1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
32 /* Local function prototypes. */
34 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 static void show_values PARAMS ((char *, int));
39 static void show_convenience PARAMS ((char *, int));
41 /* The value-history records all the values printed
42 by print commands during this session. Each chunk
43 records 60 consecutive values. The first chunk on
44 the chain records the most recent values.
45 The total number of values is in value_history_count. */
47 #define VALUE_HISTORY_CHUNK 60
49 struct value_history_chunk
51 struct value_history_chunk *next;
52 value_ptr values[VALUE_HISTORY_CHUNK];
55 /* Chain of chunks now in use. */
57 static struct value_history_chunk *value_history_chain;
59 static int value_history_count; /* Abs number of last entry stored */
61 /* List of all value objects currently allocated
62 (except for those released by calls to release_value)
63 This is so they can be freed after each command. */
65 static value_ptr all_values;
67 /* Allocate a value that has the correct length for type TYPE. */
73 register value_ptr val;
75 check_stub_type (type);
77 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
78 VALUE_NEXT (val) = all_values;
80 VALUE_TYPE (val) = type;
81 VALUE_LVAL (val) = not_lval;
82 VALUE_ADDRESS (val) = 0;
83 VALUE_FRAME (val) = 0;
84 VALUE_OFFSET (val) = 0;
85 VALUE_BITPOS (val) = 0;
86 VALUE_BITSIZE (val) = 0;
87 VALUE_REPEATED (val) = 0;
88 VALUE_REPETITIONS (val) = 0;
89 VALUE_REGNO (val) = -1;
91 VALUE_OPTIMIZED_OUT (val) = 0;
96 /* Allocate a value that has the correct length
97 for COUNT repetitions type TYPE. */
100 allocate_repeat_value (type, count)
104 register value_ptr val;
107 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
137 value_free_to_mark (mark)
142 for (val = all_values; val && val != mark; val = next)
144 next = VALUE_NEXT (val);
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
156 register value_ptr val, next;
158 for (val = all_values; val; val = next)
160 next = VALUE_NEXT (val);
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
172 register value_ptr val;
174 register value_ptr v;
176 if (all_values == val)
178 all_values = val->next;
182 for (v = all_values; v; v = v->next)
192 /* Release all values up to mark */
194 value_release_to_mark (mark)
199 for (val = next = all_values; next; next = VALUE_NEXT (next))
200 if (VALUE_NEXT (next) == mark)
202 all_values = VALUE_NEXT (next);
203 VALUE_NEXT (next) = 0;
210 /* Return a copy of the value ARG.
211 It contains the same contents, for same memory address,
212 but it's a different block of storage. */
218 register value_ptr val;
219 register struct type *type = VALUE_TYPE (arg);
220 if (VALUE_REPEATED (arg))
221 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
223 val = allocate_value (type);
224 VALUE_LVAL (val) = VALUE_LVAL (arg);
225 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
226 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
227 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
228 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 val->modifiable = arg->modifiable;
232 if (!VALUE_LAZY (val))
234 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
235 TYPE_LENGTH (VALUE_TYPE (arg))
236 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
241 /* Access to the value history. */
243 /* Record a new value in the value history.
244 Returns the absolute history index of the entry.
245 Result of -1 indicates the value was not saved; otherwise it is the
246 value history index of this new item. */
249 record_latest_value (val)
254 /* Check error now if about to store an invalid float. We return -1
255 to the caller, but allow them to continue, e.g. to print it as "Nan". */
256 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
258 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
259 if (i) return -1; /* Indicate value not saved in history */
262 /* Here we treat value_history_count as origin-zero
263 and applying to the value being stored now. */
265 i = value_history_count % VALUE_HISTORY_CHUNK;
268 register struct value_history_chunk *new
269 = (struct value_history_chunk *)
270 xmalloc (sizeof (struct value_history_chunk));
271 memset (new->values, 0, sizeof new->values);
272 new->next = value_history_chain;
273 value_history_chain = new;
276 value_history_chain->values[i] = val;
278 /* We don't want this value to have anything to do with the inferior anymore.
279 In particular, "set $1 = 50" should not affect the variable from which
280 the value was taken, and fast watchpoints should be able to assume that
281 a value on the value history never changes. */
282 if (VALUE_LAZY (val))
283 value_fetch_lazy (val);
284 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
285 from. This is a bit dubious, because then *&$1 does not just return $1
286 but the current contents of that location. c'est la vie... */
290 /* Now we regard value_history_count as origin-one
291 and applying to the value just stored. */
293 return ++value_history_count;
296 /* Return a copy of the value in the history with sequence number NUM. */
299 access_value_history (num)
302 register struct value_history_chunk *chunk;
304 register int absnum = num;
307 absnum += value_history_count;
312 error ("The history is empty.");
314 error ("There is only one value in the history.");
316 error ("History does not go back to $$%d.", -num);
318 if (absnum > value_history_count)
319 error ("History has not yet reached $%d.", absnum);
323 /* Now absnum is always absolute and origin zero. */
325 chunk = value_history_chain;
326 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
330 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
333 /* Clear the value history entirely.
334 Must be done when new symbol tables are loaded,
335 because the type pointers become invalid. */
338 clear_value_history ()
340 register struct value_history_chunk *next;
342 register value_ptr val;
344 while (value_history_chain)
346 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
347 if ((val = value_history_chain->values[i]) != NULL)
349 next = value_history_chain->next;
350 free ((PTR)value_history_chain);
351 value_history_chain = next;
353 value_history_count = 0;
357 show_values (num_exp, from_tty)
362 register value_ptr val;
367 /* "info history +" should print from the stored position.
368 "info history <exp>" should print around value number <exp>. */
369 if (num_exp[0] != '+' || num_exp[1] != '\0')
370 num = parse_and_eval_address (num_exp) - 5;
374 /* "info history" means print the last 10 values. */
375 num = value_history_count - 9;
381 for (i = num; i < num + 10 && i <= value_history_count; i++)
383 val = access_value_history (i);
384 printf_filtered ("$%d = ", i);
385 value_print (val, gdb_stdout, 0, Val_pretty_default);
386 printf_filtered ("\n");
389 /* The next "info history +" should start after what we just printed. */
392 /* Hitting just return after this command should do the same thing as
393 "info history +". If num_exp is null, this is unnecessary, since
394 "info history +" is not useful after "info history". */
395 if (from_tty && num_exp)
402 /* Internal variables. These are variables within the debugger
403 that hold values assigned by debugger commands.
404 The user refers to them with a '$' prefix
405 that does not appear in the variable names stored internally. */
407 static struct internalvar *internalvars;
409 /* Look up an internal variable with name NAME. NAME should not
410 normally include a dollar sign.
412 If the specified internal variable does not exist,
413 one is created, with a void value. */
416 lookup_internalvar (name)
419 register struct internalvar *var;
421 for (var = internalvars; var; var = var->next)
422 if (STREQ (var->name, name))
425 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
426 var->name = concat (name, NULL);
427 var->value = allocate_value (builtin_type_void);
428 release_value (var->value);
429 var->next = internalvars;
435 value_of_internalvar (var)
436 struct internalvar *var;
438 register value_ptr val;
440 #ifdef IS_TRAPPED_INTERNALVAR
441 if (IS_TRAPPED_INTERNALVAR (var->name))
442 return VALUE_OF_TRAPPED_INTERNALVAR (var);
445 val = value_copy (var->value);
446 if (VALUE_LAZY (val))
447 value_fetch_lazy (val);
448 VALUE_LVAL (val) = lval_internalvar;
449 VALUE_INTERNALVAR (val) = var;
454 set_internalvar_component (var, offset, bitpos, bitsize, newval)
455 struct internalvar *var;
456 int offset, bitpos, bitsize;
459 register char *addr = VALUE_CONTENTS (var->value) + offset;
461 #ifdef IS_TRAPPED_INTERNALVAR
462 if (IS_TRAPPED_INTERNALVAR (var->name))
463 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
467 modify_field (addr, value_as_long (newval),
470 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
474 set_internalvar (var, val)
475 struct internalvar *var;
480 #ifdef IS_TRAPPED_INTERNALVAR
481 if (IS_TRAPPED_INTERNALVAR (var->name))
482 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
485 newval = value_copy (val);
487 /* Force the value to be fetched from the target now, to avoid problems
488 later when this internalvar is referenced and the target is gone or
490 if (VALUE_LAZY (newval))
491 value_fetch_lazy (newval);
493 /* Begin code which must not call error(). If var->value points to
494 something free'd, an error() obviously leaves a dangling pointer.
495 But we also get a danling pointer if var->value points to
496 something in the value chain (i.e., before release_value is
497 called), because after the error free_all_values will get called before
499 free ((PTR)var->value);
501 release_value (newval);
502 /* End code which must not call error(). */
506 internalvar_name (var)
507 struct internalvar *var;
512 /* Free all internalvars. Done when new symtabs are loaded,
513 because that makes the values invalid. */
516 clear_internalvars ()
518 register struct internalvar *var;
523 internalvars = var->next;
524 free ((PTR)var->name);
525 free ((PTR)var->value);
531 show_convenience (ignore, from_tty)
535 register struct internalvar *var;
538 for (var = internalvars; var; var = var->next)
540 #ifdef IS_TRAPPED_INTERNALVAR
541 if (IS_TRAPPED_INTERNALVAR (var->name))
548 printf_filtered ("$%s = ", var->name);
549 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
550 printf_filtered ("\n");
553 printf_unfiltered ("No debugger convenience variables now defined.\n\
554 Convenience variables have names starting with \"$\";\n\
555 use \"set\" as in \"set $foo = 5\" to define them.\n");
558 /* Extract a value as a C number (either long or double).
559 Knows how to convert fixed values to double, or
560 floating values to long.
561 Does not deallocate the value. */
565 register value_ptr val;
567 /* This coerces arrays and functions, which is necessary (e.g.
568 in disassemble_command). It also dereferences references, which
569 I suspect is the most logical thing to do. */
570 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
572 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
576 value_as_double (val)
577 register value_ptr val;
582 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
584 error ("Invalid floating value found in program.");
587 /* Extract a value as a C pointer.
588 Does not deallocate the value. */
590 value_as_pointer (val)
593 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
594 whether we want this to be true eventually. */
596 /* ADDR_BITS_REMOVE is wrong if we are being called for a
597 non-address (e.g. argument to "signal", "info break", etc.), or
598 for pointers to char, in which the low bits *are* significant. */
599 return ADDR_BITS_REMOVE(value_as_long (val));
601 return value_as_long (val);
605 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
606 as a long, or as a double, assuming the raw data is described
607 by type TYPE. Knows how to convert different sizes of values
608 and can convert between fixed and floating point. We don't assume
609 any alignment for the raw data. Return value is in host byte order.
611 If you want functions and arrays to be coerced to pointers, and
612 references to be dereferenced, call value_as_long() instead.
614 C++: It is assumed that the front-end has taken care of
615 all matters concerning pointers to members. A pointer
616 to member which reaches here is considered to be equivalent
617 to an INT (or some size). After all, it is only an offset. */
620 unpack_long (type, valaddr)
624 register enum type_code code = TYPE_CODE (type);
625 register int len = TYPE_LENGTH (type);
626 register int nosign = TYPE_UNSIGNED (type);
634 case TYPE_CODE_RANGE:
636 return extract_unsigned_integer (valaddr, len);
638 return extract_signed_integer (valaddr, len);
641 return extract_floating (valaddr, len);
645 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
646 whether we want this to be true eventually. */
647 return extract_address (valaddr, len);
649 case TYPE_CODE_MEMBER:
650 error ("not implemented: member types in unpack_long");
653 error ("Value can't be converted to integer.");
655 return 0; /* Placate lint. */
658 /* Return a double value from the specified type and address.
659 INVP points to an int which is set to 0 for valid value,
660 1 for invalid value (bad float format). In either case,
661 the returned double is OK to use. Argument is in target
662 format, result is in host format. */
665 unpack_double (type, valaddr, invp)
670 register enum type_code code = TYPE_CODE (type);
671 register int len = TYPE_LENGTH (type);
672 register int nosign = TYPE_UNSIGNED (type);
674 *invp = 0; /* Assume valid. */
675 if (code == TYPE_CODE_FLT)
677 if (INVALID_FLOAT (valaddr, len))
680 return 1.234567891011121314;
682 return extract_floating (valaddr, len);
686 /* Unsigned -- be sure we compensate for signed LONGEST. */
687 return (unsigned LONGEST) unpack_long (type, valaddr);
691 /* Signed -- we are OK with unpack_long. */
692 return unpack_long (type, valaddr);
696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
697 as a CORE_ADDR, assuming the raw data is described by type TYPE.
698 We don't assume any alignment for the raw data. Return value is in
701 If you want functions and arrays to be coerced to pointers, and
702 references to be dereferenced, call value_as_pointer() instead.
704 C++: It is assumed that the front-end has taken care of
705 all matters concerning pointers to members. A pointer
706 to member which reaches here is considered to be equivalent
707 to an INT (or some size). After all, it is only an offset. */
710 unpack_pointer (type, valaddr)
714 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
715 whether we want this to be true eventually. */
716 return unpack_long (type, valaddr);
719 /* Given a value ARG1 (offset by OFFSET bytes)
720 of a struct or union type ARG_TYPE,
721 extract and return the value of one of its fields.
722 FIELDNO says which field.
724 For C++, must also be able to return values from static fields */
727 value_primitive_field (arg1, offset, fieldno, arg_type)
728 register value_ptr arg1;
730 register int fieldno;
731 register struct type *arg_type;
733 register value_ptr v;
734 register struct type *type;
736 check_stub_type (arg_type);
737 type = TYPE_FIELD_TYPE (arg_type, fieldno);
739 /* Handle packed fields */
741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
742 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
744 v = value_from_longest (type,
745 unpack_field_as_long (arg_type,
746 VALUE_CONTENTS (arg1),
748 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
749 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
753 v = allocate_value (type);
754 if (VALUE_LAZY (arg1))
757 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
760 VALUE_LVAL (v) = VALUE_LVAL (arg1);
761 if (VALUE_LVAL (arg1) == lval_internalvar)
762 VALUE_LVAL (v) = lval_internalvar_component;
763 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
764 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
768 /* Given a value ARG1 of a struct or union type,
769 extract and return the value of one of its fields.
770 FIELDNO says which field.
772 For C++, must also be able to return values from static fields */
775 value_field (arg1, fieldno)
776 register value_ptr arg1;
777 register int fieldno;
779 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
782 /* Return a non-virtual function as a value.
783 F is the list of member functions which contains the desired method.
784 J is an index into F which provides the desired method. */
787 value_fn_field (arg1p, f, j, type, offset)
794 register value_ptr v;
795 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
798 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
799 0, VAR_NAMESPACE, 0, NULL);
803 error ("Internal error: could not find physical method named %s",
804 TYPE_FN_FIELD_PHYSNAME (f, j));
807 v = allocate_value (ftype);
808 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
809 VALUE_TYPE (v) = ftype;
813 if (type != VALUE_TYPE (*arg1p))
814 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
815 value_addr (*arg1p)));
817 /* Move the `this' pointer according to the offset.
818 VALUE_OFFSET (*arg1p) += offset;
825 /* Return a virtual function as a value.
826 ARG1 is the object which provides the virtual function
827 table pointer. *ARG1P is side-effected in calling this function.
828 F is the list of member functions which contains the desired virtual
830 J is an index into F which provides the desired virtual function.
832 TYPE is the type in which F is located. */
834 value_virtual_fn_field (arg1p, f, j, type, offset)
841 value_ptr arg1 = *arg1p;
842 /* First, get the virtual function table pointer. That comes
843 with a strange type, so cast it to type `pointer to long' (which
844 should serve just fine as a function type). Then, index into
845 the table, and convert final value to appropriate function type. */
846 value_ptr entry, vfn, vtbl;
847 value_ptr vi = value_from_longest (builtin_type_int,
848 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
849 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
850 struct type *context;
851 if (fcontext == NULL)
852 /* We don't have an fcontext (e.g. the program was compiled with
853 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
854 This won't work right for multiple inheritance, but at least we
855 should do as well as GDB 3.x did. */
856 fcontext = TYPE_VPTR_BASETYPE (type);
857 context = lookup_pointer_type (fcontext);
858 /* Now context is a pointer to the basetype containing the vtbl. */
859 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
860 arg1 = value_ind (value_cast (context, value_addr (arg1)));
862 context = VALUE_TYPE (arg1);
863 /* Now context is the basetype containing the vtbl. */
865 /* This type may have been defined before its virtual function table
866 was. If so, fill in the virtual function table entry for the
868 if (TYPE_VPTR_FIELDNO (context) < 0)
869 fill_in_vptr_fieldno (context);
871 /* The virtual function table is now an array of structures
872 which have the form { int16 offset, delta; void *pfn; }. */
873 vtbl = value_ind (value_primitive_field (arg1, 0,
874 TYPE_VPTR_FIELDNO (context),
875 TYPE_VPTR_BASETYPE (context)));
877 /* Index into the virtual function table. This is hard-coded because
878 looking up a field is not cheap, and it may be important to save
879 time, e.g. if the user has set a conditional breakpoint calling
880 a virtual function. */
881 entry = value_subscript (vtbl, vi);
883 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
885 /* Move the `this' pointer according to the virtual function table. */
886 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
888 if (! VALUE_LAZY (arg1))
890 VALUE_LAZY (arg1) = 1;
891 value_fetch_lazy (arg1);
894 vfn = value_field (entry, 2);
896 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
899 error ("I'm confused: virtual function table has bad type");
900 /* Reinstantiate the function pointer with the correct type. */
901 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
907 /* ARG is a pointer to an object we know to be at least
908 a DTYPE. BTYPE is the most derived basetype that has
909 already been searched (and need not be searched again).
910 After looking at the vtables between BTYPE and DTYPE,
911 return the most derived type we find. The caller must
912 be satisfied when the return value == DTYPE.
914 FIXME-tiemann: should work with dossier entries as well. */
917 value_headof (in_arg, btype, dtype)
919 struct type *btype, *dtype;
921 /* First collect the vtables we must look at for this object. */
922 /* FIXME-tiemann: right now, just look at top-most vtable. */
923 value_ptr arg, vtbl, entry, best_entry = 0;
925 int offset, best_offset = 0;
927 CORE_ADDR pc_for_sym;
928 char *demangled_name;
929 struct minimal_symbol *msymbol;
931 btype = TYPE_VPTR_BASETYPE (dtype);
932 check_stub_type (btype);
935 arg = value_cast (lookup_pointer_type (btype), arg);
936 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
938 /* Check that VTBL looks like it points to a virtual function table. */
939 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
941 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
942 || !VTBL_PREFIX_P (demangled_name))
944 /* If we expected to find a vtable, but did not, let the user
945 know that we aren't happy, but don't throw an error.
946 FIXME: there has to be a better way to do this. */
947 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
948 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
949 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
950 VALUE_TYPE (in_arg) = error_type;
954 /* Now search through the virtual function table. */
955 entry = value_ind (vtbl);
956 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
957 for (i = 1; i <= nelems; i++)
959 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
961 /* This won't work if we're using thunks. */
962 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
964 offset = longest_to_int (value_as_long (value_field (entry, 0)));
965 /* If we use '<=' we can handle single inheritance
966 * where all offsets are zero - just use the first entry found. */
967 if (offset <= best_offset)
969 best_offset = offset;
973 /* Move the pointer according to BEST_ENTRY's offset, and figure
974 out what type we should return as the new pointer. */
977 /* An alternative method (which should no longer be necessary).
978 * But we leave it in for future use, when we will hopefully
979 * have optimizes the vtable to use thunks instead of offsets. */
980 /* Use the name of vtable itself to extract a base type. */
981 demangled_name += 4; /* Skip _vt$ prefix. */
985 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
986 sym = find_pc_function (pc_for_sym);
987 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
988 *(strchr (demangled_name, ':')) = '\0';
990 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
992 error ("could not find type declaration for `%s'", demangled_name);
995 free (demangled_name);
996 arg = value_add (value_cast (builtin_type_int, arg),
997 value_field (best_entry, 0));
1000 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1004 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1005 function tables, probe ARG's tables (including the vtables
1006 of its baseclasses) to figure out the most derived type that ARG
1007 could actually be a pointer to. */
1010 value_from_vtable_info (arg, type)
1014 /* Take care of preliminaries. */
1015 if (TYPE_VPTR_FIELDNO (type) < 0)
1016 fill_in_vptr_fieldno (type);
1017 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1020 return value_headof (arg, 0, type);
1023 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1024 pointer which is for the base class whose type is BASECLASS. */
1027 vb_match (type, index, basetype)
1030 struct type *basetype;
1032 struct type *fieldtype;
1033 char *name = TYPE_FIELD_NAME (type, index);
1034 char *field_class_name = NULL;
1038 /* gcc 2.4 uses _vb$. */
1039 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1040 field_class_name = name + 4;
1041 /* gcc 2.5 will use __vb_. */
1042 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1043 field_class_name = name + 5;
1045 if (field_class_name == NULL)
1046 /* This field is not a virtual base class pointer. */
1049 /* It's a virtual baseclass pointer, now we just need to find out whether
1050 it is for this baseclass. */
1051 fieldtype = TYPE_FIELD_TYPE (type, index);
1052 if (fieldtype == NULL
1053 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1054 /* "Can't happen". */
1057 /* What we check for is that either the types are equal (needed for
1058 nameless types) or have the same name. This is ugly, and a more
1059 elegant solution should be devised (which would probably just push
1060 the ugliness into symbol reading unless we change the stabs format). */
1061 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1064 if (TYPE_NAME (basetype) != NULL
1065 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1066 && STREQ (TYPE_NAME (basetype),
1067 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 /* Compute the offset of the baseclass which is
1073 the INDEXth baseclass of class TYPE, for a value ARG,
1074 wih extra offset of OFFSET.
1075 The result is the offste of the baseclass value relative
1076 to (the address of)(ARG) + OFFSET.
1078 -1 is returned on error. */
1081 baseclass_offset (type, index, arg, offset)
1087 struct type *basetype = TYPE_BASECLASS (type, index);
1089 if (BASETYPE_VIA_VIRTUAL (type, index))
1091 /* Must hunt for the pointer to this virtual baseclass. */
1092 register int i, len = TYPE_NFIELDS (type);
1093 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1095 /* First look for the virtual baseclass pointer
1097 for (i = n_baseclasses; i < len; i++)
1099 if (vb_match (type, i, basetype))
1102 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1103 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1105 + (TYPE_FIELD_BITPOS (type, i) / 8));
1107 if (VALUE_LVAL (arg) != lval_memory)
1111 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1114 /* Not in the fields, so try looking through the baseclasses. */
1115 for (i = index+1; i < n_baseclasses; i++)
1118 baseclass_offset (type, i, arg, offset);
1126 /* Baseclass is easily computed. */
1127 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1130 /* Compute the address of the baseclass which is
1131 the INDEXth baseclass of class TYPE. The TYPE base
1132 of the object is at VALADDR.
1134 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1135 or 0 if no error. In that case the return value is not the address
1136 of the baseclasss, but the address which could not be read
1139 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1142 baseclass_addr (type, index, valaddr, valuep, errp)
1149 struct type *basetype = TYPE_BASECLASS (type, index);
1154 if (BASETYPE_VIA_VIRTUAL (type, index))
1156 /* Must hunt for the pointer to this virtual baseclass. */
1157 register int i, len = TYPE_NFIELDS (type);
1158 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1160 /* First look for the virtual baseclass pointer
1162 for (i = n_baseclasses; i < len; i++)
1164 if (vb_match (type, i, basetype))
1166 value_ptr val = allocate_value (basetype);
1171 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1172 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1174 status = target_read_memory (addr,
1175 VALUE_CONTENTS_RAW (val),
1176 TYPE_LENGTH (basetype));
1177 VALUE_LVAL (val) = lval_memory;
1178 VALUE_ADDRESS (val) = addr;
1184 release_value (val);
1188 return (char *)addr;
1194 return (char *) VALUE_CONTENTS (val);
1198 /* Not in the fields, so try looking through the baseclasses. */
1199 for (i = index+1; i < n_baseclasses; i++)
1203 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1213 /* Baseclass is easily computed. */
1216 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1219 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1222 Extracting bits depends on endianness of the machine. Compute the
1223 number of least significant bits to discard. For big endian machines,
1224 we compute the total number of bits in the anonymous object, subtract
1225 off the bit count from the MSB of the object to the MSB of the
1226 bitfield, then the size of the bitfield, which leaves the LSB discard
1227 count. For little endian machines, the discard count is simply the
1228 number of bits from the LSB of the anonymous object to the LSB of the
1231 If the field is signed, we also do sign extension. */
1234 unpack_field_as_long (type, valaddr, fieldno)
1239 unsigned LONGEST val;
1240 unsigned LONGEST valmask;
1241 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1242 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1245 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1247 /* Extract bits. See comment above. */
1250 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1252 lsbcount = (bitpos % 8);
1256 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1257 If the field is signed, and is negative, then sign extend. */
1259 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1261 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1263 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1265 if (val & (valmask ^ (valmask >> 1)))
1274 /* Modify the value of a bitfield. ADDR points to a block of memory in
1275 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1276 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1277 indicate which bits (in target bit order) comprise the bitfield. */
1280 modify_field (addr, fieldval, bitpos, bitsize)
1283 int bitpos, bitsize;
1287 /* Reject values too big to fit in the field in question,
1288 otherwise adjoining fields may be corrupted. */
1289 if (bitsize < (8 * sizeof (fieldval))
1290 && 0 != (fieldval & ~((1<<bitsize)-1)))
1292 /* FIXME: would like to include fieldval in the message, but
1293 we don't have a sprintf_longest. */
1294 error ("Value does not fit in %d bits.", bitsize);
1297 oword = extract_signed_integer (addr, sizeof oword);
1299 /* Shifting for bit field depends on endianness of the target machine. */
1301 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1304 /* Mask out old value, while avoiding shifts >= size of oword */
1305 if (bitsize < 8 * sizeof (oword))
1306 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1308 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1309 oword |= fieldval << bitpos;
1311 store_signed_integer (addr, sizeof oword, oword);
1314 /* Convert C numbers into newly allocated values */
1317 value_from_longest (type, num)
1319 register LONGEST num;
1321 register value_ptr val = allocate_value (type);
1322 register enum type_code code = TYPE_CODE (type);
1323 register int len = TYPE_LENGTH (type);
1328 case TYPE_CODE_CHAR:
1329 case TYPE_CODE_ENUM:
1330 case TYPE_CODE_BOOL:
1331 case TYPE_CODE_RANGE:
1332 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1337 /* This assumes that all pointers of a given length
1338 have the same form. */
1339 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1343 error ("Unexpected type encountered for integer constant.");
1349 value_from_double (type, num)
1353 register value_ptr val = allocate_value (type);
1354 register enum type_code code = TYPE_CODE (type);
1355 register int len = TYPE_LENGTH (type);
1357 if (code == TYPE_CODE_FLT)
1359 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1362 error ("Unexpected type encountered for floating constant.");
1367 /* Deal with the value that is "about to be returned". */
1369 /* Return the value that a function returning now
1370 would be returning to its caller, assuming its type is VALTYPE.
1371 RETBUF is where we look for what ought to be the contents
1372 of the registers (in raw form). This is because it is often
1373 desirable to restore old values to those registers
1374 after saving the contents of interest, and then call
1375 this function using the saved values.
1376 struct_return is non-zero when the function in question is
1377 using the structure return conventions on the machine in question;
1378 0 when it is using the value returning conventions (this often
1379 means returning pointer to where structure is vs. returning value). */
1382 value_being_returned (valtype, retbuf, struct_return)
1383 register struct type *valtype;
1384 char retbuf[REGISTER_BYTES];
1388 register value_ptr val;
1391 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1392 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1393 if (struct_return) {
1394 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1396 error ("Function return value unknown");
1397 return value_at (valtype, addr);
1401 val = allocate_value (valtype);
1402 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1407 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1408 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1409 and TYPE is the type (which is known to be struct, union or array).
1411 On most machines, the struct convention is used unless we are
1412 using gcc and the type is of a special size. */
1413 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1414 native compiler. GCC 2.3.3 was the last release that did it the
1415 old way. Since gcc2_compiled was not changed, we have no
1416 way to correctly win in all cases, so we just do the right thing
1417 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1418 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1419 would cause more chaos than dealing with some struct returns being
1421 #if !defined (USE_STRUCT_CONVENTION)
1422 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1423 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1424 || TYPE_LENGTH (value_type) == 2 \
1425 || TYPE_LENGTH (value_type) == 4 \
1426 || TYPE_LENGTH (value_type) == 8 \
1431 /* Return true if the function specified is using the structure returning
1432 convention on this machine to return arguments, or 0 if it is using
1433 the value returning convention. FUNCTION is the value representing
1434 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1435 is the type returned by the function. GCC_P is nonzero if compiled
1439 using_struct_return (function, funcaddr, value_type, gcc_p)
1442 struct type *value_type;
1446 register enum type_code code = TYPE_CODE (value_type);
1448 if (code == TYPE_CODE_ERROR)
1449 error ("Function return type unknown.");
1451 if (code == TYPE_CODE_STRUCT ||
1452 code == TYPE_CODE_UNION ||
1453 code == TYPE_CODE_ARRAY)
1454 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1459 /* Store VAL so it will be returned if a function returns now.
1460 Does not verify that VAL's type matches what the current
1461 function wants to return. */
1464 set_return_value (val)
1467 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1471 if (code == TYPE_CODE_ERROR)
1472 error ("Function return type unknown.");
1474 if ( code == TYPE_CODE_STRUCT
1475 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1476 error ("GDB does not support specifying a struct or union return value.");
1478 /* FIXME, this is bogus. We don't know what the return conventions
1479 are, or how values should be promoted.... */
1480 if (code == TYPE_CODE_FLT)
1482 dbuf = value_as_double (val);
1484 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1488 lbuf = value_as_long (val);
1489 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1494 _initialize_values ()
1496 add_cmd ("convenience", no_class, show_convenience,
1497 "Debugger convenience (\"$foo\") variables.\n\
1498 These variables are created when you assign them values;\n\
1499 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1500 A few convenience variables are given values automatically:\n\
1501 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1502 \"$__\" holds the contents of the last address examined with \"x\".",
1505 add_cmd ("values", no_class, show_values,
1506 "Elements of value history around item number IDX (or last ten).",