]> Git Repo - binutils.git/blob - libctf/ctf-dedup.c
Automatic date update in version.in
[binutils.git] / libctf / ctf-dedup.c
1 /* CTF type deduplication.
2    Copyright (C) 2019-2022 Free Software Foundation, Inc.
3
4    This file is part of libctf.
5
6    libctf is free software; you can redistribute it and/or modify it under
7    the terms of the GNU General Public License as published by the Free
8    Software Foundation; either version 3, or (at your option) any later
9    version.
10
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14    See the GNU General Public License for more details.
15
16    You should have received a copy of the GNU General Public License
17    along with this program; see the file COPYING.  If not see
18    <http://www.gnu.org/licenses/>.  */
19
20 #include <ctf-impl.h>
21 #include <string.h>
22 #include <errno.h>
23 #include <assert.h>
24 #include "hashtab.h"
25
26 /* (In the below, relevant functions are named in square brackets.)  */
27
28 /* Type deduplication is a three-phase process:
29
30     [ctf_dedup, ctf_dedup_hash_type, ctf_dedup_rhash_type]
31     1) come up with unambiguous hash values for all types: no two types may have
32        the same hash value, and any given type should have only one hash value
33        (for optimal deduplication).
34
35     [ctf_dedup, ctf_dedup_detect_name_ambiguity,
36      ctf_dedup_conflictify_unshared, ctf_dedup_mark_conflicting_hash]
37     2) mark those distinct types with names that collide (and thus cannot be
38        declared simultaneously in the same translation unit) as conflicting, and
39        recursively mark all types that cite one of those types as conflicting as
40        well.  Possibly mark all types cited in only one TU as conflicting, if
41        the CTF_LINK_SHARE_DUPLICATED link mode is active.
42
43     [ctf_dedup_emit, ctf_dedup_emit_struct_members, ctf_dedup_id_to_target]
44     3) emit all the types, one hash value at a time.  Types not marked
45        conflicting are emitted once, into the shared dictionary: types marked
46        conflicting are emitted once per TU into a dictionary corresponding to
47        each TU in which they appear.  Structs marked conflicting get at the very
48        least a forward emitted into the shared dict so that other dicts can cite
49        it if needed.
50
51    [id_to_packed_id]
52    This all works over an array of inputs (usually in the same order as the
53    inputs on the link line).  We don't use the ctf_link_inputs hash directly
54    because it is convenient to be able to address specific input types as a
55    *global type ID* or 'GID', a pair of an array offset and a ctf_id_t.  Since
56    both are already 32 bits or less or can easily be constrained to that range,
57    we can pack them both into a single 64-bit hash word for easy lookups, which
58    would be much more annoying to do with a ctf_dict_t * and a ctf_id_t.  (On
59    32-bit platforms, we must do that anyway, since pointers, and thus hash keys
60    and values, are only 32 bits wide).  We track which inputs are parents of
61    which other inputs so that we can correctly recognize that types we have
62    traversed in children may cite types in parents, and so that we can process
63    the parents first.)
64
65    Note that thanks to ld -r, the deduplicator can be fed its own output, so the
66    inputs may themselves have child dicts.  Since we need to support this usage
67    anyway, we can use it in one other place.  If the caller finds translation
68    units to be too small a unit ambiguous types, links can be 'cu-mapped', where
69    the caller provides a mapping of input TU names to output child dict names.
70    This mapping can fuse many child TUs into one potential child dict, so that
71    ambiguous types in any of those input TUs go into the same child dict.
72    When a many:1 cu-mapping is detected, the ctf_dedup machinery is called
73    repeatedly, once for every output name that has more than one input, to fuse
74    all the input TUs associated with a given output dict into one, and once again
75    as normal to deduplicate all those intermediate outputs (and any 1:1 inputs)
76    together.  This has much higher memory usage than otherwise, because in the
77    intermediate state, all the output TUs are in memory at once and cannot be
78    lazily opened.  It also has implications for the emission code: if types
79    appear ambiguously in multiple input TUs that are all mapped to the same
80    child dict, we cannot put them in children in the cu-mapping link phase
81    because this output is meant to *become* a child in the next link stage and
82    parent/child relationships are only one level deep: so instead, we just hide
83    all but one of the ambiguous types.
84
85    There are a few other subtleties here that make this more complex than it
86    seems.  Let's go over the steps above in more detail.
87
88    1) HASHING.
89
90    [ctf_dedup_hash_type, ctf_dedup_rhash_type]
91    Hashing proceeds recursively, mixing in the properties of each input type
92    (including its name, if any), and then adding the hash values of every type
93    cited by that type.  The result is stashed in the cd_type_hashes so other
94    phases can find the hash values of input types given their IDs, and so that
95    if we encounter this type again while hashing we can just return its hash
96    value: it is also stashed in the *output mapping*, a mapping from hash value
97    to the set of GIDs corresponding to that type in all inputs.  We also keep
98    track of the GID of the first appearance of the type in any input (in
99    cd_output_first_gid), and the GID of structs, unions, and forwards that only
100    appear in one TU (in cd_struct_origin).  See below for where these things are
101    used.
102
103    Everything in this phase is time-critical, because it is operating over
104    non-deduplicated types and so may have hundreds or thousands of times the
105    data volume to deal with than later phases.  Trace output is hidden behind
106    ENABLE_LIBCTF_HASH_DEBUGGING to prevent the sheer number of calls to
107    ctf_dprintf from slowing things down (tenfold slowdowns are observed purely
108    from the calls to ctf_dprintf(), even with debugging switched off), and keep
109    down the volume of output (hundreds of gigabytes of debug output are not
110    uncommon on larger links).
111
112    We have to do *something* about potential cycles in the type graph.  We'd
113    like to avoid emitting forwards in the final output if possible, because
114    forwards aren't much use: they have no members.  We are mostly saved from
115    needing to worry about this at emission time by ctf_add_struct*()
116    automatically replacing newly-created forwards when the real struct/union
117    comes along.  So we only have to avoid getting stuck in cycles during the
118    hashing phase, while also not confusing types that cite members that are
119    structs with each other.  It is easiest to solve this problem by noting two
120    things:
121
122     - all cycles in C depend on the presence of tagged structs/unions
123     - all tagged structs/unions have a unique name they can be disambiguated by
124
125    [ctf_dedup_is_stub]
126    This means that we can break all cycles by ceasing to hash in cited types at
127    every tagged struct/union and instead hashing in a stub consisting of the
128    struct/union's *decorated name*, which is the name preceded by "s " or "u "
129    depending on the namespace (cached in cd_decorated_names).  Forwards are
130    decorated identically (so a forward to "struct foo" would be represented as
131    "s foo"): this means that a citation of a forward to a type and a citation of
132    a concrete definition of a type with the same name ends up getting the same
133    hash value.
134
135    Of course, it is quite possible to have two TUs with structs with the same
136    name and different definitions, but that's OK because when we scan for types
137    with ambiguous names we will identify these and mark them conflicting.
138
139    We populate one thing to help conflictedness marking.  No unconflicted type
140    may cite a conflicted one, but this means that conflictedness marking must
141    walk from types to the types that cite them, which is the opposite of the
142    usual order.  We can make this easier to do by constructing a *citers* graph
143    in cd_citers, which points from types to the types that cite them: because we
144    emit forwards corresponding to every conflicted struct/union, we don't need
145    to do this for citations of structs/unions by other types.  This is very
146    convenient for us, because that's the only type we don't traverse
147    recursively: so we can construct the citers graph at the same time as we
148    hash, rather than needing to add an extra pass.  (This graph is a dynhash of
149    *type hash values*, so it's small: in effect it is automatically
150    deduplicated.)
151
152    2) COLLISIONAL MARKING.
153
154    [ctf_dedup_detect_name_ambiguity, ctf_dedup_mark_conflicting_hash]
155    We identify types whose names collide during the hashing process, and count
156    the rough number of uses of each name (caching may throw it off a bit: this
157    doesn't need to be accurate).  We then mark the less-frequently-cited types
158    with each names conflicting: the most-frequently-cited one goes into the
159    shared type dictionary, while all others are duplicated into per-TU
160    dictionaries, named after the input TU, that have the shared dictionary as a
161    parent.  For structures and unions this is not quite good enough: we'd like
162    to have citations of forwards to ambiguously named structures and unions
163    *stay* as citations of forwards, so that the user can tell that the caller
164    didn't actually know which structure definition was meant: but if we put one
165    of those structures into the shared dictionary, it would supplant and replace
166    the forward, leaving no sign.  So structures and unions do not take part in
167    this popularity contest: if their names are ambiguous, they are just
168    duplicated, and only a forward appears in the shared dict.
169
170    [ctf_dedup_propagate_conflictedness]
171    The process of marking types conflicted is itself recursive: we recursively
172    traverse the cd_citers graph populated in the hashing pass above and mark
173    everything that we encounter conflicted (without wasting time re-marking
174    anything that is already marked).  This naturally terminates just where we
175    want it to (at types that are cited by no other types, and at structures and
176    unions) and suffices to ensure that types that cite conflicted types are
177    always marked conflicted.
178
179    [ctf_dedup_conflictify_unshared, ctf_dedup_multiple_input_dicts]
180    When linking in CTF_LINK_SHARE_DUPLICATED mode, we would like all types that
181    are used in only one TU to end up in a per-CU dict. The easiest way to do
182    that is to mark them conflicted.  ctf_dedup_conflictify_unshared does this,
183    traversing the output mapping and using ctf_dedup_multiple_input_dicts to
184    check the number of input dicts each distinct type hash value came from:
185    types that only came from one get marked conflicted.  One caveat here is that
186    we need to consider both structs and forwards to them: a struct that appears
187    in one TU and has a dozen citations to an opaque forward in other TUs should
188    *not* be considered to be used in only one TU, because users would find it
189    useful to be able to traverse into opaque structures of that sort: so we use
190    cd_struct_origin to check both structs/unions and the forwards corresponding
191    to them.
192
193    3) EMISSION.
194
195    [ctf_dedup_walk_output_mapping, ctf_dedup_rwalk_output_mapping,
196     ctf_dedup_rwalk_one_output_mapping]
197    Emission involves another walk of the entire output mapping, this time
198    traversing everything other than struct members, recursively.  Types are
199    emitted from leaves to trunk, emitting all types a type cites before emitting
200    the type itself.  We sort the output mapping before traversing it, for
201    reproducibility and also correctness: the input dicts may have parent/child
202    relationships, so we simply sort all types that first appear in parents
203    before all children, then sort types that first appear in dicts appearing
204    earlier on the linker command line before those that appear later, then sort
205    by input ctf_id_t.  (This is where we use cd_output_first_gid, collected
206    above.)
207
208    The walking is done using a recursive traverser which arranges to not revisit
209    any type already visited and to call its callback once per input GID for
210    input GIDs corresponding to conflicted output types.  The traverser only
211    finds input types and calls a callback for them as many times as the output
212    needs to appear: it doesn't try to figure out anything about where the output
213    might go.  That's done by the callback based on whether the type is
214    marked conflicted or not.
215
216    [ctf_dedup_emit_type, ctf_dedup_id_to_target, ctf_dedup_synthesize_forward]
217    ctf_dedup_emit_type is the (sole) callback for ctf_dedup_walk_output_mapping.
218    Conflicted types have all necessary dictionaries created, and then we emit
219    the type into each dictionary in turn, working over each input CTF type
220    corresponding to each hash value and using ctf_dedup_id_to_target to map each
221    input ctf_id_t into the corresponding type in the output (dealing with input
222    ctf_id_t's with parents in the process by simply chasing to the parent dict
223    if the type we're looking up is in there).  Emitting structures involves
224    simply noting that the members of this structure need emission later on:
225    because you cannot cite a single structure member from another type, we avoid
226    emitting the members at this stage to keep recursion depths down a bit.
227
228    At this point, if we have by some mischance decided that two different types
229    with child types that hash to different values have in fact got the same hash
230    value themselves and *not* marked it conflicting, the type walk will walk
231    only *one* of them and in all likelihood we'll find that we are trying to
232    emit a type into some child dictionary that references a type that was never
233    emitted into that dictionary and assertion-fail.  This always indicates a bug
234    in the conflictedness marking machinery or the hashing code, or both.
235
236    ctf_dedup_id_to_target calls ctf_dedup_synthesize_forward to do one extra
237    thing, alluded to above: if this is a conflicted tagged structure or union,
238    and the target is the shared dict (i.e., the type we're being asked to emit
239    is not itself conflicted so can't just point straight at the conflicted
240    type), we instead synthesise a forward with the same name, emit it into the
241    shared dict, record it in cd_output_emission_conflicted_forwards so that we
242    don't re-emit it, and return it.  This means that cycles that contain
243    conflicts do not cause the entire cycle to be replicated in every child: only
244    that piece of the cycle which takes you back as far as the closest tagged
245    struct/union needs to be replicated.  This trick means that no part of the
246    deduplicator needs a cycle detector: every recursive walk can stop at tagged
247    structures.
248
249    [ctf_dedup_emit_struct_members]
250    The final stage of emission is to walk over all structures with members
251    that need emission and emit all of them. Every type has been emitted at
252    this stage, so emission cannot fail.
253
254    [ctf_dedup_populate_type_mappings, ctf_dedup_populate_type_mapping]
255    Finally, we update the input -> output type ID mappings used by the ctf-link
256    machinery to update all the other sections.  This is surprisingly expensive
257    and may be replaced with a scheme which lets the ctf-link machinery extract
258    the needed info directly from the deduplicator.  */
259
260 /* Possible future optimizations are flagged with 'optimization opportunity'
261    below.  */
262
263 /* Global optimization opportunity: a GC pass, eliminating types with no direct
264    or indirect citations from the other sections in the dictionary.  */
265
266 /* Internal flag values for ctf_dedup_hash_type.  */
267
268 /* Child call: consider forwardable types equivalent to forwards or stubs below
269    this point.  */
270 #define CTF_DEDUP_HASH_INTERNAL_CHILD         0x01
271
272 /* Transform references to single ctf_id_ts in passed-in inputs into a number
273    that will fit in a uint64_t.  Needs rethinking if CTF_MAX_TYPE is boosted.
274
275    On 32-bit platforms, we pack things together differently: see the note
276    above.  */
277
278 #if UINTPTR_MAX < UINT64_MAX
279 # define IDS_NEED_ALLOCATION 1
280 # define CTF_DEDUP_GID(fp, input, type) id_to_packed_id (fp, input, type)
281 # define CTF_DEDUP_GID_TO_INPUT(id) packed_id_to_input (id)
282 # define CTF_DEDUP_GID_TO_TYPE(id) packed_id_to_type (id)
283 #else
284 # define CTF_DEDUP_GID(fp, input, type) \
285   (void *) (((uint64_t) input) << 32 | (type))
286 # define CTF_DEDUP_GID_TO_INPUT(id) ((int) (((uint64_t) id) >> 32))
287 # define CTF_DEDUP_GID_TO_TYPE(id) (ctf_id_t) (((uint64_t) id) & ~(0xffffffff00000000ULL))
288 #endif
289
290 #ifdef IDS_NEED_ALLOCATION
291
292  /* This is the 32-bit path, which stores GIDs in a pool and returns a pointer
293     into the pool.  It is notably less efficient than the 64-bit direct storage
294     approach, but with a smaller key, this is all we can do.  */
295
296 static void *
297 id_to_packed_id (ctf_dict_t *fp, int input_num, ctf_id_t type)
298 {
299   const void *lookup;
300   ctf_type_id_key_t *dynkey = NULL;
301   ctf_type_id_key_t key = { input_num, type };
302
303   if (!ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
304                               &key, &lookup, NULL))
305     {
306       if ((dynkey = malloc (sizeof (ctf_type_id_key_t))) == NULL)
307         goto oom;
308       memcpy (dynkey, &key, sizeof (ctf_type_id_key_t));
309
310       if (ctf_dynhash_insert (fp->ctf_dedup.cd_id_to_dict_t, dynkey, NULL) < 0)
311         goto oom;
312
313       ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_id_to_dict_t,
314                              dynkey, &lookup, NULL);
315     }
316   /* We use a raw assert() here because there isn't really a way to get any sort
317      of error back from this routine without vastly complicating things for the
318      much more common case of !IDS_NEED_ALLOCATION.  */
319   assert (lookup);
320   return (void *) lookup;
321
322  oom:
323   free (dynkey);
324   ctf_set_errno (fp, ENOMEM);
325   return NULL;
326 }
327
328 static int
329 packed_id_to_input (const void *id)
330 {
331   const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
332
333   return key->ctii_input_num;
334 }
335
336 static ctf_id_t
337 packed_id_to_type (const void *id)
338 {
339   const ctf_type_id_key_t *key = (ctf_type_id_key_t *) id;
340
341   return key->ctii_type;
342 }
343 #endif
344
345 /* Make an element in a dynhash-of-dynsets, or return it if already present.  */
346
347 static ctf_dynset_t *
348 make_set_element (ctf_dynhash_t *set, const void *key)
349 {
350   ctf_dynset_t *element;
351
352   if ((element = ctf_dynhash_lookup (set, key)) == NULL)
353     {
354       if ((element = ctf_dynset_create (htab_hash_string,
355                                         htab_eq_string,
356                                         NULL)) == NULL)
357         return NULL;
358
359       if (ctf_dynhash_insert (set, (void *) key, element) < 0)
360         {
361           ctf_dynset_destroy (element);
362           return NULL;
363         }
364     }
365
366   return element;
367 }
368
369 /* Initialize the dedup atoms table.  */
370 int
371 ctf_dedup_atoms_init (ctf_dict_t *fp)
372 {
373   if (fp->ctf_dedup_atoms)
374     return 0;
375
376   if (!fp->ctf_dedup_atoms_alloc)
377     {
378       if ((fp->ctf_dedup_atoms_alloc
379            = ctf_dynset_create (htab_hash_string, htab_eq_string,
380                                 free)) == NULL)
381         return ctf_set_errno (fp, ENOMEM);
382     }
383   fp->ctf_dedup_atoms = fp->ctf_dedup_atoms_alloc;
384   return 0;
385 }
386
387 /* Intern things in the dedup atoms table.  */
388
389 static const char *
390 intern (ctf_dict_t *fp, char *atom)
391 {
392   const void *foo;
393
394   if (atom == NULL)
395     return NULL;
396
397   if (!ctf_dynset_exists (fp->ctf_dedup_atoms, atom, &foo))
398     {
399       if (ctf_dynset_insert (fp->ctf_dedup_atoms, atom) < 0)
400         {
401           ctf_set_errno (fp, ENOMEM);
402           return NULL;
403         }
404       foo = atom;
405     }
406   else
407     free (atom);
408
409   return (const char *) foo;
410 }
411
412 /* Add an indication of the namespace to a type name in a way that is not valid
413    for C identifiers.  Used to maintain hashes of type names to other things
414    while allowing for the four C namespaces (normal, struct, union, enum).
415    Return a new dynamically-allocated string.  */
416 static const char *
417 ctf_decorate_type_name (ctf_dict_t *fp, const char *name, int kind)
418 {
419   ctf_dedup_t *d = &fp->ctf_dedup;
420   const char *ret;
421   const char *k;
422   char *p;
423   size_t i;
424
425   switch (kind)
426     {
427     case CTF_K_STRUCT:
428       k = "s ";
429       i = 0;
430       break;
431     case CTF_K_UNION:
432       k = "u ";
433       i = 1;
434       break;
435     case CTF_K_ENUM:
436       k = "e ";
437       i = 2;
438       break;
439     default:
440       k = "";
441       i = 3;
442     }
443
444   if ((ret = ctf_dynhash_lookup (d->cd_decorated_names[i], name)) == NULL)
445     {
446       char *str;
447
448       if ((str = malloc (strlen (name) + strlen (k) + 1)) == NULL)
449         goto oom;
450
451       p = stpcpy (str, k);
452       strcpy (p, name);
453       ret = intern (fp, str);
454       if (!ret)
455         goto oom;
456
457       if (ctf_dynhash_cinsert (d->cd_decorated_names[i], name, ret) < 0)
458         goto oom;
459     }
460
461   return ret;
462
463  oom:
464   ctf_set_errno (fp, ENOMEM);
465   return NULL;
466 }
467
468 /* Hash a type, possibly debugging-dumping something about it as well.  */
469 static inline void
470 ctf_dedup_sha1_add (ctf_sha1_t *sha1, const void *buf, size_t len,
471                     const char *description _libctf_unused_,
472                     unsigned long depth _libctf_unused_)
473 {
474   ctf_sha1_add (sha1, buf, len);
475
476 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
477   ctf_sha1_t tmp;
478   char tmp_hval[CTF_SHA1_SIZE];
479   tmp = *sha1;
480   ctf_sha1_fini (&tmp, tmp_hval);
481   ctf_dprintf ("%lu: after hash addition of %s: %s\n", depth, description,
482                tmp_hval);
483 #endif
484 }
485
486 static const char *
487 ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
488                      ctf_dict_t **inputs, uint32_t *parents,
489                      int input_num, ctf_id_t type, int flags,
490                      unsigned long depth,
491                      int (*populate_fun) (ctf_dict_t *fp,
492                                           ctf_dict_t *input,
493                                           ctf_dict_t **inputs,
494                                           int input_num,
495                                           ctf_id_t type,
496                                           void *id,
497                                           const char *decorated_name,
498                                           const char *hash));
499
500 /* Determine whether this type is being hashed as a stub (in which case it is
501    unsafe to cache it).  */
502 static int
503 ctf_dedup_is_stub (const char *name, int kind, int fwdkind, int flags)
504 {
505   /* We can cache all types unless we are recursing to children and are hashing
506      in a tagged struct, union or forward, all of which are replaced with their
507      decorated name as a stub and will have different hash values when hashed at
508      the top level.  */
509
510   return ((flags & CTF_DEDUP_HASH_INTERNAL_CHILD) && name
511           && (kind == CTF_K_STRUCT || kind == CTF_K_UNION
512               || (kind == CTF_K_FORWARD && (fwdkind == CTF_K_STRUCT
513                                             || fwdkind == CTF_K_UNION))));
514 }
515
516 /* Populate struct_origin if need be (not already populated, or populated with
517    a different origin), in which case it must go to -1, "shared".)
518
519    Only called for forwards or forwardable types with names, when the link mode
520    is CTF_LINK_SHARE_DUPLICATED.  */
521 static int
522 ctf_dedup_record_origin (ctf_dict_t *fp, int input_num, const char *decorated,
523                          void *id)
524 {
525   ctf_dedup_t *d = &fp->ctf_dedup;
526   void *origin;
527   int populate_origin = 0;
528
529   if (ctf_dynhash_lookup_kv (d->cd_struct_origin, decorated, NULL, &origin))
530     {
531       if (CTF_DEDUP_GID_TO_INPUT (origin) != input_num
532           && CTF_DEDUP_GID_TO_INPUT (origin) != -1)
533         {
534           populate_origin = 1;
535           origin = CTF_DEDUP_GID (fp, -1, -1);
536         }
537     }
538   else
539     {
540       populate_origin = 1;
541       origin = id;
542     }
543
544   if (populate_origin)
545     if (ctf_dynhash_cinsert (d->cd_struct_origin, decorated, origin) < 0)
546       return ctf_set_errno (fp, errno);
547   return 0;
548 }
549
550 /* Do the underlying hashing and recursion for ctf_dedup_hash_type (which it
551    calls, recursively).  */
552
553 static const char *
554 ctf_dedup_rhash_type (ctf_dict_t *fp, ctf_dict_t *input, ctf_dict_t **inputs,
555                       uint32_t *parents, int input_num, ctf_id_t type,
556                       void *type_id, const ctf_type_t *tp, const char *name,
557                       const char *decorated, int kind, int flags,
558                       unsigned long depth,
559                       int (*populate_fun) (ctf_dict_t *fp,
560                                            ctf_dict_t *input,
561                                            ctf_dict_t **inputs,
562                                            int input_num,
563                                            ctf_id_t type,
564                                            void *id,
565                                            const char *decorated_name,
566                                            const char *hash))
567 {
568   ctf_dedup_t *d = &fp->ctf_dedup;
569   ctf_next_t *i = NULL;
570   ctf_sha1_t hash;
571   ctf_id_t child_type;
572   char hashbuf[CTF_SHA1_SIZE];
573   const char *hval = NULL;
574   const char *whaterr;
575   int err = 0;
576
577   const char *citer = NULL;
578   ctf_dynset_t *citers = NULL;
579
580   /* Add a citer to the citers set.  */
581 #define ADD_CITER(citers, hval)                                         \
582   do                                                                    \
583     {                                                                   \
584       whaterr = N_("error updating citers");                            \
585       if (!citers)                                                      \
586         if ((citers = ctf_dynset_create (htab_hash_string,              \
587                                          htab_eq_string,                \
588                                          NULL)) == NULL)                \
589           goto oom;                                                     \
590       if (ctf_dynset_cinsert (citers, hval) < 0)                        \
591         goto oom;                                                       \
592     }                                                                   \
593   while (0)
594
595   /* If this is a named struct or union or a forward to one, and this is a child
596      traversal, treat this type as if it were a forward -- do not recurse to
597      children, ignore all content not already hashed in, and hash in the
598      decorated name of the type instead.  */
599
600   if (ctf_dedup_is_stub (name, kind, tp->ctt_type, flags))
601     {
602 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
603       ctf_dprintf ("Struct/union/forward citation: substituting forwarding "
604                    "stub with decorated name %s\n", decorated);
605
606 #endif
607       ctf_sha1_init (&hash);
608       ctf_dedup_sha1_add (&hash, decorated, strlen (decorated) + 1,
609                           "decorated struct/union/forward name", depth);
610       ctf_sha1_fini (&hash, hashbuf);
611
612       if ((hval = intern (fp, strdup (hashbuf))) == NULL)
613         {
614           ctf_err_warn (fp, 0, 0, _("%s (%i): out of memory during forwarding-"
615                                     "stub hashing for type with GID %p"),
616                         ctf_link_input_name (input), input_num, type_id);
617           return NULL;                          /* errno is set for us.  */
618         }
619
620       /* In share-duplicated link mode, make sure the origin of this type is
621          recorded, even if this is a type in a parent dict which will not be
622          directly traversed.  */
623       if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
624           && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
625         return NULL;                            /* errno is set for us.  */
626
627       return hval;
628     }
629
630   /* Now ensure that subsequent recursive calls (but *not* the top-level call)
631      get this treatment.  */
632   flags |= CTF_DEDUP_HASH_INTERNAL_CHILD;
633
634   /* If this is a struct, union, or forward with a name, record the unique
635      originating input TU, if there is one.  */
636
637   if (decorated && (ctf_forwardable_kind (kind) || kind != CTF_K_FORWARD))
638     if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED
639         && ctf_dedup_record_origin (fp, input_num, decorated, type_id) < 0)
640       return NULL;                              /* errno is set for us.  */
641
642 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
643   ctf_dprintf ("%lu: hashing thing with ID %i/%lx (kind %i): %s.\n",
644                depth, input_num, type, kind, name ? name : "");
645 #endif
646
647   /* Some type kinds don't have names: the API provides no way to set the name,
648      so the type the deduplicator outputs will be nameless even if the input
649      somehow has a name, and the name should not be mixed into the hash.  */
650
651   switch (kind)
652     {
653     case CTF_K_POINTER:
654     case CTF_K_ARRAY:
655     case CTF_K_FUNCTION:
656     case CTF_K_VOLATILE:
657     case CTF_K_CONST:
658     case CTF_K_RESTRICT:
659     case CTF_K_SLICE:
660       name = NULL;
661     }
662
663   /* Mix in invariant stuff, transforming the type kind if needed.  Note that
664      the vlen is *not* hashed in: the actual variable-length info is hashed in
665      instead, piecewise.  The vlen is not part of the type, only the
666      variable-length data is: identical types with distinct vlens are quite
667      possible.  Equally, we do not want to hash in the isroot flag: both the
668      compiler and the deduplicator set the nonroot flag to indicate clashes with
669      *other types in the same TU* with the same name: so two types can easily
670      have distinct nonroot flags, yet be exactly the same type.*/
671
672   ctf_sha1_init (&hash);
673   if (name)
674     ctf_dedup_sha1_add (&hash, name, strlen (name) + 1, "name", depth);
675   ctf_dedup_sha1_add (&hash, &kind, sizeof (uint32_t), "kind", depth);
676
677   /* Hash content of this type.  */
678   switch (kind)
679     {
680     case CTF_K_UNKNOWN:
681       /* No extra state.  */
682       break;
683     case CTF_K_FORWARD:
684
685       /* Add the forwarded kind, stored in the ctt_type.  */
686       ctf_dedup_sha1_add (&hash, &tp->ctt_type, sizeof (tp->ctt_type),
687                           "forwarded kind", depth);
688       break;
689     case CTF_K_INTEGER:
690     case CTF_K_FLOAT:
691       {
692         ctf_encoding_t ep;
693         memset (&ep, 0, sizeof (ctf_encoding_t));
694
695         ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t), "size",
696                             depth);
697         if (ctf_type_encoding (input, type, &ep) < 0)
698           {
699             whaterr = N_("error getting encoding");
700             goto input_err;
701           }
702         ctf_dedup_sha1_add (&hash, &ep, sizeof (ctf_encoding_t), "encoding",
703                             depth);
704         break;
705       }
706       /* Types that reference other types.  */
707     case CTF_K_TYPEDEF:
708     case CTF_K_VOLATILE:
709     case CTF_K_CONST:
710     case CTF_K_RESTRICT:
711     case CTF_K_POINTER:
712       /* Hash the referenced type, if not already hashed, and mix it in.  */
713       child_type = ctf_type_reference (input, type);
714       if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
715                                        child_type, flags, depth,
716                                        populate_fun)) == NULL)
717         {
718           whaterr = N_("error doing referenced type hashing");
719           goto err;
720         }
721       ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "referenced type",
722                           depth);
723       citer = hval;
724
725       break;
726
727       /* The slices of two types hash identically only if the type they overlay
728          also has the same encoding.  This is not ideal, but in practice will work
729          well enough.  We work directly rather than using the CTF API because
730          we do not want the slice's normal automatically-shine-through
731          semantics to kick in here.  */
732     case CTF_K_SLICE:
733       {
734         const ctf_slice_t *slice;
735         const ctf_dtdef_t *dtd;
736         ssize_t size;
737         ssize_t increment;
738
739         child_type = ctf_type_reference (input, type);
740         ctf_get_ctt_size (input, tp, &size, &increment);
741         ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "size", depth);
742
743         if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
744                                          child_type, flags, depth,
745                                          populate_fun)) == NULL)
746           {
747             whaterr = N_("error doing slice-referenced type hashing");
748             goto err;
749           }
750         ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "sliced type",
751                             depth);
752         citer = hval;
753
754         if ((dtd = ctf_dynamic_type (input, type)) != NULL)
755           slice = (ctf_slice_t *) dtd->dtd_vlen;
756         else
757           slice = (ctf_slice_t *) ((uintptr_t) tp + increment);
758
759         ctf_dedup_sha1_add (&hash, &slice->cts_offset,
760                             sizeof (slice->cts_offset), "slice offset", depth);
761         ctf_dedup_sha1_add (&hash, &slice->cts_bits,
762                             sizeof (slice->cts_bits), "slice bits", depth);
763         break;
764       }
765
766     case CTF_K_ARRAY:
767       {
768         ctf_arinfo_t ar;
769
770         if (ctf_array_info (input, type, &ar) < 0)
771           {
772             whaterr = N_("error getting array info");
773             goto input_err;
774           }
775
776         if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
777                                          ar.ctr_contents, flags, depth,
778                                          populate_fun)) == NULL)
779           {
780             whaterr = N_("error doing array contents type hashing");
781             goto err;
782           }
783         ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array contents",
784                             depth);
785         ADD_CITER (citers, hval);
786
787         if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
788                                          ar.ctr_index, flags, depth,
789                                          populate_fun)) == NULL)
790           {
791             whaterr = N_("error doing array index type hashing");
792             goto err;
793           }
794         ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "array index",
795                             depth);
796         ctf_dedup_sha1_add (&hash, &ar.ctr_nelems, sizeof (ar.ctr_nelems),
797                             "element count", depth);
798         ADD_CITER (citers, hval);
799
800         break;
801       }
802     case CTF_K_FUNCTION:
803       {
804         ctf_funcinfo_t fi;
805         ctf_id_t *args;
806         uint32_t j;
807
808         if (ctf_func_type_info (input, type, &fi) < 0)
809           {
810             whaterr = N_("error getting func type info");
811             goto input_err;
812           }
813
814         if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents, input_num,
815                                          fi.ctc_return, flags, depth,
816                                          populate_fun)) == NULL)
817           {
818             whaterr = N_("error getting func return type");
819             goto err;
820           }
821         ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func return",
822                             depth);
823         ctf_dedup_sha1_add (&hash, &fi.ctc_argc, sizeof (fi.ctc_argc),
824                             "func argc", depth);
825         ctf_dedup_sha1_add (&hash, &fi.ctc_flags, sizeof (fi.ctc_flags),
826                             "func flags", depth);
827         ADD_CITER (citers, hval);
828
829         if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
830           {
831             err = ENOMEM;
832             whaterr = N_("error doing memory allocation");
833             goto err;
834           }
835
836         if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
837           {
838             free (args);
839             whaterr = N_("error getting func arg type");
840             goto input_err;
841           }
842         for (j = 0; j < fi.ctc_argc; j++)
843           {
844             if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
845                                              input_num, args[j], flags, depth,
846                                              populate_fun)) == NULL)
847               {
848                 free (args);
849                 whaterr = N_("error doing func arg type hashing");
850                 goto err;
851               }
852             ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "func arg type",
853                                 depth);
854             ADD_CITER (citers, hval);
855           }
856         free (args);
857         break;
858       }
859     case CTF_K_ENUM:
860       {
861         int val;
862         const char *ename;
863
864         ctf_dedup_sha1_add (&hash, &tp->ctt_size, sizeof (uint32_t),
865                             "enum size", depth);
866         while ((ename = ctf_enum_next (input, type, &i, &val)) != NULL)
867           {
868             ctf_dedup_sha1_add (&hash, ename, strlen (ename) + 1, "enumerator",
869                                 depth);
870             ctf_dedup_sha1_add (&hash, &val, sizeof (val), "enumerand", depth);
871           }
872         if (ctf_errno (input) != ECTF_NEXT_END)
873           {
874             whaterr = N_("error doing enum member iteration");
875             goto input_err;
876           }
877         break;
878       }
879     /* Top-level only.  */
880     case CTF_K_STRUCT:
881     case CTF_K_UNION:
882       {
883         ssize_t offset;
884         const char *mname;
885         ctf_id_t membtype;
886         ssize_t size;
887
888         ctf_get_ctt_size (input, tp, &size, NULL);
889         ctf_dedup_sha1_add (&hash, &size, sizeof (ssize_t), "struct size",
890                             depth);
891
892         while ((offset = ctf_member_next (input, type, &i, &mname, &membtype,
893                                           0)) >= 0)
894           {
895             if (mname == NULL)
896               mname = "";
897             ctf_dedup_sha1_add (&hash, mname, strlen (mname) + 1,
898                                 "member name", depth);
899
900 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
901             ctf_dprintf ("%lu: Traversing to member %s\n", depth, mname);
902 #endif
903             if ((hval = ctf_dedup_hash_type (fp, input, inputs, parents,
904                                              input_num, membtype, flags, depth,
905                                              populate_fun)) == NULL)
906               {
907                 whaterr = N_("error doing struct/union member type hashing");
908                 goto iterr;
909               }
910
911             ctf_dedup_sha1_add (&hash, hval, strlen (hval) + 1, "member hash",
912                                 depth);
913             ctf_dedup_sha1_add (&hash, &offset, sizeof (offset), "member offset",
914                                 depth);
915             ADD_CITER (citers, hval);
916           }
917         if (ctf_errno (input) != ECTF_NEXT_END)
918           {
919             whaterr = N_("error doing struct/union member iteration");
920             goto input_err;
921           }
922         break;
923       }
924     default:
925       whaterr = N_("error: unknown type kind");
926       goto err;
927     }
928   ctf_sha1_fini (&hash, hashbuf);
929
930   if ((hval = intern (fp, strdup (hashbuf))) == NULL)
931     {
932       whaterr = N_("cannot intern hash");
933       goto oom;
934     }
935
936   /* Populate the citers for this type's subtypes, now the hash for the type
937      itself is known.  */
938   whaterr = N_("error tracking citers");
939
940   if (citer)
941     {
942       ctf_dynset_t *citer_hashes;
943
944       if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
945         goto oom;
946       if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
947         goto oom;
948     }
949   else if (citers)
950     {
951       const void *k;
952
953       while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
954         {
955           ctf_dynset_t *citer_hashes;
956           citer = (const char *) k;
957
958           if ((citer_hashes = make_set_element (d->cd_citers, citer)) == NULL)
959             goto oom;
960
961           if (ctf_dynset_exists (citer_hashes, hval, NULL))
962             continue;
963           if (ctf_dynset_cinsert (citer_hashes, hval) < 0)
964             goto oom;
965         }
966       if (err != ECTF_NEXT_END)
967         goto err;
968       ctf_dynset_destroy (citers);
969     }
970
971   return hval;
972
973  iterr:
974   ctf_next_destroy (i);
975  input_err:
976   err = ctf_errno (input);
977  err:
978   ctf_sha1_fini (&hash, NULL);
979   ctf_err_warn (fp, 0, err, _("%s (%i): %s: during type hashing for type %lx, "
980                               "kind %i"), ctf_link_input_name (input),
981                 input_num, gettext (whaterr), type, kind);
982   return NULL;
983  oom:
984   ctf_set_errno (fp, errno);
985   ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing for type %lx, "
986                             "kind %i"), ctf_link_input_name (input),
987                 input_num, gettext (whaterr), type, kind);
988   return NULL;
989 }
990
991 /* Hash a TYPE in the INPUT: FP is the eventual output, where the ctf_dedup
992    state is stored.  INPUT_NUM is the number of this input in the set of inputs.
993    Record its hash in FP's cd_type_hashes once it is known.  PARENTS is
994    described in the comment above ctf_dedup.
995
996    (The flags argument currently accepts only the flag
997    CTF_DEDUP_HASH_INTERNAL_CHILD, an implementation detail used to prevent
998    struct/union hashing in recursive traversals below the TYPE.)
999
1000    We use the CTF API rather than direct access wherever possible, because types
1001    that appear identical through the API should be considered identical, with
1002    one exception: slices should only be considered identical to other slices,
1003    not to the corresponding unsliced type.
1004
1005    The POPULATE_FUN is a mandatory hook that populates other mappings with each
1006    type we see (excepting types that are recursively hashed as stubs).  The
1007    caller should not rely on the order of calls to this hook, though it will be
1008    called at least once for every non-stub reference to every type.
1009
1010    Returns a hash value (an atom), or NULL on error.  */
1011
1012 static const char *
1013 ctf_dedup_hash_type (ctf_dict_t *fp, ctf_dict_t *input,
1014                      ctf_dict_t **inputs, uint32_t *parents,
1015                      int input_num, ctf_id_t type, int flags,
1016                      unsigned long depth,
1017                      int (*populate_fun) (ctf_dict_t *fp,
1018                                           ctf_dict_t *input,
1019                                           ctf_dict_t **inputs,
1020                                           int input_num,
1021                                           ctf_id_t type,
1022                                           void *id,
1023                                           const char *decorated_name,
1024                                           const char *hash))
1025 {
1026   ctf_dedup_t *d = &fp->ctf_dedup;
1027   const ctf_type_t *tp;
1028   void *type_id;
1029   const char *hval = NULL;
1030   const char *name;
1031   const char *whaterr;
1032   const char *decorated = NULL;
1033   uint32_t kind, fwdkind;
1034
1035   depth++;
1036
1037 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1038   ctf_dprintf ("%lu: ctf_dedup_hash_type (%i, %lx, flags %x)\n", depth, input_num, type, flags);
1039 #endif
1040
1041   /* The unimplemented type doesn't really exist, but must be noted in parent
1042      hashes: so it gets a fixed, arbitrary hash.  */
1043   if (type == 0)
1044     return "00000000000000000000";
1045
1046   /* Possible optimization: if the input type is in the parent type space, just
1047      copy recursively-cited hashes from the parent's types into the output
1048      mapping rather than rehashing them.  */
1049
1050   type_id = CTF_DEDUP_GID (fp, input_num, type);
1051
1052   if ((tp = ctf_lookup_by_id (&input, type)) == NULL)
1053     {
1054       ctf_set_errno (fp, ctf_errno (input));
1055       ctf_err_warn (fp, 0, 0, _("%s (%i): lookup failure for type %lx: "
1056                                 "flags %x"), ctf_link_input_name (input),
1057                     input_num, type, flags);
1058       return NULL;              /* errno is set for us.  */
1059     }
1060
1061   kind = LCTF_INFO_KIND (input, tp->ctt_info);
1062   name = ctf_strraw (input, tp->ctt_name);
1063
1064   if (tp->ctt_name == 0 || !name || name[0] == '\0')
1065     name = NULL;
1066
1067   /* Decorate the name appropriately for the namespace it appears in: forwards
1068      appear in the namespace of their referent.  */
1069
1070   fwdkind = kind;
1071   if (name)
1072     {
1073       if (kind == CTF_K_FORWARD)
1074         fwdkind = tp->ctt_type;
1075
1076       if ((decorated = ctf_decorate_type_name (fp, name, fwdkind)) == NULL)
1077         return NULL;                            /* errno is set for us.  */
1078     }
1079
1080   /* If not hashing a stub, we can rely on various sorts of caches.
1081
1082      Optimization opportunity: we may be able to avoid calling the populate_fun
1083      sometimes here.  */
1084
1085   if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1086     {
1087       if ((hval = ctf_dynhash_lookup (d->cd_type_hashes, type_id)) != NULL)
1088         {
1089 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1090           ctf_dprintf ("%lu: Known hash for ID %i/%lx: %s\n", depth, input_num,
1091                        type,  hval);
1092 #endif
1093           populate_fun (fp, input, inputs, input_num, type, type_id,
1094                         decorated, hval);
1095
1096           return hval;
1097         }
1098     }
1099
1100   /* We have never seen this type before, and must figure out its hash and the
1101      hashes of the types it cites.
1102
1103      Hash this type, and call ourselves recursively.  (The hashing part is
1104      optional, and is disabled if overidden_hval is set.)  */
1105
1106   if ((hval = ctf_dedup_rhash_type (fp, input, inputs, parents, input_num,
1107                                     type, type_id, tp, name, decorated,
1108                                     kind, flags, depth, populate_fun)) == NULL)
1109     return NULL;                                /* errno is set for us.  */
1110
1111   /* The hash of this type is now known: record it unless caching is unsafe
1112      because the hash value will change later.  This will be the final storage
1113      of this type's hash, so we call the population function on it.  */
1114
1115   if (!ctf_dedup_is_stub (name, kind, fwdkind, flags))
1116     {
1117 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1118       ctf_dprintf ("Caching %lx, ID %p (%s), %s in final location\n", type,
1119                    type_id, name ? name : "", hval);
1120 #endif
1121
1122       if (ctf_dynhash_cinsert (d->cd_type_hashes, type_id, hval) < 0)
1123         {
1124           whaterr = N_("error hash caching");
1125           goto oom;
1126         }
1127
1128       if (populate_fun (fp, input, inputs, input_num, type, type_id,
1129                         decorated, hval) < 0)
1130         {
1131           whaterr = N_("error calling population function");
1132           goto err;                             /* errno is set for us. */
1133         }
1134     }
1135
1136 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1137   ctf_dprintf ("%lu: Returning final hash for ID %i/%lx: %s\n", depth,
1138                input_num, type, hval);
1139 #endif
1140   return hval;
1141
1142  oom:
1143   ctf_set_errno (fp, errno);
1144  err:
1145   ctf_err_warn (fp, 0, 0, _("%s (%i): %s: during type hashing, "
1146                             "type %lx, kind %i"),
1147                 ctf_link_input_name (input), input_num,
1148                 gettext (whaterr), type, kind);
1149   return NULL;
1150 }
1151
1152 /* Populate a number of useful mappings not directly used by the hashing
1153    machinery: the output mapping, the cd_name_counts mapping from name -> hash
1154    -> count of hashval deduplication state for a given hashed type, and the
1155    cd_output_first_tu mapping.  */
1156
1157 static int
1158 ctf_dedup_populate_mappings (ctf_dict_t *fp, ctf_dict_t *input _libctf_unused_,
1159                              ctf_dict_t **inputs _libctf_unused_,
1160                              int input_num _libctf_unused_,
1161                              ctf_id_t type _libctf_unused_, void *id,
1162                              const char *decorated_name,
1163                              const char *hval)
1164 {
1165   ctf_dedup_t *d = &fp->ctf_dedup;
1166   ctf_dynset_t *type_ids;
1167   ctf_dynhash_t *name_counts;
1168   long int count;
1169
1170 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1171   ctf_dprintf ("Hash %s, %s, into output mapping for %i/%lx @ %s\n",
1172                hval, decorated_name ? decorated_name : "(unnamed)",
1173                input_num, type, ctf_link_input_name (input));
1174
1175   const char *orig_hval;
1176
1177   /* Make sure we never map a single GID to multiple hash values.  */
1178
1179   if ((orig_hval = ctf_dynhash_lookup (d->cd_output_mapping_guard, id)) != NULL)
1180     {
1181       /* We can rely on pointer identity here, since all hashes are
1182          interned.  */
1183       if (!ctf_assert (fp, orig_hval == hval))
1184         return -1;
1185     }
1186   else
1187     if (ctf_dynhash_cinsert (d->cd_output_mapping_guard, id, hval) < 0)
1188       return ctf_set_errno (fp, errno);
1189 #endif
1190
1191   /* Record the type in the output mapping: if this is the first time this type
1192      has been seen, also record it in the cd_output_first_gid.  Because we
1193      traverse types in TU order and we do not merge types after the hashing
1194      phase, this will be the lowest TU this type ever appears in.  */
1195
1196   if ((type_ids = ctf_dynhash_lookup (d->cd_output_mapping,
1197                                       hval)) == NULL)
1198     {
1199       if (ctf_dynhash_cinsert (d->cd_output_first_gid, hval, id) < 0)
1200         return ctf_set_errno (fp, errno);
1201
1202       if ((type_ids = ctf_dynset_create (htab_hash_pointer,
1203                                          htab_eq_pointer,
1204                                          NULL)) == NULL)
1205         return ctf_set_errno (fp, errno);
1206       if (ctf_dynhash_insert (d->cd_output_mapping, (void *) hval,
1207                               type_ids) < 0)
1208         {
1209           ctf_dynset_destroy (type_ids);
1210           return ctf_set_errno (fp, errno);
1211         }
1212     }
1213 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1214     {
1215       /* Verify that all types with this hash are of the same kind, and that the
1216          first TU a type was seen in never falls.  */
1217
1218       int err;
1219       const void *one_id;
1220       ctf_next_t *i = NULL;
1221       int orig_kind = ctf_type_kind_unsliced (input, type);
1222       int orig_first_tu;
1223
1224       orig_first_tu = CTF_DEDUP_GID_TO_INPUT
1225         (ctf_dynhash_lookup (d->cd_output_first_gid, hval));
1226       if (!ctf_assert (fp, orig_first_tu <= CTF_DEDUP_GID_TO_INPUT (id)))
1227         return -1;
1228
1229       while ((err = ctf_dynset_cnext (type_ids, &i, &one_id)) == 0)
1230         {
1231           ctf_dict_t *foo = inputs[CTF_DEDUP_GID_TO_INPUT (one_id)];
1232           ctf_id_t bar = CTF_DEDUP_GID_TO_TYPE (one_id);
1233           if (ctf_type_kind_unsliced (foo, bar) != orig_kind)
1234             {
1235               ctf_err_warn (fp, 1, 0, "added wrong kind to output mapping "
1236                             "for hash %s named %s: %p/%lx from %s is "
1237                             "kind %i, but newly-added %p/%lx from %s is "
1238                             "kind %i", hval,
1239                             decorated_name ? decorated_name : "(unnamed)",
1240                             (void *) foo, bar,
1241                             ctf_link_input_name (foo),
1242                             ctf_type_kind_unsliced (foo, bar),
1243                             (void *) input, type,
1244                             ctf_link_input_name (input), orig_kind);
1245               if (!ctf_assert (fp, ctf_type_kind_unsliced (foo, bar)
1246                                == orig_kind))
1247                 return -1;
1248             }
1249         }
1250       if (err != ECTF_NEXT_END)
1251         return ctf_set_errno (fp, err);
1252     }
1253 #endif
1254
1255   /* This function will be repeatedly called for the same types many times:
1256      don't waste time reinserting the same keys in that case.  */
1257   if (!ctf_dynset_exists (type_ids, id, NULL)
1258       && ctf_dynset_insert (type_ids, id) < 0)
1259     return ctf_set_errno (fp, errno);
1260
1261   /* The rest only needs to happen for types with names.  */
1262   if (!decorated_name)
1263     return 0;
1264
1265   /* Count the number of occurrences of the hash value for this GID.  */
1266
1267   hval = ctf_dynhash_lookup (d->cd_type_hashes, id);
1268
1269   /* Mapping from name -> hash(hashval, count) not already present?  */
1270   if ((name_counts = ctf_dynhash_lookup (d->cd_name_counts,
1271                                          decorated_name)) == NULL)
1272     {
1273       if ((name_counts = ctf_dynhash_create (ctf_hash_string,
1274                                              ctf_hash_eq_string,
1275                                              NULL, NULL)) == NULL)
1276           return ctf_set_errno (fp, errno);
1277       if (ctf_dynhash_cinsert (d->cd_name_counts, decorated_name,
1278                                name_counts) < 0)
1279         {
1280           ctf_dynhash_destroy (name_counts);
1281           return ctf_set_errno (fp, errno);
1282         }
1283     }
1284
1285   /* This will, conveniently, return NULL (i.e. 0) for a new entry.  */
1286   count = (long int) (uintptr_t) ctf_dynhash_lookup (name_counts, hval);
1287
1288   if (ctf_dynhash_cinsert (name_counts, hval,
1289                            (const void *) (uintptr_t) (count + 1)) < 0)
1290     return ctf_set_errno (fp, errno);
1291
1292   return 0;
1293 }
1294
1295 /* Mark a single hash as corresponding to a conflicting type.  Mark all types
1296    that cite it as conflicting as well, terminating the recursive walk only when
1297    types that are already conflicted or types do not cite other types are seen.
1298    (Tagged structures and unions do not appear in the cd_citers graph, so the
1299    walk also terminates there, since any reference to a conflicting structure is
1300    just going to reference an unconflicting forward instead: see
1301    ctf_dedup_maybe_synthesize_forward.)  */
1302
1303 static int
1304 ctf_dedup_mark_conflicting_hash (ctf_dict_t *fp, const char *hval)
1305 {
1306   ctf_dedup_t *d = &fp->ctf_dedup;
1307   ctf_next_t *i = NULL;
1308   int err;
1309   const void *k;
1310   ctf_dynset_t *citers;
1311
1312   /* Mark conflicted if not already so marked.  */
1313   if (ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
1314     return 0;
1315
1316   ctf_dprintf ("Marking %s as conflicted\n", hval);
1317
1318   if (ctf_dynset_cinsert (d->cd_conflicting_types, hval) < 0)
1319     {
1320       ctf_dprintf ("Out of memory marking %s as conflicted\n", hval);
1321       ctf_set_errno (fp, errno);
1322       return -1;
1323     }
1324
1325   /* If any types cite this type, mark them conflicted too.  */
1326   if ((citers = ctf_dynhash_lookup (d->cd_citers, hval)) == NULL)
1327     return 0;
1328
1329   while ((err = ctf_dynset_cnext (citers, &i, &k)) == 0)
1330     {
1331       const char *hv = (const char *) k;
1332
1333       if (ctf_dynset_exists (d->cd_conflicting_types, hv, NULL))
1334         continue;
1335
1336       if (ctf_dedup_mark_conflicting_hash (fp, hv) < 0)
1337         {
1338           ctf_next_destroy (i);
1339           return -1;                            /* errno is set for us.  */
1340         }
1341     }
1342   if (err != ECTF_NEXT_END)
1343     return ctf_set_errno (fp, err);
1344
1345   return 0;
1346 }
1347
1348 /* Look up a type kind from the output mapping, given a type hash value.  */
1349 static int
1350 ctf_dedup_hash_kind (ctf_dict_t *fp, ctf_dict_t **inputs, const char *hash)
1351 {
1352   ctf_dedup_t *d = &fp->ctf_dedup;
1353   void *id;
1354   ctf_dynset_t *type_ids;
1355
1356   /* Precondition: the output mapping is populated.  */
1357   if (!ctf_assert (fp, ctf_dynhash_elements (d->cd_output_mapping) > 0))
1358     return -1;
1359
1360   /* Look up some GID from the output hash for this type.  (They are all
1361      identical, so we can pick any).  Don't assert if someone calls this
1362      function wrongly, but do assert if the output mapping knows about the hash,
1363      but has nothing associated with it.  */
1364
1365   type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hash);
1366   if (!type_ids)
1367     {
1368       ctf_dprintf ("Looked up type kind by nonexistent hash %s.\n", hash);
1369       return ctf_set_errno (fp, ECTF_INTERNAL);
1370     }
1371   id = ctf_dynset_lookup_any (type_ids);
1372   if (!ctf_assert (fp, id))
1373     return -1;
1374
1375   return ctf_type_kind_unsliced (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1376                                  CTF_DEDUP_GID_TO_TYPE (id));
1377 }
1378
1379 /* Used to keep a count of types: i.e. distinct type hash values.  */
1380 typedef struct ctf_dedup_type_counter
1381 {
1382   ctf_dict_t *fp;
1383   ctf_dict_t **inputs;
1384   int num_non_forwards;
1385 } ctf_dedup_type_counter_t;
1386
1387 /* Add to the type counter for one name entry from the cd_name_counts.  */
1388 static int
1389 ctf_dedup_count_types (void *key_, void *value _libctf_unused_, void *arg_)
1390 {
1391   const char *hval = (const char *) key_;
1392   int kind;
1393   ctf_dedup_type_counter_t *arg = (ctf_dedup_type_counter_t *) arg_;
1394
1395   kind = ctf_dedup_hash_kind (arg->fp, arg->inputs, hval);
1396
1397   /* We rely on ctf_dedup_hash_kind setting the fp to -ECTF_INTERNAL on error to
1398      smuggle errors out of here.  */
1399
1400   if (kind != CTF_K_FORWARD)
1401     {
1402       arg->num_non_forwards++;
1403       ctf_dprintf ("Counting hash %s: kind %i: num_non_forwards is %i\n",
1404                    hval, kind, arg->num_non_forwards);
1405     }
1406
1407   /* We only need to know if there is more than one non-forward (an ambiguous
1408      type): don't waste time iterating any more than needed to figure that
1409      out.  */
1410
1411   if (arg->num_non_forwards > 1)
1412     return 1;
1413
1414   return 0;
1415 }
1416
1417 /* Detect name ambiguity and mark ambiguous names as conflicting, other than the
1418    most common.  */
1419 static int
1420 ctf_dedup_detect_name_ambiguity (ctf_dict_t *fp, ctf_dict_t **inputs)
1421 {
1422   ctf_dedup_t *d = &fp->ctf_dedup;
1423   ctf_next_t *i = NULL;
1424   void *k;
1425   void *v;
1426   int err;
1427   const char *whaterr;
1428
1429   /* Go through cd_name_counts for all CTF namespaces in turn.  */
1430
1431   while ((err = ctf_dynhash_next (d->cd_name_counts, &i, &k, &v)) == 0)
1432     {
1433       const char *decorated = (const char *) k;
1434       ctf_dynhash_t *name_counts = (ctf_dynhash_t *) v;
1435       ctf_next_t *j = NULL;
1436
1437       /* If this is a forwardable kind or a forward (which we can tell without
1438          consulting the type because its decorated name has a space as its
1439          second character: see ctf_decorate_type_name), we are only interested
1440          in whether this name has many hashes associated with it: any such name
1441          is necessarily ambiguous, and types with that name are conflicting.
1442          Once we know whether this is true, we can skip to the next name: so use
1443          ctf_dynhash_iter_find for efficiency.  */
1444
1445       if (decorated[0] != '\0' && decorated[1] == ' ')
1446         {
1447           ctf_dedup_type_counter_t counters = { fp, inputs, 0 };
1448           ctf_dynhash_t *counts = (ctf_dynhash_t *) v;
1449
1450           ctf_dynhash_iter_find (counts, ctf_dedup_count_types, &counters);
1451
1452           /* Check for assertion failure and pass it up.  */
1453           if (ctf_errno (fp) == ECTF_INTERNAL)
1454             goto assert_err;
1455
1456           if (counters.num_non_forwards > 1)
1457             {
1458               const void *hval_;
1459
1460               while ((err = ctf_dynhash_cnext (counts, &j, &hval_, NULL)) == 0)
1461                 {
1462                   const char *hval = (const char *) hval_;
1463                   ctf_dynset_t *type_ids;
1464                   void *id;
1465                   int kind;
1466
1467                   /* Dig through the types in this hash to find the non-forwards
1468                      and mark them ambiguous.  */
1469
1470                   type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1471
1472                   /* Nonexistent? Must be a forward with no referent.  */
1473                   if (!type_ids)
1474                     continue;
1475
1476                   id = ctf_dynset_lookup_any (type_ids);
1477
1478                   kind = ctf_type_kind (inputs[CTF_DEDUP_GID_TO_INPUT (id)],
1479                                         CTF_DEDUP_GID_TO_TYPE (id));
1480
1481                   if (kind != CTF_K_FORWARD)
1482                     {
1483                       ctf_dprintf ("Marking %p, with hash %s, conflicting: one "
1484                                    "of many non-forward GIDs for %s\n", id,
1485                                    hval, (char *) k);
1486                       ctf_dedup_mark_conflicting_hash (fp, hval);
1487                     }
1488                 }
1489               if (err != ECTF_NEXT_END)
1490                 {
1491                   whaterr = N_("error marking conflicting structs/unions");
1492                   goto iterr;
1493                 }
1494             }
1495         }
1496       else
1497         {
1498           /* This is an ordinary type.  Find the most common type with this
1499              name, and mark it unconflicting: all others are conflicting.  (We
1500              cannot do this sort of popularity contest with forwardable types
1501              because any forwards to that type would be immediately unified with
1502              the most-popular type on insertion, and we want conflicting structs
1503              et al to have all forwards left intact, so the user is notified
1504              that this type is conflicting.  TODO: improve this in future by
1505              setting such forwards non-root-visible.)
1506
1507              If multiple distinct types are "most common", pick the one that
1508              appears first on the link line, and within that, the one with the
1509              lowest type ID.  (See sort_output_mapping.)  */
1510
1511           const void *key;
1512           const void *count;
1513           const char *hval;
1514           long max_hcount = -1;
1515           void *max_gid = NULL;
1516           const char *max_hval = NULL;
1517
1518           if (ctf_dynhash_elements (name_counts) <= 1)
1519             continue;
1520
1521           /* First find the most common.  */
1522           while ((err = ctf_dynhash_cnext (name_counts, &j, &key, &count)) == 0)
1523             {
1524               hval = (const char *) key;
1525
1526               if ((long int) (uintptr_t) count > max_hcount)
1527                 {
1528                   max_hcount = (long int) (uintptr_t) count;
1529                   max_hval = hval;
1530                   max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1531                 }
1532               else if ((long int) (uintptr_t) count == max_hcount)
1533                 {
1534                   void *gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1535
1536                   if (CTF_DEDUP_GID_TO_INPUT(gid) < CTF_DEDUP_GID_TO_INPUT(max_gid)
1537                       || (CTF_DEDUP_GID_TO_INPUT(gid) == CTF_DEDUP_GID_TO_INPUT(max_gid)
1538                           && CTF_DEDUP_GID_TO_TYPE(gid) < CTF_DEDUP_GID_TO_TYPE(max_gid)))
1539                     {
1540                       max_hval = hval;
1541                       max_gid = ctf_dynhash_lookup (d->cd_output_first_gid, hval);
1542                     }
1543                 }
1544             }
1545           if (err != ECTF_NEXT_END)
1546             {
1547               whaterr = N_("error finding commonest conflicting type");
1548               goto iterr;
1549             }
1550
1551           /* Mark all the others as conflicting.   */
1552           while ((err = ctf_dynhash_cnext (name_counts, &j, &key, NULL)) == 0)
1553             {
1554               hval = (const char *) key;
1555               if (strcmp (max_hval, hval) == 0)
1556                 continue;
1557
1558               ctf_dprintf ("Marking %s, an uncommon hash for %s, conflicting\n",
1559                            hval, (const char *) k);
1560               if (ctf_dedup_mark_conflicting_hash (fp, hval) < 0)
1561                 {
1562                   whaterr = N_("error marking hashes as conflicting");
1563                   goto err;
1564                 }
1565             }
1566           if (err != ECTF_NEXT_END)
1567             {
1568               whaterr = N_("marking uncommon conflicting types");
1569               goto iterr;
1570             }
1571         }
1572     }
1573   if (err != ECTF_NEXT_END)
1574     {
1575       whaterr = N_("scanning for ambiguous names");
1576       goto iterr;
1577     }
1578
1579   return 0;
1580
1581  err:
1582   ctf_next_destroy (i);
1583   ctf_err_warn (fp, 0, 0, "%s", gettext (whaterr));
1584   return -1;                                    /* errno is set for us.  */
1585
1586  iterr:
1587   ctf_err_warn (fp, 0, err, _("iteration failed: %s"), gettext (whaterr));
1588   return ctf_set_errno (fp, err);
1589
1590  assert_err:
1591   ctf_next_destroy (i);
1592   return -1;                                    /* errno is set for us.  */
1593 }
1594
1595 /* Initialize the deduplication machinery.  */
1596
1597 static int
1598 ctf_dedup_init (ctf_dict_t *fp)
1599 {
1600   ctf_dedup_t *d = &fp->ctf_dedup;
1601   size_t i;
1602
1603   if (ctf_dedup_atoms_init (fp) < 0)
1604       goto oom;
1605
1606 #if IDS_NEED_ALLOCATION
1607   if ((d->cd_id_to_dict_t = ctf_dynhash_create (ctf_hash_type_id_key,
1608                                                 ctf_hash_eq_type_id_key,
1609                                                 free, NULL)) == NULL)
1610     goto oom;
1611 #endif
1612
1613   for (i = 0; i < 4; i++)
1614     {
1615       if ((d->cd_decorated_names[i] = ctf_dynhash_create (ctf_hash_string,
1616                                                           ctf_hash_eq_string,
1617                                                           NULL, NULL)) == NULL)
1618         goto oom;
1619     }
1620
1621   if ((d->cd_name_counts
1622        = ctf_dynhash_create (ctf_hash_string,
1623                              ctf_hash_eq_string, NULL,
1624                              (ctf_hash_free_fun) ctf_dynhash_destroy)) == NULL)
1625     goto oom;
1626
1627   if ((d->cd_type_hashes
1628        = ctf_dynhash_create (ctf_hash_integer,
1629                              ctf_hash_eq_integer,
1630                              NULL, NULL)) == NULL)
1631     goto oom;
1632
1633   if ((d->cd_struct_origin
1634        = ctf_dynhash_create (ctf_hash_string,
1635                              ctf_hash_eq_string,
1636                              NULL, NULL)) == NULL)
1637     goto oom;
1638
1639   if ((d->cd_citers
1640        = ctf_dynhash_create (ctf_hash_string,
1641                              ctf_hash_eq_string, NULL,
1642                              (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1643     goto oom;
1644
1645   if ((d->cd_output_mapping
1646        = ctf_dynhash_create (ctf_hash_string,
1647                              ctf_hash_eq_string, NULL,
1648                              (ctf_hash_free_fun) ctf_dynset_destroy)) == NULL)
1649     goto oom;
1650
1651   if ((d->cd_output_first_gid
1652        = ctf_dynhash_create (ctf_hash_string,
1653                              ctf_hash_eq_string,
1654                              NULL, NULL)) == NULL)
1655     goto oom;
1656
1657 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1658   if ((d->cd_output_mapping_guard
1659        = ctf_dynhash_create (ctf_hash_integer,
1660                              ctf_hash_eq_integer, NULL, NULL)) == NULL)
1661     goto oom;
1662 #endif
1663
1664   if ((d->cd_input_nums
1665        = ctf_dynhash_create (ctf_hash_integer,
1666                              ctf_hash_eq_integer,
1667                              NULL, NULL)) == NULL)
1668     goto oom;
1669
1670   if ((d->cd_emission_struct_members
1671        = ctf_dynhash_create (ctf_hash_integer,
1672                              ctf_hash_eq_integer,
1673                              NULL, NULL)) == NULL)
1674     goto oom;
1675
1676   if ((d->cd_conflicting_types
1677        = ctf_dynset_create (htab_hash_string,
1678                             htab_eq_string, NULL)) == NULL)
1679     goto oom;
1680
1681   return 0;
1682
1683  oom:
1684   ctf_err_warn (fp, 0, ENOMEM, _("ctf_dedup_init: cannot initialize: "
1685                                  "out of memory"));
1686   return ctf_set_errno (fp, ENOMEM);
1687 }
1688
1689 /* No ctf_dedup calls are allowed after this call other than starting a new
1690    deduplication via ctf_dedup (not even ctf_dedup_type_mapping lookups).  */
1691 void
1692 ctf_dedup_fini (ctf_dict_t *fp, ctf_dict_t **outputs, uint32_t noutputs)
1693 {
1694   ctf_dedup_t *d = &fp->ctf_dedup;
1695   size_t i;
1696
1697   /* ctf_dedup_atoms is kept across links.  */
1698 #if IDS_NEED_ALLOCATION
1699   ctf_dynhash_destroy (d->cd_id_to_dict_t);
1700 #endif
1701   for (i = 0; i < 4; i++)
1702     ctf_dynhash_destroy (d->cd_decorated_names[i]);
1703   ctf_dynhash_destroy (d->cd_name_counts);
1704   ctf_dynhash_destroy (d->cd_type_hashes);
1705   ctf_dynhash_destroy (d->cd_struct_origin);
1706   ctf_dynhash_destroy (d->cd_citers);
1707   ctf_dynhash_destroy (d->cd_output_mapping);
1708   ctf_dynhash_destroy (d->cd_output_first_gid);
1709 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
1710   ctf_dynhash_destroy (d->cd_output_mapping_guard);
1711 #endif
1712   ctf_dynhash_destroy (d->cd_input_nums);
1713   ctf_dynhash_destroy (d->cd_emission_struct_members);
1714   ctf_dynset_destroy (d->cd_conflicting_types);
1715
1716   /* Free the per-output state.  */
1717   if (outputs)
1718     {
1719       for (i = 0; i < noutputs; i++)
1720         {
1721           ctf_dedup_t *od = &outputs[i]->ctf_dedup;
1722           ctf_dynhash_destroy (od->cd_output_emission_hashes);
1723           ctf_dynhash_destroy (od->cd_output_emission_conflicted_forwards);
1724           ctf_dict_close (od->cd_output);
1725         }
1726     }
1727   memset (d, 0, sizeof (ctf_dedup_t));
1728 }
1729
1730 /* Return 1 if this type is cited by multiple input dictionaries.  */
1731
1732 static int
1733 ctf_dedup_multiple_input_dicts (ctf_dict_t *output, ctf_dict_t **inputs,
1734                                 const char *hval)
1735 {
1736   ctf_dedup_t *d = &output->ctf_dedup;
1737   ctf_dynset_t *type_ids;
1738   ctf_next_t *i = NULL;
1739   void *id;
1740   ctf_dict_t *found = NULL, *relative_found = NULL;
1741   const char *type_id;
1742   ctf_dict_t *input_fp;
1743   ctf_id_t input_id;
1744   const char *name;
1745   const char *decorated;
1746   int fwdkind;
1747   int multiple = 0;
1748   int err;
1749
1750   type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
1751   if (!ctf_assert (output, type_ids))
1752     return -1;
1753
1754   /* Scan across the IDs until we find proof that two disjoint dictionaries
1755      are referenced.  Exit as soon as possible.  Optimization opportunity, but
1756      possibly not worth it, given that this is only executed in
1757      CTF_LINK_SHARE_DUPLICATED mode.  */
1758
1759   while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
1760     {
1761       ctf_dict_t *fp = inputs[CTF_DEDUP_GID_TO_INPUT (id)];
1762
1763       if (fp == found || fp == relative_found)
1764         continue;
1765
1766       if (!found)
1767         {
1768           found = fp;
1769           continue;
1770         }
1771
1772       if (!relative_found
1773           && (fp->ctf_parent == found || found->ctf_parent == fp))
1774         {
1775           relative_found = fp;
1776           continue;
1777         }
1778
1779       multiple = 1;
1780       ctf_next_destroy (i);
1781       break;
1782     }
1783   if ((err != ECTF_NEXT_END) && (err != 0))
1784     {
1785       ctf_err_warn (output, 0, err, _("iteration error "
1786                                       "propagating conflictedness"));
1787       return ctf_set_errno (output, err);
1788     }
1789
1790   if (multiple)
1791     return multiple;
1792
1793   /* This type itself does not appear in multiple input dicts: how about another
1794      related type with the same name (e.g. a forward if this is a struct,
1795      etc).  */
1796
1797   type_id = ctf_dynset_lookup_any (type_ids);
1798   if (!ctf_assert (output, type_id))
1799     return -1;
1800
1801   input_fp = inputs[CTF_DEDUP_GID_TO_INPUT (type_id)];
1802   input_id = CTF_DEDUP_GID_TO_TYPE (type_id);
1803   fwdkind = ctf_type_kind_forwarded (input_fp, input_id);
1804   name = ctf_type_name_raw (input_fp, input_id);
1805
1806   if ((fwdkind == CTF_K_STRUCT || fwdkind == CTF_K_UNION)
1807       && name[0] != '\0')
1808     {
1809       const void *origin;
1810
1811       if ((decorated = ctf_decorate_type_name (output, name,
1812                                                fwdkind)) == NULL)
1813         return -1;                              /* errno is set for us.  */
1814
1815       origin = ctf_dynhash_lookup (d->cd_struct_origin, decorated);
1816       if ((origin != NULL) && (CTF_DEDUP_GID_TO_INPUT (origin) < 0))
1817         multiple = 1;
1818     }
1819
1820   return multiple;
1821 }
1822
1823 /* Demote unconflicting types which reference only one input, or which reference
1824    two inputs where one input is the parent of the other, into conflicting
1825    types.  Only used if the link mode is CTF_LINK_SHARE_DUPLICATED.  */
1826
1827 static int
1828 ctf_dedup_conflictify_unshared (ctf_dict_t *output, ctf_dict_t **inputs)
1829 {
1830   ctf_dedup_t *d = &output->ctf_dedup;
1831   ctf_next_t *i = NULL;
1832   int err;
1833   const void *k;
1834   ctf_dynset_t *to_mark = NULL;
1835
1836   if ((to_mark = ctf_dynset_create (htab_hash_string, htab_eq_string,
1837                                     NULL)) == NULL)
1838     goto err_no;
1839
1840   while ((err = ctf_dynhash_cnext (d->cd_output_mapping, &i, &k, NULL)) == 0)
1841     {
1842       const char *hval = (const char *) k;
1843       int conflicting;
1844
1845       /* Types referenced by only one dict, with no type appearing under that
1846          name elsewhere, are marked conflicting.  */
1847
1848       conflicting = !ctf_dedup_multiple_input_dicts (output, inputs, hval);
1849
1850       if (conflicting < 0)
1851         goto err;                               /* errno is set for us.  */
1852
1853       if (conflicting)
1854         if (ctf_dynset_cinsert (to_mark, hval) < 0)
1855           goto err;
1856     }
1857   if (err != ECTF_NEXT_END)
1858     goto iterr;
1859
1860   while ((err = ctf_dynset_cnext (to_mark, &i, &k)) == 0)
1861     {
1862       const char *hval = (const char *) k;
1863
1864       if (ctf_dedup_mark_conflicting_hash (output, hval) < 0)
1865         goto err;
1866     }
1867   if (err != ECTF_NEXT_END)
1868     goto iterr;
1869
1870   ctf_dynset_destroy (to_mark);
1871
1872   return 0;
1873
1874  err_no:
1875   ctf_set_errno (output, errno);
1876  err:
1877   err = ctf_errno (output);
1878   ctf_next_destroy (i);
1879  iterr:
1880   ctf_dynset_destroy (to_mark);
1881   ctf_err_warn (output, 0, err, _("conflictifying unshared types"));
1882   return ctf_set_errno (output, err);
1883 }
1884
1885 /* The core deduplicator.  Populate cd_output_mapping in the output ctf_dedup
1886    with a mapping of all types that belong in this dictionary and where they
1887    come from, and cd_conflicting_types with an indication of whether each type
1888    is conflicted or not.  OUTPUT is the top-level output: INPUTS is the array of
1889    input dicts; NINPUTS is the size of that array; PARENTS is an NINPUTS-element
1890    array with each element corresponding to a input which is a child dict set to
1891    the number in the INPUTS array of that input's parent.
1892
1893    If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
1894    mapping: only one output will result.
1895
1896    Only deduplicates: does not emit the types into the output.  Call
1897    ctf_dedup_emit afterwards to do that.  */
1898
1899 int
1900 ctf_dedup (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
1901            uint32_t *parents, int cu_mapped)
1902 {
1903   ctf_dedup_t *d = &output->ctf_dedup;
1904   size_t i;
1905   ctf_next_t *it = NULL;
1906
1907   if (ctf_dedup_init (output) < 0)
1908     return -1;                                  /* errno is set for us.  */
1909
1910   for (i = 0; i < ninputs; i++)
1911     {
1912       ctf_dprintf ("Input %i: %s\n", (int) i, ctf_link_input_name (inputs[i]));
1913       if (ctf_dynhash_insert (d->cd_input_nums, inputs[i],
1914                               (void *) (uintptr_t) i) < 0)
1915         {
1916           ctf_set_errno (output, errno);
1917           ctf_err_warn (output, 0, errno, _("ctf_dedup: cannot initialize: %s\n"),
1918                         ctf_errmsg (errno));
1919           goto err;
1920         }
1921     }
1922
1923   /* Some flags do not apply when CU-mapping: this is not a duplicated link,
1924      because there is only one output and we really don't want to end up marking
1925      all nonconflicting but appears-only-once types as conflicting (which in the
1926      CU-mapped link means we'd mark them all as non-root-visible!).  */
1927   d->cd_link_flags = output->ctf_link_flags;
1928   if (cu_mapped)
1929     d->cd_link_flags &= ~(CTF_LINK_SHARE_DUPLICATED);
1930
1931   /* Compute hash values for all types, recursively, treating child structures
1932      and unions equivalent to forwards, and hashing in the name of the referent
1933      of each such type into structures, unions, and non-opaque forwards.
1934      Populate a mapping from decorated name (including an indication of
1935      struct/union/enum namespace) to count of type hash values in
1936      cd_name_counts, a mapping from and a mapping from hash values to input type
1937      IDs in cd_output_mapping.  */
1938
1939   ctf_dprintf ("Computing type hashes\n");
1940   for (i = 0; i < ninputs; i++)
1941     {
1942       ctf_id_t id;
1943
1944       while ((id = ctf_type_next (inputs[i], &it, NULL, 1)) != CTF_ERR)
1945         {
1946           if (ctf_dedup_hash_type (output, inputs[i], inputs,
1947                                    parents, i, id, 0, 0,
1948                                    ctf_dedup_populate_mappings) == NULL)
1949             goto err;                           /* errno is set for us.  */
1950         }
1951       if (ctf_errno (inputs[i]) != ECTF_NEXT_END)
1952         {
1953           ctf_set_errno (output, ctf_errno (inputs[i]));
1954           ctf_err_warn (output, 0, 0, _("iteration failure "
1955                                         "computing type hashes"));
1956           goto err;
1957         }
1958     }
1959
1960   /* Go through the cd_name_counts name->hash->count mapping for all CTF
1961      namespaces: any name with many hashes associated with it at this stage is
1962      necessarily ambiguous.  Mark all the hashes except the most common as
1963      conflicting in the output.  */
1964
1965   ctf_dprintf ("Detecting type name ambiguity\n");
1966   if (ctf_dedup_detect_name_ambiguity (output, inputs) < 0)
1967       goto err;                                 /* errno is set for us.  */
1968
1969   /* If the link mode is CTF_LINK_SHARE_DUPLICATED, we change any unconflicting
1970      types whose output mapping references only one input dict into a
1971      conflicting type, so that they end up in the per-CU dictionaries.  */
1972
1973   if (d->cd_link_flags & CTF_LINK_SHARE_DUPLICATED)
1974     {
1975       ctf_dprintf ("Conflictifying unshared types\n");
1976       if (ctf_dedup_conflictify_unshared (output, inputs) < 0)
1977         goto err;                               /* errno is set for us.  */
1978     }
1979   return 0;
1980
1981  err:
1982   ctf_dedup_fini (output, NULL, 0);
1983   return -1;
1984 }
1985
1986 static int
1987 ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
1988                                 uint32_t ninputs, uint32_t *parents,
1989                                 ctf_dynset_t *already_visited,
1990                                 const char *hval,
1991                                 int (*visit_fun) (const char *hval,
1992                                                   ctf_dict_t *output,
1993                                                   ctf_dict_t **inputs,
1994                                                   uint32_t ninputs,
1995                                                   uint32_t *parents,
1996                                                   int already_visited,
1997                                                   ctf_dict_t *input,
1998                                                   ctf_id_t type,
1999                                                   void *id,
2000                                                   int depth,
2001                                                   void *arg),
2002                                 void *arg, unsigned long depth);
2003
2004 /* Like ctf_dedup_rwalk_output_mapping (which see), only takes a single target
2005    type and visits it.  */
2006 static int
2007 ctf_dedup_rwalk_one_output_mapping (ctf_dict_t *output,
2008                                     ctf_dict_t **inputs, uint32_t ninputs,
2009                                     uint32_t *parents,
2010                                     ctf_dynset_t *already_visited,
2011                                     int visited, void *type_id,
2012                                     const char *hval,
2013                                     int (*visit_fun) (const char *hval,
2014                                                       ctf_dict_t *output,
2015                                                       ctf_dict_t **inputs,
2016                                                       uint32_t ninputs,
2017                                                       uint32_t *parents,
2018                                                       int already_visited,
2019                                                       ctf_dict_t *input,
2020                                                       ctf_id_t type,
2021                                                       void *id,
2022                                                       int depth,
2023                                                       void *arg),
2024                                     void *arg, unsigned long depth)
2025 {
2026   ctf_dedup_t *d = &output->ctf_dedup;
2027   ctf_dict_t *fp;
2028   int input_num;
2029   ctf_id_t type;
2030   int ret;
2031   const char *whaterr;
2032
2033   input_num = CTF_DEDUP_GID_TO_INPUT (type_id);
2034   fp = inputs[input_num];
2035   type = CTF_DEDUP_GID_TO_TYPE (type_id);
2036
2037   ctf_dprintf ("%lu: Starting walk over type %s, %i/%lx (%p), from %s, "
2038                "kind %i\n", depth, hval, input_num, type, (void *) fp,
2039                ctf_link_input_name (fp), ctf_type_kind_unsliced (fp, type));
2040
2041   /* Get the single call we do if this type has already been visited out of the
2042      way.  */
2043   if (visited)
2044     return visit_fun (hval, output, inputs, ninputs, parents, visited, fp,
2045                       type, type_id, depth, arg);
2046
2047   /* This macro is really ugly, but the alternative is repeating this code many
2048      times, which is worse.  */
2049
2050 #define CTF_TYPE_WALK(type, errlabel, errmsg)                           \
2051   do                                                                    \
2052     {                                                                   \
2053       void *type_id;                                                    \
2054       const char *hashval;                                              \
2055       int cited_type_input_num = input_num;                             \
2056                                                                         \
2057       if ((fp->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (fp, type))) \
2058         cited_type_input_num = parents[input_num];                      \
2059                                                                         \
2060       type_id = CTF_DEDUP_GID (output, cited_type_input_num, type);     \
2061                                                                         \
2062       if (type == 0)                                                    \
2063         {                                                               \
2064           ctf_dprintf ("Walking: unimplemented type\n");                \
2065           break;                                                        \
2066         }                                                               \
2067                                                                         \
2068       ctf_dprintf ("Looking up ID %i/%lx in type hashes\n",             \
2069                    cited_type_input_num, type);                         \
2070       hashval = ctf_dynhash_lookup (d->cd_type_hashes, type_id);        \
2071       if (!ctf_assert (output, hashval))                                \
2072         {                                                               \
2073           whaterr = N_("error looking up ID in type hashes");           \
2074           goto errlabel;                                                \
2075         }                                                               \
2076       ctf_dprintf ("ID %i/%lx has hash %s\n", cited_type_input_num, type, \
2077                    hashval);                                            \
2078                                                                         \
2079       ret = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents, \
2080                                             already_visited, hashval,   \
2081                                             visit_fun, arg, depth);     \
2082       if (ret < 0)                                                      \
2083         {                                                               \
2084           whaterr = errmsg;                                             \
2085           goto errlabel;                                                \
2086         }                                                               \
2087     }                                                                   \
2088   while (0)
2089
2090   switch (ctf_type_kind_unsliced (fp, type))
2091     {
2092     case CTF_K_UNKNOWN:
2093     case CTF_K_FORWARD:
2094     case CTF_K_INTEGER:
2095     case CTF_K_FLOAT:
2096     case CTF_K_ENUM:
2097       /* No types referenced.  */
2098       break;
2099
2100     case CTF_K_TYPEDEF:
2101     case CTF_K_VOLATILE:
2102     case CTF_K_CONST:
2103     case CTF_K_RESTRICT:
2104     case CTF_K_POINTER:
2105     case CTF_K_SLICE:
2106       CTF_TYPE_WALK (ctf_type_reference (fp, type), err,
2107                      N_("error during referenced type walk"));
2108       break;
2109
2110     case CTF_K_ARRAY:
2111       {
2112         ctf_arinfo_t ar;
2113
2114         if (ctf_array_info (fp, type, &ar) < 0)
2115           {
2116             whaterr = N_("error during array info lookup");
2117             goto err_msg;
2118           }
2119
2120         CTF_TYPE_WALK (ar.ctr_contents, err,
2121                        N_("error during array contents type walk"));
2122         CTF_TYPE_WALK (ar.ctr_index, err,
2123                        N_("error during array index type walk"));
2124         break;
2125       }
2126
2127     case CTF_K_FUNCTION:
2128       {
2129         ctf_funcinfo_t fi;
2130         ctf_id_t *args;
2131         uint32_t j;
2132
2133         if (ctf_func_type_info (fp, type, &fi) < 0)
2134           {
2135             whaterr = N_("error during func type info lookup");
2136             goto err_msg;
2137           }
2138
2139         CTF_TYPE_WALK (fi.ctc_return, err,
2140                        N_("error during func return type walk"));
2141
2142         if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2143           {
2144             whaterr = N_("error doing memory allocation");
2145             goto err_msg;
2146           }
2147
2148         if (ctf_func_type_args (fp, type, fi.ctc_argc, args) < 0)
2149           {
2150             whaterr = N_("error doing func arg type lookup");
2151             free (args);
2152             goto err_msg;
2153           }
2154
2155         for (j = 0; j < fi.ctc_argc; j++)
2156           CTF_TYPE_WALK (args[j], err_free_args,
2157                          N_("error during Func arg type walk"));
2158         free (args);
2159         break;
2160
2161       err_free_args:
2162         free (args);
2163         goto err;
2164       }
2165     case CTF_K_STRUCT:
2166     case CTF_K_UNION:
2167       /* We do not recursively traverse the members of structures: they are
2168          emitted later, in a separate pass.  */
2169         break;
2170     default:
2171       whaterr = N_("CTF dict corruption: unknown type kind");
2172       goto err_msg;
2173     }
2174
2175   return visit_fun (hval, output, inputs, ninputs, parents, visited, fp, type,
2176                     type_id, depth, arg);
2177
2178  err_msg:
2179   ctf_set_errno (output, ctf_errno (fp));
2180   ctf_err_warn (output, 0, 0, _("%s in input file %s at type ID %lx"),
2181                 gettext (whaterr), ctf_link_input_name (fp), type);
2182  err:
2183   return -1;
2184 }
2185 /* Recursively traverse the output mapping, and do something with each type
2186    visited, from leaves to root.  VISIT_FUN, called as recursion unwinds,
2187    returns a negative error code or zero.  Type hashes may be visited more than
2188    once, but are not recursed through repeatedly: ALREADY_VISITED tracks whether
2189    types have already been visited.  */
2190 static int
2191 ctf_dedup_rwalk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2192                                 uint32_t ninputs, uint32_t *parents,
2193                                 ctf_dynset_t *already_visited,
2194                                 const char *hval,
2195                                 int (*visit_fun) (const char *hval,
2196                                                   ctf_dict_t *output,
2197                                                   ctf_dict_t **inputs,
2198                                                   uint32_t ninputs,
2199                                                   uint32_t *parents,
2200                                                   int already_visited,
2201                                                   ctf_dict_t *input,
2202                                                   ctf_id_t type,
2203                                                   void *id,
2204                                                   int depth,
2205                                                   void *arg),
2206                                 void *arg, unsigned long depth)
2207 {
2208   ctf_dedup_t *d = &output->ctf_dedup;
2209   ctf_next_t *i = NULL;
2210   int err;
2211   int visited = 1;
2212   ctf_dynset_t *type_ids;
2213   void *id;
2214
2215   depth++;
2216
2217   type_ids = ctf_dynhash_lookup (d->cd_output_mapping, hval);
2218   if (!type_ids)
2219     {
2220       ctf_err_warn (output, 0, ECTF_INTERNAL,
2221                     _("looked up type kind by nonexistent hash %s"), hval);
2222       return ctf_set_errno (output, ECTF_INTERNAL);
2223     }
2224
2225   /* Have we seen this type before?  */
2226
2227   if (!ctf_dynset_exists (already_visited, hval, NULL))
2228     {
2229       /* Mark as already-visited immediately, to eliminate the possibility of
2230          cycles: but remember we have not actually visited it yet for the
2231          upcoming call to the visit_fun.  (All our callers handle cycles
2232          properly themselves, so we can just abort them aggressively as soon as
2233          we find ourselves in one.)  */
2234
2235       visited = 0;
2236       if (ctf_dynset_cinsert (already_visited, hval) < 0)
2237         {
2238           ctf_err_warn (output, 0, ENOMEM,
2239                         _("out of memory tracking already-visited types"));
2240           return ctf_set_errno (output, ENOMEM);
2241         }
2242     }
2243
2244   /* If this type is marked conflicted, traverse members and call
2245      ctf_dedup_rwalk_output_mapping_once on all the unique ones: otherwise, just
2246      pick a random one and use it.  */
2247
2248   if (!ctf_dynset_exists (d->cd_conflicting_types, hval, NULL))
2249     {
2250       id = ctf_dynset_lookup_any (type_ids);
2251       if (!ctf_assert (output, id))
2252         return -1;
2253
2254       return ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2255                                                  parents, already_visited,
2256                                                  visited, id, hval, visit_fun,
2257                                                  arg, depth);
2258     }
2259
2260   while ((err = ctf_dynset_next (type_ids, &i, &id)) == 0)
2261     {
2262       int ret;
2263
2264       ret = ctf_dedup_rwalk_one_output_mapping (output, inputs, ninputs,
2265                                                 parents, already_visited,
2266                                                 visited, id, hval,
2267                                                 visit_fun, arg, depth);
2268       if (ret < 0)
2269         {
2270           ctf_next_destroy (i);
2271           return ret;                           /* errno is set for us.  */
2272         }
2273     }
2274   if (err != ECTF_NEXT_END)
2275     {
2276       ctf_err_warn (output, 0, err, _("cannot walk conflicted type"));
2277       return ctf_set_errno (output, err);
2278     }
2279
2280   return 0;
2281 }
2282
2283 typedef struct ctf_sort_om_cb_arg
2284 {
2285   ctf_dict_t **inputs;
2286   uint32_t ninputs;
2287   ctf_dedup_t *d;
2288 } ctf_sort_om_cb_arg_t;
2289
2290 /* Sort the output mapping into order: types first appearing in earlier inputs
2291    first, parents preceding children: if types first appear in the same input,
2292    sort those with earlier ctf_id_t's first.  */
2293 static int
2294 sort_output_mapping (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two,
2295                      void *arg_)
2296 {
2297   ctf_sort_om_cb_arg_t *arg = (ctf_sort_om_cb_arg_t *) arg_;
2298   ctf_dedup_t *d = arg->d;
2299   const char *one_hval = (const char *) one->hkv_key;
2300   const char *two_hval = (const char *) two->hkv_key;
2301   void *one_gid, *two_gid;
2302   uint32_t one_ninput;
2303   uint32_t two_ninput;
2304   ctf_dict_t *one_fp;
2305   ctf_dict_t *two_fp;
2306   ctf_id_t one_type;
2307   ctf_id_t two_type;
2308
2309   one_gid = ctf_dynhash_lookup (d->cd_output_first_gid, one_hval);
2310   two_gid = ctf_dynhash_lookup (d->cd_output_first_gid, two_hval);
2311
2312   one_ninput = CTF_DEDUP_GID_TO_INPUT (one_gid);
2313   two_ninput = CTF_DEDUP_GID_TO_INPUT (two_gid);
2314
2315   one_type = CTF_DEDUP_GID_TO_TYPE (one_gid);
2316   two_type = CTF_DEDUP_GID_TO_TYPE (two_gid);
2317
2318   /* It's kind of hard to smuggle an assertion failure out of here.  */
2319   assert (one_ninput < arg->ninputs && two_ninput < arg->ninputs);
2320
2321   one_fp = arg->inputs[one_ninput];
2322   two_fp = arg->inputs[two_ninput];
2323
2324   /* Parents before children.  */
2325
2326   if (!(one_fp->ctf_flags & LCTF_CHILD)
2327       && (two_fp->ctf_flags & LCTF_CHILD))
2328     return -1;
2329   else if ((one_fp->ctf_flags & LCTF_CHILD)
2330       && !(two_fp->ctf_flags & LCTF_CHILD))
2331     return 1;
2332
2333   /* ninput order, types appearing in earlier TUs first.  */
2334
2335   if (one_ninput < two_ninput)
2336     return -1;
2337   else if (two_ninput < one_ninput)
2338     return 1;
2339
2340   /* Same TU.  Earliest ctf_id_t first.  They cannot be the same.  */
2341
2342   assert (one_type != two_type);
2343   if (one_type < two_type)
2344     return -1;
2345   else
2346     return 1;
2347 }
2348
2349 /* The public entry point to ctf_dedup_rwalk_output_mapping, above.  */
2350 static int
2351 ctf_dedup_walk_output_mapping (ctf_dict_t *output, ctf_dict_t **inputs,
2352                                uint32_t ninputs, uint32_t *parents,
2353                                int (*visit_fun) (const char *hval,
2354                                                  ctf_dict_t *output,
2355                                                  ctf_dict_t **inputs,
2356                                                  uint32_t ninputs,
2357                                                  uint32_t *parents,
2358                                                  int already_visited,
2359                                                  ctf_dict_t *input,
2360                                                  ctf_id_t type,
2361                                                  void *id,
2362                                                  int depth,
2363                                                  void *arg),
2364                                void *arg)
2365 {
2366   ctf_dynset_t *already_visited;
2367   ctf_next_t *i = NULL;
2368   ctf_sort_om_cb_arg_t sort_arg;
2369   int err;
2370   void *k;
2371
2372   if ((already_visited = ctf_dynset_create (htab_hash_string,
2373                                             htab_eq_string,
2374                                             NULL)) == NULL)
2375     return ctf_set_errno (output, ENOMEM);
2376
2377   sort_arg.inputs = inputs;
2378   sort_arg.ninputs = ninputs;
2379   sort_arg.d = &output->ctf_dedup;
2380
2381   while ((err = ctf_dynhash_next_sorted (output->ctf_dedup.cd_output_mapping,
2382                                          &i, &k, NULL, sort_output_mapping,
2383                                          &sort_arg)) == 0)
2384     {
2385       const char *hval = (const char *) k;
2386
2387       err = ctf_dedup_rwalk_output_mapping (output, inputs, ninputs, parents,
2388                                             already_visited, hval, visit_fun,
2389                                             arg, 0);
2390       if (err < 0)
2391         {
2392           ctf_next_destroy (i);
2393           goto err;                             /* errno is set for us.  */
2394         }
2395     }
2396   if (err != ECTF_NEXT_END)
2397     {
2398       ctf_err_warn (output, 0, err, _("cannot recurse over output mapping"));
2399       ctf_set_errno (output, err);
2400       goto err;
2401     }
2402   ctf_dynset_destroy (already_visited);
2403
2404   return 0;
2405  err:
2406   ctf_dynset_destroy (already_visited);
2407   return -1;
2408 }
2409
2410 /* Possibly synthesise a synthetic forward in TARGET to subsitute for a
2411    conflicted per-TU type ID in INPUT with hash HVAL.  Return its CTF ID, or 0
2412    if none was needed.  */
2413 static ctf_id_t
2414 ctf_dedup_maybe_synthesize_forward (ctf_dict_t *output, ctf_dict_t *target,
2415                                     ctf_dict_t *input, ctf_id_t id,
2416                                     const char *hval)
2417 {
2418   ctf_dedup_t *od = &output->ctf_dedup;
2419   ctf_dedup_t *td = &target->ctf_dedup;
2420   int kind;
2421   int fwdkind;
2422   const char *name = ctf_type_name_raw (input, id);
2423   const char *decorated;
2424   void *v;
2425   ctf_id_t emitted_forward;
2426
2427   if (!ctf_dynset_exists (od->cd_conflicting_types, hval, NULL)
2428       || target->ctf_flags & LCTF_CHILD
2429       || name[0] == '\0'
2430       || (((kind = ctf_type_kind_unsliced (input, id)) != CTF_K_STRUCT
2431            && kind != CTF_K_UNION && kind != CTF_K_FORWARD)))
2432     return 0;
2433
2434   fwdkind = ctf_type_kind_forwarded (input, id);
2435
2436   ctf_dprintf ("Using synthetic forward for conflicted struct/union with "
2437                "hval %s\n", hval);
2438
2439   if (!ctf_assert (output, name))
2440     return CTF_ERR;
2441
2442   if ((decorated = ctf_decorate_type_name (output, name, fwdkind)) == NULL)
2443     return CTF_ERR;
2444
2445   if (!ctf_dynhash_lookup_kv (td->cd_output_emission_conflicted_forwards,
2446                               decorated, NULL, &v))
2447     {
2448       if ((emitted_forward = ctf_add_forward (target, CTF_ADD_ROOT, name,
2449                                               fwdkind)) == CTF_ERR)
2450         {
2451           ctf_set_errno (output, ctf_errno (target));
2452           return CTF_ERR;
2453         }
2454
2455       if (ctf_dynhash_cinsert (td->cd_output_emission_conflicted_forwards,
2456                                decorated, (void *) (uintptr_t)
2457                                emitted_forward) < 0)
2458         {
2459           ctf_set_errno (output, ENOMEM);
2460           return CTF_ERR;
2461         }
2462     }
2463   else
2464     emitted_forward = (ctf_id_t) (uintptr_t) v;
2465
2466   ctf_dprintf ("Cross-TU conflicted struct: passing back forward, %lx\n",
2467                emitted_forward);
2468
2469   return emitted_forward;
2470 }
2471
2472 /* Map a GID in some INPUT dict, in the form of an input number and a ctf_id_t,
2473    into a GID in a target output dict.  If it returns 0, this is the
2474    unimplemented type, and the input type must have been 0.  The OUTPUT dict is
2475    assumed to be the parent of the TARGET, if it is not the TARGET itself.
2476
2477    Returns CTF_ERR on failure.  Responds to an incoming CTF_ERR as an 'id' by
2478    returning CTF_ERR, to simplify callers.  Errors are always propagated to the
2479    input, even if they relate to the target, for the same reason.  (Target
2480    errors are expected to be very rare.)
2481
2482    If the type in question is a citation of a conflicted type in a different TU,
2483    emit a forward of the right type in its place (if not already emitted), and
2484    record that forward in cd_output_emission_conflicted_forwards.  This avoids
2485    the need to replicate the entire type graph below this point in the current
2486    TU (an appalling waste of space).
2487
2488    TODO: maybe replace forwards in the same TU with their referents?  Might
2489    make usability a bit better.  */
2490
2491 static ctf_id_t
2492 ctf_dedup_id_to_target (ctf_dict_t *output, ctf_dict_t *target,
2493                         ctf_dict_t **inputs, uint32_t ninputs,
2494                         uint32_t *parents, ctf_dict_t *input, int input_num,
2495                         ctf_id_t id)
2496 {
2497   ctf_dedup_t *od = &output->ctf_dedup;
2498   ctf_dedup_t *td = &target->ctf_dedup;
2499   ctf_dict_t *err_fp = input;
2500   const char *hval;
2501   void *target_id;
2502   ctf_id_t emitted_forward;
2503
2504   /* The target type of an error is an error.  */
2505   if (id == CTF_ERR)
2506     return CTF_ERR;
2507
2508   /* The unimplemented type's ID never changes.  */
2509   if (!id)
2510     {
2511       ctf_dprintf ("%i/%lx: unimplemented type\n", input_num, id);
2512       return 0;
2513     }
2514
2515   ctf_dprintf ("Mapping %i/%lx to target %p (%s)\n", input_num,
2516                id, (void *) target, ctf_link_input_name (target));
2517
2518   /* If the input type is in the parent type space, and this is a child, reset
2519      the input to the parent (which must already have been emitted, since
2520      emission of parent dicts happens before children).  */
2521   if ((input->ctf_flags & LCTF_CHILD) && (LCTF_TYPE_ISPARENT (input, id)))
2522     {
2523       if (!ctf_assert (output, parents[input_num] <= ninputs))
2524         return -1;
2525       input = inputs[parents[input_num]];
2526       input_num = parents[input_num];
2527     }
2528
2529   hval = ctf_dynhash_lookup (od->cd_type_hashes,
2530                              CTF_DEDUP_GID (output, input_num, id));
2531
2532   if (!ctf_assert (output, hval && td->cd_output_emission_hashes))
2533     return -1;
2534
2535   /* If this type is a conflicted tagged structure, union, or forward,
2536      substitute a synthetic forward instead, emitting it if need be.  Only do
2537      this if the target is in the parent dict: if it's in the child dict, we can
2538      just point straight at the thing itself.  Of course, we might be looking in
2539      the child dict right now and not find it and have to look in the parent, so
2540      we have to do this check twice.  */
2541
2542   emitted_forward = ctf_dedup_maybe_synthesize_forward (output, target,
2543                                                         input, id, hval);
2544   switch (emitted_forward)
2545     {
2546     case 0: /* No forward needed.  */
2547       break;
2548     case -1:
2549       ctf_set_errno (err_fp, ctf_errno (output));
2550       ctf_err_warn (err_fp, 0, 0, _("cannot add synthetic forward for type "
2551                                     "%i/%lx"), input_num, id);
2552       return -1;
2553     default:
2554       return emitted_forward;
2555     }
2556
2557   ctf_dprintf ("Looking up %i/%lx, hash %s, in target\n", input_num, id, hval);
2558
2559   target_id = ctf_dynhash_lookup (td->cd_output_emission_hashes, hval);
2560   if (!target_id)
2561     {
2562       /* Must be in the parent, so this must be a child, and they must not be
2563          the same dict.  */
2564       ctf_dprintf ("Checking shared parent for target\n");
2565       if (!ctf_assert (output, (target != output)
2566                        && (target->ctf_flags & LCTF_CHILD)))
2567         return -1;
2568
2569       target_id = ctf_dynhash_lookup (od->cd_output_emission_hashes, hval);
2570
2571       emitted_forward = ctf_dedup_maybe_synthesize_forward (output, output,
2572                                                             input, id, hval);
2573       switch (emitted_forward)
2574         {
2575         case 0: /* No forward needed.  */
2576           break;
2577         case -1:
2578           ctf_err_warn (err_fp, 0, ctf_errno (output),
2579                         _("cannot add synthetic forward for type %i/%lx"),
2580                         input_num, id);
2581           return ctf_set_errno (err_fp, ctf_errno (output));
2582         default:
2583           return emitted_forward;
2584         }
2585     }
2586   if (!ctf_assert (output, target_id))
2587     return -1;
2588   return (ctf_id_t) (uintptr_t) target_id;
2589 }
2590
2591 /* Emit a single deduplicated TYPE with the given HVAL, located in a given
2592    INPUT, with the given (G)ID, into the shared OUTPUT or a
2593    possibly-newly-created per-CU dict.  All the types this type depends upon
2594    have already been emitted.  (This type itself may also have been emitted.)
2595
2596    If the ARG is 1, this is a CU-mapped deduplication round mapping many
2597    ctf_dict_t's into precisely one: conflicting types should be marked
2598    non-root-visible.  If the ARG is 0, conflicting types go into per-CU
2599    dictionaries stored in the input's ctf_dedup.cd_output: otherwise, everything
2600    is emitted directly into the output.  No struct/union members are emitted.
2601
2602    Optimization opportunity: trace the ancestry of non-root-visible types and
2603    elide all that neither have a root-visible type somewhere towards their root,
2604    nor have the type visible via any other route (the function info section,
2605    data object section, backtrace section etc).  */
2606
2607 static int
2608 ctf_dedup_emit_type (const char *hval, ctf_dict_t *output, ctf_dict_t **inputs,
2609                      uint32_t ninputs, uint32_t *parents, int already_visited,
2610                      ctf_dict_t *input, ctf_id_t type, void *id, int depth,
2611                      void *arg)
2612 {
2613   ctf_dedup_t *d = &output->ctf_dedup;
2614   int kind = ctf_type_kind_unsliced (input, type);
2615   const char *name;
2616   ctf_dict_t *target = output;
2617   ctf_dict_t *real_input;
2618   const ctf_type_t *tp;
2619   int input_num = CTF_DEDUP_GID_TO_INPUT (id);
2620   int output_num = (uint32_t) -1;               /* 'shared' */
2621   int cu_mapped = *(int *)arg;
2622   int isroot = 1;
2623   int is_conflicting;
2624
2625   ctf_next_t *i = NULL;
2626   ctf_id_t new_type;
2627   ctf_id_t ref;
2628   ctf_id_t maybe_dup = 0;
2629   ctf_encoding_t ep;
2630   const char *errtype;
2631   int emission_hashed = 0;
2632
2633   /* We don't want to re-emit something we've already emitted.  */
2634
2635   if (already_visited)
2636     return 0;
2637
2638   ctf_dprintf ("%i: Emitting type with hash %s from %s: determining target\n",
2639                depth, hval, ctf_link_input_name (input));
2640
2641   /* Conflicting types go into a per-CU output dictionary, unless this is a
2642      CU-mapped run.  The import is not refcounted, since it goes into the
2643      ctf_link_outputs dict of the output that is its parent.  */
2644   is_conflicting = ctf_dynset_exists (d->cd_conflicting_types, hval, NULL);
2645
2646   if (is_conflicting && !cu_mapped)
2647     {
2648       ctf_dprintf ("%i: Type %s in %i/%lx is conflicted: "
2649                    "inserting into per-CU target.\n",
2650                    depth, hval, input_num, type);
2651
2652       if (input->ctf_dedup.cd_output)
2653         target = input->ctf_dedup.cd_output;
2654       else
2655         {
2656           int err;
2657
2658           if ((target = ctf_create (&err)) == NULL)
2659             {
2660               ctf_err_warn (output, 0, err,
2661                             _("cannot create per-CU CTF archive for CU %s"),
2662                             ctf_link_input_name (input));
2663               return ctf_set_errno (output, err);
2664             }
2665
2666           ctf_import_unref (target, output);
2667           if (ctf_cuname (input) != NULL)
2668             ctf_cuname_set (target, ctf_cuname (input));
2669           else
2670             ctf_cuname_set (target, "unnamed-CU");
2671           ctf_parent_name_set (target, _CTF_SECTION);
2672
2673           input->ctf_dedup.cd_output = target;
2674           input->ctf_link_in_out = target;
2675           target->ctf_link_in_out = input;
2676         }
2677       output_num = input_num;
2678     }
2679
2680   real_input = input;
2681   if ((tp = ctf_lookup_by_id (&real_input, type)) == NULL)
2682     {
2683       ctf_err_warn (output, 0, ctf_errno (input),
2684                     _("%s: lookup failure for type %lx"),
2685                     ctf_link_input_name (real_input), type);
2686       return ctf_set_errno (output, ctf_errno (input));
2687     }
2688
2689   name = ctf_strraw (real_input, tp->ctt_name);
2690
2691   /* Hide conflicting types, if we were asked to: also hide if a type with this
2692      name already exists and is not a forward.  */
2693   if (cu_mapped && is_conflicting)
2694     isroot = 0;
2695   else if (name
2696            && (maybe_dup = ctf_lookup_by_rawname (target, kind, name)) != 0)
2697     {
2698       if (ctf_type_kind (target, maybe_dup) != CTF_K_FORWARD)
2699         isroot = 0;
2700     }
2701
2702   ctf_dprintf ("%i: Emitting type with hash %s (%s), into target %i/%p\n",
2703                depth, hval, name ? name : "", input_num, (void *) target);
2704
2705   if (!target->ctf_dedup.cd_output_emission_hashes)
2706     if ((target->ctf_dedup.cd_output_emission_hashes
2707          = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2708                               NULL, NULL)) == NULL)
2709       goto oom_hash;
2710
2711   if (!target->ctf_dedup.cd_output_emission_conflicted_forwards)
2712     if ((target->ctf_dedup.cd_output_emission_conflicted_forwards
2713          = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
2714                               NULL, NULL)) == NULL)
2715       goto oom_hash;
2716
2717   switch (kind)
2718     {
2719     case CTF_K_UNKNOWN:
2720       /* These are types that CTF cannot encode, marked as such by the
2721          compiler.  */
2722       errtype = _("unknown type");
2723       if ((new_type = ctf_add_unknown (target, isroot, name)) == CTF_ERR)
2724         goto err_target;
2725       break;
2726     case CTF_K_FORWARD:
2727       /* This will do nothing if the type to which this forwards already exists,
2728          and will be replaced with such a type if it appears later.  */
2729
2730       errtype = _("forward");
2731       if ((new_type = ctf_add_forward (target, isroot, name,
2732                                        ctf_type_kind_forwarded (input, type)))
2733           == CTF_ERR)
2734         goto err_target;
2735       break;
2736
2737     case CTF_K_FLOAT:
2738     case CTF_K_INTEGER:
2739       errtype = _("float/int");
2740       if (ctf_type_encoding (input, type, &ep) < 0)
2741         goto err_input;                         /* errno is set for us.  */
2742       if ((new_type = ctf_add_encoded (target, isroot, name, &ep, kind))
2743           == CTF_ERR)
2744         goto err_target;
2745       break;
2746
2747     case CTF_K_ENUM:
2748       {
2749         int val;
2750         errtype = _("enum");
2751         if ((new_type = ctf_add_enum (target, isroot, name)) == CTF_ERR)
2752           goto err_input;                               /* errno is set for us.  */
2753
2754         while ((name = ctf_enum_next (input, type, &i, &val)) != NULL)
2755           {
2756             if (ctf_add_enumerator (target, new_type, name, val) < 0)
2757               {
2758                 ctf_err_warn (target, 0, ctf_errno (target),
2759                               _("%s (%i): cannot add enumeration value %s "
2760                                 "from input type %lx"),
2761                               ctf_link_input_name (input), input_num, name,
2762                               type);
2763                 ctf_next_destroy (i);
2764                 return ctf_set_errno (output, ctf_errno (target));
2765               }
2766           }
2767         if (ctf_errno (input) != ECTF_NEXT_END)
2768           goto err_input;
2769         break;
2770       }
2771
2772     case CTF_K_TYPEDEF:
2773       errtype = _("typedef");
2774
2775       ref = ctf_type_reference (input, type);
2776       if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2777                                          parents, input, input_num,
2778                                          ref)) == CTF_ERR)
2779         goto err_input;                         /* errno is set for us.  */
2780
2781       if ((new_type = ctf_add_typedef (target, isroot, name, ref)) == CTF_ERR)
2782         goto err_target;                        /* errno is set for us.  */
2783       break;
2784
2785     case CTF_K_VOLATILE:
2786     case CTF_K_CONST:
2787     case CTF_K_RESTRICT:
2788     case CTF_K_POINTER:
2789       errtype = _("pointer or cvr-qual");
2790
2791       ref = ctf_type_reference (input, type);
2792       if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2793                                          parents, input, input_num,
2794                                          ref)) == CTF_ERR)
2795         goto err_input;                         /* errno is set for us.  */
2796
2797       if ((new_type = ctf_add_reftype (target, isroot, ref, kind)) == CTF_ERR)
2798         goto err_target;                        /* errno is set for us.  */
2799       break;
2800
2801     case CTF_K_SLICE:
2802       errtype = _("slice");
2803
2804       if (ctf_type_encoding (input, type, &ep) < 0)
2805         goto err_input;                         /* errno is set for us.  */
2806
2807       ref = ctf_type_reference (input, type);
2808       if ((ref = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2809                                          parents, input, input_num,
2810                                          ref)) == CTF_ERR)
2811         goto err_input;
2812
2813       if ((new_type = ctf_add_slice (target, isroot, ref, &ep)) == CTF_ERR)
2814         goto err_target;
2815       break;
2816
2817     case CTF_K_ARRAY:
2818       {
2819         ctf_arinfo_t ar;
2820
2821         errtype = _("array info");
2822         if (ctf_array_info (input, type, &ar) < 0)
2823           goto err_input;
2824
2825         ar.ctr_contents = ctf_dedup_id_to_target (output, target, inputs,
2826                                                   ninputs, parents, input,
2827                                                   input_num, ar.ctr_contents);
2828         ar.ctr_index = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2829                                                parents, input, input_num,
2830                                                ar.ctr_index);
2831
2832         if (ar.ctr_contents == CTF_ERR || ar.ctr_index == CTF_ERR)
2833           goto err_input;
2834
2835         if ((new_type = ctf_add_array (target, isroot, &ar)) == CTF_ERR)
2836           goto err_target;
2837
2838         break;
2839       }
2840
2841     case CTF_K_FUNCTION:
2842       {
2843         ctf_funcinfo_t fi;
2844         ctf_id_t *args;
2845         uint32_t j;
2846
2847         errtype = _("function");
2848         if (ctf_func_type_info (input, type, &fi) < 0)
2849           goto err_input;
2850
2851         fi.ctc_return = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2852                                                 parents, input, input_num,
2853                                                 fi.ctc_return);
2854         if (fi.ctc_return == CTF_ERR)
2855           goto err_input;
2856
2857         if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
2858           {
2859             ctf_set_errno (input, ENOMEM);
2860             goto err_input;
2861           }
2862
2863         errtype = _("function args");
2864         if (ctf_func_type_args (input, type, fi.ctc_argc, args) < 0)
2865           {
2866             free (args);
2867             goto err_input;
2868           }
2869
2870         for (j = 0; j < fi.ctc_argc; j++)
2871           {
2872             args[j] = ctf_dedup_id_to_target (output, target, inputs, ninputs,
2873                                               parents, input, input_num,
2874                                               args[j]);
2875             if (args[j] == CTF_ERR)
2876               goto err_input;
2877           }
2878
2879         if ((new_type = ctf_add_function (target, isroot,
2880                                           &fi, args)) == CTF_ERR)
2881           {
2882             free (args);
2883             goto err_target;
2884           }
2885         free (args);
2886         break;
2887       }
2888
2889     case CTF_K_STRUCT:
2890     case CTF_K_UNION:
2891       {
2892         size_t size = ctf_type_size (input, type);
2893         void *out_id;
2894         /* Insert the structure itself, so other types can refer to it.  */
2895
2896         errtype = _("structure/union");
2897         if (kind == CTF_K_STRUCT)
2898           new_type = ctf_add_struct_sized (target, isroot, name, size);
2899         else
2900           new_type = ctf_add_union_sized (target, isroot, name, size);
2901
2902         if (new_type == CTF_ERR)
2903           goto err_target;
2904
2905         out_id = CTF_DEDUP_GID (output, output_num, new_type);
2906         ctf_dprintf ("%i: Noting need to emit members of %p -> %p\n", depth,
2907                      id, out_id);
2908         /* Record the need to emit the members of this structure later.  */
2909         if (ctf_dynhash_insert (d->cd_emission_struct_members, id, out_id) < 0)
2910           {
2911             ctf_set_errno (target, errno);
2912             goto err_target;
2913           }
2914         break;
2915       }
2916     default:
2917       ctf_err_warn (output, 0, ECTF_CORRUPT, _("%s: unknown type kind for "
2918                                                "input type %lx"),
2919                     ctf_link_input_name (input), type);
2920       return ctf_set_errno (output, ECTF_CORRUPT);
2921     }
2922
2923   if (!emission_hashed
2924       && new_type != 0
2925       && ctf_dynhash_cinsert (target->ctf_dedup.cd_output_emission_hashes,
2926                               hval, (void *) (uintptr_t) new_type) < 0)
2927     {
2928       ctf_err_warn (output, 0, ENOMEM, _("out of memory tracking deduplicated "
2929                                          "global type IDs"));
2930         return ctf_set_errno (output, ENOMEM);
2931     }
2932
2933   if (!emission_hashed && new_type != 0)
2934     ctf_dprintf ("%i: Inserted %s, %i/%lx -> %lx into emission hash for "
2935                  "target %p (%s)\n", depth, hval, input_num, type, new_type,
2936                  (void *) target, ctf_link_input_name (target));
2937
2938   return 0;
2939
2940  oom_hash:
2941   ctf_err_warn (output, 0, ENOMEM, _("out of memory creating emission-tracking "
2942                                      "hashes"));
2943   return ctf_set_errno (output, ENOMEM);
2944
2945  err_input:
2946   ctf_err_warn (output, 0, ctf_errno (input),
2947                 _("%s (%i): while emitting deduplicated %s, error getting "
2948                   "input type %lx"), ctf_link_input_name (input),
2949                 input_num, errtype, type);
2950   return ctf_set_errno (output, ctf_errno (input));
2951  err_target:
2952   ctf_err_warn (output, 0, ctf_errno (target),
2953                 _("%s (%i): while emitting deduplicated %s, error emitting "
2954                   "target type from input type %lx"),
2955                 ctf_link_input_name (input), input_num,
2956                 errtype, type);
2957   return ctf_set_errno (output, ctf_errno (target));
2958 }
2959
2960 /* Traverse the cd_emission_struct_members and emit the members of all
2961    structures and unions.  All other types are emitted and complete by this
2962    point.  */
2963
2964 static int
2965 ctf_dedup_emit_struct_members (ctf_dict_t *output, ctf_dict_t **inputs,
2966                                uint32_t ninputs, uint32_t *parents)
2967 {
2968   ctf_dedup_t *d = &output->ctf_dedup;
2969   ctf_next_t *i = NULL;
2970   void *input_id, *target_id;
2971   int err;
2972   ctf_dict_t *err_fp, *input_fp;
2973   int input_num;
2974   ctf_id_t err_type;
2975
2976   while ((err = ctf_dynhash_next (d->cd_emission_struct_members, &i,
2977                                   &input_id, &target_id)) == 0)
2978     {
2979       ctf_next_t *j = NULL;
2980       ctf_dict_t *target;
2981       uint32_t target_num;
2982       ctf_id_t input_type, target_type;
2983       ssize_t offset;
2984       ctf_id_t membtype;
2985       const char *name;
2986
2987       input_num = CTF_DEDUP_GID_TO_INPUT (input_id);
2988       input_fp = inputs[input_num];
2989       input_type = CTF_DEDUP_GID_TO_TYPE (input_id);
2990
2991       /* The output is either -1 (for the shared, parent output dict) or the
2992          number of the corresponding input.  */
2993       target_num = CTF_DEDUP_GID_TO_INPUT (target_id);
2994       if (target_num == (uint32_t) -1)
2995         target = output;
2996       else
2997         {
2998           target = inputs[target_num]->ctf_dedup.cd_output;
2999           if (!ctf_assert (output, target))
3000             {
3001               err_fp = output;
3002               err_type = input_type;
3003               goto err_target;
3004             }
3005         }
3006       target_type = CTF_DEDUP_GID_TO_TYPE (target_id);
3007
3008       while ((offset = ctf_member_next (input_fp, input_type, &j, &name,
3009                                         &membtype, 0)) >= 0)
3010         {
3011           err_fp = target;
3012           err_type = target_type;
3013           if ((membtype = ctf_dedup_id_to_target (output, target, inputs,
3014                                                   ninputs, parents, input_fp,
3015                                                   input_num,
3016                                                   membtype)) == CTF_ERR)
3017             {
3018               ctf_next_destroy (j);
3019               goto err_target;
3020             }
3021
3022           if (name == NULL)
3023             name = "";
3024 #ifdef ENABLE_LIBCTF_HASH_DEBUGGING
3025           ctf_dprintf ("Emitting %s, offset %zi\n", name, offset);
3026 #endif
3027           if (ctf_add_member_offset (target, target_type, name,
3028                                      membtype, offset) < 0)
3029             {
3030               ctf_next_destroy (j);
3031               goto err_target;
3032             }
3033         }
3034       if (ctf_errno (input_fp) != ECTF_NEXT_END)
3035         {
3036           err = ctf_errno (input_fp);
3037           ctf_next_destroy (i);
3038           goto iterr;
3039         }
3040     }
3041   if (err != ECTF_NEXT_END)
3042     goto iterr;
3043
3044   return 0;
3045  err_target:
3046   ctf_next_destroy (i);
3047   ctf_err_warn (output, 0, ctf_errno (err_fp),
3048                 _("%s (%i): error emitting members for structure type %lx"),
3049                 ctf_link_input_name (input_fp), input_num, err_type);
3050   return ctf_set_errno (output, ctf_errno (err_fp));
3051  iterr:
3052   ctf_err_warn (output, 0, err, _("iteration failure emitting "
3053                                   "structure members"));
3054   return ctf_set_errno (output, err);
3055 }
3056
3057 /* Emit deduplicated types into the outputs.  The shared type repository is
3058    OUTPUT, on which the ctf_dedup function must have already been called.  The
3059    PARENTS array contains the INPUTS index of the parent dict for every child
3060    dict at the corresponding index in the INPUTS (for non-child dicts, the value
3061    is undefined).
3062
3063    Return an array of fps with content emitted into them (starting with OUTPUT,
3064    which is the parent of all others, then all the newly-generated outputs).
3065
3066    If CU_MAPPED is set, this is a first pass for a link with a non-empty CU
3067    mapping: only one output will result.  */
3068
3069 ctf_dict_t **
3070 ctf_dedup_emit (ctf_dict_t *output, ctf_dict_t **inputs, uint32_t ninputs,
3071                 uint32_t *parents, uint32_t *noutputs, int cu_mapped)
3072 {
3073   size_t num_outputs = 1;               /* Always at least one output: us.  */
3074   ctf_dict_t **outputs;
3075   ctf_dict_t **walk;
3076   size_t i;
3077
3078   ctf_dprintf ("Triggering emission.\n");
3079   if (ctf_dedup_walk_output_mapping (output, inputs, ninputs, parents,
3080                                      ctf_dedup_emit_type, &cu_mapped) < 0)
3081     return NULL;                                /* errno is set for us.  */
3082
3083   ctf_dprintf ("Populating struct members.\n");
3084   if (ctf_dedup_emit_struct_members (output, inputs, ninputs, parents) < 0)
3085     return NULL;                                /* errno is set for us.  */
3086
3087   for (i = 0; i < ninputs; i++)
3088     {
3089       if (inputs[i]->ctf_dedup.cd_output)
3090         num_outputs++;
3091     }
3092
3093   if (!ctf_assert (output, !cu_mapped || (cu_mapped && num_outputs == 1)))
3094     return NULL;
3095
3096   if ((outputs = calloc (num_outputs, sizeof (ctf_dict_t *))) == NULL)
3097     {
3098       ctf_err_warn (output, 0, ENOMEM,
3099                     _("out of memory allocating link outputs array"));
3100       ctf_set_errno (output, ENOMEM);
3101       return NULL;
3102     }
3103   *noutputs = num_outputs;
3104
3105   walk = outputs;
3106   *walk = output;
3107   output->ctf_refcnt++;
3108   walk++;
3109
3110   for (i = 0; i < ninputs; i++)
3111     {
3112       if (inputs[i]->ctf_dedup.cd_output)
3113         {
3114           *walk = inputs[i]->ctf_dedup.cd_output;
3115           inputs[i]->ctf_dedup.cd_output = NULL;
3116           walk++;
3117         }
3118     }
3119
3120   return outputs;
3121 }
3122
3123 /* Determine what type SRC_FP / SRC_TYPE was emitted as in the FP, which
3124    must be the shared dict or have it as a parent: return 0 if none.  The SRC_FP
3125    must be a past input to ctf_dedup.  */
3126
3127 ctf_id_t
3128 ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp, ctf_id_t src_type)
3129 {
3130   ctf_dict_t *output = NULL;
3131   ctf_dedup_t *d;
3132   int input_num;
3133   void *num_ptr;
3134   void *type_ptr;
3135   int found;
3136   const char *hval;
3137
3138   /* It is an error (an internal error in the caller, in ctf-link.c) to call
3139      this with an FP that is not a per-CU output or shared output dict, or with
3140      a SRC_FP that was not passed to ctf_dedup as an input; it is an internal
3141      error in ctf-dedup for the type passed not to have been hashed, though if
3142      the src_fp is a child dict and the type is not a child type, it will have
3143      been hashed under the GID corresponding to the parent.  */
3144
3145   if (fp->ctf_dedup.cd_type_hashes != NULL)
3146     output = fp;
3147   else if (fp->ctf_parent && fp->ctf_parent->ctf_dedup.cd_type_hashes != NULL)
3148     output = fp->ctf_parent;
3149   else
3150     {
3151       ctf_set_errno (fp, ECTF_INTERNAL);
3152       ctf_err_warn (fp, 0, ECTF_INTERNAL,
3153                     _("dict %p passed to ctf_dedup_type_mapping is not a "
3154                       "deduplicated output"), (void *) fp);
3155       return CTF_ERR;
3156     }
3157
3158   if (src_fp->ctf_parent && ctf_type_isparent (src_fp, src_type))
3159     src_fp = src_fp->ctf_parent;
3160
3161   d = &output->ctf_dedup;
3162
3163   found = ctf_dynhash_lookup_kv (d->cd_input_nums, src_fp, NULL, &num_ptr);
3164   if (!ctf_assert (output, found != 0))
3165     return CTF_ERR;                             /* errno is set for us.  */
3166   input_num = (uintptr_t) num_ptr;
3167
3168   hval = ctf_dynhash_lookup (d->cd_type_hashes,
3169                              CTF_DEDUP_GID (output, input_num, src_type));
3170
3171   if (!ctf_assert (output, hval != NULL))
3172     return CTF_ERR;                             /* errno is set for us.  */
3173
3174   /* The emission hashes may be unset if this dict was created after
3175      deduplication to house variables or other things that would conflict if
3176      stored in the shared dict.  */
3177   if (fp->ctf_dedup.cd_output_emission_hashes)
3178     if (ctf_dynhash_lookup_kv (fp->ctf_dedup.cd_output_emission_hashes, hval,
3179                                NULL, &type_ptr))
3180       return (ctf_id_t) (uintptr_t) type_ptr;
3181
3182   if (fp->ctf_parent)
3183     {
3184       ctf_dict_t *pfp = fp->ctf_parent;
3185       if (pfp->ctf_dedup.cd_output_emission_hashes)
3186         if (ctf_dynhash_lookup_kv (pfp->ctf_dedup.cd_output_emission_hashes,
3187                                    hval, NULL, &type_ptr))
3188           return (ctf_id_t) (uintptr_t) type_ptr;
3189     }
3190
3191   return 0;
3192 }
This page took 0.207915 seconds and 4 git commands to generate.