]> Git Repo - binutils.git/blob - zlib/deflate.c
Automatic date update in version.in
[binutils.git] / zlib / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55    " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local int deflateStateCheck      OF((z_streamp strm));
77 local void slide_hash     OF((deflate_state *s));
78 local void fill_window    OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast   OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow   OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle    OF((deflate_state *s, int flush));
85 local block_state deflate_huff   OF((deflate_state *s, int flush));
86 local void lm_init        OF((deflate_state *s));
87 local void putShortMSB    OF((deflate_state *s, uInt b));
88 local void flush_pending  OF((z_streamp strm));
89 local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 #  pragma message("Assembler code may have bugs -- use at your own risk")
92       void match_init OF((void)); /* asm code initialization */
93       uInt longest_match  OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96 #endif
97
98 #ifdef ZLIB_DEBUG
99 local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                             int length));
101 #endif
102
103 /* ===========================================================================
104  * Local data
105  */
106
107 #define NIL 0
108 /* Tail of hash chains */
109
110 #ifndef TOO_FAR
111 #  define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116  * the desired pack level (0..9). The values given below have been tuned to
117  * exclude worst case performance for pathological files. Better values may be
118  * found for specific files.
119  */
120 typedef struct config_s {
121    ush good_length; /* reduce lazy search above this match length */
122    ush max_lazy;    /* do not perform lazy search above this match length */
123    ush nice_length; /* quit search above this match length */
124    ush max_chain;
125    compress_func func;
126 } config;
127
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /*      good lazy nice chain */
131 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /*      good lazy nice chain */
136 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4,    5, 16,    8, deflate_fast},
139 /* 3 */ {4,    6, 32,   32, deflate_fast},
140
141 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142 /* 5 */ {8,   16, 32,   32, deflate_slow},
143 /* 6 */ {8,   16, 128, 128, deflate_slow},
144 /* 7 */ {8,   32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151  * meaning.
152  */
153
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157 /* ===========================================================================
158  * Update a hash value with the given input byte
159  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160  *    characters, so that a running hash key can be computed from the previous
161  *    key instead of complete recalculation each time.
162  */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166 /* ===========================================================================
167  * Insert string str in the dictionary and set match_head to the previous head
168  * of the hash chain (the most recent string with same hash key). Return
169  * the previous length of the hash chain.
170  * If this file is compiled with -DFASTEST, the compression level is forced
171  * to 1, and no hash chains are maintained.
172  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173  *    characters and the first MIN_MATCH bytes of str are valid (except for
174  *    the last MIN_MATCH-1 bytes of the input file).
175  */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179     match_head = s->head[s->ins_h], \
180     s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185     s->head[s->ins_h] = (Pos)(str))
186 #endif
187
188 /* ===========================================================================
189  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190  * prev[] will be initialized on the fly.
191  */
192 #define CLEAR_HASH(s) \
193     do { \
194         s->head[s->hash_size-1] = NIL; \
195         zmemzero((Bytef *)s->head, \
196                  (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197     } while (0)
198
199 /* ===========================================================================
200  * Slide the hash table when sliding the window down (could be avoided with 32
201  * bit values at the expense of memory usage). We slide even when level == 0 to
202  * keep the hash table consistent if we switch back to level > 0 later.
203  */
204 local void slide_hash(s)
205     deflate_state *s;
206 {
207     unsigned n, m;
208     Posf *p;
209     uInt wsize = s->w_size;
210
211     n = s->hash_size;
212     p = &s->head[n];
213     do {
214         m = *--p;
215         *p = (Pos)(m >= wsize ? m - wsize : NIL);
216     } while (--n);
217     n = wsize;
218 #ifndef FASTEST
219     p = &s->prev[n];
220     do {
221         m = *--p;
222         *p = (Pos)(m >= wsize ? m - wsize : NIL);
223         /* If n is not on any hash chain, prev[n] is garbage but
224          * its value will never be used.
225          */
226     } while (--n);
227 #endif
228 }
229
230 /* ========================================================================= */
231 int ZEXPORT deflateInit_(strm, level, version, stream_size)
232     z_streamp strm;
233     int level;
234     const char *version;
235     int stream_size;
236 {
237     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                          Z_DEFAULT_STRATEGY, version, stream_size);
239     /* To do: ignore strm->next_in if we use it as window */
240 }
241
242 /* ========================================================================= */
243 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244                   version, stream_size)
245     z_streamp strm;
246     int  level;
247     int  method;
248     int  windowBits;
249     int  memLevel;
250     int  strategy;
251     const char *version;
252     int stream_size;
253 {
254     deflate_state *s;
255     int wrap = 1;
256     static const char my_version[] = ZLIB_VERSION;
257
258     if (version == Z_NULL || version[0] != my_version[0] ||
259         stream_size != sizeof(z_stream)) {
260         return Z_VERSION_ERROR;
261     }
262     if (strm == Z_NULL) return Z_STREAM_ERROR;
263
264     strm->msg = Z_NULL;
265     if (strm->zalloc == (alloc_func)0) {
266 #ifdef Z_SOLO
267         return Z_STREAM_ERROR;
268 #else
269         strm->zalloc = zcalloc;
270         strm->opaque = (voidpf)0;
271 #endif
272     }
273     if (strm->zfree == (free_func)0)
274 #ifdef Z_SOLO
275         return Z_STREAM_ERROR;
276 #else
277         strm->zfree = zcfree;
278 #endif
279
280 #ifdef FASTEST
281     if (level != 0) level = 1;
282 #else
283     if (level == Z_DEFAULT_COMPRESSION) level = 6;
284 #endif
285
286     if (windowBits < 0) { /* suppress zlib wrapper */
287         wrap = 0;
288         windowBits = -windowBits;
289     }
290 #ifdef GZIP
291     else if (windowBits > 15) {
292         wrap = 2;       /* write gzip wrapper instead */
293         windowBits -= 16;
294     }
295 #endif
296     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
297         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
298         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
299         return Z_STREAM_ERROR;
300     }
301     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
302     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
303     if (s == Z_NULL) return Z_MEM_ERROR;
304     strm->state = (struct internal_state FAR *)s;
305     s->strm = strm;
306     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
307
308     s->wrap = wrap;
309     s->gzhead = Z_NULL;
310     s->w_bits = (uInt)windowBits;
311     s->w_size = 1 << s->w_bits;
312     s->w_mask = s->w_size - 1;
313
314     s->hash_bits = (uInt)memLevel + 7;
315     s->hash_size = 1 << s->hash_bits;
316     s->hash_mask = s->hash_size - 1;
317     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
318
319     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
320     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
321     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
322
323     s->high_water = 0;      /* nothing written to s->window yet */
324
325     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
326
327     /* We overlay pending_buf and sym_buf. This works since the average size
328      * for length/distance pairs over any compressed block is assured to be 31
329      * bits or less.
330      *
331      * Analysis: The longest fixed codes are a length code of 8 bits plus 5
332      * extra bits, for lengths 131 to 257. The longest fixed distance codes are
333      * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
334      * possible fixed-codes length/distance pair is then 31 bits total.
335      *
336      * sym_buf starts one-fourth of the way into pending_buf. So there are
337      * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
338      * in sym_buf is three bytes -- two for the distance and one for the
339      * literal/length. As each symbol is consumed, the pointer to the next
340      * sym_buf value to read moves forward three bytes. From that symbol, up to
341      * 31 bits are written to pending_buf. The closest the written pending_buf
342      * bits gets to the next sym_buf symbol to read is just before the last
343      * code is written. At that time, 31*(n-2) bits have been written, just
344      * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
345      * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
346      * symbols are written.) The closest the writing gets to what is unread is
347      * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
348      * can range from 128 to 32768.
349      *
350      * Therefore, at a minimum, there are 142 bits of space between what is
351      * written and what is read in the overlain buffers, so the symbols cannot
352      * be overwritten by the compressed data. That space is actually 139 bits,
353      * due to the three-bit fixed-code block header.
354      *
355      * That covers the case where either Z_FIXED is specified, forcing fixed
356      * codes, or when the use of fixed codes is chosen, because that choice
357      * results in a smaller compressed block than dynamic codes. That latter
358      * condition then assures that the above analysis also covers all dynamic
359      * blocks. A dynamic-code block will only be chosen to be emitted if it has
360      * fewer bits than a fixed-code block would for the same set of symbols.
361      * Therefore its average symbol length is assured to be less than 31. So
362      * the compressed data for a dynamic block also cannot overwrite the
363      * symbols from which it is being constructed.
364      */
365
366     s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
367     s->pending_buf_size = (ulg)s->lit_bufsize * 4;
368
369     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
370         s->pending_buf == Z_NULL) {
371         s->status = FINISH_STATE;
372         strm->msg = ERR_MSG(Z_MEM_ERROR);
373         deflateEnd (strm);
374         return Z_MEM_ERROR;
375     }
376     s->sym_buf = s->pending_buf + s->lit_bufsize;
377     s->sym_end = (s->lit_bufsize - 1) * 3;
378     /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
379      * on 16 bit machines and because stored blocks are restricted to
380      * 64K-1 bytes.
381      */
382
383     s->level = level;
384     s->strategy = strategy;
385     s->method = (Byte)method;
386
387     return deflateReset(strm);
388 }
389
390 /* =========================================================================
391  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
392  */
393 local int deflateStateCheck (strm)
394     z_streamp strm;
395 {
396     deflate_state *s;
397     if (strm == Z_NULL ||
398         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
399         return 1;
400     s = strm->state;
401     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
402 #ifdef GZIP
403                                            s->status != GZIP_STATE &&
404 #endif
405                                            s->status != EXTRA_STATE &&
406                                            s->status != NAME_STATE &&
407                                            s->status != COMMENT_STATE &&
408                                            s->status != HCRC_STATE &&
409                                            s->status != BUSY_STATE &&
410                                            s->status != FINISH_STATE))
411         return 1;
412     return 0;
413 }
414
415 /* ========================================================================= */
416 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
417     z_streamp strm;
418     const Bytef *dictionary;
419     uInt  dictLength;
420 {
421     deflate_state *s;
422     uInt str, n;
423     int wrap;
424     unsigned avail;
425     z_const unsigned char *next;
426
427     if (deflateStateCheck(strm) || dictionary == Z_NULL)
428         return Z_STREAM_ERROR;
429     s = strm->state;
430     wrap = s->wrap;
431     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
432         return Z_STREAM_ERROR;
433
434     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
435     if (wrap == 1)
436         strm->adler = adler32(strm->adler, dictionary, dictLength);
437     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
438
439     /* if dictionary would fill window, just replace the history */
440     if (dictLength >= s->w_size) {
441         if (wrap == 0) {            /* already empty otherwise */
442             CLEAR_HASH(s);
443             s->strstart = 0;
444             s->block_start = 0L;
445             s->insert = 0;
446         }
447         dictionary += dictLength - s->w_size;  /* use the tail */
448         dictLength = s->w_size;
449     }
450
451     /* insert dictionary into window and hash */
452     avail = strm->avail_in;
453     next = strm->next_in;
454     strm->avail_in = dictLength;
455     strm->next_in = (z_const Bytef *)dictionary;
456     fill_window(s);
457     while (s->lookahead >= MIN_MATCH) {
458         str = s->strstart;
459         n = s->lookahead - (MIN_MATCH-1);
460         do {
461             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
462 #ifndef FASTEST
463             s->prev[str & s->w_mask] = s->head[s->ins_h];
464 #endif
465             s->head[s->ins_h] = (Pos)str;
466             str++;
467         } while (--n);
468         s->strstart = str;
469         s->lookahead = MIN_MATCH-1;
470         fill_window(s);
471     }
472     s->strstart += s->lookahead;
473     s->block_start = (long)s->strstart;
474     s->insert = s->lookahead;
475     s->lookahead = 0;
476     s->match_length = s->prev_length = MIN_MATCH-1;
477     s->match_available = 0;
478     strm->next_in = next;
479     strm->avail_in = avail;
480     s->wrap = wrap;
481     return Z_OK;
482 }
483
484 /* ========================================================================= */
485 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
486     z_streamp strm;
487     Bytef *dictionary;
488     uInt  *dictLength;
489 {
490     deflate_state *s;
491     uInt len;
492
493     if (deflateStateCheck(strm))
494         return Z_STREAM_ERROR;
495     s = strm->state;
496     len = s->strstart + s->lookahead;
497     if (len > s->w_size)
498         len = s->w_size;
499     if (dictionary != Z_NULL && len)
500         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
501     if (dictLength != Z_NULL)
502         *dictLength = len;
503     return Z_OK;
504 }
505
506 /* ========================================================================= */
507 int ZEXPORT deflateResetKeep (strm)
508     z_streamp strm;
509 {
510     deflate_state *s;
511
512     if (deflateStateCheck(strm)) {
513         return Z_STREAM_ERROR;
514     }
515
516     strm->total_in = strm->total_out = 0;
517     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
518     strm->data_type = Z_UNKNOWN;
519
520     s = (deflate_state *)strm->state;
521     s->pending = 0;
522     s->pending_out = s->pending_buf;
523
524     if (s->wrap < 0) {
525         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
526     }
527     s->status =
528 #ifdef GZIP
529         s->wrap == 2 ? GZIP_STATE :
530 #endif
531         INIT_STATE;
532     strm->adler =
533 #ifdef GZIP
534         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
535 #endif
536         adler32(0L, Z_NULL, 0);
537     s->last_flush = -2;
538
539     _tr_init(s);
540
541     return Z_OK;
542 }
543
544 /* ========================================================================= */
545 int ZEXPORT deflateReset (strm)
546     z_streamp strm;
547 {
548     int ret;
549
550     ret = deflateResetKeep(strm);
551     if (ret == Z_OK)
552         lm_init(strm->state);
553     return ret;
554 }
555
556 /* ========================================================================= */
557 int ZEXPORT deflateSetHeader (strm, head)
558     z_streamp strm;
559     gz_headerp head;
560 {
561     if (deflateStateCheck(strm) || strm->state->wrap != 2)
562         return Z_STREAM_ERROR;
563     strm->state->gzhead = head;
564     return Z_OK;
565 }
566
567 /* ========================================================================= */
568 int ZEXPORT deflatePending (strm, pending, bits)
569     unsigned *pending;
570     int *bits;
571     z_streamp strm;
572 {
573     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
574     if (pending != Z_NULL)
575         *pending = strm->state->pending;
576     if (bits != Z_NULL)
577         *bits = strm->state->bi_valid;
578     return Z_OK;
579 }
580
581 /* ========================================================================= */
582 int ZEXPORT deflatePrime (strm, bits, value)
583     z_streamp strm;
584     int bits;
585     int value;
586 {
587     deflate_state *s;
588     int put;
589
590     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
591     s = strm->state;
592     if (bits < 0 || bits > 16 ||
593         s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
594         return Z_BUF_ERROR;
595     do {
596         put = Buf_size - s->bi_valid;
597         if (put > bits)
598             put = bits;
599         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
600         s->bi_valid += put;
601         _tr_flush_bits(s);
602         value >>= put;
603         bits -= put;
604     } while (bits);
605     return Z_OK;
606 }
607
608 /* ========================================================================= */
609 int ZEXPORT deflateParams(strm, level, strategy)
610     z_streamp strm;
611     int level;
612     int strategy;
613 {
614     deflate_state *s;
615     compress_func func;
616
617     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
618     s = strm->state;
619
620 #ifdef FASTEST
621     if (level != 0) level = 1;
622 #else
623     if (level == Z_DEFAULT_COMPRESSION) level = 6;
624 #endif
625     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
626         return Z_STREAM_ERROR;
627     }
628     func = configuration_table[s->level].func;
629
630     if ((strategy != s->strategy || func != configuration_table[level].func) &&
631         s->last_flush != -2) {
632         /* Flush the last buffer: */
633         int err = deflate(strm, Z_BLOCK);
634         if (err == Z_STREAM_ERROR)
635             return err;
636         if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
637             return Z_BUF_ERROR;
638     }
639     if (s->level != level) {
640         if (s->level == 0 && s->matches != 0) {
641             if (s->matches == 1)
642                 slide_hash(s);
643             else
644                 CLEAR_HASH(s);
645             s->matches = 0;
646         }
647         s->level = level;
648         s->max_lazy_match   = configuration_table[level].max_lazy;
649         s->good_match       = configuration_table[level].good_length;
650         s->nice_match       = configuration_table[level].nice_length;
651         s->max_chain_length = configuration_table[level].max_chain;
652     }
653     s->strategy = strategy;
654     return Z_OK;
655 }
656
657 /* ========================================================================= */
658 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
659     z_streamp strm;
660     int good_length;
661     int max_lazy;
662     int nice_length;
663     int max_chain;
664 {
665     deflate_state *s;
666
667     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
668     s = strm->state;
669     s->good_match = (uInt)good_length;
670     s->max_lazy_match = (uInt)max_lazy;
671     s->nice_match = nice_length;
672     s->max_chain_length = (uInt)max_chain;
673     return Z_OK;
674 }
675
676 /* =========================================================================
677  * For the default windowBits of 15 and memLevel of 8, this function returns
678  * a close to exact, as well as small, upper bound on the compressed size.
679  * They are coded as constants here for a reason--if the #define's are
680  * changed, then this function needs to be changed as well.  The return
681  * value for 15 and 8 only works for those exact settings.
682  *
683  * For any setting other than those defaults for windowBits and memLevel,
684  * the value returned is a conservative worst case for the maximum expansion
685  * resulting from using fixed blocks instead of stored blocks, which deflate
686  * can emit on compressed data for some combinations of the parameters.
687  *
688  * This function could be more sophisticated to provide closer upper bounds for
689  * every combination of windowBits and memLevel.  But even the conservative
690  * upper bound of about 14% expansion does not seem onerous for output buffer
691  * allocation.
692  */
693 uLong ZEXPORT deflateBound(strm, sourceLen)
694     z_streamp strm;
695     uLong sourceLen;
696 {
697     deflate_state *s;
698     uLong complen, wraplen;
699
700     /* conservative upper bound for compressed data */
701     complen = sourceLen +
702               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
703
704     /* if can't get parameters, return conservative bound plus zlib wrapper */
705     if (deflateStateCheck(strm))
706         return complen + 6;
707
708     /* compute wrapper length */
709     s = strm->state;
710     switch (s->wrap) {
711     case 0:                                 /* raw deflate */
712         wraplen = 0;
713         break;
714     case 1:                                 /* zlib wrapper */
715         wraplen = 6 + (s->strstart ? 4 : 0);
716         break;
717 #ifdef GZIP
718     case 2:                                 /* gzip wrapper */
719         wraplen = 18;
720         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
721             Bytef *str;
722             if (s->gzhead->extra != Z_NULL)
723                 wraplen += 2 + s->gzhead->extra_len;
724             str = s->gzhead->name;
725             if (str != Z_NULL)
726                 do {
727                     wraplen++;
728                 } while (*str++);
729             str = s->gzhead->comment;
730             if (str != Z_NULL)
731                 do {
732                     wraplen++;
733                 } while (*str++);
734             if (s->gzhead->hcrc)
735                 wraplen += 2;
736         }
737         break;
738 #endif
739     default:                                /* for compiler happiness */
740         wraplen = 6;
741     }
742
743     /* if not default parameters, return conservative bound */
744     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
745         return complen + wraplen;
746
747     /* default settings: return tight bound for that case */
748     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
749            (sourceLen >> 25) + 13 - 6 + wraplen;
750 }
751
752 /* =========================================================================
753  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
754  * IN assertion: the stream state is correct and there is enough room in
755  * pending_buf.
756  */
757 local void putShortMSB (s, b)
758     deflate_state *s;
759     uInt b;
760 {
761     put_byte(s, (Byte)(b >> 8));
762     put_byte(s, (Byte)(b & 0xff));
763 }
764
765 /* =========================================================================
766  * Flush as much pending output as possible. All deflate() output, except for
767  * some deflate_stored() output, goes through this function so some
768  * applications may wish to modify it to avoid allocating a large
769  * strm->next_out buffer and copying into it. (See also read_buf()).
770  */
771 local void flush_pending(strm)
772     z_streamp strm;
773 {
774     unsigned len;
775     deflate_state *s = strm->state;
776
777     _tr_flush_bits(s);
778     len = s->pending;
779     if (len > strm->avail_out) len = strm->avail_out;
780     if (len == 0) return;
781
782     zmemcpy(strm->next_out, s->pending_out, len);
783     strm->next_out  += len;
784     s->pending_out  += len;
785     strm->total_out += len;
786     strm->avail_out -= len;
787     s->pending      -= len;
788     if (s->pending == 0) {
789         s->pending_out = s->pending_buf;
790     }
791 }
792
793 /* ===========================================================================
794  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
795  */
796 #define HCRC_UPDATE(beg) \
797     do { \
798         if (s->gzhead->hcrc && s->pending > (beg)) \
799             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
800                                 s->pending - (beg)); \
801     } while (0)
802
803 /* ========================================================================= */
804 int ZEXPORT deflate (strm, flush)
805     z_streamp strm;
806     int flush;
807 {
808     int old_flush; /* value of flush param for previous deflate call */
809     deflate_state *s;
810
811     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
812         return Z_STREAM_ERROR;
813     }
814     s = strm->state;
815
816     if (strm->next_out == Z_NULL ||
817         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
818         (s->status == FINISH_STATE && flush != Z_FINISH)) {
819         ERR_RETURN(strm, Z_STREAM_ERROR);
820     }
821     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
822
823     old_flush = s->last_flush;
824     s->last_flush = flush;
825
826     /* Flush as much pending output as possible */
827     if (s->pending != 0) {
828         flush_pending(strm);
829         if (strm->avail_out == 0) {
830             /* Since avail_out is 0, deflate will be called again with
831              * more output space, but possibly with both pending and
832              * avail_in equal to zero. There won't be anything to do,
833              * but this is not an error situation so make sure we
834              * return OK instead of BUF_ERROR at next call of deflate:
835              */
836             s->last_flush = -1;
837             return Z_OK;
838         }
839
840     /* Make sure there is something to do and avoid duplicate consecutive
841      * flushes. For repeated and useless calls with Z_FINISH, we keep
842      * returning Z_STREAM_END instead of Z_BUF_ERROR.
843      */
844     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
845                flush != Z_FINISH) {
846         ERR_RETURN(strm, Z_BUF_ERROR);
847     }
848
849     /* User must not provide more input after the first FINISH: */
850     if (s->status == FINISH_STATE && strm->avail_in != 0) {
851         ERR_RETURN(strm, Z_BUF_ERROR);
852     }
853
854     /* Write the header */
855     if (s->status == INIT_STATE && s->wrap == 0)
856         s->status = BUSY_STATE;
857     if (s->status == INIT_STATE) {
858         /* zlib header */
859         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
860         uInt level_flags;
861
862         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
863             level_flags = 0;
864         else if (s->level < 6)
865             level_flags = 1;
866         else if (s->level == 6)
867             level_flags = 2;
868         else
869             level_flags = 3;
870         header |= (level_flags << 6);
871         if (s->strstart != 0) header |= PRESET_DICT;
872         header += 31 - (header % 31);
873
874         putShortMSB(s, header);
875
876         /* Save the adler32 of the preset dictionary: */
877         if (s->strstart != 0) {
878             putShortMSB(s, (uInt)(strm->adler >> 16));
879             putShortMSB(s, (uInt)(strm->adler & 0xffff));
880         }
881         strm->adler = adler32(0L, Z_NULL, 0);
882         s->status = BUSY_STATE;
883
884         /* Compression must start with an empty pending buffer */
885         flush_pending(strm);
886         if (s->pending != 0) {
887             s->last_flush = -1;
888             return Z_OK;
889         }
890     }
891 #ifdef GZIP
892     if (s->status == GZIP_STATE) {
893         /* gzip header */
894         strm->adler = crc32(0L, Z_NULL, 0);
895         put_byte(s, 31);
896         put_byte(s, 139);
897         put_byte(s, 8);
898         if (s->gzhead == Z_NULL) {
899             put_byte(s, 0);
900             put_byte(s, 0);
901             put_byte(s, 0);
902             put_byte(s, 0);
903             put_byte(s, 0);
904             put_byte(s, s->level == 9 ? 2 :
905                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
906                       4 : 0));
907             put_byte(s, OS_CODE);
908             s->status = BUSY_STATE;
909
910             /* Compression must start with an empty pending buffer */
911             flush_pending(strm);
912             if (s->pending != 0) {
913                 s->last_flush = -1;
914                 return Z_OK;
915             }
916         }
917         else {
918             put_byte(s, (s->gzhead->text ? 1 : 0) +
919                      (s->gzhead->hcrc ? 2 : 0) +
920                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
921                      (s->gzhead->name == Z_NULL ? 0 : 8) +
922                      (s->gzhead->comment == Z_NULL ? 0 : 16)
923                      );
924             put_byte(s, (Byte)(s->gzhead->time & 0xff));
925             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
926             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
927             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
928             put_byte(s, s->level == 9 ? 2 :
929                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
930                       4 : 0));
931             put_byte(s, s->gzhead->os & 0xff);
932             if (s->gzhead->extra != Z_NULL) {
933                 put_byte(s, s->gzhead->extra_len & 0xff);
934                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
935             }
936             if (s->gzhead->hcrc)
937                 strm->adler = crc32(strm->adler, s->pending_buf,
938                                     s->pending);
939             s->gzindex = 0;
940             s->status = EXTRA_STATE;
941         }
942     }
943     if (s->status == EXTRA_STATE) {
944         if (s->gzhead->extra != Z_NULL) {
945             ulg beg = s->pending;   /* start of bytes to update crc */
946             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
947             while (s->pending + left > s->pending_buf_size) {
948                 uInt copy = s->pending_buf_size - s->pending;
949                 zmemcpy(s->pending_buf + s->pending,
950                         s->gzhead->extra + s->gzindex, copy);
951                 s->pending = s->pending_buf_size;
952                 HCRC_UPDATE(beg);
953                 s->gzindex += copy;
954                 flush_pending(strm);
955                 if (s->pending != 0) {
956                     s->last_flush = -1;
957                     return Z_OK;
958                 }
959                 beg = 0;
960                 left -= copy;
961             }
962             zmemcpy(s->pending_buf + s->pending,
963                     s->gzhead->extra + s->gzindex, left);
964             s->pending += left;
965             HCRC_UPDATE(beg);
966             s->gzindex = 0;
967         }
968         s->status = NAME_STATE;
969     }
970     if (s->status == NAME_STATE) {
971         if (s->gzhead->name != Z_NULL) {
972             ulg beg = s->pending;   /* start of bytes to update crc */
973             int val;
974             do {
975                 if (s->pending == s->pending_buf_size) {
976                     HCRC_UPDATE(beg);
977                     flush_pending(strm);
978                     if (s->pending != 0) {
979                         s->last_flush = -1;
980                         return Z_OK;
981                     }
982                     beg = 0;
983                 }
984                 val = s->gzhead->name[s->gzindex++];
985                 put_byte(s, val);
986             } while (val != 0);
987             HCRC_UPDATE(beg);
988             s->gzindex = 0;
989         }
990         s->status = COMMENT_STATE;
991     }
992     if (s->status == COMMENT_STATE) {
993         if (s->gzhead->comment != Z_NULL) {
994             ulg beg = s->pending;   /* start of bytes to update crc */
995             int val;
996             do {
997                 if (s->pending == s->pending_buf_size) {
998                     HCRC_UPDATE(beg);
999                     flush_pending(strm);
1000                     if (s->pending != 0) {
1001                         s->last_flush = -1;
1002                         return Z_OK;
1003                     }
1004                     beg = 0;
1005                 }
1006                 val = s->gzhead->comment[s->gzindex++];
1007                 put_byte(s, val);
1008             } while (val != 0);
1009             HCRC_UPDATE(beg);
1010         }
1011         s->status = HCRC_STATE;
1012     }
1013     if (s->status == HCRC_STATE) {
1014         if (s->gzhead->hcrc) {
1015             if (s->pending + 2 > s->pending_buf_size) {
1016                 flush_pending(strm);
1017                 if (s->pending != 0) {
1018                     s->last_flush = -1;
1019                     return Z_OK;
1020                 }
1021             }
1022             put_byte(s, (Byte)(strm->adler & 0xff));
1023             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1024             strm->adler = crc32(0L, Z_NULL, 0);
1025         }
1026         s->status = BUSY_STATE;
1027
1028         /* Compression must start with an empty pending buffer */
1029         flush_pending(strm);
1030         if (s->pending != 0) {
1031             s->last_flush = -1;
1032             return Z_OK;
1033         }
1034     }
1035 #endif
1036
1037     /* Start a new block or continue the current one.
1038      */
1039     if (strm->avail_in != 0 || s->lookahead != 0 ||
1040         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1041         block_state bstate;
1042
1043         bstate = s->level == 0 ? deflate_stored(s, flush) :
1044                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1045                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
1046                  (*(configuration_table[s->level].func))(s, flush);
1047
1048         if (bstate == finish_started || bstate == finish_done) {
1049             s->status = FINISH_STATE;
1050         }
1051         if (bstate == need_more || bstate == finish_started) {
1052             if (strm->avail_out == 0) {
1053                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1054             }
1055             return Z_OK;
1056             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1057              * of deflate should use the same flush parameter to make sure
1058              * that the flush is complete. So we don't have to output an
1059              * empty block here, this will be done at next call. This also
1060              * ensures that for a very small output buffer, we emit at most
1061              * one empty block.
1062              */
1063         }
1064         if (bstate == block_done) {
1065             if (flush == Z_PARTIAL_FLUSH) {
1066                 _tr_align(s);
1067             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1068                 _tr_stored_block(s, (char*)0, 0L, 0);
1069                 /* For a full flush, this empty block will be recognized
1070                  * as a special marker by inflate_sync().
1071                  */
1072                 if (flush == Z_FULL_FLUSH) {
1073                     CLEAR_HASH(s);             /* forget history */
1074                     if (s->lookahead == 0) {
1075                         s->strstart = 0;
1076                         s->block_start = 0L;
1077                         s->insert = 0;
1078                     }
1079                 }
1080             }
1081             flush_pending(strm);
1082             if (strm->avail_out == 0) {
1083               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1084               return Z_OK;
1085             }
1086         }
1087     }
1088
1089     if (flush != Z_FINISH) return Z_OK;
1090     if (s->wrap <= 0) return Z_STREAM_END;
1091
1092     /* Write the trailer */
1093 #ifdef GZIP
1094     if (s->wrap == 2) {
1095         put_byte(s, (Byte)(strm->adler & 0xff));
1096         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1097         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1098         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1099         put_byte(s, (Byte)(strm->total_in & 0xff));
1100         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1101         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1102         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1103     }
1104     else
1105 #endif
1106     {
1107         putShortMSB(s, (uInt)(strm->adler >> 16));
1108         putShortMSB(s, (uInt)(strm->adler & 0xffff));
1109     }
1110     flush_pending(strm);
1111     /* If avail_out is zero, the application will call deflate again
1112      * to flush the rest.
1113      */
1114     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1115     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1116 }
1117
1118 /* ========================================================================= */
1119 int ZEXPORT deflateEnd (strm)
1120     z_streamp strm;
1121 {
1122     int status;
1123
1124     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1125
1126     status = strm->state->status;
1127
1128     /* Deallocate in reverse order of allocations: */
1129     TRY_FREE(strm, strm->state->pending_buf);
1130     TRY_FREE(strm, strm->state->head);
1131     TRY_FREE(strm, strm->state->prev);
1132     TRY_FREE(strm, strm->state->window);
1133
1134     ZFREE(strm, strm->state);
1135     strm->state = Z_NULL;
1136
1137     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1138 }
1139
1140 /* =========================================================================
1141  * Copy the source state to the destination state.
1142  * To simplify the source, this is not supported for 16-bit MSDOS (which
1143  * doesn't have enough memory anyway to duplicate compression states).
1144  */
1145 int ZEXPORT deflateCopy (dest, source)
1146     z_streamp dest;
1147     z_streamp source;
1148 {
1149 #ifdef MAXSEG_64K
1150     return Z_STREAM_ERROR;
1151 #else
1152     deflate_state *ds;
1153     deflate_state *ss;
1154
1155
1156     if (deflateStateCheck(source) || dest == Z_NULL) {
1157         return Z_STREAM_ERROR;
1158     }
1159
1160     ss = source->state;
1161
1162     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1163
1164     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1165     if (ds == Z_NULL) return Z_MEM_ERROR;
1166     dest->state = (struct internal_state FAR *) ds;
1167     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1168     ds->strm = dest;
1169
1170     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1171     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1172     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1173     ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1174
1175     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1176         ds->pending_buf == Z_NULL) {
1177         deflateEnd (dest);
1178         return Z_MEM_ERROR;
1179     }
1180     /* following zmemcpy do not work for 16-bit MSDOS */
1181     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1182     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1183     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1184     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1185
1186     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1187     ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1188
1189     ds->l_desc.dyn_tree = ds->dyn_ltree;
1190     ds->d_desc.dyn_tree = ds->dyn_dtree;
1191     ds->bl_desc.dyn_tree = ds->bl_tree;
1192
1193     return Z_OK;
1194 #endif /* MAXSEG_64K */
1195 }
1196
1197 /* ===========================================================================
1198  * Read a new buffer from the current input stream, update the adler32
1199  * and total number of bytes read.  All deflate() input goes through
1200  * this function so some applications may wish to modify it to avoid
1201  * allocating a large strm->next_in buffer and copying from it.
1202  * (See also flush_pending()).
1203  */
1204 local unsigned read_buf(strm, buf, size)
1205     z_streamp strm;
1206     Bytef *buf;
1207     unsigned size;
1208 {
1209     unsigned len = strm->avail_in;
1210
1211     if (len > size) len = size;
1212     if (len == 0) return 0;
1213
1214     strm->avail_in  -= len;
1215
1216     zmemcpy(buf, strm->next_in, len);
1217     if (strm->state->wrap == 1) {
1218         strm->adler = adler32(strm->adler, buf, len);
1219     }
1220 #ifdef GZIP
1221     else if (strm->state->wrap == 2) {
1222         strm->adler = crc32(strm->adler, buf, len);
1223     }
1224 #endif
1225     strm->next_in  += len;
1226     strm->total_in += len;
1227
1228     return len;
1229 }
1230
1231 /* ===========================================================================
1232  * Initialize the "longest match" routines for a new zlib stream
1233  */
1234 local void lm_init (s)
1235     deflate_state *s;
1236 {
1237     s->window_size = (ulg)2L*s->w_size;
1238
1239     CLEAR_HASH(s);
1240
1241     /* Set the default configuration parameters:
1242      */
1243     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1244     s->good_match       = configuration_table[s->level].good_length;
1245     s->nice_match       = configuration_table[s->level].nice_length;
1246     s->max_chain_length = configuration_table[s->level].max_chain;
1247
1248     s->strstart = 0;
1249     s->block_start = 0L;
1250     s->lookahead = 0;
1251     s->insert = 0;
1252     s->match_length = s->prev_length = MIN_MATCH-1;
1253     s->match_available = 0;
1254     s->ins_h = 0;
1255 #ifndef FASTEST
1256 #ifdef ASMV
1257     match_init(); /* initialize the asm code */
1258 #endif
1259 #endif
1260 }
1261
1262 #ifndef FASTEST
1263 /* ===========================================================================
1264  * Set match_start to the longest match starting at the given string and
1265  * return its length. Matches shorter or equal to prev_length are discarded,
1266  * in which case the result is equal to prev_length and match_start is
1267  * garbage.
1268  * IN assertions: cur_match is the head of the hash chain for the current
1269  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1270  * OUT assertion: the match length is not greater than s->lookahead.
1271  */
1272 #ifndef ASMV
1273 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1274  * match.S. The code will be functionally equivalent.
1275  */
1276 local uInt longest_match(s, cur_match)
1277     deflate_state *s;
1278     IPos cur_match;                             /* current match */
1279 {
1280     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1281     register Bytef *scan = s->window + s->strstart; /* current string */
1282     register Bytef *match;                      /* matched string */
1283     register int len;                           /* length of current match */
1284     int best_len = (int)s->prev_length;         /* best match length so far */
1285     int nice_match = s->nice_match;             /* stop if match long enough */
1286     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1287         s->strstart - (IPos)MAX_DIST(s) : NIL;
1288     /* Stop when cur_match becomes <= limit. To simplify the code,
1289      * we prevent matches with the string of window index 0.
1290      */
1291     Posf *prev = s->prev;
1292     uInt wmask = s->w_mask;
1293
1294 #ifdef UNALIGNED_OK
1295     /* Compare two bytes at a time. Note: this is not always beneficial.
1296      * Try with and without -DUNALIGNED_OK to check.
1297      */
1298     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1299     register ush scan_start = *(ushf*)scan;
1300     register ush scan_end   = *(ushf*)(scan+best_len-1);
1301 #else
1302     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1303     register Byte scan_end1  = scan[best_len-1];
1304     register Byte scan_end   = scan[best_len];
1305 #endif
1306
1307     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1308      * It is easy to get rid of this optimization if necessary.
1309      */
1310     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1311
1312     /* Do not waste too much time if we already have a good match: */
1313     if (s->prev_length >= s->good_match) {
1314         chain_length >>= 2;
1315     }
1316     /* Do not look for matches beyond the end of the input. This is necessary
1317      * to make deflate deterministic.
1318      */
1319     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1320
1321     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1322
1323     do {
1324         Assert(cur_match < s->strstart, "no future");
1325         match = s->window + cur_match;
1326
1327         /* Skip to next match if the match length cannot increase
1328          * or if the match length is less than 2.  Note that the checks below
1329          * for insufficient lookahead only occur occasionally for performance
1330          * reasons.  Therefore uninitialized memory will be accessed, and
1331          * conditional jumps will be made that depend on those values.
1332          * However the length of the match is limited to the lookahead, so
1333          * the output of deflate is not affected by the uninitialized values.
1334          */
1335 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1336         /* This code assumes sizeof(unsigned short) == 2. Do not use
1337          * UNALIGNED_OK if your compiler uses a different size.
1338          */
1339         if (*(ushf*)(match+best_len-1) != scan_end ||
1340             *(ushf*)match != scan_start) continue;
1341
1342         /* It is not necessary to compare scan[2] and match[2] since they are
1343          * always equal when the other bytes match, given that the hash keys
1344          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1345          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1346          * lookahead only every 4th comparison; the 128th check will be made
1347          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1348          * necessary to put more guard bytes at the end of the window, or
1349          * to check more often for insufficient lookahead.
1350          */
1351         Assert(scan[2] == match[2], "scan[2]?");
1352         scan++, match++;
1353         do {
1354         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1357                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1358                  scan < strend);
1359         /* The funny "do {}" generates better code on most compilers */
1360
1361         /* Here, scan <= window+strstart+257 */
1362         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1363         if (*scan == *match) scan++;
1364
1365         len = (MAX_MATCH - 1) - (int)(strend-scan);
1366         scan = strend - (MAX_MATCH-1);
1367
1368 #else /* UNALIGNED_OK */
1369
1370         if (match[best_len]   != scan_end  ||
1371             match[best_len-1] != scan_end1 ||
1372             *match            != *scan     ||
1373             *++match          != scan[1])      continue;
1374
1375         /* The check at best_len-1 can be removed because it will be made
1376          * again later. (This heuristic is not always a win.)
1377          * It is not necessary to compare scan[2] and match[2] since they
1378          * are always equal when the other bytes match, given that
1379          * the hash keys are equal and that HASH_BITS >= 8.
1380          */
1381         scan += 2, match++;
1382         Assert(*scan == *match, "match[2]?");
1383
1384         /* We check for insufficient lookahead only every 8th comparison;
1385          * the 256th check will be made at strstart+258.
1386          */
1387         do {
1388         } while (*++scan == *++match && *++scan == *++match &&
1389                  *++scan == *++match && *++scan == *++match &&
1390                  *++scan == *++match && *++scan == *++match &&
1391                  *++scan == *++match && *++scan == *++match &&
1392                  scan < strend);
1393
1394         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1395
1396         len = MAX_MATCH - (int)(strend - scan);
1397         scan = strend - MAX_MATCH;
1398
1399 #endif /* UNALIGNED_OK */
1400
1401         if (len > best_len) {
1402             s->match_start = cur_match;
1403             best_len = len;
1404             if (len >= nice_match) break;
1405 #ifdef UNALIGNED_OK
1406             scan_end = *(ushf*)(scan+best_len-1);
1407 #else
1408             scan_end1  = scan[best_len-1];
1409             scan_end   = scan[best_len];
1410 #endif
1411         }
1412     } while ((cur_match = prev[cur_match & wmask]) > limit
1413              && --chain_length != 0);
1414
1415     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1416     return s->lookahead;
1417 }
1418 #endif /* ASMV */
1419
1420 #else /* FASTEST */
1421
1422 /* ---------------------------------------------------------------------------
1423  * Optimized version for FASTEST only
1424  */
1425 local uInt longest_match(s, cur_match)
1426     deflate_state *s;
1427     IPos cur_match;                             /* current match */
1428 {
1429     register Bytef *scan = s->window + s->strstart; /* current string */
1430     register Bytef *match;                       /* matched string */
1431     register int len;                           /* length of current match */
1432     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1433
1434     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1435      * It is easy to get rid of this optimization if necessary.
1436      */
1437     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1438
1439     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1440
1441     Assert(cur_match < s->strstart, "no future");
1442
1443     match = s->window + cur_match;
1444
1445     /* Return failure if the match length is less than 2:
1446      */
1447     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1448
1449     /* The check at best_len-1 can be removed because it will be made
1450      * again later. (This heuristic is not always a win.)
1451      * It is not necessary to compare scan[2] and match[2] since they
1452      * are always equal when the other bytes match, given that
1453      * the hash keys are equal and that HASH_BITS >= 8.
1454      */
1455     scan += 2, match += 2;
1456     Assert(*scan == *match, "match[2]?");
1457
1458     /* We check for insufficient lookahead only every 8th comparison;
1459      * the 256th check will be made at strstart+258.
1460      */
1461     do {
1462     } while (*++scan == *++match && *++scan == *++match &&
1463              *++scan == *++match && *++scan == *++match &&
1464              *++scan == *++match && *++scan == *++match &&
1465              *++scan == *++match && *++scan == *++match &&
1466              scan < strend);
1467
1468     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1469
1470     len = MAX_MATCH - (int)(strend - scan);
1471
1472     if (len < MIN_MATCH) return MIN_MATCH - 1;
1473
1474     s->match_start = cur_match;
1475     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1476 }
1477
1478 #endif /* FASTEST */
1479
1480 #ifdef ZLIB_DEBUG
1481
1482 #define EQUAL 0
1483 /* result of memcmp for equal strings */
1484
1485 /* ===========================================================================
1486  * Check that the match at match_start is indeed a match.
1487  */
1488 local void check_match(s, start, match, length)
1489     deflate_state *s;
1490     IPos start, match;
1491     int length;
1492 {
1493     /* check that the match is indeed a match */
1494     if (zmemcmp(s->window + match,
1495                 s->window + start, length) != EQUAL) {
1496         fprintf(stderr, " start %u, match %u, length %d\n",
1497                 start, match, length);
1498         do {
1499             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1500         } while (--length != 0);
1501         z_error("invalid match");
1502     }
1503     if (z_verbose > 1) {
1504         fprintf(stderr,"\\[%d,%d]", start-match, length);
1505         do { putc(s->window[start++], stderr); } while (--length != 0);
1506     }
1507 }
1508 #else
1509 #  define check_match(s, start, match, length)
1510 #endif /* ZLIB_DEBUG */
1511
1512 /* ===========================================================================
1513  * Fill the window when the lookahead becomes insufficient.
1514  * Updates strstart and lookahead.
1515  *
1516  * IN assertion: lookahead < MIN_LOOKAHEAD
1517  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1518  *    At least one byte has been read, or avail_in == 0; reads are
1519  *    performed for at least two bytes (required for the zip translate_eol
1520  *    option -- not supported here).
1521  */
1522 local void fill_window(s)
1523     deflate_state *s;
1524 {
1525     unsigned n;
1526     unsigned more;    /* Amount of free space at the end of the window. */
1527     uInt wsize = s->w_size;
1528
1529     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1530
1531     do {
1532         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1533
1534         /* Deal with !@#$% 64K limit: */
1535         if (sizeof(int) <= 2) {
1536             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1537                 more = wsize;
1538
1539             } else if (more == (unsigned)(-1)) {
1540                 /* Very unlikely, but possible on 16 bit machine if
1541                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1542                  */
1543                 more--;
1544             }
1545         }
1546
1547         /* If the window is almost full and there is insufficient lookahead,
1548          * move the upper half to the lower one to make room in the upper half.
1549          */
1550         if (s->strstart >= wsize+MAX_DIST(s)) {
1551
1552             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1553             s->match_start -= wsize;
1554             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1555             s->block_start -= (long) wsize;
1556             if (s->insert > s->strstart)
1557                 s->insert = s->strstart;
1558             slide_hash(s);
1559             more += wsize;
1560         }
1561         if (s->strm->avail_in == 0) break;
1562
1563         /* If there was no sliding:
1564          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1565          *    more == window_size - lookahead - strstart
1566          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1567          * => more >= window_size - 2*WSIZE + 2
1568          * In the BIG_MEM or MMAP case (not yet supported),
1569          *   window_size == input_size + MIN_LOOKAHEAD  &&
1570          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1571          * Otherwise, window_size == 2*WSIZE so more >= 2.
1572          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1573          */
1574         Assert(more >= 2, "more < 2");
1575
1576         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1577         s->lookahead += n;
1578
1579         /* Initialize the hash value now that we have some input: */
1580         if (s->lookahead + s->insert >= MIN_MATCH) {
1581             uInt str = s->strstart - s->insert;
1582             s->ins_h = s->window[str];
1583             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1584 #if MIN_MATCH != 3
1585             Call UPDATE_HASH() MIN_MATCH-3 more times
1586 #endif
1587             while (s->insert) {
1588                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1589 #ifndef FASTEST
1590                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1591 #endif
1592                 s->head[s->ins_h] = (Pos)str;
1593                 str++;
1594                 s->insert--;
1595                 if (s->lookahead + s->insert < MIN_MATCH)
1596                     break;
1597             }
1598         }
1599         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1600          * but this is not important since only literal bytes will be emitted.
1601          */
1602
1603     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1604
1605     /* If the WIN_INIT bytes after the end of the current data have never been
1606      * written, then zero those bytes in order to avoid memory check reports of
1607      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1608      * the longest match routines.  Update the high water mark for the next
1609      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1610      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1611      */
1612     if (s->high_water < s->window_size) {
1613         ulg curr = s->strstart + (ulg)(s->lookahead);
1614         ulg init;
1615
1616         if (s->high_water < curr) {
1617             /* Previous high water mark below current data -- zero WIN_INIT
1618              * bytes or up to end of window, whichever is less.
1619              */
1620             init = s->window_size - curr;
1621             if (init > WIN_INIT)
1622                 init = WIN_INIT;
1623             zmemzero(s->window + curr, (unsigned)init);
1624             s->high_water = curr + init;
1625         }
1626         else if (s->high_water < (ulg)curr + WIN_INIT) {
1627             /* High water mark at or above current data, but below current data
1628              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1629              * to end of window, whichever is less.
1630              */
1631             init = (ulg)curr + WIN_INIT - s->high_water;
1632             if (init > s->window_size - s->high_water)
1633                 init = s->window_size - s->high_water;
1634             zmemzero(s->window + s->high_water, (unsigned)init);
1635             s->high_water += init;
1636         }
1637     }
1638
1639     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1640            "not enough room for search");
1641 }
1642
1643 /* ===========================================================================
1644  * Flush the current block, with given end-of-file flag.
1645  * IN assertion: strstart is set to the end of the current match.
1646  */
1647 #define FLUSH_BLOCK_ONLY(s, last) { \
1648    _tr_flush_block(s, (s->block_start >= 0L ? \
1649                    (charf *)&s->window[(unsigned)s->block_start] : \
1650                    (charf *)Z_NULL), \
1651                 (ulg)((long)s->strstart - s->block_start), \
1652                 (last)); \
1653    s->block_start = s->strstart; \
1654    flush_pending(s->strm); \
1655    Tracev((stderr,"[FLUSH]")); \
1656 }
1657
1658 /* Same but force premature exit if necessary. */
1659 #define FLUSH_BLOCK(s, last) { \
1660    FLUSH_BLOCK_ONLY(s, last); \
1661    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1662 }
1663
1664 /* Maximum stored block length in deflate format (not including header). */
1665 #define MAX_STORED 65535
1666
1667 /* Minimum of a and b. */
1668 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1669
1670 /* ===========================================================================
1671  * Copy without compression as much as possible from the input stream, return
1672  * the current block state.
1673  *
1674  * In case deflateParams() is used to later switch to a non-zero compression
1675  * level, s->matches (otherwise unused when storing) keeps track of the number
1676  * of hash table slides to perform. If s->matches is 1, then one hash table
1677  * slide will be done when switching. If s->matches is 2, the maximum value
1678  * allowed here, then the hash table will be cleared, since two or more slides
1679  * is the same as a clear.
1680  *
1681  * deflate_stored() is written to minimize the number of times an input byte is
1682  * copied. It is most efficient with large input and output buffers, which
1683  * maximizes the opportunites to have a single copy from next_in to next_out.
1684  */
1685 local block_state deflate_stored(s, flush)
1686     deflate_state *s;
1687     int flush;
1688 {
1689     /* Smallest worthy block size when not flushing or finishing. By default
1690      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1691      * large input and output buffers, the stored block size will be larger.
1692      */
1693     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1694
1695     /* Copy as many min_block or larger stored blocks directly to next_out as
1696      * possible. If flushing, copy the remaining available input to next_out as
1697      * stored blocks, if there is enough space.
1698      */
1699     unsigned len, left, have, last = 0;
1700     unsigned used = s->strm->avail_in;
1701     do {
1702         /* Set len to the maximum size block that we can copy directly with the
1703          * available input data and output space. Set left to how much of that
1704          * would be copied from what's left in the window.
1705          */
1706         len = MAX_STORED;       /* maximum deflate stored block length */
1707         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1708         if (s->strm->avail_out < have)          /* need room for header */
1709             break;
1710             /* maximum stored block length that will fit in avail_out: */
1711         have = s->strm->avail_out - have;
1712         left = s->strstart - s->block_start;    /* bytes left in window */
1713         if (len > (ulg)left + s->strm->avail_in)
1714             len = left + s->strm->avail_in;     /* limit len to the input */
1715         if (len > have)
1716             len = have;                         /* limit len to the output */
1717
1718         /* If the stored block would be less than min_block in length, or if
1719          * unable to copy all of the available input when flushing, then try
1720          * copying to the window and the pending buffer instead. Also don't
1721          * write an empty block when flushing -- deflate() does that.
1722          */
1723         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1724                                 flush == Z_NO_FLUSH ||
1725                                 len != left + s->strm->avail_in))
1726             break;
1727
1728         /* Make a dummy stored block in pending to get the header bytes,
1729          * including any pending bits. This also updates the debugging counts.
1730          */
1731         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1732         _tr_stored_block(s, (char *)0, 0L, last);
1733
1734         /* Replace the lengths in the dummy stored block with len. */
1735         s->pending_buf[s->pending - 4] = len;
1736         s->pending_buf[s->pending - 3] = len >> 8;
1737         s->pending_buf[s->pending - 2] = ~len;
1738         s->pending_buf[s->pending - 1] = ~len >> 8;
1739
1740         /* Write the stored block header bytes. */
1741         flush_pending(s->strm);
1742
1743 #ifdef ZLIB_DEBUG
1744         /* Update debugging counts for the data about to be copied. */
1745         s->compressed_len += len << 3;
1746         s->bits_sent += len << 3;
1747 #endif
1748
1749         /* Copy uncompressed bytes from the window to next_out. */
1750         if (left) {
1751             if (left > len)
1752                 left = len;
1753             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1754             s->strm->next_out += left;
1755             s->strm->avail_out -= left;
1756             s->strm->total_out += left;
1757             s->block_start += left;
1758             len -= left;
1759         }
1760
1761         /* Copy uncompressed bytes directly from next_in to next_out, updating
1762          * the check value.
1763          */
1764         if (len) {
1765             read_buf(s->strm, s->strm->next_out, len);
1766             s->strm->next_out += len;
1767             s->strm->avail_out -= len;
1768             s->strm->total_out += len;
1769         }
1770     } while (last == 0);
1771
1772     /* Update the sliding window with the last s->w_size bytes of the copied
1773      * data, or append all of the copied data to the existing window if less
1774      * than s->w_size bytes were copied. Also update the number of bytes to
1775      * insert in the hash tables, in the event that deflateParams() switches to
1776      * a non-zero compression level.
1777      */
1778     used -= s->strm->avail_in;      /* number of input bytes directly copied */
1779     if (used) {
1780         /* If any input was used, then no unused input remains in the window,
1781          * therefore s->block_start == s->strstart.
1782          */
1783         if (used >= s->w_size) {    /* supplant the previous history */
1784             s->matches = 2;         /* clear hash */
1785             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1786             s->strstart = s->w_size;
1787             s->insert = s->strstart;
1788         }
1789         else {
1790             if (s->window_size - s->strstart <= used) {
1791                 /* Slide the window down. */
1792                 s->strstart -= s->w_size;
1793                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1794                 if (s->matches < 2)
1795                     s->matches++;   /* add a pending slide_hash() */
1796                 if (s->insert > s->strstart)
1797                     s->insert = s->strstart;
1798             }
1799             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1800             s->strstart += used;
1801             s->insert += MIN(used, s->w_size - s->insert);
1802         }
1803         s->block_start = s->strstart;
1804     }
1805     if (s->high_water < s->strstart)
1806         s->high_water = s->strstart;
1807
1808     /* If the last block was written to next_out, then done. */
1809     if (last)
1810         return finish_done;
1811
1812     /* If flushing and all input has been consumed, then done. */
1813     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1814         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1815         return block_done;
1816
1817     /* Fill the window with any remaining input. */
1818     have = s->window_size - s->strstart;
1819     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1820         /* Slide the window down. */
1821         s->block_start -= s->w_size;
1822         s->strstart -= s->w_size;
1823         zmemcpy(s->window, s->window + s->w_size, s->strstart);
1824         if (s->matches < 2)
1825             s->matches++;           /* add a pending slide_hash() */
1826         have += s->w_size;          /* more space now */
1827         if (s->insert > s->strstart)
1828             s->insert = s->strstart;
1829     }
1830     if (have > s->strm->avail_in)
1831         have = s->strm->avail_in;
1832     if (have) {
1833         read_buf(s->strm, s->window + s->strstart, have);
1834         s->strstart += have;
1835         s->insert += MIN(have, s->w_size - s->insert);
1836     }
1837     if (s->high_water < s->strstart)
1838         s->high_water = s->strstart;
1839
1840     /* There was not enough avail_out to write a complete worthy or flushed
1841      * stored block to next_out. Write a stored block to pending instead, if we
1842      * have enough input for a worthy block, or if flushing and there is enough
1843      * room for the remaining input as a stored block in the pending buffer.
1844      */
1845     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1846         /* maximum stored block length that will fit in pending: */
1847     have = MIN(s->pending_buf_size - have, MAX_STORED);
1848     min_block = MIN(have, s->w_size);
1849     left = s->strstart - s->block_start;
1850     if (left >= min_block ||
1851         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1852          s->strm->avail_in == 0 && left <= have)) {
1853         len = MIN(left, have);
1854         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1855                len == left ? 1 : 0;
1856         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1857         s->block_start += len;
1858         flush_pending(s->strm);
1859     }
1860
1861     /* We've done all we can with the available input and output. */
1862     return last ? finish_started : need_more;
1863 }
1864
1865 /* ===========================================================================
1866  * Compress as much as possible from the input stream, return the current
1867  * block state.
1868  * This function does not perform lazy evaluation of matches and inserts
1869  * new strings in the dictionary only for unmatched strings or for short
1870  * matches. It is used only for the fast compression options.
1871  */
1872 local block_state deflate_fast(s, flush)
1873     deflate_state *s;
1874     int flush;
1875 {
1876     IPos hash_head;       /* head of the hash chain */
1877     int bflush;           /* set if current block must be flushed */
1878
1879     for (;;) {
1880         /* Make sure that we always have enough lookahead, except
1881          * at the end of the input file. We need MAX_MATCH bytes
1882          * for the next match, plus MIN_MATCH bytes to insert the
1883          * string following the next match.
1884          */
1885         if (s->lookahead < MIN_LOOKAHEAD) {
1886             fill_window(s);
1887             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1888                 return need_more;
1889             }
1890             if (s->lookahead == 0) break; /* flush the current block */
1891         }
1892
1893         /* Insert the string window[strstart .. strstart+2] in the
1894          * dictionary, and set hash_head to the head of the hash chain:
1895          */
1896         hash_head = NIL;
1897         if (s->lookahead >= MIN_MATCH) {
1898             INSERT_STRING(s, s->strstart, hash_head);
1899         }
1900
1901         /* Find the longest match, discarding those <= prev_length.
1902          * At this point we have always match_length < MIN_MATCH
1903          */
1904         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1905             /* To simplify the code, we prevent matches with the string
1906              * of window index 0 (in particular we have to avoid a match
1907              * of the string with itself at the start of the input file).
1908              */
1909             s->match_length = longest_match (s, hash_head);
1910             /* longest_match() sets match_start */
1911         }
1912         if (s->match_length >= MIN_MATCH) {
1913             check_match(s, s->strstart, s->match_start, s->match_length);
1914
1915             _tr_tally_dist(s, s->strstart - s->match_start,
1916                            s->match_length - MIN_MATCH, bflush);
1917
1918             s->lookahead -= s->match_length;
1919
1920             /* Insert new strings in the hash table only if the match length
1921              * is not too large. This saves time but degrades compression.
1922              */
1923 #ifndef FASTEST
1924             if (s->match_length <= s->max_insert_length &&
1925                 s->lookahead >= MIN_MATCH) {
1926                 s->match_length--; /* string at strstart already in table */
1927                 do {
1928                     s->strstart++;
1929                     INSERT_STRING(s, s->strstart, hash_head);
1930                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1931                      * always MIN_MATCH bytes ahead.
1932                      */
1933                 } while (--s->match_length != 0);
1934                 s->strstart++;
1935             } else
1936 #endif
1937             {
1938                 s->strstart += s->match_length;
1939                 s->match_length = 0;
1940                 s->ins_h = s->window[s->strstart];
1941                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1942 #if MIN_MATCH != 3
1943                 Call UPDATE_HASH() MIN_MATCH-3 more times
1944 #endif
1945                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1946                  * matter since it will be recomputed at next deflate call.
1947                  */
1948             }
1949         } else {
1950             /* No match, output a literal byte */
1951             Tracevv((stderr,"%c", s->window[s->strstart]));
1952             _tr_tally_lit (s, s->window[s->strstart], bflush);
1953             s->lookahead--;
1954             s->strstart++;
1955         }
1956         if (bflush) FLUSH_BLOCK(s, 0);
1957     }
1958     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1959     if (flush == Z_FINISH) {
1960         FLUSH_BLOCK(s, 1);
1961         return finish_done;
1962     }
1963     if (s->sym_next)
1964         FLUSH_BLOCK(s, 0);
1965     return block_done;
1966 }
1967
1968 #ifndef FASTEST
1969 /* ===========================================================================
1970  * Same as above, but achieves better compression. We use a lazy
1971  * evaluation for matches: a match is finally adopted only if there is
1972  * no better match at the next window position.
1973  */
1974 local block_state deflate_slow(s, flush)
1975     deflate_state *s;
1976     int flush;
1977 {
1978     IPos hash_head;          /* head of hash chain */
1979     int bflush;              /* set if current block must be flushed */
1980
1981     /* Process the input block. */
1982     for (;;) {
1983         /* Make sure that we always have enough lookahead, except
1984          * at the end of the input file. We need MAX_MATCH bytes
1985          * for the next match, plus MIN_MATCH bytes to insert the
1986          * string following the next match.
1987          */
1988         if (s->lookahead < MIN_LOOKAHEAD) {
1989             fill_window(s);
1990             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1991                 return need_more;
1992             }
1993             if (s->lookahead == 0) break; /* flush the current block */
1994         }
1995
1996         /* Insert the string window[strstart .. strstart+2] in the
1997          * dictionary, and set hash_head to the head of the hash chain:
1998          */
1999         hash_head = NIL;
2000         if (s->lookahead >= MIN_MATCH) {
2001             INSERT_STRING(s, s->strstart, hash_head);
2002         }
2003
2004         /* Find the longest match, discarding those <= prev_length.
2005          */
2006         s->prev_length = s->match_length, s->prev_match = s->match_start;
2007         s->match_length = MIN_MATCH-1;
2008
2009         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2010             s->strstart - hash_head <= MAX_DIST(s)) {
2011             /* To simplify the code, we prevent matches with the string
2012              * of window index 0 (in particular we have to avoid a match
2013              * of the string with itself at the start of the input file).
2014              */
2015             s->match_length = longest_match (s, hash_head);
2016             /* longest_match() sets match_start */
2017
2018             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2019 #if TOO_FAR <= 32767
2020                 || (s->match_length == MIN_MATCH &&
2021                     s->strstart - s->match_start > TOO_FAR)
2022 #endif
2023                 )) {
2024
2025                 /* If prev_match is also MIN_MATCH, match_start is garbage
2026                  * but we will ignore the current match anyway.
2027                  */
2028                 s->match_length = MIN_MATCH-1;
2029             }
2030         }
2031         /* If there was a match at the previous step and the current
2032          * match is not better, output the previous match:
2033          */
2034         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2035             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2036             /* Do not insert strings in hash table beyond this. */
2037
2038             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2039
2040             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2041                            s->prev_length - MIN_MATCH, bflush);
2042
2043             /* Insert in hash table all strings up to the end of the match.
2044              * strstart-1 and strstart are already inserted. If there is not
2045              * enough lookahead, the last two strings are not inserted in
2046              * the hash table.
2047              */
2048             s->lookahead -= s->prev_length-1;
2049             s->prev_length -= 2;
2050             do {
2051                 if (++s->strstart <= max_insert) {
2052                     INSERT_STRING(s, s->strstart, hash_head);
2053                 }
2054             } while (--s->prev_length != 0);
2055             s->match_available = 0;
2056             s->match_length = MIN_MATCH-1;
2057             s->strstart++;
2058
2059             if (bflush) FLUSH_BLOCK(s, 0);
2060
2061         } else if (s->match_available) {
2062             /* If there was no match at the previous position, output a
2063              * single literal. If there was a match but the current match
2064              * is longer, truncate the previous match to a single literal.
2065              */
2066             Tracevv((stderr,"%c", s->window[s->strstart-1]));
2067             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2068             if (bflush) {
2069                 FLUSH_BLOCK_ONLY(s, 0);
2070             }
2071             s->strstart++;
2072             s->lookahead--;
2073             if (s->strm->avail_out == 0) return need_more;
2074         } else {
2075             /* There is no previous match to compare with, wait for
2076              * the next step to decide.
2077              */
2078             s->match_available = 1;
2079             s->strstart++;
2080             s->lookahead--;
2081         }
2082     }
2083     Assert (flush != Z_NO_FLUSH, "no flush?");
2084     if (s->match_available) {
2085         Tracevv((stderr,"%c", s->window[s->strstart-1]));
2086         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2087         s->match_available = 0;
2088     }
2089     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2090     if (flush == Z_FINISH) {
2091         FLUSH_BLOCK(s, 1);
2092         return finish_done;
2093     }
2094     if (s->sym_next)
2095         FLUSH_BLOCK(s, 0);
2096     return block_done;
2097 }
2098 #endif /* FASTEST */
2099
2100 /* ===========================================================================
2101  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2102  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2103  * deflate switches away from Z_RLE.)
2104  */
2105 local block_state deflate_rle(s, flush)
2106     deflate_state *s;
2107     int flush;
2108 {
2109     int bflush;             /* set if current block must be flushed */
2110     uInt prev;              /* byte at distance one to match */
2111     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2112
2113     for (;;) {
2114         /* Make sure that we always have enough lookahead, except
2115          * at the end of the input file. We need MAX_MATCH bytes
2116          * for the longest run, plus one for the unrolled loop.
2117          */
2118         if (s->lookahead <= MAX_MATCH) {
2119             fill_window(s);
2120             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2121                 return need_more;
2122             }
2123             if (s->lookahead == 0) break; /* flush the current block */
2124         }
2125
2126         /* See how many times the previous byte repeats */
2127         s->match_length = 0;
2128         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2129             scan = s->window + s->strstart - 1;
2130             prev = *scan;
2131             if (prev == *++scan && prev == *++scan && prev == *++scan) {
2132                 strend = s->window + s->strstart + MAX_MATCH;
2133                 do {
2134                 } while (prev == *++scan && prev == *++scan &&
2135                          prev == *++scan && prev == *++scan &&
2136                          prev == *++scan && prev == *++scan &&
2137                          prev == *++scan && prev == *++scan &&
2138                          scan < strend);
2139                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2140                 if (s->match_length > s->lookahead)
2141                     s->match_length = s->lookahead;
2142             }
2143             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2144         }
2145
2146         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2147         if (s->match_length >= MIN_MATCH) {
2148             check_match(s, s->strstart, s->strstart - 1, s->match_length);
2149
2150             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2151
2152             s->lookahead -= s->match_length;
2153             s->strstart += s->match_length;
2154             s->match_length = 0;
2155         } else {
2156             /* No match, output a literal byte */
2157             Tracevv((stderr,"%c", s->window[s->strstart]));
2158             _tr_tally_lit (s, s->window[s->strstart], bflush);
2159             s->lookahead--;
2160             s->strstart++;
2161         }
2162         if (bflush) FLUSH_BLOCK(s, 0);
2163     }
2164     s->insert = 0;
2165     if (flush == Z_FINISH) {
2166         FLUSH_BLOCK(s, 1);
2167         return finish_done;
2168     }
2169     if (s->sym_next)
2170         FLUSH_BLOCK(s, 0);
2171     return block_done;
2172 }
2173
2174 /* ===========================================================================
2175  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2176  * (It will be regenerated if this run of deflate switches away from Huffman.)
2177  */
2178 local block_state deflate_huff(s, flush)
2179     deflate_state *s;
2180     int flush;
2181 {
2182     int bflush;             /* set if current block must be flushed */
2183
2184     for (;;) {
2185         /* Make sure that we have a literal to write. */
2186         if (s->lookahead == 0) {
2187             fill_window(s);
2188             if (s->lookahead == 0) {
2189                 if (flush == Z_NO_FLUSH)
2190                     return need_more;
2191                 break;      /* flush the current block */
2192             }
2193         }
2194
2195         /* Output a literal byte */
2196         s->match_length = 0;
2197         Tracevv((stderr,"%c", s->window[s->strstart]));
2198         _tr_tally_lit (s, s->window[s->strstart], bflush);
2199         s->lookahead--;
2200         s->strstart++;
2201         if (bflush) FLUSH_BLOCK(s, 0);
2202     }
2203     s->insert = 0;
2204     if (flush == Z_FINISH) {
2205         FLUSH_BLOCK(s, 1);
2206         return finish_done;
2207     }
2208     if (s->sym_next)
2209         FLUSH_BLOCK(s, 0);
2210     return block_done;
2211 }
This page took 0.14682 seconds and 4 git commands to generate.