1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Intel 80386 machine specific gas.
26 Bugs & suggestions are completely welcome. This is free software.
27 Please help us make it better. */
30 #include "safe-ctype.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34 #include "opcode/i386.h"
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
44 #ifndef SCALE1_WHEN_NO_INDEX
45 /* Specifying a scale factor besides 1 when there is no index is
46 futile. eg. `mov (%ebx,2),%al' does exactly the same as
47 `mov (%ebx),%al'. To slavishly follow what the programmer
48 specified, set SCALE1_WHEN_NO_INDEX to 0. */
49 #define SCALE1_WHEN_NO_INDEX 1
53 #define RELOC_ENUM enum bfd_reloc_code_real
55 #define RELOC_ENUM int
59 #define DEFAULT_ARCH "i386"
64 #define INLINE __inline__
70 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
71 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
72 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
73 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
74 static INLINE int fits_in_signed_word PARAMS ((offsetT));
75 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
76 static INLINE int fits_in_signed_long PARAMS ((offsetT));
77 static int smallest_imm_type PARAMS ((offsetT));
78 static offsetT offset_in_range PARAMS ((offsetT, int));
79 static int add_prefix PARAMS ((unsigned int));
80 static void set_code_flag PARAMS ((int));
81 static void set_16bit_gcc_code_flag PARAMS ((int));
82 static void set_intel_syntax PARAMS ((int));
83 static void set_cpu_arch PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void optimize_imm PARAMS ((void));
93 static void optimize_disp PARAMS ((void));
94 static int match_template PARAMS ((void));
95 static int check_string PARAMS ((void));
96 static int process_suffix PARAMS ((void));
97 static int check_byte_reg PARAMS ((void));
98 static int check_long_reg PARAMS ((void));
99 static int check_qword_reg PARAMS ((void));
100 static int check_word_reg PARAMS ((void));
101 static int finalize_imm PARAMS ((void));
102 static int process_operands PARAMS ((void));
103 static const seg_entry *build_modrm_byte PARAMS ((void));
104 static void output_insn PARAMS ((void));
105 static void output_branch PARAMS ((void));
106 static void output_jump PARAMS ((void));
107 static void output_interseg_jump PARAMS ((void));
108 static void output_imm PARAMS ((fragS *insn_start_frag,
109 offsetT insn_start_off));
110 static void output_disp PARAMS ((fragS *insn_start_frag,
111 offsetT insn_start_off));
113 static void s_bss PARAMS ((int));
116 static const char *default_arch = DEFAULT_ARCH;
118 /* 'md_assemble ()' gathers together information and puts it into a
125 const reg_entry *regs;
130 /* TM holds the template for the insn were currently assembling. */
133 /* SUFFIX holds the instruction mnemonic suffix if given.
134 (e.g. 'l' for 'movl') */
137 /* OPERANDS gives the number of given operands. */
138 unsigned int operands;
140 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
141 of given register, displacement, memory operands and immediate
143 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
145 /* TYPES [i] is the type (see above #defines) which tells us how to
146 use OP[i] for the corresponding operand. */
147 unsigned int types[MAX_OPERANDS];
149 /* Displacement expression, immediate expression, or register for each
151 union i386_op op[MAX_OPERANDS];
153 /* Flags for operands. */
154 unsigned int flags[MAX_OPERANDS];
155 #define Operand_PCrel 1
157 /* Relocation type for operand */
158 RELOC_ENUM reloc[MAX_OPERANDS];
160 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
161 the base index byte below. */
162 const reg_entry *base_reg;
163 const reg_entry *index_reg;
164 unsigned int log2_scale_factor;
166 /* SEG gives the seg_entries of this insn. They are zero unless
167 explicit segment overrides are given. */
168 const seg_entry *seg[2];
170 /* PREFIX holds all the given prefix opcodes (usually null).
171 PREFIXES is the number of prefix opcodes. */
172 unsigned int prefixes;
173 unsigned char prefix[MAX_PREFIXES];
175 /* RM and SIB are the modrm byte and the sib byte where the
176 addressing modes of this insn are encoded. */
183 typedef struct _i386_insn i386_insn;
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
188 const char extra_symbol_chars[] = "*%-(@[";
190 const char extra_symbol_chars[] = "*%-([";
193 #if (defined (TE_I386AIX) \
194 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
195 && !defined (TE_LINUX) \
196 && !defined (TE_FreeBSD) \
197 && !defined (TE_NetBSD)))
198 /* This array holds the chars that always start a comment. If the
199 pre-processor is disabled, these aren't very useful. */
200 const char comment_chars[] = "#/";
201 #define PREFIX_SEPARATOR '\\'
203 /* This array holds the chars that only start a comment at the beginning of
204 a line. If the line seems to have the form '# 123 filename'
205 .line and .file directives will appear in the pre-processed output.
206 Note that input_file.c hand checks for '#' at the beginning of the
207 first line of the input file. This is because the compiler outputs
208 #NO_APP at the beginning of its output.
209 Also note that comments started like this one will always work if
210 '/' isn't otherwise defined. */
211 const char line_comment_chars[] = "#";
214 /* Putting '/' here makes it impossible to use the divide operator.
215 However, we need it for compatibility with SVR4 systems. */
216 const char comment_chars[] = "#";
217 #define PREFIX_SEPARATOR '/'
219 const char line_comment_chars[] = "/#";
222 const char line_separator_chars[] = ";";
224 /* Chars that can be used to separate mant from exp in floating point
226 const char EXP_CHARS[] = "eE";
228 /* Chars that mean this number is a floating point constant
231 const char FLT_CHARS[] = "fFdDxX";
233 /* Tables for lexical analysis. */
234 static char mnemonic_chars[256];
235 static char register_chars[256];
236 static char operand_chars[256];
237 static char identifier_chars[256];
238 static char digit_chars[256];
240 /* Lexical macros. */
241 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
242 #define is_operand_char(x) (operand_chars[(unsigned char) x])
243 #define is_register_char(x) (register_chars[(unsigned char) x])
244 #define is_space_char(x) ((x) == ' ')
245 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
246 #define is_digit_char(x) (digit_chars[(unsigned char) x])
248 /* All non-digit non-letter charcters that may occur in an operand. */
249 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
251 /* md_assemble() always leaves the strings it's passed unaltered. To
252 effect this we maintain a stack of saved characters that we've smashed
253 with '\0's (indicating end of strings for various sub-fields of the
254 assembler instruction). */
255 static char save_stack[32];
256 static char *save_stack_p;
257 #define END_STRING_AND_SAVE(s) \
258 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
259 #define RESTORE_END_STRING(s) \
260 do { *(s) = *--save_stack_p; } while (0)
262 /* The instruction we're assembling. */
265 /* Possible templates for current insn. */
266 static const templates *current_templates;
268 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
269 static expressionS disp_expressions[2], im_expressions[2];
271 /* Current operand we are working on. */
272 static int this_operand;
274 /* We support four different modes. FLAG_CODE variable is used to distinguish
281 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
283 static enum flag_code flag_code;
284 static int use_rela_relocations = 0;
286 /* The names used to print error messages. */
287 static const char *flag_code_names[] =
294 /* 1 for intel syntax,
296 static int intel_syntax = 0;
298 /* 1 if register prefix % not required. */
299 static int allow_naked_reg = 0;
301 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
302 leave, push, and pop instructions so that gcc has the same stack
303 frame as in 32 bit mode. */
304 static char stackop_size = '\0';
306 /* Non-zero to optimize code alignment. */
307 int optimize_align_code = 1;
309 /* Non-zero to quieten some warnings. */
310 static int quiet_warnings = 0;
313 static const char *cpu_arch_name = NULL;
315 /* CPU feature flags. */
316 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
318 /* If set, conditional jumps are not automatically promoted to handle
319 larger than a byte offset. */
320 static unsigned int no_cond_jump_promotion = 0;
322 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
325 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
326 unsigned int x86_dwarf2_return_column;
328 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
329 int x86_cie_data_alignment;
331 /* Interface to relax_segment.
332 There are 3 major relax states for 386 jump insns because the
333 different types of jumps add different sizes to frags when we're
334 figuring out what sort of jump to choose to reach a given label. */
337 #define UNCOND_JUMP 0
339 #define COND_JUMP86 2
344 #define SMALL16 (SMALL | CODE16)
346 #define BIG16 (BIG | CODE16)
350 #define INLINE __inline__
356 #define ENCODE_RELAX_STATE(type, size) \
357 ((relax_substateT) (((type) << 2) | (size)))
358 #define TYPE_FROM_RELAX_STATE(s) \
360 #define DISP_SIZE_FROM_RELAX_STATE(s) \
361 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
363 /* This table is used by relax_frag to promote short jumps to long
364 ones where necessary. SMALL (short) jumps may be promoted to BIG
365 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
366 don't allow a short jump in a 32 bit code segment to be promoted to
367 a 16 bit offset jump because it's slower (requires data size
368 prefix), and doesn't work, unless the destination is in the bottom
369 64k of the code segment (The top 16 bits of eip are zeroed). */
371 const relax_typeS md_relax_table[] =
374 1) most positive reach of this state,
375 2) most negative reach of this state,
376 3) how many bytes this mode will have in the variable part of the frag
377 4) which index into the table to try if we can't fit into this one. */
379 /* UNCOND_JUMP states. */
380 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
381 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
382 /* dword jmp adds 4 bytes to frag:
383 0 extra opcode bytes, 4 displacement bytes. */
385 /* word jmp adds 2 byte2 to frag:
386 0 extra opcode bytes, 2 displacement bytes. */
389 /* COND_JUMP states. */
390 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
392 /* dword conditionals adds 5 bytes to frag:
393 1 extra opcode byte, 4 displacement bytes. */
395 /* word conditionals add 3 bytes to frag:
396 1 extra opcode byte, 2 displacement bytes. */
399 /* COND_JUMP86 states. */
400 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
402 /* dword conditionals adds 5 bytes to frag:
403 1 extra opcode byte, 4 displacement bytes. */
405 /* word conditionals add 4 bytes to frag:
406 1 displacement byte and a 3 byte long branch insn. */
410 static const arch_entry cpu_arch[] = {
412 {"i186", Cpu086|Cpu186 },
413 {"i286", Cpu086|Cpu186|Cpu286 },
414 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
415 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
416 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
417 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
418 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
419 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
420 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuSSE|CpuSSE2 },
421 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
422 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|Cpu3dnow },
423 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|Cpu3dnow|CpuSSE|CpuSSE2 },
427 const pseudo_typeS md_pseudo_table[] =
429 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
430 {"align", s_align_bytes, 0},
432 {"align", s_align_ptwo, 0},
434 {"arch", set_cpu_arch, 0},
438 {"ffloat", float_cons, 'f'},
439 {"dfloat", float_cons, 'd'},
440 {"tfloat", float_cons, 'x'},
442 {"noopt", s_ignore, 0},
443 {"optim", s_ignore, 0},
444 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
445 {"code16", set_code_flag, CODE_16BIT},
446 {"code32", set_code_flag, CODE_32BIT},
447 {"code64", set_code_flag, CODE_64BIT},
448 {"intel_syntax", set_intel_syntax, 1},
449 {"att_syntax", set_intel_syntax, 0},
450 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
451 {"loc", dwarf2_directive_loc, 0},
455 /* For interface with expression (). */
456 extern char *input_line_pointer;
458 /* Hash table for instruction mnemonic lookup. */
459 static struct hash_control *op_hash;
461 /* Hash table for register lookup. */
462 static struct hash_control *reg_hash;
465 i386_align_code (fragP, count)
469 /* Various efficient no-op patterns for aligning code labels.
470 Note: Don't try to assemble the instructions in the comments.
471 0L and 0w are not legal. */
472 static const char f32_1[] =
474 static const char f32_2[] =
475 {0x89,0xf6}; /* movl %esi,%esi */
476 static const char f32_3[] =
477 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
478 static const char f32_4[] =
479 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
480 static const char f32_5[] =
482 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
483 static const char f32_6[] =
484 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
485 static const char f32_7[] =
486 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
487 static const char f32_8[] =
489 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
490 static const char f32_9[] =
491 {0x89,0xf6, /* movl %esi,%esi */
492 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
493 static const char f32_10[] =
494 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
495 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
496 static const char f32_11[] =
497 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
498 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
499 static const char f32_12[] =
500 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
501 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
502 static const char f32_13[] =
503 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
504 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
505 static const char f32_14[] =
506 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
507 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
508 static const char f32_15[] =
509 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
510 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
511 static const char f16_3[] =
512 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
513 static const char f16_4[] =
514 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
515 static const char f16_5[] =
517 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
518 static const char f16_6[] =
519 {0x89,0xf6, /* mov %si,%si */
520 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
521 static const char f16_7[] =
522 {0x8d,0x74,0x00, /* lea 0(%si),%si */
523 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
524 static const char f16_8[] =
525 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
526 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
527 static const char *const f32_patt[] = {
528 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
529 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
531 static const char *const f16_patt[] = {
532 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
533 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
536 if (count <= 0 || count > 15)
539 /* The recommended way to pad 64bit code is to use NOPs preceded by
540 maximally four 0x66 prefixes. Balance the size of nops. */
541 if (flag_code == CODE_64BIT)
544 int nnops = (count + 3) / 4;
545 int len = count / nnops;
546 int remains = count - nnops * len;
549 for (i = 0; i < remains; i++)
551 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
552 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
555 for (; i < nnops; i++)
557 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
558 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
563 if (flag_code == CODE_16BIT)
565 memcpy (fragP->fr_literal + fragP->fr_fix,
566 f16_patt[count - 1], count);
568 /* Adjust jump offset. */
569 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
572 memcpy (fragP->fr_literal + fragP->fr_fix,
573 f32_patt[count - 1], count);
574 fragP->fr_var = count;
577 static INLINE unsigned int
578 mode_from_disp_size (t)
581 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
585 fits_in_signed_byte (num)
588 return (num >= -128) && (num <= 127);
592 fits_in_unsigned_byte (num)
595 return (num & 0xff) == num;
599 fits_in_unsigned_word (num)
602 return (num & 0xffff) == num;
606 fits_in_signed_word (num)
609 return (-32768 <= num) && (num <= 32767);
612 fits_in_signed_long (num)
613 offsetT num ATTRIBUTE_UNUSED;
618 return (!(((offsetT) -1 << 31) & num)
619 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
621 } /* fits_in_signed_long() */
623 fits_in_unsigned_long (num)
624 offsetT num ATTRIBUTE_UNUSED;
629 return (num & (((offsetT) 2 << 31) - 1)) == num;
631 } /* fits_in_unsigned_long() */
634 smallest_imm_type (num)
637 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
639 /* This code is disabled on the 486 because all the Imm1 forms
640 in the opcode table are slower on the i486. They're the
641 versions with the implicitly specified single-position
642 displacement, which has another syntax if you really want to
645 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
647 return (fits_in_signed_byte (num)
648 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
649 : fits_in_unsigned_byte (num)
650 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
651 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
652 ? (Imm16 | Imm32 | Imm32S | Imm64)
653 : fits_in_signed_long (num)
654 ? (Imm32 | Imm32S | Imm64)
655 : fits_in_unsigned_long (num)
661 offset_in_range (val, size)
669 case 1: mask = ((addressT) 1 << 8) - 1; break;
670 case 2: mask = ((addressT) 1 << 16) - 1; break;
671 case 4: mask = ((addressT) 2 << 31) - 1; break;
673 case 8: mask = ((addressT) 2 << 63) - 1; break;
678 /* If BFD64, sign extend val. */
679 if (!use_rela_relocations)
680 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
681 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
683 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
685 char buf1[40], buf2[40];
687 sprint_value (buf1, val);
688 sprint_value (buf2, val & mask);
689 as_warn (_("%s shortened to %s"), buf1, buf2);
694 /* Returns 0 if attempting to add a prefix where one from the same
695 class already exists, 1 if non rep/repne added, 2 if rep/repne
704 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
705 && flag_code == CODE_64BIT)
713 case CS_PREFIX_OPCODE:
714 case DS_PREFIX_OPCODE:
715 case ES_PREFIX_OPCODE:
716 case FS_PREFIX_OPCODE:
717 case GS_PREFIX_OPCODE:
718 case SS_PREFIX_OPCODE:
722 case REPNE_PREFIX_OPCODE:
723 case REPE_PREFIX_OPCODE:
726 case LOCK_PREFIX_OPCODE:
734 case ADDR_PREFIX_OPCODE:
738 case DATA_PREFIX_OPCODE:
743 if (i.prefix[q] != 0)
745 as_bad (_("same type of prefix used twice"));
750 i.prefix[q] = prefix;
755 set_code_flag (value)
759 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
760 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
761 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
763 as_bad (_("64bit mode not supported on this CPU."));
765 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
767 as_bad (_("32bit mode not supported on this CPU."));
773 set_16bit_gcc_code_flag (new_code_flag)
776 flag_code = new_code_flag;
777 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
778 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
783 set_intel_syntax (syntax_flag)
786 /* Find out if register prefixing is specified. */
787 int ask_naked_reg = 0;
790 if (!is_end_of_line[(unsigned char) *input_line_pointer])
792 char *string = input_line_pointer;
793 int e = get_symbol_end ();
795 if (strcmp (string, "prefix") == 0)
797 else if (strcmp (string, "noprefix") == 0)
800 as_bad (_("bad argument to syntax directive."));
801 *input_line_pointer = e;
803 demand_empty_rest_of_line ();
805 intel_syntax = syntax_flag;
807 if (ask_naked_reg == 0)
810 allow_naked_reg = (intel_syntax
811 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
813 /* Conservative default. */
818 allow_naked_reg = (ask_naked_reg < 0);
823 int dummy ATTRIBUTE_UNUSED;
827 if (!is_end_of_line[(unsigned char) *input_line_pointer])
829 char *string = input_line_pointer;
830 int e = get_symbol_end ();
833 for (i = 0; cpu_arch[i].name; i++)
835 if (strcmp (string, cpu_arch[i].name) == 0)
837 cpu_arch_name = cpu_arch[i].name;
838 cpu_arch_flags = (cpu_arch[i].flags
839 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
843 if (!cpu_arch[i].name)
844 as_bad (_("no such architecture: `%s'"), string);
846 *input_line_pointer = e;
849 as_bad (_("missing cpu architecture"));
851 no_cond_jump_promotion = 0;
852 if (*input_line_pointer == ','
853 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
855 char *string = ++input_line_pointer;
856 int e = get_symbol_end ();
858 if (strcmp (string, "nojumps") == 0)
859 no_cond_jump_promotion = 1;
860 else if (strcmp (string, "jumps") == 0)
863 as_bad (_("no such architecture modifier: `%s'"), string);
865 *input_line_pointer = e;
868 demand_empty_rest_of_line ();
875 if (!strcmp (default_arch, "x86_64"))
876 return bfd_mach_x86_64;
877 else if (!strcmp (default_arch, "i386"))
878 return bfd_mach_i386_i386;
880 as_fatal (_("Unknown architecture"));
887 const char *hash_err;
889 /* Initialize op_hash hash table. */
890 op_hash = hash_new ();
893 const template *optab;
894 templates *core_optab;
896 /* Setup for loop. */
898 core_optab = (templates *) xmalloc (sizeof (templates));
899 core_optab->start = optab;
904 if (optab->name == NULL
905 || strcmp (optab->name, (optab - 1)->name) != 0)
907 /* different name --> ship out current template list;
908 add to hash table; & begin anew. */
909 core_optab->end = optab;
910 hash_err = hash_insert (op_hash,
915 as_fatal (_("Internal Error: Can't hash %s: %s"),
919 if (optab->name == NULL)
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
927 /* Initialize reg_hash hash table. */
928 reg_hash = hash_new ();
930 const reg_entry *regtab;
932 for (regtab = i386_regtab;
933 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
936 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
944 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
949 for (c = 0; c < 256; c++)
954 mnemonic_chars[c] = c;
955 register_chars[c] = c;
956 operand_chars[c] = c;
958 else if (ISLOWER (c))
960 mnemonic_chars[c] = c;
961 register_chars[c] = c;
962 operand_chars[c] = c;
964 else if (ISUPPER (c))
966 mnemonic_chars[c] = TOLOWER (c);
967 register_chars[c] = mnemonic_chars[c];
968 operand_chars[c] = c;
971 if (ISALPHA (c) || ISDIGIT (c))
972 identifier_chars[c] = c;
975 identifier_chars[c] = c;
976 operand_chars[c] = c;
981 identifier_chars['@'] = '@';
983 digit_chars['-'] = '-';
984 identifier_chars['_'] = '_';
985 identifier_chars['.'] = '.';
987 for (p = operand_special_chars; *p != '\0'; p++)
988 operand_chars[(unsigned char) *p] = *p;
991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
992 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
994 record_alignment (text_section, 2);
995 record_alignment (data_section, 2);
996 record_alignment (bss_section, 2);
1000 if (flag_code == CODE_64BIT)
1002 x86_dwarf2_return_column = 16;
1003 x86_cie_data_alignment = -8;
1007 x86_dwarf2_return_column = 8;
1008 x86_cie_data_alignment = -4;
1013 i386_print_statistics (file)
1016 hash_print_statistics (file, "i386 opcode", op_hash);
1017 hash_print_statistics (file, "i386 register", reg_hash);
1022 /* Debugging routines for md_assemble. */
1023 static void pi PARAMS ((char *, i386_insn *));
1024 static void pte PARAMS ((template *));
1025 static void pt PARAMS ((unsigned int));
1026 static void pe PARAMS ((expressionS *));
1027 static void ps PARAMS ((symbolS *));
1036 fprintf (stdout, "%s: template ", line);
1038 fprintf (stdout, " address: base %s index %s scale %x\n",
1039 x->base_reg ? x->base_reg->reg_name : "none",
1040 x->index_reg ? x->index_reg->reg_name : "none",
1041 x->log2_scale_factor);
1042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1043 x->rm.mode, x->rm.reg, x->rm.regmem);
1044 fprintf (stdout, " sib: base %x index %x scale %x\n",
1045 x->sib.base, x->sib.index, x->sib.scale);
1046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1047 (x->rex & REX_MODE64) != 0,
1048 (x->rex & REX_EXTX) != 0,
1049 (x->rex & REX_EXTY) != 0,
1050 (x->rex & REX_EXTZ) != 0);
1051 for (i = 0; i < x->operands; i++)
1053 fprintf (stdout, " #%d: ", i + 1);
1055 fprintf (stdout, "\n");
1057 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1058 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1059 if (x->types[i] & Imm)
1061 if (x->types[i] & Disp)
1062 pe (x->op[i].disps);
1071 fprintf (stdout, " %d operands ", t->operands);
1072 fprintf (stdout, "opcode %x ", t->base_opcode);
1073 if (t->extension_opcode != None)
1074 fprintf (stdout, "ext %x ", t->extension_opcode);
1075 if (t->opcode_modifier & D)
1076 fprintf (stdout, "D");
1077 if (t->opcode_modifier & W)
1078 fprintf (stdout, "W");
1079 fprintf (stdout, "\n");
1080 for (i = 0; i < t->operands; i++)
1082 fprintf (stdout, " #%d type ", i + 1);
1083 pt (t->operand_types[i]);
1084 fprintf (stdout, "\n");
1092 fprintf (stdout, " operation %d\n", e->X_op);
1093 fprintf (stdout, " add_number %ld (%lx)\n",
1094 (long) e->X_add_number, (long) e->X_add_number);
1095 if (e->X_add_symbol)
1097 fprintf (stdout, " add_symbol ");
1098 ps (e->X_add_symbol);
1099 fprintf (stdout, "\n");
1103 fprintf (stdout, " op_symbol ");
1104 ps (e->X_op_symbol);
1105 fprintf (stdout, "\n");
1113 fprintf (stdout, "%s type %s%s",
1115 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1116 segment_name (S_GET_SEGMENT (s)));
1125 static const type_names[] =
1138 { BaseIndex, "BaseIndex" },
1142 { Disp32S, "d32s" },
1144 { InOutPortReg, "InOutPortReg" },
1145 { ShiftCount, "ShiftCount" },
1146 { Control, "control reg" },
1147 { Test, "test reg" },
1148 { Debug, "debug reg" },
1149 { FloatReg, "FReg" },
1150 { FloatAcc, "FAcc" },
1154 { JumpAbsolute, "Jump Absolute" },
1165 const struct type_name *ty;
1167 for (ty = type_names; ty->mask; ty++)
1169 fprintf (stdout, "%s, ", ty->tname);
1173 #endif /* DEBUG386 */
1175 #ifdef BFD_ASSEMBLER
1176 static bfd_reloc_code_real_type reloc
1177 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1179 static bfd_reloc_code_real_type
1180 reloc (size, pcrel, sign, other)
1184 bfd_reloc_code_real_type other;
1186 if (other != NO_RELOC)
1192 as_bad (_("There are no unsigned pc-relative relocations"));
1195 case 1: return BFD_RELOC_8_PCREL;
1196 case 2: return BFD_RELOC_16_PCREL;
1197 case 4: return BFD_RELOC_32_PCREL;
1199 as_bad (_("can not do %d byte pc-relative relocation"), size);
1206 case 4: return BFD_RELOC_X86_64_32S;
1211 case 1: return BFD_RELOC_8;
1212 case 2: return BFD_RELOC_16;
1213 case 4: return BFD_RELOC_32;
1214 case 8: return BFD_RELOC_64;
1216 as_bad (_("can not do %s %d byte relocation"),
1217 sign ? "signed" : "unsigned", size);
1221 return BFD_RELOC_NONE;
1224 /* Here we decide which fixups can be adjusted to make them relative to
1225 the beginning of the section instead of the symbol. Basically we need
1226 to make sure that the dynamic relocations are done correctly, so in
1227 some cases we force the original symbol to be used. */
1230 tc_i386_fix_adjustable (fixP)
1231 fixS *fixP ATTRIBUTE_UNUSED;
1233 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1234 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1237 /* Don't adjust pc-relative references to merge sections in 64-bit
1239 if (use_rela_relocations
1240 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1244 /* adjust_reloc_syms doesn't know about the GOT. */
1245 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1246 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1247 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1248 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1249 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1250 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1251 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1252 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1253 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1254 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1255 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1256 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1257 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1258 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1259 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1260 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1261 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1262 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1263 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1264 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1265 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1271 #define reloc(SIZE,PCREL,SIGN,OTHER) 0
1272 #define BFD_RELOC_8 0
1273 #define BFD_RELOC_16 0
1274 #define BFD_RELOC_32 0
1275 #define BFD_RELOC_8_PCREL 0
1276 #define BFD_RELOC_16_PCREL 0
1277 #define BFD_RELOC_32_PCREL 0
1278 #define BFD_RELOC_386_PLT32 0
1279 #define BFD_RELOC_386_GOT32 0
1280 #define BFD_RELOC_386_GOTOFF 0
1281 #define BFD_RELOC_386_TLS_GD 0
1282 #define BFD_RELOC_386_TLS_LDM 0
1283 #define BFD_RELOC_386_TLS_LDO_32 0
1284 #define BFD_RELOC_386_TLS_IE_32 0
1285 #define BFD_RELOC_386_TLS_IE 0
1286 #define BFD_RELOC_386_TLS_GOTIE 0
1287 #define BFD_RELOC_386_TLS_LE_32 0
1288 #define BFD_RELOC_386_TLS_LE 0
1289 #define BFD_RELOC_X86_64_PLT32 0
1290 #define BFD_RELOC_X86_64_GOT32 0
1291 #define BFD_RELOC_X86_64_GOTPCREL 0
1292 #define BFD_RELOC_X86_64_TLSGD 0
1293 #define BFD_RELOC_X86_64_TLSLD 0
1294 #define BFD_RELOC_X86_64_DTPOFF32 0
1295 #define BFD_RELOC_X86_64_GOTTPOFF 0
1296 #define BFD_RELOC_X86_64_TPOFF32 0
1299 static int intel_float_operand PARAMS ((const char *mnemonic));
1302 intel_float_operand (mnemonic)
1303 const char *mnemonic;
1305 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1308 if (mnemonic[0] == 'f')
1314 /* This is the guts of the machine-dependent assembler. LINE points to a
1315 machine dependent instruction. This function is supposed to emit
1316 the frags/bytes it assembles to. */
1323 char mnemonic[MAX_MNEM_SIZE];
1325 /* Initialize globals. */
1326 memset (&i, '\0', sizeof (i));
1327 for (j = 0; j < MAX_OPERANDS; j++)
1328 i.reloc[j] = NO_RELOC;
1329 memset (disp_expressions, '\0', sizeof (disp_expressions));
1330 memset (im_expressions, '\0', sizeof (im_expressions));
1331 save_stack_p = save_stack;
1333 /* First parse an instruction mnemonic & call i386_operand for the operands.
1334 We assume that the scrubber has arranged it so that line[0] is the valid
1335 start of a (possibly prefixed) mnemonic. */
1337 line = parse_insn (line, mnemonic);
1341 line = parse_operands (line, mnemonic);
1345 /* Now we've parsed the mnemonic into a set of templates, and have the
1346 operands at hand. */
1348 /* All intel opcodes have reversed operands except for "bound" and
1349 "enter". We also don't reverse intersegment "jmp" and "call"
1350 instructions with 2 immediate operands so that the immediate segment
1351 precedes the offset, as it does when in AT&T mode. "enter" and the
1352 intersegment "jmp" and "call" instructions are the only ones that
1353 have two immediate operands. */
1354 if (intel_syntax && i.operands > 1
1355 && (strcmp (mnemonic, "bound") != 0)
1356 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1362 if (i.disp_operands)
1365 /* Next, we find a template that matches the given insn,
1366 making sure the overlap of the given operands types is consistent
1367 with the template operand types. */
1369 if (!match_template ())
1374 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1376 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1377 i.tm.base_opcode ^= FloatR;
1379 /* Zap movzx and movsx suffix. The suffix may have been set from
1380 "word ptr" or "byte ptr" on the source operand, but we'll use
1381 the suffix later to choose the destination register. */
1382 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1386 if (i.tm.opcode_modifier & FWait)
1387 if (!add_prefix (FWAIT_OPCODE))
1390 /* Check string instruction segment overrides. */
1391 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1393 if (!check_string ())
1397 if (!process_suffix ())
1400 /* Make still unresolved immediate matches conform to size of immediate
1401 given in i.suffix. */
1402 if (!finalize_imm ())
1405 if (i.types[0] & Imm1)
1406 i.imm_operands = 0; /* kludge for shift insns. */
1407 if (i.types[0] & ImplicitRegister)
1409 if (i.types[1] & ImplicitRegister)
1411 if (i.types[2] & ImplicitRegister)
1414 if (i.tm.opcode_modifier & ImmExt)
1416 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1417 opcode suffix which is coded in the same place as an 8-bit
1418 immediate field would be. Here we fake an 8-bit immediate
1419 operand from the opcode suffix stored in tm.extension_opcode. */
1423 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1425 exp = &im_expressions[i.imm_operands++];
1426 i.op[i.operands].imms = exp;
1427 i.types[i.operands++] = Imm8;
1428 exp->X_op = O_constant;
1429 exp->X_add_number = i.tm.extension_opcode;
1430 i.tm.extension_opcode = None;
1433 /* For insns with operands there are more diddles to do to the opcode. */
1436 if (!process_operands ())
1439 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1441 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1442 as_warn (_("translating to `%sp'"), i.tm.name);
1445 /* Handle conversion of 'int $3' --> special int3 insn. */
1446 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1448 i.tm.base_opcode = INT3_OPCODE;
1452 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1453 && i.op[0].disps->X_op == O_constant)
1455 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1456 the absolute address given by the constant. Since ix86 jumps and
1457 calls are pc relative, we need to generate a reloc. */
1458 i.op[0].disps->X_add_symbol = &abs_symbol;
1459 i.op[0].disps->X_op = O_symbol;
1462 if ((i.tm.opcode_modifier & Rex64) != 0)
1463 i.rex |= REX_MODE64;
1465 /* For 8 bit registers we need an empty rex prefix. Also if the
1466 instruction already has a prefix, we need to convert old
1467 registers to new ones. */
1469 if (((i.types[0] & Reg8) != 0
1470 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1471 || ((i.types[1] & Reg8) != 0
1472 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1473 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1478 i.rex |= REX_OPCODE;
1479 for (x = 0; x < 2; x++)
1481 /* Look for 8 bit operand that uses old registers. */
1482 if ((i.types[x] & Reg8) != 0
1483 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1485 /* In case it is "hi" register, give up. */
1486 if (i.op[x].regs->reg_num > 3)
1487 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix.\n"),
1488 i.op[x].regs->reg_name);
1490 /* Otherwise it is equivalent to the extended register.
1491 Since the encoding doesn't change this is merely
1492 cosmetic cleanup for debug output. */
1494 i.op[x].regs = i.op[x].regs + 8;
1500 add_prefix (REX_OPCODE | i.rex);
1502 /* We are ready to output the insn. */
1507 parse_insn (line, mnemonic)
1512 char *token_start = l;
1515 /* Non-zero if we found a prefix only acceptable with string insns. */
1516 const char *expecting_string_instruction = NULL;
1521 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1524 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1526 as_bad (_("no such instruction: `%s'"), token_start);
1531 if (!is_space_char (*l)
1532 && *l != END_OF_INSN
1533 && *l != PREFIX_SEPARATOR
1536 as_bad (_("invalid character %s in mnemonic"),
1537 output_invalid (*l));
1540 if (token_start == l)
1542 if (*l == PREFIX_SEPARATOR)
1543 as_bad (_("expecting prefix; got nothing"));
1545 as_bad (_("expecting mnemonic; got nothing"));
1549 /* Look up instruction (or prefix) via hash table. */
1550 current_templates = hash_find (op_hash, mnemonic);
1552 if (*l != END_OF_INSN
1553 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1554 && current_templates
1555 && (current_templates->start->opcode_modifier & IsPrefix))
1557 /* If we are in 16-bit mode, do not allow addr16 or data16.
1558 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1559 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1560 && flag_code != CODE_64BIT
1561 && (((current_templates->start->opcode_modifier & Size32) != 0)
1562 ^ (flag_code == CODE_16BIT)))
1564 as_bad (_("redundant %s prefix"),
1565 current_templates->start->name);
1568 /* Add prefix, checking for repeated prefixes. */
1569 switch (add_prefix (current_templates->start->base_opcode))
1574 expecting_string_instruction = current_templates->start->name;
1577 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1584 if (!current_templates)
1586 /* See if we can get a match by trimming off a suffix. */
1589 case WORD_MNEM_SUFFIX:
1590 case BYTE_MNEM_SUFFIX:
1591 case QWORD_MNEM_SUFFIX:
1592 i.suffix = mnem_p[-1];
1594 current_templates = hash_find (op_hash, mnemonic);
1596 case SHORT_MNEM_SUFFIX:
1597 case LONG_MNEM_SUFFIX:
1600 i.suffix = mnem_p[-1];
1602 current_templates = hash_find (op_hash, mnemonic);
1610 if (intel_float_operand (mnemonic))
1611 i.suffix = SHORT_MNEM_SUFFIX;
1613 i.suffix = LONG_MNEM_SUFFIX;
1615 current_templates = hash_find (op_hash, mnemonic);
1619 if (!current_templates)
1621 as_bad (_("no such instruction: `%s'"), token_start);
1626 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1628 /* Check for a branch hint. We allow ",pt" and ",pn" for
1629 predict taken and predict not taken respectively.
1630 I'm not sure that branch hints actually do anything on loop
1631 and jcxz insns (JumpByte) for current Pentium4 chips. They
1632 may work in the future and it doesn't hurt to accept them
1634 if (l[0] == ',' && l[1] == 'p')
1638 if (!add_prefix (DS_PREFIX_OPCODE))
1642 else if (l[2] == 'n')
1644 if (!add_prefix (CS_PREFIX_OPCODE))
1650 /* Any other comma loses. */
1653 as_bad (_("invalid character %s in mnemonic"),
1654 output_invalid (*l));
1658 /* Check if instruction is supported on specified architecture. */
1659 if ((current_templates->start->cpu_flags & ~(Cpu64 | CpuNo64))
1660 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64)))
1662 as_warn (_("`%s' is not supported on `%s'"),
1663 current_templates->start->name, cpu_arch_name);
1665 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1667 as_warn (_("use .code16 to ensure correct addressing mode"));
1670 /* Check for rep/repne without a string instruction. */
1671 if (expecting_string_instruction
1672 && !(current_templates->start->opcode_modifier & IsString))
1674 as_bad (_("expecting string instruction after `%s'"),
1675 expecting_string_instruction);
1683 parse_operands (l, mnemonic)
1685 const char *mnemonic;
1689 /* 1 if operand is pending after ','. */
1690 unsigned int expecting_operand = 0;
1692 /* Non-zero if operand parens not balanced. */
1693 unsigned int paren_not_balanced;
1695 while (*l != END_OF_INSN)
1697 /* Skip optional white space before operand. */
1698 if (is_space_char (*l))
1700 if (!is_operand_char (*l) && *l != END_OF_INSN)
1702 as_bad (_("invalid character %s before operand %d"),
1703 output_invalid (*l),
1707 token_start = l; /* after white space */
1708 paren_not_balanced = 0;
1709 while (paren_not_balanced || *l != ',')
1711 if (*l == END_OF_INSN)
1713 if (paren_not_balanced)
1716 as_bad (_("unbalanced parenthesis in operand %d."),
1719 as_bad (_("unbalanced brackets in operand %d."),
1724 break; /* we are done */
1726 else if (!is_operand_char (*l) && !is_space_char (*l))
1728 as_bad (_("invalid character %s in operand %d"),
1729 output_invalid (*l),
1736 ++paren_not_balanced;
1738 --paren_not_balanced;
1743 ++paren_not_balanced;
1745 --paren_not_balanced;
1749 if (l != token_start)
1750 { /* Yes, we've read in another operand. */
1751 unsigned int operand_ok;
1752 this_operand = i.operands++;
1753 if (i.operands > MAX_OPERANDS)
1755 as_bad (_("spurious operands; (%d operands/instruction max)"),
1759 /* Now parse operand adding info to 'i' as we go along. */
1760 END_STRING_AND_SAVE (l);
1764 i386_intel_operand (token_start,
1765 intel_float_operand (mnemonic));
1767 operand_ok = i386_operand (token_start);
1769 RESTORE_END_STRING (l);
1775 if (expecting_operand)
1777 expecting_operand_after_comma:
1778 as_bad (_("expecting operand after ','; got nothing"));
1783 as_bad (_("expecting operand before ','; got nothing"));
1788 /* Now *l must be either ',' or END_OF_INSN. */
1791 if (*++l == END_OF_INSN)
1793 /* Just skip it, if it's \n complain. */
1794 goto expecting_operand_after_comma;
1796 expecting_operand = 1;
1805 union i386_op temp_op;
1806 unsigned int temp_type;
1807 RELOC_ENUM temp_reloc;
1811 if (i.operands == 2)
1816 else if (i.operands == 3)
1821 temp_type = i.types[xchg2];
1822 i.types[xchg2] = i.types[xchg1];
1823 i.types[xchg1] = temp_type;
1824 temp_op = i.op[xchg2];
1825 i.op[xchg2] = i.op[xchg1];
1826 i.op[xchg1] = temp_op;
1827 temp_reloc = i.reloc[xchg2];
1828 i.reloc[xchg2] = i.reloc[xchg1];
1829 i.reloc[xchg1] = temp_reloc;
1831 if (i.mem_operands == 2)
1833 const seg_entry *temp_seg;
1834 temp_seg = i.seg[0];
1835 i.seg[0] = i.seg[1];
1836 i.seg[1] = temp_seg;
1840 /* Try to ensure constant immediates are represented in the smallest
1845 char guess_suffix = 0;
1849 guess_suffix = i.suffix;
1850 else if (i.reg_operands)
1852 /* Figure out a suffix from the last register operand specified.
1853 We can't do this properly yet, ie. excluding InOutPortReg,
1854 but the following works for instructions with immediates.
1855 In any case, we can't set i.suffix yet. */
1856 for (op = i.operands; --op >= 0;)
1857 if (i.types[op] & Reg)
1859 if (i.types[op] & Reg8)
1860 guess_suffix = BYTE_MNEM_SUFFIX;
1861 else if (i.types[op] & Reg16)
1862 guess_suffix = WORD_MNEM_SUFFIX;
1863 else if (i.types[op] & Reg32)
1864 guess_suffix = LONG_MNEM_SUFFIX;
1865 else if (i.types[op] & Reg64)
1866 guess_suffix = QWORD_MNEM_SUFFIX;
1870 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1871 guess_suffix = WORD_MNEM_SUFFIX;
1873 for (op = i.operands; --op >= 0;)
1874 if (i.types[op] & Imm)
1876 switch (i.op[op].imms->X_op)
1879 /* If a suffix is given, this operand may be shortened. */
1880 switch (guess_suffix)
1882 case LONG_MNEM_SUFFIX:
1883 i.types[op] |= Imm32 | Imm64;
1885 case WORD_MNEM_SUFFIX:
1886 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
1888 case BYTE_MNEM_SUFFIX:
1889 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
1893 /* If this operand is at most 16 bits, convert it
1894 to a signed 16 bit number before trying to see
1895 whether it will fit in an even smaller size.
1896 This allows a 16-bit operand such as $0xffe0 to
1897 be recognised as within Imm8S range. */
1898 if ((i.types[op] & Imm16)
1899 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
1901 i.op[op].imms->X_add_number =
1902 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1904 if ((i.types[op] & Imm32)
1905 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
1908 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
1909 ^ ((offsetT) 1 << 31))
1910 - ((offsetT) 1 << 31));
1912 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
1914 /* We must avoid matching of Imm32 templates when 64bit
1915 only immediate is available. */
1916 if (guess_suffix == QWORD_MNEM_SUFFIX)
1917 i.types[op] &= ~Imm32;
1924 /* Symbols and expressions. */
1926 /* Convert symbolic operand to proper sizes for matching. */
1927 switch (guess_suffix)
1929 case QWORD_MNEM_SUFFIX:
1930 i.types[op] = Imm64 | Imm32S;
1932 case LONG_MNEM_SUFFIX:
1933 i.types[op] = Imm32 | Imm64;
1935 case WORD_MNEM_SUFFIX:
1936 i.types[op] = Imm16 | Imm32 | Imm64;
1939 case BYTE_MNEM_SUFFIX:
1940 i.types[op] = Imm8 | Imm8S | Imm16 | Imm32S | Imm32;
1949 /* Try to use the smallest displacement type too. */
1955 for (op = i.operands; --op >= 0;)
1956 if ((i.types[op] & Disp) && i.op[op].disps->X_op == O_constant)
1958 offsetT disp = i.op[op].disps->X_add_number;
1960 if (i.types[op] & Disp16)
1962 /* We know this operand is at most 16 bits, so
1963 convert to a signed 16 bit number before trying
1964 to see whether it will fit in an even smaller
1967 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1969 else if (i.types[op] & Disp32)
1971 /* We know this operand is at most 32 bits, so convert to a
1972 signed 32 bit number before trying to see whether it will
1973 fit in an even smaller size. */
1974 disp &= (((offsetT) 2 << 31) - 1);
1975 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
1977 if (flag_code == CODE_64BIT)
1979 if (fits_in_signed_long (disp))
1980 i.types[op] |= Disp32S;
1981 if (fits_in_unsigned_long (disp))
1982 i.types[op] |= Disp32;
1984 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
1985 && fits_in_signed_byte (disp))
1986 i.types[op] |= Disp8;
1993 /* Points to template once we've found it. */
1995 unsigned int overlap0, overlap1, overlap2;
1996 unsigned int found_reverse_match;
1999 #define MATCH(overlap, given, template) \
2000 ((overlap & ~JumpAbsolute) \
2001 && (((given) & (BaseIndex | JumpAbsolute)) \
2002 == ((overlap) & (BaseIndex | JumpAbsolute))))
2004 /* If given types r0 and r1 are registers they must be of the same type
2005 unless the expected operand type register overlap is null.
2006 Note that Acc in a template matches every size of reg. */
2007 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2008 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2009 || ((g0) & Reg) == ((g1) & Reg) \
2010 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2015 found_reverse_match = 0;
2016 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2018 : (i.suffix == WORD_MNEM_SUFFIX
2020 : (i.suffix == SHORT_MNEM_SUFFIX
2022 : (i.suffix == LONG_MNEM_SUFFIX
2024 : (i.suffix == QWORD_MNEM_SUFFIX
2026 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2027 ? No_xSuf : 0))))));
2029 for (t = current_templates->start;
2030 t < current_templates->end;
2033 /* Must have right number of operands. */
2034 if (i.operands != t->operands)
2037 /* Check the suffix, except for some instructions in intel mode. */
2038 if ((t->opcode_modifier & suffix_check)
2040 && (t->opcode_modifier & IgnoreSize))
2042 && t->base_opcode == 0xd9
2043 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
2044 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
2047 /* Do not verify operands when there are none. */
2048 else if (!t->operands)
2050 if (t->cpu_flags & ~cpu_arch_flags)
2052 /* We've found a match; break out of loop. */
2056 overlap0 = i.types[0] & t->operand_types[0];
2057 switch (t->operands)
2060 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2065 overlap1 = i.types[1] & t->operand_types[1];
2066 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2067 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2068 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2069 t->operand_types[0],
2070 overlap1, i.types[1],
2071 t->operand_types[1]))
2073 /* Check if other direction is valid ... */
2074 if ((t->opcode_modifier & (D | FloatD)) == 0)
2077 /* Try reversing direction of operands. */
2078 overlap0 = i.types[0] & t->operand_types[1];
2079 overlap1 = i.types[1] & t->operand_types[0];
2080 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2081 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2082 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2083 t->operand_types[1],
2084 overlap1, i.types[1],
2085 t->operand_types[0]))
2087 /* Does not match either direction. */
2090 /* found_reverse_match holds which of D or FloatDR
2092 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2094 /* Found a forward 2 operand match here. */
2095 else if (t->operands == 3)
2097 /* Here we make use of the fact that there are no
2098 reverse match 3 operand instructions, and all 3
2099 operand instructions only need to be checked for
2100 register consistency between operands 2 and 3. */
2101 overlap2 = i.types[2] & t->operand_types[2];
2102 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2103 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2104 t->operand_types[1],
2105 overlap2, i.types[2],
2106 t->operand_types[2]))
2110 /* Found either forward/reverse 2 or 3 operand match here:
2111 slip through to break. */
2113 if (t->cpu_flags & ~cpu_arch_flags)
2115 found_reverse_match = 0;
2118 /* We've found a match; break out of loop. */
2122 if (t == current_templates->end)
2124 /* We found no match. */
2125 as_bad (_("suffix or operands invalid for `%s'"),
2126 current_templates->start->name);
2130 if (!quiet_warnings)
2133 && ((i.types[0] & JumpAbsolute)
2134 != (t->operand_types[0] & JumpAbsolute)))
2136 as_warn (_("indirect %s without `*'"), t->name);
2139 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2140 == (IsPrefix | IgnoreSize))
2142 /* Warn them that a data or address size prefix doesn't
2143 affect assembly of the next line of code. */
2144 as_warn (_("stand-alone `%s' prefix"), t->name);
2148 /* Copy the template we found. */
2150 if (found_reverse_match)
2152 /* If we found a reverse match we must alter the opcode
2153 direction bit. found_reverse_match holds bits to change
2154 (different for int & float insns). */
2156 i.tm.base_opcode ^= found_reverse_match;
2158 i.tm.operand_types[0] = t->operand_types[1];
2159 i.tm.operand_types[1] = t->operand_types[0];
2168 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2169 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2171 if (i.seg[0] != NULL && i.seg[0] != &es)
2173 as_bad (_("`%s' operand %d must use `%%es' segment"),
2178 /* There's only ever one segment override allowed per instruction.
2179 This instruction possibly has a legal segment override on the
2180 second operand, so copy the segment to where non-string
2181 instructions store it, allowing common code. */
2182 i.seg[0] = i.seg[1];
2184 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2186 if (i.seg[1] != NULL && i.seg[1] != &es)
2188 as_bad (_("`%s' operand %d must use `%%es' segment"),
2200 /* If matched instruction specifies an explicit instruction mnemonic
2202 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2204 if (i.tm.opcode_modifier & Size16)
2205 i.suffix = WORD_MNEM_SUFFIX;
2206 else if (i.tm.opcode_modifier & Size64)
2207 i.suffix = QWORD_MNEM_SUFFIX;
2209 i.suffix = LONG_MNEM_SUFFIX;
2211 else if (i.reg_operands)
2213 /* If there's no instruction mnemonic suffix we try to invent one
2214 based on register operands. */
2217 /* We take i.suffix from the last register operand specified,
2218 Destination register type is more significant than source
2221 for (op = i.operands; --op >= 0;)
2222 if ((i.types[op] & Reg)
2223 && !(i.tm.operand_types[op] & InOutPortReg))
2225 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2226 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2227 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2232 else if (i.suffix == BYTE_MNEM_SUFFIX)
2234 if (!check_byte_reg ())
2237 else if (i.suffix == LONG_MNEM_SUFFIX)
2239 if (!check_long_reg ())
2242 else if (i.suffix == QWORD_MNEM_SUFFIX)
2244 if (!check_qword_reg ())
2247 else if (i.suffix == WORD_MNEM_SUFFIX)
2249 if (!check_word_reg ())
2252 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2253 /* Do nothing if the instruction is going to ignore the prefix. */
2258 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
2260 i.suffix = stackop_size;
2263 /* Change the opcode based on the operand size given by i.suffix;
2264 We need not change things for byte insns. */
2266 if (!i.suffix && (i.tm.opcode_modifier & W))
2268 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2272 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2274 /* It's not a byte, select word/dword operation. */
2275 if (i.tm.opcode_modifier & W)
2277 if (i.tm.opcode_modifier & ShortForm)
2278 i.tm.base_opcode |= 8;
2280 i.tm.base_opcode |= 1;
2283 /* Now select between word & dword operations via the operand
2284 size prefix, except for instructions that will ignore this
2286 if (i.suffix != QWORD_MNEM_SUFFIX
2287 && !(i.tm.opcode_modifier & IgnoreSize)
2288 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2289 || (flag_code == CODE_64BIT
2290 && (i.tm.opcode_modifier & JumpByte))))
2292 unsigned int prefix = DATA_PREFIX_OPCODE;
2293 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2294 prefix = ADDR_PREFIX_OPCODE;
2296 if (!add_prefix (prefix))
2300 /* Set mode64 for an operand. */
2301 if (i.suffix == QWORD_MNEM_SUFFIX
2302 && flag_code == CODE_64BIT
2303 && (i.tm.opcode_modifier & NoRex64) == 0)
2304 i.rex |= REX_MODE64;
2306 /* Size floating point instruction. */
2307 if (i.suffix == LONG_MNEM_SUFFIX)
2309 if (i.tm.opcode_modifier & FloatMF)
2310 i.tm.base_opcode ^= 4;
2321 for (op = i.operands; --op >= 0;)
2323 /* If this is an eight bit register, it's OK. If it's the 16 or
2324 32 bit version of an eight bit register, we will just use the
2325 low portion, and that's OK too. */
2326 if (i.types[op] & Reg8)
2329 /* movzx and movsx should not generate this warning. */
2331 && (i.tm.base_opcode == 0xfb7
2332 || i.tm.base_opcode == 0xfb6
2333 || i.tm.base_opcode == 0x63
2334 || i.tm.base_opcode == 0xfbe
2335 || i.tm.base_opcode == 0xfbf))
2338 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
2340 /* Check that the template allows eight bit regs. This
2341 kills insns such as `orb $1,%edx', which maybe should be
2343 && (i.tm.operand_types[op] & (Reg8 | InOutPortReg))
2347 /* Prohibit these changes in the 64bit mode, since the
2348 lowering is more complicated. */
2349 if (flag_code == CODE_64BIT
2350 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2352 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2353 i.op[op].regs->reg_name,
2357 #if REGISTER_WARNINGS
2359 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2360 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2361 (i.op[op].regs + (i.types[op] & Reg16
2362 ? REGNAM_AL - REGNAM_AX
2363 : REGNAM_AL - REGNAM_EAX))->reg_name,
2364 i.op[op].regs->reg_name,
2369 /* Any other register is bad. */
2370 if (i.types[op] & (Reg | RegMMX | RegXMM
2372 | Control | Debug | Test
2373 | FloatReg | FloatAcc))
2375 as_bad (_("`%%%s' not allowed with `%s%c'"),
2376 i.op[op].regs->reg_name,
2390 for (op = i.operands; --op >= 0;)
2391 /* Reject eight bit registers, except where the template requires
2392 them. (eg. movzb) */
2393 if ((i.types[op] & Reg8) != 0
2394 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2396 as_bad (_("`%%%s' not allowed with `%s%c'"),
2397 i.op[op].regs->reg_name,
2402 /* Warn if the e prefix on a general reg is missing. */
2403 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2404 && (i.types[op] & Reg16) != 0
2405 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2407 /* Prohibit these changes in the 64bit mode, since the
2408 lowering is more complicated. */
2409 if (flag_code == CODE_64BIT)
2411 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2412 i.op[op].regs->reg_name,
2416 #if REGISTER_WARNINGS
2418 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2419 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2420 i.op[op].regs->reg_name,
2424 /* Warn if the r prefix on a general reg is missing. */
2425 else if ((i.types[op] & Reg64) != 0
2426 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2428 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2429 i.op[op].regs->reg_name,
2441 for (op = i.operands; --op >= 0; )
2442 /* Reject eight bit registers, except where the template requires
2443 them. (eg. movzb) */
2444 if ((i.types[op] & Reg8) != 0
2445 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2447 as_bad (_("`%%%s' not allowed with `%s%c'"),
2448 i.op[op].regs->reg_name,
2453 /* Warn if the e prefix on a general reg is missing. */
2454 else if (((i.types[op] & Reg16) != 0
2455 || (i.types[op] & Reg32) != 0)
2456 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2458 /* Prohibit these changes in the 64bit mode, since the
2459 lowering is more complicated. */
2460 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2461 i.op[op].regs->reg_name,
2472 for (op = i.operands; --op >= 0;)
2473 /* Reject eight bit registers, except where the template requires
2474 them. (eg. movzb) */
2475 if ((i.types[op] & Reg8) != 0
2476 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2478 as_bad (_("`%%%s' not allowed with `%s%c'"),
2479 i.op[op].regs->reg_name,
2484 /* Warn if the e prefix on a general reg is present. */
2485 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2486 && (i.types[op] & Reg32) != 0
2487 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2489 /* Prohibit these changes in the 64bit mode, since the
2490 lowering is more complicated. */
2491 if (flag_code == CODE_64BIT)
2493 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2494 i.op[op].regs->reg_name,
2499 #if REGISTER_WARNINGS
2500 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2501 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2502 i.op[op].regs->reg_name,
2512 unsigned int overlap0, overlap1, overlap2;
2514 overlap0 = i.types[0] & i.tm.operand_types[0];
2515 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S))
2516 && overlap0 != Imm8 && overlap0 != Imm8S
2517 && overlap0 != Imm16 && overlap0 != Imm32S
2518 && overlap0 != Imm32 && overlap0 != Imm64)
2522 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2524 : (i.suffix == WORD_MNEM_SUFFIX
2526 : (i.suffix == QWORD_MNEM_SUFFIX
2530 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2531 || overlap0 == (Imm16 | Imm32)
2532 || overlap0 == (Imm16 | Imm32S))
2534 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2537 if (overlap0 != Imm8 && overlap0 != Imm8S
2538 && overlap0 != Imm16 && overlap0 != Imm32S
2539 && overlap0 != Imm32 && overlap0 != Imm64)
2541 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2545 i.types[0] = overlap0;
2547 overlap1 = i.types[1] & i.tm.operand_types[1];
2548 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32))
2549 && overlap1 != Imm8 && overlap1 != Imm8S
2550 && overlap1 != Imm16 && overlap1 != Imm32S
2551 && overlap1 != Imm32 && overlap1 != Imm64)
2555 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2557 : (i.suffix == WORD_MNEM_SUFFIX
2559 : (i.suffix == QWORD_MNEM_SUFFIX
2563 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2564 || overlap1 == (Imm16 | Imm32)
2565 || overlap1 == (Imm16 | Imm32S))
2567 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2570 if (overlap1 != Imm8 && overlap1 != Imm8S
2571 && overlap1 != Imm16 && overlap1 != Imm32S
2572 && overlap1 != Imm32 && overlap1 != Imm64)
2574 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2578 i.types[1] = overlap1;
2580 overlap2 = i.types[2] & i.tm.operand_types[2];
2581 assert ((overlap2 & Imm) == 0);
2582 i.types[2] = overlap2;
2590 /* Default segment register this instruction will use for memory
2591 accesses. 0 means unknown. This is only for optimizing out
2592 unnecessary segment overrides. */
2593 const seg_entry *default_seg = 0;
2595 /* The imul $imm, %reg instruction is converted into
2596 imul $imm, %reg, %reg, and the clr %reg instruction
2597 is converted into xor %reg, %reg. */
2598 if (i.tm.opcode_modifier & regKludge)
2600 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2601 /* Pretend we saw the extra register operand. */
2602 assert (i.op[first_reg_op + 1].regs == 0);
2603 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2604 i.types[first_reg_op + 1] = i.types[first_reg_op];
2608 if (i.tm.opcode_modifier & ShortForm)
2610 /* The register or float register operand is in operand 0 or 1. */
2611 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2612 /* Register goes in low 3 bits of opcode. */
2613 i.tm.base_opcode |= i.op[op].regs->reg_num;
2614 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2616 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2618 /* Warn about some common errors, but press on regardless.
2619 The first case can be generated by gcc (<= 2.8.1). */
2620 if (i.operands == 2)
2622 /* Reversed arguments on faddp, fsubp, etc. */
2623 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2624 i.op[1].regs->reg_name,
2625 i.op[0].regs->reg_name);
2629 /* Extraneous `l' suffix on fp insn. */
2630 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2631 i.op[0].regs->reg_name);
2635 else if (i.tm.opcode_modifier & Modrm)
2637 /* The opcode is completed (modulo i.tm.extension_opcode which
2638 must be put into the modrm byte). Now, we make the modrm and
2639 index base bytes based on all the info we've collected. */
2641 default_seg = build_modrm_byte ();
2643 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2645 if (i.tm.base_opcode == POP_SEG_SHORT
2646 && i.op[0].regs->reg_num == 1)
2648 as_bad (_("you can't `pop %%cs'"));
2651 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2652 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2655 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2659 else if ((i.tm.opcode_modifier & IsString) != 0)
2661 /* For the string instructions that allow a segment override
2662 on one of their operands, the default segment is ds. */
2666 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2667 as_warn (_("segment override on `lea' is ineffectual"));
2669 /* If a segment was explicitly specified, and the specified segment
2670 is not the default, use an opcode prefix to select it. If we
2671 never figured out what the default segment is, then default_seg
2672 will be zero at this point, and the specified segment prefix will
2674 if ((i.seg[0]) && (i.seg[0] != default_seg))
2676 if (!add_prefix (i.seg[0]->seg_prefix))
2682 static const seg_entry *
2685 const seg_entry *default_seg = 0;
2687 /* i.reg_operands MUST be the number of real register operands;
2688 implicit registers do not count. */
2689 if (i.reg_operands == 2)
2691 unsigned int source, dest;
2692 source = ((i.types[0]
2693 & (Reg | RegMMX | RegXMM
2695 | Control | Debug | Test))
2700 /* One of the register operands will be encoded in the i.tm.reg
2701 field, the other in the combined i.tm.mode and i.tm.regmem
2702 fields. If no form of this instruction supports a memory
2703 destination operand, then we assume the source operand may
2704 sometimes be a memory operand and so we need to store the
2705 destination in the i.rm.reg field. */
2706 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2708 i.rm.reg = i.op[dest].regs->reg_num;
2709 i.rm.regmem = i.op[source].regs->reg_num;
2710 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2712 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2717 i.rm.reg = i.op[source].regs->reg_num;
2718 i.rm.regmem = i.op[dest].regs->reg_num;
2719 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2721 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2726 { /* If it's not 2 reg operands... */
2729 unsigned int fake_zero_displacement = 0;
2730 unsigned int op = ((i.types[0] & AnyMem)
2732 : (i.types[1] & AnyMem) ? 1 : 2);
2736 if (i.base_reg == 0)
2739 if (!i.disp_operands)
2740 fake_zero_displacement = 1;
2741 if (i.index_reg == 0)
2743 /* Operand is just <disp> */
2744 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
2745 && (flag_code != CODE_64BIT))
2747 i.rm.regmem = NO_BASE_REGISTER_16;
2748 i.types[op] &= ~Disp;
2749 i.types[op] |= Disp16;
2751 else if (flag_code != CODE_64BIT
2752 || (i.prefix[ADDR_PREFIX] != 0))
2754 i.rm.regmem = NO_BASE_REGISTER;
2755 i.types[op] &= ~Disp;
2756 i.types[op] |= Disp32;
2760 /* 64bit mode overwrites the 32bit absolute
2761 addressing by RIP relative addressing and
2762 absolute addressing is encoded by one of the
2763 redundant SIB forms. */
2764 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2765 i.sib.base = NO_BASE_REGISTER;
2766 i.sib.index = NO_INDEX_REGISTER;
2767 i.types[op] &= ~Disp;
2768 i.types[op] |= Disp32S;
2771 else /* !i.base_reg && i.index_reg */
2773 i.sib.index = i.index_reg->reg_num;
2774 i.sib.base = NO_BASE_REGISTER;
2775 i.sib.scale = i.log2_scale_factor;
2776 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2777 i.types[op] &= ~Disp;
2778 if (flag_code != CODE_64BIT)
2779 i.types[op] |= Disp32; /* Must be 32 bit */
2781 i.types[op] |= Disp32S;
2782 if ((i.index_reg->reg_flags & RegRex) != 0)
2786 /* RIP addressing for 64bit mode. */
2787 else if (i.base_reg->reg_type == BaseIndex)
2789 i.rm.regmem = NO_BASE_REGISTER;
2790 i.types[op] &= ~Disp;
2791 i.types[op] |= Disp32S;
2792 i.flags[op] = Operand_PCrel;
2794 else if (i.base_reg->reg_type & Reg16)
2796 switch (i.base_reg->reg_num)
2799 if (i.index_reg == 0)
2801 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2802 i.rm.regmem = i.index_reg->reg_num - 6;
2806 if (i.index_reg == 0)
2809 if ((i.types[op] & Disp) == 0)
2811 /* fake (%bp) into 0(%bp) */
2812 i.types[op] |= Disp8;
2813 fake_zero_displacement = 1;
2816 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2817 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2819 default: /* (%si) -> 4 or (%di) -> 5 */
2820 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2822 i.rm.mode = mode_from_disp_size (i.types[op]);
2824 else /* i.base_reg and 32/64 bit mode */
2826 if (flag_code == CODE_64BIT
2827 && (i.types[op] & Disp))
2829 if (i.types[op] & Disp8)
2830 i.types[op] = Disp8 | Disp32S;
2832 i.types[op] = Disp32S;
2834 i.rm.regmem = i.base_reg->reg_num;
2835 if ((i.base_reg->reg_flags & RegRex) != 0)
2837 i.sib.base = i.base_reg->reg_num;
2838 /* x86-64 ignores REX prefix bit here to avoid decoder
2840 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
2843 if (i.disp_operands == 0)
2845 fake_zero_displacement = 1;
2846 i.types[op] |= Disp8;
2849 else if (i.base_reg->reg_num == ESP_REG_NUM)
2853 i.sib.scale = i.log2_scale_factor;
2854 if (i.index_reg == 0)
2856 /* <disp>(%esp) becomes two byte modrm with no index
2857 register. We've already stored the code for esp
2858 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
2859 Any base register besides %esp will not use the
2860 extra modrm byte. */
2861 i.sib.index = NO_INDEX_REGISTER;
2862 #if !SCALE1_WHEN_NO_INDEX
2863 /* Another case where we force the second modrm byte. */
2864 if (i.log2_scale_factor)
2865 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2870 i.sib.index = i.index_reg->reg_num;
2871 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2872 if ((i.index_reg->reg_flags & RegRex) != 0)
2875 i.rm.mode = mode_from_disp_size (i.types[op]);
2878 if (fake_zero_displacement)
2880 /* Fakes a zero displacement assuming that i.types[op]
2881 holds the correct displacement size. */
2884 assert (i.op[op].disps == 0);
2885 exp = &disp_expressions[i.disp_operands++];
2886 i.op[op].disps = exp;
2887 exp->X_op = O_constant;
2888 exp->X_add_number = 0;
2889 exp->X_add_symbol = (symbolS *) 0;
2890 exp->X_op_symbol = (symbolS *) 0;
2894 /* Fill in i.rm.reg or i.rm.regmem field with register operand
2895 (if any) based on i.tm.extension_opcode. Again, we must be
2896 careful to make sure that segment/control/debug/test/MMX
2897 registers are coded into the i.rm.reg field. */
2902 & (Reg | RegMMX | RegXMM
2904 | Control | Debug | Test))
2907 & (Reg | RegMMX | RegXMM
2909 | Control | Debug | Test))
2912 /* If there is an extension opcode to put here, the register
2913 number must be put into the regmem field. */
2914 if (i.tm.extension_opcode != None)
2916 i.rm.regmem = i.op[op].regs->reg_num;
2917 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2922 i.rm.reg = i.op[op].regs->reg_num;
2923 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2927 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
2928 must set it to 3 to indicate this is a register operand
2929 in the regmem field. */
2930 if (!i.mem_operands)
2934 /* Fill in i.rm.reg field with extension opcode (if any). */
2935 if (i.tm.extension_opcode != None)
2936 i.rm.reg = i.tm.extension_opcode;
2947 relax_substateT subtype;
2952 if (flag_code == CODE_16BIT)
2956 if (i.prefix[DATA_PREFIX] != 0)
2962 /* Pentium4 branch hints. */
2963 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
2964 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2969 if (i.prefix[REX_PREFIX] != 0)
2975 if (i.prefixes != 0 && !intel_syntax)
2976 as_warn (_("skipping prefixes on this instruction"));
2978 /* It's always a symbol; End frag & setup for relax.
2979 Make sure there is enough room in this frag for the largest
2980 instruction we may generate in md_convert_frag. This is 2
2981 bytes for the opcode and room for the prefix and largest
2983 frag_grow (prefix + 2 + 4);
2984 /* Prefix and 1 opcode byte go in fr_fix. */
2985 p = frag_more (prefix + 1);
2986 if (i.prefix[DATA_PREFIX] != 0)
2987 *p++ = DATA_PREFIX_OPCODE;
2988 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
2989 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
2990 *p++ = i.prefix[SEG_PREFIX];
2991 if (i.prefix[REX_PREFIX] != 0)
2992 *p++ = i.prefix[REX_PREFIX];
2993 *p = i.tm.base_opcode;
2995 if ((unsigned char) *p == JUMP_PC_RELATIVE)
2996 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
2997 else if ((cpu_arch_flags & Cpu386) != 0)
2998 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3000 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3003 sym = i.op[0].disps->X_add_symbol;
3004 off = i.op[0].disps->X_add_number;
3006 if (i.op[0].disps->X_op != O_constant
3007 && i.op[0].disps->X_op != O_symbol)
3009 /* Handle complex expressions. */
3010 sym = make_expr_symbol (i.op[0].disps);
3014 /* 1 possible extra opcode + 4 byte displacement go in var part.
3015 Pass reloc in fr_var. */
3016 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3026 if (i.tm.opcode_modifier & JumpByte)
3028 /* This is a loop or jecxz type instruction. */
3030 if (i.prefix[ADDR_PREFIX] != 0)
3032 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3035 /* Pentium4 branch hints. */
3036 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3037 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3039 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3048 if (flag_code == CODE_16BIT)
3051 if (i.prefix[DATA_PREFIX] != 0)
3053 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3063 if (i.prefix[REX_PREFIX] != 0)
3065 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3069 if (i.prefixes != 0 && !intel_syntax)
3070 as_warn (_("skipping prefixes on this instruction"));
3072 p = frag_more (1 + size);
3073 *p++ = i.tm.base_opcode;
3075 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3076 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3078 /* All jumps handled here are signed, but don't use a signed limit
3079 check for 32 and 16 bit jumps as we want to allow wrap around at
3080 4G and 64k respectively. */
3082 fixP->fx_signed = 1;
3086 output_interseg_jump ()
3094 if (flag_code == CODE_16BIT)
3098 if (i.prefix[DATA_PREFIX] != 0)
3104 if (i.prefix[REX_PREFIX] != 0)
3114 if (i.prefixes != 0 && !intel_syntax)
3115 as_warn (_("skipping prefixes on this instruction"));
3117 /* 1 opcode; 2 segment; offset */
3118 p = frag_more (prefix + 1 + 2 + size);
3120 if (i.prefix[DATA_PREFIX] != 0)
3121 *p++ = DATA_PREFIX_OPCODE;
3123 if (i.prefix[REX_PREFIX] != 0)
3124 *p++ = i.prefix[REX_PREFIX];
3126 *p++ = i.tm.base_opcode;
3127 if (i.op[1].imms->X_op == O_constant)
3129 offsetT n = i.op[1].imms->X_add_number;
3132 && !fits_in_unsigned_word (n)
3133 && !fits_in_signed_word (n))
3135 as_bad (_("16-bit jump out of range"));
3138 md_number_to_chars (p, n, size);
3141 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3142 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3143 if (i.op[0].imms->X_op != O_constant)
3144 as_bad (_("can't handle non absolute segment in `%s'"),
3146 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3153 fragS *insn_start_frag;
3154 offsetT insn_start_off;
3156 /* Tie dwarf2 debug info to the address at the start of the insn.
3157 We can't do this after the insn has been output as the current
3158 frag may have been closed off. eg. by frag_var. */
3159 dwarf2_emit_insn (0);
3161 insn_start_frag = frag_now;
3162 insn_start_off = frag_now_fix ();
3165 if (i.tm.opcode_modifier & Jump)
3167 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3169 else if (i.tm.opcode_modifier & JumpInterSegment)
3170 output_interseg_jump ();
3173 /* Output normal instructions here. */
3177 /* All opcodes on i386 have either 1 or 2 bytes. We may use third
3178 byte for the SSE instructions to specify a prefix they require. */
3179 if (i.tm.base_opcode & 0xff0000)
3180 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3182 /* The prefix bytes. */
3184 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3190 md_number_to_chars (p, (valueT) *q, 1);
3194 /* Now the opcode; be careful about word order here! */
3195 if (fits_in_unsigned_byte (i.tm.base_opcode))
3197 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3202 /* Put out high byte first: can't use md_number_to_chars! */
3203 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3204 *p = i.tm.base_opcode & 0xff;
3207 /* Now the modrm byte and sib byte (if present). */
3208 if (i.tm.opcode_modifier & Modrm)
3211 md_number_to_chars (p,
3212 (valueT) (i.rm.regmem << 0
3216 /* If i.rm.regmem == ESP (4)
3217 && i.rm.mode != (Register mode)
3219 ==> need second modrm byte. */
3220 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3222 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3225 md_number_to_chars (p,
3226 (valueT) (i.sib.base << 0
3228 | i.sib.scale << 6),
3233 if (i.disp_operands)
3234 output_disp (insn_start_frag, insn_start_off);
3237 output_imm (insn_start_frag, insn_start_off);
3245 #endif /* DEBUG386 */
3249 output_disp (insn_start_frag, insn_start_off)
3250 fragS *insn_start_frag;
3251 offsetT insn_start_off;
3256 for (n = 0; n < i.operands; n++)
3258 if (i.types[n] & Disp)
3260 if (i.op[n].disps->X_op == O_constant)
3266 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3269 if (i.types[n] & Disp8)
3271 if (i.types[n] & Disp64)
3274 val = offset_in_range (i.op[n].disps->X_add_number,
3276 p = frag_more (size);
3277 md_number_to_chars (p, val, size);
3281 RELOC_ENUM reloc_type;
3284 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3286 /* The PC relative address is computed relative
3287 to the instruction boundary, so in case immediate
3288 fields follows, we need to adjust the value. */
3289 if (pcrel && i.imm_operands)
3294 for (n1 = 0; n1 < i.operands; n1++)
3295 if (i.types[n1] & Imm)
3297 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3300 if (i.types[n1] & (Imm8 | Imm8S))
3302 if (i.types[n1] & Imm64)
3307 /* We should find the immediate. */
3308 if (n1 == i.operands)
3310 i.op[n].disps->X_add_number -= imm_size;
3313 if (i.types[n] & Disp32S)
3316 if (i.types[n] & (Disp16 | Disp64))
3319 if (i.types[n] & Disp64)
3323 p = frag_more (size);
3324 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3325 #ifdef BFD_ASSEMBLER
3326 if (reloc_type == BFD_RELOC_32
3328 && GOT_symbol == i.op[n].disps->X_add_symbol
3329 && (i.op[n].disps->X_op == O_symbol
3330 || (i.op[n].disps->X_op == O_add
3331 && ((symbol_get_value_expression
3332 (i.op[n].disps->X_op_symbol)->X_op)
3337 if (insn_start_frag == frag_now)
3338 add = (p - frag_now->fr_literal) - insn_start_off;
3343 add = insn_start_frag->fr_fix - insn_start_off;
3344 for (fr = insn_start_frag->fr_next;
3345 fr && fr != frag_now; fr = fr->fr_next)
3347 add += p - frag_now->fr_literal;
3350 /* We don't support dynamic linking on x86-64 yet. */
3351 if (flag_code == CODE_64BIT)
3353 reloc_type = BFD_RELOC_386_GOTPC;
3354 i.op[n].disps->X_add_number += add;
3357 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3358 i.op[n].disps, pcrel, reloc_type);
3365 output_imm (insn_start_frag, insn_start_off)
3366 fragS *insn_start_frag;
3367 offsetT insn_start_off;
3372 for (n = 0; n < i.operands; n++)
3374 if (i.types[n] & Imm)
3376 if (i.op[n].imms->X_op == O_constant)
3382 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3385 if (i.types[n] & (Imm8 | Imm8S))
3387 else if (i.types[n] & Imm64)
3390 val = offset_in_range (i.op[n].imms->X_add_number,
3392 p = frag_more (size);
3393 md_number_to_chars (p, val, size);
3397 /* Not absolute_section.
3398 Need a 32-bit fixup (don't support 8bit
3399 non-absolute imms). Try to support other
3401 RELOC_ENUM reloc_type;
3405 if ((i.types[n] & (Imm32S))
3406 && i.suffix == QWORD_MNEM_SUFFIX)
3408 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3411 if (i.types[n] & (Imm8 | Imm8S))
3413 if (i.types[n] & Imm64)
3417 p = frag_more (size);
3418 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3419 #ifdef BFD_ASSEMBLER
3420 /* This is tough to explain. We end up with this one if we
3421 * have operands that look like
3422 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3423 * obtain the absolute address of the GOT, and it is strongly
3424 * preferable from a performance point of view to avoid using
3425 * a runtime relocation for this. The actual sequence of
3426 * instructions often look something like:
3431 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3433 * The call and pop essentially return the absolute address
3434 * of the label .L66 and store it in %ebx. The linker itself
3435 * will ultimately change the first operand of the addl so
3436 * that %ebx points to the GOT, but to keep things simple, the
3437 * .o file must have this operand set so that it generates not
3438 * the absolute address of .L66, but the absolute address of
3439 * itself. This allows the linker itself simply treat a GOTPC
3440 * relocation as asking for a pcrel offset to the GOT to be
3441 * added in, and the addend of the relocation is stored in the
3442 * operand field for the instruction itself.
3444 * Our job here is to fix the operand so that it would add
3445 * the correct offset so that %ebx would point to itself. The
3446 * thing that is tricky is that .-.L66 will point to the
3447 * beginning of the instruction, so we need to further modify
3448 * the operand so that it will point to itself. There are
3449 * other cases where you have something like:
3451 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3453 * and here no correction would be required. Internally in
3454 * the assembler we treat operands of this form as not being
3455 * pcrel since the '.' is explicitly mentioned, and I wonder
3456 * whether it would simplify matters to do it this way. Who
3457 * knows. In earlier versions of the PIC patches, the
3458 * pcrel_adjust field was used to store the correction, but
3459 * since the expression is not pcrel, I felt it would be
3460 * confusing to do it this way. */
3462 if (reloc_type == BFD_RELOC_32
3464 && GOT_symbol == i.op[n].imms->X_add_symbol
3465 && (i.op[n].imms->X_op == O_symbol
3466 || (i.op[n].imms->X_op == O_add
3467 && ((symbol_get_value_expression
3468 (i.op[n].imms->X_op_symbol)->X_op)
3473 if (insn_start_frag == frag_now)
3474 add = (p - frag_now->fr_literal) - insn_start_off;
3479 add = insn_start_frag->fr_fix - insn_start_off;
3480 for (fr = insn_start_frag->fr_next;
3481 fr && fr != frag_now; fr = fr->fr_next)
3483 add += p - frag_now->fr_literal;
3486 /* We don't support dynamic linking on x86-64 yet. */
3487 if (flag_code == CODE_64BIT)
3489 reloc_type = BFD_RELOC_386_GOTPC;
3490 i.op[n].imms->X_add_number += add;
3493 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3494 i.op[n].imms, 0, reloc_type);
3501 static char *lex_got PARAMS ((RELOC_ENUM *, int *));
3503 /* Parse operands of the form
3504 <symbol>@GOTOFF+<nnn>
3505 and similar .plt or .got references.
3507 If we find one, set up the correct relocation in RELOC and copy the
3508 input string, minus the `@GOTOFF' into a malloc'd buffer for
3509 parsing by the calling routine. Return this buffer, and if ADJUST
3510 is non-null set it to the length of the string we removed from the
3511 input line. Otherwise return NULL. */
3513 lex_got (reloc, adjust)
3517 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3518 static const struct {
3520 const RELOC_ENUM rel[NUM_FLAG_CODE];
3522 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3523 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, 0 } },
3524 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3525 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3526 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3527 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3528 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3529 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3530 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3531 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3532 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3533 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3534 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3539 for (cp = input_line_pointer; *cp != '@'; cp++)
3540 if (is_end_of_line[(unsigned char) *cp])
3543 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3547 len = strlen (gotrel[j].str);
3548 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3550 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3553 char *tmpbuf, *past_reloc;
3555 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3559 if (GOT_symbol == NULL)
3560 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3562 /* Replace the relocation token with ' ', so that
3563 errors like foo@GOTOFF1 will be detected. */
3565 /* The length of the first part of our input line. */
3566 first = cp - input_line_pointer;
3568 /* The second part goes from after the reloc token until
3569 (and including) an end_of_line char. Don't use strlen
3570 here as the end_of_line char may not be a NUL. */
3571 past_reloc = cp + 1 + len;
3572 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3574 second = cp - past_reloc;
3576 /* Allocate and copy string. The trailing NUL shouldn't
3577 be necessary, but be safe. */
3578 tmpbuf = xmalloc (first + second + 2);
3579 memcpy (tmpbuf, input_line_pointer, first);
3580 tmpbuf[first] = ' ';
3581 memcpy (tmpbuf + first + 1, past_reloc, second);
3582 tmpbuf[first + second + 1] = '\0';
3586 as_bad (_("@%s reloc is not supported in %s bit mode"),
3587 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3592 /* Might be a symbol version string. Don't as_bad here. */
3596 /* x86_cons_fix_new is called via the expression parsing code when a
3597 reloc is needed. We use this hook to get the correct .got reloc. */
3598 static RELOC_ENUM got_reloc = NO_RELOC;
3601 x86_cons_fix_new (frag, off, len, exp)
3607 RELOC_ENUM r = reloc (len, 0, 0, got_reloc);
3608 got_reloc = NO_RELOC;
3609 fix_new_exp (frag, off, len, exp, 0, r);
3613 x86_cons (exp, size)
3619 /* Handle @GOTOFF and the like in an expression. */
3621 char *gotfree_input_line;
3624 save = input_line_pointer;
3625 gotfree_input_line = lex_got (&got_reloc, &adjust);
3626 if (gotfree_input_line)
3627 input_line_pointer = gotfree_input_line;
3631 if (gotfree_input_line)
3633 /* expression () has merrily parsed up to the end of line,
3634 or a comma - in the wrong buffer. Transfer how far
3635 input_line_pointer has moved to the right buffer. */
3636 input_line_pointer = (save
3637 + (input_line_pointer - gotfree_input_line)
3639 free (gotfree_input_line);
3647 static int i386_immediate PARAMS ((char *));
3650 i386_immediate (imm_start)
3653 char *save_input_line_pointer;
3655 char *gotfree_input_line;
3660 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3662 as_bad (_("only 1 or 2 immediate operands are allowed"));
3666 exp = &im_expressions[i.imm_operands++];
3667 i.op[this_operand].imms = exp;
3669 if (is_space_char (*imm_start))
3672 save_input_line_pointer = input_line_pointer;
3673 input_line_pointer = imm_start;
3676 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3677 if (gotfree_input_line)
3678 input_line_pointer = gotfree_input_line;
3681 exp_seg = expression (exp);
3684 if (*input_line_pointer)
3685 as_bad (_("junk `%s' after expression"), input_line_pointer);
3687 input_line_pointer = save_input_line_pointer;
3689 if (gotfree_input_line)
3690 free (gotfree_input_line);
3693 if (exp->X_op == O_absent || exp->X_op == O_big)
3695 /* Missing or bad expr becomes absolute 0. */
3696 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3698 exp->X_op = O_constant;
3699 exp->X_add_number = 0;
3700 exp->X_add_symbol = (symbolS *) 0;
3701 exp->X_op_symbol = (symbolS *) 0;
3703 else if (exp->X_op == O_constant)
3705 /* Size it properly later. */
3706 i.types[this_operand] |= Imm64;
3707 /* If BFD64, sign extend val. */
3708 if (!use_rela_relocations)
3709 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3710 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3712 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3714 #ifdef BFD_ASSEMBLER
3715 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3717 && exp_seg != absolute_section
3718 && exp_seg != text_section
3719 && exp_seg != data_section
3720 && exp_seg != bss_section
3721 && exp_seg != undefined_section
3722 #ifdef BFD_ASSEMBLER
3723 && !bfd_is_com_section (exp_seg)
3727 #ifdef BFD_ASSEMBLER
3728 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3730 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3737 /* This is an address. The size of the address will be
3738 determined later, depending on destination register,
3739 suffix, or the default for the section. */
3740 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3746 static char *i386_scale PARAMS ((char *));
3753 char *save = input_line_pointer;
3755 input_line_pointer = scale;
3756 val = get_absolute_expression ();
3762 i.log2_scale_factor = 0;
3765 i.log2_scale_factor = 1;
3768 i.log2_scale_factor = 2;
3771 i.log2_scale_factor = 3;
3774 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
3776 input_line_pointer = save;
3779 if (i.log2_scale_factor != 0 && i.index_reg == 0)
3781 as_warn (_("scale factor of %d without an index register"),
3782 1 << i.log2_scale_factor);
3783 #if SCALE1_WHEN_NO_INDEX
3784 i.log2_scale_factor = 0;
3787 scale = input_line_pointer;
3788 input_line_pointer = save;
3792 static int i386_displacement PARAMS ((char *, char *));
3795 i386_displacement (disp_start, disp_end)
3801 char *save_input_line_pointer;
3803 char *gotfree_input_line;
3805 int bigdisp = Disp32;
3807 if (flag_code == CODE_64BIT)
3809 if (i.prefix[ADDR_PREFIX] == 0)
3812 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3814 i.types[this_operand] |= bigdisp;
3816 exp = &disp_expressions[i.disp_operands];
3817 i.op[this_operand].disps = exp;
3819 save_input_line_pointer = input_line_pointer;
3820 input_line_pointer = disp_start;
3821 END_STRING_AND_SAVE (disp_end);
3823 #ifndef GCC_ASM_O_HACK
3824 #define GCC_ASM_O_HACK 0
3827 END_STRING_AND_SAVE (disp_end + 1);
3828 if ((i.types[this_operand] & BaseIndex) != 0
3829 && displacement_string_end[-1] == '+')
3831 /* This hack is to avoid a warning when using the "o"
3832 constraint within gcc asm statements.
3835 #define _set_tssldt_desc(n,addr,limit,type) \
3836 __asm__ __volatile__ ( \
3838 "movw %w1,2+%0\n\t" \
3840 "movb %b1,4+%0\n\t" \
3841 "movb %4,5+%0\n\t" \
3842 "movb $0,6+%0\n\t" \
3843 "movb %h1,7+%0\n\t" \
3845 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
3847 This works great except that the output assembler ends
3848 up looking a bit weird if it turns out that there is
3849 no offset. You end up producing code that looks like:
3862 So here we provide the missing zero. */
3864 *displacement_string_end = '0';
3868 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3869 if (gotfree_input_line)
3870 input_line_pointer = gotfree_input_line;
3873 exp_seg = expression (exp);
3876 if (*input_line_pointer)
3877 as_bad (_("junk `%s' after expression"), input_line_pointer);
3879 RESTORE_END_STRING (disp_end + 1);
3881 RESTORE_END_STRING (disp_end);
3882 input_line_pointer = save_input_line_pointer;
3884 if (gotfree_input_line)
3885 free (gotfree_input_line);
3888 #ifdef BFD_ASSEMBLER
3889 /* We do this to make sure that the section symbol is in
3890 the symbol table. We will ultimately change the relocation
3891 to be relative to the beginning of the section. */
3892 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
3893 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3895 if (exp->X_op != O_symbol)
3897 as_bad (_("bad expression used with @%s"),
3898 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
3904 if (S_IS_LOCAL (exp->X_add_symbol)
3905 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
3906 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
3907 exp->X_op = O_subtract;
3908 exp->X_op_symbol = GOT_symbol;
3909 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
3910 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
3912 i.reloc[this_operand] = BFD_RELOC_32;
3916 if (exp->X_op == O_absent || exp->X_op == O_big)
3918 /* Missing or bad expr becomes absolute 0. */
3919 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
3921 exp->X_op = O_constant;
3922 exp->X_add_number = 0;
3923 exp->X_add_symbol = (symbolS *) 0;
3924 exp->X_op_symbol = (symbolS *) 0;
3927 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3928 if (exp->X_op != O_constant
3929 #ifdef BFD_ASSEMBLER
3930 && OUTPUT_FLAVOR == bfd_target_aout_flavour
3932 && exp_seg != absolute_section
3933 && exp_seg != text_section
3934 && exp_seg != data_section
3935 && exp_seg != bss_section
3936 && exp_seg != undefined_section
3937 #ifdef BFD_ASSEMBLER
3938 && !bfd_is_com_section (exp_seg)
3942 #ifdef BFD_ASSEMBLER
3943 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3945 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
3950 else if (flag_code == CODE_64BIT)
3951 i.types[this_operand] |= Disp32S | Disp32;
3955 static int i386_index_check PARAMS ((const char *));
3957 /* Make sure the memory operand we've been dealt is valid.
3958 Return 1 on success, 0 on a failure. */
3961 i386_index_check (operand_string)
3962 const char *operand_string;
3965 #if INFER_ADDR_PREFIX
3971 if (flag_code == CODE_64BIT)
3973 if (i.prefix[ADDR_PREFIX] == 0)
3977 && ((i.base_reg->reg_type & Reg64) == 0)
3978 && (i.base_reg->reg_type != BaseIndex
3981 && ((i.index_reg->reg_type & (Reg64 | BaseIndex))
3982 != (Reg64 | BaseIndex))))
3989 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
3991 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
3992 != (Reg32 | BaseIndex))))
3998 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4002 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4003 != (Reg16 | BaseIndex)))
4005 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4006 != (Reg16 | BaseIndex))
4008 && i.base_reg->reg_num < 6
4009 && i.index_reg->reg_num >= 6
4010 && i.log2_scale_factor == 0))))
4017 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4019 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4020 != (Reg32 | BaseIndex))))
4026 #if INFER_ADDR_PREFIX
4027 if (flag_code != CODE_64BIT
4028 && i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
4030 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4032 /* Change the size of any displacement too. At most one of
4033 Disp16 or Disp32 is set.
4034 FIXME. There doesn't seem to be any real need for separate
4035 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4036 Removing them would probably clean up the code quite a lot. */
4037 if (i.types[this_operand] & (Disp16 | Disp32))
4038 i.types[this_operand] ^= (Disp16 | Disp32);
4043 as_bad (_("`%s' is not a valid base/index expression"),
4047 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4049 flag_code_names[flag_code]);
4055 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4059 i386_operand (operand_string)
4060 char *operand_string;
4064 char *op_string = operand_string;
4066 if (is_space_char (*op_string))
4069 /* We check for an absolute prefix (differentiating,
4070 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4071 if (*op_string == ABSOLUTE_PREFIX)
4074 if (is_space_char (*op_string))
4076 i.types[this_operand] |= JumpAbsolute;
4079 /* Check if operand is a register. */
4080 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4081 && (r = parse_register (op_string, &end_op)) != NULL)
4083 /* Check for a segment override by searching for ':' after a
4084 segment register. */
4086 if (is_space_char (*op_string))
4088 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4093 i.seg[i.mem_operands] = &es;
4096 i.seg[i.mem_operands] = &cs;
4099 i.seg[i.mem_operands] = &ss;
4102 i.seg[i.mem_operands] = &ds;
4105 i.seg[i.mem_operands] = &fs;
4108 i.seg[i.mem_operands] = &gs;
4112 /* Skip the ':' and whitespace. */
4114 if (is_space_char (*op_string))
4117 if (!is_digit_char (*op_string)
4118 && !is_identifier_char (*op_string)
4119 && *op_string != '('
4120 && *op_string != ABSOLUTE_PREFIX)
4122 as_bad (_("bad memory operand `%s'"), op_string);
4125 /* Handle case of %es:*foo. */
4126 if (*op_string == ABSOLUTE_PREFIX)
4129 if (is_space_char (*op_string))
4131 i.types[this_operand] |= JumpAbsolute;
4133 goto do_memory_reference;
4137 as_bad (_("junk `%s' after register"), op_string);
4140 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4141 i.op[this_operand].regs = r;
4144 else if (*op_string == REGISTER_PREFIX)
4146 as_bad (_("bad register name `%s'"), op_string);
4149 else if (*op_string == IMMEDIATE_PREFIX)
4152 if (i.types[this_operand] & JumpAbsolute)
4154 as_bad (_("immediate operand illegal with absolute jump"));
4157 if (!i386_immediate (op_string))
4160 else if (is_digit_char (*op_string)
4161 || is_identifier_char (*op_string)
4162 || *op_string == '(')
4164 /* This is a memory reference of some sort. */
4167 /* Start and end of displacement string expression (if found). */
4168 char *displacement_string_start;
4169 char *displacement_string_end;
4171 do_memory_reference:
4172 if ((i.mem_operands == 1
4173 && (current_templates->start->opcode_modifier & IsString) == 0)
4174 || i.mem_operands == 2)
4176 as_bad (_("too many memory references for `%s'"),
4177 current_templates->start->name);
4181 /* Check for base index form. We detect the base index form by
4182 looking for an ')' at the end of the operand, searching
4183 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4185 base_string = op_string + strlen (op_string);
4188 if (is_space_char (*base_string))
4191 /* If we only have a displacement, set-up for it to be parsed later. */
4192 displacement_string_start = op_string;
4193 displacement_string_end = base_string + 1;
4195 if (*base_string == ')')
4198 unsigned int parens_balanced = 1;
4199 /* We've already checked that the number of left & right ()'s are
4200 equal, so this loop will not be infinite. */
4204 if (*base_string == ')')
4206 if (*base_string == '(')
4209 while (parens_balanced);
4211 temp_string = base_string;
4213 /* Skip past '(' and whitespace. */
4215 if (is_space_char (*base_string))
4218 if (*base_string == ','
4219 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4220 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4222 displacement_string_end = temp_string;
4224 i.types[this_operand] |= BaseIndex;
4228 base_string = end_op;
4229 if (is_space_char (*base_string))
4233 /* There may be an index reg or scale factor here. */
4234 if (*base_string == ',')
4237 if (is_space_char (*base_string))
4240 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4241 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4243 base_string = end_op;
4244 if (is_space_char (*base_string))
4246 if (*base_string == ',')
4249 if (is_space_char (*base_string))
4252 else if (*base_string != ')')
4254 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4259 else if (*base_string == REGISTER_PREFIX)
4261 as_bad (_("bad register name `%s'"), base_string);
4265 /* Check for scale factor. */
4266 if (*base_string != ')')
4268 char *end_scale = i386_scale (base_string);
4273 base_string = end_scale;
4274 if (is_space_char (*base_string))
4276 if (*base_string != ')')
4278 as_bad (_("expecting `)' after scale factor in `%s'"),
4283 else if (!i.index_reg)
4285 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4290 else if (*base_string != ')')
4292 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4297 else if (*base_string == REGISTER_PREFIX)
4299 as_bad (_("bad register name `%s'"), base_string);
4304 /* If there's an expression beginning the operand, parse it,
4305 assuming displacement_string_start and
4306 displacement_string_end are meaningful. */
4307 if (displacement_string_start != displacement_string_end)
4309 if (!i386_displacement (displacement_string_start,
4310 displacement_string_end))
4314 /* Special case for (%dx) while doing input/output op. */
4316 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4318 && i.log2_scale_factor == 0
4319 && i.seg[i.mem_operands] == 0
4320 && (i.types[this_operand] & Disp) == 0)
4322 i.types[this_operand] = InOutPortReg;
4326 if (i386_index_check (operand_string) == 0)
4332 /* It's not a memory operand; argh! */
4333 as_bad (_("invalid char %s beginning operand %d `%s'"),
4334 output_invalid (*op_string),
4339 return 1; /* Normal return. */
4342 /* md_estimate_size_before_relax()
4344 Called just before relax() for rs_machine_dependent frags. The x86
4345 assembler uses these frags to handle variable size jump
4348 Any symbol that is now undefined will not become defined.
4349 Return the correct fr_subtype in the frag.
4350 Return the initial "guess for variable size of frag" to caller.
4351 The guess is actually the growth beyond the fixed part. Whatever
4352 we do to grow the fixed or variable part contributes to our
4356 md_estimate_size_before_relax (fragP, segment)
4360 /* We've already got fragP->fr_subtype right; all we have to do is
4361 check for un-relaxable symbols. On an ELF system, we can't relax
4362 an externally visible symbol, because it may be overridden by a
4364 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4365 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4366 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4367 && (S_IS_EXTERNAL (fragP->fr_symbol)
4368 || S_IS_WEAK (fragP->fr_symbol)))
4372 /* Symbol is undefined in this segment, or we need to keep a
4373 reloc so that weak symbols can be overridden. */
4374 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4375 RELOC_ENUM reloc_type;
4376 unsigned char *opcode;
4379 if (fragP->fr_var != NO_RELOC)
4380 reloc_type = fragP->fr_var;
4382 reloc_type = BFD_RELOC_16_PCREL;
4384 reloc_type = BFD_RELOC_32_PCREL;
4386 old_fr_fix = fragP->fr_fix;
4387 opcode = (unsigned char *) fragP->fr_opcode;
4389 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4392 /* Make jmp (0xeb) a (d)word displacement jump. */
4394 fragP->fr_fix += size;
4395 fix_new (fragP, old_fr_fix, size,
4397 fragP->fr_offset, 1,
4403 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4405 /* Negate the condition, and branch past an
4406 unconditional jump. */
4409 /* Insert an unconditional jump. */
4411 /* We added two extra opcode bytes, and have a two byte
4413 fragP->fr_fix += 2 + 2;
4414 fix_new (fragP, old_fr_fix + 2, 2,
4416 fragP->fr_offset, 1,
4423 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4428 fixP = fix_new (fragP, old_fr_fix, 1,
4430 fragP->fr_offset, 1,
4432 fixP->fx_signed = 1;
4436 /* This changes the byte-displacement jump 0x7N
4437 to the (d)word-displacement jump 0x0f,0x8N. */
4438 opcode[1] = opcode[0] + 0x10;
4439 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4440 /* We've added an opcode byte. */
4441 fragP->fr_fix += 1 + size;
4442 fix_new (fragP, old_fr_fix + 1, size,
4444 fragP->fr_offset, 1,
4449 BAD_CASE (fragP->fr_subtype);
4453 return fragP->fr_fix - old_fr_fix;
4456 /* Guess size depending on current relax state. Initially the relax
4457 state will correspond to a short jump and we return 1, because
4458 the variable part of the frag (the branch offset) is one byte
4459 long. However, we can relax a section more than once and in that
4460 case we must either set fr_subtype back to the unrelaxed state,
4461 or return the value for the appropriate branch. */
4462 return md_relax_table[fragP->fr_subtype].rlx_length;
4465 /* Called after relax() is finished.
4467 In: Address of frag.
4468 fr_type == rs_machine_dependent.
4469 fr_subtype is what the address relaxed to.
4471 Out: Any fixSs and constants are set up.
4472 Caller will turn frag into a ".space 0". */
4474 #ifndef BFD_ASSEMBLER
4476 md_convert_frag (headers, sec, fragP)
4477 object_headers *headers ATTRIBUTE_UNUSED;
4478 segT sec ATTRIBUTE_UNUSED;
4482 md_convert_frag (abfd, sec, fragP)
4483 bfd *abfd ATTRIBUTE_UNUSED;
4484 segT sec ATTRIBUTE_UNUSED;
4488 unsigned char *opcode;
4489 unsigned char *where_to_put_displacement = NULL;
4490 offsetT target_address;
4491 offsetT opcode_address;
4492 unsigned int extension = 0;
4493 offsetT displacement_from_opcode_start;
4495 opcode = (unsigned char *) fragP->fr_opcode;
4497 /* Address we want to reach in file space. */
4498 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4500 /* Address opcode resides at in file space. */
4501 opcode_address = fragP->fr_address + fragP->fr_fix;
4503 /* Displacement from opcode start to fill into instruction. */
4504 displacement_from_opcode_start = target_address - opcode_address;
4506 if ((fragP->fr_subtype & BIG) == 0)
4508 /* Don't have to change opcode. */
4509 extension = 1; /* 1 opcode + 1 displacement */
4510 where_to_put_displacement = &opcode[1];
4514 if (no_cond_jump_promotion
4515 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4516 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4518 switch (fragP->fr_subtype)
4520 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4521 extension = 4; /* 1 opcode + 4 displacement */
4523 where_to_put_displacement = &opcode[1];
4526 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4527 extension = 2; /* 1 opcode + 2 displacement */
4529 where_to_put_displacement = &opcode[1];
4532 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4533 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4534 extension = 5; /* 2 opcode + 4 displacement */
4535 opcode[1] = opcode[0] + 0x10;
4536 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4537 where_to_put_displacement = &opcode[2];
4540 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4541 extension = 3; /* 2 opcode + 2 displacement */
4542 opcode[1] = opcode[0] + 0x10;
4543 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4544 where_to_put_displacement = &opcode[2];
4547 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4552 where_to_put_displacement = &opcode[3];
4556 BAD_CASE (fragP->fr_subtype);
4561 /* Now put displacement after opcode. */
4562 md_number_to_chars ((char *) where_to_put_displacement,
4563 (valueT) (displacement_from_opcode_start - extension),
4564 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4565 fragP->fr_fix += extension;
4568 /* Size of byte displacement jmp. */
4569 int md_short_jump_size = 2;
4571 /* Size of dword displacement jmp. */
4572 int md_long_jump_size = 5;
4574 /* Size of relocation record. */
4575 const int md_reloc_size = 8;
4578 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4580 addressT from_addr, to_addr;
4581 fragS *frag ATTRIBUTE_UNUSED;
4582 symbolS *to_symbol ATTRIBUTE_UNUSED;
4586 offset = to_addr - (from_addr + 2);
4587 /* Opcode for byte-disp jump. */
4588 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4589 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4593 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4595 addressT from_addr, to_addr;
4596 fragS *frag ATTRIBUTE_UNUSED;
4597 symbolS *to_symbol ATTRIBUTE_UNUSED;
4601 offset = to_addr - (from_addr + 5);
4602 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4603 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4606 /* Apply a fixup (fixS) to segment data, once it has been determined
4607 by our caller that we have all the info we need to fix it up.
4609 On the 386, immediates, displacements, and data pointers are all in
4610 the same (little-endian) format, so we don't need to care about which
4614 md_apply_fix3 (fixP, valP, seg)
4615 /* The fix we're to put in. */
4617 /* Pointer to the value of the bits. */
4619 /* Segment fix is from. */
4620 segT seg ATTRIBUTE_UNUSED;
4622 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4623 valueT value = *valP;
4625 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4628 switch (fixP->fx_r_type)
4634 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4637 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4640 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4645 if (fixP->fx_addsy != NULL
4646 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4647 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4648 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4649 && !use_rela_relocations)
4651 /* This is a hack. There should be a better way to handle this.
4652 This covers for the fact that bfd_install_relocation will
4653 subtract the current location (for partial_inplace, PC relative
4654 relocations); see more below. */
4656 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4658 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4661 value += fixP->fx_where + fixP->fx_frag->fr_address;
4663 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4664 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4666 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4669 || (symbol_section_p (fixP->fx_addsy)
4670 && sym_seg != absolute_section))
4671 && !generic_force_reloc (fixP))
4673 /* Yes, we add the values in twice. This is because
4674 bfd_install_relocation subtracts them out again. I think
4675 bfd_install_relocation is broken, but I don't dare change
4677 value += fixP->fx_where + fixP->fx_frag->fr_address;
4681 #if defined (OBJ_COFF) && defined (TE_PE)
4682 /* For some reason, the PE format does not store a section
4683 address offset for a PC relative symbol. */
4684 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4685 value += md_pcrel_from (fixP);
4689 /* Fix a few things - the dynamic linker expects certain values here,
4690 and we must not dissappoint it. */
4691 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4692 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4694 switch (fixP->fx_r_type)
4696 case BFD_RELOC_386_PLT32:
4697 case BFD_RELOC_X86_64_PLT32:
4698 /* Make the jump instruction point to the address of the operand. At
4699 runtime we merely add the offset to the actual PLT entry. */
4703 case BFD_RELOC_386_TLS_GD:
4704 case BFD_RELOC_386_TLS_LDM:
4705 case BFD_RELOC_386_TLS_IE_32:
4706 case BFD_RELOC_386_TLS_IE:
4707 case BFD_RELOC_386_TLS_GOTIE:
4708 case BFD_RELOC_X86_64_TLSGD:
4709 case BFD_RELOC_X86_64_TLSLD:
4710 case BFD_RELOC_X86_64_GOTTPOFF:
4711 value = 0; /* Fully resolved at runtime. No addend. */
4713 case BFD_RELOC_386_TLS_LE:
4714 case BFD_RELOC_386_TLS_LDO_32:
4715 case BFD_RELOC_386_TLS_LE_32:
4716 case BFD_RELOC_X86_64_DTPOFF32:
4717 case BFD_RELOC_X86_64_TPOFF32:
4718 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4721 case BFD_RELOC_386_GOT32:
4722 case BFD_RELOC_X86_64_GOT32:
4723 value = 0; /* Fully resolved at runtime. No addend. */
4726 case BFD_RELOC_VTABLE_INHERIT:
4727 case BFD_RELOC_VTABLE_ENTRY:
4734 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4736 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4738 /* Are we finished with this relocation now? */
4739 if (fixP->fx_addsy == NULL)
4741 #ifdef BFD_ASSEMBLER
4742 else if (use_rela_relocations)
4744 fixP->fx_no_overflow = 1;
4745 /* Remember value for tc_gen_reloc. */
4746 fixP->fx_addnumber = value;
4750 md_number_to_chars (p, value, fixP->fx_size);
4753 #define MAX_LITTLENUMS 6
4755 /* Turn the string pointed to by litP into a floating point constant
4756 of type TYPE, and emit the appropriate bytes. The number of
4757 LITTLENUMS emitted is stored in *SIZEP. An error message is
4758 returned, or NULL on OK. */
4761 md_atof (type, litP, sizeP)
4767 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4768 LITTLENUM_TYPE *wordP;
4790 return _("Bad call to md_atof ()");
4792 t = atof_ieee (input_line_pointer, type, words);
4794 input_line_pointer = t;
4796 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4797 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4798 the bigendian 386. */
4799 for (wordP = words + prec - 1; prec--;)
4801 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4802 litP += sizeof (LITTLENUM_TYPE);
4807 char output_invalid_buf[8];
4814 sprintf (output_invalid_buf, "'%c'", c);
4816 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4817 return output_invalid_buf;
4820 /* REG_STRING starts *before* REGISTER_PREFIX. */
4822 static const reg_entry *
4823 parse_register (reg_string, end_op)
4827 char *s = reg_string;
4829 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4832 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4833 if (*s == REGISTER_PREFIX)
4836 if (is_space_char (*s))
4840 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4842 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4843 return (const reg_entry *) NULL;
4847 /* For naked regs, make sure that we are not dealing with an identifier.
4848 This prevents confusing an identifier like `eax_var' with register
4850 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4851 return (const reg_entry *) NULL;
4855 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4857 /* Handle floating point regs, allowing spaces in the (i) part. */
4858 if (r == i386_regtab /* %st is first entry of table */)
4860 if (is_space_char (*s))
4865 if (is_space_char (*s))
4867 if (*s >= '0' && *s <= '7')
4869 r = &i386_float_regtab[*s - '0'];
4871 if (is_space_char (*s))
4879 /* We have "%st(" then garbage. */
4880 return (const reg_entry *) NULL;
4885 && (r->reg_flags & (RegRex64 | RegRex)) != 0
4886 && flag_code != CODE_64BIT)
4888 return (const reg_entry *) NULL;
4894 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4895 const char *md_shortopts = "kVQ:sqn";
4897 const char *md_shortopts = "qn";
4900 struct option md_longopts[] = {
4901 #define OPTION_32 (OPTION_MD_BASE + 0)
4902 {"32", no_argument, NULL, OPTION_32},
4903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4904 #define OPTION_64 (OPTION_MD_BASE + 1)
4905 {"64", no_argument, NULL, OPTION_64},
4907 {NULL, no_argument, NULL, 0}
4909 size_t md_longopts_size = sizeof (md_longopts);
4912 md_parse_option (c, arg)
4914 char *arg ATTRIBUTE_UNUSED;
4919 optimize_align_code = 0;
4926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4927 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4928 should be emitted or not. FIXME: Not implemented. */
4932 /* -V: SVR4 argument to print version ID. */
4934 print_version_id ();
4937 /* -k: Ignore for FreeBSD compatibility. */
4942 /* -s: On i386 Solaris, this tells the native assembler to use
4943 .stab instead of .stab.excl. We always use .stab anyhow. */
4948 const char **list, **l;
4950 list = bfd_target_list ();
4951 for (l = list; *l != NULL; l++)
4952 if (strcmp (*l, "elf64-x86-64") == 0)
4954 default_arch = "x86_64";
4958 as_fatal (_("No compiled in support for x86_64"));
4965 default_arch = "i386";
4975 md_show_usage (stream)
4978 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4979 fprintf (stream, _("\
4981 -V print assembler version number\n\
4983 -n Do not optimize code alignment\n\
4984 -q quieten some warnings\n\
4987 fprintf (stream, _("\
4988 -n Do not optimize code alignment\n\
4989 -q quieten some warnings\n"));
4993 #ifdef BFD_ASSEMBLER
4994 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
4995 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
4997 /* Pick the target format to use. */
5000 i386_target_format ()
5002 if (!strcmp (default_arch, "x86_64"))
5003 set_code_flag (CODE_64BIT);
5004 else if (!strcmp (default_arch, "i386"))
5005 set_code_flag (CODE_32BIT);
5007 as_fatal (_("Unknown architecture"));
5008 switch (OUTPUT_FLAVOR)
5010 #ifdef OBJ_MAYBE_AOUT
5011 case bfd_target_aout_flavour:
5012 return AOUT_TARGET_FORMAT;
5014 #ifdef OBJ_MAYBE_COFF
5015 case bfd_target_coff_flavour:
5018 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5019 case bfd_target_elf_flavour:
5021 if (flag_code == CODE_64BIT)
5022 use_rela_relocations = 1;
5023 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5032 #endif /* OBJ_MAYBE_ more than one */
5034 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5035 void i386_elf_emit_arch_note ()
5037 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5038 && cpu_arch_name != NULL)
5041 asection *seg = now_seg;
5042 subsegT subseg = now_subseg;
5043 Elf_Internal_Note i_note;
5044 Elf_External_Note e_note;
5045 asection *note_secp;
5048 /* Create the .note section. */
5049 note_secp = subseg_new (".note", 0);
5050 bfd_set_section_flags (stdoutput,
5052 SEC_HAS_CONTENTS | SEC_READONLY);
5054 /* Process the arch string. */
5055 len = strlen (cpu_arch_name);
5057 i_note.namesz = len + 1;
5059 i_note.type = NT_ARCH;
5060 p = frag_more (sizeof (e_note.namesz));
5061 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5062 p = frag_more (sizeof (e_note.descsz));
5063 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5064 p = frag_more (sizeof (e_note.type));
5065 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5066 p = frag_more (len + 1);
5067 strcpy (p, cpu_arch_name);
5069 frag_align (2, 0, 0);
5071 subseg_set (seg, subseg);
5075 #endif /* BFD_ASSEMBLER */
5078 md_undefined_symbol (name)
5081 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5082 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5083 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5084 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5088 if (symbol_find (name))
5089 as_bad (_("GOT already in symbol table"));
5090 GOT_symbol = symbol_new (name, undefined_section,
5091 (valueT) 0, &zero_address_frag);
5098 /* Round up a section size to the appropriate boundary. */
5101 md_section_align (segment, size)
5102 segT segment ATTRIBUTE_UNUSED;
5105 #ifdef BFD_ASSEMBLER
5106 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5107 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5109 /* For a.out, force the section size to be aligned. If we don't do
5110 this, BFD will align it for us, but it will not write out the
5111 final bytes of the section. This may be a bug in BFD, but it is
5112 easier to fix it here since that is how the other a.out targets
5116 align = bfd_get_section_alignment (stdoutput, segment);
5117 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5125 /* On the i386, PC-relative offsets are relative to the start of the
5126 next instruction. That is, the address of the offset, plus its
5127 size, since the offset is always the last part of the insn. */
5130 md_pcrel_from (fixP)
5133 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5140 int ignore ATTRIBUTE_UNUSED;
5144 temp = get_absolute_expression ();
5145 subseg_set (bss_section, (subsegT) temp);
5146 demand_empty_rest_of_line ();
5151 #ifdef BFD_ASSEMBLER
5154 i386_validate_fix (fixp)
5157 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5159 /* GOTOFF relocation are nonsense in 64bit mode. */
5160 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5162 if (flag_code != CODE_64BIT)
5164 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5168 if (flag_code == CODE_64BIT)
5170 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5177 tc_gen_reloc (section, fixp)
5178 asection *section ATTRIBUTE_UNUSED;
5182 bfd_reloc_code_real_type code;
5184 switch (fixp->fx_r_type)
5186 case BFD_RELOC_X86_64_PLT32:
5187 case BFD_RELOC_X86_64_GOT32:
5188 case BFD_RELOC_X86_64_GOTPCREL:
5189 case BFD_RELOC_386_PLT32:
5190 case BFD_RELOC_386_GOT32:
5191 case BFD_RELOC_386_GOTOFF:
5192 case BFD_RELOC_386_GOTPC:
5193 case BFD_RELOC_386_TLS_GD:
5194 case BFD_RELOC_386_TLS_LDM:
5195 case BFD_RELOC_386_TLS_LDO_32:
5196 case BFD_RELOC_386_TLS_IE_32:
5197 case BFD_RELOC_386_TLS_IE:
5198 case BFD_RELOC_386_TLS_GOTIE:
5199 case BFD_RELOC_386_TLS_LE_32:
5200 case BFD_RELOC_386_TLS_LE:
5201 case BFD_RELOC_X86_64_32S:
5202 case BFD_RELOC_X86_64_TLSGD:
5203 case BFD_RELOC_X86_64_TLSLD:
5204 case BFD_RELOC_X86_64_DTPOFF32:
5205 case BFD_RELOC_X86_64_GOTTPOFF:
5206 case BFD_RELOC_X86_64_TPOFF32:
5208 case BFD_RELOC_VTABLE_ENTRY:
5209 case BFD_RELOC_VTABLE_INHERIT:
5210 code = fixp->fx_r_type;
5215 switch (fixp->fx_size)
5218 as_bad_where (fixp->fx_file, fixp->fx_line,
5219 _("can not do %d byte pc-relative relocation"),
5221 code = BFD_RELOC_32_PCREL;
5223 case 1: code = BFD_RELOC_8_PCREL; break;
5224 case 2: code = BFD_RELOC_16_PCREL; break;
5225 case 4: code = BFD_RELOC_32_PCREL; break;
5230 switch (fixp->fx_size)
5233 as_bad_where (fixp->fx_file, fixp->fx_line,
5234 _("can not do %d byte relocation"),
5236 code = BFD_RELOC_32;
5238 case 1: code = BFD_RELOC_8; break;
5239 case 2: code = BFD_RELOC_16; break;
5240 case 4: code = BFD_RELOC_32; break;
5242 case 8: code = BFD_RELOC_64; break;
5249 if (code == BFD_RELOC_32
5251 && fixp->fx_addsy == GOT_symbol)
5253 /* We don't support GOTPC on 64bit targets. */
5254 if (flag_code == CODE_64BIT)
5256 code = BFD_RELOC_386_GOTPC;
5259 rel = (arelent *) xmalloc (sizeof (arelent));
5260 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5261 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5263 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5264 if (!use_rela_relocations)
5266 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5267 vtable entry to be used in the relocation's section offset. */
5268 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5269 rel->address = fixp->fx_offset;
5273 /* Use the rela in 64bit mode. */
5276 if (!fixp->fx_pcrel)
5277 rel->addend = fixp->fx_offset;
5281 case BFD_RELOC_X86_64_PLT32:
5282 case BFD_RELOC_X86_64_GOT32:
5283 case BFD_RELOC_X86_64_GOTPCREL:
5284 case BFD_RELOC_X86_64_TLSGD:
5285 case BFD_RELOC_X86_64_TLSLD:
5286 case BFD_RELOC_X86_64_GOTTPOFF:
5287 rel->addend = fixp->fx_offset - fixp->fx_size;
5290 rel->addend = (section->vma
5292 + fixp->fx_addnumber
5293 + md_pcrel_from (fixp));
5298 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5299 if (rel->howto == NULL)
5301 as_bad_where (fixp->fx_file, fixp->fx_line,
5302 _("cannot represent relocation type %s"),
5303 bfd_get_reloc_code_name (code));
5304 /* Set howto to a garbage value so that we can keep going. */
5305 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5306 assert (rel->howto != NULL);
5312 #else /* !BFD_ASSEMBLER */
5314 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
5316 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
5319 relax_addressT segment_address_in_file;
5321 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
5322 Out: GNU LD relocation length code: 0, 1, or 2. */
5324 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
5327 know (fixP->fx_addsy != NULL);
5329 md_number_to_chars (where,
5330 (valueT) (fixP->fx_frag->fr_address
5331 + fixP->fx_where - segment_address_in_file),
5334 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
5335 ? S_GET_TYPE (fixP->fx_addsy)
5336 : fixP->fx_addsy->sy_number);
5338 where[6] = (r_symbolnum >> 16) & 0x0ff;
5339 where[5] = (r_symbolnum >> 8) & 0x0ff;
5340 where[4] = r_symbolnum & 0x0ff;
5341 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
5342 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
5343 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
5346 #endif /* OBJ_AOUT or OBJ_BOUT. */
5348 #if defined (I386COFF)
5351 tc_coff_fix2rtype (fixP)
5354 if (fixP->fx_r_type == R_IMAGEBASE)
5357 return (fixP->fx_pcrel ?
5358 (fixP->fx_size == 1 ? R_PCRBYTE :
5359 fixP->fx_size == 2 ? R_PCRWORD :
5361 (fixP->fx_size == 1 ? R_RELBYTE :
5362 fixP->fx_size == 2 ? R_RELWORD :
5367 tc_coff_sizemachdep (frag)
5371 return (frag->fr_next->fr_address - frag->fr_address);
5376 #endif /* I386COFF */
5378 #endif /* !BFD_ASSEMBLER */
5380 /* Parse operands using Intel syntax. This implements a recursive descent
5381 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5384 FIXME: We do not recognize the full operand grammar defined in the MASM
5385 documentation. In particular, all the structure/union and
5386 high-level macro operands are missing.
5388 Uppercase words are terminals, lower case words are non-terminals.
5389 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5390 bars '|' denote choices. Most grammar productions are implemented in
5391 functions called 'intel_<production>'.
5393 Initial production is 'expr'.
5399 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5401 constant digits [[ radixOverride ]]
5403 dataType BYTE | WORD | DWORD | QWORD | XWORD
5436 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5437 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5439 hexdigit a | b | c | d | e | f
5440 | A | B | C | D | E | F
5450 register specialRegister
5454 segmentRegister CS | DS | ES | FS | GS | SS
5456 specialRegister CR0 | CR2 | CR3
5457 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5458 | TR3 | TR4 | TR5 | TR6 | TR7
5460 We simplify the grammar in obvious places (e.g., register parsing is
5461 done by calling parse_register) and eliminate immediate left recursion
5462 to implement a recursive-descent parser.
5502 /* Parsing structure for the intel syntax parser. Used to implement the
5503 semantic actions for the operand grammar. */
5504 struct intel_parser_s
5506 char *op_string; /* The string being parsed. */
5507 int got_a_float; /* Whether the operand is a float. */
5508 int op_modifier; /* Operand modifier. */
5509 int is_mem; /* 1 if operand is memory reference. */
5510 const reg_entry *reg; /* Last register reference found. */
5511 char *disp; /* Displacement string being built. */
5514 static struct intel_parser_s intel_parser;
5516 /* Token structure for parsing intel syntax. */
5519 int code; /* Token code. */
5520 const reg_entry *reg; /* Register entry for register tokens. */
5521 char *str; /* String representation. */
5524 static struct intel_token cur_token, prev_token;
5526 /* Token codes for the intel parser. Since T_SHORT is already used
5527 by COFF, undefine it first to prevent a warning. */
5542 /* Prototypes for intel parser functions. */
5543 static int intel_match_token PARAMS ((int code));
5544 static void intel_get_token PARAMS ((void));
5545 static void intel_putback_token PARAMS ((void));
5546 static int intel_expr PARAMS ((void));
5547 static int intel_e05 PARAMS ((void));
5548 static int intel_e05_1 PARAMS ((void));
5549 static int intel_e06 PARAMS ((void));
5550 static int intel_e06_1 PARAMS ((void));
5551 static int intel_e09 PARAMS ((void));
5552 static int intel_e09_1 PARAMS ((void));
5553 static int intel_e10 PARAMS ((void));
5554 static int intel_e10_1 PARAMS ((void));
5555 static int intel_e11 PARAMS ((void));
5558 i386_intel_operand (operand_string, got_a_float)
5559 char *operand_string;
5565 /* Initialize token holders. */
5566 cur_token.code = prev_token.code = T_NIL;
5567 cur_token.reg = prev_token.reg = NULL;
5568 cur_token.str = prev_token.str = NULL;
5570 /* Initialize parser structure. */
5571 p = intel_parser.op_string = (char *) malloc (strlen (operand_string) + 1);
5574 strcpy (intel_parser.op_string, operand_string);
5575 intel_parser.got_a_float = got_a_float;
5576 intel_parser.op_modifier = -1;
5577 intel_parser.is_mem = 0;
5578 intel_parser.reg = NULL;
5579 intel_parser.disp = (char *) malloc (strlen (operand_string) + 1);
5580 if (intel_parser.disp == NULL)
5582 intel_parser.disp[0] = '\0';
5584 /* Read the first token and start the parser. */
5586 ret = intel_expr ();
5590 /* If we found a memory reference, hand it over to i386_displacement
5591 to fill in the rest of the operand fields. */
5592 if (intel_parser.is_mem)
5594 if ((i.mem_operands == 1
5595 && (current_templates->start->opcode_modifier & IsString) == 0)
5596 || i.mem_operands == 2)
5598 as_bad (_("too many memory references for '%s'"),
5599 current_templates->start->name);
5604 char *s = intel_parser.disp;
5607 /* Add the displacement expression. */
5609 ret = i386_displacement (s, s + strlen (s))
5610 && i386_index_check (s);
5614 /* Constant and OFFSET expressions are handled by i386_immediate. */
5615 else if (intel_parser.op_modifier == OFFSET_FLAT
5616 || intel_parser.reg == NULL)
5617 ret = i386_immediate (intel_parser.disp);
5621 free (intel_parser.disp);
5631 /* expr SHORT e05 */
5632 if (cur_token.code == T_SHORT)
5634 intel_parser.op_modifier = SHORT;
5635 intel_match_token (T_SHORT);
5637 return (intel_e05 ());
5642 return intel_e05 ();
5652 return (intel_e06 () && intel_e05_1 ());
5658 /* e05' addOp e06 e05' */
5659 if (cur_token.code == '+' || cur_token.code == '-')
5661 strcat (intel_parser.disp, cur_token.str);
5662 intel_match_token (cur_token.code);
5664 return (intel_e06 () && intel_e05_1 ());
5679 return (intel_e09 () && intel_e06_1 ());
5685 /* e06' mulOp e09 e06' */
5686 if (cur_token.code == '*' || cur_token.code == '/')
5688 strcat (intel_parser.disp, cur_token.str);
5689 intel_match_token (cur_token.code);
5691 return (intel_e09 () && intel_e06_1 ());
5699 /* e09 OFFSET e10 e09'
5708 /* e09 OFFSET e10 e09' */
5709 if (cur_token.code == T_OFFSET)
5711 intel_parser.is_mem = 0;
5712 intel_parser.op_modifier = OFFSET_FLAT;
5713 intel_match_token (T_OFFSET);
5715 return (intel_e10 () && intel_e09_1 ());
5720 return (intel_e10 () && intel_e09_1 ());
5726 /* e09' PTR e10 e09' */
5727 if (cur_token.code == T_PTR)
5729 if (prev_token.code == T_BYTE)
5730 i.suffix = BYTE_MNEM_SUFFIX;
5732 else if (prev_token.code == T_WORD)
5734 if (intel_parser.got_a_float == 2) /* "fi..." */
5735 i.suffix = SHORT_MNEM_SUFFIX;
5737 i.suffix = WORD_MNEM_SUFFIX;
5740 else if (prev_token.code == T_DWORD)
5742 if (intel_parser.got_a_float == 1) /* "f..." */
5743 i.suffix = SHORT_MNEM_SUFFIX;
5745 i.suffix = LONG_MNEM_SUFFIX;
5748 else if (prev_token.code == T_QWORD)
5750 if (intel_parser.got_a_float == 1) /* "f..." */
5751 i.suffix = LONG_MNEM_SUFFIX;
5753 i.suffix = QWORD_MNEM_SUFFIX;
5756 else if (prev_token.code == T_XWORD)
5757 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
5761 as_bad (_("Unknown operand modifier `%s'\n"), prev_token.str);
5765 intel_match_token (T_PTR);
5767 return (intel_e10 () && intel_e09_1 ());
5770 /* e09 : e10 e09' */
5771 else if (cur_token.code == ':')
5773 /* Mark as a memory operand only if it's not already known to be an
5774 offset expression. */
5775 if (intel_parser.op_modifier != OFFSET_FLAT)
5776 intel_parser.is_mem = 1;
5778 return (intel_match_token (':') && intel_e10 () && intel_e09_1 ());
5793 return (intel_e11 () && intel_e10_1 ());
5799 /* e10' [ expr ] e10' */
5800 if (cur_token.code == '[')
5802 intel_match_token ('[');
5804 /* Mark as a memory operand only if it's not already known to be an
5805 offset expression. If it's an offset expression, we need to keep
5807 if (intel_parser.op_modifier != OFFSET_FLAT)
5808 intel_parser.is_mem = 1;
5810 strcat (intel_parser.disp, "[");
5812 /* Add a '+' to the displacement string if necessary. */
5813 if (*intel_parser.disp != '\0'
5814 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5815 strcat (intel_parser.disp, "+");
5817 if (intel_expr () && intel_match_token (']'))
5819 /* Preserve brackets when the operand is an offset expression. */
5820 if (intel_parser.op_modifier == OFFSET_FLAT)
5821 strcat (intel_parser.disp, "]");
5823 return intel_e10_1 ();
5850 if (cur_token.code == '(')
5852 intel_match_token ('(');
5853 strcat (intel_parser.disp, "(");
5855 if (intel_expr () && intel_match_token (')'))
5857 strcat (intel_parser.disp, ")");
5865 else if (cur_token.code == '[')
5867 intel_match_token ('[');
5869 /* Mark as a memory operand only if it's not already known to be an
5870 offset expression. If it's an offset expression, we need to keep
5872 if (intel_parser.op_modifier != OFFSET_FLAT)
5873 intel_parser.is_mem = 1;
5875 strcat (intel_parser.disp, "[");
5877 /* Operands for jump/call inside brackets denote absolute addresses. */
5878 if (current_templates->start->opcode_modifier & Jump
5879 || current_templates->start->opcode_modifier & JumpDword
5880 || current_templates->start->opcode_modifier & JumpByte
5881 || current_templates->start->opcode_modifier & JumpInterSegment)
5882 i.types[this_operand] |= JumpAbsolute;
5884 /* Add a '+' to the displacement string if necessary. */
5885 if (*intel_parser.disp != '\0'
5886 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
5887 strcat (intel_parser.disp, "+");
5889 if (intel_expr () && intel_match_token (']'))
5891 /* Preserve brackets when the operand is an offset expression. */
5892 if (intel_parser.op_modifier == OFFSET_FLAT)
5893 strcat (intel_parser.disp, "]");
5906 else if (cur_token.code == T_BYTE
5907 || cur_token.code == T_WORD
5908 || cur_token.code == T_DWORD
5909 || cur_token.code == T_QWORD
5910 || cur_token.code == T_XWORD)
5912 intel_match_token (cur_token.code);
5919 else if (cur_token.code == '$' || cur_token.code == '.')
5921 strcat (intel_parser.disp, cur_token.str);
5922 intel_match_token (cur_token.code);
5924 /* Mark as a memory operand only if it's not already known to be an
5925 offset expression. */
5926 if (intel_parser.op_modifier != OFFSET_FLAT)
5927 intel_parser.is_mem = 1;
5933 else if (cur_token.code == T_REG)
5935 const reg_entry *reg = intel_parser.reg = cur_token.reg;
5937 intel_match_token (T_REG);
5939 /* Check for segment change. */
5940 if (cur_token.code == ':')
5942 if (reg->reg_type & (SReg2 | SReg3))
5944 switch (reg->reg_num)
5947 i.seg[i.mem_operands] = &es;
5950 i.seg[i.mem_operands] = &cs;
5953 i.seg[i.mem_operands] = &ss;
5956 i.seg[i.mem_operands] = &ds;
5959 i.seg[i.mem_operands] = &fs;
5962 i.seg[i.mem_operands] = &gs;
5968 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
5973 /* Not a segment register. Check for register scaling. */
5974 else if (cur_token.code == '*')
5976 if (!intel_parser.is_mem)
5978 as_bad (_("Register scaling only allowed in memory operands."));
5982 /* What follows must be a valid scale. */
5983 if (intel_match_token ('*')
5984 && strchr ("01248", *cur_token.str))
5987 i.types[this_operand] |= BaseIndex;
5989 /* Set the scale after setting the register (otherwise,
5990 i386_scale will complain) */
5991 i386_scale (cur_token.str);
5992 intel_match_token (T_CONST);
5996 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6002 /* No scaling. If this is a memory operand, the register is either a
6003 base register (first occurrence) or an index register (second
6005 else if (intel_parser.is_mem && !(reg->reg_type & (SReg2 | SReg3)))
6007 if (i.base_reg && i.index_reg)
6009 as_bad (_("Too many register references in memory operand.\n"));
6013 if (i.base_reg == NULL)
6018 i.types[this_operand] |= BaseIndex;
6021 /* Offset modifier. Add the register to the displacement string to be
6022 parsed as an immediate expression after we're done. */
6023 else if (intel_parser.op_modifier == OFFSET_FLAT)
6024 strcat (intel_parser.disp, reg->reg_name);
6026 /* It's neither base nor index nor offset. */
6029 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6030 i.op[this_operand].regs = reg;
6034 /* Since registers are not part of the displacement string (except
6035 when we're parsing offset operands), we may need to remove any
6036 preceding '+' from the displacement string. */
6037 if (*intel_parser.disp != '\0'
6038 && intel_parser.op_modifier != OFFSET_FLAT)
6040 char *s = intel_parser.disp;
6041 s += strlen (s) - 1;
6050 else if (cur_token.code == T_ID)
6052 /* Add the identifier to the displacement string. */
6053 strcat (intel_parser.disp, cur_token.str);
6054 intel_match_token (T_ID);
6056 /* The identifier represents a memory reference only if it's not
6057 preceded by an offset modifier. */
6058 if (intel_parser.op_modifier != OFFSET_FLAT)
6059 intel_parser.is_mem = 1;
6065 else if (cur_token.code == T_CONST
6066 || cur_token.code == '-'
6067 || cur_token.code == '+')
6071 /* Allow constants that start with `+' or `-'. */
6072 if (cur_token.code == '-' || cur_token.code == '+')
6074 strcat (intel_parser.disp, cur_token.str);
6075 intel_match_token (cur_token.code);
6076 if (cur_token.code != T_CONST)
6078 as_bad (_("Syntax error. Expecting a constant. Got `%s'.\n"),
6084 save_str = (char *) malloc (strlen (cur_token.str) + 1);
6085 if (save_str == NULL)
6087 strcpy (save_str, cur_token.str);
6089 /* Get the next token to check for register scaling. */
6090 intel_match_token (cur_token.code);
6092 /* Check if this constant is a scaling factor for an index register. */
6093 if (cur_token.code == '*')
6095 if (intel_match_token ('*') && cur_token.code == T_REG)
6097 if (!intel_parser.is_mem)
6099 as_bad (_("Register scaling only allowed in memory operands."));
6103 /* The constant is followed by `* reg', so it must be
6105 if (strchr ("01248", *save_str))
6107 i.index_reg = cur_token.reg;
6108 i.types[this_operand] |= BaseIndex;
6110 /* Set the scale after setting the register (otherwise,
6111 i386_scale will complain) */
6112 i386_scale (save_str);
6113 intel_match_token (T_REG);
6115 /* Since registers are not part of the displacement
6116 string, we may need to remove any preceding '+' from
6117 the displacement string. */
6118 if (*intel_parser.disp != '\0')
6120 char *s = intel_parser.disp;
6121 s += strlen (s) - 1;
6134 /* The constant was not used for register scaling. Since we have
6135 already consumed the token following `*' we now need to put it
6136 back in the stream. */
6138 intel_putback_token ();
6141 /* Add the constant to the displacement string. */
6142 strcat (intel_parser.disp, save_str);
6148 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6152 /* Match the given token against cur_token. If they match, read the next
6153 token from the operand string. */
6155 intel_match_token (code)
6158 if (cur_token.code == code)
6165 as_bad (_("Unexpected token `%s'\n"), cur_token.str);
6170 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6175 const reg_entry *reg;
6176 struct intel_token new_token;
6178 new_token.code = T_NIL;
6179 new_token.reg = NULL;
6180 new_token.str = NULL;
6182 /* Free the memory allocated to the previous token and move
6183 cur_token to prev_token. */
6185 free (prev_token.str);
6187 prev_token = cur_token;
6189 /* Skip whitespace. */
6190 while (is_space_char (*intel_parser.op_string))
6191 intel_parser.op_string++;
6193 /* Return an empty token if we find nothing else on the line. */
6194 if (*intel_parser.op_string == '\0')
6196 cur_token = new_token;
6200 /* The new token cannot be larger than the remainder of the operand
6202 new_token.str = (char *) malloc (strlen (intel_parser.op_string) + 1);
6203 if (new_token.str == NULL)
6205 new_token.str[0] = '\0';
6207 if (strchr ("0123456789", *intel_parser.op_string))
6209 char *p = new_token.str;
6210 char *q = intel_parser.op_string;
6211 new_token.code = T_CONST;
6213 /* Allow any kind of identifier char to encompass floating point and
6214 hexadecimal numbers. */
6215 while (is_identifier_char (*q))
6219 /* Recognize special symbol names [0-9][bf]. */
6220 if (strlen (intel_parser.op_string) == 2
6221 && (intel_parser.op_string[1] == 'b'
6222 || intel_parser.op_string[1] == 'f'))
6223 new_token.code = T_ID;
6226 else if (strchr ("+-/*:[]()", *intel_parser.op_string))
6228 new_token.code = *intel_parser.op_string;
6229 new_token.str[0] = *intel_parser.op_string;
6230 new_token.str[1] = '\0';
6233 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6234 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6236 new_token.code = T_REG;
6237 new_token.reg = reg;
6239 if (*intel_parser.op_string == REGISTER_PREFIX)
6241 new_token.str[0] = REGISTER_PREFIX;
6242 new_token.str[1] = '\0';
6245 strcat (new_token.str, reg->reg_name);
6248 else if (is_identifier_char (*intel_parser.op_string))
6250 char *p = new_token.str;
6251 char *q = intel_parser.op_string;
6253 /* A '.' or '$' followed by an identifier char is an identifier.
6254 Otherwise, it's operator '.' followed by an expression. */
6255 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6257 new_token.code = *q;
6258 new_token.str[0] = *q;
6259 new_token.str[1] = '\0';
6263 while (is_identifier_char (*q) || *q == '@')
6267 if (strcasecmp (new_token.str, "BYTE") == 0)
6268 new_token.code = T_BYTE;
6270 else if (strcasecmp (new_token.str, "WORD") == 0)
6271 new_token.code = T_WORD;
6273 else if (strcasecmp (new_token.str, "DWORD") == 0)
6274 new_token.code = T_DWORD;
6276 else if (strcasecmp (new_token.str, "QWORD") == 0)
6277 new_token.code = T_QWORD;
6279 else if (strcasecmp (new_token.str, "XWORD") == 0)
6280 new_token.code = T_XWORD;
6282 else if (strcasecmp (new_token.str, "PTR") == 0)
6283 new_token.code = T_PTR;
6285 else if (strcasecmp (new_token.str, "SHORT") == 0)
6286 new_token.code = T_SHORT;
6288 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6290 new_token.code = T_OFFSET;
6292 /* ??? This is not mentioned in the MASM grammar but gcc
6293 makes use of it with -mintel-syntax. OFFSET may be
6294 followed by FLAT: */
6295 if (strncasecmp (q, " FLAT:", 6) == 0)
6296 strcat (new_token.str, " FLAT:");
6299 /* ??? This is not mentioned in the MASM grammar. */
6300 else if (strcasecmp (new_token.str, "FLAT") == 0)
6301 new_token.code = T_OFFSET;
6304 new_token.code = T_ID;
6309 as_bad (_("Unrecognized token `%s'\n"), intel_parser.op_string);
6311 intel_parser.op_string += strlen (new_token.str);
6312 cur_token = new_token;
6315 /* Put cur_token back into the token stream and make cur_token point to
6318 intel_putback_token ()
6320 intel_parser.op_string -= strlen (cur_token.str);
6321 free (cur_token.str);
6322 cur_token = prev_token;
6324 /* Forget prev_token. */
6325 prev_token.code = T_NIL;
6326 prev_token.reg = NULL;
6327 prev_token.str = NULL;
6331 tc_x86_regname_to_dw2regnum (const char *regname)
6333 unsigned int regnum;
6334 unsigned int regnames_count;
6335 char *regnames_32[] =
6337 "eax", "ecx", "edx", "ebx",
6338 "esp", "ebp", "esi", "edi",
6341 char *regnames_64[] =
6343 "rax", "rbx", "rcx", "rdx",
6344 "rdi", "rsi", "rbp", "rsp",
6345 "r8", "r9", "r10", "r11",
6346 "r12", "r13", "r14", "r15",
6351 if (flag_code == CODE_64BIT)
6353 regnames = regnames_64;
6354 regnames_count = sizeof (regnames_64);
6358 regnames = regnames_32;
6359 regnames_count = sizeof (regnames_32);
6362 for (regnum = 0; regnum < regnames_count; regnum++)
6363 if (strcmp (regname, regnames[regnum]) == 0)
6370 tc_x86_frame_initial_instructions (void)
6372 static unsigned int sp_regno;
6375 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6378 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6379 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);