attempt to perform the comparison. */
8958 arg1 = ada_coerce_ref (arg1);
8959 arg2 = ada_coerce_ref (arg2);
8961 arg1 = ada_coerce_to_simple_array (arg1);
8962 arg2 = ada_coerce_to_simple_array (arg2);
8963 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8964 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8965 error (_("Attempt to compare array with non-array"));
8966 /* FIXME: The following works only for types whose
8967 representations use all bits (no padding or undefined bits)
8968 and do not have user-defined equality. */
8970 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8971 && memcmp (value_contents (arg1), value_contents (arg2),
8972 TYPE_LENGTH (value_type (arg1))) == 0;
8974 return value_equal (arg1, arg2);
8977 /* Total number of component associations in the aggregate starting at
8978 index PC in EXP. Assumes that index PC is the start of an
8982 num_component_specs (struct expression *exp, int pc)
8986 m = exp->elts[pc + 1].longconst;
8989 for (i = 0; i < m; i += 1)
8991 switch (exp->elts[pc].opcode)
8997 n += exp->elts[pc + 1].longconst;
9000 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9005 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9006 component of LHS (a simple array or a record), updating *POS past
9007 the expression, assuming that LHS is contained in CONTAINER. Does
9008 not modify the inferior's memory, nor does it modify LHS (unless
9009 LHS == CONTAINER). */
9012 assign_component (struct value *container, struct value *lhs, LONGEST index,
9013 struct expression *exp, int *pos)
9015 struct value *mark = value_mark ();
9018 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9020 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9021 struct value *index_val = value_from_longest (index_type, index);
9023 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9027 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9028 elt = ada_to_fixed_value (elt);
9031 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9032 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9034 value_assign_to_component (container, elt,
9035 ada_evaluate_subexp (NULL, exp, pos,
9038 value_free_to_mark (mark);
9041 /* Assuming that LHS represents an lvalue having a record or array
9042 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9043 of that aggregate's value to LHS, advancing *POS past the
9044 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9045 lvalue containing LHS (possibly LHS itself). Does not modify
9046 the inferior's memory, nor does it modify the contents of
9047 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9049 static struct value *
9050 assign_aggregate (struct value *container,
9051 struct value *lhs, struct expression *exp,
9052 int *pos, enum noside noside)
9054 struct type *lhs_type;
9055 int n = exp->elts[*pos+1].longconst;
9056 LONGEST low_index, high_index;
9059 int max_indices, num_indices;
9063 if (noside != EVAL_NORMAL)
9065 for (i = 0; i < n; i += 1)
9066 ada_evaluate_subexp (NULL, exp, pos, noside);
9070 container = ada_coerce_ref (container);
9071 if (ada_is_direct_array_type (value_type (container)))
9072 container = ada_coerce_to_simple_array (container);
9073 lhs = ada_coerce_ref (lhs);
9074 if (!deprecated_value_modifiable (lhs))
9075 error (_("Left operand of assignment is not a modifiable lvalue."));
9077 lhs_type = value_type (lhs);
9078 if (ada_is_direct_array_type (lhs_type))
9080 lhs = ada_coerce_to_simple_array (lhs);
9081 lhs_type = value_type (lhs);
9082 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9083 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9085 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9088 high_index = num_visible_fields (lhs_type) - 1;
9091 error (_("Left-hand side must be array or record."));
9093 num_specs = num_component_specs (exp, *pos - 3);
9094 max_indices = 4 * num_specs + 4;
9095 indices = alloca (max_indices * sizeof (indices[0]));
9096 indices[0] = indices[1] = low_index - 1;
9097 indices[2] = indices[3] = high_index + 1;
9100 for (i = 0; i < n; i += 1)
9102 switch (exp->elts[*pos].opcode)
9105 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9106 &num_indices, max_indices,
9107 low_index, high_index);
9110 aggregate_assign_positional (container, lhs, exp, pos, indices,
9111 &num_indices, max_indices,
9112 low_index, high_index);
9116 error (_("Misplaced 'others' clause"));
9117 aggregate_assign_others (container, lhs, exp, pos, indices,
9118 num_indices, low_index, high_index);
9121 error (_("Internal error: bad aggregate clause"));
9128 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9129 construct at *POS, updating *POS past the construct, given that
9130 the positions are relative to lower bound LOW, where HIGH is the
9131 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9132 updating *NUM_INDICES as needed. CONTAINER is as for
9133 assign_aggregate. */
9135 aggregate_assign_positional (struct value *container,
9136 struct value *lhs, struct expression *exp,
9137 int *pos, LONGEST *indices, int *num_indices,
9138 int max_indices, LONGEST low, LONGEST high)
9140 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9142 if (ind - 1 == high)
9143 warning (_("Extra components in aggregate ignored."));
9146 add_component_interval (ind, ind, indices, num_indices, max_indices);
9148 assign_component (container, lhs, ind, exp, pos);
9151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9154 /* Assign into the components of LHS indexed by the OP_CHOICES
9155 construct at *POS, updating *POS past the construct, given that
9156 the allowable indices are LOW..HIGH. Record the indices assigned
9157 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9158 needed. CONTAINER is as for assign_aggregate. */
9160 aggregate_assign_from_choices (struct value *container,
9161 struct value *lhs, struct expression *exp,
9162 int *pos, LONGEST *indices, int *num_indices,
9163 int max_indices, LONGEST low, LONGEST high)
9166 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9167 int choice_pos, expr_pc;
9168 int is_array = ada_is_direct_array_type (value_type (lhs));
9170 choice_pos = *pos += 3;
9172 for (j = 0; j < n_choices; j += 1)
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9175 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9177 for (j = 0; j < n_choices; j += 1)
9179 LONGEST lower, upper;
9180 enum exp_opcode op = exp->elts[choice_pos].opcode;
9182 if (op == OP_DISCRETE_RANGE)
9185 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9187 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9192 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9204 name = &exp->elts[choice_pos + 2].string;
9207 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9210 error (_("Invalid record component association."));
9212 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9214 if (! find_struct_field (name, value_type (lhs), 0,
9215 NULL, NULL, NULL, NULL, &ind))
9216 error (_("Unknown component name: %s."), name);
9217 lower = upper = ind;
9220 if (lower <= upper && (lower < low || upper > high))
9221 error (_("Index in component association out of bounds."));
9223 add_component_interval (lower, upper, indices, num_indices,
9225 while (lower <= upper)
9230 assign_component (container, lhs, lower, exp, &pos1);
9236 /* Assign the value of the expression in the OP_OTHERS construct in
9237 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9238 have not been previously assigned. The index intervals already assigned
9239 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9240 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9242 aggregate_assign_others (struct value *container,
9243 struct value *lhs, struct expression *exp,
9244 int *pos, LONGEST *indices, int num_indices,
9245 LONGEST low, LONGEST high)
9248 int expr_pc = *pos + 1;
9250 for (i = 0; i < num_indices - 2; i += 2)
9254 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9259 assign_component (container, lhs, ind, exp, &localpos);
9262 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9265 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9266 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9267 modifying *SIZE as needed. It is an error if *SIZE exceeds
9268 MAX_SIZE. The resulting intervals do not overlap. */
9270 add_component_interval (LONGEST low, LONGEST high,
9271 LONGEST* indices, int *size, int max_size)
9275 for (i = 0; i < *size; i += 2) {
9276 if (high >= indices[i] && low <= indices[i + 1])
9280 for (kh = i + 2; kh < *size; kh += 2)
9281 if (high < indices[kh])
9283 if (low < indices[i])
9285 indices[i + 1] = indices[kh - 1];
9286 if (high > indices[i + 1])
9287 indices[i + 1] = high;
9288 memcpy (indices + i + 2, indices + kh, *size - kh);
9289 *size -= kh - i - 2;
9292 else if (high < indices[i])
9296 if (*size == max_size)
9297 error (_("Internal error: miscounted aggregate components."));
9299 for (j = *size-1; j >= i+2; j -= 1)
9300 indices[j] = indices[j - 2];
9302 indices[i + 1] = high;
9305 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9308 static struct value *
9309 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9311 if (type == ada_check_typedef (value_type (arg2)))
9314 if (ada_is_fixed_point_type (type))
9315 return (cast_to_fixed (type, arg2));
9317 if (ada_is_fixed_point_type (value_type (arg2)))
9318 return cast_from_fixed (type, arg2);
9320 return value_cast (type, arg2);
9323 /* Evaluating Ada expressions, and printing their result.
9324 ------------------------------------------------------
9329 We usually evaluate an Ada expression in order to print its value.
9330 We also evaluate an expression in order to print its type, which
9331 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9332 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9333 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9334 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9337 Evaluating expressions is a little more complicated for Ada entities
9338 than it is for entities in languages such as C. The main reason for
9339 this is that Ada provides types whose definition might be dynamic.
9340 One example of such types is variant records. Or another example
9341 would be an array whose bounds can only be known at run time.
9343 The following description is a general guide as to what should be
9344 done (and what should NOT be done) in order to evaluate an expression
9345 involving such types, and when. This does not cover how the semantic
9346 information is encoded by GNAT as this is covered separatly. For the
9347 document used as the reference for the GNAT encoding, see exp_dbug.ads
9348 in the GNAT sources.
9350 Ideally, we should embed each part of this description next to its
9351 associated code. Unfortunately, the amount of code is so vast right
9352 now that it's hard to see whether the code handling a particular
9353 situation might be duplicated or not. One day, when the code is
9354 cleaned up, this guide might become redundant with the comments
9355 inserted in the code, and we might want to remove it.
9357 2. ``Fixing'' an Entity, the Simple Case:
9358 -----------------------------------------
9360 When evaluating Ada expressions, the tricky issue is that they may
9361 reference entities whose type contents and size are not statically
9362 known. Consider for instance a variant record:
9364 type Rec (Empty : Boolean := True) is record
9367 when False => Value : Integer;
9370 Yes : Rec := (Empty => False, Value => 1);
9371 No : Rec := (empty => True);
9373 The size and contents of that record depends on the value of the
9374 descriminant (Rec.Empty). At this point, neither the debugging
9375 information nor the associated type structure in GDB are able to
9376 express such dynamic types. So what the debugger does is to create
9377 "fixed" versions of the type that applies to the specific object.
9378 We also informally refer to this opperation as "fixing" an object,
9379 which means creating its associated fixed type.
9381 Example: when printing the value of variable "Yes" above, its fixed
9382 type would look like this:
9389 On the other hand, if we printed the value of "No", its fixed type
9396 Things become a little more complicated when trying to fix an entity
9397 with a dynamic type that directly contains another dynamic type,
9398 such as an array of variant records, for instance. There are
9399 two possible cases: Arrays, and records.
9401 3. ``Fixing'' Arrays:
9402 ---------------------
9404 The type structure in GDB describes an array in terms of its bounds,
9405 and the type of its elements. By design, all elements in the array
9406 have the same type and we cannot represent an array of variant elements
9407 using the current type structure in GDB. When fixing an array,
9408 we cannot fix the array element, as we would potentially need one
9409 fixed type per element of the array. As a result, the best we can do
9410 when fixing an array is to produce an array whose bounds and size
9411 are correct (allowing us to read it from memory), but without having
9412 touched its element type. Fixing each element will be done later,
9413 when (if) necessary.
9415 Arrays are a little simpler to handle than records, because the same
9416 amount of memory is allocated for each element of the array, even if
9417 the amount of space actually used by each element differs from element
9418 to element. Consider for instance the following array of type Rec:
9420 type Rec_Array is array (1 .. 2) of Rec;
9422 The actual amount of memory occupied by each element might be different
9423 from element to element, depending on the value of their discriminant.
9424 But the amount of space reserved for each element in the array remains
9425 fixed regardless. So we simply need to compute that size using
9426 the debugging information available, from which we can then determine
9427 the array size (we multiply the number of elements of the array by
9428 the size of each element).
9430 The simplest case is when we have an array of a constrained element
9431 type. For instance, consider the following type declarations:
9433 type Bounded_String (Max_Size : Integer) is
9435 Buffer : String (1 .. Max_Size);
9437 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9439 In this case, the compiler describes the array as an array of
9440 variable-size elements (identified by its XVS suffix) for which
9441 the size can be read in the parallel XVZ variable.
9443 In the case of an array of an unconstrained element type, the compiler
9444 wraps the array element inside a private PAD type. This type should not
9445 be shown to the user, and must be "unwrap"'ed before printing. Note
9446 that we also use the adjective "aligner" in our code to designate
9447 these wrapper types.
9449 In some cases, the size allocated for each element is statically
9450 known. In that case, the PAD type already has the correct size,
9451 and the array element should remain unfixed.
9453 But there are cases when this size is not statically known.
9454 For instance, assuming that "Five" is an integer variable:
9456 type Dynamic is array (1 .. Five) of Integer;
9457 type Wrapper (Has_Length : Boolean := False) is record
9460 when True => Length : Integer;
9464 type Wrapper_Array is array (1 .. 2) of Wrapper;
9466 Hello : Wrapper_Array := (others => (Has_Length => True,
9467 Data => (others => 17),
9471 The debugging info would describe variable Hello as being an
9472 array of a PAD type. The size of that PAD type is not statically
9473 known, but can be determined using a parallel XVZ variable.
9474 In that case, a copy of the PAD type with the correct size should
9475 be used for the fixed array.
9477 3. ``Fixing'' record type objects:
9478 ----------------------------------
9480 Things are slightly different from arrays in the case of dynamic
9481 record types. In this case, in order to compute the associated
9482 fixed type, we need to determine the size and offset of each of
9483 its components. This, in turn, requires us to compute the fixed
9484 type of each of these components.
9486 Consider for instance the example:
9488 type Bounded_String (Max_Size : Natural) is record
9489 Str : String (1 .. Max_Size);
9492 My_String : Bounded_String (Max_Size => 10);
9494 In that case, the position of field "Length" depends on the size
9495 of field Str, which itself depends on the value of the Max_Size
9496 discriminant. In order to fix the type of variable My_String,
9497 we need to fix the type of field Str. Therefore, fixing a variant
9498 record requires us to fix each of its components.
9500 However, if a component does not have a dynamic size, the component
9501 should not be fixed. In particular, fields that use a PAD type
9502 should not fixed. Here is an example where this might happen
9503 (assuming type Rec above):
9505 type Container (Big : Boolean) is record
9509 when True => Another : Integer;
9513 My_Container : Container := (Big => False,
9514 First => (Empty => True),
9517 In that example, the compiler creates a PAD type for component First,
9518 whose size is constant, and then positions the component After just
9519 right after it. The offset of component After is therefore constant
9522 The debugger computes the position of each field based on an algorithm
9523 that uses, among other things, the actual position and size of the field
9524 preceding it. Let's now imagine that the user is trying to print
9525 the value of My_Container. If the type fixing was recursive, we would
9526 end up computing the offset of field After based on the size of the
9527 fixed version of field First. And since in our example First has
9528 only one actual field, the size of the fixed type is actually smaller
9529 than the amount of space allocated to that field, and thus we would
9530 compute the wrong offset of field After.
9532 To make things more complicated, we need to watch out for dynamic
9533 components of variant records (identified by the ___XVL suffix in
9534 the component name). Even if the target type is a PAD type, the size
9535 of that type might not be statically known. So the PAD type needs
9536 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9537 we might end up with the wrong size for our component. This can be
9538 observed with the following type declarations:
9540 type Octal is new Integer range 0 .. 7;
9541 type Octal_Array is array (Positive range <>) of Octal;
9542 pragma Pack (Octal_Array);
9544 type Octal_Buffer (Size : Positive) is record
9545 Buffer : Octal_Array (1 .. Size);
9549 In that case, Buffer is a PAD type whose size is unset and needs
9550 to be computed by fixing the unwrapped type.
9552 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9553 ----------------------------------------------------------
9555 Lastly, when should the sub-elements of an entity that remained unfixed
9556 thus far, be actually fixed?
9558 The answer is: Only when referencing that element. For instance
9559 when selecting one component of a record, this specific component
9560 should be fixed at that point in time. Or when printing the value
9561 of a record, each component should be fixed before its value gets
9562 printed. Similarly for arrays, the element of the array should be
9563 fixed when printing each element of the array, or when extracting
9564 one element out of that array. On the other hand, fixing should
9565 not be performed on the elements when taking a slice of an array!
9567 Note that one of the side-effects of miscomputing the offset and
9568 size of each field is that we end up also miscomputing the size
9569 of the containing type. This can have adverse results when computing
9570 the value of an entity. GDB fetches the value of an entity based
9571 on the size of its type, and thus a wrong size causes GDB to fetch
9572 the wrong amount of memory. In the case where the computed size is
9573 too small, GDB fetches too little data to print the value of our
9574 entiry. Results in this case as unpredicatble, as we usually read
9575 past the buffer containing the data =:-o. */
9577 /* Implement the evaluate_exp routine in the exp_descriptor structure
9578 for the Ada language. */
9580 static struct value *
9581 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9582 int *pos, enum noside noside)
9587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9590 struct value **argvec;
9594 op = exp->elts[pc].opcode;
9600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9602 if (noside == EVAL_NORMAL)
9603 arg1 = unwrap_value (arg1);
9605 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9606 then we need to perform the conversion manually, because
9607 evaluate_subexp_standard doesn't do it. This conversion is
9608 necessary in Ada because the different kinds of float/fixed
9609 types in Ada have different representations.
9611 Similarly, we need to perform the conversion from OP_LONG
9613 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9614 arg1 = ada_value_cast (expect_type, arg1, noside);
9620 struct value *result;
9623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9624 /* The result type will have code OP_STRING, bashed there from
9625 OP_ARRAY. Bash it back. */
9626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9633 type = exp->elts[pc + 1].type;
9634 arg1 = evaluate_subexp (type, exp, pos, noside);
9635 if (noside == EVAL_SKIP)
9637 arg1 = ada_value_cast (type, arg1, noside);
9642 type = exp->elts[pc + 1].type;
9643 return ada_evaluate_subexp (type, exp, pos, noside);
9646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9649 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9650 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9652 return ada_value_assign (arg1, arg1);
9654 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9655 except if the lhs of our assignment is a convenience variable.
9656 In the case of assigning to a convenience variable, the lhs
9657 should be exactly the result of the evaluation of the rhs. */
9658 type = value_type (arg1);
9659 if (VALUE_LVAL (arg1) == lval_internalvar)
9661 arg2 = evaluate_subexp (type, exp, pos, noside);
9662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9664 if (ada_is_fixed_point_type (value_type (arg1)))
9665 arg2 = cast_to_fixed (value_type (arg1), arg2);
9666 else if (ada_is_fixed_point_type (value_type (arg2)))
9668 (_("Fixed-point values must be assigned to fixed-point variables"));
9670 arg2 = coerce_for_assign (value_type (arg1), arg2);
9671 return ada_value_assign (arg1, arg2);
9674 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9675 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9676 if (noside == EVAL_SKIP)
9678 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9679 return (value_from_longest
9681 value_as_long (arg1) + value_as_long (arg2)));
9682 if ((ada_is_fixed_point_type (value_type (arg1))
9683 || ada_is_fixed_point_type (value_type (arg2)))
9684 && value_type (arg1) != value_type (arg2))
9685 error (_("Operands of fixed-point addition must have the same type"));
9686 /* Do the addition, and cast the result to the type of the first
9687 argument. We cannot cast the result to a reference type, so if
9688 ARG1 is a reference type, find its underlying type. */
9689 type = value_type (arg1);
9690 while (TYPE_CODE (type) == TYPE_CODE_REF)
9691 type = TYPE_TARGET_TYPE (type);
9692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9701 return (value_from_longest
9703 value_as_long (arg1) - value_as_long (arg2)));
9704 if ((ada_is_fixed_point_type (value_type (arg1))
9705 || ada_is_fixed_point_type (value_type (arg2)))
9706 && value_type (arg1) != value_type (arg2))
9707 error (_("Operands of fixed-point subtraction "
9708 "must have the same type"));
9709 /* Do the substraction, and cast the result to the type of the first
9710 argument. We cannot cast the result to a reference type, so if
9711 ARG1 is a reference type, find its underlying type. */
9712 type = value_type (arg1);
9713 while (TYPE_CODE (type) == TYPE_CODE_REF)
9714 type = TYPE_TARGET_TYPE (type);
9715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9716 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9723 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9724 if (noside == EVAL_SKIP)
9726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 return value_zero (value_type (arg1), not_lval);
9733 type = builtin_type (exp->gdbarch)->builtin_double;
9734 if (ada_is_fixed_point_type (value_type (arg1)))
9735 arg1 = cast_from_fixed (type, arg1);
9736 if (ada_is_fixed_point_type (value_type (arg2)))
9737 arg2 = cast_from_fixed (type, arg2);
9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9739 return ada_value_binop (arg1, arg2, op);
9743 case BINOP_NOTEQUAL:
9744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9745 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9746 if (noside == EVAL_SKIP)
9748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9753 tem = ada_value_equal (arg1, arg2);
9755 if (op == BINOP_NOTEQUAL)
9757 type = language_bool_type (exp->language_defn, exp->gdbarch);
9758 return value_from_longest (type, (LONGEST) tem);
9761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9764 else if (ada_is_fixed_point_type (value_type (arg1)))
9765 return value_cast (value_type (arg1), value_neg (arg1));
9768 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9769 return value_neg (arg1);
9772 case BINOP_LOGICAL_AND:
9773 case BINOP_LOGICAL_OR:
9774 case UNOP_LOGICAL_NOT:
9779 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9781 return value_cast (type, val);
9784 case BINOP_BITWISE_AND:
9785 case BINOP_BITWISE_IOR:
9786 case BINOP_BITWISE_XOR:
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9792 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9794 return value_cast (value_type (arg1), val);
9800 if (noside == EVAL_SKIP)
9805 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9806 /* Only encountered when an unresolved symbol occurs in a
9807 context other than a function call, in which case, it is
9809 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9813 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9814 /* Check to see if this is a tagged type. We also need to handle
9815 the case where the type is a reference to a tagged type, but
9816 we have to be careful to exclude pointers to tagged types.
9817 The latter should be shown as usual (as a pointer), whereas
9818 a reference should mostly be transparent to the user. */
9819 if (ada_is_tagged_type (type, 0)
9820 || (TYPE_CODE(type) == TYPE_CODE_REF
9821 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9823 /* Tagged types are a little special in the fact that the real
9824 type is dynamic and can only be determined by inspecting the
9825 object's tag. This means that we need to get the object's
9826 value first (EVAL_NORMAL) and then extract the actual object
9829 Note that we cannot skip the final step where we extract
9830 the object type from its tag, because the EVAL_NORMAL phase
9831 results in dynamic components being resolved into fixed ones.
9832 This can cause problems when trying to print the type
9833 description of tagged types whose parent has a dynamic size:
9834 We use the type name of the "_parent" component in order
9835 to print the name of the ancestor type in the type description.
9836 If that component had a dynamic size, the resolution into
9837 a fixed type would result in the loss of that type name,
9838 thus preventing us from printing the name of the ancestor
9839 type in the type description. */
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9842 if (TYPE_CODE (type) != TYPE_CODE_REF)
9844 struct type *actual_type;
9846 actual_type = type_from_tag (ada_value_tag (arg1));
9847 if (actual_type == NULL)
9848 /* If, for some reason, we were unable to determine
9849 the actual type from the tag, then use the static
9850 approximation that we just computed as a fallback.
9851 This can happen if the debugging information is
9852 incomplete, for instance. */
9854 return value_zero (actual_type, not_lval);
9858 /* In the case of a ref, ada_coerce_ref takes care
9859 of determining the actual type. But the evaluation
9860 should return a ref as it should be valid to ask
9861 for its address; so rebuild a ref after coerce. */
9862 arg1 = ada_coerce_ref (arg1);
9863 return value_ref (arg1);
9869 (to_static_fixed_type
9870 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9875 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9876 return ada_to_fixed_value (arg1);
9882 /* Allocate arg vector, including space for the function to be
9883 called in argvec[0] and a terminating NULL. */
9884 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9886 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9888 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9890 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9891 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9894 for (tem = 0; tem <= nargs; tem += 1)
9895 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9898 if (noside == EVAL_SKIP)
9902 if (ada_is_constrained_packed_array_type
9903 (desc_base_type (value_type (argvec[0]))))
9904 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9906 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9907 /* This is a packed array that has already been fixed, and
9908 therefore already coerced to a simple array. Nothing further
9911 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9912 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9913 && VALUE_LVAL (argvec[0]) == lval_memory))
9914 argvec[0] = value_addr (argvec[0]);
9916 type = ada_check_typedef (value_type (argvec[0]));
9918 /* Ada allows us to implicitly dereference arrays when subscripting
9919 them. So, if this is an array typedef (encoding use for array
9920 access types encoded as fat pointers), strip it now. */
9921 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9922 type = ada_typedef_target_type (type);
9924 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9926 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9928 case TYPE_CODE_FUNC:
9929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9931 case TYPE_CODE_ARRAY:
9933 case TYPE_CODE_STRUCT:
9934 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9935 argvec[0] = ada_value_ind (argvec[0]);
9936 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9939 error (_("cannot subscript or call something of type `%s'"),
9940 ada_type_name (value_type (argvec[0])));
9945 switch (TYPE_CODE (type))
9947 case TYPE_CODE_FUNC:
9948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9950 struct type *rtype = TYPE_TARGET_TYPE (type);
9952 if (TYPE_GNU_IFUNC (type))
9953 return allocate_value (TYPE_TARGET_TYPE (rtype));
9954 return allocate_value (rtype);
9956 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9957 case TYPE_CODE_INTERNAL_FUNCTION:
9958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 /* We don't know anything about what the internal
9960 function might return, but we have to return
9962 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9965 return call_internal_function (exp->gdbarch, exp->language_defn,
9966 argvec[0], nargs, argvec + 1);
9968 case TYPE_CODE_STRUCT:
9972 arity = ada_array_arity (type);
9973 type = ada_array_element_type (type, nargs);
9975 error (_("cannot subscript or call a record"));
9977 error (_("wrong number of subscripts; expecting %d"), arity);
9978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9979 return value_zero (ada_aligned_type (type), lval_memory);
9981 unwrap_value (ada_value_subscript
9982 (argvec[0], nargs, argvec + 1));
9984 case TYPE_CODE_ARRAY:
9985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9987 type = ada_array_element_type (type, nargs);
9989 error (_("element type of array unknown"));
9991 return value_zero (ada_aligned_type (type), lval_memory);
9994 unwrap_value (ada_value_subscript
9995 (ada_coerce_to_simple_array (argvec[0]),
9996 nargs, argvec + 1));
9997 case TYPE_CODE_PTR: /* Pointer to array */
9998 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9999 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10001 type = ada_array_element_type (type, nargs);
10003 error (_("element type of array unknown"));
10005 return value_zero (ada_aligned_type (type), lval_memory);
10008 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10009 nargs, argvec + 1));
10012 error (_("Attempt to index or call something other than an "
10013 "array or function"));
10018 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 struct value *low_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 struct value *high_bound_val =
10022 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10024 LONGEST high_bound;
10026 low_bound_val = coerce_ref (low_bound_val);
10027 high_bound_val = coerce_ref (high_bound_val);
10028 low_bound = pos_atr (low_bound_val);
10029 high_bound = pos_atr (high_bound_val);
10031 if (noside == EVAL_SKIP)
10034 /* If this is a reference to an aligner type, then remove all
10036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10037 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10038 TYPE_TARGET_TYPE (value_type (array)) =
10039 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10041 if (ada_is_constrained_packed_array_type (value_type (array)))
10042 error (_("cannot slice a packed array"));
10044 /* If this is a reference to an array or an array lvalue,
10045 convert to a pointer. */
10046 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10047 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10048 && VALUE_LVAL (array) == lval_memory))
10049 array = value_addr (array);
10051 if (noside == EVAL_AVOID_SIDE_EFFECTS
10052 && ada_is_array_descriptor_type (ada_check_typedef
10053 (value_type (array))))
10054 return empty_array (ada_type_of_array (array, 0), low_bound);
10056 array = ada_coerce_to_simple_array_ptr (array);
10058 /* If we have more than one level of pointer indirection,
10059 dereference the value until we get only one level. */
10060 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10061 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10063 array = value_ind (array);
10065 /* Make sure we really do have an array type before going further,
10066 to avoid a SEGV when trying to get the index type or the target
10067 type later down the road if the debug info generated by
10068 the compiler is incorrect or incomplete. */
10069 if (!ada_is_simple_array_type (value_type (array)))
10070 error (_("cannot take slice of non-array"));
10072 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10075 struct type *type0 = ada_check_typedef (value_type (array));
10077 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10078 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10081 struct type *arr_type0 =
10082 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10084 return ada_value_slice_from_ptr (array, arr_type0,
10085 longest_to_int (low_bound),
10086 longest_to_int (high_bound));
10089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 else if (high_bound < low_bound)
10092 return empty_array (value_type (array), low_bound);
10094 return ada_value_slice (array, longest_to_int (low_bound),
10095 longest_to_int (high_bound));
10098 case UNOP_IN_RANGE:
10100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10101 type = check_typedef (exp->elts[pc + 1].type);
10103 if (noside == EVAL_SKIP)
10106 switch (TYPE_CODE (type))
10109 lim_warning (_("Membership test incompletely implemented; "
10110 "always returns true"));
10111 type = language_bool_type (exp->language_defn, exp->gdbarch);
10112 return value_from_longest (type, (LONGEST) 1);
10114 case TYPE_CODE_RANGE:
10115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10119 type = language_bool_type (exp->language_defn, exp->gdbarch);
10121 value_from_longest (type,
10122 (value_less (arg1, arg3)
10123 || value_equal (arg1, arg3))
10124 && (value_less (arg2, arg1)
10125 || value_equal (arg2, arg1)));
10128 case BINOP_IN_BOUNDS:
10130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10133 if (noside == EVAL_SKIP)
10136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10138 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 return value_zero (type, not_lval);
10142 tem = longest_to_int (exp->elts[pc + 1].longconst);
10144 type = ada_index_type (value_type (arg2), tem, "range");
10146 type = value_type (arg1);
10148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10153 type = language_bool_type (exp->language_defn, exp->gdbarch);
10155 value_from_longest (type,
10156 (value_less (arg1, arg3)
10157 || value_equal (arg1, arg3))
10158 && (value_less (arg2, arg1)
10159 || value_equal (arg2, arg1)));
10161 case TERNOP_IN_RANGE:
10162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10166 if (noside == EVAL_SKIP)
10169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10171 type = language_bool_type (exp->language_defn, exp->gdbarch);
10173 value_from_longest (type,
10174 (value_less (arg1, arg3)
10175 || value_equal (arg1, arg3))
10176 && (value_less (arg2, arg1)
10177 || value_equal (arg2, arg1)));
10181 case OP_ATR_LENGTH:
10183 struct type *type_arg;
10185 if (exp->elts[*pos].opcode == OP_TYPE)
10187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10189 type_arg = check_typedef (exp->elts[pc + 2].type);
10193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197 if (exp->elts[*pos].opcode != OP_LONG)
10198 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10199 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10202 if (noside == EVAL_SKIP)
10205 if (type_arg == NULL)
10207 arg1 = ada_coerce_ref (arg1);
10209 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10210 arg1 = ada_coerce_to_simple_array (arg1);
10212 type = ada_index_type (value_type (arg1), tem,
10213 ada_attribute_name (op));
10215 type = builtin_type (exp->gdbarch)->builtin_int;
10217 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10218 return allocate_value (type);
10222 default: /* Should never happen. */
10223 error (_("unexpected attribute encountered"));
10225 return value_from_longest
10226 (type, ada_array_bound (arg1, tem, 0));
10228 return value_from_longest
10229 (type, ada_array_bound (arg1, tem, 1));
10230 case OP_ATR_LENGTH:
10231 return value_from_longest
10232 (type, ada_array_length (arg1, tem));
10235 else if (discrete_type_p (type_arg))
10237 struct type *range_type;
10238 const char *name = ada_type_name (type_arg);
10241 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10242 range_type = to_fixed_range_type (type_arg, NULL);
10243 if (range_type == NULL)
10244 range_type = type_arg;
10248 error (_("unexpected attribute encountered"));
10250 return value_from_longest
10251 (range_type, ada_discrete_type_low_bound (range_type));
10253 return value_from_longest
10254 (range_type, ada_discrete_type_high_bound (range_type));
10255 case OP_ATR_LENGTH:
10256 error (_("the 'length attribute applies only to array types"));
10259 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10260 error (_("unimplemented type attribute"));
10265 if (ada_is_constrained_packed_array_type (type_arg))
10266 type_arg = decode_constrained_packed_array_type (type_arg);
10268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10270 type = builtin_type (exp->gdbarch)->builtin_int;
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return allocate_value (type);
10278 error (_("unexpected attribute encountered"));
10280 low = ada_array_bound_from_type (type_arg, tem, 0);
10281 return value_from_longest (type, low);
10283 high = ada_array_bound_from_type (type_arg, tem, 1);
10284 return value_from_longest (type, high);
10285 case OP_ATR_LENGTH:
10286 low = ada_array_bound_from_type (type_arg, tem, 0);
10287 high = ada_array_bound_from_type (type_arg, tem, 1);
10288 return value_from_longest (type, high - low + 1);
10294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10295 if (noside == EVAL_SKIP)
10298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10299 return value_zero (ada_tag_type (arg1), not_lval);
10301 return ada_value_tag (arg1);
10305 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10308 if (noside == EVAL_SKIP)
10310 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10311 return value_zero (value_type (arg1), not_lval);
10314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10315 return value_binop (arg1, arg2,
10316 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10319 case OP_ATR_MODULUS:
10321 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10323 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10324 if (noside == EVAL_SKIP)
10327 if (!ada_is_modular_type (type_arg))
10328 error (_("'modulus must be applied to modular type"));
10330 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10331 ada_modulus (type_arg));
10336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10338 if (noside == EVAL_SKIP)
10340 type = builtin_type (exp->gdbarch)->builtin_int;
10341 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10342 return value_zero (type, not_lval);
10344 return value_pos_atr (type, arg1);
10347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10348 type = value_type (arg1);
10350 /* If the argument is a reference, then dereference its type, since
10351 the user is really asking for the size of the actual object,
10352 not the size of the pointer. */
10353 if (TYPE_CODE (type) == TYPE_CODE_REF)
10354 type = TYPE_TARGET_TYPE (type);
10356 if (noside == EVAL_SKIP)
10358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10359 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10361 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10362 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 type = exp->elts[pc + 2].type;
10368 if (noside == EVAL_SKIP)
10370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10371 return value_zero (type, not_lval);
10373 return value_val_atr (type, arg1);
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10381 return value_zero (value_type (arg1), not_lval);
10384 /* For integer exponentiation operations,
10385 only promote the first argument. */
10386 if (is_integral_type (value_type (arg2)))
10387 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10389 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10391 return value_binop (arg1, arg2, op);
10395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10396 if (noside == EVAL_SKIP)
10402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10403 if (noside == EVAL_SKIP)
10405 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10406 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10407 return value_neg (arg1);
10412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10413 if (noside == EVAL_SKIP)
10415 type = ada_check_typedef (value_type (arg1));
10416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10418 if (ada_is_array_descriptor_type (type))
10419 /* GDB allows dereferencing GNAT array descriptors. */
10421 struct type *arrType = ada_type_of_array (arg1, 0);
10423 if (arrType == NULL)
10424 error (_("Attempt to dereference null array pointer."));
10425 return value_at_lazy (arrType, 0);
10427 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10428 || TYPE_CODE (type) == TYPE_CODE_REF
10429 /* In C you can dereference an array to get the 1st elt. */
10430 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10432 type = to_static_fixed_type
10434 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10436 return value_zero (type, lval_memory);
10438 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10440 /* GDB allows dereferencing an int. */
10441 if (expect_type == NULL)
10442 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10447 to_static_fixed_type (ada_aligned_type (expect_type));
10448 return value_zero (expect_type, lval_memory);
10452 error (_("Attempt to take contents of a non-pointer value."));
10454 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10455 type = ada_check_typedef (value_type (arg1));
10457 if (TYPE_CODE (type) == TYPE_CODE_INT)
10458 /* GDB allows dereferencing an int. If we were given
10459 the expect_type, then use that as the target type.
10460 Otherwise, assume that the target type is an int. */
10462 if (expect_type != NULL)
10463 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10466 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10467 (CORE_ADDR) value_as_address (arg1));
10470 if (ada_is_array_descriptor_type (type))
10471 /* GDB allows dereferencing GNAT array descriptors. */
10472 return ada_coerce_to_simple_array (arg1);
10474 return ada_value_ind (arg1);
10476 case STRUCTOP_STRUCT:
10477 tem = longest_to_int (exp->elts[pc + 1].longconst);
10478 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 if (noside == EVAL_SKIP)
10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10484 struct type *type1 = value_type (arg1);
10486 if (ada_is_tagged_type (type1, 1))
10488 type = ada_lookup_struct_elt_type (type1,
10489 &exp->elts[pc + 2].string,
10492 /* In this case, we assume that the field COULD exist
10493 in some extension of the type. Return an object of
10494 "type" void, which will match any formal
10495 (see ada_type_match). */
10496 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10501 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10504 return value_zero (ada_aligned_type (type), lval_memory);
10507 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10508 arg1 = unwrap_value (arg1);
10509 return ada_to_fixed_value (arg1);
10512 /* The value is not supposed to be used. This is here to make it
10513 easier to accommodate expressions that contain types. */
10515 if (noside == EVAL_SKIP)
10517 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10518 return allocate_value (exp->elts[pc + 1].type);
10520 error (_("Attempt to use a type name as an expression"));
10525 case OP_DISCRETE_RANGE:
10526 case OP_POSITIONAL:
10528 if (noside == EVAL_NORMAL)
10532 error (_("Undefined name, ambiguous name, or renaming used in "
10533 "component association: %s."), &exp->elts[pc+2].string);
10535 error (_("Aggregates only allowed on the right of an assignment"));
10537 internal_error (__FILE__, __LINE__,
10538 _("aggregate apparently mangled"));
10541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10543 for (tem = 0; tem < nargs; tem += 1)
10544 ada_evaluate_subexp (NULL, exp, pos, noside);
10549 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10555 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10556 type name that encodes the 'small and 'delta information.
10557 Otherwise, return NULL. */
10559 static const char *
10560 fixed_type_info (struct type *type)
10562 const char *name = ada_type_name (type);
10563 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10565 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10567 const char *tail = strstr (name, "___XF_");
10574 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10575 return fixed_type_info (TYPE_TARGET_TYPE (type));
10580 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10583 ada_is_fixed_point_type (struct type *type)
10585 return fixed_type_info (type) != NULL;
10588 /* Return non-zero iff TYPE represents a System.Address type. */
10591 ada_is_system_address_type (struct type *type)
10593 return (TYPE_NAME (type)
10594 && strcmp (TYPE_NAME (type), "system__address") == 0);
10597 /* Assuming that TYPE is the representation of an Ada fixed-point
10598 type, return its delta, or -1 if the type is malformed and the
10599 delta cannot be determined. */
10602 ada_delta (struct type *type)
10604 const char *encoding = fixed_type_info (type);
10607 /* Strictly speaking, num and den are encoded as integer. However,
10608 they may not fit into a long, and they will have to be converted
10609 to DOUBLEST anyway. So scan them as DOUBLEST. */
10610 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10617 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10618 factor ('SMALL value) associated with the type. */
10621 scaling_factor (struct type *type)
10623 const char *encoding = fixed_type_info (type);
10624 DOUBLEST num0, den0, num1, den1;
10627 /* Strictly speaking, num's and den's are encoded as integer. However,
10628 they may not fit into a long, and they will have to be converted
10629 to DOUBLEST anyway. So scan them as DOUBLEST. */
10630 n = sscanf (encoding,
10631 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10632 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10633 &num0, &den0, &num1, &den1);
10638 return num1 / den1;
10640 return num0 / den0;
10644 /* Assuming that X is the representation of a value of fixed-point
10645 type TYPE, return its floating-point equivalent. */
10648 ada_fixed_to_float (struct type *type, LONGEST x)
10650 return (DOUBLEST) x *scaling_factor (type);
10653 /* The representation of a fixed-point value of type TYPE
10654 corresponding to the value X. */
10657 ada_float_to_fixed (struct type *type, DOUBLEST x)
10659 return (LONGEST) (x / scaling_factor (type) + 0.5);
10666 /* Scan STR beginning at position K for a discriminant name, and
10667 return the value of that discriminant field of DVAL in *PX. If
10668 PNEW_K is not null, put the position of the character beyond the
10669 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10670 not alter *PX and *PNEW_K if unsuccessful. */
10673 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10676 static char *bound_buffer = NULL;
10677 static size_t bound_buffer_len = 0;
10680 struct value *bound_val;
10682 if (dval == NULL || str == NULL || str[k] == '\0')
10685 pend = strstr (str + k, "__");
10689 k += strlen (bound);
10693 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10694 bound = bound_buffer;
10695 strncpy (bound_buffer, str + k, pend - (str + k));
10696 bound[pend - (str + k)] = '\0';
10700 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10701 if (bound_val == NULL)
10704 *px = value_as_long (bound_val);
10705 if (pnew_k != NULL)
10710 /* Value of variable named NAME in the current environment. If
10711 no such variable found, then if ERR_MSG is null, returns 0, and
10712 otherwise causes an error with message ERR_MSG. */
10714 static struct value *
10715 get_var_value (char *name, char *err_msg)
10717 struct ada_symbol_info *syms;
10720 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10725 if (err_msg == NULL)
10728 error (("%s"), err_msg);
10731 return value_of_variable (syms[0].sym, syms[0].block);
10734 /* Value of integer variable named NAME in the current environment. If
10735 no such variable found, returns 0, and sets *FLAG to 0. If
10736 successful, sets *FLAG to 1. */
10739 get_int_var_value (char *name, int *flag)
10741 struct value *var_val = get_var_value (name, 0);
10753 return value_as_long (var_val);
10758 /* Return a range type whose base type is that of the range type named
10759 NAME in the current environment, and whose bounds are calculated
10760 from NAME according to the GNAT range encoding conventions.
10761 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10762 corresponding range type from debug information; fall back to using it
10763 if symbol lookup fails. If a new type must be created, allocate it
10764 like ORIG_TYPE was. The bounds information, in general, is encoded
10765 in NAME, the base type given in the named range type. */
10767 static struct type *
10768 to_fixed_range_type (struct type *raw_type, struct value *dval)
10771 struct type *base_type;
10772 char *subtype_info;
10774 gdb_assert (raw_type != NULL);
10775 gdb_assert (TYPE_NAME (raw_type) != NULL);
10777 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10778 base_type = TYPE_TARGET_TYPE (raw_type);
10780 base_type = raw_type;
10782 name = TYPE_NAME (raw_type);
10783 subtype_info = strstr (name, "___XD");
10784 if (subtype_info == NULL)
10786 LONGEST L = ada_discrete_type_low_bound (raw_type);
10787 LONGEST U = ada_discrete_type_high_bound (raw_type);
10789 if (L < INT_MIN || U > INT_MAX)
10792 return create_range_type (alloc_type_copy (raw_type), raw_type,
10793 ada_discrete_type_low_bound (raw_type),
10794 ada_discrete_type_high_bound (raw_type));
10798 static char *name_buf = NULL;
10799 static size_t name_len = 0;
10800 int prefix_len = subtype_info - name;
10806 GROW_VECT (name_buf, name_len, prefix_len + 5);
10807 strncpy (name_buf, name, prefix_len);
10808 name_buf[prefix_len] = '\0';
10811 bounds_str = strchr (subtype_info, '_');
10814 if (*subtype_info == 'L')
10816 if (!ada_scan_number (bounds_str, n, &L, &n)
10817 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10819 if (bounds_str[n] == '_')
10821 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10829 strcpy (name_buf + prefix_len, "___L");
10830 L = get_int_var_value (name_buf, &ok);
10833 lim_warning (_("Unknown lower bound, using 1."));
10838 if (*subtype_info == 'U')
10840 if (!ada_scan_number (bounds_str, n, &U, &n)
10841 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10848 strcpy (name_buf + prefix_len, "___U");
10849 U = get_int_var_value (name_buf, &ok);
10852 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10857 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10858 TYPE_NAME (type) = name;
10863 /* True iff NAME is the name of a range type. */
10866 ada_is_range_type_name (const char *name)
10868 return (name != NULL && strstr (name, "___XD"));
10872 /* Modular types */
10874 /* True iff TYPE is an Ada modular type. */
10877 ada_is_modular_type (struct type *type)
10879 struct type *subranged_type = get_base_type (type);
10881 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10882 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10883 && TYPE_UNSIGNED (subranged_type));
10886 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10889 ada_modulus (struct type *type)
10891 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10895 /* Ada exception catchpoint support:
10896 ---------------------------------
10898 We support 3 kinds of exception catchpoints:
10899 . catchpoints on Ada exceptions
10900 . catchpoints on unhandled Ada exceptions
10901 . catchpoints on failed assertions
10903 Exceptions raised during failed assertions, or unhandled exceptions
10904 could perfectly be caught with the general catchpoint on Ada exceptions.
10905 However, we can easily differentiate these two special cases, and having
10906 the option to distinguish these two cases from the rest can be useful
10907 to zero-in on certain situations.
10909 Exception catchpoints are a specialized form of breakpoint,
10910 since they rely on inserting breakpoints inside known routines
10911 of the GNAT runtime. The implementation therefore uses a standard
10912 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10915 Support in the runtime for exception catchpoints have been changed
10916 a few times already, and these changes affect the implementation
10917 of these catchpoints. In order to be able to support several
10918 variants of the runtime, we use a sniffer that will determine
10919 the runtime variant used by the program being debugged. */
10921 /* The different types of catchpoints that we introduced for catching
10924 enum exception_catchpoint_kind
10926 ex_catch_exception,
10927 ex_catch_exception_unhandled,
10931 /* Ada's standard exceptions. */
10933 static char *standard_exc[] = {
10934 "constraint_error",
10940 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10942 /* A structure that describes how to support exception catchpoints
10943 for a given executable. */
10945 struct exception_support_info
10947 /* The name of the symbol to break on in order to insert
10948 a catchpoint on exceptions. */
10949 const char *catch_exception_sym;
10951 /* The name of the symbol to break on in order to insert
10952 a catchpoint on unhandled exceptions. */
10953 const char *catch_exception_unhandled_sym;
10955 /* The name of the symbol to break on in order to insert
10956 a catchpoint on failed assertions. */
10957 const char *catch_assert_sym;
10959 /* Assuming that the inferior just triggered an unhandled exception
10960 catchpoint, this function is responsible for returning the address
10961 in inferior memory where the name of that exception is stored.
10962 Return zero if the address could not be computed. */
10963 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10966 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10967 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10969 /* The following exception support info structure describes how to
10970 implement exception catchpoints with the latest version of the
10971 Ada runtime (as of 2007-03-06). */
10973 static const struct exception_support_info default_exception_support_info =
10975 "__gnat_debug_raise_exception", /* catch_exception_sym */
10976 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10977 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10978 ada_unhandled_exception_name_addr
10981 /* The following exception support info structure describes how to
10982 implement exception catchpoints with a slightly older version
10983 of the Ada runtime. */
10985 static const struct exception_support_info exception_support_info_fallback =
10987 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10988 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10989 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10990 ada_unhandled_exception_name_addr_from_raise
10993 /* Return nonzero if we can detect the exception support routines
10994 described in EINFO.
10996 This function errors out if an abnormal situation is detected
10997 (for instance, if we find the exception support routines, but
10998 that support is found to be incomplete). */
11001 ada_has_this_exception_support (const struct exception_support_info *einfo)
11003 struct symbol *sym;
11005 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11006 that should be compiled with debugging information. As a result, we
11007 expect to find that symbol in the symtabs. */
11009 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11012 /* Perhaps we did not find our symbol because the Ada runtime was
11013 compiled without debugging info, or simply stripped of it.
11014 It happens on some GNU/Linux distributions for instance, where
11015 users have to install a separate debug package in order to get
11016 the runtime's debugging info. In that situation, let the user
11017 know why we cannot insert an Ada exception catchpoint.
11019 Note: Just for the purpose of inserting our Ada exception
11020 catchpoint, we could rely purely on the associated minimal symbol.
11021 But we would be operating in degraded mode anyway, since we are
11022 still lacking the debugging info needed later on to extract
11023 the name of the exception being raised (this name is printed in
11024 the catchpoint message, and is also used when trying to catch
11025 a specific exception). We do not handle this case for now. */
11026 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11027 error (_("Your Ada runtime appears to be missing some debugging "
11028 "information.\nCannot insert Ada exception catchpoint "
11029 "in this configuration."));
11034 /* Make sure that the symbol we found corresponds to a function. */
11036 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11037 error (_("Symbol \"%s\" is not a function (class = %d)"),
11038 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11043 /* Inspect the Ada runtime and determine which exception info structure
11044 should be used to provide support for exception catchpoints.
11046 This function will always set the per-inferior exception_info,
11047 or raise an error. */
11050 ada_exception_support_info_sniffer (void)
11052 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11054 /* If the exception info is already known, then no need to recompute it. */
11055 if (data->exception_info != NULL)
11058 /* Check the latest (default) exception support info. */
11059 if (ada_has_this_exception_support (&default_exception_support_info))
11061 data->exception_info = &default_exception_support_info;
11065 /* Try our fallback exception suport info. */
11066 if (ada_has_this_exception_support (&exception_support_info_fallback))
11068 data->exception_info = &exception_support_info_fallback;
11072 /* Sometimes, it is normal for us to not be able to find the routine
11073 we are looking for. This happens when the program is linked with
11074 the shared version of the GNAT runtime, and the program has not been
11075 started yet. Inform the user of these two possible causes if
11078 if (ada_update_initial_language (language_unknown) != language_ada)
11079 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11081 /* If the symbol does not exist, then check that the program is
11082 already started, to make sure that shared libraries have been
11083 loaded. If it is not started, this may mean that the symbol is
11084 in a shared library. */
11086 if (ptid_get_pid (inferior_ptid) == 0)
11087 error (_("Unable to insert catchpoint. Try to start the program first."));
11089 /* At this point, we know that we are debugging an Ada program and
11090 that the inferior has been started, but we still are not able to
11091 find the run-time symbols. That can mean that we are in
11092 configurable run time mode, or that a-except as been optimized
11093 out by the linker... In any case, at this point it is not worth
11094 supporting this feature. */
11096 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11099 /* True iff FRAME is very likely to be that of a function that is
11100 part of the runtime system. This is all very heuristic, but is
11101 intended to be used as advice as to what frames are uninteresting
11105 is_known_support_routine (struct frame_info *frame)
11107 struct symtab_and_line sal;
11108 const char *func_name;
11109 enum language func_lang;
11111 const char *fullname;
11113 /* If this code does not have any debugging information (no symtab),
11114 This cannot be any user code. */
11116 find_frame_sal (frame, &sal);
11117 if (sal.symtab == NULL)
11120 /* If there is a symtab, but the associated source file cannot be
11121 located, then assume this is not user code: Selecting a frame
11122 for which we cannot display the code would not be very helpful
11123 for the user. This should also take care of case such as VxWorks
11124 where the kernel has some debugging info provided for a few units. */
11126 fullname = symtab_to_fullname (sal.symtab);
11127 if (access (fullname, R_OK) != 0)
11130 /* Check the unit filename againt the Ada runtime file naming.
11131 We also check the name of the objfile against the name of some
11132 known system libraries that sometimes come with debugging info
11135 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11137 re_comp (known_runtime_file_name_patterns[i]);
11138 if (re_exec (lbasename (sal.symtab->filename)))
11140 if (sal.symtab->objfile != NULL
11141 && re_exec (sal.symtab->objfile->name))
11145 /* Check whether the function is a GNAT-generated entity. */
11147 find_frame_funname (frame, &func_name, &func_lang, NULL);
11148 if (func_name == NULL)
11151 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11153 re_comp (known_auxiliary_function_name_patterns[i]);
11154 if (re_exec (func_name))
11161 /* Find the first frame that contains debugging information and that is not
11162 part of the Ada run-time, starting from FI and moving upward. */
11165 ada_find_printable_frame (struct frame_info *fi)
11167 for (; fi != NULL; fi = get_prev_frame (fi))
11169 if (!is_known_support_routine (fi))
11178 /* Assuming that the inferior just triggered an unhandled exception
11179 catchpoint, return the address in inferior memory where the name
11180 of the exception is stored.
11182 Return zero if the address could not be computed. */
11185 ada_unhandled_exception_name_addr (void)
11187 return parse_and_eval_address ("e.full_name");
11190 /* Same as ada_unhandled_exception_name_addr, except that this function
11191 should be used when the inferior uses an older version of the runtime,
11192 where the exception name needs to be extracted from a specific frame
11193 several frames up in the callstack. */
11196 ada_unhandled_exception_name_addr_from_raise (void)
11199 struct frame_info *fi;
11200 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11202 /* To determine the name of this exception, we need to select
11203 the frame corresponding to RAISE_SYM_NAME. This frame is
11204 at least 3 levels up, so we simply skip the first 3 frames
11205 without checking the name of their associated function. */
11206 fi = get_current_frame ();
11207 for (frame_level = 0; frame_level < 3; frame_level += 1)
11209 fi = get_prev_frame (fi);
11213 const char *func_name;
11214 enum language func_lang;
11216 find_frame_funname (fi, &func_name, &func_lang, NULL);
11217 if (func_name != NULL
11218 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11219 break; /* We found the frame we were looking for... */
11220 fi = get_prev_frame (fi);
11227 return parse_and_eval_address ("id.full_name");
11230 /* Assuming the inferior just triggered an Ada exception catchpoint
11231 (of any type), return the address in inferior memory where the name
11232 of the exception is stored, if applicable.
11234 Return zero if the address could not be computed, or if not relevant. */
11237 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11238 struct breakpoint *b)
11240 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11244 case ex_catch_exception:
11245 return (parse_and_eval_address ("e.full_name"));
11248 case ex_catch_exception_unhandled:
11249 return data->exception_info->unhandled_exception_name_addr ();
11252 case ex_catch_assert:
11253 return 0; /* Exception name is not relevant in this case. */
11257 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11261 return 0; /* Should never be reached. */
11264 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11265 any error that ada_exception_name_addr_1 might cause to be thrown.
11266 When an error is intercepted, a warning with the error message is printed,
11267 and zero is returned. */
11270 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11271 struct breakpoint *b)
11273 volatile struct gdb_exception e;
11274 CORE_ADDR result = 0;
11276 TRY_CATCH (e, RETURN_MASK_ERROR)
11278 result = ada_exception_name_addr_1 (ex, b);
11283 warning (_("failed to get exception name: %s"), e.message);
11290 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11292 const struct breakpoint_ops **);
11293 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11295 /* Ada catchpoints.
11297 In the case of catchpoints on Ada exceptions, the catchpoint will
11298 stop the target on every exception the program throws. When a user
11299 specifies the name of a specific exception, we translate this
11300 request into a condition expression (in text form), and then parse
11301 it into an expression stored in each of the catchpoint's locations.
11302 We then use this condition to check whether the exception that was
11303 raised is the one the user is interested in. If not, then the
11304 target is resumed again. We store the name of the requested
11305 exception, in order to be able to re-set the condition expression
11306 when symbols change. */
11308 /* An instance of this type is used to represent an Ada catchpoint
11309 breakpoint location. It includes a "struct bp_location" as a kind
11310 of base class; users downcast to "struct bp_location *" when
11313 struct ada_catchpoint_location
11315 /* The base class. */
11316 struct bp_location base;
11318 /* The condition that checks whether the exception that was raised
11319 is the specific exception the user specified on catchpoint
11321 struct expression *excep_cond_expr;
11324 /* Implement the DTOR method in the bp_location_ops structure for all
11325 Ada exception catchpoint kinds. */
11328 ada_catchpoint_location_dtor (struct bp_location *bl)
11330 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11332 xfree (al->excep_cond_expr);
11335 /* The vtable to be used in Ada catchpoint locations. */
11337 static const struct bp_location_ops ada_catchpoint_location_ops =
11339 ada_catchpoint_location_dtor
11342 /* An instance of this type is used to represent an Ada catchpoint.
11343 It includes a "struct breakpoint" as a kind of base class; users
11344 downcast to "struct breakpoint *" when needed. */
11346 struct ada_catchpoint
11348 /* The base class. */
11349 struct breakpoint base;
11351 /* The name of the specific exception the user specified. */
11352 char *excep_string;
11355 /* Parse the exception condition string in the context of each of the
11356 catchpoint's locations, and store them for later evaluation. */
11359 create_excep_cond_exprs (struct ada_catchpoint *c)
11361 struct cleanup *old_chain;
11362 struct bp_location *bl;
11365 /* Nothing to do if there's no specific exception to catch. */
11366 if (c->excep_string == NULL)
11369 /* Same if there are no locations... */
11370 if (c->base.loc == NULL)
11373 /* Compute the condition expression in text form, from the specific
11374 expection we want to catch. */
11375 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11376 old_chain = make_cleanup (xfree, cond_string);
11378 /* Iterate over all the catchpoint's locations, and parse an
11379 expression for each. */
11380 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11382 struct ada_catchpoint_location *ada_loc
11383 = (struct ada_catchpoint_location *) bl;
11384 struct expression *exp = NULL;
11386 if (!bl->shlib_disabled)
11388 volatile struct gdb_exception e;
11392 TRY_CATCH (e, RETURN_MASK_ERROR)
11394 exp = parse_exp_1 (&s, bl->address,
11395 block_for_pc (bl->address), 0);
11398 warning (_("failed to reevaluate internal exception condition "
11399 "for catchpoint %d: %s"),
11400 c->base.number, e.message);
11403 ada_loc->excep_cond_expr = exp;
11406 do_cleanups (old_chain);
11409 /* Implement the DTOR method in the breakpoint_ops structure for all
11410 exception catchpoint kinds. */
11413 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11415 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11417 xfree (c->excep_string);
11419 bkpt_breakpoint_ops.dtor (b);
11422 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11423 structure for all exception catchpoint kinds. */
11425 static struct bp_location *
11426 allocate_location_exception (enum exception_catchpoint_kind ex,
11427 struct breakpoint *self)
11429 struct ada_catchpoint_location *loc;
11431 loc = XNEW (struct ada_catchpoint_location);
11432 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11433 loc->excep_cond_expr = NULL;
11437 /* Implement the RE_SET method in the breakpoint_ops structure for all
11438 exception catchpoint kinds. */
11441 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11445 /* Call the base class's method. This updates the catchpoint's
11447 bkpt_breakpoint_ops.re_set (b);
11449 /* Reparse the exception conditional expressions. One for each
11451 create_excep_cond_exprs (c);
11454 /* Returns true if we should stop for this breakpoint hit. If the
11455 user specified a specific exception, we only want to cause a stop
11456 if the program thrown that exception. */
11459 should_stop_exception (const struct bp_location *bl)
11461 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11462 const struct ada_catchpoint_location *ada_loc
11463 = (const struct ada_catchpoint_location *) bl;
11464 volatile struct gdb_exception ex;
11467 /* With no specific exception, should always stop. */
11468 if (c->excep_string == NULL)
11471 if (ada_loc->excep_cond_expr == NULL)
11473 /* We will have a NULL expression if back when we were creating
11474 the expressions, this location's had failed to parse. */
11479 TRY_CATCH (ex, RETURN_MASK_ALL)
11481 struct value *mark;
11483 mark = value_mark ();
11484 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11485 value_free_to_mark (mark);
11488 exception_fprintf (gdb_stderr, ex,
11489 _("Error in testing exception condition:\n"));
11493 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11494 for all exception catchpoint kinds. */
11497 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11499 bs->stop = should_stop_exception (bs->bp_location_at);
11502 /* Implement the PRINT_IT method in the breakpoint_ops structure
11503 for all exception catchpoint kinds. */
11505 static enum print_stop_action
11506 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11508 struct ui_out *uiout = current_uiout;
11509 struct breakpoint *b = bs->breakpoint_at;
11511 annotate_catchpoint (b->number);
11513 if (ui_out_is_mi_like_p (uiout))
11515 ui_out_field_string (uiout, "reason",
11516 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11517 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11520 ui_out_text (uiout,
11521 b->disposition == disp_del ? "\nTemporary catchpoint "
11522 : "\nCatchpoint ");
11523 ui_out_field_int (uiout, "bkptno", b->number);
11524 ui_out_text (uiout, ", ");
11528 case ex_catch_exception:
11529 case ex_catch_exception_unhandled:
11531 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11532 char exception_name[256];
11536 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11537 exception_name [sizeof (exception_name) - 1] = '\0';
11541 /* For some reason, we were unable to read the exception
11542 name. This could happen if the Runtime was compiled
11543 without debugging info, for instance. In that case,
11544 just replace the exception name by the generic string
11545 "exception" - it will read as "an exception" in the
11546 notification we are about to print. */
11547 memcpy (exception_name, "exception", sizeof ("exception"));
11549 /* In the case of unhandled exception breakpoints, we print
11550 the exception name as "unhandled EXCEPTION_NAME", to make
11551 it clearer to the user which kind of catchpoint just got
11552 hit. We used ui_out_text to make sure that this extra
11553 info does not pollute the exception name in the MI case. */
11554 if (ex == ex_catch_exception_unhandled)
11555 ui_out_text (uiout, "unhandled ");
11556 ui_out_field_string (uiout, "exception-name", exception_name);
11559 case ex_catch_assert:
11560 /* In this case, the name of the exception is not really
11561 important. Just print "failed assertion" to make it clearer
11562 that his program just hit an assertion-failure catchpoint.
11563 We used ui_out_text because this info does not belong in
11565 ui_out_text (uiout, "failed assertion");
11568 ui_out_text (uiout, " at ");
11569 ada_find_printable_frame (get_current_frame ());
11571 return PRINT_SRC_AND_LOC;
11574 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11575 for all exception catchpoint kinds. */
11578 print_one_exception (enum exception_catchpoint_kind ex,
11579 struct breakpoint *b, struct bp_location **last_loc)
11581 struct ui_out *uiout = current_uiout;
11582 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11583 struct value_print_options opts;
11585 get_user_print_options (&opts);
11586 if (opts.addressprint)
11588 annotate_field (4);
11589 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11592 annotate_field (5);
11593 *last_loc = b->loc;
11596 case ex_catch_exception:
11597 if (c->excep_string != NULL)
11599 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11601 ui_out_field_string (uiout, "what", msg);
11605 ui_out_field_string (uiout, "what", "all Ada exceptions");
11609 case ex_catch_exception_unhandled:
11610 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11613 case ex_catch_assert:
11614 ui_out_field_string (uiout, "what", "failed Ada assertions");
11618 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11623 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11624 for all exception catchpoint kinds. */
11627 print_mention_exception (enum exception_catchpoint_kind ex,
11628 struct breakpoint *b)
11630 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11631 struct ui_out *uiout = current_uiout;
11633 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11634 : _("Catchpoint "));
11635 ui_out_field_int (uiout, "bkptno", b->number);
11636 ui_out_text (uiout, ": ");
11640 case ex_catch_exception:
11641 if (c->excep_string != NULL)
11643 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11644 struct cleanup *old_chain = make_cleanup (xfree, info);
11646 ui_out_text (uiout, info);
11647 do_cleanups (old_chain);
11650 ui_out_text (uiout, _("all Ada exceptions"));
11653 case ex_catch_exception_unhandled:
11654 ui_out_text (uiout, _("unhandled Ada exceptions"));
11657 case ex_catch_assert:
11658 ui_out_text (uiout, _("failed Ada assertions"));
11662 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11667 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11668 for all exception catchpoint kinds. */
11671 print_recreate_exception (enum exception_catchpoint_kind ex,
11672 struct breakpoint *b, struct ui_file *fp)
11674 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11678 case ex_catch_exception:
11679 fprintf_filtered (fp, "catch exception");
11680 if (c->excep_string != NULL)
11681 fprintf_filtered (fp, " %s", c->excep_string);
11684 case ex_catch_exception_unhandled:
11685 fprintf_filtered (fp, "catch exception unhandled");
11688 case ex_catch_assert:
11689 fprintf_filtered (fp, "catch assert");
11693 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 print_recreate_thread (b, fp);
11698 /* Virtual table for "catch exception" breakpoints. */
11701 dtor_catch_exception (struct breakpoint *b)
11703 dtor_exception (ex_catch_exception, b);
11706 static struct bp_location *
11707 allocate_location_catch_exception (struct breakpoint *self)
11709 return allocate_location_exception (ex_catch_exception, self);
11713 re_set_catch_exception (struct breakpoint *b)
11715 re_set_exception (ex_catch_exception, b);
11719 check_status_catch_exception (bpstat bs)
11721 check_status_exception (ex_catch_exception, bs);
11724 static enum print_stop_action
11725 print_it_catch_exception (bpstat bs)
11727 return print_it_exception (ex_catch_exception, bs);
11731 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11733 print_one_exception (ex_catch_exception, b, last_loc);
11737 print_mention_catch_exception (struct breakpoint *b)
11739 print_mention_exception (ex_catch_exception, b);
11743 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11745 print_recreate_exception (ex_catch_exception, b, fp);
11748 static struct breakpoint_ops catch_exception_breakpoint_ops;
11750 /* Virtual table for "catch exception unhandled" breakpoints. */
11753 dtor_catch_exception_unhandled (struct breakpoint *b)
11755 dtor_exception (ex_catch_exception_unhandled, b);
11758 static struct bp_location *
11759 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11761 return allocate_location_exception (ex_catch_exception_unhandled, self);
11765 re_set_catch_exception_unhandled (struct breakpoint *b)
11767 re_set_exception (ex_catch_exception_unhandled, b);
11771 check_status_catch_exception_unhandled (bpstat bs)
11773 check_status_exception (ex_catch_exception_unhandled, bs);
11776 static enum print_stop_action
11777 print_it_catch_exception_unhandled (bpstat bs)
11779 return print_it_exception (ex_catch_exception_unhandled, bs);
11783 print_one_catch_exception_unhandled (struct breakpoint *b,
11784 struct bp_location **last_loc)
11786 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11790 print_mention_catch_exception_unhandled (struct breakpoint *b)
11792 print_mention_exception (ex_catch_exception_unhandled, b);
11796 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11797 struct ui_file *fp)
11799 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11802 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11804 /* Virtual table for "catch assert" breakpoints. */
11807 dtor_catch_assert (struct breakpoint *b)
11809 dtor_exception (ex_catch_assert, b);
11812 static struct bp_location *
11813 allocate_location_catch_assert (struct breakpoint *self)
11815 return allocate_location_exception (ex_catch_assert, self);
11819 re_set_catch_assert (struct breakpoint *b)
11821 re_set_exception (ex_catch_assert, b);
11825 check_status_catch_assert (bpstat bs)
11827 check_status_exception (ex_catch_assert, bs);
11830 static enum print_stop_action
11831 print_it_catch_assert (bpstat bs)
11833 return print_it_exception (ex_catch_assert, bs);
11837 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11839 print_one_exception (ex_catch_assert, b, last_loc);
11843 print_mention_catch_assert (struct breakpoint *b)
11845 print_mention_exception (ex_catch_assert, b);
11849 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11851 print_recreate_exception (ex_catch_assert, b, fp);
11854 static struct breakpoint_ops catch_assert_breakpoint_ops;
11856 /* Return a newly allocated copy of the first space-separated token
11857 in ARGSP, and then adjust ARGSP to point immediately after that
11860 Return NULL if ARGPS does not contain any more tokens. */
11863 ada_get_next_arg (char **argsp)
11865 char *args = *argsp;
11869 args = skip_spaces (args);
11870 if (args[0] == '\0')
11871 return NULL; /* No more arguments. */
11873 /* Find the end of the current argument. */
11875 end = skip_to_space (args);
11877 /* Adjust ARGSP to point to the start of the next argument. */
11881 /* Make a copy of the current argument and return it. */
11883 result = xmalloc (end - args + 1);
11884 strncpy (result, args, end - args);
11885 result[end - args] = '\0';
11890 /* Split the arguments specified in a "catch exception" command.
11891 Set EX to the appropriate catchpoint type.
11892 Set EXCEP_STRING to the name of the specific exception if
11893 specified by the user.
11894 If a condition is found at the end of the arguments, the condition
11895 expression is stored in COND_STRING (memory must be deallocated
11896 after use). Otherwise COND_STRING is set to NULL. */
11899 catch_ada_exception_command_split (char *args,
11900 enum exception_catchpoint_kind *ex,
11901 char **excep_string,
11902 char **cond_string)
11904 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11905 char *exception_name;
11908 exception_name = ada_get_next_arg (&args);
11909 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11911 /* This is not an exception name; this is the start of a condition
11912 expression for a catchpoint on all exceptions. So, "un-get"
11913 this token, and set exception_name to NULL. */
11914 xfree (exception_name);
11915 exception_name = NULL;
11918 make_cleanup (xfree, exception_name);
11920 /* Check to see if we have a condition. */
11922 args = skip_spaces (args);
11923 if (strncmp (args, "if", 2) == 0
11924 && (isspace (args[2]) || args[2] == '\0'))
11927 args = skip_spaces (args);
11929 if (args[0] == '\0')
11930 error (_("Condition missing after `if' keyword"));
11931 cond = xstrdup (args);
11932 make_cleanup (xfree, cond);
11934 args += strlen (args);
11937 /* Check that we do not have any more arguments. Anything else
11940 if (args[0] != '\0')
11941 error (_("Junk at end of expression"));
11943 discard_cleanups (old_chain);
11945 if (exception_name == NULL)
11947 /* Catch all exceptions. */
11948 *ex = ex_catch_exception;
11949 *excep_string = NULL;
11951 else if (strcmp (exception_name, "unhandled") == 0)
11953 /* Catch unhandled exceptions. */
11954 *ex = ex_catch_exception_unhandled;
11955 *excep_string = NULL;
11959 /* Catch a specific exception. */
11960 *ex = ex_catch_exception;
11961 *excep_string = exception_name;
11963 *cond_string = cond;
11966 /* Return the name of the symbol on which we should break in order to
11967 implement a catchpoint of the EX kind. */
11969 static const char *
11970 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11972 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11974 gdb_assert (data->exception_info != NULL);
11978 case ex_catch_exception:
11979 return (data->exception_info->catch_exception_sym);
11981 case ex_catch_exception_unhandled:
11982 return (data->exception_info->catch_exception_unhandled_sym);
11984 case ex_catch_assert:
11985 return (data->exception_info->catch_assert_sym);
11988 internal_error (__FILE__, __LINE__,
11989 _("unexpected catchpoint kind (%d)"), ex);
11993 /* Return the breakpoint ops "virtual table" used for catchpoints
11996 static const struct breakpoint_ops *
11997 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
12001 case ex_catch_exception:
12002 return (&catch_exception_breakpoint_ops);
12004 case ex_catch_exception_unhandled:
12005 return (&catch_exception_unhandled_breakpoint_ops);
12007 case ex_catch_assert:
12008 return (&catch_assert_breakpoint_ops);
12011 internal_error (__FILE__, __LINE__,
12012 _("unexpected catchpoint kind (%d)"), ex);
12016 /* Return the condition that will be used to match the current exception
12017 being raised with the exception that the user wants to catch. This
12018 assumes that this condition is used when the inferior just triggered
12019 an exception catchpoint.
12021 The string returned is a newly allocated string that needs to be
12022 deallocated later. */
12025 ada_exception_catchpoint_cond_string (const char *excep_string)
12029 /* The standard exceptions are a special case. They are defined in
12030 runtime units that have been compiled without debugging info; if
12031 EXCEP_STRING is the not-fully-qualified name of a standard
12032 exception (e.g. "constraint_error") then, during the evaluation
12033 of the condition expression, the symbol lookup on this name would
12034 *not* return this standard exception. The catchpoint condition
12035 may then be set only on user-defined exceptions which have the
12036 same not-fully-qualified name (e.g. my_package.constraint_error).
12038 To avoid this unexcepted behavior, these standard exceptions are
12039 systematically prefixed by "standard". This means that "catch
12040 exception constraint_error" is rewritten into "catch exception
12041 standard.constraint_error".
12043 If an exception named contraint_error is defined in another package of
12044 the inferior program, then the only way to specify this exception as a
12045 breakpoint condition is to use its fully-qualified named:
12046 e.g. my_package.constraint_error. */
12048 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12050 if (strcmp (standard_exc [i], excep_string) == 0)
12052 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12056 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12059 /* Return the symtab_and_line that should be used to insert an exception
12060 catchpoint of the TYPE kind.
12062 EXCEP_STRING should contain the name of a specific exception that
12063 the catchpoint should catch, or NULL otherwise.
12065 ADDR_STRING returns the name of the function where the real
12066 breakpoint that implements the catchpoints is set, depending on the
12067 type of catchpoint we need to create. */
12069 static struct symtab_and_line
12070 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12071 char **addr_string, const struct breakpoint_ops **ops)
12073 const char *sym_name;
12074 struct symbol *sym;
12076 /* First, find out which exception support info to use. */
12077 ada_exception_support_info_sniffer ();
12079 /* Then lookup the function on which we will break in order to catch
12080 the Ada exceptions requested by the user. */
12081 sym_name = ada_exception_sym_name (ex);
12082 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12084 /* We can assume that SYM is not NULL at this stage. If the symbol
12085 did not exist, ada_exception_support_info_sniffer would have
12086 raised an exception.
12088 Also, ada_exception_support_info_sniffer should have already
12089 verified that SYM is a function symbol. */
12090 gdb_assert (sym != NULL);
12091 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12093 /* Set ADDR_STRING. */
12094 *addr_string = xstrdup (sym_name);
12097 *ops = ada_exception_breakpoint_ops (ex);
12099 return find_function_start_sal (sym, 1);
12102 /* Parse the arguments (ARGS) of the "catch exception" command.
12104 If the user asked the catchpoint to catch only a specific
12105 exception, then save the exception name in ADDR_STRING.
12107 If the user provided a condition, then set COND_STRING to
12108 that condition expression (the memory must be deallocated
12109 after use). Otherwise, set COND_STRING to NULL.
12111 See ada_exception_sal for a description of all the remaining
12112 function arguments of this function. */
12114 static struct symtab_and_line
12115 ada_decode_exception_location (char *args, char **addr_string,
12116 char **excep_string,
12117 char **cond_string,
12118 const struct breakpoint_ops **ops)
12120 enum exception_catchpoint_kind ex;
12122 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12123 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12126 /* Create an Ada exception catchpoint. */
12129 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12130 struct symtab_and_line sal,
12132 char *excep_string,
12134 const struct breakpoint_ops *ops,
12138 struct ada_catchpoint *c;
12140 c = XNEW (struct ada_catchpoint);
12141 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12142 ops, tempflag, from_tty);
12143 c->excep_string = excep_string;
12144 create_excep_cond_exprs (c);
12145 if (cond_string != NULL)
12146 set_breakpoint_condition (&c->base, cond_string, from_tty);
12147 install_breakpoint (0, &c->base, 1);
12150 /* Implement the "catch exception" command. */
12153 catch_ada_exception_command (char *arg, int from_tty,
12154 struct cmd_list_element *command)
12156 struct gdbarch *gdbarch = get_current_arch ();
12158 struct symtab_and_line sal;
12159 char *addr_string = NULL;
12160 char *excep_string = NULL;
12161 char *cond_string = NULL;
12162 const struct breakpoint_ops *ops = NULL;
12164 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12168 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12169 &cond_string, &ops);
12170 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12171 excep_string, cond_string, ops,
12172 tempflag, from_tty);
12175 /* Assuming that ARGS contains the arguments of a "catch assert"
12176 command, parse those arguments and return a symtab_and_line object
12177 for a failed assertion catchpoint.
12179 Set ADDR_STRING to the name of the function where the real
12180 breakpoint that implements the catchpoint is set.
12182 If ARGS contains a condition, set COND_STRING to that condition
12183 (the memory needs to be deallocated after use). Otherwise, set
12184 COND_STRING to NULL. */
12186 static struct symtab_and_line
12187 ada_decode_assert_location (char *args, char **addr_string,
12188 char **cond_string,
12189 const struct breakpoint_ops **ops)
12191 args = skip_spaces (args);
12193 /* Check whether a condition was provided. */
12194 if (strncmp (args, "if", 2) == 0
12195 && (isspace (args[2]) || args[2] == '\0'))
12198 args = skip_spaces (args);
12199 if (args[0] == '\0')
12200 error (_("condition missing after `if' keyword"));
12201 *cond_string = xstrdup (args);
12204 /* Otherwise, there should be no other argument at the end of
12206 else if (args[0] != '\0')
12207 error (_("Junk at end of arguments."));
12209 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12212 /* Implement the "catch assert" command. */
12215 catch_assert_command (char *arg, int from_tty,
12216 struct cmd_list_element *command)
12218 struct gdbarch *gdbarch = get_current_arch ();
12220 struct symtab_and_line sal;
12221 char *addr_string = NULL;
12222 char *cond_string = NULL;
12223 const struct breakpoint_ops *ops = NULL;
12225 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12229 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12230 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12231 NULL, cond_string, ops, tempflag,
12235 /* Information about operators given special treatment in functions
12237 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12239 #define ADA_OPERATORS \
12240 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12241 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12242 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12243 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12247 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12248 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12249 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12250 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12251 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12252 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12253 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12254 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12255 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12256 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12257 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12258 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12261 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12264 switch (exp->elts[pc - 1].opcode)
12267 operator_length_standard (exp, pc, oplenp, argsp);
12270 #define OP_DEFN(op, len, args, binop) \
12271 case op: *oplenp = len; *argsp = args; break;
12277 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12282 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12287 /* Implementation of the exp_descriptor method operator_check. */
12290 ada_operator_check (struct expression *exp, int pos,
12291 int (*objfile_func) (struct objfile *objfile, void *data),
12294 const union exp_element *const elts = exp->elts;
12295 struct type *type = NULL;
12297 switch (elts[pos].opcode)
12299 case UNOP_IN_RANGE:
12301 type = elts[pos + 1].type;
12305 return operator_check_standard (exp, pos, objfile_func, data);
12308 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12310 if (type && TYPE_OBJFILE (type)
12311 && (*objfile_func) (TYPE_OBJFILE (type), data))
12318 ada_op_name (enum exp_opcode opcode)
12323 return op_name_standard (opcode);
12325 #define OP_DEFN(op, len, args, binop) case op: return #op;
12330 return "OP_AGGREGATE";
12332 return "OP_CHOICES";
12338 /* As for operator_length, but assumes PC is pointing at the first
12339 element of the operator, and gives meaningful results only for the
12340 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12343 ada_forward_operator_length (struct expression *exp, int pc,
12344 int *oplenp, int *argsp)
12346 switch (exp->elts[pc].opcode)
12349 *oplenp = *argsp = 0;
12352 #define OP_DEFN(op, len, args, binop) \
12353 case op: *oplenp = len; *argsp = args; break;
12359 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12364 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12370 int len = longest_to_int (exp->elts[pc + 1].longconst);
12372 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12380 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12382 enum exp_opcode op = exp->elts[elt].opcode;
12387 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12391 /* Ada attributes ('Foo). */
12394 case OP_ATR_LENGTH:
12398 case OP_ATR_MODULUS:
12405 case UNOP_IN_RANGE:
12407 /* XXX: gdb_sprint_host_address, type_sprint */
12408 fprintf_filtered (stream, _("Type @"));
12409 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12410 fprintf_filtered (stream, " (");
12411 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12412 fprintf_filtered (stream, ")");
12414 case BINOP_IN_BOUNDS:
12415 fprintf_filtered (stream, " (%d)",
12416 longest_to_int (exp->elts[pc + 2].longconst));
12418 case TERNOP_IN_RANGE:
12423 case OP_DISCRETE_RANGE:
12424 case OP_POSITIONAL:
12431 char *name = &exp->elts[elt + 2].string;
12432 int len = longest_to_int (exp->elts[elt + 1].longconst);
12434 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12439 return dump_subexp_body_standard (exp, stream, elt);
12443 for (i = 0; i < nargs; i += 1)
12444 elt = dump_subexp (exp, stream, elt);
12449 /* The Ada extension of print_subexp (q.v.). */
12452 ada_print_subexp (struct expression *exp, int *pos,
12453 struct ui_file *stream, enum precedence prec)
12455 int oplen, nargs, i;
12457 enum exp_opcode op = exp->elts[pc].opcode;
12459 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12466 print_subexp_standard (exp, pos, stream, prec);
12470 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12473 case BINOP_IN_BOUNDS:
12474 /* XXX: sprint_subexp */
12475 print_subexp (exp, pos, stream, PREC_SUFFIX);
12476 fputs_filtered (" in ", stream);
12477 print_subexp (exp, pos, stream, PREC_SUFFIX);
12478 fputs_filtered ("'range", stream);
12479 if (exp->elts[pc + 1].longconst > 1)
12480 fprintf_filtered (stream, "(%ld)",
12481 (long) exp->elts[pc + 1].longconst);
12484 case TERNOP_IN_RANGE:
12485 if (prec >= PREC_EQUAL)
12486 fputs_filtered ("(", stream);
12487 /* XXX: sprint_subexp */
12488 print_subexp (exp, pos, stream, PREC_SUFFIX);
12489 fputs_filtered (" in ", stream);
12490 print_subexp (exp, pos, stream, PREC_EQUAL);
12491 fputs_filtered (" .. ", stream);
12492 print_subexp (exp, pos, stream, PREC_EQUAL);
12493 if (prec >= PREC_EQUAL)
12494 fputs_filtered (")", stream);
12499 case OP_ATR_LENGTH:
12503 case OP_ATR_MODULUS:
12508 if (exp->elts[*pos].opcode == OP_TYPE)
12510 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12511 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12512 &type_print_raw_options);
12516 print_subexp (exp, pos, stream, PREC_SUFFIX);
12517 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12522 for (tem = 1; tem < nargs; tem += 1)
12524 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12525 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12527 fputs_filtered (")", stream);
12532 type_print (exp->elts[pc + 1].type, "", stream, 0);
12533 fputs_filtered ("'(", stream);
12534 print_subexp (exp, pos, stream, PREC_PREFIX);
12535 fputs_filtered (")", stream);
12538 case UNOP_IN_RANGE:
12539 /* XXX: sprint_subexp */
12540 print_subexp (exp, pos, stream, PREC_SUFFIX);
12541 fputs_filtered (" in ", stream);
12542 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12543 &type_print_raw_options);
12546 case OP_DISCRETE_RANGE:
12547 print_subexp (exp, pos, stream, PREC_SUFFIX);
12548 fputs_filtered ("..", stream);
12549 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 fputs_filtered ("others => ", stream);
12554 print_subexp (exp, pos, stream, PREC_SUFFIX);
12558 for (i = 0; i < nargs-1; i += 1)
12561 fputs_filtered ("|", stream);
12562 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 fputs_filtered (" => ", stream);
12565 print_subexp (exp, pos, stream, PREC_SUFFIX);
12568 case OP_POSITIONAL:
12569 print_subexp (exp, pos, stream, PREC_SUFFIX);
12573 fputs_filtered ("(", stream);
12574 for (i = 0; i < nargs; i += 1)
12577 fputs_filtered (", ", stream);
12578 print_subexp (exp, pos, stream, PREC_SUFFIX);
12580 fputs_filtered (")", stream);
12585 /* Table mapping opcodes into strings for printing operators
12586 and precedences of the operators. */
12588 static const struct op_print ada_op_print_tab[] = {
12589 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12590 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12591 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12592 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12593 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12594 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12595 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12596 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12597 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12598 {">=", BINOP_GEQ, PREC_ORDER, 0},
12599 {">", BINOP_GTR, PREC_ORDER, 0},
12600 {"<", BINOP_LESS, PREC_ORDER, 0},
12601 {">>", BINOP_RSH, PREC_SHIFT, 0},
12602 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12603 {"+", BINOP_ADD, PREC_ADD, 0},
12604 {"-", BINOP_SUB, PREC_ADD, 0},
12605 {"&", BINOP_CONCAT, PREC_ADD, 0},
12606 {"*", BINOP_MUL, PREC_MUL, 0},
12607 {"/", BINOP_DIV, PREC_MUL, 0},
12608 {"rem", BINOP_REM, PREC_MUL, 0},
12609 {"mod", BINOP_MOD, PREC_MUL, 0},
12610 {"**", BINOP_EXP, PREC_REPEAT, 0},
12611 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12612 {"-", UNOP_NEG, PREC_PREFIX, 0},
12613 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12614 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12615 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12616 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12617 {".all", UNOP_IND, PREC_SUFFIX, 1},
12618 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12619 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12623 enum ada_primitive_types {
12624 ada_primitive_type_int,
12625 ada_primitive_type_long,
12626 ada_primitive_type_short,
12627 ada_primitive_type_char,
12628 ada_primitive_type_float,
12629 ada_primitive_type_double,
12630 ada_primitive_type_void,
12631 ada_primitive_type_long_long,
12632 ada_primitive_type_long_double,
12633 ada_primitive_type_natural,
12634 ada_primitive_type_positive,
12635 ada_primitive_type_system_address,
12636 nr_ada_primitive_types
12640 ada_language_arch_info (struct gdbarch *gdbarch,
12641 struct language_arch_info *lai)
12643 const struct builtin_type *builtin = builtin_type (gdbarch);
12645 lai->primitive_type_vector
12646 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12649 lai->primitive_type_vector [ada_primitive_type_int]
12650 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 lai->primitive_type_vector [ada_primitive_type_long]
12653 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12654 0, "long_integer");
12655 lai->primitive_type_vector [ada_primitive_type_short]
12656 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12657 0, "short_integer");
12658 lai->string_char_type
12659 = lai->primitive_type_vector [ada_primitive_type_char]
12660 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12661 lai->primitive_type_vector [ada_primitive_type_float]
12662 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12664 lai->primitive_type_vector [ada_primitive_type_double]
12665 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12666 "long_float", NULL);
12667 lai->primitive_type_vector [ada_primitive_type_long_long]
12668 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12669 0, "long_long_integer");
12670 lai->primitive_type_vector [ada_primitive_type_long_double]
12671 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12672 "long_long_float", NULL);
12673 lai->primitive_type_vector [ada_primitive_type_natural]
12674 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 lai->primitive_type_vector [ada_primitive_type_positive]
12677 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12679 lai->primitive_type_vector [ada_primitive_type_void]
12680 = builtin->builtin_void;
12682 lai->primitive_type_vector [ada_primitive_type_system_address]
12683 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12684 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12685 = "system__address";
12687 lai->bool_type_symbol = NULL;
12688 lai->bool_type_default = builtin->builtin_bool;
12691 /* Language vector */
12693 /* Not really used, but needed in the ada_language_defn. */
12696 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12698 ada_emit_char (c, type, stream, quoter, 1);
12704 warnings_issued = 0;
12705 return ada_parse ();
12708 static const struct exp_descriptor ada_exp_descriptor = {
12710 ada_operator_length,
12711 ada_operator_check,
12713 ada_dump_subexp_body,
12714 ada_evaluate_subexp
12717 /* Implement the "la_get_symbol_name_cmp" language_defn method
12720 static symbol_name_cmp_ftype
12721 ada_get_symbol_name_cmp (const char *lookup_name)
12723 if (should_use_wild_match (lookup_name))
12726 return compare_names;
12729 /* Implement the "la_read_var_value" language_defn method for Ada. */
12731 static struct value *
12732 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12734 struct block *frame_block = NULL;
12735 struct symbol *renaming_sym = NULL;
12737 /* The only case where default_read_var_value is not sufficient
12738 is when VAR is a renaming... */
12740 frame_block = get_frame_block (frame, NULL);
12742 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12743 if (renaming_sym != NULL)
12744 return ada_read_renaming_var_value (renaming_sym, frame_block);
12746 /* This is a typical case where we expect the default_read_var_value
12747 function to work. */
12748 return default_read_var_value (var, frame);
12751 const struct language_defn ada_language_defn = {
12752 "ada", /* Language name */
12755 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12756 that's not quite what this means. */
12758 macro_expansion_no,
12759 &ada_exp_descriptor,
12763 ada_printchar, /* Print a character constant */
12764 ada_printstr, /* Function to print string constant */
12765 emit_char, /* Function to print single char (not used) */
12766 ada_print_type, /* Print a type using appropriate syntax */
12767 ada_print_typedef, /* Print a typedef using appropriate syntax */
12768 ada_val_print, /* Print a value using appropriate syntax */
12769 ada_value_print, /* Print a top-level value */
12770 ada_read_var_value, /* la_read_var_value */
12771 NULL, /* Language specific skip_trampoline */
12772 NULL, /* name_of_this */
12773 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12774 basic_lookup_transparent_type, /* lookup_transparent_type */
12775 ada_la_decode, /* Language specific symbol demangler */
12776 NULL, /* Language specific
12777 class_name_from_physname */
12778 ada_op_print_tab, /* expression operators for printing */
12779 0, /* c-style arrays */
12780 1, /* String lower bound */
12781 ada_get_gdb_completer_word_break_characters,
12782 ada_make_symbol_completion_list,
12783 ada_language_arch_info,
12784 ada_print_array_index,
12785 default_pass_by_reference,
12787 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12788 ada_iterate_over_symbols,
12792 /* Provide a prototype to silence -Wmissing-prototypes. */
12793 extern initialize_file_ftype _initialize_ada_language;
12795 /* Command-list for the "set/show ada" prefix command. */
12796 static struct cmd_list_element *set_ada_list;
12797 static struct cmd_list_element *show_ada_list;
12799 /* Implement the "set ada" prefix command. */
12802 set_ada_command (char *arg, int from_tty)
12804 printf_unfiltered (_(\
12805 "\"set ada\" must be followed by the name of a setting.\n"));
12806 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12809 /* Implement the "show ada" prefix command. */
12812 show_ada_command (char *args, int from_tty)
12814 cmd_show_list (show_ada_list, from_tty, "");
12818 initialize_ada_catchpoint_ops (void)
12820 struct breakpoint_ops *ops;
12822 initialize_breakpoint_ops ();
12824 ops = &catch_exception_breakpoint_ops;
12825 *ops = bkpt_breakpoint_ops;
12826 ops->dtor = dtor_catch_exception;
12827 ops->allocate_location = allocate_location_catch_exception;
12828 ops->re_set = re_set_catch_exception;
12829 ops->check_status = check_status_catch_exception;
12830 ops->print_it = print_it_catch_exception;
12831 ops->print_one = print_one_catch_exception;
12832 ops->print_mention = print_mention_catch_exception;
12833 ops->print_recreate = print_recreate_catch_exception;
12835 ops = &catch_exception_unhandled_breakpoint_ops;
12836 *ops = bkpt_breakpoint_ops;
12837 ops->dtor = dtor_catch_exception_unhandled;
12838 ops->allocate_location = allocate_location_catch_exception_unhandled;
12839 ops->re_set = re_set_catch_exception_unhandled;
12840 ops->check_status = check_status_catch_exception_unhandled;
12841 ops->print_it = print_it_catch_exception_unhandled;
12842 ops->print_one = print_one_catch_exception_unhandled;
12843 ops->print_mention = print_mention_catch_exception_unhandled;
12844 ops->print_recreate = print_recreate_catch_exception_unhandled;
12846 ops = &catch_assert_breakpoint_ops;
12847 *ops = bkpt_breakpoint_ops;
12848 ops->dtor = dtor_catch_assert;
12849 ops->allocate_location = allocate_location_catch_assert;
12850 ops->re_set = re_set_catch_assert;
12851 ops->check_status = check_status_catch_assert;
12852 ops->print_it = print_it_catch_assert;
12853 ops->print_one = print_one_catch_assert;
12854 ops->print_mention = print_mention_catch_assert;
12855 ops->print_recreate = print_recreate_catch_assert;
12859 _initialize_ada_language (void)
12861 add_language (&ada_language_defn);
12863 initialize_ada_catchpoint_ops ();
12865 add_prefix_cmd ("ada", no_class, set_ada_command,
12866 _("Prefix command for changing Ada-specfic settings"),
12867 &set_ada_list, "set ada ", 0, &setlist);
12869 add_prefix_cmd ("ada", no_class, show_ada_command,
12870 _("Generic command for showing Ada-specific settings."),
12871 &show_ada_list, "show ada ", 0, &showlist);
12873 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12874 &trust_pad_over_xvs, _("\
12875 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12876 Show whether an optimization trusting PAD types over XVS types is activated"),
12878 This is related to the encoding used by the GNAT compiler. The debugger\n\
12879 should normally trust the contents of PAD types, but certain older versions\n\
12880 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12881 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12882 work around this bug. It is always safe to turn this option \"off\", but\n\
12883 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12884 this option to \"off\" unless necessary."),
12885 NULL, NULL, &set_ada_list, &show_ada_list);
12887 add_catch_command ("exception", _("\
12888 Catch Ada exceptions, when raised.\n\
12889 With an argument, catch only exceptions with the given name."),
12890 catch_ada_exception_command,
12894 add_catch_command ("assert", _("\
12895 Catch failed Ada assertions, when raised.\n\
12896 With an argument, catch only exceptions with the given name."),
12897 catch_assert_command,
12902 varsize_limit = 65536;
12904 obstack_init (&symbol_list_obstack);
12906 decoded_names_store = htab_create_alloc
12907 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12908 NULL, xcalloc, xfree);
12910 /* Setup per-inferior data. */
12911 observer_attach_inferior_exit (ada_inferior_exit);
12913 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);