1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "gdb_string.h"
30 #include "gdb_regex.h"
35 #include "expression.h"
36 #include "parser-defs.h"
42 #include "breakpoint.h"
45 #include "gdb_obstack.h"
47 #include "completer.h"
54 #include "dictionary.h"
55 #include "exceptions.h"
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 static void extract_string (CORE_ADDR addr, char *buf);
75 static struct type *ada_create_fundamental_type (struct objfile *, int);
77 static void modify_general_field (char *, LONGEST, int, int);
79 static struct type *desc_base_type (struct type *);
81 static struct type *desc_bounds_type (struct type *);
83 static struct value *desc_bounds (struct value *);
85 static int fat_pntr_bounds_bitpos (struct type *);
87 static int fat_pntr_bounds_bitsize (struct type *);
89 static struct type *desc_data_type (struct type *);
91 static struct value *desc_data (struct value *);
93 static int fat_pntr_data_bitpos (struct type *);
95 static int fat_pntr_data_bitsize (struct type *);
97 static struct value *desc_one_bound (struct value *, int, int);
99 static int desc_bound_bitpos (struct type *, int, int);
101 static int desc_bound_bitsize (struct type *, int, int);
103 static struct type *desc_index_type (struct type *, int);
105 static int desc_arity (struct type *);
107 static int ada_type_match (struct type *, struct type *, int);
109 static int ada_args_match (struct symbol *, struct value **, int);
111 static struct value *ensure_lval (struct value *, CORE_ADDR *);
113 static struct value *convert_actual (struct value *, struct type *,
116 static struct value *make_array_descriptor (struct type *, struct value *,
119 static void ada_add_block_symbols (struct obstack *,
120 struct block *, const char *,
121 domain_enum, struct objfile *,
122 struct symtab *, int);
124 static int is_nonfunction (struct ada_symbol_info *, int);
126 static void add_defn_to_vec (struct obstack *, struct symbol *,
127 struct block *, struct symtab *);
129 static int num_defns_collected (struct obstack *);
131 static struct ada_symbol_info *defns_collected (struct obstack *, int);
133 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
134 *, const char *, int,
137 static struct symtab *symtab_for_sym (struct symbol *);
139 static struct value *resolve_subexp (struct expression **, int *, int,
142 static void replace_operator_with_call (struct expression **, int, int, int,
143 struct symbol *, struct block *);
145 static int possible_user_operator_p (enum exp_opcode, struct value **);
147 static char *ada_op_name (enum exp_opcode);
149 static const char *ada_decoded_op_name (enum exp_opcode);
151 static int numeric_type_p (struct type *);
153 static int integer_type_p (struct type *);
155 static int scalar_type_p (struct type *);
157 static int discrete_type_p (struct type *);
159 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
162 static struct value *evaluate_subexp (struct type *, struct expression *,
165 static struct value *evaluate_subexp_type (struct expression *, int *);
167 static int is_dynamic_field (struct type *, int);
169 static struct type *to_fixed_variant_branch_type (struct type *,
171 CORE_ADDR, struct value *);
173 static struct type *to_fixed_array_type (struct type *, struct value *, int);
175 static struct type *to_fixed_range_type (char *, struct value *,
178 static struct type *to_static_fixed_type (struct type *);
180 static struct value *unwrap_value (struct value *);
182 static struct type *packed_array_type (struct type *, long *);
184 static struct type *decode_packed_array_type (struct type *);
186 static struct value *decode_packed_array (struct value *);
188 static struct value *value_subscript_packed (struct value *, int,
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193 static struct value *coerce_unspec_val_to_type (struct value *,
196 static struct value *get_var_value (char *, char *);
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 static int equiv_types (struct type *, struct type *);
202 static int is_name_suffix (const char *);
204 static int wild_match (const char *, int, const char *);
206 static struct value *ada_coerce_ref (struct value *);
208 static LONGEST pos_atr (struct value *);
210 static struct value *value_pos_atr (struct value *);
212 static struct value *value_val_atr (struct type *, struct value *);
214 static struct symbol *standard_lookup (const char *, const struct block *,
217 static struct value *ada_search_struct_field (char *, struct value *, int,
220 static struct value *ada_value_primitive_field (struct value *, int, int,
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 static struct value *ada_to_fixed_value (struct value *);
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
235 static struct value *ada_coerce_to_simple_array (struct value *);
237 static int ada_is_direct_array_type (struct type *);
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
242 static void check_size (const struct type *);
244 static struct value *ada_index_struct_field (int, struct value *, int,
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
250 static void aggregate_assign_from_choices (struct value *, struct value *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
255 static void aggregate_assign_positional (struct value *, struct value *,
257 int *, LONGEST *, int *, int,
261 static void aggregate_assign_others (struct value *, struct value *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
272 static void ada_forward_operator_length (struct expression *, int, int *,
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
293 /* The name of the runtime function called when an exception is raised. */
294 static const char raise_sym_name[] = "__gnat_raise_nodefer_with_msg";
296 /* The name of the runtime function called when an unhandled exception
298 static const char raise_unhandled_sym_name[] = "__gnat_unhandled_exception";
300 /* The name of the runtime function called when an assert failure is
302 static const char raise_assert_sym_name[] =
303 "system__assertions__raise_assert_failure";
305 /* A string that reflects the longest exception expression rewrite,
306 aside from the exception name. */
307 static const char longest_exception_template[] =
308 "'__gnat_raise_nodefer_with_msg' if long_integer(e) = long_integer(&)";
310 /* Limit on the number of warnings to raise per expression evaluation. */
311 static int warning_limit = 2;
313 /* Number of warning messages issued; reset to 0 by cleanups after
314 expression evaluation. */
315 static int warnings_issued = 0;
317 static const char *known_runtime_file_name_patterns[] = {
318 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321 static const char *known_auxiliary_function_name_patterns[] = {
322 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325 /* Space for allocating results of ada_lookup_symbol_list. */
326 static struct obstack symbol_list_obstack;
332 ada_get_gdb_completer_word_break_characters (void)
334 return ada_completer_word_break_characters;
337 /* Print an array element index using the Ada syntax. */
340 ada_print_array_index (struct value *index_value, struct ui_file *stream,
341 int format, enum val_prettyprint pretty)
343 LA_VALUE_PRINT (index_value, stream, format, pretty);
344 fprintf_filtered (stream, " => ");
347 /* Read the string located at ADDR from the inferior and store the
351 extract_string (CORE_ADDR addr, char *buf)
355 /* Loop, reading one byte at a time, until we reach the '\000'
356 end-of-string marker. */
359 target_read_memory (addr + char_index * sizeof (char),
360 buf + char_index * sizeof (char), sizeof (char));
363 while (buf[char_index - 1] != '\000');
366 /* Assuming VECT points to an array of *SIZE objects of size
367 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
368 updating *SIZE as necessary and returning the (new) array. */
371 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
373 if (*size < min_size)
376 if (*size < min_size)
378 vect = xrealloc (vect, *size * element_size);
383 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
384 suffix of FIELD_NAME beginning "___". */
387 field_name_match (const char *field_name, const char *target)
389 int len = strlen (target);
391 (strncmp (field_name, target, len) == 0
392 && (field_name[len] == '\0'
393 || (strncmp (field_name + len, "___", 3) == 0
394 && strcmp (field_name + strlen (field_name) - 6,
399 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
400 FIELD_NAME, and return its index. This function also handles fields
401 whose name have ___ suffixes because the compiler sometimes alters
402 their name by adding such a suffix to represent fields with certain
403 constraints. If the field could not be found, return a negative
404 number if MAYBE_MISSING is set. Otherwise raise an error. */
407 ada_get_field_index (const struct type *type, const char *field_name,
411 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
412 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
416 error (_("Unable to find field %s in struct %s. Aborting"),
417 field_name, TYPE_NAME (type));
422 /* The length of the prefix of NAME prior to any "___" suffix. */
425 ada_name_prefix_len (const char *name)
431 const char *p = strstr (name, "___");
433 return strlen (name);
439 /* Return non-zero if SUFFIX is a suffix of STR.
440 Return zero if STR is null. */
443 is_suffix (const char *str, const char *suffix)
449 len2 = strlen (suffix);
450 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
453 /* Create a value of type TYPE whose contents come from VALADDR, if it
454 is non-null, and whose memory address (in the inferior) is
458 value_from_contents_and_address (struct type *type,
459 const gdb_byte *valaddr,
462 struct value *v = allocate_value (type);
464 set_value_lazy (v, 1);
466 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
467 VALUE_ADDRESS (v) = address;
469 VALUE_LVAL (v) = lval_memory;
473 /* The contents of value VAL, treated as a value of type TYPE. The
474 result is an lval in memory if VAL is. */
476 static struct value *
477 coerce_unspec_val_to_type (struct value *val, struct type *type)
479 type = ada_check_typedef (type);
480 if (value_type (val) == type)
484 struct value *result;
486 /* Make sure that the object size is not unreasonable before
487 trying to allocate some memory for it. */
490 result = allocate_value (type);
491 VALUE_LVAL (result) = VALUE_LVAL (val);
492 set_value_bitsize (result, value_bitsize (val));
493 set_value_bitpos (result, value_bitpos (val));
494 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
496 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
497 set_value_lazy (result, 1);
499 memcpy (value_contents_raw (result), value_contents (val),
505 static const gdb_byte *
506 cond_offset_host (const gdb_byte *valaddr, long offset)
511 return valaddr + offset;
515 cond_offset_target (CORE_ADDR address, long offset)
520 return address + offset;
523 /* Issue a warning (as for the definition of warning in utils.c, but
524 with exactly one argument rather than ...), unless the limit on the
525 number of warnings has passed during the evaluation of the current
528 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
529 provided by "complaint". */
530 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
533 lim_warning (const char *format, ...)
536 va_start (args, format);
538 warnings_issued += 1;
539 if (warnings_issued <= warning_limit)
540 vwarning (format, args);
545 /* Issue an error if the size of an object of type T is unreasonable,
546 i.e. if it would be a bad idea to allocate a value of this type in
550 check_size (const struct type *type)
552 if (TYPE_LENGTH (type) > varsize_limit)
553 error (_("object size is larger than varsize-limit"));
557 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
558 gdbtypes.h, but some of the necessary definitions in that file
559 seem to have gone missing. */
561 /* Maximum value of a SIZE-byte signed integer type. */
563 max_of_size (int size)
565 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
566 return top_bit | (top_bit - 1);
569 /* Minimum value of a SIZE-byte signed integer type. */
571 min_of_size (int size)
573 return -max_of_size (size) - 1;
576 /* Maximum value of a SIZE-byte unsigned integer type. */
578 umax_of_size (int size)
580 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
581 return top_bit | (top_bit - 1);
584 /* Maximum value of integral type T, as a signed quantity. */
586 max_of_type (struct type *t)
588 if (TYPE_UNSIGNED (t))
589 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
591 return max_of_size (TYPE_LENGTH (t));
594 /* Minimum value of integral type T, as a signed quantity. */
596 min_of_type (struct type *t)
598 if (TYPE_UNSIGNED (t))
601 return min_of_size (TYPE_LENGTH (t));
604 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
605 static struct value *
606 discrete_type_high_bound (struct type *type)
608 switch (TYPE_CODE (type))
610 case TYPE_CODE_RANGE:
611 return value_from_longest (TYPE_TARGET_TYPE (type),
612 TYPE_HIGH_BOUND (type));
615 value_from_longest (type,
616 TYPE_FIELD_BITPOS (type,
617 TYPE_NFIELDS (type) - 1));
619 return value_from_longest (type, max_of_type (type));
621 error (_("Unexpected type in discrete_type_high_bound."));
625 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
626 static struct value *
627 discrete_type_low_bound (struct type *type)
629 switch (TYPE_CODE (type))
631 case TYPE_CODE_RANGE:
632 return value_from_longest (TYPE_TARGET_TYPE (type),
633 TYPE_LOW_BOUND (type));
635 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
637 return value_from_longest (type, min_of_type (type));
639 error (_("Unexpected type in discrete_type_low_bound."));
643 /* The identity on non-range types. For range types, the underlying
644 non-range scalar type. */
647 base_type (struct type *type)
649 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
651 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
653 type = TYPE_TARGET_TYPE (type);
659 /* Language Selection */
661 /* If the main program is in Ada, return language_ada, otherwise return LANG
662 (the main program is in Ada iif the adainit symbol is found).
664 MAIN_PST is not used. */
667 ada_update_initial_language (enum language lang,
668 struct partial_symtab *main_pst)
670 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
671 (struct objfile *) NULL) != NULL)
677 /* If the main procedure is written in Ada, then return its name.
678 The result is good until the next call. Return NULL if the main
679 procedure doesn't appear to be in Ada. */
684 struct minimal_symbol *msym;
685 CORE_ADDR main_program_name_addr;
686 static char main_program_name[1024];
688 /* For Ada, the name of the main procedure is stored in a specific
689 string constant, generated by the binder. Look for that symbol,
690 extract its address, and then read that string. If we didn't find
691 that string, then most probably the main procedure is not written
693 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
697 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
698 if (main_program_name_addr == 0)
699 error (_("Invalid address for Ada main program name."));
701 extract_string (main_program_name_addr, main_program_name);
702 return main_program_name;
705 /* The main procedure doesn't seem to be in Ada. */
711 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
714 const struct ada_opname_map ada_opname_table[] = {
715 {"Oadd", "\"+\"", BINOP_ADD},
716 {"Osubtract", "\"-\"", BINOP_SUB},
717 {"Omultiply", "\"*\"", BINOP_MUL},
718 {"Odivide", "\"/\"", BINOP_DIV},
719 {"Omod", "\"mod\"", BINOP_MOD},
720 {"Orem", "\"rem\"", BINOP_REM},
721 {"Oexpon", "\"**\"", BINOP_EXP},
722 {"Olt", "\"<\"", BINOP_LESS},
723 {"Ole", "\"<=\"", BINOP_LEQ},
724 {"Ogt", "\">\"", BINOP_GTR},
725 {"Oge", "\">=\"", BINOP_GEQ},
726 {"Oeq", "\"=\"", BINOP_EQUAL},
727 {"One", "\"/=\"", BINOP_NOTEQUAL},
728 {"Oand", "\"and\"", BINOP_BITWISE_AND},
729 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
730 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
731 {"Oconcat", "\"&\"", BINOP_CONCAT},
732 {"Oabs", "\"abs\"", UNOP_ABS},
733 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
734 {"Oadd", "\"+\"", UNOP_PLUS},
735 {"Osubtract", "\"-\"", UNOP_NEG},
739 /* Return non-zero if STR should be suppressed in info listings. */
742 is_suppressed_name (const char *str)
744 if (strncmp (str, "_ada_", 5) == 0)
746 if (str[0] == '_' || str[0] == '\000')
751 const char *suffix = strstr (str, "___");
752 if (suffix != NULL && suffix[3] != 'X')
755 suffix = str + strlen (str);
756 for (p = suffix - 1; p != str; p -= 1)
760 if (p[0] == 'X' && p[-1] != '_')
764 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
765 if (strncmp (ada_opname_table[i].encoded, p,
766 strlen (ada_opname_table[i].encoded)) == 0)
775 /* The "encoded" form of DECODED, according to GNAT conventions.
776 The result is valid until the next call to ada_encode. */
779 ada_encode (const char *decoded)
781 static char *encoding_buffer = NULL;
782 static size_t encoding_buffer_size = 0;
789 GROW_VECT (encoding_buffer, encoding_buffer_size,
790 2 * strlen (decoded) + 10);
793 for (p = decoded; *p != '\0'; p += 1)
795 if (!ADA_RETAIN_DOTS && *p == '.')
797 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
802 const struct ada_opname_map *mapping;
804 for (mapping = ada_opname_table;
805 mapping->encoded != NULL
806 && strncmp (mapping->decoded, p,
807 strlen (mapping->decoded)) != 0; mapping += 1)
809 if (mapping->encoded == NULL)
810 error (_("invalid Ada operator name: %s"), p);
811 strcpy (encoding_buffer + k, mapping->encoded);
812 k += strlen (mapping->encoded);
817 encoding_buffer[k] = *p;
822 encoding_buffer[k] = '\0';
823 return encoding_buffer;
826 /* Return NAME folded to lower case, or, if surrounded by single
827 quotes, unfolded, but with the quotes stripped away. Result good
831 ada_fold_name (const char *name)
833 static char *fold_buffer = NULL;
834 static size_t fold_buffer_size = 0;
836 int len = strlen (name);
837 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
841 strncpy (fold_buffer, name + 1, len - 2);
842 fold_buffer[len - 2] = '\000';
847 for (i = 0; i <= len; i += 1)
848 fold_buffer[i] = tolower (name[i]);
854 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
857 is_lower_alphanum (const char c)
859 return (isdigit (c) || (isalpha (c) && islower (c)));
863 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
864 These are suffixes introduced by GNAT5 to nested subprogram
865 names, and do not serve any purpose for the debugger.
866 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
867 . Discard final N if it follows a lowercase alphanumeric character
868 (protected object subprogram suffix)
869 . Convert other instances of embedded "__" to `.'.
870 . Discard leading _ada_.
871 . Convert operator names to the appropriate quoted symbols.
872 . Remove everything after first ___ if it is followed by
874 . Replace TK__ with __, and a trailing B or TKB with nothing.
875 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
876 . Put symbols that should be suppressed in <...> brackets.
877 . Remove trailing X[bn]* suffix (indicating names in package bodies).
879 The resulting string is valid until the next call of ada_decode.
880 If the string is unchanged by demangling, the original string pointer
884 ada_decode (const char *encoded)
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
894 if (strncmp (encoded, "_ada_", 5) == 0)
897 if (encoded[0] == '_' || encoded[0] == '<')
900 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
901 len0 = strlen (encoded);
902 if (len0 > 1 && isdigit (encoded[len0 - 1]))
905 while (i > 0 && isdigit (encoded[i]))
907 if (i >= 0 && encoded[i] == '.')
909 else if (i >= 0 && encoded[i] == '$')
911 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
913 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
917 /* Remove trailing N. */
919 /* Protected entry subprograms are broken into two
920 separate subprograms: The first one is unprotected, and has
921 a 'N' suffix; the second is the protected version, and has
922 the 'P' suffix. The second calls the first one after handling
923 the protection. Since the P subprograms are internally generated,
924 we leave these names undecoded, giving the user a clue that this
925 entity is internal. */
928 && encoded[len0 - 1] == 'N'
929 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
932 /* Remove the ___X.* suffix if present. Do not forget to verify that
933 the suffix is located before the current "end" of ENCODED. We want
934 to avoid re-matching parts of ENCODED that have previously been
935 marked as discarded (by decrementing LEN0). */
936 p = strstr (encoded, "___");
937 if (p != NULL && p - encoded < len0 - 3)
945 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
948 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
951 /* Make decoded big enough for possible expansion by operator name. */
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
955 if (len0 > 1 && isdigit (encoded[len0 - 1]))
958 while ((i >= 0 && isdigit (encoded[i]))
959 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
961 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
963 else if (encoded[i] == '$')
967 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
968 decoded[j] = encoded[i];
973 if (at_start_name && encoded[i] == 'O')
976 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
978 int op_len = strlen (ada_opname_table[k].encoded);
979 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
981 && !isalnum (encoded[i + op_len]))
983 strcpy (decoded + j, ada_opname_table[k].decoded);
986 j += strlen (ada_opname_table[k].decoded);
990 if (ada_opname_table[k].encoded != NULL)
995 /* Replace "TK__" with "__", which will eventually be translated
996 into "." (just below). */
998 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 /* Remove _E{DIGITS}+[sb] */
1003 /* Just as for protected object subprograms, there are 2 categories
1004 of subprograms created by the compiler for each entry. The first
1005 one implements the actual entry code, and has a suffix following
1006 the convention above; the second one implements the barrier and
1007 uses the same convention as above, except that the 'E' is replaced
1010 Just as above, we do not decode the name of barrier functions
1011 to give the user a clue that the code he is debugging has been
1012 internally generated. */
1014 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1015 && isdigit (encoded[i+2]))
1019 while (k < len0 && isdigit (encoded[k]))
1023 && (encoded[k] == 'b' || encoded[k] == 's'))
1026 /* Just as an extra precaution, make sure that if this
1027 suffix is followed by anything else, it is a '_'.
1028 Otherwise, we matched this sequence by accident. */
1030 || (k < len0 && encoded[k] == '_'))
1035 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1036 the GNAT front-end in protected object subprograms. */
1039 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1041 /* Backtrack a bit up until we reach either the begining of
1042 the encoded name, or "__". Make sure that we only find
1043 digits or lowercase characters. */
1044 const char *ptr = encoded + i - 1;
1046 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1049 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1053 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1057 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1061 else if (!ADA_RETAIN_DOTS
1062 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1071 decoded[j] = encoded[i];
1076 decoded[j] = '\000';
1078 for (i = 0; decoded[i] != '\0'; i += 1)
1079 if (isupper (decoded[i]) || decoded[i] == ' ')
1082 if (strcmp (decoded, encoded) == 0)
1088 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1089 decoded = decoding_buffer;
1090 if (encoded[0] == '<')
1091 strcpy (decoded, encoded);
1093 sprintf (decoded, "<%s>", encoded);
1098 /* Table for keeping permanent unique copies of decoded names. Once
1099 allocated, names in this table are never released. While this is a
1100 storage leak, it should not be significant unless there are massive
1101 changes in the set of decoded names in successive versions of a
1102 symbol table loaded during a single session. */
1103 static struct htab *decoded_names_store;
1105 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1106 in the language-specific part of GSYMBOL, if it has not been
1107 previously computed. Tries to save the decoded name in the same
1108 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1109 in any case, the decoded symbol has a lifetime at least that of
1111 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1112 const, but nevertheless modified to a semantically equivalent form
1113 when a decoded name is cached in it.
1117 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1120 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1121 if (*resultp == NULL)
1123 const char *decoded = ada_decode (gsymbol->name);
1124 if (gsymbol->bfd_section != NULL)
1126 bfd *obfd = gsymbol->bfd_section->owner;
1129 struct objfile *objf;
1132 if (obfd == objf->obfd)
1134 *resultp = obsavestring (decoded, strlen (decoded),
1135 &objf->objfile_obstack);
1141 /* Sometimes, we can't find a corresponding objfile, in which
1142 case, we put the result on the heap. Since we only decode
1143 when needed, we hope this usually does not cause a
1144 significant memory leak (FIXME). */
1145 if (*resultp == NULL)
1147 char **slot = (char **) htab_find_slot (decoded_names_store,
1150 *slot = xstrdup (decoded);
1159 ada_la_decode (const char *encoded, int options)
1161 return xstrdup (ada_decode (encoded));
1164 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1165 suffixes that encode debugging information or leading _ada_ on
1166 SYM_NAME (see is_name_suffix commentary for the debugging
1167 information that is ignored). If WILD, then NAME need only match a
1168 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1169 either argument is NULL. */
1172 ada_match_name (const char *sym_name, const char *name, int wild)
1174 if (sym_name == NULL || name == NULL)
1177 return wild_match (name, strlen (name), sym_name);
1180 int len_name = strlen (name);
1181 return (strncmp (sym_name, name, len_name) == 0
1182 && is_name_suffix (sym_name + len_name))
1183 || (strncmp (sym_name, "_ada_", 5) == 0
1184 && strncmp (sym_name + 5, name, len_name) == 0
1185 && is_name_suffix (sym_name + len_name + 5));
1189 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1190 suppressed in info listings. */
1193 ada_suppress_symbol_printing (struct symbol *sym)
1195 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1198 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1204 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1206 static char *bound_name[] = {
1207 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1208 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1211 /* Maximum number of array dimensions we are prepared to handle. */
1213 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1215 /* Like modify_field, but allows bitpos > wordlength. */
1218 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1220 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1224 /* The desc_* routines return primitive portions of array descriptors
1227 /* The descriptor or array type, if any, indicated by TYPE; removes
1228 level of indirection, if needed. */
1230 static struct type *
1231 desc_base_type (struct type *type)
1235 type = ada_check_typedef (type);
1237 && (TYPE_CODE (type) == TYPE_CODE_PTR
1238 || TYPE_CODE (type) == TYPE_CODE_REF))
1239 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 /* True iff TYPE indicates a "thin" array pointer type. */
1247 is_thin_pntr (struct type *type)
1250 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1251 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1254 /* The descriptor type for thin pointer type TYPE. */
1256 static struct type *
1257 thin_descriptor_type (struct type *type)
1259 struct type *base_type = desc_base_type (type);
1260 if (base_type == NULL)
1262 if (is_suffix (ada_type_name (base_type), "___XVE"))
1266 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1267 if (alt_type == NULL)
1274 /* A pointer to the array data for thin-pointer value VAL. */
1276 static struct value *
1277 thin_data_pntr (struct value *val)
1279 struct type *type = value_type (val);
1280 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1281 return value_cast (desc_data_type (thin_descriptor_type (type)),
1284 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1285 VALUE_ADDRESS (val) + value_offset (val));
1288 /* True iff TYPE indicates a "thick" array pointer type. */
1291 is_thick_pntr (struct type *type)
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1298 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
1301 static struct type *
1302 desc_bounds_type (struct type *type)
1306 type = desc_base_type (type);
1310 else if (is_thin_pntr (type))
1312 type = thin_descriptor_type (type);
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1317 return ada_check_typedef (r);
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1328 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1329 one, a pointer to its bounds data. Otherwise NULL. */
1331 static struct value *
1332 desc_bounds (struct value *arr)
1334 struct type *type = ada_check_typedef (value_type (arr));
1335 if (is_thin_pntr (type))
1337 struct type *bounds_type =
1338 desc_bounds_type (thin_descriptor_type (type));
1341 if (desc_bounds_type == NULL)
1342 error (_("Bad GNAT array descriptor"));
1344 /* NOTE: The following calculation is not really kosher, but
1345 since desc_type is an XVE-encoded type (and shouldn't be),
1346 the correct calculation is a real pain. FIXME (and fix GCC). */
1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1348 addr = value_as_long (arr);
1350 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
1357 else if (is_thick_pntr (type))
1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1359 _("Bad GNAT array descriptor"));
1364 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1368 fat_pntr_bounds_bitpos (struct type *type)
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1374 size of the field containing the address of the bounds data. */
1377 fat_pntr_bounds_bitsize (struct type *type)
1379 type = desc_base_type (type);
1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1382 return TYPE_FIELD_BITSIZE (type, 1);
1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1387 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1388 pointer to one, the type of its array data (a
1389 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1390 ada_type_of_array to get an array type with bounds data. */
1392 static struct type *
1393 desc_data_type (struct type *type)
1395 type = desc_base_type (type);
1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
1398 if (is_thin_pntr (type))
1399 return lookup_pointer_type
1400 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1401 else if (is_thick_pntr (type))
1402 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1407 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1410 static struct value *
1411 desc_data (struct value *arr)
1413 struct type *type = value_type (arr);
1414 if (is_thin_pntr (type))
1415 return thin_data_pntr (arr);
1416 else if (is_thick_pntr (type))
1417 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1418 _("Bad GNAT array descriptor"));
1424 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1425 position of the field containing the address of the data. */
1428 fat_pntr_data_bitpos (struct type *type)
1430 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1433 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1434 size of the field containing the address of the data. */
1437 fat_pntr_data_bitsize (struct type *type)
1439 type = desc_base_type (type);
1441 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1442 return TYPE_FIELD_BITSIZE (type, 0);
1444 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1447 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1448 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1449 bound, if WHICH is 1. The first bound is I=1. */
1451 static struct value *
1452 desc_one_bound (struct value *bounds, int i, int which)
1454 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1455 _("Bad GNAT array descriptor bounds"));
1458 /* If BOUNDS is an array-bounds structure type, return the bit position
1459 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1463 desc_bound_bitpos (struct type *type, int i, int which)
1465 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1468 /* If BOUNDS is an array-bounds structure type, return the bit field size
1469 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1470 bound, if WHICH is 1. The first bound is I=1. */
1473 desc_bound_bitsize (struct type *type, int i, int which)
1475 type = desc_base_type (type);
1477 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1478 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1480 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1483 /* If TYPE is the type of an array-bounds structure, the type of its
1484 Ith bound (numbering from 1). Otherwise, NULL. */
1486 static struct type *
1487 desc_index_type (struct type *type, int i)
1489 type = desc_base_type (type);
1491 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1492 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1497 /* The number of index positions in the array-bounds type TYPE.
1498 Return 0 if TYPE is NULL. */
1501 desc_arity (struct type *type)
1503 type = desc_base_type (type);
1506 return TYPE_NFIELDS (type) / 2;
1510 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1511 an array descriptor type (representing an unconstrained array
1515 ada_is_direct_array_type (struct type *type)
1519 type = ada_check_typedef (type);
1520 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 || ada_is_array_descriptor_type (type));
1524 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1528 ada_is_array_type (struct type *type)
1531 && (TYPE_CODE (type) == TYPE_CODE_PTR
1532 || TYPE_CODE (type) == TYPE_CODE_REF))
1533 type = TYPE_TARGET_TYPE (type);
1534 return ada_is_direct_array_type (type);
1537 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1540 ada_is_simple_array_type (struct type *type)
1544 type = ada_check_typedef (type);
1545 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1546 || (TYPE_CODE (type) == TYPE_CODE_PTR
1547 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1550 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1553 ada_is_array_descriptor_type (struct type *type)
1555 struct type *data_type = desc_data_type (type);
1559 type = ada_check_typedef (type);
1562 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1563 && TYPE_TARGET_TYPE (data_type) != NULL
1564 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1565 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1566 && desc_arity (desc_bounds_type (type)) > 0;
1569 /* Non-zero iff type is a partially mal-formed GNAT array
1570 descriptor. FIXME: This is to compensate for some problems with
1571 debugging output from GNAT. Re-examine periodically to see if it
1575 ada_is_bogus_array_descriptor (struct type *type)
1579 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1580 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1581 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1582 && !ada_is_array_descriptor_type (type);
1586 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1587 (fat pointer) returns the type of the array data described---specifically,
1588 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1589 in from the descriptor; otherwise, they are left unspecified. If
1590 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1591 returns NULL. The result is simply the type of ARR if ARR is not
1594 ada_type_of_array (struct value *arr, int bounds)
1596 if (ada_is_packed_array_type (value_type (arr)))
1597 return decode_packed_array_type (value_type (arr));
1599 if (!ada_is_array_descriptor_type (value_type (arr)))
1600 return value_type (arr);
1604 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1607 struct type *elt_type;
1609 struct value *descriptor;
1610 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
1615 if (elt_type == NULL || arity == 0)
1616 return ada_check_typedef (value_type (arr));
1618 descriptor = desc_bounds (arr);
1619 if (value_as_long (descriptor) == 0)
1623 struct type *range_type = alloc_type (objf);
1624 struct type *array_type = alloc_type (objf);
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1629 create_range_type (range_type, value_type (low),
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1635 return lookup_pointer_type (elt_type);
1639 /* If ARR does not represent an array, returns ARR unchanged.
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1645 ada_coerce_to_simple_array_ptr (struct value *arr)
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1649 struct type *arrType = ada_type_of_array (arr, 1);
1650 if (arrType == NULL)
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1654 else if (ada_is_packed_array_type (value_type (arr)))
1655 return decode_packed_array (arr);
1660 /* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
1662 be ARR itself if it already is in the proper form). */
1664 static struct value *
1665 ada_coerce_to_simple_array (struct value *arr)
1667 if (ada_is_array_descriptor_type (value_type (arr)))
1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1671 error (_("Bounds unavailable for null array pointer."));
1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1673 return value_ind (arrVal);
1675 else if (ada_is_packed_array_type (value_type (arr)))
1676 return decode_packed_array (arr);
1681 /* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
1683 packing). For other types, is the identity. */
1686 ada_coerce_to_simple_array_type (struct type *type)
1688 struct value *mark = value_mark ();
1689 struct value *dummy = value_from_longest (builtin_type_long, 0);
1690 struct type *result;
1691 deprecated_set_value_type (dummy, type);
1692 result = ada_type_of_array (dummy, 0);
1693 value_free_to_mark (mark);
1697 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1700 ada_is_packed_array_type (struct type *type)
1704 type = desc_base_type (type);
1705 type = ada_check_typedef (type);
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1711 /* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1720 static struct type *
1721 packed_array_type (struct type *type, long *elt_bits)
1723 struct type *new_elt_type;
1724 struct type *new_type;
1725 LONGEST low_bound, high_bound;
1727 type = ada_check_typedef (type);
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1731 new_type = alloc_type (TYPE_OBJFILE (type));
1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1734 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1738 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1739 &low_bound, &high_bound) < 0)
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
1745 *elt_bits *= (high_bound - low_bound + 1);
1746 TYPE_LENGTH (new_type) =
1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1750 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1754 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1756 static struct type *
1757 decode_packed_array_type (struct type *type)
1760 struct block **blocks;
1761 const char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name = (char *) alloca (strlen (raw_name) + 1);
1763 char *tail = strstr (raw_name, "___XP");
1764 struct type *shadow_type;
1768 type = desc_base_type (type);
1770 memcpy (name, raw_name, tail - raw_name);
1771 name[tail - raw_name] = '\000';
1773 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1774 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1776 lim_warning (_("could not find bounds information on packed array"));
1779 shadow_type = SYMBOL_TYPE (sym);
1781 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1783 lim_warning (_("could not understand bounds information on packed array"));
1787 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1790 (_("could not understand bit size information on packed array"));
1794 return packed_array_type (shadow_type, &bits);
1797 /* Given that ARR is a struct value *indicating a GNAT packed array,
1798 returns a simple array that denotes that array. Its type is a
1799 standard GDB array type except that the BITSIZEs of the array
1800 target types are set to the number of bits in each element, and the
1801 type length is set appropriately. */
1803 static struct value *
1804 decode_packed_array (struct value *arr)
1808 arr = ada_coerce_ref (arr);
1809 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1810 arr = ada_value_ind (arr);
1812 type = decode_packed_array_type (value_type (arr));
1815 error (_("can't unpack array"));
1819 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1821 /* This is a (right-justified) modular type representing a packed
1822 array with no wrapper. In order to interpret the value through
1823 the (left-justified) packed array type we just built, we must
1824 first left-justify it. */
1825 int bit_size, bit_pos;
1828 mod = ada_modulus (value_type (arr)) - 1;
1835 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1836 arr = ada_value_primitive_packed_val (arr, NULL,
1837 bit_pos / HOST_CHAR_BIT,
1838 bit_pos % HOST_CHAR_BIT,
1843 return coerce_unspec_val_to_type (arr, type);
1847 /* The value of the element of packed array ARR at the ARITY indices
1848 given in IND. ARR must be a simple array. */
1850 static struct value *
1851 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1854 int bits, elt_off, bit_off;
1855 long elt_total_bit_offset;
1856 struct type *elt_type;
1860 elt_total_bit_offset = 0;
1861 elt_type = ada_check_typedef (value_type (arr));
1862 for (i = 0; i < arity; i += 1)
1864 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1865 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1867 (_("attempt to do packed indexing of something other than a packed array"));
1870 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1871 LONGEST lowerbound, upperbound;
1874 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1876 lim_warning (_("don't know bounds of array"));
1877 lowerbound = upperbound = 0;
1880 idx = value_as_long (value_pos_atr (ind[i]));
1881 if (idx < lowerbound || idx > upperbound)
1882 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1883 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1884 elt_total_bit_offset += (idx - lowerbound) * bits;
1885 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1888 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1889 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1891 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1896 /* Non-zero iff TYPE includes negative integer values. */
1899 has_negatives (struct type *type)
1901 switch (TYPE_CODE (type))
1906 return !TYPE_UNSIGNED (type);
1907 case TYPE_CODE_RANGE:
1908 return TYPE_LOW_BOUND (type) < 0;
1913 /* Create a new value of type TYPE from the contents of OBJ starting
1914 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1915 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1916 assigning through the result will set the field fetched from.
1917 VALADDR is ignored unless OBJ is NULL, in which case,
1918 VALADDR+OFFSET must address the start of storage containing the
1919 packed value. The value returned in this case is never an lval.
1920 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1923 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1924 long offset, int bit_offset, int bit_size,
1928 int src, /* Index into the source area */
1929 targ, /* Index into the target area */
1930 srcBitsLeft, /* Number of source bits left to move */
1931 nsrc, ntarg, /* Number of source and target bytes */
1932 unusedLS, /* Number of bits in next significant
1933 byte of source that are unused */
1934 accumSize; /* Number of meaningful bits in accum */
1935 unsigned char *bytes; /* First byte containing data to unpack */
1936 unsigned char *unpacked;
1937 unsigned long accum; /* Staging area for bits being transferred */
1939 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1940 /* Transmit bytes from least to most significant; delta is the direction
1941 the indices move. */
1942 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1944 type = ada_check_typedef (type);
1948 v = allocate_value (type);
1949 bytes = (unsigned char *) (valaddr + offset);
1951 else if (value_lazy (obj))
1954 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1955 bytes = (unsigned char *) alloca (len);
1956 read_memory (VALUE_ADDRESS (v), bytes, len);
1960 v = allocate_value (type);
1961 bytes = (unsigned char *) value_contents (obj) + offset;
1966 VALUE_LVAL (v) = VALUE_LVAL (obj);
1967 if (VALUE_LVAL (obj) == lval_internalvar)
1968 VALUE_LVAL (v) = lval_internalvar_component;
1969 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1970 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1971 set_value_bitsize (v, bit_size);
1972 if (value_bitpos (v) >= HOST_CHAR_BIT)
1974 VALUE_ADDRESS (v) += 1;
1975 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1979 set_value_bitsize (v, bit_size);
1980 unpacked = (unsigned char *) value_contents (v);
1982 srcBitsLeft = bit_size;
1984 ntarg = TYPE_LENGTH (type);
1988 memset (unpacked, 0, TYPE_LENGTH (type));
1991 else if (BITS_BIG_ENDIAN)
1994 if (has_negatives (type)
1995 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1999 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2002 switch (TYPE_CODE (type))
2004 case TYPE_CODE_ARRAY:
2005 case TYPE_CODE_UNION:
2006 case TYPE_CODE_STRUCT:
2007 /* Non-scalar values must be aligned at a byte boundary... */
2009 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2010 /* ... And are placed at the beginning (most-significant) bytes
2012 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2016 targ = TYPE_LENGTH (type) - 1;
2022 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2025 unusedLS = bit_offset;
2028 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2035 /* Mask for removing bits of the next source byte that are not
2036 part of the value. */
2037 unsigned int unusedMSMask =
2038 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2040 /* Sign-extend bits for this byte. */
2041 unsigned int signMask = sign & ~unusedMSMask;
2043 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2044 accumSize += HOST_CHAR_BIT - unusedLS;
2045 if (accumSize >= HOST_CHAR_BIT)
2047 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2048 accumSize -= HOST_CHAR_BIT;
2049 accum >>= HOST_CHAR_BIT;
2053 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2060 accum |= sign << accumSize;
2061 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2062 accumSize -= HOST_CHAR_BIT;
2063 accum >>= HOST_CHAR_BIT;
2071 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2072 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2075 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2076 int src_offset, int n)
2078 unsigned int accum, mask;
2079 int accum_bits, chunk_size;
2081 target += targ_offset / HOST_CHAR_BIT;
2082 targ_offset %= HOST_CHAR_BIT;
2083 source += src_offset / HOST_CHAR_BIT;
2084 src_offset %= HOST_CHAR_BIT;
2085 if (BITS_BIG_ENDIAN)
2087 accum = (unsigned char) *source;
2089 accum_bits = HOST_CHAR_BIT - src_offset;
2094 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2095 accum_bits += HOST_CHAR_BIT;
2097 chunk_size = HOST_CHAR_BIT - targ_offset;
2100 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2101 mask = ((1 << chunk_size) - 1) << unused_right;
2104 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2106 accum_bits -= chunk_size;
2113 accum = (unsigned char) *source >> src_offset;
2115 accum_bits = HOST_CHAR_BIT - src_offset;
2119 accum = accum + ((unsigned char) *source << accum_bits);
2120 accum_bits += HOST_CHAR_BIT;
2122 chunk_size = HOST_CHAR_BIT - targ_offset;
2125 mask = ((1 << chunk_size) - 1) << targ_offset;
2126 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2128 accum_bits -= chunk_size;
2129 accum >>= chunk_size;
2136 /* Store the contents of FROMVAL into the location of TOVAL.
2137 Return a new value with the location of TOVAL and contents of
2138 FROMVAL. Handles assignment into packed fields that have
2139 floating-point or non-scalar types. */
2141 static struct value *
2142 ada_value_assign (struct value *toval, struct value *fromval)
2144 struct type *type = value_type (toval);
2145 int bits = value_bitsize (toval);
2147 toval = ada_coerce_ref (toval);
2148 fromval = ada_coerce_ref (fromval);
2150 if (ada_is_direct_array_type (value_type (toval)))
2151 toval = ada_coerce_to_simple_array (toval);
2152 if (ada_is_direct_array_type (value_type (fromval)))
2153 fromval = ada_coerce_to_simple_array (fromval);
2155 if (!deprecated_value_modifiable (toval))
2156 error (_("Left operand of assignment is not a modifiable lvalue."));
2158 if (VALUE_LVAL (toval) == lval_memory
2160 && (TYPE_CODE (type) == TYPE_CODE_FLT
2161 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2163 int len = (value_bitpos (toval)
2164 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2165 char *buffer = (char *) alloca (len);
2167 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2169 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2170 fromval = value_cast (type, fromval);
2172 read_memory (to_addr, buffer, len);
2173 if (BITS_BIG_ENDIAN)
2174 move_bits (buffer, value_bitpos (toval),
2175 value_contents (fromval),
2176 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2179 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2181 write_memory (to_addr, buffer, len);
2182 if (deprecated_memory_changed_hook)
2183 deprecated_memory_changed_hook (to_addr, len);
2185 val = value_copy (toval);
2186 memcpy (value_contents_raw (val), value_contents (fromval),
2187 TYPE_LENGTH (type));
2188 deprecated_set_value_type (val, type);
2193 return value_assign (toval, fromval);
2197 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2198 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2199 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2200 * COMPONENT, and not the inferior's memory. The current contents
2201 * of COMPONENT are ignored. */
2203 value_assign_to_component (struct value *container, struct value *component,
2206 LONGEST offset_in_container =
2207 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2208 - VALUE_ADDRESS (container) - value_offset (container));
2209 int bit_offset_in_container =
2210 value_bitpos (component) - value_bitpos (container);
2213 val = value_cast (value_type (component), val);
2215 if (value_bitsize (component) == 0)
2216 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2218 bits = value_bitsize (component);
2220 if (BITS_BIG_ENDIAN)
2221 move_bits (value_contents_writeable (container) + offset_in_container,
2222 value_bitpos (container) + bit_offset_in_container,
2223 value_contents (val),
2224 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2227 move_bits (value_contents_writeable (container) + offset_in_container,
2228 value_bitpos (container) + bit_offset_in_container,
2229 value_contents (val), 0, bits);
2232 /* The value of the element of array ARR at the ARITY indices given in IND.
2233 ARR may be either a simple array, GNAT array descriptor, or pointer
2237 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2241 struct type *elt_type;
2243 elt = ada_coerce_to_simple_array (arr);
2245 elt_type = ada_check_typedef (value_type (elt));
2246 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2247 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2248 return value_subscript_packed (elt, arity, ind);
2250 for (k = 0; k < arity; k += 1)
2252 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2253 error (_("too many subscripts (%d expected)"), k);
2254 elt = value_subscript (elt, value_pos_atr (ind[k]));
2259 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2260 value of the element of *ARR at the ARITY indices given in
2261 IND. Does not read the entire array into memory. */
2264 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2269 for (k = 0; k < arity; k += 1)
2274 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2275 error (_("too many subscripts (%d expected)"), k);
2276 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2278 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2279 idx = value_pos_atr (ind[k]);
2281 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2282 arr = value_add (arr, idx);
2283 type = TYPE_TARGET_TYPE (type);
2286 return value_ind (arr);
2289 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2290 actual type of ARRAY_PTR is ignored), returns a reference to
2291 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2292 bound of this array is LOW, as per Ada rules. */
2293 static struct value *
2294 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2297 CORE_ADDR base = value_as_address (array_ptr)
2298 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2299 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2300 struct type *index_type =
2301 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2303 struct type *slice_type =
2304 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2305 return value_from_pointer (lookup_reference_type (slice_type), base);
2309 static struct value *
2310 ada_value_slice (struct value *array, int low, int high)
2312 struct type *type = value_type (array);
2313 struct type *index_type =
2314 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2315 struct type *slice_type =
2316 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2317 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2320 /* If type is a record type in the form of a standard GNAT array
2321 descriptor, returns the number of dimensions for type. If arr is a
2322 simple array, returns the number of "array of"s that prefix its
2323 type designation. Otherwise, returns 0. */
2326 ada_array_arity (struct type *type)
2333 type = desc_base_type (type);
2336 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2337 return desc_arity (desc_bounds_type (type));
2339 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2342 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2348 /* If TYPE is a record type in the form of a standard GNAT array
2349 descriptor or a simple array type, returns the element type for
2350 TYPE after indexing by NINDICES indices, or by all indices if
2351 NINDICES is -1. Otherwise, returns NULL. */
2354 ada_array_element_type (struct type *type, int nindices)
2356 type = desc_base_type (type);
2358 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2361 struct type *p_array_type;
2363 p_array_type = desc_data_type (type);
2365 k = ada_array_arity (type);
2369 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2370 if (nindices >= 0 && k > nindices)
2372 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2373 while (k > 0 && p_array_type != NULL)
2375 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2378 return p_array_type;
2380 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2382 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2384 type = TYPE_TARGET_TYPE (type);
2393 /* The type of nth index in arrays of given type (n numbering from 1).
2394 Does not examine memory. */
2397 ada_index_type (struct type *type, int n)
2399 struct type *result_type;
2401 type = desc_base_type (type);
2403 if (n > ada_array_arity (type))
2406 if (ada_is_simple_array_type (type))
2410 for (i = 1; i < n; i += 1)
2411 type = TYPE_TARGET_TYPE (type);
2412 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2413 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2414 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2415 perhaps stabsread.c would make more sense. */
2416 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2417 result_type = builtin_type_int;
2422 return desc_index_type (desc_bounds_type (type), n);
2425 /* Given that arr is an array type, returns the lower bound of the
2426 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2427 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2428 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2429 bounds type. It works for other arrays with bounds supplied by
2430 run-time quantities other than discriminants. */
2433 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2434 struct type ** typep)
2437 struct type *index_type_desc;
2439 if (ada_is_packed_array_type (arr_type))
2440 arr_type = decode_packed_array_type (arr_type);
2442 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2445 *typep = builtin_type_int;
2446 return (LONGEST) - which;
2449 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2450 type = TYPE_TARGET_TYPE (arr_type);
2454 index_type_desc = ada_find_parallel_type (type, "___XA");
2455 if (index_type_desc == NULL)
2457 struct type *range_type;
2458 struct type *index_type;
2462 type = TYPE_TARGET_TYPE (type);
2466 range_type = TYPE_INDEX_TYPE (type);
2467 index_type = TYPE_TARGET_TYPE (range_type);
2468 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2469 index_type = builtin_type_long;
2471 *typep = index_type;
2473 (LONGEST) (which == 0
2474 ? TYPE_LOW_BOUND (range_type)
2475 : TYPE_HIGH_BOUND (range_type));
2479 struct type *index_type =
2480 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2481 NULL, TYPE_OBJFILE (arr_type));
2483 *typep = TYPE_TARGET_TYPE (index_type);
2485 (LONGEST) (which == 0
2486 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type));
2491 /* Given that arr is an array value, returns the lower bound of the
2492 nth index (numbering from 1) if which is 0, and the upper bound if
2493 which is 1. This routine will also work for arrays with bounds
2494 supplied by run-time quantities other than discriminants. */
2497 ada_array_bound (struct value *arr, int n, int which)
2499 struct type *arr_type = value_type (arr);
2501 if (ada_is_packed_array_type (arr_type))
2502 return ada_array_bound (decode_packed_array (arr), n, which);
2503 else if (ada_is_simple_array_type (arr_type))
2506 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2507 return value_from_longest (type, v);
2510 return desc_one_bound (desc_bounds (arr), n, which);
2513 /* Given that arr is an array value, returns the length of the
2514 nth index. This routine will also work for arrays with bounds
2515 supplied by run-time quantities other than discriminants.
2516 Does not work for arrays indexed by enumeration types with representation
2517 clauses at the moment. */
2520 ada_array_length (struct value *arr, int n)
2522 struct type *arr_type = ada_check_typedef (value_type (arr));
2524 if (ada_is_packed_array_type (arr_type))
2525 return ada_array_length (decode_packed_array (arr), n);
2527 if (ada_is_simple_array_type (arr_type))
2531 ada_array_bound_from_type (arr_type, n, 1, &type) -
2532 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2533 return value_from_longest (type, v);
2537 value_from_longest (builtin_type_int,
2538 value_as_long (desc_one_bound (desc_bounds (arr),
2540 - value_as_long (desc_one_bound (desc_bounds (arr),
2544 /* An empty array whose type is that of ARR_TYPE (an array type),
2545 with bounds LOW to LOW-1. */
2547 static struct value *
2548 empty_array (struct type *arr_type, int low)
2550 struct type *index_type =
2551 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2553 struct type *elt_type = ada_array_element_type (arr_type, 1);
2554 return allocate_value (create_array_type (NULL, elt_type, index_type));
2558 /* Name resolution */
2560 /* The "decoded" name for the user-definable Ada operator corresponding
2564 ada_decoded_op_name (enum exp_opcode op)
2568 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2570 if (ada_opname_table[i].op == op)
2571 return ada_opname_table[i].decoded;
2573 error (_("Could not find operator name for opcode"));
2577 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2578 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2579 undefined namespace) and converts operators that are
2580 user-defined into appropriate function calls. If CONTEXT_TYPE is
2581 non-null, it provides a preferred result type [at the moment, only
2582 type void has any effect---causing procedures to be preferred over
2583 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2584 return type is preferred. May change (expand) *EXP. */
2587 resolve (struct expression **expp, int void_context_p)
2591 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2594 /* Resolve the operator of the subexpression beginning at
2595 position *POS of *EXPP. "Resolving" consists of replacing
2596 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2597 with their resolutions, replacing built-in operators with
2598 function calls to user-defined operators, where appropriate, and,
2599 when DEPROCEDURE_P is non-zero, converting function-valued variables
2600 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2601 are as in ada_resolve, above. */
2603 static struct value *
2604 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2605 struct type *context_type)
2609 struct expression *exp; /* Convenience: == *expp. */
2610 enum exp_opcode op = (*expp)->elts[pc].opcode;
2611 struct value **argvec; /* Vector of operand types (alloca'ed). */
2612 int nargs; /* Number of operands. */
2619 /* Pass one: resolve operands, saving their types and updating *pos,
2624 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2625 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2630 resolve_subexp (expp, pos, 0, NULL);
2632 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2637 resolve_subexp (expp, pos, 0, NULL);
2642 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2645 case OP_ATR_MODULUS:
2655 case TERNOP_IN_RANGE:
2656 case BINOP_IN_BOUNDS:
2662 case OP_DISCRETE_RANGE:
2664 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2673 arg1 = resolve_subexp (expp, pos, 0, NULL);
2675 resolve_subexp (expp, pos, 1, NULL);
2677 resolve_subexp (expp, pos, 1, value_type (arg1));
2694 case BINOP_LOGICAL_AND:
2695 case BINOP_LOGICAL_OR:
2696 case BINOP_BITWISE_AND:
2697 case BINOP_BITWISE_IOR:
2698 case BINOP_BITWISE_XOR:
2701 case BINOP_NOTEQUAL:
2708 case BINOP_SUBSCRIPT:
2713 case UNOP_LOGICAL_NOT:
2730 case OP_INTERNALVAR:
2739 case STRUCTOP_STRUCT:
2740 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2753 error (_("Unexpected operator during name resolution"));
2756 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2757 for (i = 0; i < nargs; i += 1)
2758 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2762 /* Pass two: perform any resolution on principal operator. */
2769 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2771 struct ada_symbol_info *candidates;
2775 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2776 (exp->elts[pc + 2].symbol),
2777 exp->elts[pc + 1].block, VAR_DOMAIN,
2780 if (n_candidates > 1)
2782 /* Types tend to get re-introduced locally, so if there
2783 are any local symbols that are not types, first filter
2786 for (j = 0; j < n_candidates; j += 1)
2787 switch (SYMBOL_CLASS (candidates[j].sym))
2793 case LOC_REGPARM_ADDR:
2797 case LOC_BASEREG_ARG:
2799 case LOC_COMPUTED_ARG:
2805 if (j < n_candidates)
2808 while (j < n_candidates)
2810 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2812 candidates[j] = candidates[n_candidates - 1];
2821 if (n_candidates == 0)
2822 error (_("No definition found for %s"),
2823 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2824 else if (n_candidates == 1)
2826 else if (deprocedure_p
2827 && !is_nonfunction (candidates, n_candidates))
2829 i = ada_resolve_function
2830 (candidates, n_candidates, NULL, 0,
2831 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2834 error (_("Could not find a match for %s"),
2835 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2839 printf_filtered (_("Multiple matches for %s\n"),
2840 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2841 user_select_syms (candidates, n_candidates, 1);
2845 exp->elts[pc + 1].block = candidates[i].block;
2846 exp->elts[pc + 2].symbol = candidates[i].sym;
2847 if (innermost_block == NULL
2848 || contained_in (candidates[i].block, innermost_block))
2849 innermost_block = candidates[i].block;
2853 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2856 replace_operator_with_call (expp, pc, 0, 0,
2857 exp->elts[pc + 2].symbol,
2858 exp->elts[pc + 1].block);
2865 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2866 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2868 struct ada_symbol_info *candidates;
2872 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2873 (exp->elts[pc + 5].symbol),
2874 exp->elts[pc + 4].block, VAR_DOMAIN,
2876 if (n_candidates == 1)
2880 i = ada_resolve_function
2881 (candidates, n_candidates,
2883 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2886 error (_("Could not find a match for %s"),
2887 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2890 exp->elts[pc + 4].block = candidates[i].block;
2891 exp->elts[pc + 5].symbol = candidates[i].sym;
2892 if (innermost_block == NULL
2893 || contained_in (candidates[i].block, innermost_block))
2894 innermost_block = candidates[i].block;
2905 case BINOP_BITWISE_AND:
2906 case BINOP_BITWISE_IOR:
2907 case BINOP_BITWISE_XOR:
2909 case BINOP_NOTEQUAL:
2917 case UNOP_LOGICAL_NOT:
2919 if (possible_user_operator_p (op, argvec))
2921 struct ada_symbol_info *candidates;
2925 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2926 (struct block *) NULL, VAR_DOMAIN,
2928 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2929 ada_decoded_op_name (op), NULL);
2933 replace_operator_with_call (expp, pc, nargs, 1,
2934 candidates[i].sym, candidates[i].block);
2944 return evaluate_subexp_type (exp, pos);
2947 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2948 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2949 a non-pointer. A type of 'void' (which is never a valid expression type)
2950 by convention matches anything. */
2951 /* The term "match" here is rather loose. The match is heuristic and
2952 liberal. FIXME: TOO liberal, in fact. */
2955 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2957 ftype = ada_check_typedef (ftype);
2958 atype = ada_check_typedef (atype);
2960 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2961 ftype = TYPE_TARGET_TYPE (ftype);
2962 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2963 atype = TYPE_TARGET_TYPE (atype);
2965 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2966 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2969 switch (TYPE_CODE (ftype))
2974 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2975 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2976 TYPE_TARGET_TYPE (atype), 0);
2979 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2981 case TYPE_CODE_ENUM:
2982 case TYPE_CODE_RANGE:
2983 switch (TYPE_CODE (atype))
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2993 case TYPE_CODE_ARRAY:
2994 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2995 || ada_is_array_descriptor_type (atype));
2997 case TYPE_CODE_STRUCT:
2998 if (ada_is_array_descriptor_type (ftype))
2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3000 || ada_is_array_descriptor_type (atype));
3002 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3003 && !ada_is_array_descriptor_type (atype));
3005 case TYPE_CODE_UNION:
3007 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3011 /* Return non-zero if the formals of FUNC "sufficiently match" the
3012 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3013 may also be an enumeral, in which case it is treated as a 0-
3014 argument function. */
3017 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3020 struct type *func_type = SYMBOL_TYPE (func);
3022 if (SYMBOL_CLASS (func) == LOC_CONST
3023 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3024 return (n_actuals == 0);
3025 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3028 if (TYPE_NFIELDS (func_type) != n_actuals)
3031 for (i = 0; i < n_actuals; i += 1)
3033 if (actuals[i] == NULL)
3037 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3038 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3040 if (!ada_type_match (ftype, atype, 1))
3047 /* False iff function type FUNC_TYPE definitely does not produce a value
3048 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3049 FUNC_TYPE is not a valid function type with a non-null return type
3050 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3053 return_match (struct type *func_type, struct type *context_type)
3055 struct type *return_type;
3057 if (func_type == NULL)
3060 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3061 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3063 return_type = base_type (func_type);
3064 if (return_type == NULL)
3067 context_type = base_type (context_type);
3069 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3070 return context_type == NULL || return_type == context_type;
3071 else if (context_type == NULL)
3072 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3074 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3078 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3079 function (if any) that matches the types of the NARGS arguments in
3080 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3081 that returns that type, then eliminate matches that don't. If
3082 CONTEXT_TYPE is void and there is at least one match that does not
3083 return void, eliminate all matches that do.
3085 Asks the user if there is more than one match remaining. Returns -1
3086 if there is no such symbol or none is selected. NAME is used
3087 solely for messages. May re-arrange and modify SYMS in
3088 the process; the index returned is for the modified vector. */
3091 ada_resolve_function (struct ada_symbol_info syms[],
3092 int nsyms, struct value **args, int nargs,
3093 const char *name, struct type *context_type)
3096 int m; /* Number of hits */
3097 struct type *fallback;
3098 struct type *return_type;
3100 return_type = context_type;
3101 if (context_type == NULL)
3102 fallback = builtin_type_void;
3109 for (k = 0; k < nsyms; k += 1)
3111 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3113 if (ada_args_match (syms[k].sym, args, nargs)
3114 && return_match (type, return_type))
3120 if (m > 0 || return_type == fallback)
3123 return_type = fallback;
3130 printf_filtered (_("Multiple matches for %s\n"), name);
3131 user_select_syms (syms, m, 1);
3137 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3138 in a listing of choices during disambiguation (see sort_choices, below).
3139 The idea is that overloadings of a subprogram name from the
3140 same package should sort in their source order. We settle for ordering
3141 such symbols by their trailing number (__N or $N). */
3144 encoded_ordered_before (char *N0, char *N1)
3148 else if (N0 == NULL)
3153 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3155 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3157 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3158 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3162 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3165 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3167 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3168 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3170 return (strcmp (N0, N1) < 0);
3174 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3178 sort_choices (struct ada_symbol_info syms[], int nsyms)
3181 for (i = 1; i < nsyms; i += 1)
3183 struct ada_symbol_info sym = syms[i];
3186 for (j = i - 1; j >= 0; j -= 1)
3188 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3189 SYMBOL_LINKAGE_NAME (sym.sym)))
3191 syms[j + 1] = syms[j];
3197 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3198 by asking the user (if necessary), returning the number selected,
3199 and setting the first elements of SYMS items. Error if no symbols
3202 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3203 to be re-integrated one of these days. */
3206 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3209 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3211 int first_choice = (max_results == 1) ? 1 : 2;
3213 if (max_results < 1)
3214 error (_("Request to select 0 symbols!"));
3218 printf_unfiltered (_("[0] cancel\n"));
3219 if (max_results > 1)
3220 printf_unfiltered (_("[1] all\n"));
3222 sort_choices (syms, nsyms);
3224 for (i = 0; i < nsyms; i += 1)
3226 if (syms[i].sym == NULL)
3229 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3231 struct symtab_and_line sal =
3232 find_function_start_sal (syms[i].sym, 1);
3233 if (sal.symtab == NULL)
3234 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3236 SYMBOL_PRINT_NAME (syms[i].sym),
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3240 SYMBOL_PRINT_NAME (syms[i].sym),
3241 sal.symtab->filename, sal.line);
3247 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3248 && SYMBOL_TYPE (syms[i].sym) != NULL
3249 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3250 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3252 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3253 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3255 SYMBOL_PRINT_NAME (syms[i].sym),
3256 symtab->filename, SYMBOL_LINE (syms[i].sym));
3257 else if (is_enumeral
3258 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3260 printf_unfiltered (("[%d] "), i + first_choice);
3261 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3263 printf_unfiltered (_("'(%s) (enumeral)\n"),
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3266 else if (symtab != NULL)
3267 printf_unfiltered (is_enumeral
3268 ? _("[%d] %s in %s (enumeral)\n")
3269 : _("[%d] %s at %s:?\n"),
3271 SYMBOL_PRINT_NAME (syms[i].sym),
3274 printf_unfiltered (is_enumeral
3275 ? _("[%d] %s (enumeral)\n")
3276 : _("[%d] %s at ?\n"),
3278 SYMBOL_PRINT_NAME (syms[i].sym));
3282 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3285 for (i = 0; i < n_chosen; i += 1)
3286 syms[i] = syms[chosen[i]];
3291 /* Read and validate a set of numeric choices from the user in the
3292 range 0 .. N_CHOICES-1. Place the results in increasing
3293 order in CHOICES[0 .. N-1], and return N.
3295 The user types choices as a sequence of numbers on one line
3296 separated by blanks, encoding them as follows:
3298 + A choice of 0 means to cancel the selection, throwing an error.
3299 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3300 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3302 The user is not allowed to choose more than MAX_RESULTS values.
3304 ANNOTATION_SUFFIX, if present, is used to annotate the input
3305 prompts (for use with the -f switch). */
3308 get_selections (int *choices, int n_choices, int max_results,
3309 int is_all_choice, char *annotation_suffix)
3314 int first_choice = is_all_choice ? 2 : 1;
3316 prompt = getenv ("PS2");
3320 printf_unfiltered (("%s "), prompt);
3321 gdb_flush (gdb_stdout);
3323 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3326 error_no_arg (_("one or more choice numbers"));
3330 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3331 order, as given in args. Choices are validated. */
3337 while (isspace (*args))
3339 if (*args == '\0' && n_chosen == 0)
3340 error_no_arg (_("one or more choice numbers"));
3341 else if (*args == '\0')
3344 choice = strtol (args, &args2, 10);
3345 if (args == args2 || choice < 0
3346 || choice > n_choices + first_choice - 1)
3347 error (_("Argument must be choice number"));
3351 error (_("cancelled"));
3353 if (choice < first_choice)
3355 n_chosen = n_choices;
3356 for (j = 0; j < n_choices; j += 1)
3360 choice -= first_choice;
3362 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3366 if (j < 0 || choice != choices[j])
3369 for (k = n_chosen - 1; k > j; k -= 1)
3370 choices[k + 1] = choices[k];
3371 choices[j + 1] = choice;
3376 if (n_chosen > max_results)
3377 error (_("Select no more than %d of the above"), max_results);
3382 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3383 on the function identified by SYM and BLOCK, and taking NARGS
3384 arguments. Update *EXPP as needed to hold more space. */
3387 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3388 int oplen, struct symbol *sym,
3389 struct block *block)
3391 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3392 symbol, -oplen for operator being replaced). */
3393 struct expression *newexp = (struct expression *)
3394 xmalloc (sizeof (struct expression)
3395 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3396 struct expression *exp = *expp;
3398 newexp->nelts = exp->nelts + 7 - oplen;
3399 newexp->language_defn = exp->language_defn;
3400 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3401 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3402 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3404 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3405 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3407 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3408 newexp->elts[pc + 4].block = block;
3409 newexp->elts[pc + 5].symbol = sym;
3415 /* Type-class predicates */
3417 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3421 numeric_type_p (struct type *type)
3427 switch (TYPE_CODE (type))
3432 case TYPE_CODE_RANGE:
3433 return (type == TYPE_TARGET_TYPE (type)
3434 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3441 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3444 integer_type_p (struct type *type)
3450 switch (TYPE_CODE (type))
3454 case TYPE_CODE_RANGE:
3455 return (type == TYPE_TARGET_TYPE (type)
3456 || integer_type_p (TYPE_TARGET_TYPE (type)));
3463 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3466 scalar_type_p (struct type *type)
3472 switch (TYPE_CODE (type))
3475 case TYPE_CODE_RANGE:
3476 case TYPE_CODE_ENUM:
3485 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3488 discrete_type_p (struct type *type)
3494 switch (TYPE_CODE (type))
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_ENUM:
3506 /* Returns non-zero if OP with operands in the vector ARGS could be
3507 a user-defined function. Errs on the side of pre-defined operators
3508 (i.e., result 0). */
3511 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3513 struct type *type0 =
3514 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3515 struct type *type1 =
3516 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3530 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3534 case BINOP_BITWISE_AND:
3535 case BINOP_BITWISE_IOR:
3536 case BINOP_BITWISE_XOR:
3537 return (!(integer_type_p (type0) && integer_type_p (type1)));
3540 case BINOP_NOTEQUAL:
3545 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3549 ((TYPE_CODE (type0) != TYPE_CODE_ARRAY
3550 && (TYPE_CODE (type0) != TYPE_CODE_PTR
3551 || TYPE_CODE (TYPE_TARGET_TYPE (type0)) != TYPE_CODE_ARRAY))
3552 || (TYPE_CODE (type1) != TYPE_CODE_ARRAY
3553 && (TYPE_CODE (type1) != TYPE_CODE_PTR
3554 || (TYPE_CODE (TYPE_TARGET_TYPE (type1))
3555 != TYPE_CODE_ARRAY))));
3558 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3562 case UNOP_LOGICAL_NOT:
3564 return (!numeric_type_p (type0));
3571 /* NOTE: In the following, we assume that a renaming type's name may
3572 have an ___XD suffix. It would be nice if this went away at some
3575 /* If TYPE encodes a renaming, returns the renaming suffix, which
3576 is XR for an object renaming, XRP for a procedure renaming, XRE for
3577 an exception renaming, and XRS for a subprogram renaming. Returns
3578 NULL if NAME encodes none of these. */
3581 ada_renaming_type (struct type *type)
3583 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3585 const char *name = type_name_no_tag (type);
3586 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3588 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3597 /* Return non-zero iff SYM encodes an object renaming. */
3600 ada_is_object_renaming (struct symbol *sym)
3602 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3603 return renaming_type != NULL
3604 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3607 /* Assuming that SYM encodes a non-object renaming, returns the original
3608 name of the renamed entity. The name is good until the end of
3612 ada_simple_renamed_entity (struct symbol *sym)
3615 const char *raw_name;
3619 type = SYMBOL_TYPE (sym);
3620 if (type == NULL || TYPE_NFIELDS (type) < 1)
3621 error (_("Improperly encoded renaming."));
3623 raw_name = TYPE_FIELD_NAME (type, 0);
3624 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3626 error (_("Improperly encoded renaming."));
3628 result = xmalloc (len + 1);
3629 strncpy (result, raw_name, len);
3630 result[len] = '\000';
3636 /* Evaluation: Function Calls */
3638 /* Return an lvalue containing the value VAL. This is the identity on
3639 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3640 on the stack, using and updating *SP as the stack pointer, and
3641 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3643 static struct value *
3644 ensure_lval (struct value *val, CORE_ADDR *sp)
3646 if (! VALUE_LVAL (val))
3648 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3650 /* The following is taken from the structure-return code in
3651 call_function_by_hand. FIXME: Therefore, some refactoring seems
3653 if (INNER_THAN (1, 2))
3655 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3656 reserving sufficient space. */
3658 if (gdbarch_frame_align_p (current_gdbarch))
3659 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3660 VALUE_ADDRESS (val) = *sp;
3664 /* Stack grows upward. Align the frame, allocate space, and
3665 then again, re-align the frame. */
3666 if (gdbarch_frame_align_p (current_gdbarch))
3667 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3668 VALUE_ADDRESS (val) = *sp;
3670 if (gdbarch_frame_align_p (current_gdbarch))
3671 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3674 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3680 /* Return the value ACTUAL, converted to be an appropriate value for a
3681 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3682 allocating any necessary descriptors (fat pointers), or copies of
3683 values not residing in memory, updating it as needed. */
3685 static struct value *
3686 convert_actual (struct value *actual, struct type *formal_type0,
3689 struct type *actual_type = ada_check_typedef (value_type (actual));
3690 struct type *formal_type = ada_check_typedef (formal_type0);
3691 struct type *formal_target =
3692 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3693 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3694 struct type *actual_target =
3695 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3696 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3698 if (ada_is_array_descriptor_type (formal_target)
3699 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3700 return make_array_descriptor (formal_type, actual, sp);
3701 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3703 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3704 && ada_is_array_descriptor_type (actual_target))
3705 return desc_data (actual);
3706 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3708 if (VALUE_LVAL (actual) != lval_memory)
3711 actual_type = ada_check_typedef (value_type (actual));
3712 val = allocate_value (actual_type);
3713 memcpy ((char *) value_contents_raw (val),
3714 (char *) value_contents (actual),
3715 TYPE_LENGTH (actual_type));
3716 actual = ensure_lval (val, sp);
3718 return value_addr (actual);
3721 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3722 return ada_value_ind (actual);
3728 /* Push a descriptor of type TYPE for array value ARR on the stack at
3729 *SP, updating *SP to reflect the new descriptor. Return either
3730 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3731 to-descriptor type rather than a descriptor type), a struct value *
3732 representing a pointer to this descriptor. */
3734 static struct value *
3735 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3737 struct type *bounds_type = desc_bounds_type (type);
3738 struct type *desc_type = desc_base_type (type);
3739 struct value *descriptor = allocate_value (desc_type);
3740 struct value *bounds = allocate_value (bounds_type);
3743 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3745 modify_general_field (value_contents_writeable (bounds),
3746 value_as_long (ada_array_bound (arr, i, 0)),
3747 desc_bound_bitpos (bounds_type, i, 0),
3748 desc_bound_bitsize (bounds_type, i, 0));
3749 modify_general_field (value_contents_writeable (bounds),
3750 value_as_long (ada_array_bound (arr, i, 1)),
3751 desc_bound_bitpos (bounds_type, i, 1),
3752 desc_bound_bitsize (bounds_type, i, 1));
3755 bounds = ensure_lval (bounds, sp);
3757 modify_general_field (value_contents_writeable (descriptor),
3758 VALUE_ADDRESS (ensure_lval (arr, sp)),
3759 fat_pntr_data_bitpos (desc_type),
3760 fat_pntr_data_bitsize (desc_type));
3762 modify_general_field (value_contents_writeable (descriptor),
3763 VALUE_ADDRESS (bounds),
3764 fat_pntr_bounds_bitpos (desc_type),
3765 fat_pntr_bounds_bitsize (desc_type));
3767 descriptor = ensure_lval (descriptor, sp);
3769 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3770 return value_addr (descriptor);
3776 /* Assuming a dummy frame has been established on the target, perform any
3777 conversions needed for calling function FUNC on the NARGS actual
3778 parameters in ARGS, other than standard C conversions. Does
3779 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3780 does not match the number of arguments expected. Use *SP as a
3781 stack pointer for additional data that must be pushed, updating its
3785 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3790 if (TYPE_NFIELDS (value_type (func)) == 0
3791 || nargs != TYPE_NFIELDS (value_type (func)))
3794 for (i = 0; i < nargs; i += 1)
3796 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3799 /* Dummy definitions for an experimental caching module that is not
3800 * used in the public sources. */
3803 lookup_cached_symbol (const char *name, domain_enum namespace,
3804 struct symbol **sym, struct block **block,
3805 struct symtab **symtab)
3811 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3812 struct block *block, struct symtab *symtab)
3818 /* Return the result of a standard (literal, C-like) lookup of NAME in
3819 given DOMAIN, visible from lexical block BLOCK. */
3821 static struct symbol *
3822 standard_lookup (const char *name, const struct block *block,
3826 struct symtab *symtab;
3828 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3831 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3832 cache_symbol (name, domain, sym, block_found, symtab);
3837 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3838 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3839 since they contend in overloading in the same way. */
3841 is_nonfunction (struct ada_symbol_info syms[], int n)
3845 for (i = 0; i < n; i += 1)
3846 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3847 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3848 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3854 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3855 struct types. Otherwise, they may not. */
3858 equiv_types (struct type *type0, struct type *type1)
3862 if (type0 == NULL || type1 == NULL
3863 || TYPE_CODE (type0) != TYPE_CODE (type1))
3865 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3866 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3867 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3868 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3874 /* True iff SYM0 represents the same entity as SYM1, or one that is
3875 no more defined than that of SYM1. */
3878 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3882 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3883 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3886 switch (SYMBOL_CLASS (sym0))
3892 struct type *type0 = SYMBOL_TYPE (sym0);
3893 struct type *type1 = SYMBOL_TYPE (sym1);
3894 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3895 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3896 int len0 = strlen (name0);
3898 TYPE_CODE (type0) == TYPE_CODE (type1)
3899 && (equiv_types (type0, type1)
3900 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3901 && strncmp (name1 + len0, "___XV", 5) == 0));
3904 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3905 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3911 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3912 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3915 add_defn_to_vec (struct obstack *obstackp,
3917 struct block *block, struct symtab *symtab)
3921 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3923 /* Do not try to complete stub types, as the debugger is probably
3924 already scanning all symbols matching a certain name at the
3925 time when this function is called. Trying to replace the stub
3926 type by its associated full type will cause us to restart a scan
3927 which may lead to an infinite recursion. Instead, the client
3928 collecting the matching symbols will end up collecting several
3929 matches, with at least one of them complete. It can then filter
3930 out the stub ones if needed. */
3932 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3934 if (lesseq_defined_than (sym, prevDefns[i].sym))
3936 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3938 prevDefns[i].sym = sym;
3939 prevDefns[i].block = block;
3940 prevDefns[i].symtab = symtab;
3946 struct ada_symbol_info info;
3950 info.symtab = symtab;
3951 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3955 /* Number of ada_symbol_info structures currently collected in
3956 current vector in *OBSTACKP. */
3959 num_defns_collected (struct obstack *obstackp)
3961 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3964 /* Vector of ada_symbol_info structures currently collected in current
3965 vector in *OBSTACKP. If FINISH, close off the vector and return
3966 its final address. */
3968 static struct ada_symbol_info *
3969 defns_collected (struct obstack *obstackp, int finish)
3972 return obstack_finish (obstackp);
3974 return (struct ada_symbol_info *) obstack_base (obstackp);
3977 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3978 Check the global symbols if GLOBAL, the static symbols if not.
3979 Do wild-card match if WILD. */
3981 static struct partial_symbol *
3982 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3983 int global, domain_enum namespace, int wild)
3985 struct partial_symbol **start;
3986 int name_len = strlen (name);
3987 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3996 pst->objfile->global_psymbols.list + pst->globals_offset :
3997 pst->objfile->static_psymbols.list + pst->statics_offset);
4001 for (i = 0; i < length; i += 1)
4003 struct partial_symbol *psym = start[i];
4005 if (SYMBOL_DOMAIN (psym) == namespace
4006 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4020 int M = (U + i) >> 1;
4021 struct partial_symbol *psym = start[M];
4022 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4024 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4026 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4037 struct partial_symbol *psym = start[i];
4039 if (SYMBOL_DOMAIN (psym) == namespace)
4041 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4049 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4063 int M = (U + i) >> 1;
4064 struct partial_symbol *psym = start[M];
4065 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4067 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4069 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4080 struct partial_symbol *psym = start[i];
4082 if (SYMBOL_DOMAIN (psym) == namespace)
4086 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4089 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4091 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4101 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4111 /* Find a symbol table containing symbol SYM or NULL if none. */
4113 static struct symtab *
4114 symtab_for_sym (struct symbol *sym)
4117 struct objfile *objfile;
4119 struct symbol *tmp_sym;
4120 struct dict_iterator iter;
4123 ALL_SYMTABS (objfile, s)
4125 switch (SYMBOL_CLASS (sym))
4133 case LOC_CONST_BYTES:
4134 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4135 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4137 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4138 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4144 switch (SYMBOL_CLASS (sym))
4150 case LOC_REGPARM_ADDR:
4155 case LOC_BASEREG_ARG:
4157 case LOC_COMPUTED_ARG:
4158 for (j = FIRST_LOCAL_BLOCK;
4159 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4161 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4162 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4173 /* Return a minimal symbol matching NAME according to Ada decoding
4174 rules. Returns NULL if there is no such minimal symbol. Names
4175 prefixed with "standard__" are handled specially: "standard__" is
4176 first stripped off, and only static and global symbols are searched. */
4178 struct minimal_symbol *
4179 ada_lookup_simple_minsym (const char *name)
4181 struct objfile *objfile;
4182 struct minimal_symbol *msymbol;
4185 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4187 name += sizeof ("standard__") - 1;
4191 wild_match = (strstr (name, "__") == NULL);
4193 ALL_MSYMBOLS (objfile, msymbol)
4195 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4196 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4203 /* For all subprograms that statically enclose the subprogram of the
4204 selected frame, add symbols matching identifier NAME in DOMAIN
4205 and their blocks to the list of data in OBSTACKP, as for
4206 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4210 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4211 const char *name, domain_enum namespace,
4216 /* FIXME: The next two routines belong in symtab.c */
4219 restore_language (void *lang)
4221 set_language ((enum language) lang);
4224 /* As for lookup_symbol, but performed as if the current language
4228 lookup_symbol_in_language (const char *name, const struct block *block,
4229 domain_enum domain, enum language lang,
4230 int *is_a_field_of_this, struct symtab **symtab)
4232 struct cleanup *old_chain
4233 = make_cleanup (restore_language, (void *) current_language->la_language);
4234 struct symbol *result;
4235 set_language (lang);
4236 result = lookup_symbol (name, block, domain, is_a_field_of_this, symtab);
4237 do_cleanups (old_chain);
4241 /* True if TYPE is definitely an artificial type supplied to a symbol
4242 for which no debugging information was given in the symbol file. */
4245 is_nondebugging_type (struct type *type)
4247 char *name = ada_type_name (type);
4248 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4251 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4252 duplicate other symbols in the list (The only case I know of where
4253 this happens is when object files containing stabs-in-ecoff are
4254 linked with files containing ordinary ecoff debugging symbols (or no
4255 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4256 Returns the number of items in the modified list. */
4259 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4266 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4267 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4268 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4270 for (j = 0; j < nsyms; j += 1)
4273 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4274 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4275 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4276 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4277 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4278 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4281 for (k = i + 1; k < nsyms; k += 1)
4282 syms[k - 1] = syms[k];
4295 /* Given a type that corresponds to a renaming entity, use the type name
4296 to extract the scope (package name or function name, fully qualified,
4297 and following the GNAT encoding convention) where this renaming has been
4298 defined. The string returned needs to be deallocated after use. */
4301 xget_renaming_scope (struct type *renaming_type)
4303 /* The renaming types adhere to the following convention:
4304 <scope>__<rename>___<XR extension>.
4305 So, to extract the scope, we search for the "___XR" extension,
4306 and then backtrack until we find the first "__". */
4308 const char *name = type_name_no_tag (renaming_type);
4309 char *suffix = strstr (name, "___XR");
4314 /* Now, backtrack a bit until we find the first "__". Start looking
4315 at suffix - 3, as the <rename> part is at least one character long. */
4317 for (last = suffix - 3; last > name; last--)
4318 if (last[0] == '_' && last[1] == '_')
4321 /* Make a copy of scope and return it. */
4323 scope_len = last - name;
4324 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4326 strncpy (scope, name, scope_len);
4327 scope[scope_len] = '\0';
4332 /* Return nonzero if NAME corresponds to a package name. */
4335 is_package_name (const char *name)
4337 /* Here, We take advantage of the fact that no symbols are generated
4338 for packages, while symbols are generated for each function.
4339 So the condition for NAME represent a package becomes equivalent
4340 to NAME not existing in our list of symbols. There is only one
4341 small complication with library-level functions (see below). */
4345 /* If it is a function that has not been defined at library level,
4346 then we should be able to look it up in the symbols. */
4347 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4350 /* Library-level function names start with "_ada_". See if function
4351 "_ada_" followed by NAME can be found. */
4353 /* Do a quick check that NAME does not contain "__", since library-level
4354 functions names cannot contain "__" in them. */
4355 if (strstr (name, "__") != NULL)
4358 fun_name = xstrprintf ("_ada_%s", name);
4360 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4363 /* Return nonzero if SYM corresponds to a renaming entity that is
4364 visible from FUNCTION_NAME. */
4367 renaming_is_visible (const struct symbol *sym, char *function_name)
4369 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4371 make_cleanup (xfree, scope);
4373 /* If the rename has been defined in a package, then it is visible. */
4374 if (is_package_name (scope))
4377 /* Check that the rename is in the current function scope by checking
4378 that its name starts with SCOPE. */
4380 /* If the function name starts with "_ada_", it means that it is
4381 a library-level function. Strip this prefix before doing the
4382 comparison, as the encoding for the renaming does not contain
4384 if (strncmp (function_name, "_ada_", 5) == 0)
4387 return (strncmp (function_name, scope, strlen (scope)) == 0);
4390 /* Iterates over the SYMS list and remove any entry that corresponds to
4391 a renaming entity that is not visible from the function associated
4395 GNAT emits a type following a specified encoding for each renaming
4396 entity. Unfortunately, STABS currently does not support the definition
4397 of types that are local to a given lexical block, so all renamings types
4398 are emitted at library level. As a consequence, if an application
4399 contains two renaming entities using the same name, and a user tries to
4400 print the value of one of these entities, the result of the ada symbol
4401 lookup will also contain the wrong renaming type.
4403 This function partially covers for this limitation by attempting to
4404 remove from the SYMS list renaming symbols that should be visible
4405 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4406 method with the current information available. The implementation
4407 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4409 - When the user tries to print a rename in a function while there
4410 is another rename entity defined in a package: Normally, the
4411 rename in the function has precedence over the rename in the
4412 package, so the latter should be removed from the list. This is
4413 currently not the case.
4415 - This function will incorrectly remove valid renames if
4416 the CURRENT_BLOCK corresponds to a function which symbol name
4417 has been changed by an "Export" pragma. As a consequence,
4418 the user will be unable to print such rename entities. */
4421 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4422 int nsyms, struct block *current_block)
4424 struct symbol *current_function;
4425 char *current_function_name;
4428 /* Extract the function name associated to CURRENT_BLOCK.
4429 Abort if unable to do so. */
4431 if (current_block == NULL)
4434 current_function = block_function (current_block);
4435 if (current_function == NULL)
4438 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4439 if (current_function_name == NULL)
4442 /* Check each of the symbols, and remove it from the list if it is
4443 a type corresponding to a renaming that is out of the scope of
4444 the current block. */
4449 if (ada_is_object_renaming (syms[i].sym)
4450 && !renaming_is_visible (syms[i].sym, current_function_name))
4453 for (j = i + 1; j < nsyms; j++)
4454 syms[j - 1] = syms[j];
4464 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4465 scope and in global scopes, returning the number of matches. Sets
4466 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4467 indicating the symbols found and the blocks and symbol tables (if
4468 any) in which they were found. This vector are transient---good only to
4469 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4470 symbol match within the nest of blocks whose innermost member is BLOCK0,
4471 is the one match returned (no other matches in that or
4472 enclosing blocks is returned). If there are any matches in or
4473 surrounding BLOCK0, then these alone are returned. Otherwise, the
4474 search extends to global and file-scope (static) symbol tables.
4475 Names prefixed with "standard__" are handled specially: "standard__"
4476 is first stripped off, and only static and global symbols are searched. */
4479 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4480 domain_enum namespace,
4481 struct ada_symbol_info **results)
4485 struct partial_symtab *ps;
4486 struct blockvector *bv;
4487 struct objfile *objfile;
4488 struct block *block;
4490 struct minimal_symbol *msymbol;
4496 obstack_free (&symbol_list_obstack, NULL);
4497 obstack_init (&symbol_list_obstack);
4501 /* Search specified block and its superiors. */
4503 wild_match = (strstr (name0, "__") == NULL);
4505 block = (struct block *) block0; /* FIXME: No cast ought to be
4506 needed, but adding const will
4507 have a cascade effect. */
4508 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4512 name = name0 + sizeof ("standard__") - 1;
4516 while (block != NULL)
4519 ada_add_block_symbols (&symbol_list_obstack, block, name,
4520 namespace, NULL, NULL, wild_match);
4522 /* If we found a non-function match, assume that's the one. */
4523 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4524 num_defns_collected (&symbol_list_obstack)))
4527 block = BLOCK_SUPERBLOCK (block);
4530 /* If no luck so far, try to find NAME as a local symbol in some lexically
4531 enclosing subprogram. */
4532 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4533 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4534 name, namespace, wild_match);
4536 /* If we found ANY matches among non-global symbols, we're done. */
4538 if (num_defns_collected (&symbol_list_obstack) > 0)
4542 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4545 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4549 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4550 tables, and psymtab's. */
4552 ALL_SYMTABS (objfile, s)
4557 bv = BLOCKVECTOR (s);
4558 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4559 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4560 objfile, s, wild_match);
4563 if (namespace == VAR_DOMAIN)
4565 ALL_MSYMBOLS (objfile, msymbol)
4567 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4569 switch (MSYMBOL_TYPE (msymbol))
4571 case mst_solib_trampoline:
4574 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4577 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4579 bv = BLOCKVECTOR (s);
4580 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4581 ada_add_block_symbols (&symbol_list_obstack, block,
4582 SYMBOL_LINKAGE_NAME (msymbol),
4583 namespace, objfile, s, wild_match);
4585 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4587 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4588 ada_add_block_symbols (&symbol_list_obstack, block,
4589 SYMBOL_LINKAGE_NAME (msymbol),
4590 namespace, objfile, s,
4599 ALL_PSYMTABS (objfile, ps)
4603 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4605 s = PSYMTAB_TO_SYMTAB (ps);
4608 bv = BLOCKVECTOR (s);
4609 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4610 ada_add_block_symbols (&symbol_list_obstack, block, name,
4611 namespace, objfile, s, wild_match);
4615 /* Now add symbols from all per-file blocks if we've gotten no hits
4616 (Not strictly correct, but perhaps better than an error).
4617 Do the symtabs first, then check the psymtabs. */
4619 if (num_defns_collected (&symbol_list_obstack) == 0)
4622 ALL_SYMTABS (objfile, s)
4627 bv = BLOCKVECTOR (s);
4628 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4629 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4630 objfile, s, wild_match);
4633 ALL_PSYMTABS (objfile, ps)
4637 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4639 s = PSYMTAB_TO_SYMTAB (ps);
4640 bv = BLOCKVECTOR (s);
4643 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4644 ada_add_block_symbols (&symbol_list_obstack, block, name,
4645 namespace, objfile, s, wild_match);
4651 ndefns = num_defns_collected (&symbol_list_obstack);
4652 *results = defns_collected (&symbol_list_obstack, 1);
4654 ndefns = remove_extra_symbols (*results, ndefns);
4657 cache_symbol (name0, namespace, NULL, NULL, NULL);
4659 if (ndefns == 1 && cacheIfUnique)
4660 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4661 (*results)[0].symtab);
4663 ndefns = remove_out_of_scope_renamings (*results, ndefns,
4664 (struct block *) block0);
4669 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4670 scope and in global scopes, or NULL if none. NAME is folded and
4671 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4672 choosing the first symbol if there are multiple choices.
4673 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4674 table in which the symbol was found (in both cases, these
4675 assignments occur only if the pointers are non-null). */
4678 ada_lookup_symbol (const char *name, const struct block *block0,
4679 domain_enum namespace, int *is_a_field_of_this,
4680 struct symtab **symtab)
4682 struct ada_symbol_info *candidates;
4685 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4686 block0, namespace, &candidates);
4688 if (n_candidates == 0)
4691 if (is_a_field_of_this != NULL)
4692 *is_a_field_of_this = 0;
4696 *symtab = candidates[0].symtab;
4697 if (*symtab == NULL && candidates[0].block != NULL)
4699 struct objfile *objfile;
4702 struct blockvector *bv;
4704 /* Search the list of symtabs for one which contains the
4705 address of the start of this block. */
4706 ALL_SYMTABS (objfile, s)
4708 bv = BLOCKVECTOR (s);
4709 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4710 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4711 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4714 return fixup_symbol_section (candidates[0].sym, objfile);
4717 /* FIXME: brobecker/2004-11-12: I think that we should never
4718 reach this point. I don't see a reason why we would not
4719 find a symtab for a given block, so I suggest raising an
4720 internal_error exception here. Otherwise, we end up
4721 returning a symbol but no symtab, which certain parts of
4722 the code that rely (indirectly) on this function do not
4723 expect, eventually causing a SEGV. */
4724 return fixup_symbol_section (candidates[0].sym, NULL);
4727 return candidates[0].sym;
4730 static struct symbol *
4731 ada_lookup_symbol_nonlocal (const char *name,
4732 const char *linkage_name,
4733 const struct block *block,
4734 const domain_enum domain, struct symtab **symtab)
4736 if (linkage_name == NULL)
4737 linkage_name = name;
4738 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4743 /* True iff STR is a possible encoded suffix of a normal Ada name
4744 that is to be ignored for matching purposes. Suffixes of parallel
4745 names (e.g., XVE) are not included here. Currently, the possible suffixes
4746 are given by either of the regular expression:
4748 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4750 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4751 _E[0-9]+[bs]$ [protected object entry suffixes]
4752 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4756 is_name_suffix (const char *str)
4759 const char *matching;
4760 const int len = strlen (str);
4762 /* (__[0-9]+)?\.[0-9]+ */
4764 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4767 while (isdigit (matching[0]))
4769 if (matching[0] == '\0')
4773 if (matching[0] == '.' || matching[0] == '$')
4776 while (isdigit (matching[0]))
4778 if (matching[0] == '\0')
4783 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4786 while (isdigit (matching[0]))
4788 if (matching[0] == '\0')
4793 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4794 with a N at the end. Unfortunately, the compiler uses the same
4795 convention for other internal types it creates. So treating
4796 all entity names that end with an "N" as a name suffix causes
4797 some regressions. For instance, consider the case of an enumerated
4798 type. To support the 'Image attribute, it creates an array whose
4800 Having a single character like this as a suffix carrying some
4801 information is a bit risky. Perhaps we should change the encoding
4802 to be something like "_N" instead. In the meantime, do not do
4803 the following check. */
4804 /* Protected Object Subprograms */
4805 if (len == 1 && str [0] == 'N')
4810 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4813 while (isdigit (matching[0]))
4815 if ((matching[0] == 'b' || matching[0] == 's')
4816 && matching [1] == '\0')
4820 /* ??? We should not modify STR directly, as we are doing below. This
4821 is fine in this case, but may become problematic later if we find
4822 that this alternative did not work, and want to try matching
4823 another one from the begining of STR. Since we modified it, we
4824 won't be able to find the begining of the string anymore! */
4828 while (str[0] != '_' && str[0] != '\0')
4830 if (str[0] != 'n' && str[0] != 'b')
4835 if (str[0] == '\000')
4839 if (str[1] != '_' || str[2] == '\000')
4843 if (strcmp (str + 3, "JM") == 0)
4845 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4846 the LJM suffix in favor of the JM one. But we will
4847 still accept LJM as a valid suffix for a reasonable
4848 amount of time, just to allow ourselves to debug programs
4849 compiled using an older version of GNAT. */
4850 if (strcmp (str + 3, "LJM") == 0)
4854 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4855 || str[4] == 'U' || str[4] == 'P')
4857 if (str[4] == 'R' && str[5] != 'T')
4861 if (!isdigit (str[2]))
4863 for (k = 3; str[k] != '\0'; k += 1)
4864 if (!isdigit (str[k]) && str[k] != '_')
4868 if (str[0] == '$' && isdigit (str[1]))
4870 for (k = 2; str[k] != '\0'; k += 1)
4871 if (!isdigit (str[k]) && str[k] != '_')
4878 /* Return nonzero if the given string starts with a dot ('.')
4879 followed by zero or more digits.
4881 Note: brobecker/2003-11-10: A forward declaration has not been
4882 added at the begining of this file yet, because this function
4883 is only used to work around a problem found during wild matching
4884 when trying to match minimal symbol names against symbol names
4885 obtained from dwarf-2 data. This function is therefore currently
4886 only used in wild_match() and is likely to be deleted when the
4887 problem in dwarf-2 is fixed. */
4890 is_dot_digits_suffix (const char *str)
4896 while (isdigit (str[0]))
4898 return (str[0] == '\0');
4901 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4902 Certain symbols appear at first to match, except that they turn out
4903 not to follow the Ada encoding and hence should not be used as a wild
4904 match of a given pattern. */
4907 is_valid_name_for_wild_match (const char *name0)
4909 const char *decoded_name = ada_decode (name0);
4912 for (i=0; decoded_name[i] != '\0'; i++)
4913 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4919 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4920 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4921 informational suffixes of NAME (i.e., for which is_name_suffix is
4925 wild_match (const char *patn0, int patn_len, const char *name0)
4931 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4932 stored in the symbol table for nested function names is sometimes
4933 different from the name of the associated entity stored in
4934 the dwarf-2 data: This is the case for nested subprograms, where
4935 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4936 while the symbol name from the dwarf-2 data does not.
4938 Although the DWARF-2 standard documents that entity names stored
4939 in the dwarf-2 data should be identical to the name as seen in
4940 the source code, GNAT takes a different approach as we already use
4941 a special encoding mechanism to convey the information so that
4942 a C debugger can still use the information generated to debug
4943 Ada programs. A corollary is that the symbol names in the dwarf-2
4944 data should match the names found in the symbol table. I therefore
4945 consider this issue as a compiler defect.
4947 Until the compiler is properly fixed, we work-around the problem
4948 by ignoring such suffixes during the match. We do so by making
4949 a copy of PATN0 and NAME0, and then by stripping such a suffix
4950 if present. We then perform the match on the resulting strings. */
4953 name_len = strlen (name0);
4955 name = (char *) alloca ((name_len + 1) * sizeof (char));
4956 strcpy (name, name0);
4957 dot = strrchr (name, '.');
4958 if (dot != NULL && is_dot_digits_suffix (dot))
4961 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4962 strncpy (patn, patn0, patn_len);
4963 patn[patn_len] = '\0';
4964 dot = strrchr (patn, '.');
4965 if (dot != NULL && is_dot_digits_suffix (dot))
4968 patn_len = dot - patn;
4972 /* Now perform the wild match. */
4974 name_len = strlen (name);
4975 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4976 && strncmp (patn, name + 5, patn_len) == 0
4977 && is_name_suffix (name + patn_len + 5))
4980 while (name_len >= patn_len)
4982 if (strncmp (patn, name, patn_len) == 0
4983 && is_name_suffix (name + patn_len))
4984 return (is_valid_name_for_wild_match (name0));
4991 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4996 if (!islower (name[2]))
5003 if (!islower (name[1]))
5014 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5015 vector *defn_symbols, updating the list of symbols in OBSTACKP
5016 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5017 OBJFILE is the section containing BLOCK.
5018 SYMTAB is recorded with each symbol added. */
5021 ada_add_block_symbols (struct obstack *obstackp,
5022 struct block *block, const char *name,
5023 domain_enum domain, struct objfile *objfile,
5024 struct symtab *symtab, int wild)
5026 struct dict_iterator iter;
5027 int name_len = strlen (name);
5028 /* A matching argument symbol, if any. */
5029 struct symbol *arg_sym;
5030 /* Set true when we find a matching non-argument symbol. */
5039 ALL_BLOCK_SYMBOLS (block, iter, sym)
5041 if (SYMBOL_DOMAIN (sym) == domain
5042 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5044 switch (SYMBOL_CLASS (sym))
5050 case LOC_REGPARM_ADDR:
5051 case LOC_BASEREG_ARG:
5052 case LOC_COMPUTED_ARG:
5055 case LOC_UNRESOLVED:
5059 add_defn_to_vec (obstackp,
5060 fixup_symbol_section (sym, objfile),
5069 ALL_BLOCK_SYMBOLS (block, iter, sym)
5071 if (SYMBOL_DOMAIN (sym) == domain)
5073 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5075 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5077 switch (SYMBOL_CLASS (sym))
5083 case LOC_REGPARM_ADDR:
5084 case LOC_BASEREG_ARG:
5085 case LOC_COMPUTED_ARG:
5088 case LOC_UNRESOLVED:
5092 add_defn_to_vec (obstackp,
5093 fixup_symbol_section (sym, objfile),
5102 if (!found_sym && arg_sym != NULL)
5104 add_defn_to_vec (obstackp,
5105 fixup_symbol_section (arg_sym, objfile),
5114 ALL_BLOCK_SYMBOLS (block, iter, sym)
5116 if (SYMBOL_DOMAIN (sym) == domain)
5120 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5123 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5125 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5130 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5132 switch (SYMBOL_CLASS (sym))
5138 case LOC_REGPARM_ADDR:
5139 case LOC_BASEREG_ARG:
5140 case LOC_COMPUTED_ARG:
5143 case LOC_UNRESOLVED:
5147 add_defn_to_vec (obstackp,
5148 fixup_symbol_section (sym, objfile),
5156 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5157 They aren't parameters, right? */
5158 if (!found_sym && arg_sym != NULL)
5160 add_defn_to_vec (obstackp,
5161 fixup_symbol_section (arg_sym, objfile),
5169 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5170 to be invisible to users. */
5173 ada_is_ignored_field (struct type *type, int field_num)
5175 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5179 const char *name = TYPE_FIELD_NAME (type, field_num);
5180 return (name == NULL
5181 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5185 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5186 pointer or reference type whose ultimate target has a tag field. */
5189 ada_is_tagged_type (struct type *type, int refok)
5191 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5194 /* True iff TYPE represents the type of X'Tag */
5197 ada_is_tag_type (struct type *type)
5199 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5203 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5204 return (name != NULL
5205 && strcmp (name, "ada__tags__dispatch_table") == 0);
5209 /* The type of the tag on VAL. */
5212 ada_tag_type (struct value *val)
5214 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5217 /* The value of the tag on VAL. */
5220 ada_value_tag (struct value *val)
5222 return ada_value_struct_elt (val, "_tag", 0);
5225 /* The value of the tag on the object of type TYPE whose contents are
5226 saved at VALADDR, if it is non-null, or is at memory address
5229 static struct value *
5230 value_tag_from_contents_and_address (struct type *type,
5231 const gdb_byte *valaddr,
5234 int tag_byte_offset, dummy1, dummy2;
5235 struct type *tag_type;
5236 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5239 const gdb_byte *valaddr1 = ((valaddr == NULL)
5241 : valaddr + tag_byte_offset);
5242 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5244 return value_from_contents_and_address (tag_type, valaddr1, address1);
5249 static struct type *
5250 type_from_tag (struct value *tag)
5252 const char *type_name = ada_tag_name (tag);
5253 if (type_name != NULL)
5254 return ada_find_any_type (ada_encode (type_name));
5265 static int ada_tag_name_1 (void *);
5266 static int ada_tag_name_2 (struct tag_args *);
5268 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5269 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5270 The value stored in ARGS->name is valid until the next call to
5274 ada_tag_name_1 (void *args0)
5276 struct tag_args *args = (struct tag_args *) args0;
5277 static char name[1024];
5281 val = ada_value_struct_elt (args->tag, "tsd", 1);
5283 return ada_tag_name_2 (args);
5284 val = ada_value_struct_elt (val, "expanded_name", 1);
5287 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5288 for (p = name; *p != '\0'; p += 1)
5295 /* Utility function for ada_tag_name_1 that tries the second
5296 representation for the dispatch table (in which there is no
5297 explicit 'tsd' field in the referent of the tag pointer, and instead
5298 the tsd pointer is stored just before the dispatch table. */
5301 ada_tag_name_2 (struct tag_args *args)
5303 struct type *info_type;
5304 static char name[1024];
5306 struct value *val, *valp;
5309 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5310 if (info_type == NULL)
5312 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5313 valp = value_cast (info_type, args->tag);
5316 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5319 val = ada_value_struct_elt (val, "expanded_name", 1);
5322 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5323 for (p = name; *p != '\0'; p += 1)
5330 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5334 ada_tag_name (struct value *tag)
5336 struct tag_args args;
5337 if (!ada_is_tag_type (value_type (tag)))
5341 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5345 /* The parent type of TYPE, or NULL if none. */
5348 ada_parent_type (struct type *type)
5352 type = ada_check_typedef (type);
5354 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5357 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5358 if (ada_is_parent_field (type, i))
5359 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5364 /* True iff field number FIELD_NUM of structure type TYPE contains the
5365 parent-type (inherited) fields of a derived type. Assumes TYPE is
5366 a structure type with at least FIELD_NUM+1 fields. */
5369 ada_is_parent_field (struct type *type, int field_num)
5371 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5372 return (name != NULL
5373 && (strncmp (name, "PARENT", 6) == 0
5374 || strncmp (name, "_parent", 7) == 0));
5377 /* True iff field number FIELD_NUM of structure type TYPE is a
5378 transparent wrapper field (which should be silently traversed when doing
5379 field selection and flattened when printing). Assumes TYPE is a
5380 structure type with at least FIELD_NUM+1 fields. Such fields are always
5384 ada_is_wrapper_field (struct type *type, int field_num)
5386 const char *name = TYPE_FIELD_NAME (type, field_num);
5387 return (name != NULL
5388 && (strncmp (name, "PARENT", 6) == 0
5389 || strcmp (name, "REP") == 0
5390 || strncmp (name, "_parent", 7) == 0
5391 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5394 /* True iff field number FIELD_NUM of structure or union type TYPE
5395 is a variant wrapper. Assumes TYPE is a structure type with at least
5396 FIELD_NUM+1 fields. */
5399 ada_is_variant_part (struct type *type, int field_num)
5401 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5402 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5403 || (is_dynamic_field (type, field_num)
5404 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5405 == TYPE_CODE_UNION)));
5408 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5409 whose discriminants are contained in the record type OUTER_TYPE,
5410 returns the type of the controlling discriminant for the variant. */
5413 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5415 char *name = ada_variant_discrim_name (var_type);
5417 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5419 return builtin_type_int;
5424 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5425 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5426 represents a 'when others' clause; otherwise 0. */
5429 ada_is_others_clause (struct type *type, int field_num)
5431 const char *name = TYPE_FIELD_NAME (type, field_num);
5432 return (name != NULL && name[0] == 'O');
5435 /* Assuming that TYPE0 is the type of the variant part of a record,
5436 returns the name of the discriminant controlling the variant.
5437 The value is valid until the next call to ada_variant_discrim_name. */
5440 ada_variant_discrim_name (struct type *type0)
5442 static char *result = NULL;
5443 static size_t result_len = 0;
5446 const char *discrim_end;
5447 const char *discrim_start;
5449 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5450 type = TYPE_TARGET_TYPE (type0);
5454 name = ada_type_name (type);
5456 if (name == NULL || name[0] == '\000')
5459 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5462 if (strncmp (discrim_end, "___XVN", 6) == 0)
5465 if (discrim_end == name)
5468 for (discrim_start = discrim_end; discrim_start != name + 3;
5471 if (discrim_start == name + 1)
5473 if ((discrim_start > name + 3
5474 && strncmp (discrim_start - 3, "___", 3) == 0)
5475 || discrim_start[-1] == '.')
5479 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5480 strncpy (result, discrim_start, discrim_end - discrim_start);
5481 result[discrim_end - discrim_start] = '\0';
5485 /* Scan STR for a subtype-encoded number, beginning at position K.
5486 Put the position of the character just past the number scanned in
5487 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5488 Return 1 if there was a valid number at the given position, and 0
5489 otherwise. A "subtype-encoded" number consists of the absolute value
5490 in decimal, followed by the letter 'm' to indicate a negative number.
5491 Assumes 0m does not occur. */
5494 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5498 if (!isdigit (str[k]))
5501 /* Do it the hard way so as not to make any assumption about
5502 the relationship of unsigned long (%lu scan format code) and
5505 while (isdigit (str[k]))
5507 RU = RU * 10 + (str[k] - '0');
5514 *R = (-(LONGEST) (RU - 1)) - 1;
5520 /* NOTE on the above: Technically, C does not say what the results of
5521 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5522 number representable as a LONGEST (although either would probably work
5523 in most implementations). When RU>0, the locution in the then branch
5524 above is always equivalent to the negative of RU. */
5531 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5532 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5533 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5536 ada_in_variant (LONGEST val, struct type *type, int field_num)
5538 const char *name = TYPE_FIELD_NAME (type, field_num);
5551 if (!ada_scan_number (name, p + 1, &W, &p))
5560 if (!ada_scan_number (name, p + 1, &L, &p)
5561 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5563 if (val >= L && val <= U)
5575 /* FIXME: Lots of redundancy below. Try to consolidate. */
5577 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5578 ARG_TYPE, extract and return the value of one of its (non-static)
5579 fields. FIELDNO says which field. Differs from value_primitive_field
5580 only in that it can handle packed values of arbitrary type. */
5582 static struct value *
5583 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5584 struct type *arg_type)
5588 arg_type = ada_check_typedef (arg_type);
5589 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5591 /* Handle packed fields. */
5593 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5595 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5596 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5598 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5599 offset + bit_pos / 8,
5600 bit_pos % 8, bit_size, type);
5603 return value_primitive_field (arg1, offset, fieldno, arg_type);
5606 /* Find field with name NAME in object of type TYPE. If found,
5607 set the following for each argument that is non-null:
5608 - *FIELD_TYPE_P to the field's type;
5609 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5610 an object of that type;
5611 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5612 - *BIT_SIZE_P to its size in bits if the field is packed, and
5614 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5615 fields up to but not including the desired field, or by the total
5616 number of fields if not found. A NULL value of NAME never
5617 matches; the function just counts visible fields in this case.
5619 Returns 1 if found, 0 otherwise. */
5622 find_struct_field (char *name, struct type *type, int offset,
5623 struct type **field_type_p,
5624 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5629 type = ada_check_typedef (type);
5631 if (field_type_p != NULL)
5632 *field_type_p = NULL;
5633 if (byte_offset_p != NULL)
5635 if (bit_offset_p != NULL)
5637 if (bit_size_p != NULL)
5640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5642 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5643 int fld_offset = offset + bit_pos / 8;
5644 char *t_field_name = TYPE_FIELD_NAME (type, i);
5646 if (t_field_name == NULL)
5649 else if (name != NULL && field_name_match (t_field_name, name))
5651 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5652 if (field_type_p != NULL)
5653 *field_type_p = TYPE_FIELD_TYPE (type, i);
5654 if (byte_offset_p != NULL)
5655 *byte_offset_p = fld_offset;
5656 if (bit_offset_p != NULL)
5657 *bit_offset_p = bit_pos % 8;
5658 if (bit_size_p != NULL)
5659 *bit_size_p = bit_size;
5662 else if (ada_is_wrapper_field (type, i))
5664 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5665 field_type_p, byte_offset_p, bit_offset_p,
5666 bit_size_p, index_p))
5669 else if (ada_is_variant_part (type, i))
5671 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5674 struct type *field_type
5675 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5677 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5679 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5681 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5682 field_type_p, byte_offset_p,
5683 bit_offset_p, bit_size_p, index_p))
5687 else if (index_p != NULL)
5693 /* Number of user-visible fields in record type TYPE. */
5696 num_visible_fields (struct type *type)
5700 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5704 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5705 and search in it assuming it has (class) type TYPE.
5706 If found, return value, else return NULL.
5708 Searches recursively through wrapper fields (e.g., '_parent'). */
5710 static struct value *
5711 ada_search_struct_field (char *name, struct value *arg, int offset,
5715 type = ada_check_typedef (type);
5717 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5719 char *t_field_name = TYPE_FIELD_NAME (type, i);
5721 if (t_field_name == NULL)
5724 else if (field_name_match (t_field_name, name))
5725 return ada_value_primitive_field (arg, offset, i, type);
5727 else if (ada_is_wrapper_field (type, i))
5729 struct value *v = /* Do not let indent join lines here. */
5730 ada_search_struct_field (name, arg,
5731 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5732 TYPE_FIELD_TYPE (type, i));
5737 else if (ada_is_variant_part (type, i))
5739 /* PNH: Do we ever get here? See find_struct_field. */
5741 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5742 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5744 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5746 struct value *v = ada_search_struct_field /* Force line break. */
5748 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5749 TYPE_FIELD_TYPE (field_type, j));
5758 static struct value *ada_index_struct_field_1 (int *, struct value *,
5759 int, struct type *);
5762 /* Return field #INDEX in ARG, where the index is that returned by
5763 * find_struct_field through its INDEX_P argument. Adjust the address
5764 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5765 * If found, return value, else return NULL. */
5767 static struct value *
5768 ada_index_struct_field (int index, struct value *arg, int offset,
5771 return ada_index_struct_field_1 (&index, arg, offset, type);
5775 /* Auxiliary function for ada_index_struct_field. Like
5776 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5779 static struct value *
5780 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5784 type = ada_check_typedef (type);
5786 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5788 if (TYPE_FIELD_NAME (type, i) == NULL)
5790 else if (ada_is_wrapper_field (type, i))
5792 struct value *v = /* Do not let indent join lines here. */
5793 ada_index_struct_field_1 (index_p, arg,
5794 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5795 TYPE_FIELD_TYPE (type, i));
5800 else if (ada_is_variant_part (type, i))
5802 /* PNH: Do we ever get here? See ada_search_struct_field,
5803 find_struct_field. */
5804 error (_("Cannot assign this kind of variant record"));
5806 else if (*index_p == 0)
5807 return ada_value_primitive_field (arg, offset, i, type);
5814 /* Given ARG, a value of type (pointer or reference to a)*
5815 structure/union, extract the component named NAME from the ultimate
5816 target structure/union and return it as a value with its
5817 appropriate type. If ARG is a pointer or reference and the field
5818 is not packed, returns a reference to the field, otherwise the
5819 value of the field (an lvalue if ARG is an lvalue).
5821 The routine searches for NAME among all members of the structure itself
5822 and (recursively) among all members of any wrapper members
5825 If NO_ERR, then simply return NULL in case of error, rather than
5829 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5831 struct type *t, *t1;
5835 t1 = t = ada_check_typedef (value_type (arg));
5836 if (TYPE_CODE (t) == TYPE_CODE_REF)
5838 t1 = TYPE_TARGET_TYPE (t);
5841 t1 = ada_check_typedef (t1);
5842 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5844 arg = coerce_ref (arg);
5849 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5851 t1 = TYPE_TARGET_TYPE (t);
5854 t1 = ada_check_typedef (t1);
5855 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5857 arg = value_ind (arg);
5864 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5868 v = ada_search_struct_field (name, arg, 0, t);
5871 int bit_offset, bit_size, byte_offset;
5872 struct type *field_type;
5875 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5876 address = value_as_address (arg);
5878 address = unpack_pointer (t, value_contents (arg));
5880 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5881 if (find_struct_field (name, t1, 0,
5882 &field_type, &byte_offset, &bit_offset,
5887 if (TYPE_CODE (t) == TYPE_CODE_REF)
5888 arg = ada_coerce_ref (arg);
5890 arg = ada_value_ind (arg);
5891 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5892 bit_offset, bit_size,
5896 v = value_from_pointer (lookup_reference_type (field_type),
5897 address + byte_offset);
5901 if (v != NULL || no_err)
5904 error (_("There is no member named %s."), name);
5910 error (_("Attempt to extract a component of a value that is not a record."));
5913 /* Given a type TYPE, look up the type of the component of type named NAME.
5914 If DISPP is non-null, add its byte displacement from the beginning of a
5915 structure (pointed to by a value) of type TYPE to *DISPP (does not
5916 work for packed fields).
5918 Matches any field whose name has NAME as a prefix, possibly
5921 TYPE can be either a struct or union. If REFOK, TYPE may also
5922 be a (pointer or reference)+ to a struct or union, and the
5923 ultimate target type will be searched.
5925 Looks recursively into variant clauses and parent types.
5927 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5928 TYPE is not a type of the right kind. */
5930 static struct type *
5931 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5932 int noerr, int *dispp)
5939 if (refok && type != NULL)
5942 type = ada_check_typedef (type);
5943 if (TYPE_CODE (type) != TYPE_CODE_PTR
5944 && TYPE_CODE (type) != TYPE_CODE_REF)
5946 type = TYPE_TARGET_TYPE (type);
5950 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5951 && TYPE_CODE (type) != TYPE_CODE_UNION))
5957 target_terminal_ours ();
5958 gdb_flush (gdb_stdout);
5960 error (_("Type (null) is not a structure or union type"));
5963 /* XXX: type_sprint */
5964 fprintf_unfiltered (gdb_stderr, _("Type "));
5965 type_print (type, "", gdb_stderr, -1);
5966 error (_(" is not a structure or union type"));
5971 type = to_static_fixed_type (type);
5973 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5975 char *t_field_name = TYPE_FIELD_NAME (type, i);
5979 if (t_field_name == NULL)
5982 else if (field_name_match (t_field_name, name))
5985 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5986 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5989 else if (ada_is_wrapper_field (type, i))
5992 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5997 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6002 else if (ada_is_variant_part (type, i))
6005 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6007 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6010 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6015 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6026 target_terminal_ours ();
6027 gdb_flush (gdb_stdout);
6030 /* XXX: type_sprint */
6031 fprintf_unfiltered (gdb_stderr, _("Type "));
6032 type_print (type, "", gdb_stderr, -1);
6033 error (_(" has no component named <null>"));
6037 /* XXX: type_sprint */
6038 fprintf_unfiltered (gdb_stderr, _("Type "));
6039 type_print (type, "", gdb_stderr, -1);
6040 error (_(" has no component named %s"), name);
6047 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6048 within a value of type OUTER_TYPE that is stored in GDB at
6049 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6050 numbering from 0) is applicable. Returns -1 if none are. */
6053 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6054 const gdb_byte *outer_valaddr)
6059 struct type *discrim_type;
6060 char *discrim_name = ada_variant_discrim_name (var_type);
6061 LONGEST discrim_val;
6065 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6066 if (discrim_type == NULL)
6068 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6071 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6073 if (ada_is_others_clause (var_type, i))
6075 else if (ada_in_variant (discrim_val, var_type, i))
6079 return others_clause;
6084 /* Dynamic-Sized Records */
6086 /* Strategy: The type ostensibly attached to a value with dynamic size
6087 (i.e., a size that is not statically recorded in the debugging
6088 data) does not accurately reflect the size or layout of the value.
6089 Our strategy is to convert these values to values with accurate,
6090 conventional types that are constructed on the fly. */
6092 /* There is a subtle and tricky problem here. In general, we cannot
6093 determine the size of dynamic records without its data. However,
6094 the 'struct value' data structure, which GDB uses to represent
6095 quantities in the inferior process (the target), requires the size
6096 of the type at the time of its allocation in order to reserve space
6097 for GDB's internal copy of the data. That's why the
6098 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6099 rather than struct value*s.
6101 However, GDB's internal history variables ($1, $2, etc.) are
6102 struct value*s containing internal copies of the data that are not, in
6103 general, the same as the data at their corresponding addresses in
6104 the target. Fortunately, the types we give to these values are all
6105 conventional, fixed-size types (as per the strategy described
6106 above), so that we don't usually have to perform the
6107 'to_fixed_xxx_type' conversions to look at their values.
6108 Unfortunately, there is one exception: if one of the internal
6109 history variables is an array whose elements are unconstrained
6110 records, then we will need to create distinct fixed types for each
6111 element selected. */
6113 /* The upshot of all of this is that many routines take a (type, host
6114 address, target address) triple as arguments to represent a value.
6115 The host address, if non-null, is supposed to contain an internal
6116 copy of the relevant data; otherwise, the program is to consult the
6117 target at the target address. */
6119 /* Assuming that VAL0 represents a pointer value, the result of
6120 dereferencing it. Differs from value_ind in its treatment of
6121 dynamic-sized types. */
6124 ada_value_ind (struct value *val0)
6126 struct value *val = unwrap_value (value_ind (val0));
6127 return ada_to_fixed_value (val);
6130 /* The value resulting from dereferencing any "reference to"
6131 qualifiers on VAL0. */
6133 static struct value *
6134 ada_coerce_ref (struct value *val0)
6136 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6138 struct value *val = val0;
6139 val = coerce_ref (val);
6140 val = unwrap_value (val);
6141 return ada_to_fixed_value (val);
6147 /* Return OFF rounded upward if necessary to a multiple of
6148 ALIGNMENT (a power of 2). */
6151 align_value (unsigned int off, unsigned int alignment)
6153 return (off + alignment - 1) & ~(alignment - 1);
6156 /* Return the bit alignment required for field #F of template type TYPE. */
6159 field_alignment (struct type *type, int f)
6161 const char *name = TYPE_FIELD_NAME (type, f);
6162 int len = (name == NULL) ? 0 : strlen (name);
6165 if (!isdigit (name[len - 1]))
6168 if (isdigit (name[len - 2]))
6169 align_offset = len - 2;
6171 align_offset = len - 1;
6173 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6174 return TARGET_CHAR_BIT;
6176 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6179 /* Find a symbol named NAME. Ignores ambiguity. */
6182 ada_find_any_symbol (const char *name)
6186 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6187 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6190 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6194 /* Find a type named NAME. Ignores ambiguity. */
6197 ada_find_any_type (const char *name)
6199 struct symbol *sym = ada_find_any_symbol (name);
6202 return SYMBOL_TYPE (sym);
6207 /* Given a symbol NAME and its associated BLOCK, search all symbols
6208 for its ___XR counterpart, which is the ``renaming'' symbol
6209 associated to NAME. Return this symbol if found, return
6213 ada_find_renaming_symbol (const char *name, struct block *block)
6215 const struct symbol *function_sym = block_function (block);
6218 if (function_sym != NULL)
6220 /* If the symbol is defined inside a function, NAME is not fully
6221 qualified. This means we need to prepend the function name
6222 as well as adding the ``___XR'' suffix to build the name of
6223 the associated renaming symbol. */
6224 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6225 /* Function names sometimes contain suffixes used
6226 for instance to qualify nested subprograms. When building
6227 the XR type name, we need to make sure that this suffix is
6228 not included. So do not include any suffix in the function
6229 name length below. */
6230 const int function_name_len = ada_name_prefix_len (function_name);
6231 const int rename_len = function_name_len + 2 /* "__" */
6232 + strlen (name) + 6 /* "___XR\0" */ ;
6234 /* Strip the suffix if necessary. */
6235 function_name[function_name_len] = '\0';
6237 /* Library-level functions are a special case, as GNAT adds
6238 a ``_ada_'' prefix to the function name to avoid namespace
6239 pollution. However, the renaming symbol themselves do not
6240 have this prefix, so we need to skip this prefix if present. */
6241 if (function_name_len > 5 /* "_ada_" */
6242 && strstr (function_name, "_ada_") == function_name)
6243 function_name = function_name + 5;
6245 rename = (char *) alloca (rename_len * sizeof (char));
6246 sprintf (rename, "%s__%s___XR", function_name, name);
6250 const int rename_len = strlen (name) + 6;
6251 rename = (char *) alloca (rename_len * sizeof (char));
6252 sprintf (rename, "%s___XR", name);
6255 return ada_find_any_symbol (rename);
6258 /* Because of GNAT encoding conventions, several GDB symbols may match a
6259 given type name. If the type denoted by TYPE0 is to be preferred to
6260 that of TYPE1 for purposes of type printing, return non-zero;
6261 otherwise return 0. */
6264 ada_prefer_type (struct type *type0, struct type *type1)
6268 else if (type0 == NULL)
6270 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6272 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6274 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6276 else if (ada_is_packed_array_type (type0))
6278 else if (ada_is_array_descriptor_type (type0)
6279 && !ada_is_array_descriptor_type (type1))
6281 else if (ada_renaming_type (type0) != NULL
6282 && ada_renaming_type (type1) == NULL)
6287 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6288 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6291 ada_type_name (struct type *type)
6295 else if (TYPE_NAME (type) != NULL)
6296 return TYPE_NAME (type);
6298 return TYPE_TAG_NAME (type);
6301 /* Find a parallel type to TYPE whose name is formed by appending
6302 SUFFIX to the name of TYPE. */
6305 ada_find_parallel_type (struct type *type, const char *suffix)
6308 static size_t name_len = 0;
6310 char *typename = ada_type_name (type);
6312 if (typename == NULL)
6315 len = strlen (typename);
6317 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6319 strcpy (name, typename);
6320 strcpy (name + len, suffix);
6322 return ada_find_any_type (name);
6326 /* If TYPE is a variable-size record type, return the corresponding template
6327 type describing its fields. Otherwise, return NULL. */
6329 static struct type *
6330 dynamic_template_type (struct type *type)
6332 type = ada_check_typedef (type);
6334 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6335 || ada_type_name (type) == NULL)
6339 int len = strlen (ada_type_name (type));
6340 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6343 return ada_find_parallel_type (type, "___XVE");
6347 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6348 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6351 is_dynamic_field (struct type *templ_type, int field_num)
6353 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6355 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6356 && strstr (name, "___XVL") != NULL;
6359 /* The index of the variant field of TYPE, or -1 if TYPE does not
6360 represent a variant record type. */
6363 variant_field_index (struct type *type)
6367 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6370 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6372 if (ada_is_variant_part (type, f))
6378 /* A record type with no fields. */
6380 static struct type *
6381 empty_record (struct objfile *objfile)
6383 struct type *type = alloc_type (objfile);
6384 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6385 TYPE_NFIELDS (type) = 0;
6386 TYPE_FIELDS (type) = NULL;
6387 TYPE_NAME (type) = "<empty>";
6388 TYPE_TAG_NAME (type) = NULL;
6389 TYPE_FLAGS (type) = 0;
6390 TYPE_LENGTH (type) = 0;
6394 /* An ordinary record type (with fixed-length fields) that describes
6395 the value of type TYPE at VALADDR or ADDRESS (see comments at
6396 the beginning of this section) VAL according to GNAT conventions.
6397 DVAL0 should describe the (portion of a) record that contains any
6398 necessary discriminants. It should be NULL if value_type (VAL) is
6399 an outer-level type (i.e., as opposed to a branch of a variant.) A
6400 variant field (unless unchecked) is replaced by a particular branch
6403 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6404 length are not statically known are discarded. As a consequence,
6405 VALADDR, ADDRESS and DVAL0 are ignored.
6407 NOTE: Limitations: For now, we assume that dynamic fields and
6408 variants occupy whole numbers of bytes. However, they need not be
6412 ada_template_to_fixed_record_type_1 (struct type *type,
6413 const gdb_byte *valaddr,
6414 CORE_ADDR address, struct value *dval0,
6415 int keep_dynamic_fields)
6417 struct value *mark = value_mark ();
6420 int nfields, bit_len;
6423 int fld_bit_len, bit_incr;
6426 /* Compute the number of fields in this record type that are going
6427 to be processed: unless keep_dynamic_fields, this includes only
6428 fields whose position and length are static will be processed. */
6429 if (keep_dynamic_fields)
6430 nfields = TYPE_NFIELDS (type);
6434 while (nfields < TYPE_NFIELDS (type)
6435 && !ada_is_variant_part (type, nfields)
6436 && !is_dynamic_field (type, nfields))
6440 rtype = alloc_type (TYPE_OBJFILE (type));
6441 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6442 INIT_CPLUS_SPECIFIC (rtype);
6443 TYPE_NFIELDS (rtype) = nfields;
6444 TYPE_FIELDS (rtype) = (struct field *)
6445 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6446 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6447 TYPE_NAME (rtype) = ada_type_name (type);
6448 TYPE_TAG_NAME (rtype) = NULL;
6449 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6455 for (f = 0; f < nfields; f += 1)
6457 off = align_value (off, field_alignment (type, f))
6458 + TYPE_FIELD_BITPOS (type, f);
6459 TYPE_FIELD_BITPOS (rtype, f) = off;
6460 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6462 if (ada_is_variant_part (type, f))
6465 fld_bit_len = bit_incr = 0;
6467 else if (is_dynamic_field (type, f))
6470 dval = value_from_contents_and_address (rtype, valaddr, address);
6474 TYPE_FIELD_TYPE (rtype, f) =
6477 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6480 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6481 bit_incr = fld_bit_len =
6482 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6486 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6487 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6488 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6489 bit_incr = fld_bit_len =
6490 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6492 bit_incr = fld_bit_len =
6493 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6495 if (off + fld_bit_len > bit_len)
6496 bit_len = off + fld_bit_len;
6498 TYPE_LENGTH (rtype) =
6499 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6502 /* We handle the variant part, if any, at the end because of certain
6503 odd cases in which it is re-ordered so as NOT the last field of
6504 the record. This can happen in the presence of representation
6506 if (variant_field >= 0)
6508 struct type *branch_type;
6510 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6513 dval = value_from_contents_and_address (rtype, valaddr, address);
6518 to_fixed_variant_branch_type
6519 (TYPE_FIELD_TYPE (type, variant_field),
6520 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6521 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6522 if (branch_type == NULL)
6524 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6525 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6526 TYPE_NFIELDS (rtype) -= 1;
6530 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6531 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6533 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6535 if (off + fld_bit_len > bit_len)
6536 bit_len = off + fld_bit_len;
6537 TYPE_LENGTH (rtype) =
6538 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6542 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6543 should contain the alignment of that record, which should be a strictly
6544 positive value. If null or negative, then something is wrong, most
6545 probably in the debug info. In that case, we don't round up the size
6546 of the resulting type. If this record is not part of another structure,
6547 the current RTYPE length might be good enough for our purposes. */
6548 if (TYPE_LENGTH (type) <= 0)
6550 if (TYPE_NAME (rtype))
6551 warning (_("Invalid type size for `%s' detected: %d."),
6552 TYPE_NAME (rtype), TYPE_LENGTH (type));
6554 warning (_("Invalid type size for <unnamed> detected: %d."),
6555 TYPE_LENGTH (type));
6559 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6560 TYPE_LENGTH (type));
6563 value_free_to_mark (mark);
6564 if (TYPE_LENGTH (rtype) > varsize_limit)
6565 error (_("record type with dynamic size is larger than varsize-limit"));
6569 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6572 static struct type *
6573 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6574 CORE_ADDR address, struct value *dval0)
6576 return ada_template_to_fixed_record_type_1 (type, valaddr,
6580 /* An ordinary record type in which ___XVL-convention fields and
6581 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6582 static approximations, containing all possible fields. Uses
6583 no runtime values. Useless for use in values, but that's OK,
6584 since the results are used only for type determinations. Works on both
6585 structs and unions. Representation note: to save space, we memorize
6586 the result of this function in the TYPE_TARGET_TYPE of the
6589 static struct type *
6590 template_to_static_fixed_type (struct type *type0)
6596 if (TYPE_TARGET_TYPE (type0) != NULL)
6597 return TYPE_TARGET_TYPE (type0);
6599 nfields = TYPE_NFIELDS (type0);
6602 for (f = 0; f < nfields; f += 1)
6604 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6605 struct type *new_type;
6607 if (is_dynamic_field (type0, f))
6608 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6610 new_type = to_static_fixed_type (field_type);
6611 if (type == type0 && new_type != field_type)
6613 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6614 TYPE_CODE (type) = TYPE_CODE (type0);
6615 INIT_CPLUS_SPECIFIC (type);
6616 TYPE_NFIELDS (type) = nfields;
6617 TYPE_FIELDS (type) = (struct field *)
6618 TYPE_ALLOC (type, nfields * sizeof (struct field));
6619 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6620 sizeof (struct field) * nfields);
6621 TYPE_NAME (type) = ada_type_name (type0);
6622 TYPE_TAG_NAME (type) = NULL;
6623 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6624 TYPE_LENGTH (type) = 0;
6626 TYPE_FIELD_TYPE (type, f) = new_type;
6627 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6632 /* Given an object of type TYPE whose contents are at VALADDR and
6633 whose address in memory is ADDRESS, returns a revision of TYPE --
6634 a non-dynamic-sized record with a variant part -- in which
6635 the variant part is replaced with the appropriate branch. Looks
6636 for discriminant values in DVAL0, which can be NULL if the record
6637 contains the necessary discriminant values. */
6639 static struct type *
6640 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6641 CORE_ADDR address, struct value *dval0)
6643 struct value *mark = value_mark ();
6646 struct type *branch_type;
6647 int nfields = TYPE_NFIELDS (type);
6648 int variant_field = variant_field_index (type);
6650 if (variant_field == -1)
6654 dval = value_from_contents_and_address (type, valaddr, address);
6658 rtype = alloc_type (TYPE_OBJFILE (type));
6659 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6660 INIT_CPLUS_SPECIFIC (rtype);
6661 TYPE_NFIELDS (rtype) = nfields;
6662 TYPE_FIELDS (rtype) =
6663 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6664 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6665 sizeof (struct field) * nfields);
6666 TYPE_NAME (rtype) = ada_type_name (type);
6667 TYPE_TAG_NAME (rtype) = NULL;
6668 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6669 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6671 branch_type = to_fixed_variant_branch_type
6672 (TYPE_FIELD_TYPE (type, variant_field),
6673 cond_offset_host (valaddr,
6674 TYPE_FIELD_BITPOS (type, variant_field)
6676 cond_offset_target (address,
6677 TYPE_FIELD_BITPOS (type, variant_field)
6678 / TARGET_CHAR_BIT), dval);
6679 if (branch_type == NULL)
6682 for (f = variant_field + 1; f < nfields; f += 1)
6683 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6684 TYPE_NFIELDS (rtype) -= 1;
6688 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6689 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6690 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6691 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6693 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6695 value_free_to_mark (mark);
6699 /* An ordinary record type (with fixed-length fields) that describes
6700 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6701 beginning of this section]. Any necessary discriminants' values
6702 should be in DVAL, a record value; it may be NULL if the object
6703 at ADDR itself contains any necessary discriminant values.
6704 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6705 values from the record are needed. Except in the case that DVAL,
6706 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6707 unchecked) is replaced by a particular branch of the variant.
6709 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6710 is questionable and may be removed. It can arise during the
6711 processing of an unconstrained-array-of-record type where all the
6712 variant branches have exactly the same size. This is because in
6713 such cases, the compiler does not bother to use the XVS convention
6714 when encoding the record. I am currently dubious of this
6715 shortcut and suspect the compiler should be altered. FIXME. */
6717 static struct type *
6718 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6719 CORE_ADDR address, struct value *dval)
6721 struct type *templ_type;
6723 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6726 templ_type = dynamic_template_type (type0);
6728 if (templ_type != NULL)
6729 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6730 else if (variant_field_index (type0) >= 0)
6732 if (dval == NULL && valaddr == NULL && address == 0)
6734 return to_record_with_fixed_variant_part (type0, valaddr, address,
6739 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6745 /* An ordinary record type (with fixed-length fields) that describes
6746 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6747 union type. Any necessary discriminants' values should be in DVAL,
6748 a record value. That is, this routine selects the appropriate
6749 branch of the union at ADDR according to the discriminant value
6750 indicated in the union's type name. */
6752 static struct type *
6753 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6754 CORE_ADDR address, struct value *dval)
6757 struct type *templ_type;
6758 struct type *var_type;
6760 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6761 var_type = TYPE_TARGET_TYPE (var_type0);
6763 var_type = var_type0;
6765 templ_type = ada_find_parallel_type (var_type, "___XVU");
6767 if (templ_type != NULL)
6768 var_type = templ_type;
6771 ada_which_variant_applies (var_type,
6772 value_type (dval), value_contents (dval));
6775 return empty_record (TYPE_OBJFILE (var_type));
6776 else if (is_dynamic_field (var_type, which))
6777 return to_fixed_record_type
6778 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6779 valaddr, address, dval);
6780 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6782 to_fixed_record_type
6783 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6785 return TYPE_FIELD_TYPE (var_type, which);
6788 /* Assuming that TYPE0 is an array type describing the type of a value
6789 at ADDR, and that DVAL describes a record containing any
6790 discriminants used in TYPE0, returns a type for the value that
6791 contains no dynamic components (that is, no components whose sizes
6792 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6793 true, gives an error message if the resulting type's size is over
6796 static struct type *
6797 to_fixed_array_type (struct type *type0, struct value *dval,
6800 struct type *index_type_desc;
6801 struct type *result;
6803 if (ada_is_packed_array_type (type0) /* revisit? */
6804 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6807 index_type_desc = ada_find_parallel_type (type0, "___XA");
6808 if (index_type_desc == NULL)
6810 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6811 /* NOTE: elt_type---the fixed version of elt_type0---should never
6812 depend on the contents of the array in properly constructed
6814 /* Create a fixed version of the array element type.
6815 We're not providing the address of an element here,
6816 and thus the actual object value cannot be inspected to do
6817 the conversion. This should not be a problem, since arrays of
6818 unconstrained objects are not allowed. In particular, all
6819 the elements of an array of a tagged type should all be of
6820 the same type specified in the debugging info. No need to
6821 consult the object tag. */
6822 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6824 if (elt_type0 == elt_type)
6827 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6828 elt_type, TYPE_INDEX_TYPE (type0));
6833 struct type *elt_type0;
6836 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6837 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6839 /* NOTE: result---the fixed version of elt_type0---should never
6840 depend on the contents of the array in properly constructed
6842 /* Create a fixed version of the array element type.
6843 We're not providing the address of an element here,
6844 and thus the actual object value cannot be inspected to do
6845 the conversion. This should not be a problem, since arrays of
6846 unconstrained objects are not allowed. In particular, all
6847 the elements of an array of a tagged type should all be of
6848 the same type specified in the debugging info. No need to
6849 consult the object tag. */
6850 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6851 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6853 struct type *range_type =
6854 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6855 dval, TYPE_OBJFILE (type0));
6856 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6857 result, range_type);
6859 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6860 error (_("array type with dynamic size is larger than varsize-limit"));
6863 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6868 /* A standard type (containing no dynamically sized components)
6869 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6870 DVAL describes a record containing any discriminants used in TYPE0,
6871 and may be NULL if there are none, or if the object of type TYPE at
6872 ADDRESS or in VALADDR contains these discriminants.
6874 In the case of tagged types, this function attempts to locate the object's
6875 tag and use it to compute the actual type. However, when ADDRESS is null,
6876 we cannot use it to determine the location of the tag, and therefore
6877 compute the tagged type's actual type. So we return the tagged type
6878 without consulting the tag. */
6881 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6882 CORE_ADDR address, struct value *dval)
6884 type = ada_check_typedef (type);
6885 switch (TYPE_CODE (type))
6889 case TYPE_CODE_STRUCT:
6891 struct type *static_type = to_static_fixed_type (type);
6893 /* If STATIC_TYPE is a tagged type and we know the object's address,
6894 then we can determine its tag, and compute the object's actual
6897 if (address != 0 && ada_is_tagged_type (static_type, 0))
6899 struct type *real_type =
6900 type_from_tag (value_tag_from_contents_and_address (static_type,
6903 if (real_type != NULL)
6906 return to_fixed_record_type (type, valaddr, address, NULL);
6908 case TYPE_CODE_ARRAY:
6909 return to_fixed_array_type (type, dval, 1);
6910 case TYPE_CODE_UNION:
6914 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6918 /* A standard (static-sized) type corresponding as well as possible to
6919 TYPE0, but based on no runtime data. */
6921 static struct type *
6922 to_static_fixed_type (struct type *type0)
6929 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6932 type0 = ada_check_typedef (type0);
6934 switch (TYPE_CODE (type0))
6938 case TYPE_CODE_STRUCT:
6939 type = dynamic_template_type (type0);
6941 return template_to_static_fixed_type (type);
6943 return template_to_static_fixed_type (type0);
6944 case TYPE_CODE_UNION:
6945 type = ada_find_parallel_type (type0, "___XVU");
6947 return template_to_static_fixed_type (type);
6949 return template_to_static_fixed_type (type0);
6953 /* A static approximation of TYPE with all type wrappers removed. */
6955 static struct type *
6956 static_unwrap_type (struct type *type)
6958 if (ada_is_aligner_type (type))
6960 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6961 if (ada_type_name (type1) == NULL)
6962 TYPE_NAME (type1) = ada_type_name (type);
6964 return static_unwrap_type (type1);
6968 struct type *raw_real_type = ada_get_base_type (type);
6969 if (raw_real_type == type)
6972 return to_static_fixed_type (raw_real_type);
6976 /* In some cases, incomplete and private types require
6977 cross-references that are not resolved as records (for example,
6979 type FooP is access Foo;
6981 type Foo is array ...;
6982 ). In these cases, since there is no mechanism for producing
6983 cross-references to such types, we instead substitute for FooP a
6984 stub enumeration type that is nowhere resolved, and whose tag is
6985 the name of the actual type. Call these types "non-record stubs". */
6987 /* A type equivalent to TYPE that is not a non-record stub, if one
6988 exists, otherwise TYPE. */
6991 ada_check_typedef (struct type *type)
6993 CHECK_TYPEDEF (type);
6994 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6995 || !TYPE_STUB (type)
6996 || TYPE_TAG_NAME (type) == NULL)
7000 char *name = TYPE_TAG_NAME (type);
7001 struct type *type1 = ada_find_any_type (name);
7002 return (type1 == NULL) ? type : type1;
7006 /* A value representing the data at VALADDR/ADDRESS as described by
7007 type TYPE0, but with a standard (static-sized) type that correctly
7008 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7009 type, then return VAL0 [this feature is simply to avoid redundant
7010 creation of struct values]. */
7012 static struct value *
7013 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7016 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
7017 if (type == type0 && val0 != NULL)
7020 return value_from_contents_and_address (type, 0, address);
7023 /* A value representing VAL, but with a standard (static-sized) type
7024 that correctly describes it. Does not necessarily create a new
7027 static struct value *
7028 ada_to_fixed_value (struct value *val)
7030 return ada_to_fixed_value_create (value_type (val),
7031 VALUE_ADDRESS (val) + value_offset (val),
7035 /* A value representing VAL, but with a standard (static-sized) type
7036 chosen to approximate the real type of VAL as well as possible, but
7037 without consulting any runtime values. For Ada dynamic-sized
7038 types, therefore, the type of the result is likely to be inaccurate. */
7041 ada_to_static_fixed_value (struct value *val)
7044 to_static_fixed_type (static_unwrap_type (value_type (val)));
7045 if (type == value_type (val))
7048 return coerce_unspec_val_to_type (val, type);
7054 /* Table mapping attribute numbers to names.
7055 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7057 static const char *attribute_names[] = {
7075 ada_attribute_name (enum exp_opcode n)
7077 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7078 return attribute_names[n - OP_ATR_FIRST + 1];
7080 return attribute_names[0];
7083 /* Evaluate the 'POS attribute applied to ARG. */
7086 pos_atr (struct value *arg)
7088 struct type *type = value_type (arg);
7090 if (!discrete_type_p (type))
7091 error (_("'POS only defined on discrete types"));
7093 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7096 LONGEST v = value_as_long (arg);
7098 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7100 if (v == TYPE_FIELD_BITPOS (type, i))
7103 error (_("enumeration value is invalid: can't find 'POS"));
7106 return value_as_long (arg);
7109 static struct value *
7110 value_pos_atr (struct value *arg)
7112 return value_from_longest (builtin_type_int, pos_atr (arg));
7115 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7117 static struct value *
7118 value_val_atr (struct type *type, struct value *arg)
7120 if (!discrete_type_p (type))
7121 error (_("'VAL only defined on discrete types"));
7122 if (!integer_type_p (value_type (arg)))
7123 error (_("'VAL requires integral argument"));
7125 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7127 long pos = value_as_long (arg);
7128 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7129 error (_("argument to 'VAL out of range"));
7130 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7133 return value_from_longest (type, value_as_long (arg));
7139 /* True if TYPE appears to be an Ada character type.
7140 [At the moment, this is true only for Character and Wide_Character;
7141 It is a heuristic test that could stand improvement]. */
7144 ada_is_character_type (struct type *type)
7146 const char *name = ada_type_name (type);
7149 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7150 || TYPE_CODE (type) == TYPE_CODE_INT
7151 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7152 && (strcmp (name, "character") == 0
7153 || strcmp (name, "wide_character") == 0
7154 || strcmp (name, "unsigned char") == 0);
7157 /* True if TYPE appears to be an Ada string type. */
7160 ada_is_string_type (struct type *type)
7162 type = ada_check_typedef (type);
7164 && TYPE_CODE (type) != TYPE_CODE_PTR
7165 && (ada_is_simple_array_type (type)
7166 || ada_is_array_descriptor_type (type))
7167 && ada_array_arity (type) == 1)
7169 struct type *elttype = ada_array_element_type (type, 1);
7171 return ada_is_character_type (elttype);
7178 /* True if TYPE is a struct type introduced by the compiler to force the
7179 alignment of a value. Such types have a single field with a
7180 distinctive name. */
7183 ada_is_aligner_type (struct type *type)
7185 type = ada_check_typedef (type);
7187 /* If we can find a parallel XVS type, then the XVS type should
7188 be used instead of this type. And hence, this is not an aligner
7190 if (ada_find_parallel_type (type, "___XVS") != NULL)
7193 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7194 && TYPE_NFIELDS (type) == 1
7195 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7198 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7199 the parallel type. */
7202 ada_get_base_type (struct type *raw_type)
7204 struct type *real_type_namer;
7205 struct type *raw_real_type;
7207 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7210 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7211 if (real_type_namer == NULL
7212 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7213 || TYPE_NFIELDS (real_type_namer) != 1)
7216 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7217 if (raw_real_type == NULL)
7220 return raw_real_type;
7223 /* The type of value designated by TYPE, with all aligners removed. */
7226 ada_aligned_type (struct type *type)
7228 if (ada_is_aligner_type (type))
7229 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7231 return ada_get_base_type (type);
7235 /* The address of the aligned value in an object at address VALADDR
7236 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7239 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7241 if (ada_is_aligner_type (type))
7242 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7244 TYPE_FIELD_BITPOS (type,
7245 0) / TARGET_CHAR_BIT);
7252 /* The printed representation of an enumeration literal with encoded
7253 name NAME. The value is good to the next call of ada_enum_name. */
7255 ada_enum_name (const char *name)
7257 static char *result;
7258 static size_t result_len = 0;
7261 /* First, unqualify the enumeration name:
7262 1. Search for the last '.' character. If we find one, then skip
7263 all the preceeding characters, the unqualified name starts
7264 right after that dot.
7265 2. Otherwise, we may be debugging on a target where the compiler
7266 translates dots into "__". Search forward for double underscores,
7267 but stop searching when we hit an overloading suffix, which is
7268 of the form "__" followed by digits. */
7270 tmp = strrchr (name, '.');
7275 while ((tmp = strstr (name, "__")) != NULL)
7277 if (isdigit (tmp[2]))
7287 if (name[1] == 'U' || name[1] == 'W')
7289 if (sscanf (name + 2, "%x", &v) != 1)
7295 GROW_VECT (result, result_len, 16);
7296 if (isascii (v) && isprint (v))
7297 sprintf (result, "'%c'", v);
7298 else if (name[1] == 'U')
7299 sprintf (result, "[\"%02x\"]", v);
7301 sprintf (result, "[\"%04x\"]", v);
7307 tmp = strstr (name, "__");
7309 tmp = strstr (name, "$");
7312 GROW_VECT (result, result_len, tmp - name + 1);
7313 strncpy (result, name, tmp - name);
7314 result[tmp - name] = '\0';
7322 static struct value *
7323 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7326 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7327 (expect_type, exp, pos, noside);
7330 /* Evaluate the subexpression of EXP starting at *POS as for
7331 evaluate_type, updating *POS to point just past the evaluated
7334 static struct value *
7335 evaluate_subexp_type (struct expression *exp, int *pos)
7337 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7338 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7341 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7344 static struct value *
7345 unwrap_value (struct value *val)
7347 struct type *type = ada_check_typedef (value_type (val));
7348 if (ada_is_aligner_type (type))
7350 struct value *v = value_struct_elt (&val, NULL, "F",
7351 NULL, "internal structure");
7352 struct type *val_type = ada_check_typedef (value_type (v));
7353 if (ada_type_name (val_type) == NULL)
7354 TYPE_NAME (val_type) = ada_type_name (type);
7356 return unwrap_value (v);
7360 struct type *raw_real_type =
7361 ada_check_typedef (ada_get_base_type (type));
7363 if (type == raw_real_type)
7367 coerce_unspec_val_to_type
7368 (val, ada_to_fixed_type (raw_real_type, 0,
7369 VALUE_ADDRESS (val) + value_offset (val),
7374 static struct value *
7375 cast_to_fixed (struct type *type, struct value *arg)
7379 if (type == value_type (arg))
7381 else if (ada_is_fixed_point_type (value_type (arg)))
7382 val = ada_float_to_fixed (type,
7383 ada_fixed_to_float (value_type (arg),
7384 value_as_long (arg)));
7388 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7389 val = ada_float_to_fixed (type, argd);
7392 return value_from_longest (type, val);
7395 static struct value *
7396 cast_from_fixed_to_double (struct value *arg)
7398 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7399 value_as_long (arg));
7400 return value_from_double (builtin_type_double, val);
7403 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7404 return the converted value. */
7406 static struct value *
7407 coerce_for_assign (struct type *type, struct value *val)
7409 struct type *type2 = value_type (val);
7413 type2 = ada_check_typedef (type2);
7414 type = ada_check_typedef (type);
7416 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7417 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7419 val = ada_value_ind (val);
7420 type2 = value_type (val);
7423 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7424 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7426 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7427 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7428 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7429 error (_("Incompatible types in assignment"));
7430 deprecated_set_value_type (val, type);
7435 static struct value *
7436 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7439 struct type *type1, *type2;
7442 arg1 = coerce_ref (arg1);
7443 arg2 = coerce_ref (arg2);
7444 type1 = base_type (ada_check_typedef (value_type (arg1)));
7445 type2 = base_type (ada_check_typedef (value_type (arg2)));
7447 if (TYPE_CODE (type1) != TYPE_CODE_INT
7448 || TYPE_CODE (type2) != TYPE_CODE_INT)
7449 return value_binop (arg1, arg2, op);
7458 return value_binop (arg1, arg2, op);
7461 v2 = value_as_long (arg2);
7463 error (_("second operand of %s must not be zero."), op_string (op));
7465 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7466 return value_binop (arg1, arg2, op);
7468 v1 = value_as_long (arg1);
7473 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7474 v += v > 0 ? -1 : 1;
7482 /* Should not reach this point. */
7486 val = allocate_value (type1);
7487 store_unsigned_integer (value_contents_raw (val),
7488 TYPE_LENGTH (value_type (val)), v);
7493 ada_value_equal (struct value *arg1, struct value *arg2)
7495 if (ada_is_direct_array_type (value_type (arg1))
7496 || ada_is_direct_array_type (value_type (arg2)))
7498 arg1 = ada_coerce_to_simple_array (arg1);
7499 arg2 = ada_coerce_to_simple_array (arg2);
7500 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7501 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7502 error (_("Attempt to compare array with non-array"));
7503 /* FIXME: The following works only for types whose
7504 representations use all bits (no padding or undefined bits)
7505 and do not have user-defined equality. */
7507 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7508 && memcmp (value_contents (arg1), value_contents (arg2),
7509 TYPE_LENGTH (value_type (arg1))) == 0;
7511 return value_equal (arg1, arg2);
7514 /* Total number of component associations in the aggregate starting at
7515 index PC in EXP. Assumes that index PC is the start of an
7519 num_component_specs (struct expression *exp, int pc)
7522 m = exp->elts[pc + 1].longconst;
7525 for (i = 0; i < m; i += 1)
7527 switch (exp->elts[pc].opcode)
7533 n += exp->elts[pc + 1].longconst;
7536 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7541 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7542 component of LHS (a simple array or a record), updating *POS past
7543 the expression, assuming that LHS is contained in CONTAINER. Does
7544 not modify the inferior's memory, nor does it modify LHS (unless
7545 LHS == CONTAINER). */
7548 assign_component (struct value *container, struct value *lhs, LONGEST index,
7549 struct expression *exp, int *pos)
7551 struct value *mark = value_mark ();
7553 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7555 struct value *index_val = value_from_longest (builtin_type_int, index);
7556 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7560 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7561 elt = ada_to_fixed_value (unwrap_value (elt));
7564 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7565 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7567 value_assign_to_component (container, elt,
7568 ada_evaluate_subexp (NULL, exp, pos,
7571 value_free_to_mark (mark);
7574 /* Assuming that LHS represents an lvalue having a record or array
7575 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7576 of that aggregate's value to LHS, advancing *POS past the
7577 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7578 lvalue containing LHS (possibly LHS itself). Does not modify
7579 the inferior's memory, nor does it modify the contents of
7580 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7582 static struct value *
7583 assign_aggregate (struct value *container,
7584 struct value *lhs, struct expression *exp,
7585 int *pos, enum noside noside)
7587 struct type *lhs_type;
7588 int n = exp->elts[*pos+1].longconst;
7589 LONGEST low_index, high_index;
7592 int max_indices, num_indices;
7593 int is_array_aggregate;
7595 struct value *mark = value_mark ();
7598 if (noside != EVAL_NORMAL)
7601 for (i = 0; i < n; i += 1)
7602 ada_evaluate_subexp (NULL, exp, pos, noside);
7606 container = ada_coerce_ref (container);
7607 if (ada_is_direct_array_type (value_type (container)))
7608 container = ada_coerce_to_simple_array (container);
7609 lhs = ada_coerce_ref (lhs);
7610 if (!deprecated_value_modifiable (lhs))
7611 error (_("Left operand of assignment is not a modifiable lvalue."));
7613 lhs_type = value_type (lhs);
7614 if (ada_is_direct_array_type (lhs_type))
7616 lhs = ada_coerce_to_simple_array (lhs);
7617 lhs_type = value_type (lhs);
7618 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7619 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7620 is_array_aggregate = 1;
7622 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7625 high_index = num_visible_fields (lhs_type) - 1;
7626 is_array_aggregate = 0;
7629 error (_("Left-hand side must be array or record."));
7631 num_specs = num_component_specs (exp, *pos - 3);
7632 max_indices = 4 * num_specs + 4;
7633 indices = alloca (max_indices * sizeof (indices[0]));
7634 indices[0] = indices[1] = low_index - 1;
7635 indices[2] = indices[3] = high_index + 1;
7638 for (i = 0; i < n; i += 1)
7640 switch (exp->elts[*pos].opcode)
7643 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7644 &num_indices, max_indices,
7645 low_index, high_index);
7648 aggregate_assign_positional (container, lhs, exp, pos, indices,
7649 &num_indices, max_indices,
7650 low_index, high_index);
7654 error (_("Misplaced 'others' clause"));
7655 aggregate_assign_others (container, lhs, exp, pos, indices,
7656 num_indices, low_index, high_index);
7659 error (_("Internal error: bad aggregate clause"));
7666 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7667 construct at *POS, updating *POS past the construct, given that
7668 the positions are relative to lower bound LOW, where HIGH is the
7669 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7670 updating *NUM_INDICES as needed. CONTAINER is as for
7671 assign_aggregate. */
7673 aggregate_assign_positional (struct value *container,
7674 struct value *lhs, struct expression *exp,
7675 int *pos, LONGEST *indices, int *num_indices,
7676 int max_indices, LONGEST low, LONGEST high)
7678 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7680 if (ind - 1 == high)
7681 warning (_("Extra components in aggregate ignored."));
7684 add_component_interval (ind, ind, indices, num_indices, max_indices);
7686 assign_component (container, lhs, ind, exp, pos);
7689 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7692 /* Assign into the components of LHS indexed by the OP_CHOICES
7693 construct at *POS, updating *POS past the construct, given that
7694 the allowable indices are LOW..HIGH. Record the indices assigned
7695 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7696 needed. CONTAINER is as for assign_aggregate. */
7698 aggregate_assign_from_choices (struct value *container,
7699 struct value *lhs, struct expression *exp,
7700 int *pos, LONGEST *indices, int *num_indices,
7701 int max_indices, LONGEST low, LONGEST high)
7704 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7705 int choice_pos, expr_pc;
7706 int is_array = ada_is_direct_array_type (value_type (lhs));
7708 choice_pos = *pos += 3;
7710 for (j = 0; j < n_choices; j += 1)
7711 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7713 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7715 for (j = 0; j < n_choices; j += 1)
7717 LONGEST lower, upper;
7718 enum exp_opcode op = exp->elts[choice_pos].opcode;
7719 if (op == OP_DISCRETE_RANGE)
7722 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7724 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7729 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7740 name = &exp->elts[choice_pos + 2].string;
7743 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7746 error (_("Invalid record component association."));
7748 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7750 if (! find_struct_field (name, value_type (lhs), 0,
7751 NULL, NULL, NULL, NULL, &ind))
7752 error (_("Unknown component name: %s."), name);
7753 lower = upper = ind;
7756 if (lower <= upper && (lower < low || upper > high))
7757 error (_("Index in component association out of bounds."));
7759 add_component_interval (lower, upper, indices, num_indices,
7761 while (lower <= upper)
7765 assign_component (container, lhs, lower, exp, &pos1);
7771 /* Assign the value of the expression in the OP_OTHERS construct in
7772 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7773 have not been previously assigned. The index intervals already assigned
7774 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7775 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7777 aggregate_assign_others (struct value *container,
7778 struct value *lhs, struct expression *exp,
7779 int *pos, LONGEST *indices, int num_indices,
7780 LONGEST low, LONGEST high)
7783 int expr_pc = *pos+1;
7785 for (i = 0; i < num_indices - 2; i += 2)
7788 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7792 assign_component (container, lhs, ind, exp, &pos);
7795 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7798 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7799 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7800 modifying *SIZE as needed. It is an error if *SIZE exceeds
7801 MAX_SIZE. The resulting intervals do not overlap. */
7803 add_component_interval (LONGEST low, LONGEST high,
7804 LONGEST* indices, int *size, int max_size)
7807 for (i = 0; i < *size; i += 2) {
7808 if (high >= indices[i] && low <= indices[i + 1])
7811 for (kh = i + 2; kh < *size; kh += 2)
7812 if (high < indices[kh])
7814 if (low < indices[i])
7816 indices[i + 1] = indices[kh - 1];
7817 if (high > indices[i + 1])
7818 indices[i + 1] = high;
7819 memcpy (indices + i + 2, indices + kh, *size - kh);
7820 *size -= kh - i - 2;
7823 else if (high < indices[i])
7827 if (*size == max_size)
7828 error (_("Internal error: miscounted aggregate components."));
7830 for (j = *size-1; j >= i+2; j -= 1)
7831 indices[j] = indices[j - 2];
7833 indices[i + 1] = high;
7836 static struct value *
7837 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7838 int *pos, enum noside noside)
7841 int tem, tem2, tem3;
7843 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7846 struct value **argvec;
7850 op = exp->elts[pc].opcode;
7857 unwrap_value (evaluate_subexp_standard
7858 (expect_type, exp, pos, noside));
7862 struct value *result;
7864 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7865 /* The result type will have code OP_STRING, bashed there from
7866 OP_ARRAY. Bash it back. */
7867 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7868 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7874 type = exp->elts[pc + 1].type;
7875 arg1 = evaluate_subexp (type, exp, pos, noside);
7876 if (noside == EVAL_SKIP)
7878 if (type != ada_check_typedef (value_type (arg1)))
7880 if (ada_is_fixed_point_type (type))
7881 arg1 = cast_to_fixed (type, arg1);
7882 else if (ada_is_fixed_point_type (value_type (arg1)))
7883 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7884 else if (VALUE_LVAL (arg1) == lval_memory)
7886 /* This is in case of the really obscure (and undocumented,
7887 but apparently expected) case of (Foo) Bar.all, where Bar
7888 is an integer constant and Foo is a dynamic-sized type.
7889 If we don't do this, ARG1 will simply be relabeled with
7891 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7892 return value_zero (to_static_fixed_type (type), not_lval);
7894 ada_to_fixed_value_create
7895 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7898 arg1 = value_cast (type, arg1);
7904 type = exp->elts[pc + 1].type;
7905 return ada_evaluate_subexp (type, exp, pos, noside);
7908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7909 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7911 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7912 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7914 return ada_value_assign (arg1, arg1);
7916 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7917 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7919 if (ada_is_fixed_point_type (value_type (arg1)))
7920 arg2 = cast_to_fixed (value_type (arg1), arg2);
7921 else if (ada_is_fixed_point_type (value_type (arg2)))
7923 (_("Fixed-point values must be assigned to fixed-point variables"));
7925 arg2 = coerce_for_assign (value_type (arg1), arg2);
7926 return ada_value_assign (arg1, arg2);
7929 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7930 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7931 if (noside == EVAL_SKIP)
7933 if ((ada_is_fixed_point_type (value_type (arg1))
7934 || ada_is_fixed_point_type (value_type (arg2)))
7935 && value_type (arg1) != value_type (arg2))
7936 error (_("Operands of fixed-point addition must have the same type"));
7937 return value_cast (value_type (arg1), value_add (arg1, arg2));
7940 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7941 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7942 if (noside == EVAL_SKIP)
7944 if ((ada_is_fixed_point_type (value_type (arg1))
7945 || ada_is_fixed_point_type (value_type (arg2)))
7946 && value_type (arg1) != value_type (arg2))
7947 error (_("Operands of fixed-point subtraction must have the same type"));
7948 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7954 if (noside == EVAL_SKIP)
7956 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7957 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7958 return value_zero (value_type (arg1), not_lval);
7961 if (ada_is_fixed_point_type (value_type (arg1)))
7962 arg1 = cast_from_fixed_to_double (arg1);
7963 if (ada_is_fixed_point_type (value_type (arg2)))
7964 arg2 = cast_from_fixed_to_double (arg2);
7965 return ada_value_binop (arg1, arg2, op);
7970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7972 if (noside == EVAL_SKIP)
7974 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7975 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7976 return value_zero (value_type (arg1), not_lval);
7978 return ada_value_binop (arg1, arg2, op);
7981 case BINOP_NOTEQUAL:
7982 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7983 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7984 if (noside == EVAL_SKIP)
7986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7989 tem = ada_value_equal (arg1, arg2);
7990 if (op == BINOP_NOTEQUAL)
7992 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7995 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7996 if (noside == EVAL_SKIP)
7998 else if (ada_is_fixed_point_type (value_type (arg1)))
7999 return value_cast (value_type (arg1), value_neg (arg1));
8001 return value_neg (arg1);
8005 if (noside == EVAL_SKIP)
8010 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8011 /* Only encountered when an unresolved symbol occurs in a
8012 context other than a function call, in which case, it is
8014 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8015 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8016 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8020 (to_static_fixed_type
8021 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8027 unwrap_value (evaluate_subexp_standard
8028 (expect_type, exp, pos, noside));
8029 return ada_to_fixed_value (arg1);
8035 /* Allocate arg vector, including space for the function to be
8036 called in argvec[0] and a terminating NULL. */
8037 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8039 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8041 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8042 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8043 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8044 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8047 for (tem = 0; tem <= nargs; tem += 1)
8048 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8051 if (noside == EVAL_SKIP)
8055 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8056 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8057 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8058 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8059 && VALUE_LVAL (argvec[0]) == lval_memory))
8060 argvec[0] = value_addr (argvec[0]);
8062 type = ada_check_typedef (value_type (argvec[0]));
8063 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8065 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8067 case TYPE_CODE_FUNC:
8068 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8070 case TYPE_CODE_ARRAY:
8072 case TYPE_CODE_STRUCT:
8073 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8074 argvec[0] = ada_value_ind (argvec[0]);
8075 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8078 error (_("cannot subscript or call something of type `%s'"),
8079 ada_type_name (value_type (argvec[0])));
8084 switch (TYPE_CODE (type))
8086 case TYPE_CODE_FUNC:
8087 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8088 return allocate_value (TYPE_TARGET_TYPE (type));
8089 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8090 case TYPE_CODE_STRUCT:
8094 arity = ada_array_arity (type);
8095 type = ada_array_element_type (type, nargs);
8097 error (_("cannot subscript or call a record"));
8099 error (_("wrong number of subscripts; expecting %d"), arity);
8100 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8101 return allocate_value (ada_aligned_type (type));
8103 unwrap_value (ada_value_subscript
8104 (argvec[0], nargs, argvec + 1));
8106 case TYPE_CODE_ARRAY:
8107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8109 type = ada_array_element_type (type, nargs);
8111 error (_("element type of array unknown"));
8113 return allocate_value (ada_aligned_type (type));
8116 unwrap_value (ada_value_subscript
8117 (ada_coerce_to_simple_array (argvec[0]),
8118 nargs, argvec + 1));
8119 case TYPE_CODE_PTR: /* Pointer to array */
8120 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8123 type = ada_array_element_type (type, nargs);
8125 error (_("element type of array unknown"));
8127 return allocate_value (ada_aligned_type (type));
8130 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8131 nargs, argvec + 1));
8134 error (_("Attempt to index or call something other than an "
8135 "array or function"));
8140 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8141 struct value *low_bound_val =
8142 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8143 struct value *high_bound_val =
8144 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8147 low_bound_val = coerce_ref (low_bound_val);
8148 high_bound_val = coerce_ref (high_bound_val);
8149 low_bound = pos_atr (low_bound_val);
8150 high_bound = pos_atr (high_bound_val);
8152 if (noside == EVAL_SKIP)
8155 /* If this is a reference to an aligner type, then remove all
8157 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8158 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8159 TYPE_TARGET_TYPE (value_type (array)) =
8160 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8162 if (ada_is_packed_array_type (value_type (array)))
8163 error (_("cannot slice a packed array"));
8165 /* If this is a reference to an array or an array lvalue,
8166 convert to a pointer. */
8167 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8168 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8169 && VALUE_LVAL (array) == lval_memory))
8170 array = value_addr (array);
8172 if (noside == EVAL_AVOID_SIDE_EFFECTS
8173 && ada_is_array_descriptor_type (ada_check_typedef
8174 (value_type (array))))
8175 return empty_array (ada_type_of_array (array, 0), low_bound);
8177 array = ada_coerce_to_simple_array_ptr (array);
8179 /* If we have more than one level of pointer indirection,
8180 dereference the value until we get only one level. */
8181 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8182 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8184 array = value_ind (array);
8186 /* Make sure we really do have an array type before going further,
8187 to avoid a SEGV when trying to get the index type or the target
8188 type later down the road if the debug info generated by
8189 the compiler is incorrect or incomplete. */
8190 if (!ada_is_simple_array_type (value_type (array)))
8191 error (_("cannot take slice of non-array"));
8193 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8195 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8196 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8200 struct type *arr_type0 =
8201 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8203 return ada_value_slice_ptr (array, arr_type0,
8204 longest_to_int (low_bound),
8205 longest_to_int (high_bound));
8208 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8210 else if (high_bound < low_bound)
8211 return empty_array (value_type (array), low_bound);
8213 return ada_value_slice (array, longest_to_int (low_bound),
8214 longest_to_int (high_bound));
8219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8220 type = exp->elts[pc + 1].type;
8222 if (noside == EVAL_SKIP)
8225 switch (TYPE_CODE (type))
8228 lim_warning (_("Membership test incompletely implemented; "
8229 "always returns true"));
8230 return value_from_longest (builtin_type_int, (LONGEST) 1);
8232 case TYPE_CODE_RANGE:
8233 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8234 arg3 = value_from_longest (builtin_type_int,
8235 TYPE_HIGH_BOUND (type));
8237 value_from_longest (builtin_type_int,
8238 (value_less (arg1, arg3)
8239 || value_equal (arg1, arg3))
8240 && (value_less (arg2, arg1)
8241 || value_equal (arg2, arg1)));
8244 case BINOP_IN_BOUNDS:
8246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8247 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8249 if (noside == EVAL_SKIP)
8252 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8253 return value_zero (builtin_type_int, not_lval);
8255 tem = longest_to_int (exp->elts[pc + 1].longconst);
8257 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8258 error (_("invalid dimension number to 'range"));
8260 arg3 = ada_array_bound (arg2, tem, 1);
8261 arg2 = ada_array_bound (arg2, tem, 0);
8264 value_from_longest (builtin_type_int,
8265 (value_less (arg1, arg3)
8266 || value_equal (arg1, arg3))
8267 && (value_less (arg2, arg1)
8268 || value_equal (arg2, arg1)));
8270 case TERNOP_IN_RANGE:
8271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8272 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8273 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8275 if (noside == EVAL_SKIP)
8279 value_from_longest (builtin_type_int,
8280 (value_less (arg1, arg3)
8281 || value_equal (arg1, arg3))
8282 && (value_less (arg2, arg1)
8283 || value_equal (arg2, arg1)));
8289 struct type *type_arg;
8290 if (exp->elts[*pos].opcode == OP_TYPE)
8292 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8294 type_arg = exp->elts[pc + 2].type;
8298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8302 if (exp->elts[*pos].opcode != OP_LONG)
8303 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8304 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8307 if (noside == EVAL_SKIP)
8310 if (type_arg == NULL)
8312 arg1 = ada_coerce_ref (arg1);
8314 if (ada_is_packed_array_type (value_type (arg1)))
8315 arg1 = ada_coerce_to_simple_array (arg1);
8317 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8318 error (_("invalid dimension number to '%s"),
8319 ada_attribute_name (op));
8321 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8323 type = ada_index_type (value_type (arg1), tem);
8326 (_("attempt to take bound of something that is not an array"));
8327 return allocate_value (type);
8332 default: /* Should never happen. */
8333 error (_("unexpected attribute encountered"));
8335 return ada_array_bound (arg1, tem, 0);
8337 return ada_array_bound (arg1, tem, 1);
8339 return ada_array_length (arg1, tem);
8342 else if (discrete_type_p (type_arg))
8344 struct type *range_type;
8345 char *name = ada_type_name (type_arg);
8347 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8349 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8350 if (range_type == NULL)
8351 range_type = type_arg;
8355 error (_("unexpected attribute encountered"));
8357 return discrete_type_low_bound (range_type);
8359 return discrete_type_high_bound (range_type);
8361 error (_("the 'length attribute applies only to array types"));
8364 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8365 error (_("unimplemented type attribute"));
8370 if (ada_is_packed_array_type (type_arg))
8371 type_arg = decode_packed_array_type (type_arg);
8373 if (tem < 1 || tem > ada_array_arity (type_arg))
8374 error (_("invalid dimension number to '%s"),
8375 ada_attribute_name (op));
8377 type = ada_index_type (type_arg, tem);
8380 (_("attempt to take bound of something that is not an array"));
8381 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8382 return allocate_value (type);
8387 error (_("unexpected attribute encountered"));
8389 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8390 return value_from_longest (type, low);
8392 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8393 return value_from_longest (type, high);
8395 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8396 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8397 return value_from_longest (type, high - low + 1);
8403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8404 if (noside == EVAL_SKIP)
8407 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8408 return value_zero (ada_tag_type (arg1), not_lval);
8410 return ada_value_tag (arg1);
8414 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8415 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8416 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8417 if (noside == EVAL_SKIP)
8419 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8420 return value_zero (value_type (arg1), not_lval);
8422 return value_binop (arg1, arg2,
8423 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8425 case OP_ATR_MODULUS:
8427 struct type *type_arg = exp->elts[pc + 2].type;
8428 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8430 if (noside == EVAL_SKIP)
8433 if (!ada_is_modular_type (type_arg))
8434 error (_("'modulus must be applied to modular type"));
8436 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8437 ada_modulus (type_arg));
8442 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8444 if (noside == EVAL_SKIP)
8446 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8447 return value_zero (builtin_type_int, not_lval);
8449 return value_pos_atr (arg1);
8452 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8453 if (noside == EVAL_SKIP)
8455 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8456 return value_zero (builtin_type_int, not_lval);
8458 return value_from_longest (builtin_type_int,
8460 * TYPE_LENGTH (value_type (arg1)));
8463 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8465 type = exp->elts[pc + 2].type;
8466 if (noside == EVAL_SKIP)
8468 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8469 return value_zero (type, not_lval);
8471 return value_val_atr (type, arg1);
8474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8475 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8476 if (noside == EVAL_SKIP)
8478 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8479 return value_zero (value_type (arg1), not_lval);
8481 return value_binop (arg1, arg2, op);
8484 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8485 if (noside == EVAL_SKIP)
8491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8492 if (noside == EVAL_SKIP)
8494 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8495 return value_neg (arg1);
8500 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8501 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8502 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8503 if (noside == EVAL_SKIP)
8505 type = ada_check_typedef (value_type (arg1));
8506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8508 if (ada_is_array_descriptor_type (type))
8509 /* GDB allows dereferencing GNAT array descriptors. */
8511 struct type *arrType = ada_type_of_array (arg1, 0);
8512 if (arrType == NULL)
8513 error (_("Attempt to dereference null array pointer."));
8514 return value_at_lazy (arrType, 0);
8516 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8517 || TYPE_CODE (type) == TYPE_CODE_REF
8518 /* In C you can dereference an array to get the 1st elt. */
8519 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8521 type = to_static_fixed_type
8523 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8525 return value_zero (type, lval_memory);
8527 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8528 /* GDB allows dereferencing an int. */
8529 return value_zero (builtin_type_int, lval_memory);
8531 error (_("Attempt to take contents of a non-pointer value."));
8533 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8534 type = ada_check_typedef (value_type (arg1));
8536 if (ada_is_array_descriptor_type (type))
8537 /* GDB allows dereferencing GNAT array descriptors. */
8538 return ada_coerce_to_simple_array (arg1);
8540 return ada_value_ind (arg1);
8542 case STRUCTOP_STRUCT:
8543 tem = longest_to_int (exp->elts[pc + 1].longconst);
8544 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8546 if (noside == EVAL_SKIP)
8548 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8550 struct type *type1 = value_type (arg1);
8551 if (ada_is_tagged_type (type1, 1))
8553 type = ada_lookup_struct_elt_type (type1,
8554 &exp->elts[pc + 2].string,
8557 /* In this case, we assume that the field COULD exist
8558 in some extension of the type. Return an object of
8559 "type" void, which will match any formal
8560 (see ada_type_match). */
8561 return value_zero (builtin_type_void, lval_memory);
8565 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8568 return value_zero (ada_aligned_type (type), lval_memory);
8572 ada_to_fixed_value (unwrap_value
8573 (ada_value_struct_elt
8574 (arg1, &exp->elts[pc + 2].string, 0)));
8576 /* The value is not supposed to be used. This is here to make it
8577 easier to accommodate expressions that contain types. */
8579 if (noside == EVAL_SKIP)
8581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8582 return allocate_value (exp->elts[pc + 1].type);
8584 error (_("Attempt to use a type name as an expression"));
8589 case OP_DISCRETE_RANGE:
8592 if (noside == EVAL_NORMAL)
8596 error (_("Undefined name, ambiguous name, or renaming used in "
8597 "component association: %s."), &exp->elts[pc+2].string);
8599 error (_("Aggregates only allowed on the right of an assignment"));
8601 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8604 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8606 for (tem = 0; tem < nargs; tem += 1)
8607 ada_evaluate_subexp (NULL, exp, pos, noside);
8612 return value_from_longest (builtin_type_long, (LONGEST) 1);
8618 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8619 type name that encodes the 'small and 'delta information.
8620 Otherwise, return NULL. */
8623 fixed_type_info (struct type *type)
8625 const char *name = ada_type_name (type);
8626 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8628 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8630 const char *tail = strstr (name, "___XF_");
8636 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8637 return fixed_type_info (TYPE_TARGET_TYPE (type));
8642 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8645 ada_is_fixed_point_type (struct type *type)
8647 return fixed_type_info (type) != NULL;
8650 /* Return non-zero iff TYPE represents a System.Address type. */
8653 ada_is_system_address_type (struct type *type)
8655 return (TYPE_NAME (type)
8656 && strcmp (TYPE_NAME (type), "system__address") == 0);
8659 /* Assuming that TYPE is the representation of an Ada fixed-point
8660 type, return its delta, or -1 if the type is malformed and the
8661 delta cannot be determined. */
8664 ada_delta (struct type *type)
8666 const char *encoding = fixed_type_info (type);
8669 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8672 return (DOUBLEST) num / (DOUBLEST) den;
8675 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8676 factor ('SMALL value) associated with the type. */
8679 scaling_factor (struct type *type)
8681 const char *encoding = fixed_type_info (type);
8682 unsigned long num0, den0, num1, den1;
8685 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8690 return (DOUBLEST) num1 / (DOUBLEST) den1;
8692 return (DOUBLEST) num0 / (DOUBLEST) den0;
8696 /* Assuming that X is the representation of a value of fixed-point
8697 type TYPE, return its floating-point equivalent. */
8700 ada_fixed_to_float (struct type *type, LONGEST x)
8702 return (DOUBLEST) x *scaling_factor (type);
8705 /* The representation of a fixed-point value of type TYPE
8706 corresponding to the value X. */
8709 ada_float_to_fixed (struct type *type, DOUBLEST x)
8711 return (LONGEST) (x / scaling_factor (type) + 0.5);
8715 /* VAX floating formats */
8717 /* Non-zero iff TYPE represents one of the special VAX floating-point
8721 ada_is_vax_floating_type (struct type *type)
8724 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8727 && (TYPE_CODE (type) == TYPE_CODE_INT
8728 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8729 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8732 /* The type of special VAX floating-point type this is, assuming
8733 ada_is_vax_floating_point. */
8736 ada_vax_float_type_suffix (struct type *type)
8738 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8741 /* A value representing the special debugging function that outputs
8742 VAX floating-point values of the type represented by TYPE. Assumes
8743 ada_is_vax_floating_type (TYPE). */
8746 ada_vax_float_print_function (struct type *type)
8748 switch (ada_vax_float_type_suffix (type))
8751 return get_var_value ("DEBUG_STRING_F", 0);
8753 return get_var_value ("DEBUG_STRING_D", 0);
8755 return get_var_value ("DEBUG_STRING_G", 0);
8757 error (_("invalid VAX floating-point type"));
8764 /* Scan STR beginning at position K for a discriminant name, and
8765 return the value of that discriminant field of DVAL in *PX. If
8766 PNEW_K is not null, put the position of the character beyond the
8767 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8768 not alter *PX and *PNEW_K if unsuccessful. */
8771 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8774 static char *bound_buffer = NULL;
8775 static size_t bound_buffer_len = 0;
8778 struct value *bound_val;
8780 if (dval == NULL || str == NULL || str[k] == '\0')
8783 pend = strstr (str + k, "__");
8787 k += strlen (bound);
8791 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8792 bound = bound_buffer;
8793 strncpy (bound_buffer, str + k, pend - (str + k));
8794 bound[pend - (str + k)] = '\0';
8798 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8799 if (bound_val == NULL)
8802 *px = value_as_long (bound_val);
8808 /* Value of variable named NAME in the current environment. If
8809 no such variable found, then if ERR_MSG is null, returns 0, and
8810 otherwise causes an error with message ERR_MSG. */
8812 static struct value *
8813 get_var_value (char *name, char *err_msg)
8815 struct ada_symbol_info *syms;
8818 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8823 if (err_msg == NULL)
8826 error (("%s"), err_msg);
8829 return value_of_variable (syms[0].sym, syms[0].block);
8832 /* Value of integer variable named NAME in the current environment. If
8833 no such variable found, returns 0, and sets *FLAG to 0. If
8834 successful, sets *FLAG to 1. */
8837 get_int_var_value (char *name, int *flag)
8839 struct value *var_val = get_var_value (name, 0);
8851 return value_as_long (var_val);
8856 /* Return a range type whose base type is that of the range type named
8857 NAME in the current environment, and whose bounds are calculated
8858 from NAME according to the GNAT range encoding conventions.
8859 Extract discriminant values, if needed, from DVAL. If a new type
8860 must be created, allocate in OBJFILE's space. The bounds
8861 information, in general, is encoded in NAME, the base type given in
8862 the named range type. */
8864 static struct type *
8865 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8867 struct type *raw_type = ada_find_any_type (name);
8868 struct type *base_type;
8871 if (raw_type == NULL)
8872 base_type = builtin_type_int;
8873 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8874 base_type = TYPE_TARGET_TYPE (raw_type);
8876 base_type = raw_type;
8878 subtype_info = strstr (name, "___XD");
8879 if (subtype_info == NULL)
8883 static char *name_buf = NULL;
8884 static size_t name_len = 0;
8885 int prefix_len = subtype_info - name;
8891 GROW_VECT (name_buf, name_len, prefix_len + 5);
8892 strncpy (name_buf, name, prefix_len);
8893 name_buf[prefix_len] = '\0';
8896 bounds_str = strchr (subtype_info, '_');
8899 if (*subtype_info == 'L')
8901 if (!ada_scan_number (bounds_str, n, &L, &n)
8902 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8904 if (bounds_str[n] == '_')
8906 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8913 strcpy (name_buf + prefix_len, "___L");
8914 L = get_int_var_value (name_buf, &ok);
8917 lim_warning (_("Unknown lower bound, using 1."));
8922 if (*subtype_info == 'U')
8924 if (!ada_scan_number (bounds_str, n, &U, &n)
8925 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8931 strcpy (name_buf + prefix_len, "___U");
8932 U = get_int_var_value (name_buf, &ok);
8935 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8940 if (objfile == NULL)
8941 objfile = TYPE_OBJFILE (base_type);
8942 type = create_range_type (alloc_type (objfile), base_type, L, U);
8943 TYPE_NAME (type) = name;
8948 /* True iff NAME is the name of a range type. */
8951 ada_is_range_type_name (const char *name)
8953 return (name != NULL && strstr (name, "___XD"));
8959 /* True iff TYPE is an Ada modular type. */
8962 ada_is_modular_type (struct type *type)
8964 struct type *subranged_type = base_type (type);
8966 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8967 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8968 && TYPE_UNSIGNED (subranged_type));
8971 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8974 ada_modulus (struct type * type)
8976 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8980 /* Ada exception catchpoint support:
8981 ---------------------------------
8983 We support 3 kinds of exception catchpoints:
8984 . catchpoints on Ada exceptions
8985 . catchpoints on unhandled Ada exceptions
8986 . catchpoints on failed assertions
8988 Exceptions raised during failed assertions, or unhandled exceptions
8989 could perfectly be caught with the general catchpoint on Ada exceptions.
8990 However, we can easily differentiate these two special cases, and having
8991 the option to distinguish these two cases from the rest can be useful
8992 to zero-in on certain situations.
8994 Exception catchpoints are a specialized form of breakpoint,
8995 since they rely on inserting breakpoints inside known routines
8996 of the GNAT runtime. The implementation therefore uses a standard
8997 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9000 At this time, we do not support the use of conditions on Ada exception
9001 catchpoints. The COND and COND_STRING fields are therefore set
9002 to NULL (most of the time, see below).
9004 Conditions where EXP_STRING, COND, and COND_STRING are used:
9006 When a user specifies the name of a specific exception in the case
9007 of catchpoints on Ada exceptions, we store the name of that exception
9008 in the EXP_STRING. We then translate this request into an actual
9009 condition stored in COND_STRING, and then parse it into an expression
9012 /* The different types of catchpoints that we introduced for catching
9015 enum exception_catchpoint_kind
9018 ex_catch_exception_unhandled,
9022 /* Return the name of the function at PC, NULL if could not find it.
9023 This function only checks the debugging information, not the symbol
9027 function_name_from_pc (CORE_ADDR pc)
9031 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9037 /* True iff FRAME is very likely to be that of a function that is
9038 part of the runtime system. This is all very heuristic, but is
9039 intended to be used as advice as to what frames are uninteresting
9043 is_known_support_routine (struct frame_info *frame)
9045 struct frame_info *next_frame = get_next_frame (frame);
9046 /* If frame is not innermost, that normally means that frame->pc
9047 points to *after* the call instruction, and we want to get the line
9048 containing the call, never the next line. But if the next frame is
9049 a signal_handler_caller or a dummy frame, then the next frame was
9050 not entered as the result of a call, and we want to get the line
9051 containing frame->pc. */
9052 const int pc_is_after_call =
9054 && get_frame_type (next_frame) != SIGTRAMP_FRAME
9055 && get_frame_type (next_frame) != DUMMY_FRAME;
9056 struct symtab_and_line sal
9057 = find_pc_line (get_frame_pc (frame), pc_is_after_call);
9062 1. The symtab is null (indicating no debugging symbols)
9063 2. The symtab's filename does not exist.
9064 3. The object file's name is one of the standard libraries.
9065 4. The symtab's file name has the form of an Ada library source file.
9066 5. The function at frame's PC has a GNAT-compiler-generated name. */
9068 if (sal.symtab == NULL)
9071 /* On some systems (e.g. VxWorks), the kernel contains debugging
9072 symbols; in this case, the filename referenced by these symbols
9075 if (symtab_to_fullname (sal.symtab) == NULL)
9078 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9080 re_comp (known_runtime_file_name_patterns[i]);
9081 if (re_exec (sal.symtab->filename))
9084 if (sal.symtab->objfile != NULL)
9086 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9088 re_comp (known_runtime_file_name_patterns[i]);
9089 if (re_exec (sal.symtab->objfile->name))
9094 /* If the frame PC points after the call instruction, then we need to
9095 decrement it in order to search for the function associated to this
9096 PC. Otherwise, if the associated call was the last instruction of
9097 the function, we might either find the wrong function or even fail
9098 during the function name lookup. */
9099 if (pc_is_after_call)
9100 func_name = function_name_from_pc (get_frame_pc (frame) - 1);
9102 func_name = function_name_from_pc (get_frame_pc (frame));
9104 if (func_name == NULL)
9107 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9109 re_comp (known_auxiliary_function_name_patterns[i]);
9110 if (re_exec (func_name))
9117 /* Find the first frame that contains debugging information and that is not
9118 part of the Ada run-time, starting from FI and moving upward. */
9121 ada_find_printable_frame (struct frame_info *fi)
9123 for (; fi != NULL; fi = get_prev_frame (fi))
9125 if (!is_known_support_routine (fi))
9134 /* Assuming that the inferior just triggered an unhandled exception
9135 catchpoint, return the address in inferior memory where the name
9136 of the exception is stored.
9138 Return zero if the address could not be computed. */
9141 ada_unhandled_exception_name_addr (void)
9144 struct frame_info *fi;
9146 /* To determine the name of this exception, we need to select
9147 the frame corresponding to RAISE_SYM_NAME. This frame is
9148 at least 3 levels up, so we simply skip the first 3 frames
9149 without checking the name of their associated function. */
9150 fi = get_current_frame ();
9151 for (frame_level = 0; frame_level < 3; frame_level += 1)
9153 fi = get_prev_frame (fi);
9157 const char *func_name =
9158 function_name_from_pc (get_frame_address_in_block (fi));
9159 if (func_name != NULL
9160 && strcmp (func_name, raise_sym_name) == 0)
9161 break; /* We found the frame we were looking for... */
9162 fi = get_prev_frame (fi);
9169 return parse_and_eval_address ("id.full_name");
9172 /* Assuming the inferior just triggered an Ada exception catchpoint
9173 (of any type), return the address in inferior memory where the name
9174 of the exception is stored, if applicable.
9176 Return zero if the address could not be computed, or if not relevant. */
9179 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9180 struct breakpoint *b)
9184 case ex_catch_exception:
9185 return (parse_and_eval_address ("e.full_name"));
9188 case ex_catch_exception_unhandled:
9189 return ada_unhandled_exception_name_addr ();
9192 case ex_catch_assert:
9193 return 0; /* Exception name is not relevant in this case. */
9197 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9201 return 0; /* Should never be reached. */
9204 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9205 any error that ada_exception_name_addr_1 might cause to be thrown.
9206 When an error is intercepted, a warning with the error message is printed,
9207 and zero is returned. */
9210 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9211 struct breakpoint *b)
9213 struct gdb_exception e;
9214 CORE_ADDR result = 0;
9216 TRY_CATCH (e, RETURN_MASK_ERROR)
9218 result = ada_exception_name_addr_1 (ex, b);
9223 warning (_("failed to get exception name: %s"), e.message);
9230 /* Implement the PRINT_IT method in the breakpoint_ops structure
9231 for all exception catchpoint kinds. */
9233 static enum print_stop_action
9234 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9236 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9237 char exception_name[256];
9241 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9242 exception_name [sizeof (exception_name) - 1] = '\0';
9245 ada_find_printable_frame (get_current_frame ());
9247 annotate_catchpoint (b->number);
9250 case ex_catch_exception:
9252 printf_filtered (_("\nCatchpoint %d, %s at "),
9253 b->number, exception_name);
9255 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9257 case ex_catch_exception_unhandled:
9259 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9260 b->number, exception_name);
9262 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9265 case ex_catch_assert:
9266 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9271 return PRINT_SRC_AND_LOC;
9274 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9275 for all exception catchpoint kinds. */
9278 print_one_exception (enum exception_catchpoint_kind ex,
9279 struct breakpoint *b, CORE_ADDR *last_addr)
9284 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9288 *last_addr = b->loc->address;
9291 case ex_catch_exception:
9292 if (b->exp_string != NULL)
9294 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9296 ui_out_field_string (uiout, "what", msg);
9300 ui_out_field_string (uiout, "what", "all Ada exceptions");
9304 case ex_catch_exception_unhandled:
9305 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9308 case ex_catch_assert:
9309 ui_out_field_string (uiout, "what", "failed Ada assertions");
9313 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9318 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9319 for all exception catchpoint kinds. */
9322 print_mention_exception (enum exception_catchpoint_kind ex,
9323 struct breakpoint *b)
9327 case ex_catch_exception:
9328 if (b->exp_string != NULL)
9329 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9330 b->number, b->exp_string);
9332 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9336 case ex_catch_exception_unhandled:
9337 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9341 case ex_catch_assert:
9342 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9351 /* Virtual table for "catch exception" breakpoints. */
9353 static enum print_stop_action
9354 print_it_catch_exception (struct breakpoint *b)
9356 return print_it_exception (ex_catch_exception, b);
9360 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9362 print_one_exception (ex_catch_exception, b, last_addr);
9366 print_mention_catch_exception (struct breakpoint *b)
9368 print_mention_exception (ex_catch_exception, b);
9371 static struct breakpoint_ops catch_exception_breakpoint_ops =
9373 print_it_catch_exception,
9374 print_one_catch_exception,
9375 print_mention_catch_exception
9378 /* Virtual table for "catch exception unhandled" breakpoints. */
9380 static enum print_stop_action
9381 print_it_catch_exception_unhandled (struct breakpoint *b)
9383 return print_it_exception (ex_catch_exception_unhandled, b);
9387 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9389 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9393 print_mention_catch_exception_unhandled (struct breakpoint *b)
9395 print_mention_exception (ex_catch_exception_unhandled, b);
9398 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9399 print_it_catch_exception_unhandled,
9400 print_one_catch_exception_unhandled,
9401 print_mention_catch_exception_unhandled
9404 /* Virtual table for "catch assert" breakpoints. */
9406 static enum print_stop_action
9407 print_it_catch_assert (struct breakpoint *b)
9409 return print_it_exception (ex_catch_assert, b);
9413 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9415 print_one_exception (ex_catch_assert, b, last_addr);
9419 print_mention_catch_assert (struct breakpoint *b)
9421 print_mention_exception (ex_catch_assert, b);
9424 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9425 print_it_catch_assert,
9426 print_one_catch_assert,
9427 print_mention_catch_assert
9430 /* Return non-zero if B is an Ada exception catchpoint. */
9433 ada_exception_catchpoint_p (struct breakpoint *b)
9435 return (b->ops == &catch_exception_breakpoint_ops
9436 || b->ops == &catch_exception_unhandled_breakpoint_ops
9437 || b->ops == &catch_assert_breakpoint_ops);
9440 /* Cause the appropriate error if no appropriate runtime symbol is
9441 found to set a breakpoint, using ERR_DESC to describe the
9445 error_breakpoint_runtime_sym_not_found (const char *err_desc)
9447 /* If we are not debugging an Ada program, we cannot put exception
9450 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9451 error (_("Unable to break on %s. Is this an Ada main program?"),
9454 /* If the symbol does not exist, then check that the program is
9455 already started, to make sure that shared libraries have been
9456 loaded. If it is not started, this may mean that the symbol is
9457 in a shared library. */
9459 if (ptid_get_pid (inferior_ptid) == 0)
9460 error (_("Unable to break on %s. Try to start the program first."),
9463 /* At this point, we know that we are debugging an Ada program and
9464 that the inferior has been started, but we still are not able to
9465 find the run-time symbols. That can mean that we are in
9466 configurable run time mode, or that a-except as been optimized
9467 out by the linker... In any case, at this point it is not worth
9468 supporting this feature. */
9470 error (_("Cannot break on %s in this configuration."), err_desc);
9473 /* Return a newly allocated copy of the first space-separated token
9474 in ARGSP, and then adjust ARGSP to point immediately after that
9477 Return NULL if ARGPS does not contain any more tokens. */
9480 ada_get_next_arg (char **argsp)
9482 char *args = *argsp;
9486 /* Skip any leading white space. */
9488 while (isspace (*args))
9491 if (args[0] == '\0')
9492 return NULL; /* No more arguments. */
9494 /* Find the end of the current argument. */
9497 while (*end != '\0' && !isspace (*end))
9500 /* Adjust ARGSP to point to the start of the next argument. */
9504 /* Make a copy of the current argument and return it. */
9506 result = xmalloc (end - args + 1);
9507 strncpy (result, args, end - args);
9508 result[end - args] = '\0';
9513 /* Split the arguments specified in a "catch exception" command.
9514 Set EX to the appropriate catchpoint type.
9515 Set EXP_STRING to the name of the specific exception if
9516 specified by the user. */
9519 catch_ada_exception_command_split (char *args,
9520 enum exception_catchpoint_kind *ex,
9523 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9524 char *exception_name;
9526 exception_name = ada_get_next_arg (&args);
9527 make_cleanup (xfree, exception_name);
9529 /* Check that we do not have any more arguments. Anything else
9532 while (isspace (*args))
9535 if (args[0] != '\0')
9536 error (_("Junk at end of expression"));
9538 discard_cleanups (old_chain);
9540 if (exception_name == NULL)
9542 /* Catch all exceptions. */
9543 *ex = ex_catch_exception;
9546 else if (strcmp (exception_name, "unhandled") == 0)
9548 /* Catch unhandled exceptions. */
9549 *ex = ex_catch_exception_unhandled;
9554 /* Catch a specific exception. */
9555 *ex = ex_catch_exception;
9556 *exp_string = exception_name;
9560 /* Return the name of the symbol on which we should break in order to
9561 implement a catchpoint of the EX kind. */
9564 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9568 case ex_catch_exception:
9569 return (raise_sym_name);
9571 case ex_catch_exception_unhandled:
9572 return (raise_unhandled_sym_name);
9574 case ex_catch_assert:
9575 return (raise_assert_sym_name);
9578 internal_error (__FILE__, __LINE__,
9579 _("unexpected catchpoint kind (%d)"), ex);
9583 /* Return the breakpoint ops "virtual table" used for catchpoints
9586 static struct breakpoint_ops *
9587 ada_exception_breakption_ops (enum exception_catchpoint_kind ex)
9591 case ex_catch_exception:
9592 return (&catch_exception_breakpoint_ops);
9594 case ex_catch_exception_unhandled:
9595 return (&catch_exception_unhandled_breakpoint_ops);
9597 case ex_catch_assert:
9598 return (&catch_assert_breakpoint_ops);
9601 internal_error (__FILE__, __LINE__,
9602 _("unexpected catchpoint kind (%d)"), ex);
9606 /* Return the condition that will be used to match the current exception
9607 being raised with the exception that the user wants to catch. This
9608 assumes that this condition is used when the inferior just triggered
9609 an exception catchpoint.
9611 The string returned is a newly allocated string that needs to be
9612 deallocated later. */
9615 ada_exception_catchpoint_cond_string (const char *exp_string)
9617 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9620 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9622 static struct expression *
9623 ada_parse_catchpoint_condition (char *cond_string,
9624 struct symtab_and_line sal)
9626 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9629 /* Return the symtab_and_line that should be used to insert an exception
9630 catchpoint of the TYPE kind.
9632 EX_STRING should contain the name of a specific exception
9633 that the catchpoint should catch, or NULL otherwise.
9635 The idea behind all the remaining parameters is that their names match
9636 the name of certain fields in the breakpoint structure that are used to
9637 handle exception catchpoints. This function returns the value to which
9638 these fields should be set, depending on the type of catchpoint we need
9641 If COND and COND_STRING are both non-NULL, any value they might
9642 hold will be free'ed, and then replaced by newly allocated ones.
9643 These parameters are left untouched otherwise. */
9645 static struct symtab_and_line
9646 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9647 char **addr_string, char **cond_string,
9648 struct expression **cond, struct breakpoint_ops **ops)
9650 const char *sym_name;
9652 struct symtab_and_line sal;
9654 /* First lookup the function on which we will break in order to catch
9655 the Ada exceptions requested by the user. */
9657 sym_name = ada_exception_sym_name (ex);
9658 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9660 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9661 that should be compiled with debugging information. As a result, we
9662 expect to find that symbol in the symtabs. If we don't find it, then
9663 the target most likely does not support Ada exceptions, or we cannot
9664 insert exception breakpoints yet, because the GNAT runtime hasn't been
9667 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9668 in such a way that no debugging information is produced for the symbol
9669 we are looking for. In this case, we could search the minimal symbols
9670 as a fall-back mechanism. This would still be operating in degraded
9671 mode, however, as we would still be missing the debugging information
9672 that is needed in order to extract the name of the exception being
9673 raised (this name is printed in the catchpoint message, and is also
9674 used when trying to catch a specific exception). We do not handle
9675 this case for now. */
9678 error_breakpoint_runtime_sym_not_found (sym_name);
9680 /* Make sure that the symbol we found corresponds to a function. */
9681 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9682 error (_("Symbol \"%s\" is not a function (class = %d)"),
9683 sym_name, SYMBOL_CLASS (sym));
9685 sal = find_function_start_sal (sym, 1);
9687 /* Set ADDR_STRING. */
9689 *addr_string = xstrdup (sym_name);
9691 /* Set the COND and COND_STRING (if not NULL). */
9693 if (cond_string != NULL && cond != NULL)
9695 if (*cond_string != NULL)
9697 xfree (*cond_string);
9698 *cond_string = NULL;
9705 if (exp_string != NULL)
9707 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9708 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9713 *ops = ada_exception_breakption_ops (ex);
9718 /* Parse the arguments (ARGS) of the "catch exception" command.
9720 Set TYPE to the appropriate exception catchpoint type.
9721 If the user asked the catchpoint to catch only a specific
9722 exception, then save the exception name in ADDR_STRING.
9724 See ada_exception_sal for a description of all the remaining
9725 function arguments of this function. */
9727 struct symtab_and_line
9728 ada_decode_exception_location (char *args, char **addr_string,
9729 char **exp_string, char **cond_string,
9730 struct expression **cond,
9731 struct breakpoint_ops **ops)
9733 enum exception_catchpoint_kind ex;
9735 catch_ada_exception_command_split (args, &ex, exp_string);
9736 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9740 struct symtab_and_line
9741 ada_decode_assert_location (char *args, char **addr_string,
9742 struct breakpoint_ops **ops)
9744 /* Check that no argument where provided at the end of the command. */
9748 while (isspace (*args))
9751 error (_("Junk at end of arguments."));
9754 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9759 /* Information about operators given special treatment in functions
9761 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9763 #define ADA_OPERATORS \
9764 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9765 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9766 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9767 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9768 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9769 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9770 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9771 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9772 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9773 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9774 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9775 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9776 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9777 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9778 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9779 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9780 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9781 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9782 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9785 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9787 switch (exp->elts[pc - 1].opcode)
9790 operator_length_standard (exp, pc, oplenp, argsp);
9793 #define OP_DEFN(op, len, args, binop) \
9794 case op: *oplenp = len; *argsp = args; break;
9800 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9805 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9811 ada_op_name (enum exp_opcode opcode)
9816 return op_name_standard (opcode);
9818 #define OP_DEFN(op, len, args, binop) case op: return #op;
9823 return "OP_AGGREGATE";
9825 return "OP_CHOICES";
9831 /* As for operator_length, but assumes PC is pointing at the first
9832 element of the operator, and gives meaningful results only for the
9833 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9836 ada_forward_operator_length (struct expression *exp, int pc,
9837 int *oplenp, int *argsp)
9839 switch (exp->elts[pc].opcode)
9842 *oplenp = *argsp = 0;
9845 #define OP_DEFN(op, len, args, binop) \
9846 case op: *oplenp = len; *argsp = args; break;
9852 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9857 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9863 int len = longest_to_int (exp->elts[pc + 1].longconst);
9864 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9872 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9874 enum exp_opcode op = exp->elts[elt].opcode;
9879 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9883 /* Ada attributes ('Foo). */
9890 case OP_ATR_MODULUS:
9899 /* XXX: gdb_sprint_host_address, type_sprint */
9900 fprintf_filtered (stream, _("Type @"));
9901 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9902 fprintf_filtered (stream, " (");
9903 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9904 fprintf_filtered (stream, ")");
9906 case BINOP_IN_BOUNDS:
9907 fprintf_filtered (stream, " (%d)",
9908 longest_to_int (exp->elts[pc + 2].longconst));
9910 case TERNOP_IN_RANGE:
9915 case OP_DISCRETE_RANGE:
9923 char *name = &exp->elts[elt + 2].string;
9924 int len = longest_to_int (exp->elts[elt + 1].longconst);
9925 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9930 return dump_subexp_body_standard (exp, stream, elt);
9934 for (i = 0; i < nargs; i += 1)
9935 elt = dump_subexp (exp, stream, elt);
9940 /* The Ada extension of print_subexp (q.v.). */
9943 ada_print_subexp (struct expression *exp, int *pos,
9944 struct ui_file *stream, enum precedence prec)
9946 int oplen, nargs, i;
9948 enum exp_opcode op = exp->elts[pc].opcode;
9950 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9957 print_subexp_standard (exp, pos, stream, prec);
9961 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
9964 case BINOP_IN_BOUNDS:
9965 /* XXX: sprint_subexp */
9966 print_subexp (exp, pos, stream, PREC_SUFFIX);
9967 fputs_filtered (" in ", stream);
9968 print_subexp (exp, pos, stream, PREC_SUFFIX);
9969 fputs_filtered ("'range", stream);
9970 if (exp->elts[pc + 1].longconst > 1)
9971 fprintf_filtered (stream, "(%ld)",
9972 (long) exp->elts[pc + 1].longconst);
9975 case TERNOP_IN_RANGE:
9976 if (prec >= PREC_EQUAL)
9977 fputs_filtered ("(", stream);
9978 /* XXX: sprint_subexp */
9979 print_subexp (exp, pos, stream, PREC_SUFFIX);
9980 fputs_filtered (" in ", stream);
9981 print_subexp (exp, pos, stream, PREC_EQUAL);
9982 fputs_filtered (" .. ", stream);
9983 print_subexp (exp, pos, stream, PREC_EQUAL);
9984 if (prec >= PREC_EQUAL)
9985 fputs_filtered (")", stream);
9994 case OP_ATR_MODULUS:
9999 if (exp->elts[*pos].opcode == OP_TYPE)
10001 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10002 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10006 print_subexp (exp, pos, stream, PREC_SUFFIX);
10007 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10011 for (tem = 1; tem < nargs; tem += 1)
10013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10016 fputs_filtered (")", stream);
10021 type_print (exp->elts[pc + 1].type, "", stream, 0);
10022 fputs_filtered ("'(", stream);
10023 print_subexp (exp, pos, stream, PREC_PREFIX);
10024 fputs_filtered (")", stream);
10027 case UNOP_IN_RANGE:
10028 /* XXX: sprint_subexp */
10029 print_subexp (exp, pos, stream, PREC_SUFFIX);
10030 fputs_filtered (" in ", stream);
10031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10034 case OP_DISCRETE_RANGE:
10035 print_subexp (exp, pos, stream, PREC_SUFFIX);
10036 fputs_filtered ("..", stream);
10037 print_subexp (exp, pos, stream, PREC_SUFFIX);
10041 fputs_filtered ("others => ", stream);
10042 print_subexp (exp, pos, stream, PREC_SUFFIX);
10046 for (i = 0; i < nargs-1; i += 1)
10049 fputs_filtered ("|", stream);
10050 print_subexp (exp, pos, stream, PREC_SUFFIX);
10052 fputs_filtered (" => ", stream);
10053 print_subexp (exp, pos, stream, PREC_SUFFIX);
10056 case OP_POSITIONAL:
10057 print_subexp (exp, pos, stream, PREC_SUFFIX);
10061 fputs_filtered ("(", stream);
10062 for (i = 0; i < nargs; i += 1)
10065 fputs_filtered (", ", stream);
10066 print_subexp (exp, pos, stream, PREC_SUFFIX);
10068 fputs_filtered (")", stream);
10073 /* Table mapping opcodes into strings for printing operators
10074 and precedences of the operators. */
10076 static const struct op_print ada_op_print_tab[] = {
10077 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10078 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10079 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10080 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10081 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10082 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10083 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10084 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10085 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10086 {">=", BINOP_GEQ, PREC_ORDER, 0},
10087 {">", BINOP_GTR, PREC_ORDER, 0},
10088 {"<", BINOP_LESS, PREC_ORDER, 0},
10089 {">>", BINOP_RSH, PREC_SHIFT, 0},
10090 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10091 {"+", BINOP_ADD, PREC_ADD, 0},
10092 {"-", BINOP_SUB, PREC_ADD, 0},
10093 {"&", BINOP_CONCAT, PREC_ADD, 0},
10094 {"*", BINOP_MUL, PREC_MUL, 0},
10095 {"/", BINOP_DIV, PREC_MUL, 0},
10096 {"rem", BINOP_REM, PREC_MUL, 0},
10097 {"mod", BINOP_MOD, PREC_MUL, 0},
10098 {"**", BINOP_EXP, PREC_REPEAT, 0},
10099 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10100 {"-", UNOP_NEG, PREC_PREFIX, 0},
10101 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10102 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10103 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10104 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10105 {".all", UNOP_IND, PREC_SUFFIX, 1},
10106 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10107 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10111 /* Fundamental Ada Types */
10113 /* Create a fundamental Ada type using default reasonable for the current
10116 Some object/debugging file formats (DWARF version 1, COFF, etc) do not
10117 define fundamental types such as "int" or "double". Others (stabs or
10118 DWARF version 2, etc) do define fundamental types. For the formats which
10119 don't provide fundamental types, gdb can create such types using this
10122 FIXME: Some compilers distinguish explicitly signed integral types
10123 (signed short, signed int, signed long) from "regular" integral types
10124 (short, int, long) in the debugging information. There is some dis-
10125 agreement as to how useful this feature is. In particular, gcc does
10126 not support this. Also, only some debugging formats allow the
10127 distinction to be passed on to a debugger. For now, we always just
10128 use "short", "int", or "long" as the type name, for both the implicit
10129 and explicitly signed types. This also makes life easier for the
10130 gdb test suite since we don't have to account for the differences
10131 in output depending upon what the compiler and debugging format
10132 support. We will probably have to re-examine the issue when gdb
10133 starts taking it's fundamental type information directly from the
10136 static struct type *
10137 ada_create_fundamental_type (struct objfile *objfile, int typeid)
10139 struct type *type = NULL;
10144 /* FIXME: For now, if we are asked to produce a type not in this
10145 language, create the equivalent of a C integer type with the
10146 name "<?type?>". When all the dust settles from the type
10147 reconstruction work, this should probably become an error. */
10148 type = init_type (TYPE_CODE_INT,
10149 TARGET_INT_BIT / TARGET_CHAR_BIT,
10150 0, "<?type?>", objfile);
10151 warning (_("internal error: no Ada fundamental type %d"), typeid);
10154 type = init_type (TYPE_CODE_VOID,
10155 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10156 0, "void", objfile);
10159 type = init_type (TYPE_CODE_INT,
10160 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10161 0, "character", objfile);
10163 case FT_SIGNED_CHAR:
10164 type = init_type (TYPE_CODE_INT,
10165 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10166 0, "signed char", objfile);
10168 case FT_UNSIGNED_CHAR:
10169 type = init_type (TYPE_CODE_INT,
10170 TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10171 TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
10174 type = init_type (TYPE_CODE_INT,
10175 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10176 0, "short_integer", objfile);
10178 case FT_SIGNED_SHORT:
10179 type = init_type (TYPE_CODE_INT,
10180 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10181 0, "short_integer", objfile);
10183 case FT_UNSIGNED_SHORT:
10184 type = init_type (TYPE_CODE_INT,
10185 TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10186 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
10189 type = init_type (TYPE_CODE_INT,
10190 TARGET_INT_BIT / TARGET_CHAR_BIT,
10191 0, "integer", objfile);
10193 case FT_SIGNED_INTEGER:
10194 type = init_type (TYPE_CODE_INT, TARGET_INT_BIT /
10196 0, "integer", objfile); /* FIXME -fnf */
10198 case FT_UNSIGNED_INTEGER:
10199 type = init_type (TYPE_CODE_INT,
10200 TARGET_INT_BIT / TARGET_CHAR_BIT,
10201 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
10204 type = init_type (TYPE_CODE_INT,
10205 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10206 0, "long_integer", objfile);
10208 case FT_SIGNED_LONG:
10209 type = init_type (TYPE_CODE_INT,
10210 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10211 0, "long_integer", objfile);
10213 case FT_UNSIGNED_LONG:
10214 type = init_type (TYPE_CODE_INT,
10215 TARGET_LONG_BIT / TARGET_CHAR_BIT,
10216 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
10219 type = init_type (TYPE_CODE_INT,
10220 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10221 0, "long_long_integer", objfile);
10223 case FT_SIGNED_LONG_LONG:
10224 type = init_type (TYPE_CODE_INT,
10225 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10226 0, "long_long_integer", objfile);
10228 case FT_UNSIGNED_LONG_LONG:
10229 type = init_type (TYPE_CODE_INT,
10230 TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10231 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
10234 type = init_type (TYPE_CODE_FLT,
10235 TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10236 0, "float", objfile);
10238 case FT_DBL_PREC_FLOAT:
10239 type = init_type (TYPE_CODE_FLT,
10240 TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10241 0, "long_float", objfile);
10243 case FT_EXT_PREC_FLOAT:
10244 type = init_type (TYPE_CODE_FLT,
10245 TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10246 0, "long_long_float", objfile);
10252 enum ada_primitive_types {
10253 ada_primitive_type_int,
10254 ada_primitive_type_long,
10255 ada_primitive_type_short,
10256 ada_primitive_type_char,
10257 ada_primitive_type_float,
10258 ada_primitive_type_double,
10259 ada_primitive_type_void,
10260 ada_primitive_type_long_long,
10261 ada_primitive_type_long_double,
10262 ada_primitive_type_natural,
10263 ada_primitive_type_positive,
10264 ada_primitive_type_system_address,
10265 nr_ada_primitive_types
10269 ada_language_arch_info (struct gdbarch *current_gdbarch,
10270 struct language_arch_info *lai)
10272 const struct builtin_type *builtin = builtin_type (current_gdbarch);
10273 lai->primitive_type_vector
10274 = GDBARCH_OBSTACK_CALLOC (current_gdbarch, nr_ada_primitive_types + 1,
10276 lai->primitive_type_vector [ada_primitive_type_int] =
10277 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10278 0, "integer", (struct objfile *) NULL);
10279 lai->primitive_type_vector [ada_primitive_type_long] =
10280 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
10281 0, "long_integer", (struct objfile *) NULL);
10282 lai->primitive_type_vector [ada_primitive_type_short] =
10283 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
10284 0, "short_integer", (struct objfile *) NULL);
10285 lai->string_char_type =
10286 lai->primitive_type_vector [ada_primitive_type_char] =
10287 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10288 0, "character", (struct objfile *) NULL);
10289 lai->primitive_type_vector [ada_primitive_type_float] =
10290 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
10291 0, "float", (struct objfile *) NULL);
10292 lai->primitive_type_vector [ada_primitive_type_double] =
10293 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
10294 0, "long_float", (struct objfile *) NULL);
10295 lai->primitive_type_vector [ada_primitive_type_long_long] =
10296 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
10297 0, "long_long_integer", (struct objfile *) NULL);
10298 lai->primitive_type_vector [ada_primitive_type_long_double] =
10299 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
10300 0, "long_long_float", (struct objfile *) NULL);
10301 lai->primitive_type_vector [ada_primitive_type_natural] =
10302 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10303 0, "natural", (struct objfile *) NULL);
10304 lai->primitive_type_vector [ada_primitive_type_positive] =
10305 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
10306 0, "positive", (struct objfile *) NULL);
10307 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10309 lai->primitive_type_vector [ada_primitive_type_system_address] =
10310 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10311 (struct objfile *) NULL));
10312 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10313 = "system__address";
10316 /* Language vector */
10318 /* Not really used, but needed in the ada_language_defn. */
10321 emit_char (int c, struct ui_file *stream, int quoter)
10323 ada_emit_char (c, stream, quoter, 1);
10329 warnings_issued = 0;
10330 return ada_parse ();
10333 static const struct exp_descriptor ada_exp_descriptor = {
10335 ada_operator_length,
10337 ada_dump_subexp_body,
10338 ada_evaluate_subexp
10341 const struct language_defn ada_language_defn = {
10342 "ada", /* Language name */
10347 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10348 that's not quite what this means. */
10350 &ada_exp_descriptor,
10354 ada_printchar, /* Print a character constant */
10355 ada_printstr, /* Function to print string constant */
10356 emit_char, /* Function to print single char (not used) */
10357 ada_create_fundamental_type, /* Create fundamental type in this language */
10358 ada_print_type, /* Print a type using appropriate syntax */
10359 ada_val_print, /* Print a value using appropriate syntax */
10360 ada_value_print, /* Print a top-level value */
10361 NULL, /* Language specific skip_trampoline */
10362 NULL, /* value_of_this */
10363 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10364 basic_lookup_transparent_type, /* lookup_transparent_type */
10365 ada_la_decode, /* Language specific symbol demangler */
10366 NULL, /* Language specific class_name_from_physname */
10367 ada_op_print_tab, /* expression operators for printing */
10368 0, /* c-style arrays */
10369 1, /* String lower bound */
10371 ada_get_gdb_completer_word_break_characters,
10372 ada_language_arch_info,
10373 ada_print_array_index,
10378 _initialize_ada_language (void)
10380 add_language (&ada_language_defn);
10382 varsize_limit = 65536;
10384 obstack_init (&symbol_list_obstack);
10386 decoded_names_store = htab_create_alloc
10387 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10388 NULL, xcalloc, xfree);