1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 #include "gdb_string.h"
37 #include "gdb_assert.h"
41 /* Prototypes for exported functions. */
43 void _initialize_values (void);
45 /* Prototypes for local functions. */
47 static void show_values (char *, int);
49 static void show_convenience (char *, int);
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
58 #define VALUE_HISTORY_CHUNK 60
60 struct value_history_chunk
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
66 /* Chain of chunks now in use. */
68 static struct value_history_chunk *value_history_chain;
70 static int value_history_count; /* Abs number of last entry stored */
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
76 static struct value *all_values;
78 /* Allocate a value that has the correct length for type TYPE. */
81 allocate_value (struct type *type)
84 struct type *atype = check_typedef (type);
86 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
97 VALUE_REGNUM (val) = -1;
99 val->optimized_out = 0;
100 val->embedded_offset = 0;
101 val->pointed_to_offset = 0;
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
110 allocate_repeat_value (struct type *type, int count)
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
120 return allocate_value (create_array_type ((struct type *) NULL,
124 /* Accessor methods. */
127 value_next (struct value *value)
133 value_type (struct value *value)
138 deprecated_set_value_type (struct value *value, struct type *type)
144 value_offset (struct value *value)
146 return value->offset;
149 set_value_offset (struct value *value, int offset)
151 value->offset = offset;
155 value_bitpos (struct value *value)
157 return value->bitpos;
160 set_value_bitpos (struct value *value, int bit)
166 value_bitsize (struct value *value)
168 return value->bitsize;
171 set_value_bitsize (struct value *value, int bit)
173 value->bitsize = bit;
177 value_contents_raw (struct value *value)
179 return value->aligner.contents + value->embedded_offset;
183 value_contents_all_raw (struct value *value)
185 return value->aligner.contents;
189 value_enclosing_type (struct value *value)
191 return value->enclosing_type;
195 value_contents_all (struct value *value)
198 value_fetch_lazy (value);
199 return value->aligner.contents;
203 value_lazy (struct value *value)
209 set_value_lazy (struct value *value, int val)
215 value_contents (struct value *value)
217 return value_contents_writeable (value);
221 value_contents_writeable (struct value *value)
224 value_fetch_lazy (value);
225 return value->aligner.contents;
229 value_optimized_out (struct value *value)
231 return value->optimized_out;
235 set_value_optimized_out (struct value *value, int val)
237 value->optimized_out = val;
241 value_embedded_offset (struct value *value)
243 return value->embedded_offset;
247 set_value_embedded_offset (struct value *value, int val)
249 value->embedded_offset = val;
253 value_pointed_to_offset (struct value *value)
255 return value->pointed_to_offset;
259 set_value_pointed_to_offset (struct value *value, int val)
261 value->pointed_to_offset = val;
265 deprecated_value_lval_hack (struct value *value)
271 deprecated_value_address_hack (struct value *value)
273 return &value->location.address;
276 struct internalvar **
277 deprecated_value_internalvar_hack (struct value *value)
279 return &value->location.internalvar;
283 deprecated_value_frame_id_hack (struct value *value)
285 return &value->frame_id;
289 deprecated_value_regnum_hack (struct value *value)
291 return &value->regnum;
295 deprecated_value_modifiable (struct value *value)
297 return value->modifiable;
300 deprecated_set_value_modifiable (struct value *value, int modifiable)
302 value->modifiable = modifiable;
305 /* Return a mark in the value chain. All values allocated after the
306 mark is obtained (except for those released) are subject to being freed
307 if a subsequent value_free_to_mark is passed the mark. */
314 /* Free all values allocated since MARK was obtained by value_mark
315 (except for those released). */
317 value_free_to_mark (struct value *mark)
322 for (val = all_values; val && val != mark; val = next)
330 /* Free all the values that have been allocated (except for those released).
331 Called after each command, successful or not. */
334 free_all_values (void)
339 for (val = all_values; val; val = next)
348 /* Remove VAL from the chain all_values
349 so it will not be freed automatically. */
352 release_value (struct value *val)
356 if (all_values == val)
358 all_values = val->next;
362 for (v = all_values; v; v = v->next)
372 /* Release all values up to mark */
374 value_release_to_mark (struct value *mark)
379 for (val = next = all_values; next; next = next->next)
380 if (next->next == mark)
382 all_values = next->next;
390 /* Return a copy of the value ARG.
391 It contains the same contents, for same memory address,
392 but it's a different block of storage. */
395 value_copy (struct value *arg)
397 struct type *encl_type = value_enclosing_type (arg);
398 struct value *val = allocate_value (encl_type);
399 val->type = arg->type;
400 VALUE_LVAL (val) = VALUE_LVAL (arg);
401 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
402 val->offset = arg->offset;
403 val->bitpos = arg->bitpos;
404 val->bitsize = arg->bitsize;
405 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
406 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
407 val->lazy = arg->lazy;
408 val->optimized_out = arg->optimized_out;
409 val->embedded_offset = value_embedded_offset (arg);
410 val->pointed_to_offset = arg->pointed_to_offset;
411 val->modifiable = arg->modifiable;
412 if (!value_lazy (val))
414 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
415 TYPE_LENGTH (value_enclosing_type (arg)));
421 /* Access to the value history. */
423 /* Record a new value in the value history.
424 Returns the absolute history index of the entry.
425 Result of -1 indicates the value was not saved; otherwise it is the
426 value history index of this new item. */
429 record_latest_value (struct value *val)
433 /* We don't want this value to have anything to do with the inferior anymore.
434 In particular, "set $1 = 50" should not affect the variable from which
435 the value was taken, and fast watchpoints should be able to assume that
436 a value on the value history never changes. */
437 if (value_lazy (val))
438 value_fetch_lazy (val);
439 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
440 from. This is a bit dubious, because then *&$1 does not just return $1
441 but the current contents of that location. c'est la vie... */
445 /* Here we treat value_history_count as origin-zero
446 and applying to the value being stored now. */
448 i = value_history_count % VALUE_HISTORY_CHUNK;
451 struct value_history_chunk *new
452 = (struct value_history_chunk *)
453 xmalloc (sizeof (struct value_history_chunk));
454 memset (new->values, 0, sizeof new->values);
455 new->next = value_history_chain;
456 value_history_chain = new;
459 value_history_chain->values[i] = val;
461 /* Now we regard value_history_count as origin-one
462 and applying to the value just stored. */
464 return ++value_history_count;
467 /* Return a copy of the value in the history with sequence number NUM. */
470 access_value_history (int num)
472 struct value_history_chunk *chunk;
477 absnum += value_history_count;
482 error ("The history is empty.");
484 error ("There is only one value in the history.");
486 error ("History does not go back to $$%d.", -num);
488 if (absnum > value_history_count)
489 error ("History has not yet reached $%d.", absnum);
493 /* Now absnum is always absolute and origin zero. */
495 chunk = value_history_chain;
496 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
500 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
503 /* Clear the value history entirely.
504 Must be done when new symbol tables are loaded,
505 because the type pointers become invalid. */
508 clear_value_history (void)
510 struct value_history_chunk *next;
514 while (value_history_chain)
516 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
517 if ((val = value_history_chain->values[i]) != NULL)
519 next = value_history_chain->next;
520 xfree (value_history_chain);
521 value_history_chain = next;
523 value_history_count = 0;
527 show_values (char *num_exp, int from_tty)
535 /* "info history +" should print from the stored position.
536 "info history <exp>" should print around value number <exp>. */
537 if (num_exp[0] != '+' || num_exp[1] != '\0')
538 num = parse_and_eval_long (num_exp) - 5;
542 /* "info history" means print the last 10 values. */
543 num = value_history_count - 9;
549 for (i = num; i < num + 10 && i <= value_history_count; i++)
551 val = access_value_history (i);
552 printf_filtered ("$%d = ", i);
553 value_print (val, gdb_stdout, 0, Val_pretty_default);
554 printf_filtered ("\n");
557 /* The next "info history +" should start after what we just printed. */
560 /* Hitting just return after this command should do the same thing as
561 "info history +". If num_exp is null, this is unnecessary, since
562 "info history +" is not useful after "info history". */
563 if (from_tty && num_exp)
570 /* Internal variables. These are variables within the debugger
571 that hold values assigned by debugger commands.
572 The user refers to them with a '$' prefix
573 that does not appear in the variable names stored internally. */
575 static struct internalvar *internalvars;
577 /* Look up an internal variable with name NAME. NAME should not
578 normally include a dollar sign.
580 If the specified internal variable does not exist,
581 one is created, with a void value. */
584 lookup_internalvar (char *name)
586 struct internalvar *var;
588 for (var = internalvars; var; var = var->next)
589 if (strcmp (var->name, name) == 0)
592 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
593 var->name = concat (name, NULL);
594 var->value = allocate_value (builtin_type_void);
595 release_value (var->value);
596 var->next = internalvars;
602 value_of_internalvar (struct internalvar *var)
606 val = value_copy (var->value);
607 if (value_lazy (val))
608 value_fetch_lazy (val);
609 VALUE_LVAL (val) = lval_internalvar;
610 VALUE_INTERNALVAR (val) = var;
615 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
616 int bitsize, struct value *newval)
618 bfd_byte *addr = value_contents_writeable (var->value) + offset;
621 modify_field (addr, value_as_long (newval),
624 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
628 set_internalvar (struct internalvar *var, struct value *val)
630 struct value *newval;
632 newval = value_copy (val);
633 newval->modifiable = 1;
635 /* Force the value to be fetched from the target now, to avoid problems
636 later when this internalvar is referenced and the target is gone or
638 if (value_lazy (newval))
639 value_fetch_lazy (newval);
641 /* Begin code which must not call error(). If var->value points to
642 something free'd, an error() obviously leaves a dangling pointer.
643 But we also get a danling pointer if var->value points to
644 something in the value chain (i.e., before release_value is
645 called), because after the error free_all_values will get called before
649 release_value (newval);
650 /* End code which must not call error(). */
654 internalvar_name (struct internalvar *var)
659 /* Free all internalvars. Done when new symtabs are loaded,
660 because that makes the values invalid. */
663 clear_internalvars (void)
665 struct internalvar *var;
670 internalvars = var->next;
678 show_convenience (char *ignore, int from_tty)
680 struct internalvar *var;
683 for (var = internalvars; var; var = var->next)
689 printf_filtered ("$%s = ", var->name);
690 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
691 printf_filtered ("\n");
694 printf_unfiltered ("No debugger convenience variables now defined.\n\
695 Convenience variables have names starting with \"$\";\n\
696 use \"set\" as in \"set $foo = 5\" to define them.\n");
699 /* Extract a value as a C number (either long or double).
700 Knows how to convert fixed values to double, or
701 floating values to long.
702 Does not deallocate the value. */
705 value_as_long (struct value *val)
707 /* This coerces arrays and functions, which is necessary (e.g.
708 in disassemble_command). It also dereferences references, which
709 I suspect is the most logical thing to do. */
710 val = coerce_array (val);
711 return unpack_long (value_type (val), value_contents (val));
715 value_as_double (struct value *val)
720 foo = unpack_double (value_type (val), value_contents (val), &inv);
722 error ("Invalid floating value found in program.");
725 /* Extract a value as a C pointer. Does not deallocate the value.
726 Note that val's type may not actually be a pointer; value_as_long
727 handles all the cases. */
729 value_as_address (struct value *val)
731 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
732 whether we want this to be true eventually. */
734 /* ADDR_BITS_REMOVE is wrong if we are being called for a
735 non-address (e.g. argument to "signal", "info break", etc.), or
736 for pointers to char, in which the low bits *are* significant. */
737 return ADDR_BITS_REMOVE (value_as_long (val));
740 /* There are several targets (IA-64, PowerPC, and others) which
741 don't represent pointers to functions as simply the address of
742 the function's entry point. For example, on the IA-64, a
743 function pointer points to a two-word descriptor, generated by
744 the linker, which contains the function's entry point, and the
745 value the IA-64 "global pointer" register should have --- to
746 support position-independent code. The linker generates
747 descriptors only for those functions whose addresses are taken.
749 On such targets, it's difficult for GDB to convert an arbitrary
750 function address into a function pointer; it has to either find
751 an existing descriptor for that function, or call malloc and
752 build its own. On some targets, it is impossible for GDB to
753 build a descriptor at all: the descriptor must contain a jump
754 instruction; data memory cannot be executed; and code memory
757 Upon entry to this function, if VAL is a value of type `function'
758 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
759 VALUE_ADDRESS (val) is the address of the function. This is what
760 you'll get if you evaluate an expression like `main'. The call
761 to COERCE_ARRAY below actually does all the usual unary
762 conversions, which includes converting values of type `function'
763 to `pointer to function'. This is the challenging conversion
764 discussed above. Then, `unpack_long' will convert that pointer
765 back into an address.
767 So, suppose the user types `disassemble foo' on an architecture
768 with a strange function pointer representation, on which GDB
769 cannot build its own descriptors, and suppose further that `foo'
770 has no linker-built descriptor. The address->pointer conversion
771 will signal an error and prevent the command from running, even
772 though the next step would have been to convert the pointer
773 directly back into the same address.
775 The following shortcut avoids this whole mess. If VAL is a
776 function, just return its address directly. */
777 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
778 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
779 return VALUE_ADDRESS (val);
781 val = coerce_array (val);
783 /* Some architectures (e.g. Harvard), map instruction and data
784 addresses onto a single large unified address space. For
785 instance: An architecture may consider a large integer in the
786 range 0x10000000 .. 0x1000ffff to already represent a data
787 addresses (hence not need a pointer to address conversion) while
788 a small integer would still need to be converted integer to
789 pointer to address. Just assume such architectures handle all
790 integer conversions in a single function. */
794 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
795 must admonish GDB hackers to make sure its behavior matches the
796 compiler's, whenever possible.
798 In general, I think GDB should evaluate expressions the same way
799 the compiler does. When the user copies an expression out of
800 their source code and hands it to a `print' command, they should
801 get the same value the compiler would have computed. Any
802 deviation from this rule can cause major confusion and annoyance,
803 and needs to be justified carefully. In other words, GDB doesn't
804 really have the freedom to do these conversions in clever and
807 AndrewC pointed out that users aren't complaining about how GDB
808 casts integers to pointers; they are complaining that they can't
809 take an address from a disassembly listing and give it to `x/i'.
810 This is certainly important.
812 Adding an architecture method like integer_to_address() certainly
813 makes it possible for GDB to "get it right" in all circumstances
814 --- the target has complete control over how things get done, so
815 people can Do The Right Thing for their target without breaking
816 anyone else. The standard doesn't specify how integers get
817 converted to pointers; usually, the ABI doesn't either, but
818 ABI-specific code is a more reasonable place to handle it. */
820 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
821 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
822 && gdbarch_integer_to_address_p (current_gdbarch))
823 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
824 value_contents (val));
826 return unpack_long (value_type (val), value_contents (val));
830 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
831 as a long, or as a double, assuming the raw data is described
832 by type TYPE. Knows how to convert different sizes of values
833 and can convert between fixed and floating point. We don't assume
834 any alignment for the raw data. Return value is in host byte order.
836 If you want functions and arrays to be coerced to pointers, and
837 references to be dereferenced, call value_as_long() instead.
839 C++: It is assumed that the front-end has taken care of
840 all matters concerning pointers to members. A pointer
841 to member which reaches here is considered to be equivalent
842 to an INT (or some size). After all, it is only an offset. */
845 unpack_long (struct type *type, const char *valaddr)
847 enum type_code code = TYPE_CODE (type);
848 int len = TYPE_LENGTH (type);
849 int nosign = TYPE_UNSIGNED (type);
851 if (current_language->la_language == language_scm
852 && is_scmvalue_type (type))
853 return scm_unpack (type, valaddr, TYPE_CODE_INT);
857 case TYPE_CODE_TYPEDEF:
858 return unpack_long (check_typedef (type), valaddr);
863 case TYPE_CODE_RANGE:
865 return extract_unsigned_integer (valaddr, len);
867 return extract_signed_integer (valaddr, len);
870 return extract_typed_floating (valaddr, type);
874 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
875 whether we want this to be true eventually. */
876 return extract_typed_address (valaddr, type);
878 case TYPE_CODE_MEMBER:
879 error ("not implemented: member types in unpack_long");
882 error ("Value can't be converted to integer.");
884 return 0; /* Placate lint. */
887 /* Return a double value from the specified type and address.
888 INVP points to an int which is set to 0 for valid value,
889 1 for invalid value (bad float format). In either case,
890 the returned double is OK to use. Argument is in target
891 format, result is in host format. */
894 unpack_double (struct type *type, const char *valaddr, int *invp)
900 *invp = 0; /* Assume valid. */
901 CHECK_TYPEDEF (type);
902 code = TYPE_CODE (type);
903 len = TYPE_LENGTH (type);
904 nosign = TYPE_UNSIGNED (type);
905 if (code == TYPE_CODE_FLT)
907 /* NOTE: cagney/2002-02-19: There was a test here to see if the
908 floating-point value was valid (using the macro
909 INVALID_FLOAT). That test/macro have been removed.
911 It turns out that only the VAX defined this macro and then
912 only in a non-portable way. Fixing the portability problem
913 wouldn't help since the VAX floating-point code is also badly
914 bit-rotten. The target needs to add definitions for the
915 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
916 exactly describe the target floating-point format. The
917 problem here is that the corresponding floatformat_vax_f and
918 floatformat_vax_d values these methods should be set to are
919 also not defined either. Oops!
921 Hopefully someone will add both the missing floatformat
922 definitions and the new cases for floatformat_is_valid (). */
924 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
930 return extract_typed_floating (valaddr, type);
934 /* Unsigned -- be sure we compensate for signed LONGEST. */
935 return (ULONGEST) unpack_long (type, valaddr);
939 /* Signed -- we are OK with unpack_long. */
940 return unpack_long (type, valaddr);
944 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
945 as a CORE_ADDR, assuming the raw data is described by type TYPE.
946 We don't assume any alignment for the raw data. Return value is in
949 If you want functions and arrays to be coerced to pointers, and
950 references to be dereferenced, call value_as_address() instead.
952 C++: It is assumed that the front-end has taken care of
953 all matters concerning pointers to members. A pointer
954 to member which reaches here is considered to be equivalent
955 to an INT (or some size). After all, it is only an offset. */
958 unpack_pointer (struct type *type, const char *valaddr)
960 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
961 whether we want this to be true eventually. */
962 return unpack_long (type, valaddr);
966 /* Get the value of the FIELDN'th field (which must be static) of
967 TYPE. Return NULL if the field doesn't exist or has been
971 value_static_field (struct type *type, int fieldno)
973 struct value *retval;
975 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
977 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
978 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
982 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
983 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
986 /* With some compilers, e.g. HP aCC, static data members are reported
987 as non-debuggable symbols */
988 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
993 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
994 SYMBOL_VALUE_ADDRESS (msym));
999 /* SYM should never have a SYMBOL_CLASS which will require
1000 read_var_value to use the FRAME parameter. */
1001 if (symbol_read_needs_frame (sym))
1002 warning ("static field's value depends on the current "
1003 "frame - bad debug info?");
1004 retval = read_var_value (sym, NULL);
1006 if (retval && VALUE_LVAL (retval) == lval_memory)
1007 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1008 VALUE_ADDRESS (retval));
1013 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1014 You have to be careful here, since the size of the data area for the value
1015 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1016 than the old enclosing type, you have to allocate more space for the data.
1017 The return value is a pointer to the new version of this value structure. */
1020 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1022 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1024 val->enclosing_type = new_encl_type;
1029 struct value *new_val;
1032 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1034 new_val->enclosing_type = new_encl_type;
1036 /* We have to make sure this ends up in the same place in the value
1037 chain as the original copy, so it's clean-up behavior is the same.
1038 If the value has been released, this is a waste of time, but there
1039 is no way to tell that in advance, so... */
1041 if (val != all_values)
1043 for (prev = all_values; prev != NULL; prev = prev->next)
1045 if (prev->next == val)
1047 prev->next = new_val;
1057 /* Given a value ARG1 (offset by OFFSET bytes)
1058 of a struct or union type ARG_TYPE,
1059 extract and return the value of one of its (non-static) fields.
1060 FIELDNO says which field. */
1063 value_primitive_field (struct value *arg1, int offset,
1064 int fieldno, struct type *arg_type)
1069 CHECK_TYPEDEF (arg_type);
1070 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1072 /* Handle packed fields */
1074 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1076 v = value_from_longest (type,
1077 unpack_field_as_long (arg_type,
1078 value_contents (arg1)
1081 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1082 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1083 v->offset = value_offset (arg1) + offset
1084 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1086 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1088 /* This field is actually a base subobject, so preserve the
1089 entire object's contents for later references to virtual
1091 v = allocate_value (value_enclosing_type (arg1));
1093 if (value_lazy (arg1))
1094 set_value_lazy (v, 1);
1096 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1097 TYPE_LENGTH (value_enclosing_type (arg1)));
1098 v->offset = value_offset (arg1);
1099 v->embedded_offset = (offset + value_embedded_offset (arg1)
1100 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1104 /* Plain old data member */
1105 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1106 v = allocate_value (type);
1107 if (value_lazy (arg1))
1108 set_value_lazy (v, 1);
1110 memcpy (value_contents_raw (v),
1111 value_contents_raw (arg1) + offset,
1112 TYPE_LENGTH (type));
1113 v->offset = (value_offset (arg1) + offset
1114 + value_embedded_offset (arg1));
1116 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1117 if (VALUE_LVAL (arg1) == lval_internalvar)
1118 VALUE_LVAL (v) = lval_internalvar_component;
1119 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1120 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1121 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1122 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1123 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1127 /* Given a value ARG1 of a struct or union type,
1128 extract and return the value of one of its (non-static) fields.
1129 FIELDNO says which field. */
1132 value_field (struct value *arg1, int fieldno)
1134 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1137 /* Return a non-virtual function as a value.
1138 F is the list of member functions which contains the desired method.
1139 J is an index into F which provides the desired method.
1141 We only use the symbol for its address, so be happy with either a
1142 full symbol or a minimal symbol.
1146 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1150 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1151 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1153 struct minimal_symbol *msym;
1155 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1162 gdb_assert (sym == NULL);
1163 msym = lookup_minimal_symbol (physname, NULL, NULL);
1168 v = allocate_value (ftype);
1171 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1175 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1180 if (type != value_type (*arg1p))
1181 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1182 value_addr (*arg1p)));
1184 /* Move the `this' pointer according to the offset.
1185 VALUE_OFFSET (*arg1p) += offset;
1193 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1196 Extracting bits depends on endianness of the machine. Compute the
1197 number of least significant bits to discard. For big endian machines,
1198 we compute the total number of bits in the anonymous object, subtract
1199 off the bit count from the MSB of the object to the MSB of the
1200 bitfield, then the size of the bitfield, which leaves the LSB discard
1201 count. For little endian machines, the discard count is simply the
1202 number of bits from the LSB of the anonymous object to the LSB of the
1205 If the field is signed, we also do sign extension. */
1208 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1212 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1213 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1215 struct type *field_type;
1217 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1218 field_type = TYPE_FIELD_TYPE (type, fieldno);
1219 CHECK_TYPEDEF (field_type);
1221 /* Extract bits. See comment above. */
1223 if (BITS_BIG_ENDIAN)
1224 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1226 lsbcount = (bitpos % 8);
1229 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1230 If the field is signed, and is negative, then sign extend. */
1232 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1234 valmask = (((ULONGEST) 1) << bitsize) - 1;
1236 if (!TYPE_UNSIGNED (field_type))
1238 if (val & (valmask ^ (valmask >> 1)))
1247 /* Modify the value of a bitfield. ADDR points to a block of memory in
1248 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1249 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1250 indicate which bits (in target bit order) comprise the bitfield.
1251 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1252 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1255 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1258 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1260 /* If a negative fieldval fits in the field in question, chop
1261 off the sign extension bits. */
1262 if ((~fieldval & ~(mask >> 1)) == 0)
1265 /* Warn if value is too big to fit in the field in question. */
1266 if (0 != (fieldval & ~mask))
1268 /* FIXME: would like to include fieldval in the message, but
1269 we don't have a sprintf_longest. */
1270 warning ("Value does not fit in %d bits.", bitsize);
1272 /* Truncate it, otherwise adjoining fields may be corrupted. */
1276 oword = extract_unsigned_integer (addr, sizeof oword);
1278 /* Shifting for bit field depends on endianness of the target machine. */
1279 if (BITS_BIG_ENDIAN)
1280 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1282 oword &= ~(mask << bitpos);
1283 oword |= fieldval << bitpos;
1285 store_unsigned_integer (addr, sizeof oword, oword);
1288 /* Convert C numbers into newly allocated values */
1291 value_from_longest (struct type *type, LONGEST num)
1293 struct value *val = allocate_value (type);
1294 enum type_code code;
1297 code = TYPE_CODE (type);
1298 len = TYPE_LENGTH (type);
1302 case TYPE_CODE_TYPEDEF:
1303 type = check_typedef (type);
1306 case TYPE_CODE_CHAR:
1307 case TYPE_CODE_ENUM:
1308 case TYPE_CODE_BOOL:
1309 case TYPE_CODE_RANGE:
1310 store_signed_integer (value_contents_raw (val), len, num);
1315 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1319 error ("Unexpected type (%d) encountered for integer constant.", code);
1325 /* Create a value representing a pointer of type TYPE to the address
1328 value_from_pointer (struct type *type, CORE_ADDR addr)
1330 struct value *val = allocate_value (type);
1331 store_typed_address (value_contents_raw (val), type, addr);
1336 /* Create a value for a string constant to be stored locally
1337 (not in the inferior's memory space, but in GDB memory).
1338 This is analogous to value_from_longest, which also does not
1339 use inferior memory. String shall NOT contain embedded nulls. */
1342 value_from_string (char *ptr)
1345 int len = strlen (ptr);
1346 int lowbound = current_language->string_lower_bound;
1347 struct type *string_char_type;
1348 struct type *rangetype;
1349 struct type *stringtype;
1351 rangetype = create_range_type ((struct type *) NULL,
1353 lowbound, len + lowbound - 1);
1354 string_char_type = language_string_char_type (current_language,
1356 stringtype = create_array_type ((struct type *) NULL,
1359 val = allocate_value (stringtype);
1360 memcpy (value_contents_raw (val), ptr, len);
1365 value_from_double (struct type *type, DOUBLEST num)
1367 struct value *val = allocate_value (type);
1368 struct type *base_type = check_typedef (type);
1369 enum type_code code = TYPE_CODE (base_type);
1370 int len = TYPE_LENGTH (base_type);
1372 if (code == TYPE_CODE_FLT)
1374 store_typed_floating (value_contents_raw (val), base_type, num);
1377 error ("Unexpected type encountered for floating constant.");
1383 coerce_ref (struct value *arg)
1385 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1386 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1387 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1388 unpack_pointer (value_type (arg),
1389 value_contents (arg)));
1394 coerce_array (struct value *arg)
1396 arg = coerce_ref (arg);
1397 if (current_language->c_style_arrays
1398 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1399 arg = value_coerce_array (arg);
1400 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1401 arg = value_coerce_function (arg);
1406 coerce_number (struct value *arg)
1408 arg = coerce_array (arg);
1409 arg = coerce_enum (arg);
1414 coerce_enum (struct value *arg)
1416 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1417 arg = value_cast (builtin_type_unsigned_int, arg);
1422 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1423 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1424 is the type (which is known to be struct, union or array).
1426 On most machines, the struct convention is used unless we are
1427 using gcc and the type is of a special size. */
1428 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1429 native compiler. GCC 2.3.3 was the last release that did it the
1430 old way. Since gcc2_compiled was not changed, we have no
1431 way to correctly win in all cases, so we just do the right thing
1432 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1433 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1434 would cause more chaos than dealing with some struct returns being
1436 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1440 generic_use_struct_convention (int gcc_p, struct type *value_type)
1442 return !(TYPE_LENGTH (value_type) == 1
1443 || TYPE_LENGTH (value_type) == 2
1444 || TYPE_LENGTH (value_type) == 4
1445 || TYPE_LENGTH (value_type) == 8);
1448 /* Return true if the function returning the specified type is using
1449 the convention of returning structures in memory (passing in the
1450 address as a hidden first parameter). GCC_P is nonzero if compiled
1454 using_struct_return (struct type *value_type, int gcc_p)
1456 enum type_code code = TYPE_CODE (value_type);
1458 if (code == TYPE_CODE_ERROR)
1459 error ("Function return type unknown.");
1461 if (code == TYPE_CODE_VOID)
1462 /* A void return value is never in memory. See also corresponding
1463 code in "print_return_value". */
1466 /* Probe the architecture for the return-value convention. */
1467 return (gdbarch_return_value (current_gdbarch, value_type,
1469 != RETURN_VALUE_REGISTER_CONVENTION);
1473 _initialize_values (void)
1475 add_cmd ("convenience", no_class, show_convenience,
1476 "Debugger convenience (\"$foo\") variables.\n\
1477 These variables are created when you assign them values;\n\
1478 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1479 A few convenience variables are given values automatically:\n\
1480 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1481 \"$__\" holds the contents of the last address examined with \"x\".",
1484 add_cmd ("values", no_class, show_values,
1485 "Elements of value history around item number IDX (or last ten).",