1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
29 /* This file handles functionality common to the different MIPS ABI's. */
34 #include "libiberty.h"
36 #include "elfxx-mips.h"
38 #include "elf-vxworks.h"
41 /* Get the ECOFF swapping routines. */
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
60 (1) an absolute address
61 requires: abfd == NULL
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
77 /* One input bfd that needs the GOT entry. */
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
84 /* If abfd == NULL, an address that must be stored in the got. */
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
125 struct mips_elf_link_hash_entry *h;
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
134 struct mips_got_page_range
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
145 /* The section that these entries are based on. */
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
153 /* This structure is used to hold .got information when linking. */
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
187 /* Structure passed when merging bfds' gots. */
189 struct mips_elf_got_per_bfd_arg
191 /* The output bfd. */
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
211 unsigned int global_count;
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
217 struct mips_elf_traverse_got_arg
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
224 struct _mips_elf_section_data
226 struct bfd_elf_section_data elf;
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
259 #define GGA_RELOC_ONLY 1
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
266 addiu $25,$25,%lo(func)
268 immediately before a PIC function "func". The second is to add:
272 addiu $25,$25,%lo(func)
274 to a separate trampoline section.
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
283 /* The offset of the stub from the start of STUB_SECTION. */
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
291 /* Macros for populating a mips_elf_la25_stub. */
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
306 struct mips_elf_hash_sort_data
308 /* The symbol in the global GOT with the lowest dynamic symbol table
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
330 /* Traditional SVR4 stub offset, or -1 if none. */
333 /* Standard PLT entry offset, or -1 if none. */
336 /* Compressed PLT entry offset, or -1 if none. */
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
352 struct mips_elf_link_hash_entry
354 struct elf_link_hash_entry root;
356 /* External symbol information. */
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
364 unsigned int possibly_dynamic_relocs;
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root;
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
443 /* True if we can only use 32-bit microMIPS instructions. */
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
452 /* Shortcuts to some dynamic sections, or NULL if they are not
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
466 /* The global symbol in the GOT with the lowest index in the dynamic
468 struct elf_link_hash_entry *global_gotsym;
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
510 The function returns the new section on success, otherwise it
512 asection *(*add_stub_section) (const char *, asection *, asection *);
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
538 /* MIPS ELF private object data. */
540 struct mips_elf_obj_tdata
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
575 /* Get MIPS ELF private object data from BFD's tdata. */
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
609 /* Structure used to pass information to mips_elf_output_extsym. */
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
620 /* The names of the runtime procedure table symbols used on IRIX5. */
622 static const char * const mips_elf_dynsym_rtproc_names[] =
625 "_procedure_string_table",
626 "_procedure_table_size",
630 /* These structures are used to generate the .compact_rel section on
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
677 } Elf32_External_crinfo;
683 } Elf32_External_crinfo2;
685 /* These are the constants used to swap the bitfields in a crinfo. */
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
736 struct exception_info *exception_info;/* Pointer to exception array. */
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
773 #define JALR_TO_BAL_P(abfd) 1
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
778 #define JR_TO_B_P(abfd) 1
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
905 /* The maximum size of the GOT for it to be addressable using 16-bit
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
951 /* The name of the dynamic interpreter. This is put in the .interp
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
972 #define ELF_R_TYPE(bfd, i) \
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1010 We record any stubs that we find in the symbol table. */
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1123 0x653b, /* move $25, $3 */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1189 /* microMIPS 32-bit opcode helper installer. */
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1198 /* microMIPS 32-bit opcode helper retriever. */
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1213 /* Traverse a MIPS ELF linker hash table. */
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1228 dtprel_base (struct bfd_link_info *info)
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1237 tprel_base (struct bfd_link_info *info)
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1245 /* Create an entry in a MIPS ELF linker hash table. */
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1254 /* Allocate the structure if it has not already been allocated by a
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1259 return (struct bfd_hash_entry *) ret;
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1288 return (struct bfd_hash_entry *) ret;
1291 /* Allocate MIPS ELF private object data. */
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1303 if (!sec->used_by_bfd)
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1308 sdata = bfd_zalloc (abfd, amt);
1311 sec->used_by_bfd = sdata;
1314 return _bfd_elf_new_section_hook (abfd, sec);
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1325 const struct ecoff_debug_swap *swap;
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1342 /* The symbolic header contains absolute file offsets and sizes to
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1377 if (ext_hdr != NULL)
1379 if (debug->line != NULL)
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1422 /* Create a runtime procedure table from the .mdebug section. */
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1432 struct rpdr_ext *erp;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1439 bfd_size_type count;
1440 unsigned long sindex;
1444 const char *no_name_func = _("static procedure (no name)");
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1458 size = swap->external_pdr_size;
1460 epdr = bfd_malloc (size * count);
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1517 mips_elf_hash_table (info)->procedure_count = 0;
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1537 /* Set the size and contents of .rtproc section. */
1539 s->contents = rtproc;
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1585 if (ELF_ST_IS_MICROMIPS (h->root.other))
1588 /* Create a new symbol. */
1589 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1591 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1592 BSF_LOCAL, s, value, NULL,
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1600 elfh->forced_local = 1;
1604 /* We're about to redefine H. Create a symbol to represent H's
1605 current value and size, to help make the disassembly easier
1609 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1610 struct mips_elf_link_hash_entry *h,
1613 struct bfd_link_hash_entry *bh;
1614 struct elf_link_hash_entry *elfh;
1619 /* Read the symbol's value. */
1620 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1621 || h->root.root.type == bfd_link_hash_defweak);
1622 s = h->root.root.u.def.section;
1623 value = h->root.root.u.def.value;
1625 /* Create a new symbol. */
1626 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1628 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1629 BSF_LOCAL, s, value, NULL,
1633 /* Make it local and copy the other attributes from H. */
1634 elfh = (struct elf_link_hash_entry *) bh;
1635 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1636 elfh->other = h->root.other;
1637 elfh->size = h->root.size;
1638 elfh->forced_local = 1;
1642 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1643 function rather than to a hard-float stub. */
1646 section_allows_mips16_refs_p (asection *section)
1650 name = bfd_get_section_name (section->owner, section);
1651 return (FN_STUB_P (name)
1652 || CALL_STUB_P (name)
1653 || CALL_FP_STUB_P (name)
1654 || strcmp (name, ".pdr") == 0);
1657 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1658 stub section of some kind. Return the R_SYMNDX of the target
1659 function, or 0 if we can't decide which function that is. */
1661 static unsigned long
1662 mips16_stub_symndx (const struct elf_backend_data *bed,
1663 asection *sec ATTRIBUTE_UNUSED,
1664 const Elf_Internal_Rela *relocs,
1665 const Elf_Internal_Rela *relend)
1667 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1668 const Elf_Internal_Rela *rel;
1670 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1671 one in a compound relocation. */
1672 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1673 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1674 return ELF_R_SYM (sec->owner, rel->r_info);
1676 /* Otherwise trust the first relocation, whatever its kind. This is
1677 the traditional behavior. */
1678 if (relocs < relend)
1679 return ELF_R_SYM (sec->owner, relocs->r_info);
1684 /* Check the mips16 stubs for a particular symbol, and see if we can
1688 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1689 struct mips_elf_link_hash_entry *h)
1691 /* Dynamic symbols must use the standard call interface, in case other
1692 objects try to call them. */
1693 if (h->fn_stub != NULL
1694 && h->root.dynindx != -1)
1696 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1697 h->need_fn_stub = TRUE;
1700 if (h->fn_stub != NULL
1701 && ! h->need_fn_stub)
1703 /* We don't need the fn_stub; the only references to this symbol
1704 are 16 bit calls. Clobber the size to 0 to prevent it from
1705 being included in the link. */
1706 h->fn_stub->size = 0;
1707 h->fn_stub->flags &= ~SEC_RELOC;
1708 h->fn_stub->reloc_count = 0;
1709 h->fn_stub->flags |= SEC_EXCLUDE;
1712 if (h->call_stub != NULL
1713 && ELF_ST_IS_MIPS16 (h->root.other))
1715 /* We don't need the call_stub; this is a 16 bit function, so
1716 calls from other 16 bit functions are OK. Clobber the size
1717 to 0 to prevent it from being included in the link. */
1718 h->call_stub->size = 0;
1719 h->call_stub->flags &= ~SEC_RELOC;
1720 h->call_stub->reloc_count = 0;
1721 h->call_stub->flags |= SEC_EXCLUDE;
1724 if (h->call_fp_stub != NULL
1725 && ELF_ST_IS_MIPS16 (h->root.other))
1727 /* We don't need the call_stub; this is a 16 bit function, so
1728 calls from other 16 bit functions are OK. Clobber the size
1729 to 0 to prevent it from being included in the link. */
1730 h->call_fp_stub->size = 0;
1731 h->call_fp_stub->flags &= ~SEC_RELOC;
1732 h->call_fp_stub->reloc_count = 0;
1733 h->call_fp_stub->flags |= SEC_EXCLUDE;
1737 /* Hashtable callbacks for mips_elf_la25_stubs. */
1740 mips_elf_la25_stub_hash (const void *entry_)
1742 const struct mips_elf_la25_stub *entry;
1744 entry = (struct mips_elf_la25_stub *) entry_;
1745 return entry->h->root.root.u.def.section->id
1746 + entry->h->root.root.u.def.value;
1750 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1752 const struct mips_elf_la25_stub *entry1, *entry2;
1754 entry1 = (struct mips_elf_la25_stub *) entry1_;
1755 entry2 = (struct mips_elf_la25_stub *) entry2_;
1756 return ((entry1->h->root.root.u.def.section
1757 == entry2->h->root.root.u.def.section)
1758 && (entry1->h->root.root.u.def.value
1759 == entry2->h->root.root.u.def.value));
1762 /* Called by the linker to set up the la25 stub-creation code. FN is
1763 the linker's implementation of add_stub_function. Return true on
1767 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1768 asection *(*fn) (const char *, asection *,
1771 struct mips_elf_link_hash_table *htab;
1773 htab = mips_elf_hash_table (info);
1777 htab->add_stub_section = fn;
1778 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1779 mips_elf_la25_stub_eq, NULL);
1780 if (htab->la25_stubs == NULL)
1786 /* Return true if H is a locally-defined PIC function, in the sense
1787 that it or its fn_stub might need $25 to be valid on entry.
1788 Note that MIPS16 functions set up $gp using PC-relative instructions,
1789 so they themselves never need $25 to be valid. Only non-MIPS16
1790 entry points are of interest here. */
1793 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1795 return ((h->root.root.type == bfd_link_hash_defined
1796 || h->root.root.type == bfd_link_hash_defweak)
1797 && h->root.def_regular
1798 && !bfd_is_abs_section (h->root.root.u.def.section)
1799 && (!ELF_ST_IS_MIPS16 (h->root.other)
1800 || (h->fn_stub && h->need_fn_stub))
1801 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1802 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1805 /* Set *SEC to the input section that contains the target of STUB.
1806 Return the offset of the target from the start of that section. */
1809 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1812 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1814 BFD_ASSERT (stub->h->need_fn_stub);
1815 *sec = stub->h->fn_stub;
1820 *sec = stub->h->root.root.u.def.section;
1821 return stub->h->root.root.u.def.value;
1825 /* STUB describes an la25 stub that we have decided to implement
1826 by inserting an LUI/ADDIU pair before the target function.
1827 Create the section and redirect the function symbol to it. */
1830 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1831 struct bfd_link_info *info)
1833 struct mips_elf_link_hash_table *htab;
1835 asection *s, *input_section;
1838 htab = mips_elf_hash_table (info);
1842 /* Create a unique name for the new section. */
1843 name = bfd_malloc (11 + sizeof (".text.stub."));
1846 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1848 /* Create the section. */
1849 mips_elf_get_la25_target (stub, &input_section);
1850 s = htab->add_stub_section (name, input_section,
1851 input_section->output_section);
1855 /* Make sure that any padding goes before the stub. */
1856 align = input_section->alignment_power;
1857 if (!bfd_set_section_alignment (s->owner, s, align))
1860 s->size = (1 << align) - 8;
1862 /* Create a symbol for the stub. */
1863 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1864 stub->stub_section = s;
1865 stub->offset = s->size;
1867 /* Allocate room for it. */
1872 /* STUB describes an la25 stub that we have decided to implement
1873 with a separate trampoline. Allocate room for it and redirect
1874 the function symbol to it. */
1877 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1878 struct bfd_link_info *info)
1880 struct mips_elf_link_hash_table *htab;
1883 htab = mips_elf_hash_table (info);
1887 /* Create a trampoline section, if we haven't already. */
1888 s = htab->strampoline;
1891 asection *input_section = stub->h->root.root.u.def.section;
1892 s = htab->add_stub_section (".text", NULL,
1893 input_section->output_section);
1894 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1896 htab->strampoline = s;
1899 /* Create a symbol for the stub. */
1900 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1901 stub->stub_section = s;
1902 stub->offset = s->size;
1904 /* Allocate room for it. */
1909 /* H describes a symbol that needs an la25 stub. Make sure that an
1910 appropriate stub exists and point H at it. */
1913 mips_elf_add_la25_stub (struct bfd_link_info *info,
1914 struct mips_elf_link_hash_entry *h)
1916 struct mips_elf_link_hash_table *htab;
1917 struct mips_elf_la25_stub search, *stub;
1918 bfd_boolean use_trampoline_p;
1923 /* Describe the stub we want. */
1924 search.stub_section = NULL;
1928 /* See if we've already created an equivalent stub. */
1929 htab = mips_elf_hash_table (info);
1933 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1937 stub = (struct mips_elf_la25_stub *) *slot;
1940 /* We can reuse the existing stub. */
1941 h->la25_stub = stub;
1945 /* Create a permanent copy of ENTRY and add it to the hash table. */
1946 stub = bfd_malloc (sizeof (search));
1952 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1953 of the section and if we would need no more than 2 nops. */
1954 value = mips_elf_get_la25_target (stub, &s);
1955 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1957 h->la25_stub = stub;
1958 return (use_trampoline_p
1959 ? mips_elf_add_la25_trampoline (stub, info)
1960 : mips_elf_add_la25_intro (stub, info));
1963 /* A mips_elf_link_hash_traverse callback that is called before sizing
1964 sections. DATA points to a mips_htab_traverse_info structure. */
1967 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1969 struct mips_htab_traverse_info *hti;
1971 hti = (struct mips_htab_traverse_info *) data;
1972 if (!bfd_link_relocatable (hti->info))
1973 mips_elf_check_mips16_stubs (hti->info, h);
1975 if (mips_elf_local_pic_function_p (h))
1977 /* PR 12845: If H is in a section that has been garbage
1978 collected it will have its output section set to *ABS*. */
1979 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1982 /* H is a function that might need $25 to be valid on entry.
1983 If we're creating a non-PIC relocatable object, mark H as
1984 being PIC. If we're creating a non-relocatable object with
1985 non-PIC branches and jumps to H, make sure that H has an la25
1987 if (bfd_link_relocatable (hti->info))
1989 if (!PIC_OBJECT_P (hti->output_bfd))
1990 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1992 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2001 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2002 Most mips16 instructions are 16 bits, but these instructions
2005 The format of these instructions is:
2007 +--------------+--------------------------------+
2008 | JALX | X| Imm 20:16 | Imm 25:21 |
2009 +--------------+--------------------------------+
2011 +-----------------------------------------------+
2013 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2014 Note that the immediate value in the first word is swapped.
2016 When producing a relocatable object file, R_MIPS16_26 is
2017 handled mostly like R_MIPS_26. In particular, the addend is
2018 stored as a straight 26-bit value in a 32-bit instruction.
2019 (gas makes life simpler for itself by never adjusting a
2020 R_MIPS16_26 reloc to be against a section, so the addend is
2021 always zero). However, the 32 bit instruction is stored as 2
2022 16-bit values, rather than a single 32-bit value. In a
2023 big-endian file, the result is the same; in a little-endian
2024 file, the two 16-bit halves of the 32 bit value are swapped.
2025 This is so that a disassembler can recognize the jal
2028 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2029 instruction stored as two 16-bit values. The addend A is the
2030 contents of the targ26 field. The calculation is the same as
2031 R_MIPS_26. When storing the calculated value, reorder the
2032 immediate value as shown above, and don't forget to store the
2033 value as two 16-bit values.
2035 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2039 +--------+----------------------+
2043 +--------+----------------------+
2046 +----------+------+-------------+
2050 +----------+--------------------+
2051 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2052 ((sub1 << 16) | sub2)).
2054 When producing a relocatable object file, the calculation is
2055 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2056 When producing a fully linked file, the calculation is
2057 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2058 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2060 The table below lists the other MIPS16 instruction relocations.
2061 Each one is calculated in the same way as the non-MIPS16 relocation
2062 given on the right, but using the extended MIPS16 layout of 16-bit
2065 R_MIPS16_GPREL R_MIPS_GPREL16
2066 R_MIPS16_GOT16 R_MIPS_GOT16
2067 R_MIPS16_CALL16 R_MIPS_CALL16
2068 R_MIPS16_HI16 R_MIPS_HI16
2069 R_MIPS16_LO16 R_MIPS_LO16
2071 A typical instruction will have a format like this:
2073 +--------------+--------------------------------+
2074 | EXTEND | Imm 10:5 | Imm 15:11 |
2075 +--------------+--------------------------------+
2076 | Major | rx | ry | Imm 4:0 |
2077 +--------------+--------------------------------+
2079 EXTEND is the five bit value 11110. Major is the instruction
2082 All we need to do here is shuffle the bits appropriately.
2083 As above, the two 16-bit halves must be swapped on a
2084 little-endian system. */
2086 static inline bfd_boolean
2087 mips16_reloc_p (int r_type)
2092 case R_MIPS16_GPREL:
2093 case R_MIPS16_GOT16:
2094 case R_MIPS16_CALL16:
2097 case R_MIPS16_TLS_GD:
2098 case R_MIPS16_TLS_LDM:
2099 case R_MIPS16_TLS_DTPREL_HI16:
2100 case R_MIPS16_TLS_DTPREL_LO16:
2101 case R_MIPS16_TLS_GOTTPREL:
2102 case R_MIPS16_TLS_TPREL_HI16:
2103 case R_MIPS16_TLS_TPREL_LO16:
2111 /* Check if a microMIPS reloc. */
2113 static inline bfd_boolean
2114 micromips_reloc_p (unsigned int r_type)
2116 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2119 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2120 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2121 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2123 static inline bfd_boolean
2124 micromips_reloc_shuffle_p (unsigned int r_type)
2126 return (micromips_reloc_p (r_type)
2127 && r_type != R_MICROMIPS_PC7_S1
2128 && r_type != R_MICROMIPS_PC10_S1);
2131 static inline bfd_boolean
2132 got16_reloc_p (int r_type)
2134 return (r_type == R_MIPS_GOT16
2135 || r_type == R_MIPS16_GOT16
2136 || r_type == R_MICROMIPS_GOT16);
2139 static inline bfd_boolean
2140 call16_reloc_p (int r_type)
2142 return (r_type == R_MIPS_CALL16
2143 || r_type == R_MIPS16_CALL16
2144 || r_type == R_MICROMIPS_CALL16);
2147 static inline bfd_boolean
2148 got_disp_reloc_p (unsigned int r_type)
2150 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2153 static inline bfd_boolean
2154 got_page_reloc_p (unsigned int r_type)
2156 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2159 static inline bfd_boolean
2160 got_ofst_reloc_p (unsigned int r_type)
2162 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2165 static inline bfd_boolean
2166 got_hi16_reloc_p (unsigned int r_type)
2168 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2171 static inline bfd_boolean
2172 got_lo16_reloc_p (unsigned int r_type)
2174 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 static inline bfd_boolean
2178 call_hi16_reloc_p (unsigned int r_type)
2180 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 static inline bfd_boolean
2184 call_lo16_reloc_p (unsigned int r_type)
2186 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 static inline bfd_boolean
2190 hi16_reloc_p (int r_type)
2192 return (r_type == R_MIPS_HI16
2193 || r_type == R_MIPS16_HI16
2194 || r_type == R_MICROMIPS_HI16
2195 || r_type == R_MIPS_PCHI16);
2198 static inline bfd_boolean
2199 lo16_reloc_p (int r_type)
2201 return (r_type == R_MIPS_LO16
2202 || r_type == R_MIPS16_LO16
2203 || r_type == R_MICROMIPS_LO16
2204 || r_type == R_MIPS_PCLO16);
2207 static inline bfd_boolean
2208 mips16_call_reloc_p (int r_type)
2210 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 static inline bfd_boolean
2214 jal_reloc_p (int r_type)
2216 return (r_type == R_MIPS_26
2217 || r_type == R_MIPS16_26
2218 || r_type == R_MICROMIPS_26_S1);
2221 static inline bfd_boolean
2222 aligned_pcrel_reloc_p (int r_type)
2224 return (r_type == R_MIPS_PC18_S3
2225 || r_type == R_MIPS_PC19_S2);
2228 static inline bfd_boolean
2229 micromips_branch_reloc_p (int r_type)
2231 return (r_type == R_MICROMIPS_26_S1
2232 || r_type == R_MICROMIPS_PC16_S1
2233 || r_type == R_MICROMIPS_PC10_S1
2234 || r_type == R_MICROMIPS_PC7_S1);
2237 static inline bfd_boolean
2238 tls_gd_reloc_p (unsigned int r_type)
2240 return (r_type == R_MIPS_TLS_GD
2241 || r_type == R_MIPS16_TLS_GD
2242 || r_type == R_MICROMIPS_TLS_GD);
2245 static inline bfd_boolean
2246 tls_ldm_reloc_p (unsigned int r_type)
2248 return (r_type == R_MIPS_TLS_LDM
2249 || r_type == R_MIPS16_TLS_LDM
2250 || r_type == R_MICROMIPS_TLS_LDM);
2253 static inline bfd_boolean
2254 tls_gottprel_reloc_p (unsigned int r_type)
2256 return (r_type == R_MIPS_TLS_GOTTPREL
2257 || r_type == R_MIPS16_TLS_GOTTPREL
2258 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2262 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2263 bfd_boolean jal_shuffle, bfd_byte *data)
2265 bfd_vma first, second, val;
2267 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2270 /* Pick up the first and second halfwords of the instruction. */
2271 first = bfd_get_16 (abfd, data);
2272 second = bfd_get_16 (abfd, data + 2);
2273 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2274 val = first << 16 | second;
2275 else if (r_type != R_MIPS16_26)
2276 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2277 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2279 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2280 | ((first & 0x1f) << 21) | second);
2281 bfd_put_32 (abfd, val, data);
2285 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2286 bfd_boolean jal_shuffle, bfd_byte *data)
2288 bfd_vma first, second, val;
2290 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2293 val = bfd_get_32 (abfd, data);
2294 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2296 second = val & 0xffff;
2299 else if (r_type != R_MIPS16_26)
2301 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2302 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2306 second = val & 0xffff;
2307 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2308 | ((val >> 21) & 0x1f);
2310 bfd_put_16 (abfd, second, data + 2);
2311 bfd_put_16 (abfd, first, data);
2314 bfd_reloc_status_type
2315 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2316 arelent *reloc_entry, asection *input_section,
2317 bfd_boolean relocatable, void *data, bfd_vma gp)
2321 bfd_reloc_status_type status;
2323 if (bfd_is_com_section (symbol->section))
2326 relocation = symbol->value;
2328 relocation += symbol->section->output_section->vma;
2329 relocation += symbol->section->output_offset;
2331 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2332 return bfd_reloc_outofrange;
2334 /* Set val to the offset into the section or symbol. */
2335 val = reloc_entry->addend;
2337 _bfd_mips_elf_sign_extend (val, 16);
2339 /* Adjust val for the final section location and GP value. If we
2340 are producing relocatable output, we don't want to do this for
2341 an external symbol. */
2343 || (symbol->flags & BSF_SECTION_SYM) != 0)
2344 val += relocation - gp;
2346 if (reloc_entry->howto->partial_inplace)
2348 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2350 + reloc_entry->address);
2351 if (status != bfd_reloc_ok)
2355 reloc_entry->addend = val;
2358 reloc_entry->address += input_section->output_offset;
2360 return bfd_reloc_ok;
2363 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2364 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2365 that contains the relocation field and DATA points to the start of
2370 struct mips_hi16 *next;
2372 asection *input_section;
2376 /* FIXME: This should not be a static variable. */
2378 static struct mips_hi16 *mips_hi16_list;
2380 /* A howto special_function for REL *HI16 relocations. We can only
2381 calculate the correct value once we've seen the partnering
2382 *LO16 relocation, so just save the information for later.
2384 The ABI requires that the *LO16 immediately follow the *HI16.
2385 However, as a GNU extension, we permit an arbitrary number of
2386 *HI16s to be associated with a single *LO16. This significantly
2387 simplies the relocation handling in gcc. */
2389 bfd_reloc_status_type
2390 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2391 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2392 asection *input_section, bfd *output_bfd,
2393 char **error_message ATTRIBUTE_UNUSED)
2395 struct mips_hi16 *n;
2397 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2398 return bfd_reloc_outofrange;
2400 n = bfd_malloc (sizeof *n);
2402 return bfd_reloc_outofrange;
2404 n->next = mips_hi16_list;
2406 n->input_section = input_section;
2407 n->rel = *reloc_entry;
2410 if (output_bfd != NULL)
2411 reloc_entry->address += input_section->output_offset;
2413 return bfd_reloc_ok;
2416 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2417 like any other 16-bit relocation when applied to global symbols, but is
2418 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2420 bfd_reloc_status_type
2421 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2422 void *data, asection *input_section,
2423 bfd *output_bfd, char **error_message)
2425 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2426 || bfd_is_und_section (bfd_get_section (symbol))
2427 || bfd_is_com_section (bfd_get_section (symbol)))
2428 /* The relocation is against a global symbol. */
2429 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2430 input_section, output_bfd,
2433 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2434 input_section, output_bfd, error_message);
2437 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2438 is a straightforward 16 bit inplace relocation, but we must deal with
2439 any partnering high-part relocations as well. */
2441 bfd_reloc_status_type
2442 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2443 void *data, asection *input_section,
2444 bfd *output_bfd, char **error_message)
2447 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2449 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2450 return bfd_reloc_outofrange;
2452 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2454 vallo = bfd_get_32 (abfd, location);
2455 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2458 while (mips_hi16_list != NULL)
2460 bfd_reloc_status_type ret;
2461 struct mips_hi16 *hi;
2463 hi = mips_hi16_list;
2465 /* R_MIPS*_GOT16 relocations are something of a special case. We
2466 want to install the addend in the same way as for a R_MIPS*_HI16
2467 relocation (with a rightshift of 16). However, since GOT16
2468 relocations can also be used with global symbols, their howto
2469 has a rightshift of 0. */
2470 if (hi->rel.howto->type == R_MIPS_GOT16)
2471 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2472 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2473 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2474 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2475 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2477 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2478 carry or borrow will induce a change of +1 or -1 in the high part. */
2479 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2481 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2482 hi->input_section, output_bfd,
2484 if (ret != bfd_reloc_ok)
2487 mips_hi16_list = hi->next;
2491 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2492 input_section, output_bfd,
2496 /* A generic howto special_function. This calculates and installs the
2497 relocation itself, thus avoiding the oft-discussed problems in
2498 bfd_perform_relocation and bfd_install_relocation. */
2500 bfd_reloc_status_type
2501 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2502 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2503 asection *input_section, bfd *output_bfd,
2504 char **error_message ATTRIBUTE_UNUSED)
2507 bfd_reloc_status_type status;
2508 bfd_boolean relocatable;
2510 relocatable = (output_bfd != NULL);
2512 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2513 return bfd_reloc_outofrange;
2515 /* Build up the field adjustment in VAL. */
2517 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2519 /* Either we're calculating the final field value or we have a
2520 relocation against a section symbol. Add in the section's
2521 offset or address. */
2522 val += symbol->section->output_section->vma;
2523 val += symbol->section->output_offset;
2528 /* We're calculating the final field value. Add in the symbol's value
2529 and, if pc-relative, subtract the address of the field itself. */
2530 val += symbol->value;
2531 if (reloc_entry->howto->pc_relative)
2533 val -= input_section->output_section->vma;
2534 val -= input_section->output_offset;
2535 val -= reloc_entry->address;
2539 /* VAL is now the final adjustment. If we're keeping this relocation
2540 in the output file, and if the relocation uses a separate addend,
2541 we just need to add VAL to that addend. Otherwise we need to add
2542 VAL to the relocation field itself. */
2543 if (relocatable && !reloc_entry->howto->partial_inplace)
2544 reloc_entry->addend += val;
2547 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2549 /* Add in the separate addend, if any. */
2550 val += reloc_entry->addend;
2552 /* Add VAL to the relocation field. */
2553 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2555 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2557 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2560 if (status != bfd_reloc_ok)
2565 reloc_entry->address += input_section->output_offset;
2567 return bfd_reloc_ok;
2570 /* Swap an entry in a .gptab section. Note that these routines rely
2571 on the equivalence of the two elements of the union. */
2574 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2577 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2578 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2582 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2583 Elf32_External_gptab *ex)
2585 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2586 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2590 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2591 Elf32_External_compact_rel *ex)
2593 H_PUT_32 (abfd, in->id1, ex->id1);
2594 H_PUT_32 (abfd, in->num, ex->num);
2595 H_PUT_32 (abfd, in->id2, ex->id2);
2596 H_PUT_32 (abfd, in->offset, ex->offset);
2597 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2598 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2602 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2603 Elf32_External_crinfo *ex)
2607 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2608 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2609 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2610 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2611 H_PUT_32 (abfd, l, ex->info);
2612 H_PUT_32 (abfd, in->konst, ex->konst);
2613 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2616 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2617 routines swap this structure in and out. They are used outside of
2618 BFD, so they are globally visible. */
2621 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2624 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2625 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2626 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2627 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2628 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2629 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2633 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2634 Elf32_External_RegInfo *ex)
2636 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2637 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2638 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2639 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2640 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2641 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2644 /* In the 64 bit ABI, the .MIPS.options section holds register
2645 information in an Elf64_Reginfo structure. These routines swap
2646 them in and out. They are globally visible because they are used
2647 outside of BFD. These routines are here so that gas can call them
2648 without worrying about whether the 64 bit ABI has been included. */
2651 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2652 Elf64_Internal_RegInfo *in)
2654 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2655 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2656 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2657 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2658 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2659 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2660 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2664 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2665 Elf64_External_RegInfo *ex)
2667 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2668 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2669 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2670 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2671 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2672 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2673 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2676 /* Swap in an options header. */
2679 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2680 Elf_Internal_Options *in)
2682 in->kind = H_GET_8 (abfd, ex->kind);
2683 in->size = H_GET_8 (abfd, ex->size);
2684 in->section = H_GET_16 (abfd, ex->section);
2685 in->info = H_GET_32 (abfd, ex->info);
2688 /* Swap out an options header. */
2691 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2692 Elf_External_Options *ex)
2694 H_PUT_8 (abfd, in->kind, ex->kind);
2695 H_PUT_8 (abfd, in->size, ex->size);
2696 H_PUT_16 (abfd, in->section, ex->section);
2697 H_PUT_32 (abfd, in->info, ex->info);
2700 /* Swap in an abiflags structure. */
2703 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2704 const Elf_External_ABIFlags_v0 *ex,
2705 Elf_Internal_ABIFlags_v0 *in)
2707 in->version = H_GET_16 (abfd, ex->version);
2708 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2709 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2710 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2711 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2712 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2713 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2714 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2715 in->ases = H_GET_32 (abfd, ex->ases);
2716 in->flags1 = H_GET_32 (abfd, ex->flags1);
2717 in->flags2 = H_GET_32 (abfd, ex->flags2);
2720 /* Swap out an abiflags structure. */
2723 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2724 const Elf_Internal_ABIFlags_v0 *in,
2725 Elf_External_ABIFlags_v0 *ex)
2727 H_PUT_16 (abfd, in->version, ex->version);
2728 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2729 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2730 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2731 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2732 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2733 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2734 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2735 H_PUT_32 (abfd, in->ases, ex->ases);
2736 H_PUT_32 (abfd, in->flags1, ex->flags1);
2737 H_PUT_32 (abfd, in->flags2, ex->flags2);
2740 /* This function is called via qsort() to sort the dynamic relocation
2741 entries by increasing r_symndx value. */
2744 sort_dynamic_relocs (const void *arg1, const void *arg2)
2746 Elf_Internal_Rela int_reloc1;
2747 Elf_Internal_Rela int_reloc2;
2750 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2751 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2753 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2757 if (int_reloc1.r_offset < int_reloc2.r_offset)
2759 if (int_reloc1.r_offset > int_reloc2.r_offset)
2764 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2767 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2768 const void *arg2 ATTRIBUTE_UNUSED)
2771 Elf_Internal_Rela int_reloc1[3];
2772 Elf_Internal_Rela int_reloc2[3];
2774 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2775 (reldyn_sorting_bfd, arg1, int_reloc1);
2776 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2777 (reldyn_sorting_bfd, arg2, int_reloc2);
2779 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2781 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2784 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2786 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2795 /* This routine is used to write out ECOFF debugging external symbol
2796 information. It is called via mips_elf_link_hash_traverse. The
2797 ECOFF external symbol information must match the ELF external
2798 symbol information. Unfortunately, at this point we don't know
2799 whether a symbol is required by reloc information, so the two
2800 tables may wind up being different. We must sort out the external
2801 symbol information before we can set the final size of the .mdebug
2802 section, and we must set the size of the .mdebug section before we
2803 can relocate any sections, and we can't know which symbols are
2804 required by relocation until we relocate the sections.
2805 Fortunately, it is relatively unlikely that any symbol will be
2806 stripped but required by a reloc. In particular, it can not happen
2807 when generating a final executable. */
2810 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2812 struct extsym_info *einfo = data;
2814 asection *sec, *output_section;
2816 if (h->root.indx == -2)
2818 else if ((h->root.def_dynamic
2819 || h->root.ref_dynamic
2820 || h->root.type == bfd_link_hash_new)
2821 && !h->root.def_regular
2822 && !h->root.ref_regular)
2824 else if (einfo->info->strip == strip_all
2825 || (einfo->info->strip == strip_some
2826 && bfd_hash_lookup (einfo->info->keep_hash,
2827 h->root.root.root.string,
2828 FALSE, FALSE) == NULL))
2836 if (h->esym.ifd == -2)
2839 h->esym.cobol_main = 0;
2840 h->esym.weakext = 0;
2841 h->esym.reserved = 0;
2842 h->esym.ifd = ifdNil;
2843 h->esym.asym.value = 0;
2844 h->esym.asym.st = stGlobal;
2846 if (h->root.root.type == bfd_link_hash_undefined
2847 || h->root.root.type == bfd_link_hash_undefweak)
2851 /* Use undefined class. Also, set class and type for some
2853 name = h->root.root.root.string;
2854 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2855 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2857 h->esym.asym.sc = scData;
2858 h->esym.asym.st = stLabel;
2859 h->esym.asym.value = 0;
2861 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2863 h->esym.asym.sc = scAbs;
2864 h->esym.asym.st = stLabel;
2865 h->esym.asym.value =
2866 mips_elf_hash_table (einfo->info)->procedure_count;
2868 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2870 h->esym.asym.sc = scAbs;
2871 h->esym.asym.st = stLabel;
2872 h->esym.asym.value = elf_gp (einfo->abfd);
2875 h->esym.asym.sc = scUndefined;
2877 else if (h->root.root.type != bfd_link_hash_defined
2878 && h->root.root.type != bfd_link_hash_defweak)
2879 h->esym.asym.sc = scAbs;
2884 sec = h->root.root.u.def.section;
2885 output_section = sec->output_section;
2887 /* When making a shared library and symbol h is the one from
2888 the another shared library, OUTPUT_SECTION may be null. */
2889 if (output_section == NULL)
2890 h->esym.asym.sc = scUndefined;
2893 name = bfd_section_name (output_section->owner, output_section);
2895 if (strcmp (name, ".text") == 0)
2896 h->esym.asym.sc = scText;
2897 else if (strcmp (name, ".data") == 0)
2898 h->esym.asym.sc = scData;
2899 else if (strcmp (name, ".sdata") == 0)
2900 h->esym.asym.sc = scSData;
2901 else if (strcmp (name, ".rodata") == 0
2902 || strcmp (name, ".rdata") == 0)
2903 h->esym.asym.sc = scRData;
2904 else if (strcmp (name, ".bss") == 0)
2905 h->esym.asym.sc = scBss;
2906 else if (strcmp (name, ".sbss") == 0)
2907 h->esym.asym.sc = scSBss;
2908 else if (strcmp (name, ".init") == 0)
2909 h->esym.asym.sc = scInit;
2910 else if (strcmp (name, ".fini") == 0)
2911 h->esym.asym.sc = scFini;
2913 h->esym.asym.sc = scAbs;
2917 h->esym.asym.reserved = 0;
2918 h->esym.asym.index = indexNil;
2921 if (h->root.root.type == bfd_link_hash_common)
2922 h->esym.asym.value = h->root.root.u.c.size;
2923 else if (h->root.root.type == bfd_link_hash_defined
2924 || h->root.root.type == bfd_link_hash_defweak)
2926 if (h->esym.asym.sc == scCommon)
2927 h->esym.asym.sc = scBss;
2928 else if (h->esym.asym.sc == scSCommon)
2929 h->esym.asym.sc = scSBss;
2931 sec = h->root.root.u.def.section;
2932 output_section = sec->output_section;
2933 if (output_section != NULL)
2934 h->esym.asym.value = (h->root.root.u.def.value
2935 + sec->output_offset
2936 + output_section->vma);
2938 h->esym.asym.value = 0;
2942 struct mips_elf_link_hash_entry *hd = h;
2944 while (hd->root.root.type == bfd_link_hash_indirect)
2945 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2947 if (hd->needs_lazy_stub)
2949 BFD_ASSERT (hd->root.plt.plist != NULL);
2950 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2951 /* Set type and value for a symbol with a function stub. */
2952 h->esym.asym.st = stProc;
2953 sec = hd->root.root.u.def.section;
2955 h->esym.asym.value = 0;
2958 output_section = sec->output_section;
2959 if (output_section != NULL)
2960 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2961 + sec->output_offset
2962 + output_section->vma);
2964 h->esym.asym.value = 0;
2969 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2970 h->root.root.root.string,
2973 einfo->failed = TRUE;
2980 /* A comparison routine used to sort .gptab entries. */
2983 gptab_compare (const void *p1, const void *p2)
2985 const Elf32_gptab *a1 = p1;
2986 const Elf32_gptab *a2 = p2;
2988 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2991 /* Functions to manage the got entry hash table. */
2993 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2996 static INLINE hashval_t
2997 mips_elf_hash_bfd_vma (bfd_vma addr)
3000 return addr + (addr >> 32);
3007 mips_elf_got_entry_hash (const void *entry_)
3009 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3011 return (entry->symndx
3012 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3013 + (entry->tls_type == GOT_TLS_LDM ? 0
3014 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3015 : entry->symndx >= 0 ? (entry->abfd->id
3016 + mips_elf_hash_bfd_vma (entry->d.addend))
3017 : entry->d.h->root.root.root.hash));
3021 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3023 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3024 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3026 return (e1->symndx == e2->symndx
3027 && e1->tls_type == e2->tls_type
3028 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3029 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3030 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3031 && e1->d.addend == e2->d.addend)
3032 : e2->abfd && e1->d.h == e2->d.h));
3036 mips_got_page_ref_hash (const void *ref_)
3038 const struct mips_got_page_ref *ref;
3040 ref = (const struct mips_got_page_ref *) ref_;
3041 return ((ref->symndx >= 0
3042 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3043 : ref->u.h->root.root.root.hash)
3044 + mips_elf_hash_bfd_vma (ref->addend));
3048 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3050 const struct mips_got_page_ref *ref1, *ref2;
3052 ref1 = (const struct mips_got_page_ref *) ref1_;
3053 ref2 = (const struct mips_got_page_ref *) ref2_;
3054 return (ref1->symndx == ref2->symndx
3055 && (ref1->symndx < 0
3056 ? ref1->u.h == ref2->u.h
3057 : ref1->u.abfd == ref2->u.abfd)
3058 && ref1->addend == ref2->addend);
3062 mips_got_page_entry_hash (const void *entry_)
3064 const struct mips_got_page_entry *entry;
3066 entry = (const struct mips_got_page_entry *) entry_;
3067 return entry->sec->id;
3071 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3073 const struct mips_got_page_entry *entry1, *entry2;
3075 entry1 = (const struct mips_got_page_entry *) entry1_;
3076 entry2 = (const struct mips_got_page_entry *) entry2_;
3077 return entry1->sec == entry2->sec;
3080 /* Create and return a new mips_got_info structure. */
3082 static struct mips_got_info *
3083 mips_elf_create_got_info (bfd *abfd)
3085 struct mips_got_info *g;
3087 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3091 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3092 mips_elf_got_entry_eq, NULL);
3093 if (g->got_entries == NULL)
3096 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3097 mips_got_page_ref_eq, NULL);
3098 if (g->got_page_refs == NULL)
3104 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3105 CREATE_P and if ABFD doesn't already have a GOT. */
3107 static struct mips_got_info *
3108 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3110 struct mips_elf_obj_tdata *tdata;
3112 if (!is_mips_elf (abfd))
3115 tdata = mips_elf_tdata (abfd);
3116 if (!tdata->got && create_p)
3117 tdata->got = mips_elf_create_got_info (abfd);
3121 /* Record that ABFD should use output GOT G. */
3124 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3126 struct mips_elf_obj_tdata *tdata;
3128 BFD_ASSERT (is_mips_elf (abfd));
3129 tdata = mips_elf_tdata (abfd);
3132 /* The GOT structure itself and the hash table entries are
3133 allocated to a bfd, but the hash tables aren't. */
3134 htab_delete (tdata->got->got_entries);
3135 htab_delete (tdata->got->got_page_refs);
3136 if (tdata->got->got_page_entries)
3137 htab_delete (tdata->got->got_page_entries);
3142 /* Return the dynamic relocation section. If it doesn't exist, try to
3143 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3144 if creation fails. */
3147 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3153 dname = MIPS_ELF_REL_DYN_NAME (info);
3154 dynobj = elf_hash_table (info)->dynobj;
3155 sreloc = bfd_get_linker_section (dynobj, dname);
3156 if (sreloc == NULL && create_p)
3158 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3163 | SEC_LINKER_CREATED
3166 || ! bfd_set_section_alignment (dynobj, sreloc,
3167 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3173 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3176 mips_elf_reloc_tls_type (unsigned int r_type)
3178 if (tls_gd_reloc_p (r_type))
3181 if (tls_ldm_reloc_p (r_type))
3184 if (tls_gottprel_reloc_p (r_type))
3187 return GOT_TLS_NONE;
3190 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3193 mips_tls_got_entries (unsigned int type)
3210 /* Count the number of relocations needed for a TLS GOT entry, with
3211 access types from TLS_TYPE, and symbol H (or a local symbol if H
3215 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3216 struct elf_link_hash_entry *h)
3219 bfd_boolean need_relocs = FALSE;
3220 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3222 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3223 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3226 if ((bfd_link_pic (info) || indx != 0)
3228 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3229 || h->root.type != bfd_link_hash_undefweak))
3238 return indx != 0 ? 2 : 1;
3244 return bfd_link_pic (info) ? 1 : 0;
3251 /* Add the number of GOT entries and TLS relocations required by ENTRY
3255 mips_elf_count_got_entry (struct bfd_link_info *info,
3256 struct mips_got_info *g,
3257 struct mips_got_entry *entry)
3259 if (entry->tls_type)
3261 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3262 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3264 ? &entry->d.h->root : NULL);
3266 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3267 g->local_gotno += 1;
3269 g->global_gotno += 1;
3272 /* Output a simple dynamic relocation into SRELOC. */
3275 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3277 unsigned long reloc_index,
3282 Elf_Internal_Rela rel[3];
3284 memset (rel, 0, sizeof (rel));
3286 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3287 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3289 if (ABI_64_P (output_bfd))
3291 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3292 (output_bfd, &rel[0],
3294 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3297 bfd_elf32_swap_reloc_out
3298 (output_bfd, &rel[0],
3300 + reloc_index * sizeof (Elf32_External_Rel)));
3303 /* Initialize a set of TLS GOT entries for one symbol. */
3306 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3307 struct mips_got_entry *entry,
3308 struct mips_elf_link_hash_entry *h,
3311 struct mips_elf_link_hash_table *htab;
3313 asection *sreloc, *sgot;
3314 bfd_vma got_offset, got_offset2;
3315 bfd_boolean need_relocs = FALSE;
3317 htab = mips_elf_hash_table (info);
3326 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3328 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3330 && (!bfd_link_pic (info)
3331 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3332 indx = h->root.dynindx;
3335 if (entry->tls_initialized)
3338 if ((bfd_link_pic (info) || indx != 0)
3340 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3341 || h->root.type != bfd_link_hash_undefweak))
3344 /* MINUS_ONE means the symbol is not defined in this object. It may not
3345 be defined at all; assume that the value doesn't matter in that
3346 case. Otherwise complain if we would use the value. */
3347 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3348 || h->root.root.type == bfd_link_hash_undefweak);
3350 /* Emit necessary relocations. */
3351 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3352 got_offset = entry->gotidx;
3354 switch (entry->tls_type)
3357 /* General Dynamic. */
3358 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3362 mips_elf_output_dynamic_relocation
3363 (abfd, sreloc, sreloc->reloc_count++, indx,
3364 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3365 sgot->output_offset + sgot->output_section->vma + got_offset);
3368 mips_elf_output_dynamic_relocation
3369 (abfd, sreloc, sreloc->reloc_count++, indx,
3370 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3371 sgot->output_offset + sgot->output_section->vma + got_offset2);
3373 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3374 sgot->contents + got_offset2);
3378 MIPS_ELF_PUT_WORD (abfd, 1,
3379 sgot->contents + got_offset);
3380 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3381 sgot->contents + got_offset2);
3386 /* Initial Exec model. */
3390 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3391 sgot->contents + got_offset);
3393 MIPS_ELF_PUT_WORD (abfd, 0,
3394 sgot->contents + got_offset);
3396 mips_elf_output_dynamic_relocation
3397 (abfd, sreloc, sreloc->reloc_count++, indx,
3398 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3399 sgot->output_offset + sgot->output_section->vma + got_offset);
3402 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3403 sgot->contents + got_offset);
3407 /* The initial offset is zero, and the LD offsets will include the
3408 bias by DTP_OFFSET. */
3409 MIPS_ELF_PUT_WORD (abfd, 0,
3410 sgot->contents + got_offset
3411 + MIPS_ELF_GOT_SIZE (abfd));
3413 if (!bfd_link_pic (info))
3414 MIPS_ELF_PUT_WORD (abfd, 1,
3415 sgot->contents + got_offset);
3417 mips_elf_output_dynamic_relocation
3418 (abfd, sreloc, sreloc->reloc_count++, indx,
3419 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3420 sgot->output_offset + sgot->output_section->vma + got_offset);
3427 entry->tls_initialized = TRUE;
3430 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3431 for global symbol H. .got.plt comes before the GOT, so the offset
3432 will be negative. */
3435 mips_elf_gotplt_index (struct bfd_link_info *info,
3436 struct elf_link_hash_entry *h)
3438 bfd_vma got_address, got_value;
3439 struct mips_elf_link_hash_table *htab;
3441 htab = mips_elf_hash_table (info);
3442 BFD_ASSERT (htab != NULL);
3444 BFD_ASSERT (h->plt.plist != NULL);
3445 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3447 /* Calculate the address of the associated .got.plt entry. */
3448 got_address = (htab->sgotplt->output_section->vma
3449 + htab->sgotplt->output_offset
3450 + (h->plt.plist->gotplt_index
3451 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3453 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3454 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3455 + htab->root.hgot->root.u.def.section->output_offset
3456 + htab->root.hgot->root.u.def.value);
3458 return got_address - got_value;
3461 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3462 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3463 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3464 offset can be found. */
3467 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3468 bfd_vma value, unsigned long r_symndx,
3469 struct mips_elf_link_hash_entry *h, int r_type)
3471 struct mips_elf_link_hash_table *htab;
3472 struct mips_got_entry *entry;
3474 htab = mips_elf_hash_table (info);
3475 BFD_ASSERT (htab != NULL);
3477 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3478 r_symndx, h, r_type);
3482 if (entry->tls_type)
3483 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3484 return entry->gotidx;
3487 /* Return the GOT index of global symbol H in the primary GOT. */
3490 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3491 struct elf_link_hash_entry *h)
3493 struct mips_elf_link_hash_table *htab;
3494 long global_got_dynindx;
3495 struct mips_got_info *g;
3498 htab = mips_elf_hash_table (info);
3499 BFD_ASSERT (htab != NULL);
3501 global_got_dynindx = 0;
3502 if (htab->global_gotsym != NULL)
3503 global_got_dynindx = htab->global_gotsym->dynindx;
3505 /* Once we determine the global GOT entry with the lowest dynamic
3506 symbol table index, we must put all dynamic symbols with greater
3507 indices into the primary GOT. That makes it easy to calculate the
3509 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3510 g = mips_elf_bfd_got (obfd, FALSE);
3511 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3512 * MIPS_ELF_GOT_SIZE (obfd));
3513 BFD_ASSERT (got_index < htab->sgot->size);
3518 /* Return the GOT index for the global symbol indicated by H, which is
3519 referenced by a relocation of type R_TYPE in IBFD. */
3522 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3523 struct elf_link_hash_entry *h, int r_type)
3525 struct mips_elf_link_hash_table *htab;
3526 struct mips_got_info *g;
3527 struct mips_got_entry lookup, *entry;
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3533 g = mips_elf_bfd_got (ibfd, FALSE);
3536 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3537 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3538 return mips_elf_primary_global_got_index (obfd, info, h);
3542 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3543 entry = htab_find (g->got_entries, &lookup);
3546 gotidx = entry->gotidx;
3547 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3549 if (lookup.tls_type)
3551 bfd_vma value = MINUS_ONE;
3553 if ((h->root.type == bfd_link_hash_defined
3554 || h->root.type == bfd_link_hash_defweak)
3555 && h->root.u.def.section->output_section)
3556 value = (h->root.u.def.value
3557 + h->root.u.def.section->output_offset
3558 + h->root.u.def.section->output_section->vma);
3560 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3565 /* Find a GOT page entry that points to within 32KB of VALUE. These
3566 entries are supposed to be placed at small offsets in the GOT, i.e.,
3567 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3568 entry could be created. If OFFSETP is nonnull, use it to return the
3569 offset of the GOT entry from VALUE. */
3572 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3573 bfd_vma value, bfd_vma *offsetp)
3575 bfd_vma page, got_index;
3576 struct mips_got_entry *entry;
3578 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3579 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3580 NULL, R_MIPS_GOT_PAGE);
3585 got_index = entry->gotidx;
3588 *offsetp = value - entry->d.address;
3593 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3594 EXTERNAL is true if the relocation was originally against a global
3595 symbol that binds locally. */
3598 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3599 bfd_vma value, bfd_boolean external)
3601 struct mips_got_entry *entry;
3603 /* GOT16 relocations against local symbols are followed by a LO16
3604 relocation; those against global symbols are not. Thus if the
3605 symbol was originally local, the GOT16 relocation should load the
3606 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3608 value = mips_elf_high (value) << 16;
3610 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3611 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3612 same in all cases. */
3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3614 NULL, R_MIPS_GOT16);
3616 return entry->gotidx;
3621 /* Returns the offset for the entry at the INDEXth position
3625 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3626 bfd *input_bfd, bfd_vma got_index)
3628 struct mips_elf_link_hash_table *htab;
3632 htab = mips_elf_hash_table (info);
3633 BFD_ASSERT (htab != NULL);
3636 gp = _bfd_get_gp_value (output_bfd)
3637 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3639 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3642 /* Create and return a local GOT entry for VALUE, which was calculated
3643 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3644 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3647 static struct mips_got_entry *
3648 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3649 bfd *ibfd, bfd_vma value,
3650 unsigned long r_symndx,
3651 struct mips_elf_link_hash_entry *h,
3654 struct mips_got_entry lookup, *entry;
3656 struct mips_got_info *g;
3657 struct mips_elf_link_hash_table *htab;
3660 htab = mips_elf_hash_table (info);
3661 BFD_ASSERT (htab != NULL);
3663 g = mips_elf_bfd_got (ibfd, FALSE);
3666 g = mips_elf_bfd_got (abfd, FALSE);
3667 BFD_ASSERT (g != NULL);
3670 /* This function shouldn't be called for symbols that live in the global
3672 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3674 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3675 if (lookup.tls_type)
3678 if (tls_ldm_reloc_p (r_type))
3681 lookup.d.addend = 0;
3685 lookup.symndx = r_symndx;
3686 lookup.d.addend = 0;
3694 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3697 gotidx = entry->gotidx;
3698 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3705 lookup.d.address = value;
3706 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3710 entry = (struct mips_got_entry *) *loc;
3714 if (g->assigned_low_gotno > g->assigned_high_gotno)
3716 /* We didn't allocate enough space in the GOT. */
3717 (*_bfd_error_handler)
3718 (_("not enough GOT space for local GOT entries"));
3719 bfd_set_error (bfd_error_bad_value);
3723 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3727 if (got16_reloc_p (r_type)
3728 || call16_reloc_p (r_type)
3729 || got_page_reloc_p (r_type)
3730 || got_disp_reloc_p (r_type))
3731 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3733 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3738 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3740 /* These GOT entries need a dynamic relocation on VxWorks. */
3741 if (htab->is_vxworks)
3743 Elf_Internal_Rela outrel;
3746 bfd_vma got_address;
3748 s = mips_elf_rel_dyn_section (info, FALSE);
3749 got_address = (htab->sgot->output_section->vma
3750 + htab->sgot->output_offset
3753 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3754 outrel.r_offset = got_address;
3755 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3756 outrel.r_addend = value;
3757 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3763 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3764 The number might be exact or a worst-case estimate, depending on how
3765 much information is available to elf_backend_omit_section_dynsym at
3766 the current linking stage. */
3768 static bfd_size_type
3769 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3771 bfd_size_type count;
3774 if (bfd_link_pic (info)
3775 || elf_hash_table (info)->is_relocatable_executable)
3778 const struct elf_backend_data *bed;
3780 bed = get_elf_backend_data (output_bfd);
3781 for (p = output_bfd->sections; p ; p = p->next)
3782 if ((p->flags & SEC_EXCLUDE) == 0
3783 && (p->flags & SEC_ALLOC) != 0
3784 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3790 /* Sort the dynamic symbol table so that symbols that need GOT entries
3791 appear towards the end. */
3794 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3796 struct mips_elf_link_hash_table *htab;
3797 struct mips_elf_hash_sort_data hsd;
3798 struct mips_got_info *g;
3800 if (elf_hash_table (info)->dynsymcount == 0)
3803 htab = mips_elf_hash_table (info);
3804 BFD_ASSERT (htab != NULL);
3811 hsd.max_unref_got_dynindx
3812 = hsd.min_got_dynindx
3813 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3814 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3815 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3816 elf_hash_table (info)),
3817 mips_elf_sort_hash_table_f,
3820 /* There should have been enough room in the symbol table to
3821 accommodate both the GOT and non-GOT symbols. */
3822 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3823 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3824 == elf_hash_table (info)->dynsymcount);
3825 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3826 == g->global_gotno);
3828 /* Now we know which dynamic symbol has the lowest dynamic symbol
3829 table index in the GOT. */
3830 htab->global_gotsym = hsd.low;
3835 /* If H needs a GOT entry, assign it the highest available dynamic
3836 index. Otherwise, assign it the lowest available dynamic
3840 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3842 struct mips_elf_hash_sort_data *hsd = data;
3844 /* Symbols without dynamic symbol table entries aren't interesting
3846 if (h->root.dynindx == -1)
3849 switch (h->global_got_area)
3852 h->root.dynindx = hsd->max_non_got_dynindx++;
3856 h->root.dynindx = --hsd->min_got_dynindx;
3857 hsd->low = (struct elf_link_hash_entry *) h;
3860 case GGA_RELOC_ONLY:
3861 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3862 hsd->low = (struct elf_link_hash_entry *) h;
3863 h->root.dynindx = hsd->max_unref_got_dynindx++;
3870 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3871 (which is owned by the caller and shouldn't be added to the
3872 hash table directly). */
3875 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3876 struct mips_got_entry *lookup)
3878 struct mips_elf_link_hash_table *htab;
3879 struct mips_got_entry *entry;
3880 struct mips_got_info *g;
3881 void **loc, **bfd_loc;
3883 /* Make sure there's a slot for this entry in the master GOT. */
3884 htab = mips_elf_hash_table (info);
3886 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3890 /* Populate the entry if it isn't already. */
3891 entry = (struct mips_got_entry *) *loc;
3894 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3898 lookup->tls_initialized = FALSE;
3899 lookup->gotidx = -1;
3904 /* Reuse the same GOT entry for the BFD's GOT. */
3905 g = mips_elf_bfd_got (abfd, TRUE);
3909 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3918 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3919 entry for it. FOR_CALL is true if the caller is only interested in
3920 using the GOT entry for calls. */
3923 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3924 bfd *abfd, struct bfd_link_info *info,
3925 bfd_boolean for_call, int r_type)
3927 struct mips_elf_link_hash_table *htab;
3928 struct mips_elf_link_hash_entry *hmips;
3929 struct mips_got_entry entry;
3930 unsigned char tls_type;
3932 htab = mips_elf_hash_table (info);
3933 BFD_ASSERT (htab != NULL);
3935 hmips = (struct mips_elf_link_hash_entry *) h;
3937 hmips->got_only_for_calls = FALSE;
3939 /* A global symbol in the GOT must also be in the dynamic symbol
3941 if (h->dynindx == -1)
3943 switch (ELF_ST_VISIBILITY (h->other))
3947 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3950 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3954 tls_type = mips_elf_reloc_tls_type (r_type);
3955 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3956 hmips->global_got_area = GGA_NORMAL;
3960 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3961 entry.tls_type = tls_type;
3962 return mips_elf_record_got_entry (info, abfd, &entry);
3965 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3966 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3969 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3970 struct bfd_link_info *info, int r_type)
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_info *g;
3974 struct mips_got_entry entry;
3976 htab = mips_elf_hash_table (info);
3977 BFD_ASSERT (htab != NULL);
3980 BFD_ASSERT (g != NULL);
3983 entry.symndx = symndx;
3984 entry.d.addend = addend;
3985 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3986 return mips_elf_record_got_entry (info, abfd, &entry);
3989 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3990 H is the symbol's hash table entry, or null if SYMNDX is local
3994 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3995 long symndx, struct elf_link_hash_entry *h,
3996 bfd_signed_vma addend)
3998 struct mips_elf_link_hash_table *htab;
3999 struct mips_got_info *g1, *g2;
4000 struct mips_got_page_ref lookup, *entry;
4001 void **loc, **bfd_loc;
4003 htab = mips_elf_hash_table (info);
4004 BFD_ASSERT (htab != NULL);
4006 g1 = htab->got_info;
4007 BFD_ASSERT (g1 != NULL);
4012 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4016 lookup.symndx = symndx;
4017 lookup.u.abfd = abfd;
4019 lookup.addend = addend;
4020 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4024 entry = (struct mips_got_page_ref *) *loc;
4027 entry = bfd_alloc (abfd, sizeof (*entry));
4035 /* Add the same entry to the BFD's GOT. */
4036 g2 = mips_elf_bfd_got (abfd, TRUE);
4040 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4050 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4053 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4057 struct mips_elf_link_hash_table *htab;
4059 htab = mips_elf_hash_table (info);
4060 BFD_ASSERT (htab != NULL);
4062 s = mips_elf_rel_dyn_section (info, FALSE);
4063 BFD_ASSERT (s != NULL);
4065 if (htab->is_vxworks)
4066 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4071 /* Make room for a null element. */
4072 s->size += MIPS_ELF_REL_SIZE (abfd);
4075 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4079 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4080 mips_elf_traverse_got_arg structure. Count the number of GOT
4081 entries and TLS relocs. Set DATA->value to true if we need
4082 to resolve indirect or warning symbols and then recreate the GOT. */
4085 mips_elf_check_recreate_got (void **entryp, void *data)
4087 struct mips_got_entry *entry;
4088 struct mips_elf_traverse_got_arg *arg;
4090 entry = (struct mips_got_entry *) *entryp;
4091 arg = (struct mips_elf_traverse_got_arg *) data;
4092 if (entry->abfd != NULL && entry->symndx == -1)
4094 struct mips_elf_link_hash_entry *h;
4097 if (h->root.root.type == bfd_link_hash_indirect
4098 || h->root.root.type == bfd_link_hash_warning)
4104 mips_elf_count_got_entry (arg->info, arg->g, entry);
4108 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4109 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4110 converting entries for indirect and warning symbols into entries
4111 for the target symbol. Set DATA->g to null on error. */
4114 mips_elf_recreate_got (void **entryp, void *data)
4116 struct mips_got_entry new_entry, *entry;
4117 struct mips_elf_traverse_got_arg *arg;
4120 entry = (struct mips_got_entry *) *entryp;
4121 arg = (struct mips_elf_traverse_got_arg *) data;
4122 if (entry->abfd != NULL
4123 && entry->symndx == -1
4124 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4125 || entry->d.h->root.root.type == bfd_link_hash_warning))
4127 struct mips_elf_link_hash_entry *h;
4134 BFD_ASSERT (h->global_got_area == GGA_NONE);
4135 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4137 while (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning);
4141 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4149 if (entry == &new_entry)
4151 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4160 mips_elf_count_got_entry (arg->info, arg->g, entry);
4165 /* Return the maximum number of GOT page entries required for RANGE. */
4168 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4170 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4173 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4176 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4177 asection *sec, bfd_signed_vma addend)
4179 struct mips_got_info *g = arg->g;
4180 struct mips_got_page_entry lookup, *entry;
4181 struct mips_got_page_range **range_ptr, *range;
4182 bfd_vma old_pages, new_pages;
4185 /* Find the mips_got_page_entry hash table entry for this section. */
4187 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4191 /* Create a mips_got_page_entry if this is the first time we've
4192 seen the section. */
4193 entry = (struct mips_got_page_entry *) *loc;
4196 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4204 /* Skip over ranges whose maximum extent cannot share a page entry
4206 range_ptr = &entry->ranges;
4207 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4208 range_ptr = &(*range_ptr)->next;
4210 /* If we scanned to the end of the list, or found a range whose
4211 minimum extent cannot share a page entry with ADDEND, create
4212 a new singleton range. */
4214 if (!range || addend < range->min_addend - 0xffff)
4216 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4220 range->next = *range_ptr;
4221 range->min_addend = addend;
4222 range->max_addend = addend;
4230 /* Remember how many pages the old range contributed. */
4231 old_pages = mips_elf_pages_for_range (range);
4233 /* Update the ranges. */
4234 if (addend < range->min_addend)
4235 range->min_addend = addend;
4236 else if (addend > range->max_addend)
4238 if (range->next && addend >= range->next->min_addend - 0xffff)
4240 old_pages += mips_elf_pages_for_range (range->next);
4241 range->max_addend = range->next->max_addend;
4242 range->next = range->next->next;
4245 range->max_addend = addend;
4248 /* Record any change in the total estimate. */
4249 new_pages = mips_elf_pages_for_range (range);
4250 if (old_pages != new_pages)
4252 entry->num_pages += new_pages - old_pages;
4253 g->page_gotno += new_pages - old_pages;
4259 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4260 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4261 whether the page reference described by *REFP needs a GOT page entry,
4262 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4265 mips_elf_resolve_got_page_ref (void **refp, void *data)
4267 struct mips_got_page_ref *ref;
4268 struct mips_elf_traverse_got_arg *arg;
4269 struct mips_elf_link_hash_table *htab;
4273 ref = (struct mips_got_page_ref *) *refp;
4274 arg = (struct mips_elf_traverse_got_arg *) data;
4275 htab = mips_elf_hash_table (arg->info);
4277 if (ref->symndx < 0)
4279 struct mips_elf_link_hash_entry *h;
4281 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4283 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4286 /* Ignore undefined symbols; we'll issue an error later if
4288 if (!((h->root.root.type == bfd_link_hash_defined
4289 || h->root.root.type == bfd_link_hash_defweak)
4290 && h->root.root.u.def.section))
4293 sec = h->root.root.u.def.section;
4294 addend = h->root.root.u.def.value + ref->addend;
4298 Elf_Internal_Sym *isym;
4300 /* Read in the symbol. */
4301 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4309 /* Get the associated input section. */
4310 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4317 /* If this is a mergable section, work out the section and offset
4318 of the merged data. For section symbols, the addend specifies
4319 of the offset _of_ the first byte in the data, otherwise it
4320 specifies the offset _from_ the first byte. */
4321 if (sec->flags & SEC_MERGE)
4325 secinfo = elf_section_data (sec)->sec_info;
4326 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value + ref->addend);
4330 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4331 isym->st_value) + ref->addend;
4334 addend = isym->st_value + ref->addend;
4336 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4344 /* If any entries in G->got_entries are for indirect or warning symbols,
4345 replace them with entries for the target symbol. Convert g->got_page_refs
4346 into got_page_entry structures and estimate the number of page entries
4347 that they require. */
4350 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4351 struct mips_got_info *g)
4353 struct mips_elf_traverse_got_arg tga;
4354 struct mips_got_info oldg;
4361 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4365 g->got_entries = htab_create (htab_size (oldg.got_entries),
4366 mips_elf_got_entry_hash,
4367 mips_elf_got_entry_eq, NULL);
4368 if (!g->got_entries)
4371 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4375 htab_delete (oldg.got_entries);
4378 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4379 mips_got_page_entry_eq, NULL);
4380 if (g->got_page_entries == NULL)
4385 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4390 /* Return true if a GOT entry for H should live in the local rather than
4394 mips_use_local_got_p (struct bfd_link_info *info,
4395 struct mips_elf_link_hash_entry *h)
4397 /* Symbols that aren't in the dynamic symbol table must live in the
4398 local GOT. This includes symbols that are completely undefined
4399 and which therefore don't bind locally. We'll report undefined
4400 symbols later if appropriate. */
4401 if (h->root.dynindx == -1)
4404 /* Symbols that bind locally can (and in the case of forced-local
4405 symbols, must) live in the local GOT. */
4406 if (h->got_only_for_calls
4407 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4408 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4411 /* If this is an executable that must provide a definition of the symbol,
4412 either though PLTs or copy relocations, then that address should go in
4413 the local rather than global GOT. */
4414 if (bfd_link_executable (info) && h->has_static_relocs)
4420 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4421 link_info structure. Decide whether the hash entry needs an entry in
4422 the global part of the primary GOT, setting global_got_area accordingly.
4423 Count the number of global symbols that are in the primary GOT only
4424 because they have relocations against them (reloc_only_gotno). */
4427 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4429 struct bfd_link_info *info;
4430 struct mips_elf_link_hash_table *htab;
4431 struct mips_got_info *g;
4433 info = (struct bfd_link_info *) data;
4434 htab = mips_elf_hash_table (info);
4436 if (h->global_got_area != GGA_NONE)
4438 /* Make a final decision about whether the symbol belongs in the
4439 local or global GOT. */
4440 if (mips_use_local_got_p (info, h))
4441 /* The symbol belongs in the local GOT. We no longer need this
4442 entry if it was only used for relocations; those relocations
4443 will be against the null or section symbol instead of H. */
4444 h->global_got_area = GGA_NONE;
4445 else if (htab->is_vxworks
4446 && h->got_only_for_calls
4447 && h->root.plt.plist->mips_offset != MINUS_ONE)
4448 /* On VxWorks, calls can refer directly to the .got.plt entry;
4449 they don't need entries in the regular GOT. .got.plt entries
4450 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4451 h->global_got_area = GGA_NONE;
4452 else if (h->global_got_area == GGA_RELOC_ONLY)
4454 g->reloc_only_gotno++;
4461 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4462 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4465 mips_elf_add_got_entry (void **entryp, void *data)
4467 struct mips_got_entry *entry;
4468 struct mips_elf_traverse_got_arg *arg;
4471 entry = (struct mips_got_entry *) *entryp;
4472 arg = (struct mips_elf_traverse_got_arg *) data;
4473 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4482 mips_elf_count_got_entry (arg->info, arg->g, entry);
4487 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4488 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4491 mips_elf_add_got_page_entry (void **entryp, void *data)
4493 struct mips_got_page_entry *entry;
4494 struct mips_elf_traverse_got_arg *arg;
4497 entry = (struct mips_got_page_entry *) *entryp;
4498 arg = (struct mips_elf_traverse_got_arg *) data;
4499 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4508 arg->g->page_gotno += entry->num_pages;
4513 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4514 this would lead to overflow, 1 if they were merged successfully,
4515 and 0 if a merge failed due to lack of memory. (These values are chosen
4516 so that nonnegative return values can be returned by a htab_traverse
4520 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4521 struct mips_got_info *to,
4522 struct mips_elf_got_per_bfd_arg *arg)
4524 struct mips_elf_traverse_got_arg tga;
4525 unsigned int estimate;
4527 /* Work out how many page entries we would need for the combined GOT. */
4528 estimate = arg->max_pages;
4529 if (estimate >= from->page_gotno + to->page_gotno)
4530 estimate = from->page_gotno + to->page_gotno;
4532 /* And conservatively estimate how many local and TLS entries
4534 estimate += from->local_gotno + to->local_gotno;
4535 estimate += from->tls_gotno + to->tls_gotno;
4537 /* If we're merging with the primary got, any TLS relocations will
4538 come after the full set of global entries. Otherwise estimate those
4539 conservatively as well. */
4540 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4541 estimate += arg->global_count;
4543 estimate += from->global_gotno + to->global_gotno;
4545 /* Bail out if the combined GOT might be too big. */
4546 if (estimate > arg->max_count)
4549 /* Transfer the bfd's got information from FROM to TO. */
4550 tga.info = arg->info;
4552 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4556 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4560 mips_elf_replace_bfd_got (abfd, to);
4564 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4565 as possible of the primary got, since it doesn't require explicit
4566 dynamic relocations, but don't use bfds that would reference global
4567 symbols out of the addressable range. Failing the primary got,
4568 attempt to merge with the current got, or finish the current got
4569 and then make make the new got current. */
4572 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4573 struct mips_elf_got_per_bfd_arg *arg)
4575 unsigned int estimate;
4578 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4581 /* Work out the number of page, local and TLS entries. */
4582 estimate = arg->max_pages;
4583 if (estimate > g->page_gotno)
4584 estimate = g->page_gotno;
4585 estimate += g->local_gotno + g->tls_gotno;
4587 /* We place TLS GOT entries after both locals and globals. The globals
4588 for the primary GOT may overflow the normal GOT size limit, so be
4589 sure not to merge a GOT which requires TLS with the primary GOT in that
4590 case. This doesn't affect non-primary GOTs. */
4591 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4593 if (estimate <= arg->max_count)
4595 /* If we don't have a primary GOT, use it as
4596 a starting point for the primary GOT. */
4603 /* Try merging with the primary GOT. */
4604 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4609 /* If we can merge with the last-created got, do it. */
4612 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4617 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4618 fits; if it turns out that it doesn't, we'll get relocation
4619 overflows anyway. */
4620 g->next = arg->current;
4626 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4627 to GOTIDX, duplicating the entry if it has already been assigned
4628 an index in a different GOT. */
4631 mips_elf_set_gotidx (void **entryp, long gotidx)
4633 struct mips_got_entry *entry;
4635 entry = (struct mips_got_entry *) *entryp;
4636 if (entry->gotidx > 0)
4638 struct mips_got_entry *new_entry;
4640 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4644 *new_entry = *entry;
4645 *entryp = new_entry;
4648 entry->gotidx = gotidx;
4652 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4653 mips_elf_traverse_got_arg in which DATA->value is the size of one
4654 GOT entry. Set DATA->g to null on failure. */
4657 mips_elf_initialize_tls_index (void **entryp, void *data)
4659 struct mips_got_entry *entry;
4660 struct mips_elf_traverse_got_arg *arg;
4662 /* We're only interested in TLS symbols. */
4663 entry = (struct mips_got_entry *) *entryp;
4664 if (entry->tls_type == GOT_TLS_NONE)
4667 arg = (struct mips_elf_traverse_got_arg *) data;
4668 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4674 /* Account for the entries we've just allocated. */
4675 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4679 /* A htab_traverse callback for GOT entries, where DATA points to a
4680 mips_elf_traverse_got_arg. Set the global_got_area of each global
4681 symbol to DATA->value. */
4684 mips_elf_set_global_got_area (void **entryp, void *data)
4686 struct mips_got_entry *entry;
4687 struct mips_elf_traverse_got_arg *arg;
4689 entry = (struct mips_got_entry *) *entryp;
4690 arg = (struct mips_elf_traverse_got_arg *) data;
4691 if (entry->abfd != NULL
4692 && entry->symndx == -1
4693 && entry->d.h->global_got_area != GGA_NONE)
4694 entry->d.h->global_got_area = arg->value;
4698 /* A htab_traverse callback for secondary GOT entries, where DATA points
4699 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4700 and record the number of relocations they require. DATA->value is
4701 the size of one GOT entry. Set DATA->g to null on failure. */
4704 mips_elf_set_global_gotidx (void **entryp, void *data)
4706 struct mips_got_entry *entry;
4707 struct mips_elf_traverse_got_arg *arg;
4709 entry = (struct mips_got_entry *) *entryp;
4710 arg = (struct mips_elf_traverse_got_arg *) data;
4711 if (entry->abfd != NULL
4712 && entry->symndx == -1
4713 && entry->d.h->global_got_area != GGA_NONE)
4715 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4720 arg->g->assigned_low_gotno += 1;
4722 if (bfd_link_pic (arg->info)
4723 || (elf_hash_table (arg->info)->dynamic_sections_created
4724 && entry->d.h->root.def_dynamic
4725 && !entry->d.h->root.def_regular))
4726 arg->g->relocs += 1;
4732 /* A htab_traverse callback for GOT entries for which DATA is the
4733 bfd_link_info. Forbid any global symbols from having traditional
4734 lazy-binding stubs. */
4737 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4739 struct bfd_link_info *info;
4740 struct mips_elf_link_hash_table *htab;
4741 struct mips_got_entry *entry;
4743 entry = (struct mips_got_entry *) *entryp;
4744 info = (struct bfd_link_info *) data;
4745 htab = mips_elf_hash_table (info);
4746 BFD_ASSERT (htab != NULL);
4748 if (entry->abfd != NULL
4749 && entry->symndx == -1
4750 && entry->d.h->needs_lazy_stub)
4752 entry->d.h->needs_lazy_stub = FALSE;
4753 htab->lazy_stub_count--;
4759 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4762 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4767 g = mips_elf_bfd_got (ibfd, FALSE);
4771 BFD_ASSERT (g->next);
4775 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4776 * MIPS_ELF_GOT_SIZE (abfd);
4779 /* Turn a single GOT that is too big for 16-bit addressing into
4780 a sequence of GOTs, each one 16-bit addressable. */
4783 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4784 asection *got, bfd_size_type pages)
4786 struct mips_elf_link_hash_table *htab;
4787 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4788 struct mips_elf_traverse_got_arg tga;
4789 struct mips_got_info *g, *gg;
4790 unsigned int assign, needed_relocs;
4793 dynobj = elf_hash_table (info)->dynobj;
4794 htab = mips_elf_hash_table (info);
4795 BFD_ASSERT (htab != NULL);
4799 got_per_bfd_arg.obfd = abfd;
4800 got_per_bfd_arg.info = info;
4801 got_per_bfd_arg.current = NULL;
4802 got_per_bfd_arg.primary = NULL;
4803 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4804 / MIPS_ELF_GOT_SIZE (abfd))
4805 - htab->reserved_gotno);
4806 got_per_bfd_arg.max_pages = pages;
4807 /* The number of globals that will be included in the primary GOT.
4808 See the calls to mips_elf_set_global_got_area below for more
4810 got_per_bfd_arg.global_count = g->global_gotno;
4812 /* Try to merge the GOTs of input bfds together, as long as they
4813 don't seem to exceed the maximum GOT size, choosing one of them
4814 to be the primary GOT. */
4815 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4817 gg = mips_elf_bfd_got (ibfd, FALSE);
4818 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4822 /* If we do not find any suitable primary GOT, create an empty one. */
4823 if (got_per_bfd_arg.primary == NULL)
4824 g->next = mips_elf_create_got_info (abfd);
4826 g->next = got_per_bfd_arg.primary;
4827 g->next->next = got_per_bfd_arg.current;
4829 /* GG is now the master GOT, and G is the primary GOT. */
4833 /* Map the output bfd to the primary got. That's what we're going
4834 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4835 didn't mark in check_relocs, and we want a quick way to find it.
4836 We can't just use gg->next because we're going to reverse the
4838 mips_elf_replace_bfd_got (abfd, g);
4840 /* Every symbol that is referenced in a dynamic relocation must be
4841 present in the primary GOT, so arrange for them to appear after
4842 those that are actually referenced. */
4843 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4844 g->global_gotno = gg->global_gotno;
4847 tga.value = GGA_RELOC_ONLY;
4848 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4849 tga.value = GGA_NORMAL;
4850 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4852 /* Now go through the GOTs assigning them offset ranges.
4853 [assigned_low_gotno, local_gotno[ will be set to the range of local
4854 entries in each GOT. We can then compute the end of a GOT by
4855 adding local_gotno to global_gotno. We reverse the list and make
4856 it circular since then we'll be able to quickly compute the
4857 beginning of a GOT, by computing the end of its predecessor. To
4858 avoid special cases for the primary GOT, while still preserving
4859 assertions that are valid for both single- and multi-got links,
4860 we arrange for the main got struct to have the right number of
4861 global entries, but set its local_gotno such that the initial
4862 offset of the primary GOT is zero. Remember that the primary GOT
4863 will become the last item in the circular linked list, so it
4864 points back to the master GOT. */
4865 gg->local_gotno = -g->global_gotno;
4866 gg->global_gotno = g->global_gotno;
4873 struct mips_got_info *gn;
4875 assign += htab->reserved_gotno;
4876 g->assigned_low_gotno = assign;
4877 g->local_gotno += assign;
4878 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4879 g->assigned_high_gotno = g->local_gotno - 1;
4880 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4882 /* Take g out of the direct list, and push it onto the reversed
4883 list that gg points to. g->next is guaranteed to be nonnull after
4884 this operation, as required by mips_elf_initialize_tls_index. */
4889 /* Set up any TLS entries. We always place the TLS entries after
4890 all non-TLS entries. */
4891 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4893 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4894 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4897 BFD_ASSERT (g->tls_assigned_gotno == assign);
4899 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4902 /* Forbid global symbols in every non-primary GOT from having
4903 lazy-binding stubs. */
4905 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4909 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4912 for (g = gg->next; g && g->next != gg; g = g->next)
4914 unsigned int save_assign;
4916 /* Assign offsets to global GOT entries and count how many
4917 relocations they need. */
4918 save_assign = g->assigned_low_gotno;
4919 g->assigned_low_gotno = g->local_gotno;
4921 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4923 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4926 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4927 g->assigned_low_gotno = save_assign;
4929 if (bfd_link_pic (info))
4931 g->relocs += g->local_gotno - g->assigned_low_gotno;
4932 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4933 + g->next->global_gotno
4934 + g->next->tls_gotno
4935 + htab->reserved_gotno);
4937 needed_relocs += g->relocs;
4939 needed_relocs += g->relocs;
4942 mips_elf_allocate_dynamic_relocations (dynobj, info,
4949 /* Returns the first relocation of type r_type found, beginning with
4950 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4952 static const Elf_Internal_Rela *
4953 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4954 const Elf_Internal_Rela *relocation,
4955 const Elf_Internal_Rela *relend)
4957 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4959 while (relocation < relend)
4961 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4962 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4968 /* We didn't find it. */
4972 /* Return whether an input relocation is against a local symbol. */
4975 mips_elf_local_relocation_p (bfd *input_bfd,
4976 const Elf_Internal_Rela *relocation,
4977 asection **local_sections)
4979 unsigned long r_symndx;
4980 Elf_Internal_Shdr *symtab_hdr;
4983 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4984 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4985 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4987 if (r_symndx < extsymoff)
4989 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4995 /* Sign-extend VALUE, which has the indicated number of BITS. */
4998 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5000 if (value & ((bfd_vma) 1 << (bits - 1)))
5001 /* VALUE is negative. */
5002 value |= ((bfd_vma) - 1) << bits;
5007 /* Return non-zero if the indicated VALUE has overflowed the maximum
5008 range expressible by a signed number with the indicated number of
5012 mips_elf_overflow_p (bfd_vma value, int bits)
5014 bfd_signed_vma svalue = (bfd_signed_vma) value;
5016 if (svalue > (1 << (bits - 1)) - 1)
5017 /* The value is too big. */
5019 else if (svalue < -(1 << (bits - 1)))
5020 /* The value is too small. */
5027 /* Calculate the %high function. */
5030 mips_elf_high (bfd_vma value)
5032 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5035 /* Calculate the %higher function. */
5038 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5041 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5048 /* Calculate the %highest function. */
5051 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5054 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5061 /* Create the .compact_rel section. */
5064 mips_elf_create_compact_rel_section
5065 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5068 register asection *s;
5070 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5072 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5075 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5077 || ! bfd_set_section_alignment (abfd, s,
5078 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5081 s->size = sizeof (Elf32_External_compact_rel);
5087 /* Create the .got section to hold the global offset table. */
5090 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5093 register asection *s;
5094 struct elf_link_hash_entry *h;
5095 struct bfd_link_hash_entry *bh;
5096 struct mips_elf_link_hash_table *htab;
5098 htab = mips_elf_hash_table (info);
5099 BFD_ASSERT (htab != NULL);
5101 /* This function may be called more than once. */
5105 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5106 | SEC_LINKER_CREATED);
5108 /* We have to use an alignment of 2**4 here because this is hardcoded
5109 in the function stub generation and in the linker script. */
5110 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5112 || ! bfd_set_section_alignment (abfd, s, 4))
5116 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5117 linker script because we don't want to define the symbol if we
5118 are not creating a global offset table. */
5120 if (! (_bfd_generic_link_add_one_symbol
5121 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5122 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5125 h = (struct elf_link_hash_entry *) bh;
5128 h->type = STT_OBJECT;
5129 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5130 elf_hash_table (info)->hgot = h;
5132 if (bfd_link_pic (info)
5133 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5136 htab->got_info = mips_elf_create_got_info (abfd);
5137 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5138 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5140 /* We also need a .got.plt section when generating PLTs. */
5141 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5142 SEC_ALLOC | SEC_LOAD
5145 | SEC_LINKER_CREATED);
5153 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5154 __GOTT_INDEX__ symbols. These symbols are only special for
5155 shared objects; they are not used in executables. */
5158 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5160 return (mips_elf_hash_table (info)->is_vxworks
5161 && bfd_link_pic (info)
5162 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5163 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5166 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5167 require an la25 stub. See also mips_elf_local_pic_function_p,
5168 which determines whether the destination function ever requires a
5172 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5173 bfd_boolean target_is_16_bit_code_p)
5175 /* We specifically ignore branches and jumps from EF_PIC objects,
5176 where the onus is on the compiler or programmer to perform any
5177 necessary initialization of $25. Sometimes such initialization
5178 is unnecessary; for example, -mno-shared functions do not use
5179 the incoming value of $25, and may therefore be called directly. */
5180 if (PIC_OBJECT_P (input_bfd))
5187 case R_MIPS_PC21_S2:
5188 case R_MIPS_PC26_S2:
5189 case R_MICROMIPS_26_S1:
5190 case R_MICROMIPS_PC7_S1:
5191 case R_MICROMIPS_PC10_S1:
5192 case R_MICROMIPS_PC16_S1:
5193 case R_MICROMIPS_PC23_S2:
5197 return !target_is_16_bit_code_p;
5204 /* Calculate the value produced by the RELOCATION (which comes from
5205 the INPUT_BFD). The ADDEND is the addend to use for this
5206 RELOCATION; RELOCATION->R_ADDEND is ignored.
5208 The result of the relocation calculation is stored in VALUEP.
5209 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5210 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5212 This function returns bfd_reloc_continue if the caller need take no
5213 further action regarding this relocation, bfd_reloc_notsupported if
5214 something goes dramatically wrong, bfd_reloc_overflow if an
5215 overflow occurs, and bfd_reloc_ok to indicate success. */
5217 static bfd_reloc_status_type
5218 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5219 asection *input_section,
5220 struct bfd_link_info *info,
5221 const Elf_Internal_Rela *relocation,
5222 bfd_vma addend, reloc_howto_type *howto,
5223 Elf_Internal_Sym *local_syms,
5224 asection **local_sections, bfd_vma *valuep,
5226 bfd_boolean *cross_mode_jump_p,
5227 bfd_boolean save_addend)
5229 /* The eventual value we will return. */
5231 /* The address of the symbol against which the relocation is
5234 /* The final GP value to be used for the relocatable, executable, or
5235 shared object file being produced. */
5237 /* The place (section offset or address) of the storage unit being
5240 /* The value of GP used to create the relocatable object. */
5242 /* The offset into the global offset table at which the address of
5243 the relocation entry symbol, adjusted by the addend, resides
5244 during execution. */
5245 bfd_vma g = MINUS_ONE;
5246 /* The section in which the symbol referenced by the relocation is
5248 asection *sec = NULL;
5249 struct mips_elf_link_hash_entry *h = NULL;
5250 /* TRUE if the symbol referred to by this relocation is a local
5252 bfd_boolean local_p, was_local_p;
5253 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5254 bfd_boolean gp_disp_p = FALSE;
5255 /* TRUE if the symbol referred to by this relocation is
5256 "__gnu_local_gp". */
5257 bfd_boolean gnu_local_gp_p = FALSE;
5258 Elf_Internal_Shdr *symtab_hdr;
5260 unsigned long r_symndx;
5262 /* TRUE if overflow occurred during the calculation of the
5263 relocation value. */
5264 bfd_boolean overflowed_p;
5265 /* TRUE if this relocation refers to a MIPS16 function. */
5266 bfd_boolean target_is_16_bit_code_p = FALSE;
5267 bfd_boolean target_is_micromips_code_p = FALSE;
5268 struct mips_elf_link_hash_table *htab;
5271 dynobj = elf_hash_table (info)->dynobj;
5272 htab = mips_elf_hash_table (info);
5273 BFD_ASSERT (htab != NULL);
5275 /* Parse the relocation. */
5276 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5277 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5278 p = (input_section->output_section->vma
5279 + input_section->output_offset
5280 + relocation->r_offset);
5282 /* Assume that there will be no overflow. */
5283 overflowed_p = FALSE;
5285 /* Figure out whether or not the symbol is local, and get the offset
5286 used in the array of hash table entries. */
5287 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5288 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5290 was_local_p = local_p;
5291 if (! elf_bad_symtab (input_bfd))
5292 extsymoff = symtab_hdr->sh_info;
5295 /* The symbol table does not follow the rule that local symbols
5296 must come before globals. */
5300 /* Figure out the value of the symbol. */
5303 Elf_Internal_Sym *sym;
5305 sym = local_syms + r_symndx;
5306 sec = local_sections[r_symndx];
5308 symbol = sec->output_section->vma + sec->output_offset;
5309 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5310 || (sec->flags & SEC_MERGE))
5311 symbol += sym->st_value;
5312 if ((sec->flags & SEC_MERGE)
5313 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5315 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5317 addend += sec->output_section->vma + sec->output_offset;
5320 /* MIPS16/microMIPS text labels should be treated as odd. */
5321 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5324 /* Record the name of this symbol, for our caller. */
5325 *namep = bfd_elf_string_from_elf_section (input_bfd,
5326 symtab_hdr->sh_link,
5329 *namep = bfd_section_name (input_bfd, sec);
5331 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5332 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5336 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5338 /* For global symbols we look up the symbol in the hash-table. */
5339 h = ((struct mips_elf_link_hash_entry *)
5340 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5341 /* Find the real hash-table entry for this symbol. */
5342 while (h->root.root.type == bfd_link_hash_indirect
5343 || h->root.root.type == bfd_link_hash_warning)
5344 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5346 /* Record the name of this symbol, for our caller. */
5347 *namep = h->root.root.root.string;
5349 /* See if this is the special _gp_disp symbol. Note that such a
5350 symbol must always be a global symbol. */
5351 if (strcmp (*namep, "_gp_disp") == 0
5352 && ! NEWABI_P (input_bfd))
5354 /* Relocations against _gp_disp are permitted only with
5355 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5356 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5357 return bfd_reloc_notsupported;
5361 /* See if this is the special _gp symbol. Note that such a
5362 symbol must always be a global symbol. */
5363 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5364 gnu_local_gp_p = TRUE;
5367 /* If this symbol is defined, calculate its address. Note that
5368 _gp_disp is a magic symbol, always implicitly defined by the
5369 linker, so it's inappropriate to check to see whether or not
5371 else if ((h->root.root.type == bfd_link_hash_defined
5372 || h->root.root.type == bfd_link_hash_defweak)
5373 && h->root.root.u.def.section)
5375 sec = h->root.root.u.def.section;
5376 if (sec->output_section)
5377 symbol = (h->root.root.u.def.value
5378 + sec->output_section->vma
5379 + sec->output_offset);
5381 symbol = h->root.root.u.def.value;
5383 else if (h->root.root.type == bfd_link_hash_undefweak)
5384 /* We allow relocations against undefined weak symbols, giving
5385 it the value zero, so that you can undefined weak functions
5386 and check to see if they exist by looking at their
5389 else if (info->unresolved_syms_in_objects == RM_IGNORE
5390 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5392 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5393 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5395 /* If this is a dynamic link, we should have created a
5396 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5397 in in _bfd_mips_elf_create_dynamic_sections.
5398 Otherwise, we should define the symbol with a value of 0.
5399 FIXME: It should probably get into the symbol table
5401 BFD_ASSERT (! bfd_link_pic (info));
5402 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5405 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5407 /* This is an optional symbol - an Irix specific extension to the
5408 ELF spec. Ignore it for now.
5409 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5410 than simply ignoring them, but we do not handle this for now.
5411 For information see the "64-bit ELF Object File Specification"
5412 which is available from here:
5413 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5416 else if ((*info->callbacks->undefined_symbol)
5417 (info, h->root.root.root.string, input_bfd,
5418 input_section, relocation->r_offset,
5419 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5420 || ELF_ST_VISIBILITY (h->root.other)))
5422 return bfd_reloc_undefined;
5426 return bfd_reloc_notsupported;
5429 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5430 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5433 /* If this is a reference to a 16-bit function with a stub, we need
5434 to redirect the relocation to the stub unless:
5436 (a) the relocation is for a MIPS16 JAL;
5438 (b) the relocation is for a MIPS16 PIC call, and there are no
5439 non-MIPS16 uses of the GOT slot; or
5441 (c) the section allows direct references to MIPS16 functions. */
5442 if (r_type != R_MIPS16_26
5443 && !bfd_link_relocatable (info)
5445 && h->fn_stub != NULL
5446 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5448 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5449 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5450 && !section_allows_mips16_refs_p (input_section))
5452 /* This is a 32- or 64-bit call to a 16-bit function. We should
5453 have already noticed that we were going to need the
5457 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5462 BFD_ASSERT (h->need_fn_stub);
5465 /* If a LA25 header for the stub itself exists, point to the
5466 prepended LUI/ADDIU sequence. */
5467 sec = h->la25_stub->stub_section;
5468 value = h->la25_stub->offset;
5477 symbol = sec->output_section->vma + sec->output_offset + value;
5478 /* The target is 16-bit, but the stub isn't. */
5479 target_is_16_bit_code_p = FALSE;
5481 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5482 to a standard MIPS function, we need to redirect the call to the stub.
5483 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5484 indirect calls should use an indirect stub instead. */
5485 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5486 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5488 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5489 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5490 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5493 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5496 /* If both call_stub and call_fp_stub are defined, we can figure
5497 out which one to use by checking which one appears in the input
5499 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5504 for (o = input_bfd->sections; o != NULL; o = o->next)
5506 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5508 sec = h->call_fp_stub;
5515 else if (h->call_stub != NULL)
5518 sec = h->call_fp_stub;
5521 BFD_ASSERT (sec->size > 0);
5522 symbol = sec->output_section->vma + sec->output_offset;
5524 /* If this is a direct call to a PIC function, redirect to the
5526 else if (h != NULL && h->la25_stub
5527 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5528 target_is_16_bit_code_p))
5529 symbol = (h->la25_stub->stub_section->output_section->vma
5530 + h->la25_stub->stub_section->output_offset
5531 + h->la25_stub->offset);
5532 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5533 entry is used if a standard PLT entry has also been made. In this
5534 case the symbol will have been set by mips_elf_set_plt_sym_value
5535 to point to the standard PLT entry, so redirect to the compressed
5537 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5538 && !bfd_link_relocatable (info)
5541 && h->root.plt.plist->comp_offset != MINUS_ONE
5542 && h->root.plt.plist->mips_offset != MINUS_ONE)
5544 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5547 symbol = (sec->output_section->vma
5548 + sec->output_offset
5549 + htab->plt_header_size
5550 + htab->plt_mips_offset
5551 + h->root.plt.plist->comp_offset
5554 target_is_16_bit_code_p = !micromips_p;
5555 target_is_micromips_code_p = micromips_p;
5558 /* Make sure MIPS16 and microMIPS are not used together. */
5559 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5560 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5562 (*_bfd_error_handler)
5563 (_("MIPS16 and microMIPS functions cannot call each other"));
5564 return bfd_reloc_notsupported;
5567 /* Calls from 16-bit code to 32-bit code and vice versa require the
5568 mode change. However, we can ignore calls to undefined weak symbols,
5569 which should never be executed at runtime. This exception is important
5570 because the assembly writer may have "known" that any definition of the
5571 symbol would be 16-bit code, and that direct jumps were therefore
5573 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5574 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5575 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5576 || (r_type == R_MICROMIPS_26_S1
5577 && !target_is_micromips_code_p)
5578 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5579 && (target_is_16_bit_code_p
5580 || target_is_micromips_code_p))));
5582 local_p = (h == NULL || mips_use_local_got_p (info, h));
5584 gp0 = _bfd_get_gp_value (input_bfd);
5585 gp = _bfd_get_gp_value (abfd);
5587 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5592 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5593 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5594 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5595 if (got_page_reloc_p (r_type) && !local_p)
5597 r_type = (micromips_reloc_p (r_type)
5598 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5602 /* If we haven't already determined the GOT offset, and we're going
5603 to need it, get it now. */
5606 case R_MIPS16_CALL16:
5607 case R_MIPS16_GOT16:
5610 case R_MIPS_GOT_DISP:
5611 case R_MIPS_GOT_HI16:
5612 case R_MIPS_CALL_HI16:
5613 case R_MIPS_GOT_LO16:
5614 case R_MIPS_CALL_LO16:
5615 case R_MICROMIPS_CALL16:
5616 case R_MICROMIPS_GOT16:
5617 case R_MICROMIPS_GOT_DISP:
5618 case R_MICROMIPS_GOT_HI16:
5619 case R_MICROMIPS_CALL_HI16:
5620 case R_MICROMIPS_GOT_LO16:
5621 case R_MICROMIPS_CALL_LO16:
5623 case R_MIPS_TLS_GOTTPREL:
5624 case R_MIPS_TLS_LDM:
5625 case R_MIPS16_TLS_GD:
5626 case R_MIPS16_TLS_GOTTPREL:
5627 case R_MIPS16_TLS_LDM:
5628 case R_MICROMIPS_TLS_GD:
5629 case R_MICROMIPS_TLS_GOTTPREL:
5630 case R_MICROMIPS_TLS_LDM:
5631 /* Find the index into the GOT where this value is located. */
5632 if (tls_ldm_reloc_p (r_type))
5634 g = mips_elf_local_got_index (abfd, input_bfd, info,
5635 0, 0, NULL, r_type);
5637 return bfd_reloc_outofrange;
5641 /* On VxWorks, CALL relocations should refer to the .got.plt
5642 entry, which is initialized to point at the PLT stub. */
5643 if (htab->is_vxworks
5644 && (call_hi16_reloc_p (r_type)
5645 || call_lo16_reloc_p (r_type)
5646 || call16_reloc_p (r_type)))
5648 BFD_ASSERT (addend == 0);
5649 BFD_ASSERT (h->root.needs_plt);
5650 g = mips_elf_gotplt_index (info, &h->root);
5654 BFD_ASSERT (addend == 0);
5655 g = mips_elf_global_got_index (abfd, info, input_bfd,
5657 if (!TLS_RELOC_P (r_type)
5658 && !elf_hash_table (info)->dynamic_sections_created)
5659 /* This is a static link. We must initialize the GOT entry. */
5660 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5663 else if (!htab->is_vxworks
5664 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5665 /* The calculation below does not involve "g". */
5669 g = mips_elf_local_got_index (abfd, input_bfd, info,
5670 symbol + addend, r_symndx, h, r_type);
5672 return bfd_reloc_outofrange;
5675 /* Convert GOT indices to actual offsets. */
5676 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5680 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5681 symbols are resolved by the loader. Add them to .rela.dyn. */
5682 if (h != NULL && is_gott_symbol (info, &h->root))
5684 Elf_Internal_Rela outrel;
5688 s = mips_elf_rel_dyn_section (info, FALSE);
5689 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5691 outrel.r_offset = (input_section->output_section->vma
5692 + input_section->output_offset
5693 + relocation->r_offset);
5694 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5695 outrel.r_addend = addend;
5696 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5698 /* If we've written this relocation for a readonly section,
5699 we need to set DF_TEXTREL again, so that we do not delete the
5701 if (MIPS_ELF_READONLY_SECTION (input_section))
5702 info->flags |= DF_TEXTREL;
5705 return bfd_reloc_ok;
5708 /* Figure out what kind of relocation is being performed. */
5712 return bfd_reloc_continue;
5715 if (howto->partial_inplace)
5716 addend = _bfd_mips_elf_sign_extend (addend, 16);
5717 value = symbol + addend;
5718 overflowed_p = mips_elf_overflow_p (value, 16);
5724 if ((bfd_link_pic (info)
5725 || (htab->root.dynamic_sections_created
5727 && h->root.def_dynamic
5728 && !h->root.def_regular
5729 && !h->has_static_relocs))
5730 && r_symndx != STN_UNDEF
5732 || h->root.root.type != bfd_link_hash_undefweak
5733 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5734 && (input_section->flags & SEC_ALLOC) != 0)
5736 /* If we're creating a shared library, then we can't know
5737 where the symbol will end up. So, we create a relocation
5738 record in the output, and leave the job up to the dynamic
5739 linker. We must do the same for executable references to
5740 shared library symbols, unless we've decided to use copy
5741 relocs or PLTs instead. */
5743 if (!mips_elf_create_dynamic_relocation (abfd,
5751 return bfd_reloc_undefined;
5755 if (r_type != R_MIPS_REL32)
5756 value = symbol + addend;
5760 value &= howto->dst_mask;
5764 value = symbol + addend - p;
5765 value &= howto->dst_mask;
5769 /* The calculation for R_MIPS16_26 is just the same as for an
5770 R_MIPS_26. It's only the storage of the relocated field into
5771 the output file that's different. That's handled in
5772 mips_elf_perform_relocation. So, we just fall through to the
5773 R_MIPS_26 case here. */
5775 case R_MICROMIPS_26_S1:
5779 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5780 the correct ISA mode selector and bit 1 must be 0. */
5781 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5782 return bfd_reloc_outofrange;
5784 /* Shift is 2, unusually, for microMIPS JALX. */
5785 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5788 value = addend | ((p + 4) & (0xfc000000 << shift));
5789 else if (howto->partial_inplace)
5790 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5793 value = (value + symbol) >> shift;
5794 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5795 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5796 value &= howto->dst_mask;
5800 case R_MIPS_TLS_DTPREL_HI16:
5801 case R_MIPS16_TLS_DTPREL_HI16:
5802 case R_MICROMIPS_TLS_DTPREL_HI16:
5803 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5807 case R_MIPS_TLS_DTPREL_LO16:
5808 case R_MIPS_TLS_DTPREL32:
5809 case R_MIPS_TLS_DTPREL64:
5810 case R_MIPS16_TLS_DTPREL_LO16:
5811 case R_MICROMIPS_TLS_DTPREL_LO16:
5812 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5815 case R_MIPS_TLS_TPREL_HI16:
5816 case R_MIPS16_TLS_TPREL_HI16:
5817 case R_MICROMIPS_TLS_TPREL_HI16:
5818 value = (mips_elf_high (addend + symbol - tprel_base (info))
5822 case R_MIPS_TLS_TPREL_LO16:
5823 case R_MIPS_TLS_TPREL32:
5824 case R_MIPS_TLS_TPREL64:
5825 case R_MIPS16_TLS_TPREL_LO16:
5826 case R_MICROMIPS_TLS_TPREL_LO16:
5827 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5832 case R_MICROMIPS_HI16:
5835 value = mips_elf_high (addend + symbol);
5836 value &= howto->dst_mask;
5840 /* For MIPS16 ABI code we generate this sequence
5841 0: li $v0,%hi(_gp_disp)
5842 4: addiupc $v1,%lo(_gp_disp)
5846 So the offsets of hi and lo relocs are the same, but the
5847 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5848 ADDIUPC clears the low two bits of the instruction address,
5849 so the base is ($t9 + 4) & ~3. */
5850 if (r_type == R_MIPS16_HI16)
5851 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5852 /* The microMIPS .cpload sequence uses the same assembly
5853 instructions as the traditional psABI version, but the
5854 incoming $t9 has the low bit set. */
5855 else if (r_type == R_MICROMIPS_HI16)
5856 value = mips_elf_high (addend + gp - p - 1);
5858 value = mips_elf_high (addend + gp - p);
5859 overflowed_p = mips_elf_overflow_p (value, 16);
5865 case R_MICROMIPS_LO16:
5866 case R_MICROMIPS_HI0_LO16:
5868 value = (symbol + addend) & howto->dst_mask;
5871 /* See the comment for R_MIPS16_HI16 above for the reason
5872 for this conditional. */
5873 if (r_type == R_MIPS16_LO16)
5874 value = addend + gp - (p & ~(bfd_vma) 0x3);
5875 else if (r_type == R_MICROMIPS_LO16
5876 || r_type == R_MICROMIPS_HI0_LO16)
5877 value = addend + gp - p + 3;
5879 value = addend + gp - p + 4;
5880 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5881 for overflow. But, on, say, IRIX5, relocations against
5882 _gp_disp are normally generated from the .cpload
5883 pseudo-op. It generates code that normally looks like
5886 lui $gp,%hi(_gp_disp)
5887 addiu $gp,$gp,%lo(_gp_disp)
5890 Here $t9 holds the address of the function being called,
5891 as required by the MIPS ELF ABI. The R_MIPS_LO16
5892 relocation can easily overflow in this situation, but the
5893 R_MIPS_HI16 relocation will handle the overflow.
5894 Therefore, we consider this a bug in the MIPS ABI, and do
5895 not check for overflow here. */
5899 case R_MIPS_LITERAL:
5900 case R_MICROMIPS_LITERAL:
5901 /* Because we don't merge literal sections, we can handle this
5902 just like R_MIPS_GPREL16. In the long run, we should merge
5903 shared literals, and then we will need to additional work
5908 case R_MIPS16_GPREL:
5909 /* The R_MIPS16_GPREL performs the same calculation as
5910 R_MIPS_GPREL16, but stores the relocated bits in a different
5911 order. We don't need to do anything special here; the
5912 differences are handled in mips_elf_perform_relocation. */
5913 case R_MIPS_GPREL16:
5914 case R_MICROMIPS_GPREL7_S2:
5915 case R_MICROMIPS_GPREL16:
5916 /* Only sign-extend the addend if it was extracted from the
5917 instruction. If the addend was separate, leave it alone,
5918 otherwise we may lose significant bits. */
5919 if (howto->partial_inplace)
5920 addend = _bfd_mips_elf_sign_extend (addend, 16);
5921 value = symbol + addend - gp;
5922 /* If the symbol was local, any earlier relocatable links will
5923 have adjusted its addend with the gp offset, so compensate
5924 for that now. Don't do it for symbols forced local in this
5925 link, though, since they won't have had the gp offset applied
5929 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5930 overflowed_p = mips_elf_overflow_p (value, 16);
5933 case R_MIPS16_GOT16:
5934 case R_MIPS16_CALL16:
5937 case R_MICROMIPS_GOT16:
5938 case R_MICROMIPS_CALL16:
5939 /* VxWorks does not have separate local and global semantics for
5940 R_MIPS*_GOT16; every relocation evaluates to "G". */
5941 if (!htab->is_vxworks && local_p)
5943 value = mips_elf_got16_entry (abfd, input_bfd, info,
5944 symbol + addend, !was_local_p);
5945 if (value == MINUS_ONE)
5946 return bfd_reloc_outofrange;
5948 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5949 overflowed_p = mips_elf_overflow_p (value, 16);
5956 case R_MIPS_TLS_GOTTPREL:
5957 case R_MIPS_TLS_LDM:
5958 case R_MIPS_GOT_DISP:
5959 case R_MIPS16_TLS_GD:
5960 case R_MIPS16_TLS_GOTTPREL:
5961 case R_MIPS16_TLS_LDM:
5962 case R_MICROMIPS_TLS_GD:
5963 case R_MICROMIPS_TLS_GOTTPREL:
5964 case R_MICROMIPS_TLS_LDM:
5965 case R_MICROMIPS_GOT_DISP:
5967 overflowed_p = mips_elf_overflow_p (value, 16);
5970 case R_MIPS_GPREL32:
5971 value = (addend + symbol + gp0 - gp);
5973 value &= howto->dst_mask;
5977 case R_MIPS_GNU_REL16_S2:
5978 if (howto->partial_inplace)
5979 addend = _bfd_mips_elf_sign_extend (addend, 18);
5981 if ((symbol + addend) & 3)
5982 return bfd_reloc_outofrange;
5984 value = symbol + addend - p;
5985 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5986 overflowed_p = mips_elf_overflow_p (value, 18);
5987 value >>= howto->rightshift;
5988 value &= howto->dst_mask;
5991 case R_MIPS_PC21_S2:
5992 if (howto->partial_inplace)
5993 addend = _bfd_mips_elf_sign_extend (addend, 23);
5995 if ((symbol + addend) & 3)
5996 return bfd_reloc_outofrange;
5998 value = symbol + addend - p;
5999 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6000 overflowed_p = mips_elf_overflow_p (value, 23);
6001 value >>= howto->rightshift;
6002 value &= howto->dst_mask;
6005 case R_MIPS_PC26_S2:
6006 if (howto->partial_inplace)
6007 addend = _bfd_mips_elf_sign_extend (addend, 28);
6009 if ((symbol + addend) & 3)
6010 return bfd_reloc_outofrange;
6012 value = symbol + addend - p;
6013 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6014 overflowed_p = mips_elf_overflow_p (value, 28);
6015 value >>= howto->rightshift;
6016 value &= howto->dst_mask;
6019 case R_MIPS_PC18_S3:
6020 if (howto->partial_inplace)
6021 addend = _bfd_mips_elf_sign_extend (addend, 21);
6023 if ((symbol + addend) & 7)
6024 return bfd_reloc_outofrange;
6026 value = symbol + addend - ((p | 7) ^ 7);
6027 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6028 overflowed_p = mips_elf_overflow_p (value, 21);
6029 value >>= howto->rightshift;
6030 value &= howto->dst_mask;
6033 case R_MIPS_PC19_S2:
6034 if (howto->partial_inplace)
6035 addend = _bfd_mips_elf_sign_extend (addend, 21);
6037 if ((symbol + addend) & 3)
6038 return bfd_reloc_outofrange;
6040 value = symbol + addend - p;
6041 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6042 overflowed_p = mips_elf_overflow_p (value, 21);
6043 value >>= howto->rightshift;
6044 value &= howto->dst_mask;
6048 value = mips_elf_high (symbol + addend - p);
6049 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6050 overflowed_p = mips_elf_overflow_p (value, 16);
6051 value &= howto->dst_mask;
6055 if (howto->partial_inplace)
6056 addend = _bfd_mips_elf_sign_extend (addend, 16);
6057 value = symbol + addend - p;
6058 value &= howto->dst_mask;
6061 case R_MICROMIPS_PC7_S1:
6062 if (howto->partial_inplace)
6063 addend = _bfd_mips_elf_sign_extend (addend, 8);
6064 value = symbol + addend - p;
6065 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6066 overflowed_p = mips_elf_overflow_p (value, 8);
6067 value >>= howto->rightshift;
6068 value &= howto->dst_mask;
6071 case R_MICROMIPS_PC10_S1:
6072 if (howto->partial_inplace)
6073 addend = _bfd_mips_elf_sign_extend (addend, 11);
6074 value = symbol + addend - p;
6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 overflowed_p = mips_elf_overflow_p (value, 11);
6077 value >>= howto->rightshift;
6078 value &= howto->dst_mask;
6081 case R_MICROMIPS_PC16_S1:
6082 if (howto->partial_inplace)
6083 addend = _bfd_mips_elf_sign_extend (addend, 17);
6084 value = symbol + addend - p;
6085 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6086 overflowed_p = mips_elf_overflow_p (value, 17);
6087 value >>= howto->rightshift;
6088 value &= howto->dst_mask;
6091 case R_MICROMIPS_PC23_S2:
6092 if (howto->partial_inplace)
6093 addend = _bfd_mips_elf_sign_extend (addend, 25);
6094 value = symbol + addend - ((p | 3) ^ 3);
6095 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6096 overflowed_p = mips_elf_overflow_p (value, 25);
6097 value >>= howto->rightshift;
6098 value &= howto->dst_mask;
6101 case R_MIPS_GOT_HI16:
6102 case R_MIPS_CALL_HI16:
6103 case R_MICROMIPS_GOT_HI16:
6104 case R_MICROMIPS_CALL_HI16:
6105 /* We're allowed to handle these two relocations identically.
6106 The dynamic linker is allowed to handle the CALL relocations
6107 differently by creating a lazy evaluation stub. */
6109 value = mips_elf_high (value);
6110 value &= howto->dst_mask;
6113 case R_MIPS_GOT_LO16:
6114 case R_MIPS_CALL_LO16:
6115 case R_MICROMIPS_GOT_LO16:
6116 case R_MICROMIPS_CALL_LO16:
6117 value = g & howto->dst_mask;
6120 case R_MIPS_GOT_PAGE:
6121 case R_MICROMIPS_GOT_PAGE:
6122 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6123 if (value == MINUS_ONE)
6124 return bfd_reloc_outofrange;
6125 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6126 overflowed_p = mips_elf_overflow_p (value, 16);
6129 case R_MIPS_GOT_OFST:
6130 case R_MICROMIPS_GOT_OFST:
6132 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6135 overflowed_p = mips_elf_overflow_p (value, 16);
6139 case R_MICROMIPS_SUB:
6140 value = symbol - addend;
6141 value &= howto->dst_mask;
6145 case R_MICROMIPS_HIGHER:
6146 value = mips_elf_higher (addend + symbol);
6147 value &= howto->dst_mask;
6150 case R_MIPS_HIGHEST:
6151 case R_MICROMIPS_HIGHEST:
6152 value = mips_elf_highest (addend + symbol);
6153 value &= howto->dst_mask;
6156 case R_MIPS_SCN_DISP:
6157 case R_MICROMIPS_SCN_DISP:
6158 value = symbol + addend - sec->output_offset;
6159 value &= howto->dst_mask;
6163 case R_MICROMIPS_JALR:
6164 /* This relocation is only a hint. In some cases, we optimize
6165 it into a bal instruction. But we don't try to optimize
6166 when the symbol does not resolve locally. */
6167 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6168 return bfd_reloc_continue;
6169 value = symbol + addend;
6173 case R_MIPS_GNU_VTINHERIT:
6174 case R_MIPS_GNU_VTENTRY:
6175 /* We don't do anything with these at present. */
6176 return bfd_reloc_continue;
6179 /* An unrecognized relocation type. */
6180 return bfd_reloc_notsupported;
6183 /* Store the VALUE for our caller. */
6185 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6188 /* Obtain the field relocated by RELOCATION. */
6191 mips_elf_obtain_contents (reloc_howto_type *howto,
6192 const Elf_Internal_Rela *relocation,
6193 bfd *input_bfd, bfd_byte *contents)
6196 bfd_byte *location = contents + relocation->r_offset;
6197 unsigned int size = bfd_get_reloc_size (howto);
6199 /* Obtain the bytes. */
6201 x = bfd_get (8 * size, input_bfd, location);
6206 /* It has been determined that the result of the RELOCATION is the
6207 VALUE. Use HOWTO to place VALUE into the output file at the
6208 appropriate position. The SECTION is the section to which the
6210 CROSS_MODE_JUMP_P is true if the relocation field
6211 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6213 Returns FALSE if anything goes wrong. */
6216 mips_elf_perform_relocation (struct bfd_link_info *info,
6217 reloc_howto_type *howto,
6218 const Elf_Internal_Rela *relocation,
6219 bfd_vma value, bfd *input_bfd,
6220 asection *input_section, bfd_byte *contents,
6221 bfd_boolean cross_mode_jump_p)
6225 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6228 /* Figure out where the relocation is occurring. */
6229 location = contents + relocation->r_offset;
6231 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6233 /* Obtain the current value. */
6234 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6236 /* Clear the field we are setting. */
6237 x &= ~howto->dst_mask;
6239 /* Set the field. */
6240 x |= (value & howto->dst_mask);
6242 /* If required, turn JAL into JALX. */
6243 if (cross_mode_jump_p && jal_reloc_p (r_type))
6246 bfd_vma opcode = x >> 26;
6247 bfd_vma jalx_opcode;
6249 /* Check to see if the opcode is already JAL or JALX. */
6250 if (r_type == R_MIPS16_26)
6252 ok = ((opcode == 0x6) || (opcode == 0x7));
6255 else if (r_type == R_MICROMIPS_26_S1)
6257 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6262 ok = ((opcode == 0x3) || (opcode == 0x1d));
6266 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6267 convert J or JALS to JALX. */
6270 (*_bfd_error_handler)
6271 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6274 (unsigned long) relocation->r_offset);
6275 bfd_set_error (bfd_error_bad_value);
6279 /* Make this the JALX opcode. */
6280 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6283 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6285 if (!bfd_link_relocatable (info)
6286 && !cross_mode_jump_p
6287 && ((JAL_TO_BAL_P (input_bfd)
6288 && r_type == R_MIPS_26
6289 && (x >> 26) == 0x3) /* jal addr */
6290 || (JALR_TO_BAL_P (input_bfd)
6291 && r_type == R_MIPS_JALR
6292 && x == 0x0320f809) /* jalr t9 */
6293 || (JR_TO_B_P (input_bfd)
6294 && r_type == R_MIPS_JALR
6295 && x == 0x03200008))) /* jr t9 */
6301 addr = (input_section->output_section->vma
6302 + input_section->output_offset
6303 + relocation->r_offset
6305 if (r_type == R_MIPS_26)
6306 dest = (value << 2) | ((addr >> 28) << 28);
6310 if (off <= 0x1ffff && off >= -0x20000)
6312 if (x == 0x03200008) /* jr t9 */
6313 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6315 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6319 /* Put the value into the output. */
6320 size = bfd_get_reloc_size (howto);
6322 bfd_put (8 * size, input_bfd, x, location);
6324 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6330 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6331 is the original relocation, which is now being transformed into a
6332 dynamic relocation. The ADDENDP is adjusted if necessary; the
6333 caller should store the result in place of the original addend. */
6336 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6337 struct bfd_link_info *info,
6338 const Elf_Internal_Rela *rel,
6339 struct mips_elf_link_hash_entry *h,
6340 asection *sec, bfd_vma symbol,
6341 bfd_vma *addendp, asection *input_section)
6343 Elf_Internal_Rela outrel[3];
6348 bfd_boolean defined_p;
6349 struct mips_elf_link_hash_table *htab;
6351 htab = mips_elf_hash_table (info);
6352 BFD_ASSERT (htab != NULL);
6354 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6355 dynobj = elf_hash_table (info)->dynobj;
6356 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6357 BFD_ASSERT (sreloc != NULL);
6358 BFD_ASSERT (sreloc->contents != NULL);
6359 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6362 outrel[0].r_offset =
6363 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6364 if (ABI_64_P (output_bfd))
6366 outrel[1].r_offset =
6367 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6368 outrel[2].r_offset =
6369 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6372 if (outrel[0].r_offset == MINUS_ONE)
6373 /* The relocation field has been deleted. */
6376 if (outrel[0].r_offset == MINUS_TWO)
6378 /* The relocation field has been converted into a relative value of
6379 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6380 the field to be fully relocated, so add in the symbol's value. */
6385 /* We must now calculate the dynamic symbol table index to use
6386 in the relocation. */
6387 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6389 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6390 indx = h->root.dynindx;
6391 if (SGI_COMPAT (output_bfd))
6392 defined_p = h->root.def_regular;
6394 /* ??? glibc's ld.so just adds the final GOT entry to the
6395 relocation field. It therefore treats relocs against
6396 defined symbols in the same way as relocs against
6397 undefined symbols. */
6402 if (sec != NULL && bfd_is_abs_section (sec))
6404 else if (sec == NULL || sec->owner == NULL)
6406 bfd_set_error (bfd_error_bad_value);
6411 indx = elf_section_data (sec->output_section)->dynindx;
6414 asection *osec = htab->root.text_index_section;
6415 indx = elf_section_data (osec)->dynindx;
6421 /* Instead of generating a relocation using the section
6422 symbol, we may as well make it a fully relative
6423 relocation. We want to avoid generating relocations to
6424 local symbols because we used to generate them
6425 incorrectly, without adding the original symbol value,
6426 which is mandated by the ABI for section symbols. In
6427 order to give dynamic loaders and applications time to
6428 phase out the incorrect use, we refrain from emitting
6429 section-relative relocations. It's not like they're
6430 useful, after all. This should be a bit more efficient
6432 /* ??? Although this behavior is compatible with glibc's ld.so,
6433 the ABI says that relocations against STN_UNDEF should have
6434 a symbol value of 0. Irix rld honors this, so relocations
6435 against STN_UNDEF have no effect. */
6436 if (!SGI_COMPAT (output_bfd))
6441 /* If the relocation was previously an absolute relocation and
6442 this symbol will not be referred to by the relocation, we must
6443 adjust it by the value we give it in the dynamic symbol table.
6444 Otherwise leave the job up to the dynamic linker. */
6445 if (defined_p && r_type != R_MIPS_REL32)
6448 if (htab->is_vxworks)
6449 /* VxWorks uses non-relative relocations for this. */
6450 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6452 /* The relocation is always an REL32 relocation because we don't
6453 know where the shared library will wind up at load-time. */
6454 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6457 /* For strict adherence to the ABI specification, we should
6458 generate a R_MIPS_64 relocation record by itself before the
6459 _REL32/_64 record as well, such that the addend is read in as
6460 a 64-bit value (REL32 is a 32-bit relocation, after all).
6461 However, since none of the existing ELF64 MIPS dynamic
6462 loaders seems to care, we don't waste space with these
6463 artificial relocations. If this turns out to not be true,
6464 mips_elf_allocate_dynamic_relocation() should be tweaked so
6465 as to make room for a pair of dynamic relocations per
6466 invocation if ABI_64_P, and here we should generate an
6467 additional relocation record with R_MIPS_64 by itself for a
6468 NULL symbol before this relocation record. */
6469 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6470 ABI_64_P (output_bfd)
6473 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6475 /* Adjust the output offset of the relocation to reference the
6476 correct location in the output file. */
6477 outrel[0].r_offset += (input_section->output_section->vma
6478 + input_section->output_offset);
6479 outrel[1].r_offset += (input_section->output_section->vma
6480 + input_section->output_offset);
6481 outrel[2].r_offset += (input_section->output_section->vma
6482 + input_section->output_offset);
6484 /* Put the relocation back out. We have to use the special
6485 relocation outputter in the 64-bit case since the 64-bit
6486 relocation format is non-standard. */
6487 if (ABI_64_P (output_bfd))
6489 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6490 (output_bfd, &outrel[0],
6492 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6494 else if (htab->is_vxworks)
6496 /* VxWorks uses RELA rather than REL dynamic relocations. */
6497 outrel[0].r_addend = *addendp;
6498 bfd_elf32_swap_reloca_out
6499 (output_bfd, &outrel[0],
6501 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6504 bfd_elf32_swap_reloc_out
6505 (output_bfd, &outrel[0],
6506 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6508 /* We've now added another relocation. */
6509 ++sreloc->reloc_count;
6511 /* Make sure the output section is writable. The dynamic linker
6512 will be writing to it. */
6513 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6516 /* On IRIX5, make an entry of compact relocation info. */
6517 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6519 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6524 Elf32_crinfo cptrel;
6526 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6527 cptrel.vaddr = (rel->r_offset
6528 + input_section->output_section->vma
6529 + input_section->output_offset);
6530 if (r_type == R_MIPS_REL32)
6531 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6533 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6534 mips_elf_set_cr_dist2to (cptrel, 0);
6535 cptrel.konst = *addendp;
6537 cr = (scpt->contents
6538 + sizeof (Elf32_External_compact_rel));
6539 mips_elf_set_cr_relvaddr (cptrel, 0);
6540 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6541 ((Elf32_External_crinfo *) cr
6542 + scpt->reloc_count));
6543 ++scpt->reloc_count;
6547 /* If we've written this relocation for a readonly section,
6548 we need to set DF_TEXTREL again, so that we do not delete the
6550 if (MIPS_ELF_READONLY_SECTION (input_section))
6551 info->flags |= DF_TEXTREL;
6556 /* Return the MACH for a MIPS e_flags value. */
6559 _bfd_elf_mips_mach (flagword flags)
6561 switch (flags & EF_MIPS_MACH)
6563 case E_MIPS_MACH_3900:
6564 return bfd_mach_mips3900;
6566 case E_MIPS_MACH_4010:
6567 return bfd_mach_mips4010;
6569 case E_MIPS_MACH_4100:
6570 return bfd_mach_mips4100;
6572 case E_MIPS_MACH_4111:
6573 return bfd_mach_mips4111;
6575 case E_MIPS_MACH_4120:
6576 return bfd_mach_mips4120;
6578 case E_MIPS_MACH_4650:
6579 return bfd_mach_mips4650;
6581 case E_MIPS_MACH_5400:
6582 return bfd_mach_mips5400;
6584 case E_MIPS_MACH_5500:
6585 return bfd_mach_mips5500;
6587 case E_MIPS_MACH_5900:
6588 return bfd_mach_mips5900;
6590 case E_MIPS_MACH_9000:
6591 return bfd_mach_mips9000;
6593 case E_MIPS_MACH_SB1:
6594 return bfd_mach_mips_sb1;
6596 case E_MIPS_MACH_LS2E:
6597 return bfd_mach_mips_loongson_2e;
6599 case E_MIPS_MACH_LS2F:
6600 return bfd_mach_mips_loongson_2f;
6602 case E_MIPS_MACH_LS3A:
6603 return bfd_mach_mips_loongson_3a;
6605 case E_MIPS_MACH_OCTEON3:
6606 return bfd_mach_mips_octeon3;
6608 case E_MIPS_MACH_OCTEON2:
6609 return bfd_mach_mips_octeon2;
6611 case E_MIPS_MACH_OCTEON:
6612 return bfd_mach_mips_octeon;
6614 case E_MIPS_MACH_XLR:
6615 return bfd_mach_mips_xlr;
6618 switch (flags & EF_MIPS_ARCH)
6622 return bfd_mach_mips3000;
6625 return bfd_mach_mips6000;
6628 return bfd_mach_mips4000;
6631 return bfd_mach_mips8000;
6634 return bfd_mach_mips5;
6636 case E_MIPS_ARCH_32:
6637 return bfd_mach_mipsisa32;
6639 case E_MIPS_ARCH_64:
6640 return bfd_mach_mipsisa64;
6642 case E_MIPS_ARCH_32R2:
6643 return bfd_mach_mipsisa32r2;
6645 case E_MIPS_ARCH_64R2:
6646 return bfd_mach_mipsisa64r2;
6648 case E_MIPS_ARCH_32R6:
6649 return bfd_mach_mipsisa32r6;
6651 case E_MIPS_ARCH_64R6:
6652 return bfd_mach_mipsisa64r6;
6659 /* Return printable name for ABI. */
6661 static INLINE char *
6662 elf_mips_abi_name (bfd *abfd)
6666 flags = elf_elfheader (abfd)->e_flags;
6667 switch (flags & EF_MIPS_ABI)
6670 if (ABI_N32_P (abfd))
6672 else if (ABI_64_P (abfd))
6676 case E_MIPS_ABI_O32:
6678 case E_MIPS_ABI_O64:
6680 case E_MIPS_ABI_EABI32:
6682 case E_MIPS_ABI_EABI64:
6685 return "unknown abi";
6689 /* MIPS ELF uses two common sections. One is the usual one, and the
6690 other is for small objects. All the small objects are kept
6691 together, and then referenced via the gp pointer, which yields
6692 faster assembler code. This is what we use for the small common
6693 section. This approach is copied from ecoff.c. */
6694 static asection mips_elf_scom_section;
6695 static asymbol mips_elf_scom_symbol;
6696 static asymbol *mips_elf_scom_symbol_ptr;
6698 /* MIPS ELF also uses an acommon section, which represents an
6699 allocated common symbol which may be overridden by a
6700 definition in a shared library. */
6701 static asection mips_elf_acom_section;
6702 static asymbol mips_elf_acom_symbol;
6703 static asymbol *mips_elf_acom_symbol_ptr;
6705 /* This is used for both the 32-bit and the 64-bit ABI. */
6708 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6710 elf_symbol_type *elfsym;
6712 /* Handle the special MIPS section numbers that a symbol may use. */
6713 elfsym = (elf_symbol_type *) asym;
6714 switch (elfsym->internal_elf_sym.st_shndx)
6716 case SHN_MIPS_ACOMMON:
6717 /* This section is used in a dynamically linked executable file.
6718 It is an allocated common section. The dynamic linker can
6719 either resolve these symbols to something in a shared
6720 library, or it can just leave them here. For our purposes,
6721 we can consider these symbols to be in a new section. */
6722 if (mips_elf_acom_section.name == NULL)
6724 /* Initialize the acommon section. */
6725 mips_elf_acom_section.name = ".acommon";
6726 mips_elf_acom_section.flags = SEC_ALLOC;
6727 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6728 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6729 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6730 mips_elf_acom_symbol.name = ".acommon";
6731 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6732 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6733 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6735 asym->section = &mips_elf_acom_section;
6739 /* Common symbols less than the GP size are automatically
6740 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6741 if (asym->value > elf_gp_size (abfd)
6742 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6743 || IRIX_COMPAT (abfd) == ict_irix6)
6746 case SHN_MIPS_SCOMMON:
6747 if (mips_elf_scom_section.name == NULL)
6749 /* Initialize the small common section. */
6750 mips_elf_scom_section.name = ".scommon";
6751 mips_elf_scom_section.flags = SEC_IS_COMMON;
6752 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6753 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6754 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6755 mips_elf_scom_symbol.name = ".scommon";
6756 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6757 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6758 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6760 asym->section = &mips_elf_scom_section;
6761 asym->value = elfsym->internal_elf_sym.st_size;
6764 case SHN_MIPS_SUNDEFINED:
6765 asym->section = bfd_und_section_ptr;
6770 asection *section = bfd_get_section_by_name (abfd, ".text");
6772 if (section != NULL)
6774 asym->section = section;
6775 /* MIPS_TEXT is a bit special, the address is not an offset
6776 to the base of the .text section. So substract the section
6777 base address to make it an offset. */
6778 asym->value -= section->vma;
6785 asection *section = bfd_get_section_by_name (abfd, ".data");
6787 if (section != NULL)
6789 asym->section = section;
6790 /* MIPS_DATA is a bit special, the address is not an offset
6791 to the base of the .data section. So substract the section
6792 base address to make it an offset. */
6793 asym->value -= section->vma;
6799 /* If this is an odd-valued function symbol, assume it's a MIPS16
6800 or microMIPS one. */
6801 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6802 && (asym->value & 1) != 0)
6805 if (MICROMIPS_P (abfd))
6806 elfsym->internal_elf_sym.st_other
6807 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6809 elfsym->internal_elf_sym.st_other
6810 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6814 /* Implement elf_backend_eh_frame_address_size. This differs from
6815 the default in the way it handles EABI64.
6817 EABI64 was originally specified as an LP64 ABI, and that is what
6818 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6819 historically accepted the combination of -mabi=eabi and -mlong32,
6820 and this ILP32 variation has become semi-official over time.
6821 Both forms use elf32 and have pointer-sized FDE addresses.
6823 If an EABI object was generated by GCC 4.0 or above, it will have
6824 an empty .gcc_compiled_longXX section, where XX is the size of longs
6825 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6826 have no special marking to distinguish them from LP64 objects.
6828 We don't want users of the official LP64 ABI to be punished for the
6829 existence of the ILP32 variant, but at the same time, we don't want
6830 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6831 We therefore take the following approach:
6833 - If ABFD contains a .gcc_compiled_longXX section, use it to
6834 determine the pointer size.
6836 - Otherwise check the type of the first relocation. Assume that
6837 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6841 The second check is enough to detect LP64 objects generated by pre-4.0
6842 compilers because, in the kind of output generated by those compilers,
6843 the first relocation will be associated with either a CIE personality
6844 routine or an FDE start address. Furthermore, the compilers never
6845 used a special (non-pointer) encoding for this ABI.
6847 Checking the relocation type should also be safe because there is no
6848 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6852 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6854 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6856 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6858 bfd_boolean long32_p, long64_p;
6860 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6861 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6862 if (long32_p && long64_p)
6869 if (sec->reloc_count > 0
6870 && elf_section_data (sec)->relocs != NULL
6871 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6880 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6881 relocations against two unnamed section symbols to resolve to the
6882 same address. For example, if we have code like:
6884 lw $4,%got_disp(.data)($gp)
6885 lw $25,%got_disp(.text)($gp)
6888 then the linker will resolve both relocations to .data and the program
6889 will jump there rather than to .text.
6891 We can work around this problem by giving names to local section symbols.
6892 This is also what the MIPSpro tools do. */
6895 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6897 return SGI_COMPAT (abfd);
6900 /* Work over a section just before writing it out. This routine is
6901 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6902 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6906 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6908 if (hdr->sh_type == SHT_MIPS_REGINFO
6909 && hdr->sh_size > 0)
6913 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6914 BFD_ASSERT (hdr->contents == NULL);
6917 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6920 H_PUT_32 (abfd, elf_gp (abfd), buf);
6921 if (bfd_bwrite (buf, 4, abfd) != 4)
6925 if (hdr->sh_type == SHT_MIPS_OPTIONS
6926 && hdr->bfd_section != NULL
6927 && mips_elf_section_data (hdr->bfd_section) != NULL
6928 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6930 bfd_byte *contents, *l, *lend;
6932 /* We stored the section contents in the tdata field in the
6933 set_section_contents routine. We save the section contents
6934 so that we don't have to read them again.
6935 At this point we know that elf_gp is set, so we can look
6936 through the section contents to see if there is an
6937 ODK_REGINFO structure. */
6939 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6941 lend = contents + hdr->sh_size;
6942 while (l + sizeof (Elf_External_Options) <= lend)
6944 Elf_Internal_Options intopt;
6946 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6948 if (intopt.size < sizeof (Elf_External_Options))
6950 (*_bfd_error_handler)
6951 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6952 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6955 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6962 + sizeof (Elf_External_Options)
6963 + (sizeof (Elf64_External_RegInfo) - 8)),
6966 H_PUT_64 (abfd, elf_gp (abfd), buf);
6967 if (bfd_bwrite (buf, 8, abfd) != 8)
6970 else if (intopt.kind == ODK_REGINFO)
6977 + sizeof (Elf_External_Options)
6978 + (sizeof (Elf32_External_RegInfo) - 4)),
6981 H_PUT_32 (abfd, elf_gp (abfd), buf);
6982 if (bfd_bwrite (buf, 4, abfd) != 4)
6989 if (hdr->bfd_section != NULL)
6991 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6993 /* .sbss is not handled specially here because the GNU/Linux
6994 prelinker can convert .sbss from NOBITS to PROGBITS and
6995 changing it back to NOBITS breaks the binary. The entry in
6996 _bfd_mips_elf_special_sections will ensure the correct flags
6997 are set on .sbss if BFD creates it without reading it from an
6998 input file, and without special handling here the flags set
6999 on it in an input file will be followed. */
7000 if (strcmp (name, ".sdata") == 0
7001 || strcmp (name, ".lit8") == 0
7002 || strcmp (name, ".lit4") == 0)
7003 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7004 else if (strcmp (name, ".srdata") == 0)
7005 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7006 else if (strcmp (name, ".compact_rel") == 0)
7008 else if (strcmp (name, ".rtproc") == 0)
7010 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7012 unsigned int adjust;
7014 adjust = hdr->sh_size % hdr->sh_addralign;
7016 hdr->sh_size += hdr->sh_addralign - adjust;
7024 /* Handle a MIPS specific section when reading an object file. This
7025 is called when elfcode.h finds a section with an unknown type.
7026 This routine supports both the 32-bit and 64-bit ELF ABI.
7028 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7032 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7033 Elf_Internal_Shdr *hdr,
7039 /* There ought to be a place to keep ELF backend specific flags, but
7040 at the moment there isn't one. We just keep track of the
7041 sections by their name, instead. Fortunately, the ABI gives
7042 suggested names for all the MIPS specific sections, so we will
7043 probably get away with this. */
7044 switch (hdr->sh_type)
7046 case SHT_MIPS_LIBLIST:
7047 if (strcmp (name, ".liblist") != 0)
7051 if (strcmp (name, ".msym") != 0)
7054 case SHT_MIPS_CONFLICT:
7055 if (strcmp (name, ".conflict") != 0)
7058 case SHT_MIPS_GPTAB:
7059 if (! CONST_STRNEQ (name, ".gptab."))
7062 case SHT_MIPS_UCODE:
7063 if (strcmp (name, ".ucode") != 0)
7066 case SHT_MIPS_DEBUG:
7067 if (strcmp (name, ".mdebug") != 0)
7069 flags = SEC_DEBUGGING;
7071 case SHT_MIPS_REGINFO:
7072 if (strcmp (name, ".reginfo") != 0
7073 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7075 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7077 case SHT_MIPS_IFACE:
7078 if (strcmp (name, ".MIPS.interfaces") != 0)
7081 case SHT_MIPS_CONTENT:
7082 if (! CONST_STRNEQ (name, ".MIPS.content"))
7085 case SHT_MIPS_OPTIONS:
7086 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7089 case SHT_MIPS_ABIFLAGS:
7090 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7092 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7094 case SHT_MIPS_DWARF:
7095 if (! CONST_STRNEQ (name, ".debug_")
7096 && ! CONST_STRNEQ (name, ".zdebug_"))
7099 case SHT_MIPS_SYMBOL_LIB:
7100 if (strcmp (name, ".MIPS.symlib") != 0)
7103 case SHT_MIPS_EVENTS:
7104 if (! CONST_STRNEQ (name, ".MIPS.events")
7105 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7112 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7117 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7118 (bfd_get_section_flags (abfd,
7124 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7126 Elf_External_ABIFlags_v0 ext;
7128 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7129 &ext, 0, sizeof ext))
7131 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7132 &mips_elf_tdata (abfd)->abiflags);
7133 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7135 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7138 /* FIXME: We should record sh_info for a .gptab section. */
7140 /* For a .reginfo section, set the gp value in the tdata information
7141 from the contents of this section. We need the gp value while
7142 processing relocs, so we just get it now. The .reginfo section
7143 is not used in the 64-bit MIPS ELF ABI. */
7144 if (hdr->sh_type == SHT_MIPS_REGINFO)
7146 Elf32_External_RegInfo ext;
7149 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7150 &ext, 0, sizeof ext))
7152 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7153 elf_gp (abfd) = s.ri_gp_value;
7156 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7157 set the gp value based on what we find. We may see both
7158 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7159 they should agree. */
7160 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7162 bfd_byte *contents, *l, *lend;
7164 contents = bfd_malloc (hdr->sh_size);
7165 if (contents == NULL)
7167 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7174 lend = contents + hdr->sh_size;
7175 while (l + sizeof (Elf_External_Options) <= lend)
7177 Elf_Internal_Options intopt;
7179 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7181 if (intopt.size < sizeof (Elf_External_Options))
7183 (*_bfd_error_handler)
7184 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7185 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7188 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7190 Elf64_Internal_RegInfo intreg;
7192 bfd_mips_elf64_swap_reginfo_in
7194 ((Elf64_External_RegInfo *)
7195 (l + sizeof (Elf_External_Options))),
7197 elf_gp (abfd) = intreg.ri_gp_value;
7199 else if (intopt.kind == ODK_REGINFO)
7201 Elf32_RegInfo intreg;
7203 bfd_mips_elf32_swap_reginfo_in
7205 ((Elf32_External_RegInfo *)
7206 (l + sizeof (Elf_External_Options))),
7208 elf_gp (abfd) = intreg.ri_gp_value;
7218 /* Set the correct type for a MIPS ELF section. We do this by the
7219 section name, which is a hack, but ought to work. This routine is
7220 used by both the 32-bit and the 64-bit ABI. */
7223 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7225 const char *name = bfd_get_section_name (abfd, sec);
7227 if (strcmp (name, ".liblist") == 0)
7229 hdr->sh_type = SHT_MIPS_LIBLIST;
7230 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7231 /* The sh_link field is set in final_write_processing. */
7233 else if (strcmp (name, ".conflict") == 0)
7234 hdr->sh_type = SHT_MIPS_CONFLICT;
7235 else if (CONST_STRNEQ (name, ".gptab."))
7237 hdr->sh_type = SHT_MIPS_GPTAB;
7238 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7239 /* The sh_info field is set in final_write_processing. */
7241 else if (strcmp (name, ".ucode") == 0)
7242 hdr->sh_type = SHT_MIPS_UCODE;
7243 else if (strcmp (name, ".mdebug") == 0)
7245 hdr->sh_type = SHT_MIPS_DEBUG;
7246 /* In a shared object on IRIX 5.3, the .mdebug section has an
7247 entsize of 0. FIXME: Does this matter? */
7248 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7249 hdr->sh_entsize = 0;
7251 hdr->sh_entsize = 1;
7253 else if (strcmp (name, ".reginfo") == 0)
7255 hdr->sh_type = SHT_MIPS_REGINFO;
7256 /* In a shared object on IRIX 5.3, the .reginfo section has an
7257 entsize of 0x18. FIXME: Does this matter? */
7258 if (SGI_COMPAT (abfd))
7260 if ((abfd->flags & DYNAMIC) != 0)
7261 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7263 hdr->sh_entsize = 1;
7266 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7268 else if (SGI_COMPAT (abfd)
7269 && (strcmp (name, ".hash") == 0
7270 || strcmp (name, ".dynamic") == 0
7271 || strcmp (name, ".dynstr") == 0))
7273 if (SGI_COMPAT (abfd))
7274 hdr->sh_entsize = 0;
7276 /* This isn't how the IRIX6 linker behaves. */
7277 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7280 else if (strcmp (name, ".got") == 0
7281 || strcmp (name, ".srdata") == 0
7282 || strcmp (name, ".sdata") == 0
7283 || strcmp (name, ".sbss") == 0
7284 || strcmp (name, ".lit4") == 0
7285 || strcmp (name, ".lit8") == 0)
7286 hdr->sh_flags |= SHF_MIPS_GPREL;
7287 else if (strcmp (name, ".MIPS.interfaces") == 0)
7289 hdr->sh_type = SHT_MIPS_IFACE;
7290 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7292 else if (CONST_STRNEQ (name, ".MIPS.content"))
7294 hdr->sh_type = SHT_MIPS_CONTENT;
7295 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7296 /* The sh_info field is set in final_write_processing. */
7298 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7300 hdr->sh_type = SHT_MIPS_OPTIONS;
7301 hdr->sh_entsize = 1;
7302 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7304 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7306 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7307 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7309 else if (CONST_STRNEQ (name, ".debug_")
7310 || CONST_STRNEQ (name, ".zdebug_"))
7312 hdr->sh_type = SHT_MIPS_DWARF;
7314 /* Irix facilities such as libexc expect a single .debug_frame
7315 per executable, the system ones have NOSTRIP set and the linker
7316 doesn't merge sections with different flags so ... */
7317 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7318 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7320 else if (strcmp (name, ".MIPS.symlib") == 0)
7322 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7323 /* The sh_link and sh_info fields are set in
7324 final_write_processing. */
7326 else if (CONST_STRNEQ (name, ".MIPS.events")
7327 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7329 hdr->sh_type = SHT_MIPS_EVENTS;
7330 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7331 /* The sh_link field is set in final_write_processing. */
7333 else if (strcmp (name, ".msym") == 0)
7335 hdr->sh_type = SHT_MIPS_MSYM;
7336 hdr->sh_flags |= SHF_ALLOC;
7337 hdr->sh_entsize = 8;
7340 /* The generic elf_fake_sections will set up REL_HDR using the default
7341 kind of relocations. We used to set up a second header for the
7342 non-default kind of relocations here, but only NewABI would use
7343 these, and the IRIX ld doesn't like resulting empty RELA sections.
7344 Thus we create those header only on demand now. */
7349 /* Given a BFD section, try to locate the corresponding ELF section
7350 index. This is used by both the 32-bit and the 64-bit ABI.
7351 Actually, it's not clear to me that the 64-bit ABI supports these,
7352 but for non-PIC objects we will certainly want support for at least
7353 the .scommon section. */
7356 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7357 asection *sec, int *retval)
7359 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7361 *retval = SHN_MIPS_SCOMMON;
7364 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7366 *retval = SHN_MIPS_ACOMMON;
7372 /* Hook called by the linker routine which adds symbols from an object
7373 file. We must handle the special MIPS section numbers here. */
7376 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7377 Elf_Internal_Sym *sym, const char **namep,
7378 flagword *flagsp ATTRIBUTE_UNUSED,
7379 asection **secp, bfd_vma *valp)
7381 if (SGI_COMPAT (abfd)
7382 && (abfd->flags & DYNAMIC) != 0
7383 && strcmp (*namep, "_rld_new_interface") == 0)
7385 /* Skip IRIX5 rld entry name. */
7390 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7391 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7392 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7393 a magic symbol resolved by the linker, we ignore this bogus definition
7394 of _gp_disp. New ABI objects do not suffer from this problem so this
7395 is not done for them. */
7397 && (sym->st_shndx == SHN_ABS)
7398 && (strcmp (*namep, "_gp_disp") == 0))
7404 switch (sym->st_shndx)
7407 /* Common symbols less than the GP size are automatically
7408 treated as SHN_MIPS_SCOMMON symbols. */
7409 if (sym->st_size > elf_gp_size (abfd)
7410 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7411 || IRIX_COMPAT (abfd) == ict_irix6)
7414 case SHN_MIPS_SCOMMON:
7415 *secp = bfd_make_section_old_way (abfd, ".scommon");
7416 (*secp)->flags |= SEC_IS_COMMON;
7417 *valp = sym->st_size;
7421 /* This section is used in a shared object. */
7422 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7424 asymbol *elf_text_symbol;
7425 asection *elf_text_section;
7426 bfd_size_type amt = sizeof (asection);
7428 elf_text_section = bfd_zalloc (abfd, amt);
7429 if (elf_text_section == NULL)
7432 amt = sizeof (asymbol);
7433 elf_text_symbol = bfd_zalloc (abfd, amt);
7434 if (elf_text_symbol == NULL)
7437 /* Initialize the section. */
7439 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7440 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7442 elf_text_section->symbol = elf_text_symbol;
7443 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7445 elf_text_section->name = ".text";
7446 elf_text_section->flags = SEC_NO_FLAGS;
7447 elf_text_section->output_section = NULL;
7448 elf_text_section->owner = abfd;
7449 elf_text_symbol->name = ".text";
7450 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7451 elf_text_symbol->section = elf_text_section;
7453 /* This code used to do *secp = bfd_und_section_ptr if
7454 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7455 so I took it out. */
7456 *secp = mips_elf_tdata (abfd)->elf_text_section;
7459 case SHN_MIPS_ACOMMON:
7460 /* Fall through. XXX Can we treat this as allocated data? */
7462 /* This section is used in a shared object. */
7463 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7465 asymbol *elf_data_symbol;
7466 asection *elf_data_section;
7467 bfd_size_type amt = sizeof (asection);
7469 elf_data_section = bfd_zalloc (abfd, amt);
7470 if (elf_data_section == NULL)
7473 amt = sizeof (asymbol);
7474 elf_data_symbol = bfd_zalloc (abfd, amt);
7475 if (elf_data_symbol == NULL)
7478 /* Initialize the section. */
7480 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7481 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7483 elf_data_section->symbol = elf_data_symbol;
7484 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7486 elf_data_section->name = ".data";
7487 elf_data_section->flags = SEC_NO_FLAGS;
7488 elf_data_section->output_section = NULL;
7489 elf_data_section->owner = abfd;
7490 elf_data_symbol->name = ".data";
7491 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7492 elf_data_symbol->section = elf_data_section;
7494 /* This code used to do *secp = bfd_und_section_ptr if
7495 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7496 so I took it out. */
7497 *secp = mips_elf_tdata (abfd)->elf_data_section;
7500 case SHN_MIPS_SUNDEFINED:
7501 *secp = bfd_und_section_ptr;
7505 if (SGI_COMPAT (abfd)
7506 && ! bfd_link_pic (info)
7507 && info->output_bfd->xvec == abfd->xvec
7508 && strcmp (*namep, "__rld_obj_head") == 0)
7510 struct elf_link_hash_entry *h;
7511 struct bfd_link_hash_entry *bh;
7513 /* Mark __rld_obj_head as dynamic. */
7515 if (! (_bfd_generic_link_add_one_symbol
7516 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7517 get_elf_backend_data (abfd)->collect, &bh)))
7520 h = (struct elf_link_hash_entry *) bh;
7523 h->type = STT_OBJECT;
7525 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7528 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7529 mips_elf_hash_table (info)->rld_symbol = h;
7532 /* If this is a mips16 text symbol, add 1 to the value to make it
7533 odd. This will cause something like .word SYM to come up with
7534 the right value when it is loaded into the PC. */
7535 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7541 /* This hook function is called before the linker writes out a global
7542 symbol. We mark symbols as small common if appropriate. This is
7543 also where we undo the increment of the value for a mips16 symbol. */
7546 _bfd_mips_elf_link_output_symbol_hook
7547 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7548 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7549 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7551 /* If we see a common symbol, which implies a relocatable link, then
7552 if a symbol was small common in an input file, mark it as small
7553 common in the output file. */
7554 if (sym->st_shndx == SHN_COMMON
7555 && strcmp (input_sec->name, ".scommon") == 0)
7556 sym->st_shndx = SHN_MIPS_SCOMMON;
7558 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7559 sym->st_value &= ~1;
7564 /* Functions for the dynamic linker. */
7566 /* Create dynamic sections when linking against a dynamic object. */
7569 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7571 struct elf_link_hash_entry *h;
7572 struct bfd_link_hash_entry *bh;
7574 register asection *s;
7575 const char * const *namep;
7576 struct mips_elf_link_hash_table *htab;
7578 htab = mips_elf_hash_table (info);
7579 BFD_ASSERT (htab != NULL);
7581 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7582 | SEC_LINKER_CREATED | SEC_READONLY);
7584 /* The psABI requires a read-only .dynamic section, but the VxWorks
7586 if (!htab->is_vxworks)
7588 s = bfd_get_linker_section (abfd, ".dynamic");
7591 if (! bfd_set_section_flags (abfd, s, flags))
7596 /* We need to create .got section. */
7597 if (!mips_elf_create_got_section (abfd, info))
7600 if (! mips_elf_rel_dyn_section (info, TRUE))
7603 /* Create .stub section. */
7604 s = bfd_make_section_anyway_with_flags (abfd,
7605 MIPS_ELF_STUB_SECTION_NAME (abfd),
7608 || ! bfd_set_section_alignment (abfd, s,
7609 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7613 if (!mips_elf_hash_table (info)->use_rld_obj_head
7614 && bfd_link_executable (info)
7615 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7617 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7618 flags &~ (flagword) SEC_READONLY);
7620 || ! bfd_set_section_alignment (abfd, s,
7621 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7625 /* On IRIX5, we adjust add some additional symbols and change the
7626 alignments of several sections. There is no ABI documentation
7627 indicating that this is necessary on IRIX6, nor any evidence that
7628 the linker takes such action. */
7629 if (IRIX_COMPAT (abfd) == ict_irix5)
7631 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7634 if (! (_bfd_generic_link_add_one_symbol
7635 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7636 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7639 h = (struct elf_link_hash_entry *) bh;
7642 h->type = STT_SECTION;
7644 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7648 /* We need to create a .compact_rel section. */
7649 if (SGI_COMPAT (abfd))
7651 if (!mips_elf_create_compact_rel_section (abfd, info))
7655 /* Change alignments of some sections. */
7656 s = bfd_get_linker_section (abfd, ".hash");
7658 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7660 s = bfd_get_linker_section (abfd, ".dynsym");
7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7664 s = bfd_get_linker_section (abfd, ".dynstr");
7666 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7669 s = bfd_get_section_by_name (abfd, ".reginfo");
7671 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7673 s = bfd_get_linker_section (abfd, ".dynamic");
7675 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7678 if (bfd_link_executable (info))
7682 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7684 if (!(_bfd_generic_link_add_one_symbol
7685 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7686 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7689 h = (struct elf_link_hash_entry *) bh;
7692 h->type = STT_SECTION;
7694 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7697 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7699 /* __rld_map is a four byte word located in the .data section
7700 and is filled in by the rtld to contain a pointer to
7701 the _r_debug structure. Its symbol value will be set in
7702 _bfd_mips_elf_finish_dynamic_symbol. */
7703 s = bfd_get_linker_section (abfd, ".rld_map");
7704 BFD_ASSERT (s != NULL);
7706 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7708 if (!(_bfd_generic_link_add_one_symbol
7709 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7710 get_elf_backend_data (abfd)->collect, &bh)))
7713 h = (struct elf_link_hash_entry *) bh;
7716 h->type = STT_OBJECT;
7718 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7720 mips_elf_hash_table (info)->rld_symbol = h;
7724 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7725 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7726 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7729 /* Cache the sections created above. */
7730 htab->splt = bfd_get_linker_section (abfd, ".plt");
7731 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7732 if (htab->is_vxworks)
7734 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7735 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7738 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7740 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7745 /* Do the usual VxWorks handling. */
7746 if (htab->is_vxworks
7747 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7753 /* Return true if relocation REL against section SEC is a REL rather than
7754 RELA relocation. RELOCS is the first relocation in the section and
7755 ABFD is the bfd that contains SEC. */
7758 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7759 const Elf_Internal_Rela *relocs,
7760 const Elf_Internal_Rela *rel)
7762 Elf_Internal_Shdr *rel_hdr;
7763 const struct elf_backend_data *bed;
7765 /* To determine which flavor of relocation this is, we depend on the
7766 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7767 rel_hdr = elf_section_data (sec)->rel.hdr;
7768 if (rel_hdr == NULL)
7770 bed = get_elf_backend_data (abfd);
7771 return ((size_t) (rel - relocs)
7772 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7775 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7776 HOWTO is the relocation's howto and CONTENTS points to the contents
7777 of the section that REL is against. */
7780 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7781 reloc_howto_type *howto, bfd_byte *contents)
7784 unsigned int r_type;
7787 r_type = ELF_R_TYPE (abfd, rel->r_info);
7788 location = contents + rel->r_offset;
7790 /* Get the addend, which is stored in the input file. */
7791 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7792 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7793 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7795 return addend & howto->src_mask;
7798 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7799 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7800 and update *ADDEND with the final addend. Return true on success
7801 or false if the LO16 could not be found. RELEND is the exclusive
7802 upper bound on the relocations for REL's section. */
7805 mips_elf_add_lo16_rel_addend (bfd *abfd,
7806 const Elf_Internal_Rela *rel,
7807 const Elf_Internal_Rela *relend,
7808 bfd_byte *contents, bfd_vma *addend)
7810 unsigned int r_type, lo16_type;
7811 const Elf_Internal_Rela *lo16_relocation;
7812 reloc_howto_type *lo16_howto;
7815 r_type = ELF_R_TYPE (abfd, rel->r_info);
7816 if (mips16_reloc_p (r_type))
7817 lo16_type = R_MIPS16_LO16;
7818 else if (micromips_reloc_p (r_type))
7819 lo16_type = R_MICROMIPS_LO16;
7820 else if (r_type == R_MIPS_PCHI16)
7821 lo16_type = R_MIPS_PCLO16;
7823 lo16_type = R_MIPS_LO16;
7825 /* The combined value is the sum of the HI16 addend, left-shifted by
7826 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7827 code does a `lui' of the HI16 value, and then an `addiu' of the
7830 Scan ahead to find a matching LO16 relocation.
7832 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7833 be immediately following. However, for the IRIX6 ABI, the next
7834 relocation may be a composed relocation consisting of several
7835 relocations for the same address. In that case, the R_MIPS_LO16
7836 relocation may occur as one of these. We permit a similar
7837 extension in general, as that is useful for GCC.
7839 In some cases GCC dead code elimination removes the LO16 but keeps
7840 the corresponding HI16. This is strictly speaking a violation of
7841 the ABI but not immediately harmful. */
7842 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7843 if (lo16_relocation == NULL)
7846 /* Obtain the addend kept there. */
7847 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7848 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7850 l <<= lo16_howto->rightshift;
7851 l = _bfd_mips_elf_sign_extend (l, 16);
7858 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7859 store the contents in *CONTENTS on success. Assume that *CONTENTS
7860 already holds the contents if it is nonull on entry. */
7863 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7868 /* Get cached copy if it exists. */
7869 if (elf_section_data (sec)->this_hdr.contents != NULL)
7871 *contents = elf_section_data (sec)->this_hdr.contents;
7875 return bfd_malloc_and_get_section (abfd, sec, contents);
7878 /* Make a new PLT record to keep internal data. */
7880 static struct plt_entry *
7881 mips_elf_make_plt_record (bfd *abfd)
7883 struct plt_entry *entry;
7885 entry = bfd_zalloc (abfd, sizeof (*entry));
7889 entry->stub_offset = MINUS_ONE;
7890 entry->mips_offset = MINUS_ONE;
7891 entry->comp_offset = MINUS_ONE;
7892 entry->gotplt_index = MINUS_ONE;
7896 /* Look through the relocs for a section during the first phase, and
7897 allocate space in the global offset table and record the need for
7898 standard MIPS and compressed procedure linkage table entries. */
7901 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7902 asection *sec, const Elf_Internal_Rela *relocs)
7906 Elf_Internal_Shdr *symtab_hdr;
7907 struct elf_link_hash_entry **sym_hashes;
7909 const Elf_Internal_Rela *rel;
7910 const Elf_Internal_Rela *rel_end;
7912 const struct elf_backend_data *bed;
7913 struct mips_elf_link_hash_table *htab;
7916 reloc_howto_type *howto;
7918 if (bfd_link_relocatable (info))
7921 htab = mips_elf_hash_table (info);
7922 BFD_ASSERT (htab != NULL);
7924 dynobj = elf_hash_table (info)->dynobj;
7925 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7926 sym_hashes = elf_sym_hashes (abfd);
7927 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7929 bed = get_elf_backend_data (abfd);
7930 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7932 /* Check for the mips16 stub sections. */
7934 name = bfd_get_section_name (abfd, sec);
7935 if (FN_STUB_P (name))
7937 unsigned long r_symndx;
7939 /* Look at the relocation information to figure out which symbol
7942 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7945 (*_bfd_error_handler)
7946 (_("%B: Warning: cannot determine the target function for"
7947 " stub section `%s'"),
7949 bfd_set_error (bfd_error_bad_value);
7953 if (r_symndx < extsymoff
7954 || sym_hashes[r_symndx - extsymoff] == NULL)
7958 /* This stub is for a local symbol. This stub will only be
7959 needed if there is some relocation in this BFD, other
7960 than a 16 bit function call, which refers to this symbol. */
7961 for (o = abfd->sections; o != NULL; o = o->next)
7963 Elf_Internal_Rela *sec_relocs;
7964 const Elf_Internal_Rela *r, *rend;
7966 /* We can ignore stub sections when looking for relocs. */
7967 if ((o->flags & SEC_RELOC) == 0
7968 || o->reloc_count == 0
7969 || section_allows_mips16_refs_p (o))
7973 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7975 if (sec_relocs == NULL)
7978 rend = sec_relocs + o->reloc_count;
7979 for (r = sec_relocs; r < rend; r++)
7980 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7981 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7984 if (elf_section_data (o)->relocs != sec_relocs)
7993 /* There is no non-call reloc for this stub, so we do
7994 not need it. Since this function is called before
7995 the linker maps input sections to output sections, we
7996 can easily discard it by setting the SEC_EXCLUDE
7998 sec->flags |= SEC_EXCLUDE;
8002 /* Record this stub in an array of local symbol stubs for
8004 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8006 unsigned long symcount;
8010 if (elf_bad_symtab (abfd))
8011 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8013 symcount = symtab_hdr->sh_info;
8014 amt = symcount * sizeof (asection *);
8015 n = bfd_zalloc (abfd, amt);
8018 mips_elf_tdata (abfd)->local_stubs = n;
8021 sec->flags |= SEC_KEEP;
8022 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8024 /* We don't need to set mips16_stubs_seen in this case.
8025 That flag is used to see whether we need to look through
8026 the global symbol table for stubs. We don't need to set
8027 it here, because we just have a local stub. */
8031 struct mips_elf_link_hash_entry *h;
8033 h = ((struct mips_elf_link_hash_entry *)
8034 sym_hashes[r_symndx - extsymoff]);
8036 while (h->root.root.type == bfd_link_hash_indirect
8037 || h->root.root.type == bfd_link_hash_warning)
8038 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8040 /* H is the symbol this stub is for. */
8042 /* If we already have an appropriate stub for this function, we
8043 don't need another one, so we can discard this one. Since
8044 this function is called before the linker maps input sections
8045 to output sections, we can easily discard it by setting the
8046 SEC_EXCLUDE flag. */
8047 if (h->fn_stub != NULL)
8049 sec->flags |= SEC_EXCLUDE;
8053 sec->flags |= SEC_KEEP;
8055 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8058 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8060 unsigned long r_symndx;
8061 struct mips_elf_link_hash_entry *h;
8064 /* Look at the relocation information to figure out which symbol
8067 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8070 (*_bfd_error_handler)
8071 (_("%B: Warning: cannot determine the target function for"
8072 " stub section `%s'"),
8074 bfd_set_error (bfd_error_bad_value);
8078 if (r_symndx < extsymoff
8079 || sym_hashes[r_symndx - extsymoff] == NULL)
8083 /* This stub is for a local symbol. This stub will only be
8084 needed if there is some relocation (R_MIPS16_26) in this BFD
8085 that refers to this symbol. */
8086 for (o = abfd->sections; o != NULL; o = o->next)
8088 Elf_Internal_Rela *sec_relocs;
8089 const Elf_Internal_Rela *r, *rend;
8091 /* We can ignore stub sections when looking for relocs. */
8092 if ((o->flags & SEC_RELOC) == 0
8093 || o->reloc_count == 0
8094 || section_allows_mips16_refs_p (o))
8098 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8100 if (sec_relocs == NULL)
8103 rend = sec_relocs + o->reloc_count;
8104 for (r = sec_relocs; r < rend; r++)
8105 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8106 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8109 if (elf_section_data (o)->relocs != sec_relocs)
8118 /* There is no non-call reloc for this stub, so we do
8119 not need it. Since this function is called before
8120 the linker maps input sections to output sections, we
8121 can easily discard it by setting the SEC_EXCLUDE
8123 sec->flags |= SEC_EXCLUDE;
8127 /* Record this stub in an array of local symbol call_stubs for
8129 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8131 unsigned long symcount;
8135 if (elf_bad_symtab (abfd))
8136 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8138 symcount = symtab_hdr->sh_info;
8139 amt = symcount * sizeof (asection *);
8140 n = bfd_zalloc (abfd, amt);
8143 mips_elf_tdata (abfd)->local_call_stubs = n;
8146 sec->flags |= SEC_KEEP;
8147 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8149 /* We don't need to set mips16_stubs_seen in this case.
8150 That flag is used to see whether we need to look through
8151 the global symbol table for stubs. We don't need to set
8152 it here, because we just have a local stub. */
8156 h = ((struct mips_elf_link_hash_entry *)
8157 sym_hashes[r_symndx - extsymoff]);
8159 /* H is the symbol this stub is for. */
8161 if (CALL_FP_STUB_P (name))
8162 loc = &h->call_fp_stub;
8164 loc = &h->call_stub;
8166 /* If we already have an appropriate stub for this function, we
8167 don't need another one, so we can discard this one. Since
8168 this function is called before the linker maps input sections
8169 to output sections, we can easily discard it by setting the
8170 SEC_EXCLUDE flag. */
8173 sec->flags |= SEC_EXCLUDE;
8177 sec->flags |= SEC_KEEP;
8179 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8185 for (rel = relocs; rel < rel_end; ++rel)
8187 unsigned long r_symndx;
8188 unsigned int r_type;
8189 struct elf_link_hash_entry *h;
8190 bfd_boolean can_make_dynamic_p;
8191 bfd_boolean call_reloc_p;
8192 bfd_boolean constrain_symbol_p;
8194 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8195 r_type = ELF_R_TYPE (abfd, rel->r_info);
8197 if (r_symndx < extsymoff)
8199 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8201 (*_bfd_error_handler)
8202 (_("%B: Malformed reloc detected for section %s"),
8204 bfd_set_error (bfd_error_bad_value);
8209 h = sym_hashes[r_symndx - extsymoff];
8212 while (h->root.type == bfd_link_hash_indirect
8213 || h->root.type == bfd_link_hash_warning)
8214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8216 /* PR15323, ref flags aren't set for references in the
8218 h->root.non_ir_ref = 1;
8222 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8223 relocation into a dynamic one. */
8224 can_make_dynamic_p = FALSE;
8226 /* Set CALL_RELOC_P to true if the relocation is for a call,
8227 and if pointer equality therefore doesn't matter. */
8228 call_reloc_p = FALSE;
8230 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8231 into account when deciding how to define the symbol.
8232 Relocations in nonallocatable sections such as .pdr and
8233 .debug* should have no effect. */
8234 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8239 case R_MIPS_CALL_HI16:
8240 case R_MIPS_CALL_LO16:
8241 case R_MIPS16_CALL16:
8242 case R_MICROMIPS_CALL16:
8243 case R_MICROMIPS_CALL_HI16:
8244 case R_MICROMIPS_CALL_LO16:
8245 call_reloc_p = TRUE;
8249 case R_MIPS_GOT_HI16:
8250 case R_MIPS_GOT_LO16:
8251 case R_MIPS_GOT_PAGE:
8252 case R_MIPS_GOT_OFST:
8253 case R_MIPS_GOT_DISP:
8254 case R_MIPS_TLS_GOTTPREL:
8256 case R_MIPS_TLS_LDM:
8257 case R_MIPS16_GOT16:
8258 case R_MIPS16_TLS_GOTTPREL:
8259 case R_MIPS16_TLS_GD:
8260 case R_MIPS16_TLS_LDM:
8261 case R_MICROMIPS_GOT16:
8262 case R_MICROMIPS_GOT_HI16:
8263 case R_MICROMIPS_GOT_LO16:
8264 case R_MICROMIPS_GOT_PAGE:
8265 case R_MICROMIPS_GOT_OFST:
8266 case R_MICROMIPS_GOT_DISP:
8267 case R_MICROMIPS_TLS_GOTTPREL:
8268 case R_MICROMIPS_TLS_GD:
8269 case R_MICROMIPS_TLS_LDM:
8271 elf_hash_table (info)->dynobj = dynobj = abfd;
8272 if (!mips_elf_create_got_section (dynobj, info))
8274 if (htab->is_vxworks && !bfd_link_pic (info))
8276 (*_bfd_error_handler)
8277 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8278 abfd, (unsigned long) rel->r_offset);
8279 bfd_set_error (bfd_error_bad_value);
8282 can_make_dynamic_p = TRUE;
8287 case R_MICROMIPS_JALR:
8288 /* These relocations have empty fields and are purely there to
8289 provide link information. The symbol value doesn't matter. */
8290 constrain_symbol_p = FALSE;
8293 case R_MIPS_GPREL16:
8294 case R_MIPS_GPREL32:
8295 case R_MIPS16_GPREL:
8296 case R_MICROMIPS_GPREL16:
8297 /* GP-relative relocations always resolve to a definition in a
8298 regular input file, ignoring the one-definition rule. This is
8299 important for the GP setup sequence in NewABI code, which
8300 always resolves to a local function even if other relocations
8301 against the symbol wouldn't. */
8302 constrain_symbol_p = FALSE;
8308 /* In VxWorks executables, references to external symbols
8309 must be handled using copy relocs or PLT entries; it is not
8310 possible to convert this relocation into a dynamic one.
8312 For executables that use PLTs and copy-relocs, we have a
8313 choice between converting the relocation into a dynamic
8314 one or using copy relocations or PLT entries. It is
8315 usually better to do the former, unless the relocation is
8316 against a read-only section. */
8317 if ((bfd_link_pic (info)
8319 && !htab->is_vxworks
8320 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8321 && !(!info->nocopyreloc
8322 && !PIC_OBJECT_P (abfd)
8323 && MIPS_ELF_READONLY_SECTION (sec))))
8324 && (sec->flags & SEC_ALLOC) != 0)
8326 can_make_dynamic_p = TRUE;
8328 elf_hash_table (info)->dynobj = dynobj = abfd;
8334 case R_MIPS_PC21_S2:
8335 case R_MIPS_PC26_S2:
8337 case R_MICROMIPS_26_S1:
8338 case R_MICROMIPS_PC7_S1:
8339 case R_MICROMIPS_PC10_S1:
8340 case R_MICROMIPS_PC16_S1:
8341 case R_MICROMIPS_PC23_S2:
8342 call_reloc_p = TRUE;
8348 if (constrain_symbol_p)
8350 if (!can_make_dynamic_p)
8351 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8354 h->pointer_equality_needed = 1;
8356 /* We must not create a stub for a symbol that has
8357 relocations related to taking the function's address.
8358 This doesn't apply to VxWorks, where CALL relocs refer
8359 to a .got.plt entry instead of a normal .got entry. */
8360 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8361 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8364 /* Relocations against the special VxWorks __GOTT_BASE__ and
8365 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8366 room for them in .rela.dyn. */
8367 if (is_gott_symbol (info, h))
8371 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8375 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8376 if (MIPS_ELF_READONLY_SECTION (sec))
8377 /* We tell the dynamic linker that there are
8378 relocations against the text segment. */
8379 info->flags |= DF_TEXTREL;
8382 else if (call_lo16_reloc_p (r_type)
8383 || got_lo16_reloc_p (r_type)
8384 || got_disp_reloc_p (r_type)
8385 || (got16_reloc_p (r_type) && htab->is_vxworks))
8387 /* We may need a local GOT entry for this relocation. We
8388 don't count R_MIPS_GOT_PAGE because we can estimate the
8389 maximum number of pages needed by looking at the size of
8390 the segment. Similar comments apply to R_MIPS*_GOT16 and
8391 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8392 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8393 R_MIPS_CALL_HI16 because these are always followed by an
8394 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8395 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8396 rel->r_addend, info, r_type))
8401 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8402 ELF_ST_IS_MIPS16 (h->other)))
8403 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8408 case R_MIPS16_CALL16:
8409 case R_MICROMIPS_CALL16:
8412 (*_bfd_error_handler)
8413 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8414 abfd, (unsigned long) rel->r_offset);
8415 bfd_set_error (bfd_error_bad_value);
8420 case R_MIPS_CALL_HI16:
8421 case R_MIPS_CALL_LO16:
8422 case R_MICROMIPS_CALL_HI16:
8423 case R_MICROMIPS_CALL_LO16:
8426 /* Make sure there is room in the regular GOT to hold the
8427 function's address. We may eliminate it in favour of
8428 a .got.plt entry later; see mips_elf_count_got_symbols. */
8429 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8433 /* We need a stub, not a plt entry for the undefined
8434 function. But we record it as if it needs plt. See
8435 _bfd_elf_adjust_dynamic_symbol. */
8441 case R_MIPS_GOT_PAGE:
8442 case R_MICROMIPS_GOT_PAGE:
8443 case R_MIPS16_GOT16:
8445 case R_MIPS_GOT_HI16:
8446 case R_MIPS_GOT_LO16:
8447 case R_MICROMIPS_GOT16:
8448 case R_MICROMIPS_GOT_HI16:
8449 case R_MICROMIPS_GOT_LO16:
8450 if (!h || got_page_reloc_p (r_type))
8452 /* This relocation needs (or may need, if h != NULL) a
8453 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8454 know for sure until we know whether the symbol is
8456 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8458 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8460 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8461 addend = mips_elf_read_rel_addend (abfd, rel,
8463 if (got16_reloc_p (r_type))
8464 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8467 addend <<= howto->rightshift;
8470 addend = rel->r_addend;
8471 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8477 struct mips_elf_link_hash_entry *hmips =
8478 (struct mips_elf_link_hash_entry *) h;
8480 /* This symbol is definitely not overridable. */
8481 if (hmips->root.def_regular
8482 && ! (bfd_link_pic (info) && ! info->symbolic
8483 && ! hmips->root.forced_local))
8487 /* If this is a global, overridable symbol, GOT_PAGE will
8488 decay to GOT_DISP, so we'll need a GOT entry for it. */
8491 case R_MIPS_GOT_DISP:
8492 case R_MICROMIPS_GOT_DISP:
8493 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8498 case R_MIPS_TLS_GOTTPREL:
8499 case R_MIPS16_TLS_GOTTPREL:
8500 case R_MICROMIPS_TLS_GOTTPREL:
8501 if (bfd_link_pic (info))
8502 info->flags |= DF_STATIC_TLS;
8505 case R_MIPS_TLS_LDM:
8506 case R_MIPS16_TLS_LDM:
8507 case R_MICROMIPS_TLS_LDM:
8508 if (tls_ldm_reloc_p (r_type))
8510 r_symndx = STN_UNDEF;
8516 case R_MIPS16_TLS_GD:
8517 case R_MICROMIPS_TLS_GD:
8518 /* This symbol requires a global offset table entry, or two
8519 for TLS GD relocations. */
8522 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8528 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8538 /* In VxWorks executables, references to external symbols
8539 are handled using copy relocs or PLT stubs, so there's
8540 no need to add a .rela.dyn entry for this relocation. */
8541 if (can_make_dynamic_p)
8545 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8549 if (bfd_link_pic (info) && h == NULL)
8551 /* When creating a shared object, we must copy these
8552 reloc types into the output file as R_MIPS_REL32
8553 relocs. Make room for this reloc in .rel(a).dyn. */
8554 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8555 if (MIPS_ELF_READONLY_SECTION (sec))
8556 /* We tell the dynamic linker that there are
8557 relocations against the text segment. */
8558 info->flags |= DF_TEXTREL;
8562 struct mips_elf_link_hash_entry *hmips;
8564 /* For a shared object, we must copy this relocation
8565 unless the symbol turns out to be undefined and
8566 weak with non-default visibility, in which case
8567 it will be left as zero.
8569 We could elide R_MIPS_REL32 for locally binding symbols
8570 in shared libraries, but do not yet do so.
8572 For an executable, we only need to copy this
8573 reloc if the symbol is defined in a dynamic
8575 hmips = (struct mips_elf_link_hash_entry *) h;
8576 ++hmips->possibly_dynamic_relocs;
8577 if (MIPS_ELF_READONLY_SECTION (sec))
8578 /* We need it to tell the dynamic linker if there
8579 are relocations against the text segment. */
8580 hmips->readonly_reloc = TRUE;
8584 if (SGI_COMPAT (abfd))
8585 mips_elf_hash_table (info)->compact_rel_size +=
8586 sizeof (Elf32_External_crinfo);
8590 case R_MIPS_GPREL16:
8591 case R_MIPS_LITERAL:
8592 case R_MIPS_GPREL32:
8593 case R_MICROMIPS_26_S1:
8594 case R_MICROMIPS_GPREL16:
8595 case R_MICROMIPS_LITERAL:
8596 case R_MICROMIPS_GPREL7_S2:
8597 if (SGI_COMPAT (abfd))
8598 mips_elf_hash_table (info)->compact_rel_size +=
8599 sizeof (Elf32_External_crinfo);
8602 /* This relocation describes the C++ object vtable hierarchy.
8603 Reconstruct it for later use during GC. */
8604 case R_MIPS_GNU_VTINHERIT:
8605 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8609 /* This relocation describes which C++ vtable entries are actually
8610 used. Record for later use during GC. */
8611 case R_MIPS_GNU_VTENTRY:
8612 BFD_ASSERT (h != NULL);
8614 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8622 /* Record the need for a PLT entry. At this point we don't know
8623 yet if we are going to create a PLT in the first place, but
8624 we only record whether the relocation requires a standard MIPS
8625 or a compressed code entry anyway. If we don't make a PLT after
8626 all, then we'll just ignore these arrangements. Likewise if
8627 a PLT entry is not created because the symbol is satisfied
8630 && jal_reloc_p (r_type)
8631 && !SYMBOL_CALLS_LOCAL (info, h))
8633 if (h->plt.plist == NULL)
8634 h->plt.plist = mips_elf_make_plt_record (abfd);
8635 if (h->plt.plist == NULL)
8638 if (r_type == R_MIPS_26)
8639 h->plt.plist->need_mips = TRUE;
8641 h->plt.plist->need_comp = TRUE;
8644 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8645 if there is one. We only need to handle global symbols here;
8646 we decide whether to keep or delete stubs for local symbols
8647 when processing the stub's relocations. */
8649 && !mips16_call_reloc_p (r_type)
8650 && !section_allows_mips16_refs_p (sec))
8652 struct mips_elf_link_hash_entry *mh;
8654 mh = (struct mips_elf_link_hash_entry *) h;
8655 mh->need_fn_stub = TRUE;
8658 /* Refuse some position-dependent relocations when creating a
8659 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8660 not PIC, but we can create dynamic relocations and the result
8661 will be fine. Also do not refuse R_MIPS_LO16, which can be
8662 combined with R_MIPS_GOT16. */
8663 if (bfd_link_pic (info))
8670 case R_MIPS_HIGHEST:
8671 case R_MICROMIPS_HI16:
8672 case R_MICROMIPS_HIGHER:
8673 case R_MICROMIPS_HIGHEST:
8674 /* Don't refuse a high part relocation if it's against
8675 no symbol (e.g. part of a compound relocation). */
8676 if (r_symndx == STN_UNDEF)
8679 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8680 and has a special meaning. */
8681 if (!NEWABI_P (abfd) && h != NULL
8682 && strcmp (h->root.root.string, "_gp_disp") == 0)
8685 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8686 if (is_gott_symbol (info, h))
8693 case R_MICROMIPS_26_S1:
8694 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8695 (*_bfd_error_handler)
8696 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8698 (h) ? h->root.root.string : "a local symbol");
8699 bfd_set_error (bfd_error_bad_value);
8711 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8712 struct bfd_link_info *link_info,
8715 Elf_Internal_Rela *internal_relocs;
8716 Elf_Internal_Rela *irel, *irelend;
8717 Elf_Internal_Shdr *symtab_hdr;
8718 bfd_byte *contents = NULL;
8720 bfd_boolean changed_contents = FALSE;
8721 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8722 Elf_Internal_Sym *isymbuf = NULL;
8724 /* We are not currently changing any sizes, so only one pass. */
8727 if (bfd_link_relocatable (link_info))
8730 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8731 link_info->keep_memory);
8732 if (internal_relocs == NULL)
8735 irelend = internal_relocs + sec->reloc_count
8736 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8737 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8738 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8740 for (irel = internal_relocs; irel < irelend; irel++)
8743 bfd_signed_vma sym_offset;
8744 unsigned int r_type;
8745 unsigned long r_symndx;
8747 unsigned long instruction;
8749 /* Turn jalr into bgezal, and jr into beq, if they're marked
8750 with a JALR relocation, that indicate where they jump to.
8751 This saves some pipeline bubbles. */
8752 r_type = ELF_R_TYPE (abfd, irel->r_info);
8753 if (r_type != R_MIPS_JALR)
8756 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8757 /* Compute the address of the jump target. */
8758 if (r_symndx >= extsymoff)
8760 struct mips_elf_link_hash_entry *h
8761 = ((struct mips_elf_link_hash_entry *)
8762 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8764 while (h->root.root.type == bfd_link_hash_indirect
8765 || h->root.root.type == bfd_link_hash_warning)
8766 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8768 /* If a symbol is undefined, or if it may be overridden,
8770 if (! ((h->root.root.type == bfd_link_hash_defined
8771 || h->root.root.type == bfd_link_hash_defweak)
8772 && h->root.root.u.def.section)
8773 || (bfd_link_pic (link_info) && ! link_info->symbolic
8774 && !h->root.forced_local))
8777 sym_sec = h->root.root.u.def.section;
8778 if (sym_sec->output_section)
8779 symval = (h->root.root.u.def.value
8780 + sym_sec->output_section->vma
8781 + sym_sec->output_offset);
8783 symval = h->root.root.u.def.value;
8787 Elf_Internal_Sym *isym;
8789 /* Read this BFD's symbols if we haven't done so already. */
8790 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8792 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8793 if (isymbuf == NULL)
8794 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8795 symtab_hdr->sh_info, 0,
8797 if (isymbuf == NULL)
8801 isym = isymbuf + r_symndx;
8802 if (isym->st_shndx == SHN_UNDEF)
8804 else if (isym->st_shndx == SHN_ABS)
8805 sym_sec = bfd_abs_section_ptr;
8806 else if (isym->st_shndx == SHN_COMMON)
8807 sym_sec = bfd_com_section_ptr;
8810 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8811 symval = isym->st_value
8812 + sym_sec->output_section->vma
8813 + sym_sec->output_offset;
8816 /* Compute branch offset, from delay slot of the jump to the
8818 sym_offset = (symval + irel->r_addend)
8819 - (sec_start + irel->r_offset + 4);
8821 /* Branch offset must be properly aligned. */
8822 if ((sym_offset & 3) != 0)
8827 /* Check that it's in range. */
8828 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8831 /* Get the section contents if we haven't done so already. */
8832 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8835 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8837 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8838 if ((instruction & 0xfc1fffff) == 0x0000f809)
8839 instruction = 0x04110000;
8840 /* If it was jr <reg>, turn it into b <target>. */
8841 else if ((instruction & 0xfc1fffff) == 0x00000008)
8842 instruction = 0x10000000;
8846 instruction |= (sym_offset & 0xffff);
8847 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8848 changed_contents = TRUE;
8851 if (contents != NULL
8852 && elf_section_data (sec)->this_hdr.contents != contents)
8854 if (!changed_contents && !link_info->keep_memory)
8858 /* Cache the section contents for elf_link_input_bfd. */
8859 elf_section_data (sec)->this_hdr.contents = contents;
8865 if (contents != NULL
8866 && elf_section_data (sec)->this_hdr.contents != contents)
8871 /* Allocate space for global sym dynamic relocs. */
8874 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8876 struct bfd_link_info *info = inf;
8878 struct mips_elf_link_hash_entry *hmips;
8879 struct mips_elf_link_hash_table *htab;
8881 htab = mips_elf_hash_table (info);
8882 BFD_ASSERT (htab != NULL);
8884 dynobj = elf_hash_table (info)->dynobj;
8885 hmips = (struct mips_elf_link_hash_entry *) h;
8887 /* VxWorks executables are handled elsewhere; we only need to
8888 allocate relocations in shared objects. */
8889 if (htab->is_vxworks && !bfd_link_pic (info))
8892 /* Ignore indirect symbols. All relocations against such symbols
8893 will be redirected to the target symbol. */
8894 if (h->root.type == bfd_link_hash_indirect)
8897 /* If this symbol is defined in a dynamic object, or we are creating
8898 a shared library, we will need to copy any R_MIPS_32 or
8899 R_MIPS_REL32 relocs against it into the output file. */
8900 if (! bfd_link_relocatable (info)
8901 && hmips->possibly_dynamic_relocs != 0
8902 && (h->root.type == bfd_link_hash_defweak
8903 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8904 || bfd_link_pic (info)))
8906 bfd_boolean do_copy = TRUE;
8908 if (h->root.type == bfd_link_hash_undefweak)
8910 /* Do not copy relocations for undefined weak symbols with
8911 non-default visibility. */
8912 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8915 /* Make sure undefined weak symbols are output as a dynamic
8917 else if (h->dynindx == -1 && !h->forced_local)
8919 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8926 /* Even though we don't directly need a GOT entry for this symbol,
8927 the SVR4 psABI requires it to have a dynamic symbol table
8928 index greater that DT_MIPS_GOTSYM if there are dynamic
8929 relocations against it.
8931 VxWorks does not enforce the same mapping between the GOT
8932 and the symbol table, so the same requirement does not
8934 if (!htab->is_vxworks)
8936 if (hmips->global_got_area > GGA_RELOC_ONLY)
8937 hmips->global_got_area = GGA_RELOC_ONLY;
8938 hmips->got_only_for_calls = FALSE;
8941 mips_elf_allocate_dynamic_relocations
8942 (dynobj, info, hmips->possibly_dynamic_relocs);
8943 if (hmips->readonly_reloc)
8944 /* We tell the dynamic linker that there are relocations
8945 against the text segment. */
8946 info->flags |= DF_TEXTREL;
8953 /* Adjust a symbol defined by a dynamic object and referenced by a
8954 regular object. The current definition is in some section of the
8955 dynamic object, but we're not including those sections. We have to
8956 change the definition to something the rest of the link can
8960 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8961 struct elf_link_hash_entry *h)
8964 struct mips_elf_link_hash_entry *hmips;
8965 struct mips_elf_link_hash_table *htab;
8967 htab = mips_elf_hash_table (info);
8968 BFD_ASSERT (htab != NULL);
8970 dynobj = elf_hash_table (info)->dynobj;
8971 hmips = (struct mips_elf_link_hash_entry *) h;
8973 /* Make sure we know what is going on here. */
8974 BFD_ASSERT (dynobj != NULL
8976 || h->u.weakdef != NULL
8979 && !h->def_regular)));
8981 hmips = (struct mips_elf_link_hash_entry *) h;
8983 /* If there are call relocations against an externally-defined symbol,
8984 see whether we can create a MIPS lazy-binding stub for it. We can
8985 only do this if all references to the function are through call
8986 relocations, and in that case, the traditional lazy-binding stubs
8987 are much more efficient than PLT entries.
8989 Traditional stubs are only available on SVR4 psABI-based systems;
8990 VxWorks always uses PLTs instead. */
8991 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8993 if (! elf_hash_table (info)->dynamic_sections_created)
8996 /* If this symbol is not defined in a regular file, then set
8997 the symbol to the stub location. This is required to make
8998 function pointers compare as equal between the normal
8999 executable and the shared library. */
9000 if (!h->def_regular)
9002 hmips->needs_lazy_stub = TRUE;
9003 htab->lazy_stub_count++;
9007 /* As above, VxWorks requires PLT entries for externally-defined
9008 functions that are only accessed through call relocations.
9010 Both VxWorks and non-VxWorks targets also need PLT entries if there
9011 are static-only relocations against an externally-defined function.
9012 This can technically occur for shared libraries if there are
9013 branches to the symbol, although it is unlikely that this will be
9014 used in practice due to the short ranges involved. It can occur
9015 for any relative or absolute relocation in executables; in that
9016 case, the PLT entry becomes the function's canonical address. */
9017 else if (((h->needs_plt && !hmips->no_fn_stub)
9018 || (h->type == STT_FUNC && hmips->has_static_relocs))
9019 && htab->use_plts_and_copy_relocs
9020 && !SYMBOL_CALLS_LOCAL (info, h)
9021 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9022 && h->root.type == bfd_link_hash_undefweak))
9024 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9025 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9027 /* If this is the first symbol to need a PLT entry, then make some
9028 basic setup. Also work out PLT entry sizes. We'll need them
9029 for PLT offset calculations. */
9030 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9032 BFD_ASSERT (htab->sgotplt->size == 0);
9033 BFD_ASSERT (htab->plt_got_index == 0);
9035 /* If we're using the PLT additions to the psABI, each PLT
9036 entry is 16 bytes and the PLT0 entry is 32 bytes.
9037 Encourage better cache usage by aligning. We do this
9038 lazily to avoid pessimizing traditional objects. */
9039 if (!htab->is_vxworks
9040 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9043 /* Make sure that .got.plt is word-aligned. We do this lazily
9044 for the same reason as above. */
9045 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9046 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9049 /* On non-VxWorks targets, the first two entries in .got.plt
9051 if (!htab->is_vxworks)
9053 += (get_elf_backend_data (dynobj)->got_header_size
9054 / MIPS_ELF_GOT_SIZE (dynobj));
9056 /* On VxWorks, also allocate room for the header's
9057 .rela.plt.unloaded entries. */
9058 if (htab->is_vxworks && !bfd_link_pic (info))
9059 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9061 /* Now work out the sizes of individual PLT entries. */
9062 if (htab->is_vxworks && bfd_link_pic (info))
9063 htab->plt_mips_entry_size
9064 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9065 else if (htab->is_vxworks)
9066 htab->plt_mips_entry_size
9067 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9069 htab->plt_mips_entry_size
9070 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9071 else if (!micromips_p)
9073 htab->plt_mips_entry_size
9074 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9075 htab->plt_comp_entry_size
9076 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9078 else if (htab->insn32)
9080 htab->plt_mips_entry_size
9081 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9082 htab->plt_comp_entry_size
9083 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9087 htab->plt_mips_entry_size
9088 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9089 htab->plt_comp_entry_size
9090 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9094 if (h->plt.plist == NULL)
9095 h->plt.plist = mips_elf_make_plt_record (dynobj);
9096 if (h->plt.plist == NULL)
9099 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9100 n32 or n64, so always use a standard entry there.
9102 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9103 all MIPS16 calls will go via that stub, and there is no benefit
9104 to having a MIPS16 entry. And in the case of call_stub a
9105 standard entry actually has to be used as the stub ends with a J
9110 || hmips->call_fp_stub)
9112 h->plt.plist->need_mips = TRUE;
9113 h->plt.plist->need_comp = FALSE;
9116 /* Otherwise, if there are no direct calls to the function, we
9117 have a free choice of whether to use standard or compressed
9118 entries. Prefer microMIPS entries if the object is known to
9119 contain microMIPS code, so that it becomes possible to create
9120 pure microMIPS binaries. Prefer standard entries otherwise,
9121 because MIPS16 ones are no smaller and are usually slower. */
9122 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9125 h->plt.plist->need_comp = TRUE;
9127 h->plt.plist->need_mips = TRUE;
9130 if (h->plt.plist->need_mips)
9132 h->plt.plist->mips_offset = htab->plt_mips_offset;
9133 htab->plt_mips_offset += htab->plt_mips_entry_size;
9135 if (h->plt.plist->need_comp)
9137 h->plt.plist->comp_offset = htab->plt_comp_offset;
9138 htab->plt_comp_offset += htab->plt_comp_entry_size;
9141 /* Reserve the corresponding .got.plt entry now too. */
9142 h->plt.plist->gotplt_index = htab->plt_got_index++;
9144 /* If the output file has no definition of the symbol, set the
9145 symbol's value to the address of the stub. */
9146 if (!bfd_link_pic (info) && !h->def_regular)
9147 hmips->use_plt_entry = TRUE;
9149 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9150 htab->srelplt->size += (htab->is_vxworks
9151 ? MIPS_ELF_RELA_SIZE (dynobj)
9152 : MIPS_ELF_REL_SIZE (dynobj));
9154 /* Make room for the .rela.plt.unloaded relocations. */
9155 if (htab->is_vxworks && !bfd_link_pic (info))
9156 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9158 /* All relocations against this symbol that could have been made
9159 dynamic will now refer to the PLT entry instead. */
9160 hmips->possibly_dynamic_relocs = 0;
9165 /* If this is a weak symbol, and there is a real definition, the
9166 processor independent code will have arranged for us to see the
9167 real definition first, and we can just use the same value. */
9168 if (h->u.weakdef != NULL)
9170 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9171 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9172 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9173 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9177 /* Otherwise, there is nothing further to do for symbols defined
9178 in regular objects. */
9182 /* There's also nothing more to do if we'll convert all relocations
9183 against this symbol into dynamic relocations. */
9184 if (!hmips->has_static_relocs)
9187 /* We're now relying on copy relocations. Complain if we have
9188 some that we can't convert. */
9189 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9191 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9192 "dynamic symbol %s"),
9193 h->root.root.string);
9194 bfd_set_error (bfd_error_bad_value);
9198 /* We must allocate the symbol in our .dynbss section, which will
9199 become part of the .bss section of the executable. There will be
9200 an entry for this symbol in the .dynsym section. The dynamic
9201 object will contain position independent code, so all references
9202 from the dynamic object to this symbol will go through the global
9203 offset table. The dynamic linker will use the .dynsym entry to
9204 determine the address it must put in the global offset table, so
9205 both the dynamic object and the regular object will refer to the
9206 same memory location for the variable. */
9208 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9210 if (htab->is_vxworks)
9211 htab->srelbss->size += sizeof (Elf32_External_Rela);
9213 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9217 /* All relocations against this symbol that could have been made
9218 dynamic will now refer to the local copy instead. */
9219 hmips->possibly_dynamic_relocs = 0;
9221 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9224 /* This function is called after all the input files have been read,
9225 and the input sections have been assigned to output sections. We
9226 check for any mips16 stub sections that we can discard. */
9229 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9230 struct bfd_link_info *info)
9233 struct mips_elf_link_hash_table *htab;
9234 struct mips_htab_traverse_info hti;
9236 htab = mips_elf_hash_table (info);
9237 BFD_ASSERT (htab != NULL);
9239 /* The .reginfo section has a fixed size. */
9240 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9242 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9244 /* The .MIPS.abiflags section has a fixed size. */
9245 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9247 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9250 hti.output_bfd = output_bfd;
9252 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9253 mips_elf_check_symbols, &hti);
9260 /* If the link uses a GOT, lay it out and work out its size. */
9263 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9267 struct mips_got_info *g;
9268 bfd_size_type loadable_size = 0;
9269 bfd_size_type page_gotno;
9271 struct mips_elf_traverse_got_arg tga;
9272 struct mips_elf_link_hash_table *htab;
9274 htab = mips_elf_hash_table (info);
9275 BFD_ASSERT (htab != NULL);
9281 dynobj = elf_hash_table (info)->dynobj;
9284 /* Allocate room for the reserved entries. VxWorks always reserves
9285 3 entries; other objects only reserve 2 entries. */
9286 BFD_ASSERT (g->assigned_low_gotno == 0);
9287 if (htab->is_vxworks)
9288 htab->reserved_gotno = 3;
9290 htab->reserved_gotno = 2;
9291 g->local_gotno += htab->reserved_gotno;
9292 g->assigned_low_gotno = htab->reserved_gotno;
9294 /* Decide which symbols need to go in the global part of the GOT and
9295 count the number of reloc-only GOT symbols. */
9296 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9298 if (!mips_elf_resolve_final_got_entries (info, g))
9301 /* Calculate the total loadable size of the output. That
9302 will give us the maximum number of GOT_PAGE entries
9304 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9306 asection *subsection;
9308 for (subsection = ibfd->sections;
9310 subsection = subsection->next)
9312 if ((subsection->flags & SEC_ALLOC) == 0)
9314 loadable_size += ((subsection->size + 0xf)
9315 &~ (bfd_size_type) 0xf);
9319 if (htab->is_vxworks)
9320 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9321 relocations against local symbols evaluate to "G", and the EABI does
9322 not include R_MIPS_GOT_PAGE. */
9325 /* Assume there are two loadable segments consisting of contiguous
9326 sections. Is 5 enough? */
9327 page_gotno = (loadable_size >> 16) + 5;
9329 /* Choose the smaller of the two page estimates; both are intended to be
9331 if (page_gotno > g->page_gotno)
9332 page_gotno = g->page_gotno;
9334 g->local_gotno += page_gotno;
9335 g->assigned_high_gotno = g->local_gotno - 1;
9337 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9338 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9339 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9341 /* VxWorks does not support multiple GOTs. It initializes $gp to
9342 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9344 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9346 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9351 /* Record that all bfds use G. This also has the effect of freeing
9352 the per-bfd GOTs, which we no longer need. */
9353 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9354 if (mips_elf_bfd_got (ibfd, FALSE))
9355 mips_elf_replace_bfd_got (ibfd, g);
9356 mips_elf_replace_bfd_got (output_bfd, g);
9358 /* Set up TLS entries. */
9359 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9362 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9363 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9366 BFD_ASSERT (g->tls_assigned_gotno
9367 == g->global_gotno + g->local_gotno + g->tls_gotno);
9369 /* Each VxWorks GOT entry needs an explicit relocation. */
9370 if (htab->is_vxworks && bfd_link_pic (info))
9371 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9373 /* Allocate room for the TLS relocations. */
9375 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9381 /* Estimate the size of the .MIPS.stubs section. */
9384 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9386 struct mips_elf_link_hash_table *htab;
9387 bfd_size_type dynsymcount;
9389 htab = mips_elf_hash_table (info);
9390 BFD_ASSERT (htab != NULL);
9392 if (htab->lazy_stub_count == 0)
9395 /* IRIX rld assumes that a function stub isn't at the end of the .text
9396 section, so add a dummy entry to the end. */
9397 htab->lazy_stub_count++;
9399 /* Get a worst-case estimate of the number of dynamic symbols needed.
9400 At this point, dynsymcount does not account for section symbols
9401 and count_section_dynsyms may overestimate the number that will
9403 dynsymcount = (elf_hash_table (info)->dynsymcount
9404 + count_section_dynsyms (output_bfd, info));
9406 /* Determine the size of one stub entry. There's no disadvantage
9407 from using microMIPS code here, so for the sake of pure-microMIPS
9408 binaries we prefer it whenever there's any microMIPS code in
9409 output produced at all. This has a benefit of stubs being
9410 shorter by 4 bytes each too, unless in the insn32 mode. */
9411 if (!MICROMIPS_P (output_bfd))
9412 htab->function_stub_size = (dynsymcount > 0x10000
9413 ? MIPS_FUNCTION_STUB_BIG_SIZE
9414 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9415 else if (htab->insn32)
9416 htab->function_stub_size = (dynsymcount > 0x10000
9417 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9418 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9420 htab->function_stub_size = (dynsymcount > 0x10000
9421 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9422 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9424 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9427 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9428 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9429 stub, allocate an entry in the stubs section. */
9432 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9434 struct mips_htab_traverse_info *hti = data;
9435 struct mips_elf_link_hash_table *htab;
9436 struct bfd_link_info *info;
9440 output_bfd = hti->output_bfd;
9441 htab = mips_elf_hash_table (info);
9442 BFD_ASSERT (htab != NULL);
9444 if (h->needs_lazy_stub)
9446 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9447 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9448 bfd_vma isa_bit = micromips_p;
9450 BFD_ASSERT (htab->root.dynobj != NULL);
9451 if (h->root.plt.plist == NULL)
9452 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9453 if (h->root.plt.plist == NULL)
9458 h->root.root.u.def.section = htab->sstubs;
9459 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9460 h->root.plt.plist->stub_offset = htab->sstubs->size;
9461 h->root.other = other;
9462 htab->sstubs->size += htab->function_stub_size;
9467 /* Allocate offsets in the stubs section to each symbol that needs one.
9468 Set the final size of the .MIPS.stub section. */
9471 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9473 bfd *output_bfd = info->output_bfd;
9474 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9475 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9476 bfd_vma isa_bit = micromips_p;
9477 struct mips_elf_link_hash_table *htab;
9478 struct mips_htab_traverse_info hti;
9479 struct elf_link_hash_entry *h;
9482 htab = mips_elf_hash_table (info);
9483 BFD_ASSERT (htab != NULL);
9485 if (htab->lazy_stub_count == 0)
9488 htab->sstubs->size = 0;
9490 hti.output_bfd = output_bfd;
9492 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9495 htab->sstubs->size += htab->function_stub_size;
9496 BFD_ASSERT (htab->sstubs->size
9497 == htab->lazy_stub_count * htab->function_stub_size);
9499 dynobj = elf_hash_table (info)->dynobj;
9500 BFD_ASSERT (dynobj != NULL);
9501 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9504 h->root.u.def.value = isa_bit;
9511 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9512 bfd_link_info. If H uses the address of a PLT entry as the value
9513 of the symbol, then set the entry in the symbol table now. Prefer
9514 a standard MIPS PLT entry. */
9517 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9519 struct bfd_link_info *info = data;
9520 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9521 struct mips_elf_link_hash_table *htab;
9526 htab = mips_elf_hash_table (info);
9527 BFD_ASSERT (htab != NULL);
9529 if (h->use_plt_entry)
9531 BFD_ASSERT (h->root.plt.plist != NULL);
9532 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9533 || h->root.plt.plist->comp_offset != MINUS_ONE);
9535 val = htab->plt_header_size;
9536 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9539 val += h->root.plt.plist->mips_offset;
9545 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9546 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9549 /* For VxWorks, point at the PLT load stub rather than the lazy
9550 resolution stub; this stub will become the canonical function
9552 if (htab->is_vxworks)
9555 h->root.root.u.def.section = htab->splt;
9556 h->root.root.u.def.value = val;
9557 h->root.other = other;
9563 /* Set the sizes of the dynamic sections. */
9566 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9567 struct bfd_link_info *info)
9570 asection *s, *sreldyn;
9571 bfd_boolean reltext;
9572 struct mips_elf_link_hash_table *htab;
9574 htab = mips_elf_hash_table (info);
9575 BFD_ASSERT (htab != NULL);
9576 dynobj = elf_hash_table (info)->dynobj;
9577 BFD_ASSERT (dynobj != NULL);
9579 if (elf_hash_table (info)->dynamic_sections_created)
9581 /* Set the contents of the .interp section to the interpreter. */
9582 if (bfd_link_executable (info) && !info->nointerp)
9584 s = bfd_get_linker_section (dynobj, ".interp");
9585 BFD_ASSERT (s != NULL);
9587 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9589 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9592 /* Figure out the size of the PLT header if we know that we
9593 are using it. For the sake of cache alignment always use
9594 a standard header whenever any standard entries are present
9595 even if microMIPS entries are present as well. This also
9596 lets the microMIPS header rely on the value of $v0 only set
9597 by microMIPS entries, for a small size reduction.
9599 Set symbol table entry values for symbols that use the
9600 address of their PLT entry now that we can calculate it.
9602 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9603 haven't already in _bfd_elf_create_dynamic_sections. */
9604 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9606 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9607 && !htab->plt_mips_offset);
9608 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9609 bfd_vma isa_bit = micromips_p;
9610 struct elf_link_hash_entry *h;
9613 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9614 BFD_ASSERT (htab->sgotplt->size == 0);
9615 BFD_ASSERT (htab->splt->size == 0);
9617 if (htab->is_vxworks && bfd_link_pic (info))
9618 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9619 else if (htab->is_vxworks)
9620 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9621 else if (ABI_64_P (output_bfd))
9622 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9623 else if (ABI_N32_P (output_bfd))
9624 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9625 else if (!micromips_p)
9626 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9627 else if (htab->insn32)
9628 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9630 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9632 htab->plt_header_is_comp = micromips_p;
9633 htab->plt_header_size = size;
9634 htab->splt->size = (size
9635 + htab->plt_mips_offset
9636 + htab->plt_comp_offset);
9637 htab->sgotplt->size = (htab->plt_got_index
9638 * MIPS_ELF_GOT_SIZE (dynobj));
9640 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9642 if (htab->root.hplt == NULL)
9644 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9645 "_PROCEDURE_LINKAGE_TABLE_");
9646 htab->root.hplt = h;
9651 h = htab->root.hplt;
9652 h->root.u.def.value = isa_bit;
9658 /* Allocate space for global sym dynamic relocs. */
9659 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9661 mips_elf_estimate_stub_size (output_bfd, info);
9663 if (!mips_elf_lay_out_got (output_bfd, info))
9666 mips_elf_lay_out_lazy_stubs (info);
9668 /* The check_relocs and adjust_dynamic_symbol entry points have
9669 determined the sizes of the various dynamic sections. Allocate
9672 for (s = dynobj->sections; s != NULL; s = s->next)
9676 /* It's OK to base decisions on the section name, because none
9677 of the dynobj section names depend upon the input files. */
9678 name = bfd_get_section_name (dynobj, s);
9680 if ((s->flags & SEC_LINKER_CREATED) == 0)
9683 if (CONST_STRNEQ (name, ".rel"))
9687 const char *outname;
9690 /* If this relocation section applies to a read only
9691 section, then we probably need a DT_TEXTREL entry.
9692 If the relocation section is .rel(a).dyn, we always
9693 assert a DT_TEXTREL entry rather than testing whether
9694 there exists a relocation to a read only section or
9696 outname = bfd_get_section_name (output_bfd,
9698 target = bfd_get_section_by_name (output_bfd, outname + 4);
9700 && (target->flags & SEC_READONLY) != 0
9701 && (target->flags & SEC_ALLOC) != 0)
9702 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9705 /* We use the reloc_count field as a counter if we need
9706 to copy relocs into the output file. */
9707 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9710 /* If combreloc is enabled, elf_link_sort_relocs() will
9711 sort relocations, but in a different way than we do,
9712 and before we're done creating relocations. Also, it
9713 will move them around between input sections'
9714 relocation's contents, so our sorting would be
9715 broken, so don't let it run. */
9716 info->combreloc = 0;
9719 else if (bfd_link_executable (info)
9720 && ! mips_elf_hash_table (info)->use_rld_obj_head
9721 && CONST_STRNEQ (name, ".rld_map"))
9723 /* We add a room for __rld_map. It will be filled in by the
9724 rtld to contain a pointer to the _r_debug structure. */
9725 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9727 else if (SGI_COMPAT (output_bfd)
9728 && CONST_STRNEQ (name, ".compact_rel"))
9729 s->size += mips_elf_hash_table (info)->compact_rel_size;
9730 else if (s == htab->splt)
9732 /* If the last PLT entry has a branch delay slot, allocate
9733 room for an extra nop to fill the delay slot. This is
9734 for CPUs without load interlocking. */
9735 if (! LOAD_INTERLOCKS_P (output_bfd)
9736 && ! htab->is_vxworks && s->size > 0)
9739 else if (! CONST_STRNEQ (name, ".init")
9741 && s != htab->sgotplt
9742 && s != htab->sstubs
9743 && s != htab->sdynbss)
9745 /* It's not one of our sections, so don't allocate space. */
9751 s->flags |= SEC_EXCLUDE;
9755 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9758 /* Allocate memory for the section contents. */
9759 s->contents = bfd_zalloc (dynobj, s->size);
9760 if (s->contents == NULL)
9762 bfd_set_error (bfd_error_no_memory);
9767 if (elf_hash_table (info)->dynamic_sections_created)
9769 /* Add some entries to the .dynamic section. We fill in the
9770 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9771 must add the entries now so that we get the correct size for
9772 the .dynamic section. */
9774 /* SGI object has the equivalence of DT_DEBUG in the
9775 DT_MIPS_RLD_MAP entry. This must come first because glibc
9776 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9777 may only look at the first one they see. */
9778 if (!bfd_link_pic (info)
9779 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9782 if (bfd_link_executable (info)
9783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9786 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9787 used by the debugger. */
9788 if (bfd_link_executable (info)
9789 && !SGI_COMPAT (output_bfd)
9790 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9793 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9794 info->flags |= DF_TEXTREL;
9796 if ((info->flags & DF_TEXTREL) != 0)
9798 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9801 /* Clear the DF_TEXTREL flag. It will be set again if we
9802 write out an actual text relocation; we may not, because
9803 at this point we do not know whether e.g. any .eh_frame
9804 absolute relocations have been converted to PC-relative. */
9805 info->flags &= ~DF_TEXTREL;
9808 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9811 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9812 if (htab->is_vxworks)
9814 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9815 use any of the DT_MIPS_* tags. */
9816 if (sreldyn && sreldyn->size > 0)
9818 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9821 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9824 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9830 if (sreldyn && sreldyn->size > 0)
9832 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9845 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9848 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9851 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9863 if (IRIX_COMPAT (dynobj) == ict_irix5
9864 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9867 if (IRIX_COMPAT (dynobj) == ict_irix6
9868 && (bfd_get_section_by_name
9869 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9870 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9873 if (htab->splt->size > 0)
9875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9887 if (htab->is_vxworks
9888 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9895 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9896 Adjust its R_ADDEND field so that it is correct for the output file.
9897 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9898 and sections respectively; both use symbol indexes. */
9901 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9902 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9903 asection **local_sections, Elf_Internal_Rela *rel)
9905 unsigned int r_type, r_symndx;
9906 Elf_Internal_Sym *sym;
9909 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9911 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9912 if (gprel16_reloc_p (r_type)
9913 || r_type == R_MIPS_GPREL32
9914 || literal_reloc_p (r_type))
9916 rel->r_addend += _bfd_get_gp_value (input_bfd);
9917 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9920 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9921 sym = local_syms + r_symndx;
9923 /* Adjust REL's addend to account for section merging. */
9924 if (!bfd_link_relocatable (info))
9926 sec = local_sections[r_symndx];
9927 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9930 /* This would normally be done by the rela_normal code in elflink.c. */
9931 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9932 rel->r_addend += local_sections[r_symndx]->output_offset;
9936 /* Handle relocations against symbols from removed linkonce sections,
9937 or sections discarded by a linker script. We use this wrapper around
9938 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9939 on 64-bit ELF targets. In this case for any relocation handled, which
9940 always be the first in a triplet, the remaining two have to be processed
9941 together with the first, even if they are R_MIPS_NONE. It is the symbol
9942 index referred by the first reloc that applies to all the three and the
9943 remaining two never refer to an object symbol. And it is the final
9944 relocation (the last non-null one) that determines the output field of
9945 the whole relocation so retrieve the corresponding howto structure for
9946 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9948 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9949 and therefore requires to be pasted in a loop. It also defines a block
9950 and does not protect any of its arguments, hence the extra brackets. */
9953 mips_reloc_against_discarded_section (bfd *output_bfd,
9954 struct bfd_link_info *info,
9955 bfd *input_bfd, asection *input_section,
9956 Elf_Internal_Rela **rel,
9957 const Elf_Internal_Rela **relend,
9958 bfd_boolean rel_reloc,
9959 reloc_howto_type *howto,
9962 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9963 int count = bed->s->int_rels_per_ext_rel;
9964 unsigned int r_type;
9967 for (i = count - 1; i > 0; i--)
9969 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9970 if (r_type != R_MIPS_NONE)
9972 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9978 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9979 (*rel), count, (*relend),
9980 howto, i, contents);
9985 /* Relocate a MIPS ELF section. */
9988 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9989 bfd *input_bfd, asection *input_section,
9990 bfd_byte *contents, Elf_Internal_Rela *relocs,
9991 Elf_Internal_Sym *local_syms,
9992 asection **local_sections)
9994 Elf_Internal_Rela *rel;
9995 const Elf_Internal_Rela *relend;
9997 bfd_boolean use_saved_addend_p = FALSE;
9998 const struct elf_backend_data *bed;
10000 bed = get_elf_backend_data (output_bfd);
10001 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10002 for (rel = relocs; rel < relend; ++rel)
10006 reloc_howto_type *howto;
10007 bfd_boolean cross_mode_jump_p = FALSE;
10008 /* TRUE if the relocation is a RELA relocation, rather than a
10010 bfd_boolean rela_relocation_p = TRUE;
10011 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10013 unsigned long r_symndx;
10015 Elf_Internal_Shdr *symtab_hdr;
10016 struct elf_link_hash_entry *h;
10017 bfd_boolean rel_reloc;
10019 rel_reloc = (NEWABI_P (input_bfd)
10020 && mips_elf_rel_relocation_p (input_bfd, input_section,
10022 /* Find the relocation howto for this relocation. */
10023 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10025 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10026 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10027 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10029 sec = local_sections[r_symndx];
10034 unsigned long extsymoff;
10037 if (!elf_bad_symtab (input_bfd))
10038 extsymoff = symtab_hdr->sh_info;
10039 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10040 while (h->root.type == bfd_link_hash_indirect
10041 || h->root.type == bfd_link_hash_warning)
10042 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10045 if (h->root.type == bfd_link_hash_defined
10046 || h->root.type == bfd_link_hash_defweak)
10047 sec = h->root.u.def.section;
10050 if (sec != NULL && discarded_section (sec))
10052 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10053 input_section, &rel, &relend,
10054 rel_reloc, howto, contents);
10058 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10060 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10061 64-bit code, but make sure all their addresses are in the
10062 lowermost or uppermost 32-bit section of the 64-bit address
10063 space. Thus, when they use an R_MIPS_64 they mean what is
10064 usually meant by R_MIPS_32, with the exception that the
10065 stored value is sign-extended to 64 bits. */
10066 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10068 /* On big-endian systems, we need to lie about the position
10070 if (bfd_big_endian (input_bfd))
10071 rel->r_offset += 4;
10074 if (!use_saved_addend_p)
10076 /* If these relocations were originally of the REL variety,
10077 we must pull the addend out of the field that will be
10078 relocated. Otherwise, we simply use the contents of the
10079 RELA relocation. */
10080 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10083 rela_relocation_p = FALSE;
10084 addend = mips_elf_read_rel_addend (input_bfd, rel,
10086 if (hi16_reloc_p (r_type)
10087 || (got16_reloc_p (r_type)
10088 && mips_elf_local_relocation_p (input_bfd, rel,
10091 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10092 contents, &addend))
10095 name = h->root.root.string;
10097 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10098 local_syms + r_symndx,
10100 (*_bfd_error_handler)
10101 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10102 input_bfd, input_section, name, howto->name,
10107 addend <<= howto->rightshift;
10110 addend = rel->r_addend;
10111 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10112 local_syms, local_sections, rel);
10115 if (bfd_link_relocatable (info))
10117 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10118 && bfd_big_endian (input_bfd))
10119 rel->r_offset -= 4;
10121 if (!rela_relocation_p && rel->r_addend)
10123 addend += rel->r_addend;
10124 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10125 addend = mips_elf_high (addend);
10126 else if (r_type == R_MIPS_HIGHER)
10127 addend = mips_elf_higher (addend);
10128 else if (r_type == R_MIPS_HIGHEST)
10129 addend = mips_elf_highest (addend);
10131 addend >>= howto->rightshift;
10133 /* We use the source mask, rather than the destination
10134 mask because the place to which we are writing will be
10135 source of the addend in the final link. */
10136 addend &= howto->src_mask;
10138 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10139 /* See the comment above about using R_MIPS_64 in the 32-bit
10140 ABI. Here, we need to update the addend. It would be
10141 possible to get away with just using the R_MIPS_32 reloc
10142 but for endianness. */
10148 if (addend & ((bfd_vma) 1 << 31))
10150 sign_bits = ((bfd_vma) 1 << 32) - 1;
10157 /* If we don't know that we have a 64-bit type,
10158 do two separate stores. */
10159 if (bfd_big_endian (input_bfd))
10161 /* Store the sign-bits (which are most significant)
10163 low_bits = sign_bits;
10164 high_bits = addend;
10169 high_bits = sign_bits;
10171 bfd_put_32 (input_bfd, low_bits,
10172 contents + rel->r_offset);
10173 bfd_put_32 (input_bfd, high_bits,
10174 contents + rel->r_offset + 4);
10178 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10179 input_bfd, input_section,
10184 /* Go on to the next relocation. */
10188 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10189 relocations for the same offset. In that case we are
10190 supposed to treat the output of each relocation as the addend
10192 if (rel + 1 < relend
10193 && rel->r_offset == rel[1].r_offset
10194 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10195 use_saved_addend_p = TRUE;
10197 use_saved_addend_p = FALSE;
10199 /* Figure out what value we are supposed to relocate. */
10200 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10201 input_section, info, rel,
10202 addend, howto, local_syms,
10203 local_sections, &value,
10204 &name, &cross_mode_jump_p,
10205 use_saved_addend_p))
10207 case bfd_reloc_continue:
10208 /* There's nothing to do. */
10211 case bfd_reloc_undefined:
10212 /* mips_elf_calculate_relocation already called the
10213 undefined_symbol callback. There's no real point in
10214 trying to perform the relocation at this point, so we
10215 just skip ahead to the next relocation. */
10218 case bfd_reloc_notsupported:
10219 msg = _("internal error: unsupported relocation error");
10220 info->callbacks->warning
10221 (info, msg, name, input_bfd, input_section, rel->r_offset);
10224 case bfd_reloc_overflow:
10225 if (use_saved_addend_p)
10226 /* Ignore overflow until we reach the last relocation for
10227 a given location. */
10231 struct mips_elf_link_hash_table *htab;
10233 htab = mips_elf_hash_table (info);
10234 BFD_ASSERT (htab != NULL);
10235 BFD_ASSERT (name != NULL);
10236 if (!htab->small_data_overflow_reported
10237 && (gprel16_reloc_p (howto->type)
10238 || literal_reloc_p (howto->type)))
10240 msg = _("small-data section exceeds 64KB;"
10241 " lower small-data size limit (see option -G)");
10243 htab->small_data_overflow_reported = TRUE;
10244 (*info->callbacks->einfo) ("%P: %s\n", msg);
10246 if (! ((*info->callbacks->reloc_overflow)
10247 (info, NULL, name, howto->name, (bfd_vma) 0,
10248 input_bfd, input_section, rel->r_offset)))
10256 case bfd_reloc_outofrange:
10257 if (jal_reloc_p (howto->type))
10259 msg = _("JALX to a non-word-aligned address");
10260 info->callbacks->warning
10261 (info, msg, name, input_bfd, input_section, rel->r_offset);
10264 if (aligned_pcrel_reloc_p (howto->type))
10266 msg = _("PC-relative load from unaligned address");
10267 info->callbacks->warning
10268 (info, msg, name, input_bfd, input_section, rel->r_offset);
10271 /* Fall through. */
10278 /* If we've got another relocation for the address, keep going
10279 until we reach the last one. */
10280 if (use_saved_addend_p)
10286 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10287 /* See the comment above about using R_MIPS_64 in the 32-bit
10288 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10289 that calculated the right value. Now, however, we
10290 sign-extend the 32-bit result to 64-bits, and store it as a
10291 64-bit value. We are especially generous here in that we
10292 go to extreme lengths to support this usage on systems with
10293 only a 32-bit VMA. */
10299 if (value & ((bfd_vma) 1 << 31))
10301 sign_bits = ((bfd_vma) 1 << 32) - 1;
10308 /* If we don't know that we have a 64-bit type,
10309 do two separate stores. */
10310 if (bfd_big_endian (input_bfd))
10312 /* Undo what we did above. */
10313 rel->r_offset -= 4;
10314 /* Store the sign-bits (which are most significant)
10316 low_bits = sign_bits;
10322 high_bits = sign_bits;
10324 bfd_put_32 (input_bfd, low_bits,
10325 contents + rel->r_offset);
10326 bfd_put_32 (input_bfd, high_bits,
10327 contents + rel->r_offset + 4);
10331 /* Actually perform the relocation. */
10332 if (! mips_elf_perform_relocation (info, howto, rel, value,
10333 input_bfd, input_section,
10334 contents, cross_mode_jump_p))
10341 /* A function that iterates over each entry in la25_stubs and fills
10342 in the code for each one. DATA points to a mips_htab_traverse_info. */
10345 mips_elf_create_la25_stub (void **slot, void *data)
10347 struct mips_htab_traverse_info *hti;
10348 struct mips_elf_link_hash_table *htab;
10349 struct mips_elf_la25_stub *stub;
10352 bfd_vma offset, target, target_high, target_low;
10354 stub = (struct mips_elf_la25_stub *) *slot;
10355 hti = (struct mips_htab_traverse_info *) data;
10356 htab = mips_elf_hash_table (hti->info);
10357 BFD_ASSERT (htab != NULL);
10359 /* Create the section contents, if we haven't already. */
10360 s = stub->stub_section;
10364 loc = bfd_malloc (s->size);
10373 /* Work out where in the section this stub should go. */
10374 offset = stub->offset;
10376 /* Work out the target address. */
10377 target = mips_elf_get_la25_target (stub, &s);
10378 target += s->output_section->vma + s->output_offset;
10380 target_high = ((target + 0x8000) >> 16) & 0xffff;
10381 target_low = (target & 0xffff);
10383 if (stub->stub_section != htab->strampoline)
10385 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10386 of the section and write the two instructions at the end. */
10387 memset (loc, 0, offset);
10389 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10391 bfd_put_micromips_32 (hti->output_bfd,
10392 LA25_LUI_MICROMIPS (target_high),
10394 bfd_put_micromips_32 (hti->output_bfd,
10395 LA25_ADDIU_MICROMIPS (target_low),
10400 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10401 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10406 /* This is trampoline. */
10408 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10410 bfd_put_micromips_32 (hti->output_bfd,
10411 LA25_LUI_MICROMIPS (target_high), loc);
10412 bfd_put_micromips_32 (hti->output_bfd,
10413 LA25_J_MICROMIPS (target), loc + 4);
10414 bfd_put_micromips_32 (hti->output_bfd,
10415 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10416 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10420 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10421 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10422 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10423 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10429 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10430 adjust it appropriately now. */
10433 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10434 const char *name, Elf_Internal_Sym *sym)
10436 /* The linker script takes care of providing names and values for
10437 these, but we must place them into the right sections. */
10438 static const char* const text_section_symbols[] = {
10441 "__dso_displacement",
10443 "__program_header_table",
10447 static const char* const data_section_symbols[] = {
10455 const char* const *p;
10458 for (i = 0; i < 2; ++i)
10459 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10462 if (strcmp (*p, name) == 0)
10464 /* All of these symbols are given type STT_SECTION by the
10466 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10467 sym->st_other = STO_PROTECTED;
10469 /* The IRIX linker puts these symbols in special sections. */
10471 sym->st_shndx = SHN_MIPS_TEXT;
10473 sym->st_shndx = SHN_MIPS_DATA;
10479 /* Finish up dynamic symbol handling. We set the contents of various
10480 dynamic sections here. */
10483 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10484 struct bfd_link_info *info,
10485 struct elf_link_hash_entry *h,
10486 Elf_Internal_Sym *sym)
10490 struct mips_got_info *g, *gg;
10493 struct mips_elf_link_hash_table *htab;
10494 struct mips_elf_link_hash_entry *hmips;
10496 htab = mips_elf_hash_table (info);
10497 BFD_ASSERT (htab != NULL);
10498 dynobj = elf_hash_table (info)->dynobj;
10499 hmips = (struct mips_elf_link_hash_entry *) h;
10501 BFD_ASSERT (!htab->is_vxworks);
10503 if (h->plt.plist != NULL
10504 && (h->plt.plist->mips_offset != MINUS_ONE
10505 || h->plt.plist->comp_offset != MINUS_ONE))
10507 /* We've decided to create a PLT entry for this symbol. */
10509 bfd_vma header_address, got_address;
10510 bfd_vma got_address_high, got_address_low, load;
10514 got_index = h->plt.plist->gotplt_index;
10516 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10517 BFD_ASSERT (h->dynindx != -1);
10518 BFD_ASSERT (htab->splt != NULL);
10519 BFD_ASSERT (got_index != MINUS_ONE);
10520 BFD_ASSERT (!h->def_regular);
10522 /* Calculate the address of the PLT header. */
10523 isa_bit = htab->plt_header_is_comp;
10524 header_address = (htab->splt->output_section->vma
10525 + htab->splt->output_offset + isa_bit);
10527 /* Calculate the address of the .got.plt entry. */
10528 got_address = (htab->sgotplt->output_section->vma
10529 + htab->sgotplt->output_offset
10530 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10532 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10533 got_address_low = got_address & 0xffff;
10535 /* Initially point the .got.plt entry at the PLT header. */
10536 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10537 if (ABI_64_P (output_bfd))
10538 bfd_put_64 (output_bfd, header_address, loc);
10540 bfd_put_32 (output_bfd, header_address, loc);
10542 /* Now handle the PLT itself. First the standard entry (the order
10543 does not matter, we just have to pick one). */
10544 if (h->plt.plist->mips_offset != MINUS_ONE)
10546 const bfd_vma *plt_entry;
10547 bfd_vma plt_offset;
10549 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10551 BFD_ASSERT (plt_offset <= htab->splt->size);
10553 /* Find out where the .plt entry should go. */
10554 loc = htab->splt->contents + plt_offset;
10556 /* Pick the load opcode. */
10557 load = MIPS_ELF_LOAD_WORD (output_bfd);
10559 /* Fill in the PLT entry itself. */
10561 if (MIPSR6_P (output_bfd))
10562 plt_entry = mipsr6_exec_plt_entry;
10564 plt_entry = mips_exec_plt_entry;
10565 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10566 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10569 if (! LOAD_INTERLOCKS_P (output_bfd))
10571 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10572 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10576 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10577 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10582 /* Now the compressed entry. They come after any standard ones. */
10583 if (h->plt.plist->comp_offset != MINUS_ONE)
10585 bfd_vma plt_offset;
10587 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10588 + h->plt.plist->comp_offset);
10590 BFD_ASSERT (plt_offset <= htab->splt->size);
10592 /* Find out where the .plt entry should go. */
10593 loc = htab->splt->contents + plt_offset;
10595 /* Fill in the PLT entry itself. */
10596 if (!MICROMIPS_P (output_bfd))
10598 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10600 bfd_put_16 (output_bfd, plt_entry[0], loc);
10601 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10602 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10603 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10604 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10605 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10606 bfd_put_32 (output_bfd, got_address, loc + 12);
10608 else if (htab->insn32)
10610 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10612 bfd_put_16 (output_bfd, plt_entry[0], loc);
10613 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10614 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10615 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10616 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10617 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10618 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10619 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10623 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10624 bfd_signed_vma gotpc_offset;
10625 bfd_vma loc_address;
10627 BFD_ASSERT (got_address % 4 == 0);
10629 loc_address = (htab->splt->output_section->vma
10630 + htab->splt->output_offset + plt_offset);
10631 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10633 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10634 if (gotpc_offset + 0x1000000 >= 0x2000000)
10636 (*_bfd_error_handler)
10637 (_("%B: `%A' offset of %ld from `%A' "
10638 "beyond the range of ADDIUPC"),
10640 htab->sgotplt->output_section,
10641 htab->splt->output_section,
10642 (long) gotpc_offset);
10643 bfd_set_error (bfd_error_no_error);
10646 bfd_put_16 (output_bfd,
10647 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10648 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10649 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10650 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10651 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10652 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10656 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10657 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10658 got_index - 2, h->dynindx,
10659 R_MIPS_JUMP_SLOT, got_address);
10661 /* We distinguish between PLT entries and lazy-binding stubs by
10662 giving the former an st_other value of STO_MIPS_PLT. Set the
10663 flag and leave the value if there are any relocations in the
10664 binary where pointer equality matters. */
10665 sym->st_shndx = SHN_UNDEF;
10666 if (h->pointer_equality_needed)
10667 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10675 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10677 /* We've decided to create a lazy-binding stub. */
10678 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10679 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10680 bfd_vma stub_size = htab->function_stub_size;
10681 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10682 bfd_vma isa_bit = micromips_p;
10683 bfd_vma stub_big_size;
10686 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10687 else if (htab->insn32)
10688 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10690 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10692 /* This symbol has a stub. Set it up. */
10694 BFD_ASSERT (h->dynindx != -1);
10696 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10698 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10699 sign extension at runtime in the stub, resulting in a negative
10701 if (h->dynindx & ~0x7fffffff)
10704 /* Fill the stub. */
10708 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10713 bfd_put_micromips_32 (output_bfd,
10714 STUB_MOVE32_MICROMIPS, stub + idx);
10719 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10722 if (stub_size == stub_big_size)
10724 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10726 bfd_put_micromips_32 (output_bfd,
10727 STUB_LUI_MICROMIPS (dynindx_hi),
10733 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10739 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10743 /* If a large stub is not required and sign extension is not a
10744 problem, then use legacy code in the stub. */
10745 if (stub_size == stub_big_size)
10746 bfd_put_micromips_32 (output_bfd,
10747 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10749 else if (h->dynindx & ~0x7fff)
10750 bfd_put_micromips_32 (output_bfd,
10751 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10754 bfd_put_micromips_32 (output_bfd,
10755 STUB_LI16S_MICROMIPS (output_bfd,
10762 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10764 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10766 if (stub_size == stub_big_size)
10768 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10772 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10775 /* If a large stub is not required and sign extension is not a
10776 problem, then use legacy code in the stub. */
10777 if (stub_size == stub_big_size)
10778 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10780 else if (h->dynindx & ~0x7fff)
10781 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10784 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10788 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10789 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10792 /* Mark the symbol as undefined. stub_offset != -1 occurs
10793 only for the referenced symbol. */
10794 sym->st_shndx = SHN_UNDEF;
10796 /* The run-time linker uses the st_value field of the symbol
10797 to reset the global offset table entry for this external
10798 to its stub address when unlinking a shared object. */
10799 sym->st_value = (htab->sstubs->output_section->vma
10800 + htab->sstubs->output_offset
10801 + h->plt.plist->stub_offset
10803 sym->st_other = other;
10806 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10807 refer to the stub, since only the stub uses the standard calling
10809 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10811 BFD_ASSERT (hmips->need_fn_stub);
10812 sym->st_value = (hmips->fn_stub->output_section->vma
10813 + hmips->fn_stub->output_offset);
10814 sym->st_size = hmips->fn_stub->size;
10815 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10818 BFD_ASSERT (h->dynindx != -1
10819 || h->forced_local);
10822 g = htab->got_info;
10823 BFD_ASSERT (g != NULL);
10825 /* Run through the global symbol table, creating GOT entries for all
10826 the symbols that need them. */
10827 if (hmips->global_got_area != GGA_NONE)
10832 value = sym->st_value;
10833 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10834 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10837 if (hmips->global_got_area != GGA_NONE && g->next)
10839 struct mips_got_entry e, *p;
10845 e.abfd = output_bfd;
10848 e.tls_type = GOT_TLS_NONE;
10850 for (g = g->next; g->next != gg; g = g->next)
10853 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10856 offset = p->gotidx;
10857 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10858 if (bfd_link_pic (info)
10859 || (elf_hash_table (info)->dynamic_sections_created
10861 && p->d.h->root.def_dynamic
10862 && !p->d.h->root.def_regular))
10864 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10865 the various compatibility problems, it's easier to mock
10866 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10867 mips_elf_create_dynamic_relocation to calculate the
10868 appropriate addend. */
10869 Elf_Internal_Rela rel[3];
10871 memset (rel, 0, sizeof (rel));
10872 if (ABI_64_P (output_bfd))
10873 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10875 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10876 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10879 if (! (mips_elf_create_dynamic_relocation
10880 (output_bfd, info, rel,
10881 e.d.h, NULL, sym->st_value, &entry, sgot)))
10885 entry = sym->st_value;
10886 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10891 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10892 name = h->root.root.string;
10893 if (h == elf_hash_table (info)->hdynamic
10894 || h == elf_hash_table (info)->hgot)
10895 sym->st_shndx = SHN_ABS;
10896 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10897 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10899 sym->st_shndx = SHN_ABS;
10900 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10903 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10905 sym->st_shndx = SHN_ABS;
10906 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10907 sym->st_value = elf_gp (output_bfd);
10909 else if (SGI_COMPAT (output_bfd))
10911 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10912 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10914 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10915 sym->st_other = STO_PROTECTED;
10917 sym->st_shndx = SHN_MIPS_DATA;
10919 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10921 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10922 sym->st_other = STO_PROTECTED;
10923 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10924 sym->st_shndx = SHN_ABS;
10926 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10928 if (h->type == STT_FUNC)
10929 sym->st_shndx = SHN_MIPS_TEXT;
10930 else if (h->type == STT_OBJECT)
10931 sym->st_shndx = SHN_MIPS_DATA;
10935 /* Emit a copy reloc, if needed. */
10941 BFD_ASSERT (h->dynindx != -1);
10942 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10944 s = mips_elf_rel_dyn_section (info, FALSE);
10945 symval = (h->root.u.def.section->output_section->vma
10946 + h->root.u.def.section->output_offset
10947 + h->root.u.def.value);
10948 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10949 h->dynindx, R_MIPS_COPY, symval);
10952 /* Handle the IRIX6-specific symbols. */
10953 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10954 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10956 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10957 to treat compressed symbols like any other. */
10958 if (ELF_ST_IS_MIPS16 (sym->st_other))
10960 BFD_ASSERT (sym->st_value & 1);
10961 sym->st_other -= STO_MIPS16;
10963 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10965 BFD_ASSERT (sym->st_value & 1);
10966 sym->st_other -= STO_MICROMIPS;
10972 /* Likewise, for VxWorks. */
10975 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10976 struct bfd_link_info *info,
10977 struct elf_link_hash_entry *h,
10978 Elf_Internal_Sym *sym)
10982 struct mips_got_info *g;
10983 struct mips_elf_link_hash_table *htab;
10984 struct mips_elf_link_hash_entry *hmips;
10986 htab = mips_elf_hash_table (info);
10987 BFD_ASSERT (htab != NULL);
10988 dynobj = elf_hash_table (info)->dynobj;
10989 hmips = (struct mips_elf_link_hash_entry *) h;
10991 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10994 bfd_vma plt_address, got_address, got_offset, branch_offset;
10995 Elf_Internal_Rela rel;
10996 static const bfd_vma *plt_entry;
10997 bfd_vma gotplt_index;
10998 bfd_vma plt_offset;
11000 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11001 gotplt_index = h->plt.plist->gotplt_index;
11003 BFD_ASSERT (h->dynindx != -1);
11004 BFD_ASSERT (htab->splt != NULL);
11005 BFD_ASSERT (gotplt_index != MINUS_ONE);
11006 BFD_ASSERT (plt_offset <= htab->splt->size);
11008 /* Calculate the address of the .plt entry. */
11009 plt_address = (htab->splt->output_section->vma
11010 + htab->splt->output_offset
11013 /* Calculate the address of the .got.plt entry. */
11014 got_address = (htab->sgotplt->output_section->vma
11015 + htab->sgotplt->output_offset
11016 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11018 /* Calculate the offset of the .got.plt entry from
11019 _GLOBAL_OFFSET_TABLE_. */
11020 got_offset = mips_elf_gotplt_index (info, h);
11022 /* Calculate the offset for the branch at the start of the PLT
11023 entry. The branch jumps to the beginning of .plt. */
11024 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11026 /* Fill in the initial value of the .got.plt entry. */
11027 bfd_put_32 (output_bfd, plt_address,
11028 (htab->sgotplt->contents
11029 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11031 /* Find out where the .plt entry should go. */
11032 loc = htab->splt->contents + plt_offset;
11034 if (bfd_link_pic (info))
11036 plt_entry = mips_vxworks_shared_plt_entry;
11037 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11038 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11042 bfd_vma got_address_high, got_address_low;
11044 plt_entry = mips_vxworks_exec_plt_entry;
11045 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11046 got_address_low = got_address & 0xffff;
11048 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11049 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11050 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11051 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11052 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11053 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11054 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11055 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11057 loc = (htab->srelplt2->contents
11058 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11060 /* Emit a relocation for the .got.plt entry. */
11061 rel.r_offset = got_address;
11062 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11063 rel.r_addend = plt_offset;
11064 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11066 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11067 loc += sizeof (Elf32_External_Rela);
11068 rel.r_offset = plt_address + 8;
11069 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11070 rel.r_addend = got_offset;
11071 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11073 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11074 loc += sizeof (Elf32_External_Rela);
11076 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11080 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11081 loc = (htab->srelplt->contents
11082 + gotplt_index * sizeof (Elf32_External_Rela));
11083 rel.r_offset = got_address;
11084 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11086 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11088 if (!h->def_regular)
11089 sym->st_shndx = SHN_UNDEF;
11092 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11095 g = htab->got_info;
11096 BFD_ASSERT (g != NULL);
11098 /* See if this symbol has an entry in the GOT. */
11099 if (hmips->global_got_area != GGA_NONE)
11102 Elf_Internal_Rela outrel;
11106 /* Install the symbol value in the GOT. */
11107 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11108 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11110 /* Add a dynamic relocation for it. */
11111 s = mips_elf_rel_dyn_section (info, FALSE);
11112 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11113 outrel.r_offset = (sgot->output_section->vma
11114 + sgot->output_offset
11116 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11117 outrel.r_addend = 0;
11118 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11121 /* Emit a copy reloc, if needed. */
11124 Elf_Internal_Rela rel;
11126 BFD_ASSERT (h->dynindx != -1);
11128 rel.r_offset = (h->root.u.def.section->output_section->vma
11129 + h->root.u.def.section->output_offset
11130 + h->root.u.def.value);
11131 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11133 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11134 htab->srelbss->contents
11135 + (htab->srelbss->reloc_count
11136 * sizeof (Elf32_External_Rela)));
11137 ++htab->srelbss->reloc_count;
11140 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11141 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11142 sym->st_value &= ~1;
11147 /* Write out a plt0 entry to the beginning of .plt. */
11150 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11153 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11154 static const bfd_vma *plt_entry;
11155 struct mips_elf_link_hash_table *htab;
11157 htab = mips_elf_hash_table (info);
11158 BFD_ASSERT (htab != NULL);
11160 if (ABI_64_P (output_bfd))
11161 plt_entry = mips_n64_exec_plt0_entry;
11162 else if (ABI_N32_P (output_bfd))
11163 plt_entry = mips_n32_exec_plt0_entry;
11164 else if (!htab->plt_header_is_comp)
11165 plt_entry = mips_o32_exec_plt0_entry;
11166 else if (htab->insn32)
11167 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11169 plt_entry = micromips_o32_exec_plt0_entry;
11171 /* Calculate the value of .got.plt. */
11172 gotplt_value = (htab->sgotplt->output_section->vma
11173 + htab->sgotplt->output_offset);
11174 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11175 gotplt_value_low = gotplt_value & 0xffff;
11177 /* The PLT sequence is not safe for N64 if .got.plt's address can
11178 not be loaded in two instructions. */
11179 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11180 || ~(gotplt_value | 0x7fffffff) == 0);
11182 /* Install the PLT header. */
11183 loc = htab->splt->contents;
11184 if (plt_entry == micromips_o32_exec_plt0_entry)
11186 bfd_vma gotpc_offset;
11187 bfd_vma loc_address;
11190 BFD_ASSERT (gotplt_value % 4 == 0);
11192 loc_address = (htab->splt->output_section->vma
11193 + htab->splt->output_offset);
11194 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11196 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11197 if (gotpc_offset + 0x1000000 >= 0x2000000)
11199 (*_bfd_error_handler)
11200 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11202 htab->sgotplt->output_section,
11203 htab->splt->output_section,
11204 (long) gotpc_offset);
11205 bfd_set_error (bfd_error_no_error);
11208 bfd_put_16 (output_bfd,
11209 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11210 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11211 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11212 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11214 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11218 bfd_put_16 (output_bfd, plt_entry[0], loc);
11219 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11220 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11221 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11222 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11223 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11224 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11225 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11229 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11230 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11231 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11232 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11233 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11234 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11235 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11236 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11242 /* Install the PLT header for a VxWorks executable and finalize the
11243 contents of .rela.plt.unloaded. */
11246 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11248 Elf_Internal_Rela rela;
11250 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11251 static const bfd_vma *plt_entry;
11252 struct mips_elf_link_hash_table *htab;
11254 htab = mips_elf_hash_table (info);
11255 BFD_ASSERT (htab != NULL);
11257 plt_entry = mips_vxworks_exec_plt0_entry;
11259 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11260 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11261 + htab->root.hgot->root.u.def.section->output_offset
11262 + htab->root.hgot->root.u.def.value);
11264 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11265 got_value_low = got_value & 0xffff;
11267 /* Calculate the address of the PLT header. */
11268 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11270 /* Install the PLT header. */
11271 loc = htab->splt->contents;
11272 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11273 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11274 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11275 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11276 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11277 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11279 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11280 loc = htab->srelplt2->contents;
11281 rela.r_offset = plt_address;
11282 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11284 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11285 loc += sizeof (Elf32_External_Rela);
11287 /* Output the relocation for the following addiu of
11288 %lo(_GLOBAL_OFFSET_TABLE_). */
11289 rela.r_offset += 4;
11290 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11291 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11292 loc += sizeof (Elf32_External_Rela);
11294 /* Fix up the remaining relocations. They may have the wrong
11295 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11296 in which symbols were output. */
11297 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11299 Elf_Internal_Rela rel;
11301 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11302 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11303 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11304 loc += sizeof (Elf32_External_Rela);
11306 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11307 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11308 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11309 loc += sizeof (Elf32_External_Rela);
11311 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11312 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11313 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11314 loc += sizeof (Elf32_External_Rela);
11318 /* Install the PLT header for a VxWorks shared library. */
11321 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11324 struct mips_elf_link_hash_table *htab;
11326 htab = mips_elf_hash_table (info);
11327 BFD_ASSERT (htab != NULL);
11329 /* We just need to copy the entry byte-by-byte. */
11330 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11331 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11332 htab->splt->contents + i * 4);
11335 /* Finish up the dynamic sections. */
11338 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11339 struct bfd_link_info *info)
11344 struct mips_got_info *gg, *g;
11345 struct mips_elf_link_hash_table *htab;
11347 htab = mips_elf_hash_table (info);
11348 BFD_ASSERT (htab != NULL);
11350 dynobj = elf_hash_table (info)->dynobj;
11352 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11355 gg = htab->got_info;
11357 if (elf_hash_table (info)->dynamic_sections_created)
11360 int dyn_to_skip = 0, dyn_skipped = 0;
11362 BFD_ASSERT (sdyn != NULL);
11363 BFD_ASSERT (gg != NULL);
11365 g = mips_elf_bfd_got (output_bfd, FALSE);
11366 BFD_ASSERT (g != NULL);
11368 for (b = sdyn->contents;
11369 b < sdyn->contents + sdyn->size;
11370 b += MIPS_ELF_DYN_SIZE (dynobj))
11372 Elf_Internal_Dyn dyn;
11376 bfd_boolean swap_out_p;
11378 /* Read in the current dynamic entry. */
11379 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11381 /* Assume that we're going to modify it and write it out. */
11387 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11391 BFD_ASSERT (htab->is_vxworks);
11392 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11396 /* Rewrite DT_STRSZ. */
11398 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11403 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11406 case DT_MIPS_PLTGOT:
11408 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11411 case DT_MIPS_RLD_VERSION:
11412 dyn.d_un.d_val = 1; /* XXX */
11415 case DT_MIPS_FLAGS:
11416 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11419 case DT_MIPS_TIME_STAMP:
11423 dyn.d_un.d_val = t;
11427 case DT_MIPS_ICHECKSUM:
11429 swap_out_p = FALSE;
11432 case DT_MIPS_IVERSION:
11434 swap_out_p = FALSE;
11437 case DT_MIPS_BASE_ADDRESS:
11438 s = output_bfd->sections;
11439 BFD_ASSERT (s != NULL);
11440 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11443 case DT_MIPS_LOCAL_GOTNO:
11444 dyn.d_un.d_val = g->local_gotno;
11447 case DT_MIPS_UNREFEXTNO:
11448 /* The index into the dynamic symbol table which is the
11449 entry of the first external symbol that is not
11450 referenced within the same object. */
11451 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11454 case DT_MIPS_GOTSYM:
11455 if (htab->global_gotsym)
11457 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11460 /* In case if we don't have global got symbols we default
11461 to setting DT_MIPS_GOTSYM to the same value as
11462 DT_MIPS_SYMTABNO, so we just fall through. */
11464 case DT_MIPS_SYMTABNO:
11466 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11467 s = bfd_get_section_by_name (output_bfd, name);
11470 dyn.d_un.d_val = s->size / elemsize;
11472 dyn.d_un.d_val = 0;
11475 case DT_MIPS_HIPAGENO:
11476 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11479 case DT_MIPS_RLD_MAP:
11481 struct elf_link_hash_entry *h;
11482 h = mips_elf_hash_table (info)->rld_symbol;
11485 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11486 swap_out_p = FALSE;
11489 s = h->root.u.def.section;
11491 /* The MIPS_RLD_MAP tag stores the absolute address of the
11493 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11494 + h->root.u.def.value);
11498 case DT_MIPS_RLD_MAP_REL:
11500 struct elf_link_hash_entry *h;
11501 bfd_vma dt_addr, rld_addr;
11502 h = mips_elf_hash_table (info)->rld_symbol;
11505 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11506 swap_out_p = FALSE;
11509 s = h->root.u.def.section;
11511 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11512 pointer, relative to the address of the tag. */
11513 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11514 + (b - sdyn->contents));
11515 rld_addr = (s->output_section->vma + s->output_offset
11516 + h->root.u.def.value);
11517 dyn.d_un.d_ptr = rld_addr - dt_addr;
11521 case DT_MIPS_OPTIONS:
11522 s = (bfd_get_section_by_name
11523 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11524 dyn.d_un.d_ptr = s->vma;
11528 BFD_ASSERT (htab->is_vxworks);
11529 /* The count does not include the JUMP_SLOT relocations. */
11531 dyn.d_un.d_val -= htab->srelplt->size;
11535 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11536 if (htab->is_vxworks)
11537 dyn.d_un.d_val = DT_RELA;
11539 dyn.d_un.d_val = DT_REL;
11543 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11544 dyn.d_un.d_val = htab->srelplt->size;
11548 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11549 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11550 + htab->srelplt->output_offset);
11554 /* If we didn't need any text relocations after all, delete
11555 the dynamic tag. */
11556 if (!(info->flags & DF_TEXTREL))
11558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11559 swap_out_p = FALSE;
11564 /* If we didn't need any text relocations after all, clear
11565 DF_TEXTREL from DT_FLAGS. */
11566 if (!(info->flags & DF_TEXTREL))
11567 dyn.d_un.d_val &= ~DF_TEXTREL;
11569 swap_out_p = FALSE;
11573 swap_out_p = FALSE;
11574 if (htab->is_vxworks
11575 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11580 if (swap_out_p || dyn_skipped)
11581 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11582 (dynobj, &dyn, b - dyn_skipped);
11586 dyn_skipped += dyn_to_skip;
11591 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11592 if (dyn_skipped > 0)
11593 memset (b - dyn_skipped, 0, dyn_skipped);
11596 if (sgot != NULL && sgot->size > 0
11597 && !bfd_is_abs_section (sgot->output_section))
11599 if (htab->is_vxworks)
11601 /* The first entry of the global offset table points to the
11602 ".dynamic" section. The second is initialized by the
11603 loader and contains the shared library identifier.
11604 The third is also initialized by the loader and points
11605 to the lazy resolution stub. */
11606 MIPS_ELF_PUT_WORD (output_bfd,
11607 sdyn->output_offset + sdyn->output_section->vma,
11609 MIPS_ELF_PUT_WORD (output_bfd, 0,
11610 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11611 MIPS_ELF_PUT_WORD (output_bfd, 0,
11613 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11617 /* The first entry of the global offset table will be filled at
11618 runtime. The second entry will be used by some runtime loaders.
11619 This isn't the case of IRIX rld. */
11620 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11621 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11622 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11625 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11626 = MIPS_ELF_GOT_SIZE (output_bfd);
11629 /* Generate dynamic relocations for the non-primary gots. */
11630 if (gg != NULL && gg->next)
11632 Elf_Internal_Rela rel[3];
11633 bfd_vma addend = 0;
11635 memset (rel, 0, sizeof (rel));
11636 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11638 for (g = gg->next; g->next != gg; g = g->next)
11640 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11641 + g->next->tls_gotno;
11643 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11644 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11645 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11647 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11649 if (! bfd_link_pic (info))
11652 for (; got_index < g->local_gotno; got_index++)
11654 if (got_index >= g->assigned_low_gotno
11655 && got_index <= g->assigned_high_gotno)
11658 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11659 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11660 if (!(mips_elf_create_dynamic_relocation
11661 (output_bfd, info, rel, NULL,
11662 bfd_abs_section_ptr,
11663 0, &addend, sgot)))
11665 BFD_ASSERT (addend == 0);
11670 /* The generation of dynamic relocations for the non-primary gots
11671 adds more dynamic relocations. We cannot count them until
11674 if (elf_hash_table (info)->dynamic_sections_created)
11677 bfd_boolean swap_out_p;
11679 BFD_ASSERT (sdyn != NULL);
11681 for (b = sdyn->contents;
11682 b < sdyn->contents + sdyn->size;
11683 b += MIPS_ELF_DYN_SIZE (dynobj))
11685 Elf_Internal_Dyn dyn;
11688 /* Read in the current dynamic entry. */
11689 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11691 /* Assume that we're going to modify it and write it out. */
11697 /* Reduce DT_RELSZ to account for any relocations we
11698 decided not to make. This is for the n64 irix rld,
11699 which doesn't seem to apply any relocations if there
11700 are trailing null entries. */
11701 s = mips_elf_rel_dyn_section (info, FALSE);
11702 dyn.d_un.d_val = (s->reloc_count
11703 * (ABI_64_P (output_bfd)
11704 ? sizeof (Elf64_Mips_External_Rel)
11705 : sizeof (Elf32_External_Rel)));
11706 /* Adjust the section size too. Tools like the prelinker
11707 can reasonably expect the values to the same. */
11708 elf_section_data (s->output_section)->this_hdr.sh_size
11713 swap_out_p = FALSE;
11718 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11725 Elf32_compact_rel cpt;
11727 if (SGI_COMPAT (output_bfd))
11729 /* Write .compact_rel section out. */
11730 s = bfd_get_linker_section (dynobj, ".compact_rel");
11734 cpt.num = s->reloc_count;
11736 cpt.offset = (s->output_section->filepos
11737 + sizeof (Elf32_External_compact_rel));
11740 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11741 ((Elf32_External_compact_rel *)
11744 /* Clean up a dummy stub function entry in .text. */
11745 if (htab->sstubs != NULL)
11747 file_ptr dummy_offset;
11749 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11750 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11751 memset (htab->sstubs->contents + dummy_offset, 0,
11752 htab->function_stub_size);
11757 /* The psABI says that the dynamic relocations must be sorted in
11758 increasing order of r_symndx. The VxWorks EABI doesn't require
11759 this, and because the code below handles REL rather than RELA
11760 relocations, using it for VxWorks would be outright harmful. */
11761 if (!htab->is_vxworks)
11763 s = mips_elf_rel_dyn_section (info, FALSE);
11765 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11767 reldyn_sorting_bfd = output_bfd;
11769 if (ABI_64_P (output_bfd))
11770 qsort ((Elf64_External_Rel *) s->contents + 1,
11771 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11772 sort_dynamic_relocs_64);
11774 qsort ((Elf32_External_Rel *) s->contents + 1,
11775 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11776 sort_dynamic_relocs);
11781 if (htab->splt && htab->splt->size > 0)
11783 if (htab->is_vxworks)
11785 if (bfd_link_pic (info))
11786 mips_vxworks_finish_shared_plt (output_bfd, info);
11788 mips_vxworks_finish_exec_plt (output_bfd, info);
11792 BFD_ASSERT (!bfd_link_pic (info));
11793 if (!mips_finish_exec_plt (output_bfd, info))
11801 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11804 mips_set_isa_flags (bfd *abfd)
11808 switch (bfd_get_mach (abfd))
11811 case bfd_mach_mips3000:
11812 val = E_MIPS_ARCH_1;
11815 case bfd_mach_mips3900:
11816 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11819 case bfd_mach_mips6000:
11820 val = E_MIPS_ARCH_2;
11823 case bfd_mach_mips4000:
11824 case bfd_mach_mips4300:
11825 case bfd_mach_mips4400:
11826 case bfd_mach_mips4600:
11827 val = E_MIPS_ARCH_3;
11830 case bfd_mach_mips4010:
11831 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11834 case bfd_mach_mips4100:
11835 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11838 case bfd_mach_mips4111:
11839 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11842 case bfd_mach_mips4120:
11843 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11846 case bfd_mach_mips4650:
11847 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11850 case bfd_mach_mips5400:
11851 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11854 case bfd_mach_mips5500:
11855 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11858 case bfd_mach_mips5900:
11859 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11862 case bfd_mach_mips9000:
11863 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11866 case bfd_mach_mips5000:
11867 case bfd_mach_mips7000:
11868 case bfd_mach_mips8000:
11869 case bfd_mach_mips10000:
11870 case bfd_mach_mips12000:
11871 case bfd_mach_mips14000:
11872 case bfd_mach_mips16000:
11873 val = E_MIPS_ARCH_4;
11876 case bfd_mach_mips5:
11877 val = E_MIPS_ARCH_5;
11880 case bfd_mach_mips_loongson_2e:
11881 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11884 case bfd_mach_mips_loongson_2f:
11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11888 case bfd_mach_mips_sb1:
11889 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11892 case bfd_mach_mips_loongson_3a:
11893 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11896 case bfd_mach_mips_octeon:
11897 case bfd_mach_mips_octeonp:
11898 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11901 case bfd_mach_mips_octeon3:
11902 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11905 case bfd_mach_mips_xlr:
11906 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11909 case bfd_mach_mips_octeon2:
11910 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11913 case bfd_mach_mipsisa32:
11914 val = E_MIPS_ARCH_32;
11917 case bfd_mach_mipsisa64:
11918 val = E_MIPS_ARCH_64;
11921 case bfd_mach_mipsisa32r2:
11922 case bfd_mach_mipsisa32r3:
11923 case bfd_mach_mipsisa32r5:
11924 val = E_MIPS_ARCH_32R2;
11927 case bfd_mach_mipsisa64r2:
11928 case bfd_mach_mipsisa64r3:
11929 case bfd_mach_mipsisa64r5:
11930 val = E_MIPS_ARCH_64R2;
11933 case bfd_mach_mipsisa32r6:
11934 val = E_MIPS_ARCH_32R6;
11937 case bfd_mach_mipsisa64r6:
11938 val = E_MIPS_ARCH_64R6;
11941 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11942 elf_elfheader (abfd)->e_flags |= val;
11947 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11948 Don't do so for code sections. We want to keep ordering of HI16/LO16
11949 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11950 relocs to be sorted. */
11953 _bfd_mips_elf_sort_relocs_p (asection *sec)
11955 return (sec->flags & SEC_CODE) == 0;
11959 /* The final processing done just before writing out a MIPS ELF object
11960 file. This gets the MIPS architecture right based on the machine
11961 number. This is used by both the 32-bit and the 64-bit ABI. */
11964 _bfd_mips_elf_final_write_processing (bfd *abfd,
11965 bfd_boolean linker ATTRIBUTE_UNUSED)
11968 Elf_Internal_Shdr **hdrpp;
11972 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11973 is nonzero. This is for compatibility with old objects, which used
11974 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11975 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11976 mips_set_isa_flags (abfd);
11978 /* Set the sh_info field for .gptab sections and other appropriate
11979 info for each special section. */
11980 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11981 i < elf_numsections (abfd);
11984 switch ((*hdrpp)->sh_type)
11986 case SHT_MIPS_MSYM:
11987 case SHT_MIPS_LIBLIST:
11988 sec = bfd_get_section_by_name (abfd, ".dynstr");
11990 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11993 case SHT_MIPS_GPTAB:
11994 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11995 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11996 BFD_ASSERT (name != NULL
11997 && CONST_STRNEQ (name, ".gptab."));
11998 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11999 BFD_ASSERT (sec != NULL);
12000 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12003 case SHT_MIPS_CONTENT:
12004 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12005 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12006 BFD_ASSERT (name != NULL
12007 && CONST_STRNEQ (name, ".MIPS.content"));
12008 sec = bfd_get_section_by_name (abfd,
12009 name + sizeof ".MIPS.content" - 1);
12010 BFD_ASSERT (sec != NULL);
12011 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12014 case SHT_MIPS_SYMBOL_LIB:
12015 sec = bfd_get_section_by_name (abfd, ".dynsym");
12017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12018 sec = bfd_get_section_by_name (abfd, ".liblist");
12020 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12023 case SHT_MIPS_EVENTS:
12024 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12025 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12026 BFD_ASSERT (name != NULL);
12027 if (CONST_STRNEQ (name, ".MIPS.events"))
12028 sec = bfd_get_section_by_name (abfd,
12029 name + sizeof ".MIPS.events" - 1);
12032 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12033 sec = bfd_get_section_by_name (abfd,
12035 + sizeof ".MIPS.post_rel" - 1));
12037 BFD_ASSERT (sec != NULL);
12038 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12045 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12049 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12050 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12055 /* See if we need a PT_MIPS_REGINFO segment. */
12056 s = bfd_get_section_by_name (abfd, ".reginfo");
12057 if (s && (s->flags & SEC_LOAD))
12060 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12061 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12064 /* See if we need a PT_MIPS_OPTIONS segment. */
12065 if (IRIX_COMPAT (abfd) == ict_irix6
12066 && bfd_get_section_by_name (abfd,
12067 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12070 /* See if we need a PT_MIPS_RTPROC segment. */
12071 if (IRIX_COMPAT (abfd) == ict_irix5
12072 && bfd_get_section_by_name (abfd, ".dynamic")
12073 && bfd_get_section_by_name (abfd, ".mdebug"))
12076 /* Allocate a PT_NULL header in dynamic objects. See
12077 _bfd_mips_elf_modify_segment_map for details. */
12078 if (!SGI_COMPAT (abfd)
12079 && bfd_get_section_by_name (abfd, ".dynamic"))
12085 /* Modify the segment map for an IRIX5 executable. */
12088 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12089 struct bfd_link_info *info)
12092 struct elf_segment_map *m, **pm;
12095 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12097 s = bfd_get_section_by_name (abfd, ".reginfo");
12098 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12100 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12101 if (m->p_type == PT_MIPS_REGINFO)
12106 m = bfd_zalloc (abfd, amt);
12110 m->p_type = PT_MIPS_REGINFO;
12112 m->sections[0] = s;
12114 /* We want to put it after the PHDR and INTERP segments. */
12115 pm = &elf_seg_map (abfd);
12117 && ((*pm)->p_type == PT_PHDR
12118 || (*pm)->p_type == PT_INTERP))
12126 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12128 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12129 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12131 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12132 if (m->p_type == PT_MIPS_ABIFLAGS)
12137 m = bfd_zalloc (abfd, amt);
12141 m->p_type = PT_MIPS_ABIFLAGS;
12143 m->sections[0] = s;
12145 /* We want to put it after the PHDR and INTERP segments. */
12146 pm = &elf_seg_map (abfd);
12148 && ((*pm)->p_type == PT_PHDR
12149 || (*pm)->p_type == PT_INTERP))
12157 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12158 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12159 PT_MIPS_OPTIONS segment immediately following the program header
12161 if (NEWABI_P (abfd)
12162 /* On non-IRIX6 new abi, we'll have already created a segment
12163 for this section, so don't create another. I'm not sure this
12164 is not also the case for IRIX 6, but I can't test it right
12166 && IRIX_COMPAT (abfd) == ict_irix6)
12168 for (s = abfd->sections; s; s = s->next)
12169 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12174 struct elf_segment_map *options_segment;
12176 pm = &elf_seg_map (abfd);
12178 && ((*pm)->p_type == PT_PHDR
12179 || (*pm)->p_type == PT_INTERP))
12182 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12184 amt = sizeof (struct elf_segment_map);
12185 options_segment = bfd_zalloc (abfd, amt);
12186 options_segment->next = *pm;
12187 options_segment->p_type = PT_MIPS_OPTIONS;
12188 options_segment->p_flags = PF_R;
12189 options_segment->p_flags_valid = TRUE;
12190 options_segment->count = 1;
12191 options_segment->sections[0] = s;
12192 *pm = options_segment;
12198 if (IRIX_COMPAT (abfd) == ict_irix5)
12200 /* If there are .dynamic and .mdebug sections, we make a room
12201 for the RTPROC header. FIXME: Rewrite without section names. */
12202 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12203 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12204 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12206 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12207 if (m->p_type == PT_MIPS_RTPROC)
12212 m = bfd_zalloc (abfd, amt);
12216 m->p_type = PT_MIPS_RTPROC;
12218 s = bfd_get_section_by_name (abfd, ".rtproc");
12223 m->p_flags_valid = 1;
12228 m->sections[0] = s;
12231 /* We want to put it after the DYNAMIC segment. */
12232 pm = &elf_seg_map (abfd);
12233 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12243 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12244 .dynstr, .dynsym, and .hash sections, and everything in
12246 for (pm = &elf_seg_map (abfd); *pm != NULL;
12248 if ((*pm)->p_type == PT_DYNAMIC)
12251 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12252 glibc's dynamic linker has traditionally derived the number of
12253 tags from the p_filesz field, and sometimes allocates stack
12254 arrays of that size. An overly-big PT_DYNAMIC segment can
12255 be actively harmful in such cases. Making PT_DYNAMIC contain
12256 other sections can also make life hard for the prelinker,
12257 which might move one of the other sections to a different
12258 PT_LOAD segment. */
12259 if (SGI_COMPAT (abfd)
12262 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12264 static const char *sec_names[] =
12266 ".dynamic", ".dynstr", ".dynsym", ".hash"
12270 struct elf_segment_map *n;
12272 low = ~(bfd_vma) 0;
12274 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12276 s = bfd_get_section_by_name (abfd, sec_names[i]);
12277 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12284 if (high < s->vma + sz)
12285 high = s->vma + sz;
12290 for (s = abfd->sections; s != NULL; s = s->next)
12291 if ((s->flags & SEC_LOAD) != 0
12293 && s->vma + s->size <= high)
12296 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12297 n = bfd_zalloc (abfd, amt);
12304 for (s = abfd->sections; s != NULL; s = s->next)
12306 if ((s->flags & SEC_LOAD) != 0
12308 && s->vma + s->size <= high)
12310 n->sections[i] = s;
12319 /* Allocate a spare program header in dynamic objects so that tools
12320 like the prelinker can add an extra PT_LOAD entry.
12322 If the prelinker needs to make room for a new PT_LOAD entry, its
12323 standard procedure is to move the first (read-only) sections into
12324 the new (writable) segment. However, the MIPS ABI requires
12325 .dynamic to be in a read-only segment, and the section will often
12326 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12328 Although the prelinker could in principle move .dynamic to a
12329 writable segment, it seems better to allocate a spare program
12330 header instead, and avoid the need to move any sections.
12331 There is a long tradition of allocating spare dynamic tags,
12332 so allocating a spare program header seems like a natural
12335 If INFO is NULL, we may be copying an already prelinked binary
12336 with objcopy or strip, so do not add this header. */
12338 && !SGI_COMPAT (abfd)
12339 && bfd_get_section_by_name (abfd, ".dynamic"))
12341 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12342 if ((*pm)->p_type == PT_NULL)
12346 m = bfd_zalloc (abfd, sizeof (*m));
12350 m->p_type = PT_NULL;
12358 /* Return the section that should be marked against GC for a given
12362 _bfd_mips_elf_gc_mark_hook (asection *sec,
12363 struct bfd_link_info *info,
12364 Elf_Internal_Rela *rel,
12365 struct elf_link_hash_entry *h,
12366 Elf_Internal_Sym *sym)
12368 /* ??? Do mips16 stub sections need to be handled special? */
12371 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12373 case R_MIPS_GNU_VTINHERIT:
12374 case R_MIPS_GNU_VTENTRY:
12378 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12381 /* Update the got entry reference counts for the section being removed. */
12384 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12385 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12386 asection *sec ATTRIBUTE_UNUSED,
12387 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12390 Elf_Internal_Shdr *symtab_hdr;
12391 struct elf_link_hash_entry **sym_hashes;
12392 bfd_signed_vma *local_got_refcounts;
12393 const Elf_Internal_Rela *rel, *relend;
12394 unsigned long r_symndx;
12395 struct elf_link_hash_entry *h;
12397 if (bfd_link_relocatable (info))
12400 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12401 sym_hashes = elf_sym_hashes (abfd);
12402 local_got_refcounts = elf_local_got_refcounts (abfd);
12404 relend = relocs + sec->reloc_count;
12405 for (rel = relocs; rel < relend; rel++)
12406 switch (ELF_R_TYPE (abfd, rel->r_info))
12408 case R_MIPS16_GOT16:
12409 case R_MIPS16_CALL16:
12411 case R_MIPS_CALL16:
12412 case R_MIPS_CALL_HI16:
12413 case R_MIPS_CALL_LO16:
12414 case R_MIPS_GOT_HI16:
12415 case R_MIPS_GOT_LO16:
12416 case R_MIPS_GOT_DISP:
12417 case R_MIPS_GOT_PAGE:
12418 case R_MIPS_GOT_OFST:
12419 case R_MICROMIPS_GOT16:
12420 case R_MICROMIPS_CALL16:
12421 case R_MICROMIPS_CALL_HI16:
12422 case R_MICROMIPS_CALL_LO16:
12423 case R_MICROMIPS_GOT_HI16:
12424 case R_MICROMIPS_GOT_LO16:
12425 case R_MICROMIPS_GOT_DISP:
12426 case R_MICROMIPS_GOT_PAGE:
12427 case R_MICROMIPS_GOT_OFST:
12428 /* ??? It would seem that the existing MIPS code does no sort
12429 of reference counting or whatnot on its GOT and PLT entries,
12430 so it is not possible to garbage collect them at this time. */
12441 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12444 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12445 elf_gc_mark_hook_fn gc_mark_hook)
12449 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12451 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12455 if (! is_mips_elf (sub))
12458 for (o = sub->sections; o != NULL; o = o->next)
12460 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12461 (bfd_get_section_name (sub, o)))
12463 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12471 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12472 hiding the old indirect symbol. Process additional relocation
12473 information. Also called for weakdefs, in which case we just let
12474 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12477 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12478 struct elf_link_hash_entry *dir,
12479 struct elf_link_hash_entry *ind)
12481 struct mips_elf_link_hash_entry *dirmips, *indmips;
12483 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12485 dirmips = (struct mips_elf_link_hash_entry *) dir;
12486 indmips = (struct mips_elf_link_hash_entry *) ind;
12487 /* Any absolute non-dynamic relocations against an indirect or weak
12488 definition will be against the target symbol. */
12489 if (indmips->has_static_relocs)
12490 dirmips->has_static_relocs = TRUE;
12492 if (ind->root.type != bfd_link_hash_indirect)
12495 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12496 if (indmips->readonly_reloc)
12497 dirmips->readonly_reloc = TRUE;
12498 if (indmips->no_fn_stub)
12499 dirmips->no_fn_stub = TRUE;
12500 if (indmips->fn_stub)
12502 dirmips->fn_stub = indmips->fn_stub;
12503 indmips->fn_stub = NULL;
12505 if (indmips->need_fn_stub)
12507 dirmips->need_fn_stub = TRUE;
12508 indmips->need_fn_stub = FALSE;
12510 if (indmips->call_stub)
12512 dirmips->call_stub = indmips->call_stub;
12513 indmips->call_stub = NULL;
12515 if (indmips->call_fp_stub)
12517 dirmips->call_fp_stub = indmips->call_fp_stub;
12518 indmips->call_fp_stub = NULL;
12520 if (indmips->global_got_area < dirmips->global_got_area)
12521 dirmips->global_got_area = indmips->global_got_area;
12522 if (indmips->global_got_area < GGA_NONE)
12523 indmips->global_got_area = GGA_NONE;
12524 if (indmips->has_nonpic_branches)
12525 dirmips->has_nonpic_branches = TRUE;
12528 #define PDR_SIZE 32
12531 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12532 struct bfd_link_info *info)
12535 bfd_boolean ret = FALSE;
12536 unsigned char *tdata;
12539 o = bfd_get_section_by_name (abfd, ".pdr");
12544 if (o->size % PDR_SIZE != 0)
12546 if (o->output_section != NULL
12547 && bfd_is_abs_section (o->output_section))
12550 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12554 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12555 info->keep_memory);
12562 cookie->rel = cookie->rels;
12563 cookie->relend = cookie->rels + o->reloc_count;
12565 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12567 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12576 mips_elf_section_data (o)->u.tdata = tdata;
12577 if (o->rawsize == 0)
12578 o->rawsize = o->size;
12579 o->size -= skip * PDR_SIZE;
12585 if (! info->keep_memory)
12586 free (cookie->rels);
12592 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12594 if (strcmp (sec->name, ".pdr") == 0)
12600 _bfd_mips_elf_write_section (bfd *output_bfd,
12601 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12602 asection *sec, bfd_byte *contents)
12604 bfd_byte *to, *from, *end;
12607 if (strcmp (sec->name, ".pdr") != 0)
12610 if (mips_elf_section_data (sec)->u.tdata == NULL)
12614 end = contents + sec->size;
12615 for (from = contents, i = 0;
12617 from += PDR_SIZE, i++)
12619 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12622 memcpy (to, from, PDR_SIZE);
12625 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12626 sec->output_offset, sec->size);
12630 /* microMIPS code retains local labels for linker relaxation. Omit them
12631 from output by default for clarity. */
12634 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12636 return _bfd_elf_is_local_label_name (abfd, sym->name);
12639 /* MIPS ELF uses a special find_nearest_line routine in order the
12640 handle the ECOFF debugging information. */
12642 struct mips_elf_find_line
12644 struct ecoff_debug_info d;
12645 struct ecoff_find_line i;
12649 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12650 asection *section, bfd_vma offset,
12651 const char **filename_ptr,
12652 const char **functionname_ptr,
12653 unsigned int *line_ptr,
12654 unsigned int *discriminator_ptr)
12658 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12659 filename_ptr, functionname_ptr,
12660 line_ptr, discriminator_ptr,
12661 dwarf_debug_sections,
12662 ABI_64_P (abfd) ? 8 : 0,
12663 &elf_tdata (abfd)->dwarf2_find_line_info))
12666 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12667 filename_ptr, functionname_ptr,
12671 msec = bfd_get_section_by_name (abfd, ".mdebug");
12674 flagword origflags;
12675 struct mips_elf_find_line *fi;
12676 const struct ecoff_debug_swap * const swap =
12677 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12679 /* If we are called during a link, mips_elf_final_link may have
12680 cleared the SEC_HAS_CONTENTS field. We force it back on here
12681 if appropriate (which it normally will be). */
12682 origflags = msec->flags;
12683 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12684 msec->flags |= SEC_HAS_CONTENTS;
12686 fi = mips_elf_tdata (abfd)->find_line_info;
12689 bfd_size_type external_fdr_size;
12692 struct fdr *fdr_ptr;
12693 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12695 fi = bfd_zalloc (abfd, amt);
12698 msec->flags = origflags;
12702 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12704 msec->flags = origflags;
12708 /* Swap in the FDR information. */
12709 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12710 fi->d.fdr = bfd_alloc (abfd, amt);
12711 if (fi->d.fdr == NULL)
12713 msec->flags = origflags;
12716 external_fdr_size = swap->external_fdr_size;
12717 fdr_ptr = fi->d.fdr;
12718 fraw_src = (char *) fi->d.external_fdr;
12719 fraw_end = (fraw_src
12720 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12721 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12722 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12724 mips_elf_tdata (abfd)->find_line_info = fi;
12726 /* Note that we don't bother to ever free this information.
12727 find_nearest_line is either called all the time, as in
12728 objdump -l, so the information should be saved, or it is
12729 rarely called, as in ld error messages, so the memory
12730 wasted is unimportant. Still, it would probably be a
12731 good idea for free_cached_info to throw it away. */
12734 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12735 &fi->i, filename_ptr, functionname_ptr,
12738 msec->flags = origflags;
12742 msec->flags = origflags;
12745 /* Fall back on the generic ELF find_nearest_line routine. */
12747 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12748 filename_ptr, functionname_ptr,
12749 line_ptr, discriminator_ptr);
12753 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12754 const char **filename_ptr,
12755 const char **functionname_ptr,
12756 unsigned int *line_ptr)
12759 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12760 functionname_ptr, line_ptr,
12761 & elf_tdata (abfd)->dwarf2_find_line_info);
12766 /* When are writing out the .options or .MIPS.options section,
12767 remember the bytes we are writing out, so that we can install the
12768 GP value in the section_processing routine. */
12771 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12772 const void *location,
12773 file_ptr offset, bfd_size_type count)
12775 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12779 if (elf_section_data (section) == NULL)
12781 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12782 section->used_by_bfd = bfd_zalloc (abfd, amt);
12783 if (elf_section_data (section) == NULL)
12786 c = mips_elf_section_data (section)->u.tdata;
12789 c = bfd_zalloc (abfd, section->size);
12792 mips_elf_section_data (section)->u.tdata = c;
12795 memcpy (c + offset, location, count);
12798 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12802 /* This is almost identical to bfd_generic_get_... except that some
12803 MIPS relocations need to be handled specially. Sigh. */
12806 _bfd_elf_mips_get_relocated_section_contents
12808 struct bfd_link_info *link_info,
12809 struct bfd_link_order *link_order,
12811 bfd_boolean relocatable,
12814 /* Get enough memory to hold the stuff */
12815 bfd *input_bfd = link_order->u.indirect.section->owner;
12816 asection *input_section = link_order->u.indirect.section;
12819 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12820 arelent **reloc_vector = NULL;
12823 if (reloc_size < 0)
12826 reloc_vector = bfd_malloc (reloc_size);
12827 if (reloc_vector == NULL && reloc_size != 0)
12830 /* read in the section */
12831 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12832 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12835 reloc_count = bfd_canonicalize_reloc (input_bfd,
12839 if (reloc_count < 0)
12842 if (reloc_count > 0)
12847 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12850 struct bfd_hash_entry *h;
12851 struct bfd_link_hash_entry *lh;
12852 /* Skip all this stuff if we aren't mixing formats. */
12853 if (abfd && input_bfd
12854 && abfd->xvec == input_bfd->xvec)
12858 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12859 lh = (struct bfd_link_hash_entry *) h;
12866 case bfd_link_hash_undefined:
12867 case bfd_link_hash_undefweak:
12868 case bfd_link_hash_common:
12871 case bfd_link_hash_defined:
12872 case bfd_link_hash_defweak:
12874 gp = lh->u.def.value;
12876 case bfd_link_hash_indirect:
12877 case bfd_link_hash_warning:
12879 /* @@FIXME ignoring warning for now */
12881 case bfd_link_hash_new:
12890 for (parent = reloc_vector; *parent != NULL; parent++)
12892 char *error_message = NULL;
12893 bfd_reloc_status_type r;
12895 /* Specific to MIPS: Deal with relocation types that require
12896 knowing the gp of the output bfd. */
12897 asymbol *sym = *(*parent)->sym_ptr_ptr;
12899 /* If we've managed to find the gp and have a special
12900 function for the relocation then go ahead, else default
12901 to the generic handling. */
12903 && (*parent)->howto->special_function
12904 == _bfd_mips_elf32_gprel16_reloc)
12905 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12906 input_section, relocatable,
12909 r = bfd_perform_relocation (input_bfd, *parent, data,
12911 relocatable ? abfd : NULL,
12916 asection *os = input_section->output_section;
12918 /* A partial link, so keep the relocs */
12919 os->orelocation[os->reloc_count] = *parent;
12923 if (r != bfd_reloc_ok)
12927 case bfd_reloc_undefined:
12928 if (!((*link_info->callbacks->undefined_symbol)
12929 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12930 input_bfd, input_section, (*parent)->address, TRUE)))
12933 case bfd_reloc_dangerous:
12934 BFD_ASSERT (error_message != NULL);
12935 if (!((*link_info->callbacks->reloc_dangerous)
12936 (link_info, error_message, input_bfd, input_section,
12937 (*parent)->address)))
12940 case bfd_reloc_overflow:
12941 if (!((*link_info->callbacks->reloc_overflow)
12943 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12944 (*parent)->howto->name, (*parent)->addend,
12945 input_bfd, input_section, (*parent)->address)))
12948 case bfd_reloc_outofrange:
12957 if (reloc_vector != NULL)
12958 free (reloc_vector);
12962 if (reloc_vector != NULL)
12963 free (reloc_vector);
12968 mips_elf_relax_delete_bytes (bfd *abfd,
12969 asection *sec, bfd_vma addr, int count)
12971 Elf_Internal_Shdr *symtab_hdr;
12972 unsigned int sec_shndx;
12973 bfd_byte *contents;
12974 Elf_Internal_Rela *irel, *irelend;
12975 Elf_Internal_Sym *isym;
12976 Elf_Internal_Sym *isymend;
12977 struct elf_link_hash_entry **sym_hashes;
12978 struct elf_link_hash_entry **end_hashes;
12979 struct elf_link_hash_entry **start_hashes;
12980 unsigned int symcount;
12982 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12983 contents = elf_section_data (sec)->this_hdr.contents;
12985 irel = elf_section_data (sec)->relocs;
12986 irelend = irel + sec->reloc_count;
12988 /* Actually delete the bytes. */
12989 memmove (contents + addr, contents + addr + count,
12990 (size_t) (sec->size - addr - count));
12991 sec->size -= count;
12993 /* Adjust all the relocs. */
12994 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12996 /* Get the new reloc address. */
12997 if (irel->r_offset > addr)
12998 irel->r_offset -= count;
13001 BFD_ASSERT (addr % 2 == 0);
13002 BFD_ASSERT (count % 2 == 0);
13004 /* Adjust the local symbols defined in this section. */
13005 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13006 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13007 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13008 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13009 isym->st_value -= count;
13011 /* Now adjust the global symbols defined in this section. */
13012 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13013 - symtab_hdr->sh_info);
13014 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13015 end_hashes = sym_hashes + symcount;
13017 for (; sym_hashes < end_hashes; sym_hashes++)
13019 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13021 if ((sym_hash->root.type == bfd_link_hash_defined
13022 || sym_hash->root.type == bfd_link_hash_defweak)
13023 && sym_hash->root.u.def.section == sec)
13025 bfd_vma value = sym_hash->root.u.def.value;
13027 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13028 value &= MINUS_TWO;
13030 sym_hash->root.u.def.value -= count;
13038 /* Opcodes needed for microMIPS relaxation as found in
13039 opcodes/micromips-opc.c. */
13041 struct opcode_descriptor {
13042 unsigned long match;
13043 unsigned long mask;
13046 /* The $ra register aka $31. */
13050 /* 32-bit instruction format register fields. */
13052 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13053 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13055 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13057 #define OP16_VALID_REG(r) \
13058 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13061 /* 32-bit and 16-bit branches. */
13063 static const struct opcode_descriptor b_insns_32[] = {
13064 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13065 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13066 { 0, 0 } /* End marker for find_match(). */
13069 static const struct opcode_descriptor bc_insn_32 =
13070 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13072 static const struct opcode_descriptor bz_insn_32 =
13073 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13075 static const struct opcode_descriptor bzal_insn_32 =
13076 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13078 static const struct opcode_descriptor beq_insn_32 =
13079 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13081 static const struct opcode_descriptor b_insn_16 =
13082 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13084 static const struct opcode_descriptor bz_insn_16 =
13085 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13088 /* 32-bit and 16-bit branch EQ and NE zero. */
13090 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13091 eq and second the ne. This convention is used when replacing a
13092 32-bit BEQ/BNE with the 16-bit version. */
13094 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13096 static const struct opcode_descriptor bz_rs_insns_32[] = {
13097 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13098 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13099 { 0, 0 } /* End marker for find_match(). */
13102 static const struct opcode_descriptor bz_rt_insns_32[] = {
13103 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13104 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13105 { 0, 0 } /* End marker for find_match(). */
13108 static const struct opcode_descriptor bzc_insns_32[] = {
13109 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13110 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13111 { 0, 0 } /* End marker for find_match(). */
13114 static const struct opcode_descriptor bz_insns_16[] = {
13115 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13116 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13117 { 0, 0 } /* End marker for find_match(). */
13120 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13122 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
13123 #define BZ16_REG_FIELD(r) \
13124 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
13127 /* 32-bit instructions with a delay slot. */
13129 static const struct opcode_descriptor jal_insn_32_bd16 =
13130 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13132 static const struct opcode_descriptor jal_insn_32_bd32 =
13133 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13135 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13136 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13138 static const struct opcode_descriptor j_insn_32 =
13139 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13141 static const struct opcode_descriptor jalr_insn_32 =
13142 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13144 /* This table can be compacted, because no opcode replacement is made. */
13146 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13147 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13149 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13150 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13152 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13153 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13154 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13155 { 0, 0 } /* End marker for find_match(). */
13158 /* This table can be compacted, because no opcode replacement is made. */
13160 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13161 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13163 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13164 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13165 { 0, 0 } /* End marker for find_match(). */
13169 /* 16-bit instructions with a delay slot. */
13171 static const struct opcode_descriptor jalr_insn_16_bd16 =
13172 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13174 static const struct opcode_descriptor jalr_insn_16_bd32 =
13175 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13177 static const struct opcode_descriptor jr_insn_16 =
13178 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13180 #define JR16_REG(opcode) ((opcode) & 0x1f)
13182 /* This table can be compacted, because no opcode replacement is made. */
13184 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13185 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13187 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13188 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13189 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13190 { 0, 0 } /* End marker for find_match(). */
13194 /* LUI instruction. */
13196 static const struct opcode_descriptor lui_insn =
13197 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13200 /* ADDIU instruction. */
13202 static const struct opcode_descriptor addiu_insn =
13203 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13205 static const struct opcode_descriptor addiupc_insn =
13206 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13208 #define ADDIUPC_REG_FIELD(r) \
13209 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13212 /* Relaxable instructions in a JAL delay slot: MOVE. */
13214 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13215 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13216 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13217 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13219 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13220 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13222 static const struct opcode_descriptor move_insns_32[] = {
13223 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13224 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13225 { 0, 0 } /* End marker for find_match(). */
13228 static const struct opcode_descriptor move_insn_16 =
13229 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13232 /* NOP instructions. */
13234 static const struct opcode_descriptor nop_insn_32 =
13235 { /* "nop", "", */ 0x00000000, 0xffffffff };
13237 static const struct opcode_descriptor nop_insn_16 =
13238 { /* "nop", "", */ 0x0c00, 0xffff };
13241 /* Instruction match support. */
13243 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13246 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13248 unsigned long indx;
13250 for (indx = 0; insn[indx].mask != 0; indx++)
13251 if (MATCH (opcode, insn[indx]))
13258 /* Branch and delay slot decoding support. */
13260 /* If PTR points to what *might* be a 16-bit branch or jump, then
13261 return the minimum length of its delay slot, otherwise return 0.
13262 Non-zero results are not definitive as we might be checking against
13263 the second half of another instruction. */
13266 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13268 unsigned long opcode;
13271 opcode = bfd_get_16 (abfd, ptr);
13272 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13273 /* 16-bit branch/jump with a 32-bit delay slot. */
13275 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13276 || find_match (opcode, ds_insns_16_bd16) >= 0)
13277 /* 16-bit branch/jump with a 16-bit delay slot. */
13280 /* No delay slot. */
13286 /* If PTR points to what *might* be a 32-bit branch or jump, then
13287 return the minimum length of its delay slot, otherwise return 0.
13288 Non-zero results are not definitive as we might be checking against
13289 the second half of another instruction. */
13292 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13294 unsigned long opcode;
13297 opcode = bfd_get_micromips_32 (abfd, ptr);
13298 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13299 /* 32-bit branch/jump with a 32-bit delay slot. */
13301 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13302 /* 32-bit branch/jump with a 16-bit delay slot. */
13305 /* No delay slot. */
13311 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13312 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13315 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13317 unsigned long opcode;
13319 opcode = bfd_get_16 (abfd, ptr);
13320 if (MATCH (opcode, b_insn_16)
13322 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13324 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13325 /* BEQZ16, BNEZ16 */
13326 || (MATCH (opcode, jalr_insn_16_bd32)
13328 && reg != JR16_REG (opcode) && reg != RA))
13334 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13335 then return TRUE, otherwise FALSE. */
13338 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13340 unsigned long opcode;
13342 opcode = bfd_get_micromips_32 (abfd, ptr);
13343 if (MATCH (opcode, j_insn_32)
13345 || MATCH (opcode, bc_insn_32)
13346 /* BC1F, BC1T, BC2F, BC2T */
13347 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13349 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13350 /* BGEZ, BGTZ, BLEZ, BLTZ */
13351 || (MATCH (opcode, bzal_insn_32)
13352 /* BGEZAL, BLTZAL */
13353 && reg != OP32_SREG (opcode) && reg != RA)
13354 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13355 /* JALR, JALR.HB, BEQ, BNE */
13356 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13362 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13363 IRELEND) at OFFSET indicate that there must be a compact branch there,
13364 then return TRUE, otherwise FALSE. */
13367 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13368 const Elf_Internal_Rela *internal_relocs,
13369 const Elf_Internal_Rela *irelend)
13371 const Elf_Internal_Rela *irel;
13372 unsigned long opcode;
13374 opcode = bfd_get_micromips_32 (abfd, ptr);
13375 if (find_match (opcode, bzc_insns_32) < 0)
13378 for (irel = internal_relocs; irel < irelend; irel++)
13379 if (irel->r_offset == offset
13380 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13386 /* Bitsize checking. */
13387 #define IS_BITSIZE(val, N) \
13388 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13389 - (1ULL << ((N) - 1))) == (val))
13393 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13394 struct bfd_link_info *link_info,
13395 bfd_boolean *again)
13397 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13398 Elf_Internal_Shdr *symtab_hdr;
13399 Elf_Internal_Rela *internal_relocs;
13400 Elf_Internal_Rela *irel, *irelend;
13401 bfd_byte *contents = NULL;
13402 Elf_Internal_Sym *isymbuf = NULL;
13404 /* Assume nothing changes. */
13407 /* We don't have to do anything for a relocatable link, if
13408 this section does not have relocs, or if this is not a
13411 if (bfd_link_relocatable (link_info)
13412 || (sec->flags & SEC_RELOC) == 0
13413 || sec->reloc_count == 0
13414 || (sec->flags & SEC_CODE) == 0)
13417 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13419 /* Get a copy of the native relocations. */
13420 internal_relocs = (_bfd_elf_link_read_relocs
13421 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13422 link_info->keep_memory));
13423 if (internal_relocs == NULL)
13426 /* Walk through them looking for relaxing opportunities. */
13427 irelend = internal_relocs + sec->reloc_count;
13428 for (irel = internal_relocs; irel < irelend; irel++)
13430 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13431 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13432 bfd_boolean target_is_micromips_code_p;
13433 unsigned long opcode;
13439 /* The number of bytes to delete for relaxation and from where
13440 to delete these bytes starting at irel->r_offset. */
13444 /* If this isn't something that can be relaxed, then ignore
13446 if (r_type != R_MICROMIPS_HI16
13447 && r_type != R_MICROMIPS_PC16_S1
13448 && r_type != R_MICROMIPS_26_S1)
13451 /* Get the section contents if we haven't done so already. */
13452 if (contents == NULL)
13454 /* Get cached copy if it exists. */
13455 if (elf_section_data (sec)->this_hdr.contents != NULL)
13456 contents = elf_section_data (sec)->this_hdr.contents;
13457 /* Go get them off disk. */
13458 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13461 ptr = contents + irel->r_offset;
13463 /* Read this BFD's local symbols if we haven't done so already. */
13464 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13466 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13467 if (isymbuf == NULL)
13468 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13469 symtab_hdr->sh_info, 0,
13471 if (isymbuf == NULL)
13475 /* Get the value of the symbol referred to by the reloc. */
13476 if (r_symndx < symtab_hdr->sh_info)
13478 /* A local symbol. */
13479 Elf_Internal_Sym *isym;
13482 isym = isymbuf + r_symndx;
13483 if (isym->st_shndx == SHN_UNDEF)
13484 sym_sec = bfd_und_section_ptr;
13485 else if (isym->st_shndx == SHN_ABS)
13486 sym_sec = bfd_abs_section_ptr;
13487 else if (isym->st_shndx == SHN_COMMON)
13488 sym_sec = bfd_com_section_ptr;
13490 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13491 symval = (isym->st_value
13492 + sym_sec->output_section->vma
13493 + sym_sec->output_offset);
13494 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13498 unsigned long indx;
13499 struct elf_link_hash_entry *h;
13501 /* An external symbol. */
13502 indx = r_symndx - symtab_hdr->sh_info;
13503 h = elf_sym_hashes (abfd)[indx];
13504 BFD_ASSERT (h != NULL);
13506 if (h->root.type != bfd_link_hash_defined
13507 && h->root.type != bfd_link_hash_defweak)
13508 /* This appears to be a reference to an undefined
13509 symbol. Just ignore it -- it will be caught by the
13510 regular reloc processing. */
13513 symval = (h->root.u.def.value
13514 + h->root.u.def.section->output_section->vma
13515 + h->root.u.def.section->output_offset);
13516 target_is_micromips_code_p = (!h->needs_plt
13517 && ELF_ST_IS_MICROMIPS (h->other));
13521 /* For simplicity of coding, we are going to modify the
13522 section contents, the section relocs, and the BFD symbol
13523 table. We must tell the rest of the code not to free up this
13524 information. It would be possible to instead create a table
13525 of changes which have to be made, as is done in coff-mips.c;
13526 that would be more work, but would require less memory when
13527 the linker is run. */
13529 /* Only 32-bit instructions relaxed. */
13530 if (irel->r_offset + 4 > sec->size)
13533 opcode = bfd_get_micromips_32 (abfd, ptr);
13535 /* This is the pc-relative distance from the instruction the
13536 relocation is applied to, to the symbol referred. */
13538 - (sec->output_section->vma + sec->output_offset)
13541 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13542 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13543 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13545 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13547 where pcrval has first to be adjusted to apply against the LO16
13548 location (we make the adjustment later on, when we have figured
13549 out the offset). */
13550 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13552 bfd_boolean bzc = FALSE;
13553 unsigned long nextopc;
13557 /* Give up if the previous reloc was a HI16 against this symbol
13559 if (irel > internal_relocs
13560 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13561 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13564 /* Or if the next reloc is not a LO16 against this symbol. */
13565 if (irel + 1 >= irelend
13566 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13567 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13570 /* Or if the second next reloc is a LO16 against this symbol too. */
13571 if (irel + 2 >= irelend
13572 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13573 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13576 /* See if the LUI instruction *might* be in a branch delay slot.
13577 We check whether what looks like a 16-bit branch or jump is
13578 actually an immediate argument to a compact branch, and let
13579 it through if so. */
13580 if (irel->r_offset >= 2
13581 && check_br16_dslot (abfd, ptr - 2)
13582 && !(irel->r_offset >= 4
13583 && (bzc = check_relocated_bzc (abfd,
13584 ptr - 4, irel->r_offset - 4,
13585 internal_relocs, irelend))))
13587 if (irel->r_offset >= 4
13589 && check_br32_dslot (abfd, ptr - 4))
13592 reg = OP32_SREG (opcode);
13594 /* We only relax adjacent instructions or ones separated with
13595 a branch or jump that has a delay slot. The branch or jump
13596 must not fiddle with the register used to hold the address.
13597 Subtract 4 for the LUI itself. */
13598 offset = irel[1].r_offset - irel[0].r_offset;
13599 switch (offset - 4)
13604 if (check_br16 (abfd, ptr + 4, reg))
13608 if (check_br32 (abfd, ptr + 4, reg))
13615 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13617 /* Give up unless the same register is used with both
13619 if (OP32_SREG (nextopc) != reg)
13622 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13623 and rounding up to take masking of the two LSBs into account. */
13624 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13626 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13627 if (IS_BITSIZE (symval, 16))
13629 /* Fix the relocation's type. */
13630 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13632 /* Instructions using R_MICROMIPS_LO16 have the base or
13633 source register in bits 20:16. This register becomes $0
13634 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13635 nextopc &= ~0x001f0000;
13636 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13637 contents + irel[1].r_offset);
13640 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13641 We add 4 to take LUI deletion into account while checking
13642 the PC-relative distance. */
13643 else if (symval % 4 == 0
13644 && IS_BITSIZE (pcrval + 4, 25)
13645 && MATCH (nextopc, addiu_insn)
13646 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13647 && OP16_VALID_REG (OP32_TREG (nextopc)))
13649 /* Fix the relocation's type. */
13650 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13652 /* Replace ADDIU with the ADDIUPC version. */
13653 nextopc = (addiupc_insn.match
13654 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13656 bfd_put_micromips_32 (abfd, nextopc,
13657 contents + irel[1].r_offset);
13660 /* Can't do anything, give up, sigh... */
13664 /* Fix the relocation's type. */
13665 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13667 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13672 /* Compact branch relaxation -- due to the multitude of macros
13673 employed by the compiler/assembler, compact branches are not
13674 always generated. Obviously, this can/will be fixed elsewhere,
13675 but there is no drawback in double checking it here. */
13676 else if (r_type == R_MICROMIPS_PC16_S1
13677 && irel->r_offset + 5 < sec->size
13678 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13679 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13681 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13682 nop_insn_16) ? 2 : 0))
13683 || (irel->r_offset + 7 < sec->size
13684 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13686 nop_insn_32) ? 4 : 0))))
13690 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13692 /* Replace BEQZ/BNEZ with the compact version. */
13693 opcode = (bzc_insns_32[fndopc].match
13694 | BZC32_REG_FIELD (reg)
13695 | (opcode & 0xffff)); /* Addend value. */
13697 bfd_put_micromips_32 (abfd, opcode, ptr);
13699 /* Delete the delay slot NOP: two or four bytes from
13700 irel->offset + 4; delcnt has already been set above. */
13704 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13705 to check the distance from the next instruction, so subtract 2. */
13707 && r_type == R_MICROMIPS_PC16_S1
13708 && IS_BITSIZE (pcrval - 2, 11)
13709 && find_match (opcode, b_insns_32) >= 0)
13711 /* Fix the relocation's type. */
13712 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13714 /* Replace the 32-bit opcode with a 16-bit opcode. */
13717 | (opcode & 0x3ff)), /* Addend value. */
13720 /* Delete 2 bytes from irel->r_offset + 2. */
13725 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13726 to check the distance from the next instruction, so subtract 2. */
13728 && r_type == R_MICROMIPS_PC16_S1
13729 && IS_BITSIZE (pcrval - 2, 8)
13730 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13731 && OP16_VALID_REG (OP32_SREG (opcode)))
13732 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13733 && OP16_VALID_REG (OP32_TREG (opcode)))))
13737 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13739 /* Fix the relocation's type. */
13740 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13742 /* Replace the 32-bit opcode with a 16-bit opcode. */
13744 (bz_insns_16[fndopc].match
13745 | BZ16_REG_FIELD (reg)
13746 | (opcode & 0x7f)), /* Addend value. */
13749 /* Delete 2 bytes from irel->r_offset + 2. */
13754 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13756 && r_type == R_MICROMIPS_26_S1
13757 && target_is_micromips_code_p
13758 && irel->r_offset + 7 < sec->size
13759 && MATCH (opcode, jal_insn_32_bd32))
13761 unsigned long n32opc;
13762 bfd_boolean relaxed = FALSE;
13764 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13766 if (MATCH (n32opc, nop_insn_32))
13768 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13769 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13773 else if (find_match (n32opc, move_insns_32) >= 0)
13775 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13777 (move_insn_16.match
13778 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13779 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13784 /* Other 32-bit instructions relaxable to 16-bit
13785 instructions will be handled here later. */
13789 /* JAL with 32-bit delay slot that is changed to a JALS
13790 with 16-bit delay slot. */
13791 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13793 /* Delete 2 bytes from irel->r_offset + 6. */
13801 /* Note that we've changed the relocs, section contents, etc. */
13802 elf_section_data (sec)->relocs = internal_relocs;
13803 elf_section_data (sec)->this_hdr.contents = contents;
13804 symtab_hdr->contents = (unsigned char *) isymbuf;
13806 /* Delete bytes depending on the delcnt and deloff. */
13807 if (!mips_elf_relax_delete_bytes (abfd, sec,
13808 irel->r_offset + deloff, delcnt))
13811 /* That will change things, so we should relax again.
13812 Note that this is not required, and it may be slow. */
13817 if (isymbuf != NULL
13818 && symtab_hdr->contents != (unsigned char *) isymbuf)
13820 if (! link_info->keep_memory)
13824 /* Cache the symbols for elf_link_input_bfd. */
13825 symtab_hdr->contents = (unsigned char *) isymbuf;
13829 if (contents != NULL
13830 && elf_section_data (sec)->this_hdr.contents != contents)
13832 if (! link_info->keep_memory)
13836 /* Cache the section contents for elf_link_input_bfd. */
13837 elf_section_data (sec)->this_hdr.contents = contents;
13841 if (internal_relocs != NULL
13842 && elf_section_data (sec)->relocs != internal_relocs)
13843 free (internal_relocs);
13848 if (isymbuf != NULL
13849 && symtab_hdr->contents != (unsigned char *) isymbuf)
13851 if (contents != NULL
13852 && elf_section_data (sec)->this_hdr.contents != contents)
13854 if (internal_relocs != NULL
13855 && elf_section_data (sec)->relocs != internal_relocs)
13856 free (internal_relocs);
13861 /* Create a MIPS ELF linker hash table. */
13863 struct bfd_link_hash_table *
13864 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13866 struct mips_elf_link_hash_table *ret;
13867 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13869 ret = bfd_zmalloc (amt);
13873 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13874 mips_elf_link_hash_newfunc,
13875 sizeof (struct mips_elf_link_hash_entry),
13881 ret->root.init_plt_refcount.plist = NULL;
13882 ret->root.init_plt_offset.plist = NULL;
13884 return &ret->root.root;
13887 /* Likewise, but indicate that the target is VxWorks. */
13889 struct bfd_link_hash_table *
13890 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13892 struct bfd_link_hash_table *ret;
13894 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13897 struct mips_elf_link_hash_table *htab;
13899 htab = (struct mips_elf_link_hash_table *) ret;
13900 htab->use_plts_and_copy_relocs = TRUE;
13901 htab->is_vxworks = TRUE;
13906 /* A function that the linker calls if we are allowed to use PLTs
13907 and copy relocs. */
13910 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13912 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13915 /* A function that the linker calls to select between all or only
13916 32-bit microMIPS instructions. */
13919 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13921 mips_elf_hash_table (info)->insn32 = on;
13924 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13926 struct mips_mach_extension
13928 unsigned long extension, base;
13932 /* An array describing how BFD machines relate to one another. The entries
13933 are ordered topologically with MIPS I extensions listed last. */
13935 static const struct mips_mach_extension mips_mach_extensions[] =
13937 /* MIPS64r2 extensions. */
13938 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13939 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13940 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13941 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13942 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13944 /* MIPS64 extensions. */
13945 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13946 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13947 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13949 /* MIPS V extensions. */
13950 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13952 /* R10000 extensions. */
13953 { bfd_mach_mips12000, bfd_mach_mips10000 },
13954 { bfd_mach_mips14000, bfd_mach_mips10000 },
13955 { bfd_mach_mips16000, bfd_mach_mips10000 },
13957 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13958 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13959 better to allow vr5400 and vr5500 code to be merged anyway, since
13960 many libraries will just use the core ISA. Perhaps we could add
13961 some sort of ASE flag if this ever proves a problem. */
13962 { bfd_mach_mips5500, bfd_mach_mips5400 },
13963 { bfd_mach_mips5400, bfd_mach_mips5000 },
13965 /* MIPS IV extensions. */
13966 { bfd_mach_mips5, bfd_mach_mips8000 },
13967 { bfd_mach_mips10000, bfd_mach_mips8000 },
13968 { bfd_mach_mips5000, bfd_mach_mips8000 },
13969 { bfd_mach_mips7000, bfd_mach_mips8000 },
13970 { bfd_mach_mips9000, bfd_mach_mips8000 },
13972 /* VR4100 extensions. */
13973 { bfd_mach_mips4120, bfd_mach_mips4100 },
13974 { bfd_mach_mips4111, bfd_mach_mips4100 },
13976 /* MIPS III extensions. */
13977 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13978 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13979 { bfd_mach_mips8000, bfd_mach_mips4000 },
13980 { bfd_mach_mips4650, bfd_mach_mips4000 },
13981 { bfd_mach_mips4600, bfd_mach_mips4000 },
13982 { bfd_mach_mips4400, bfd_mach_mips4000 },
13983 { bfd_mach_mips4300, bfd_mach_mips4000 },
13984 { bfd_mach_mips4100, bfd_mach_mips4000 },
13985 { bfd_mach_mips4010, bfd_mach_mips4000 },
13986 { bfd_mach_mips5900, bfd_mach_mips4000 },
13988 /* MIPS32 extensions. */
13989 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13991 /* MIPS II extensions. */
13992 { bfd_mach_mips4000, bfd_mach_mips6000 },
13993 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13995 /* MIPS I extensions. */
13996 { bfd_mach_mips6000, bfd_mach_mips3000 },
13997 { bfd_mach_mips3900, bfd_mach_mips3000 }
14000 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14003 mips_mach_extends_p (unsigned long base, unsigned long extension)
14007 if (extension == base)
14010 if (base == bfd_mach_mipsisa32
14011 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14014 if (base == bfd_mach_mipsisa32r2
14015 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14018 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14019 if (extension == mips_mach_extensions[i].extension)
14021 extension = mips_mach_extensions[i].base;
14022 if (extension == base)
14029 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14031 static unsigned long
14032 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14036 case AFL_EXT_3900: return bfd_mach_mips3900;
14037 case AFL_EXT_4010: return bfd_mach_mips4010;
14038 case AFL_EXT_4100: return bfd_mach_mips4100;
14039 case AFL_EXT_4111: return bfd_mach_mips4111;
14040 case AFL_EXT_4120: return bfd_mach_mips4120;
14041 case AFL_EXT_4650: return bfd_mach_mips4650;
14042 case AFL_EXT_5400: return bfd_mach_mips5400;
14043 case AFL_EXT_5500: return bfd_mach_mips5500;
14044 case AFL_EXT_5900: return bfd_mach_mips5900;
14045 case AFL_EXT_10000: return bfd_mach_mips10000;
14046 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14047 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14048 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14049 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14050 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14051 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14052 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14053 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14054 default: return bfd_mach_mips3000;
14058 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14061 bfd_mips_isa_ext (bfd *abfd)
14063 switch (bfd_get_mach (abfd))
14065 case bfd_mach_mips3900: return AFL_EXT_3900;
14066 case bfd_mach_mips4010: return AFL_EXT_4010;
14067 case bfd_mach_mips4100: return AFL_EXT_4100;
14068 case bfd_mach_mips4111: return AFL_EXT_4111;
14069 case bfd_mach_mips4120: return AFL_EXT_4120;
14070 case bfd_mach_mips4650: return AFL_EXT_4650;
14071 case bfd_mach_mips5400: return AFL_EXT_5400;
14072 case bfd_mach_mips5500: return AFL_EXT_5500;
14073 case bfd_mach_mips5900: return AFL_EXT_5900;
14074 case bfd_mach_mips10000: return AFL_EXT_10000;
14075 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14076 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14077 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14078 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14079 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14080 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14081 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14082 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14083 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14088 /* Encode ISA level and revision as a single value. */
14089 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14091 /* Decode a single value into level and revision. */
14092 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14093 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14095 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14098 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14101 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14103 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14104 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14105 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14106 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14107 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14108 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14109 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14110 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14111 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14112 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14113 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14115 (*_bfd_error_handler)
14116 (_("%B: Unknown architecture %s"),
14117 abfd, bfd_printable_name (abfd));
14120 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14122 abiflags->isa_level = ISA_LEVEL (new_isa);
14123 abiflags->isa_rev = ISA_REV (new_isa);
14126 /* Update the isa_ext if ABFD describes a further extension. */
14127 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14128 bfd_get_mach (abfd)))
14129 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14132 /* Return true if the given ELF header flags describe a 32-bit binary. */
14135 mips_32bit_flags_p (flagword flags)
14137 return ((flags & EF_MIPS_32BITMODE) != 0
14138 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14139 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14140 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14141 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14142 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14143 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14144 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14147 /* Infer the content of the ABI flags based on the elf header. */
14150 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14152 obj_attribute *in_attr;
14154 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14155 update_mips_abiflags_isa (abfd, abiflags);
14157 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14158 abiflags->gpr_size = AFL_REG_32;
14160 abiflags->gpr_size = AFL_REG_64;
14162 abiflags->cpr1_size = AFL_REG_NONE;
14164 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14165 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14167 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14168 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14169 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14170 && abiflags->gpr_size == AFL_REG_32))
14171 abiflags->cpr1_size = AFL_REG_32;
14172 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14173 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14174 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14175 abiflags->cpr1_size = AFL_REG_64;
14177 abiflags->cpr2_size = AFL_REG_NONE;
14179 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14180 abiflags->ases |= AFL_ASE_MDMX;
14181 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14182 abiflags->ases |= AFL_ASE_MIPS16;
14183 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14184 abiflags->ases |= AFL_ASE_MICROMIPS;
14186 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14187 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14188 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14189 && abiflags->isa_level >= 32
14190 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14191 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14194 /* We need to use a special link routine to handle the .reginfo and
14195 the .mdebug sections. We need to merge all instances of these
14196 sections together, not write them all out sequentially. */
14199 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14202 struct bfd_link_order *p;
14203 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14204 asection *rtproc_sec, *abiflags_sec;
14205 Elf32_RegInfo reginfo;
14206 struct ecoff_debug_info debug;
14207 struct mips_htab_traverse_info hti;
14208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14209 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14210 HDRR *symhdr = &debug.symbolic_header;
14211 void *mdebug_handle = NULL;
14216 struct mips_elf_link_hash_table *htab;
14218 static const char * const secname[] =
14220 ".text", ".init", ".fini", ".data",
14221 ".rodata", ".sdata", ".sbss", ".bss"
14223 static const int sc[] =
14225 scText, scInit, scFini, scData,
14226 scRData, scSData, scSBss, scBss
14229 /* Sort the dynamic symbols so that those with GOT entries come after
14231 htab = mips_elf_hash_table (info);
14232 BFD_ASSERT (htab != NULL);
14234 if (!mips_elf_sort_hash_table (abfd, info))
14237 /* Create any scheduled LA25 stubs. */
14239 hti.output_bfd = abfd;
14241 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14245 /* Get a value for the GP register. */
14246 if (elf_gp (abfd) == 0)
14248 struct bfd_link_hash_entry *h;
14250 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14251 if (h != NULL && h->type == bfd_link_hash_defined)
14252 elf_gp (abfd) = (h->u.def.value
14253 + h->u.def.section->output_section->vma
14254 + h->u.def.section->output_offset);
14255 else if (htab->is_vxworks
14256 && (h = bfd_link_hash_lookup (info->hash,
14257 "_GLOBAL_OFFSET_TABLE_",
14258 FALSE, FALSE, TRUE))
14259 && h->type == bfd_link_hash_defined)
14260 elf_gp (abfd) = (h->u.def.section->output_section->vma
14261 + h->u.def.section->output_offset
14263 else if (bfd_link_relocatable (info))
14265 bfd_vma lo = MINUS_ONE;
14267 /* Find the GP-relative section with the lowest offset. */
14268 for (o = abfd->sections; o != NULL; o = o->next)
14270 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14273 /* And calculate GP relative to that. */
14274 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14278 /* If the relocate_section function needs to do a reloc
14279 involving the GP value, it should make a reloc_dangerous
14280 callback to warn that GP is not defined. */
14284 /* Go through the sections and collect the .reginfo and .mdebug
14286 abiflags_sec = NULL;
14287 reginfo_sec = NULL;
14289 gptab_data_sec = NULL;
14290 gptab_bss_sec = NULL;
14291 for (o = abfd->sections; o != NULL; o = o->next)
14293 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14295 /* We have found the .MIPS.abiflags section in the output file.
14296 Look through all the link_orders comprising it and remove them.
14297 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14298 for (p = o->map_head.link_order; p != NULL; p = p->next)
14300 asection *input_section;
14302 if (p->type != bfd_indirect_link_order)
14304 if (p->type == bfd_data_link_order)
14309 input_section = p->u.indirect.section;
14311 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14312 elf_link_input_bfd ignores this section. */
14313 input_section->flags &= ~SEC_HAS_CONTENTS;
14316 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14317 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14319 /* Skip this section later on (I don't think this currently
14320 matters, but someday it might). */
14321 o->map_head.link_order = NULL;
14326 if (strcmp (o->name, ".reginfo") == 0)
14328 memset (®info, 0, sizeof reginfo);
14330 /* We have found the .reginfo section in the output file.
14331 Look through all the link_orders comprising it and merge
14332 the information together. */
14333 for (p = o->map_head.link_order; p != NULL; p = p->next)
14335 asection *input_section;
14337 Elf32_External_RegInfo ext;
14340 if (p->type != bfd_indirect_link_order)
14342 if (p->type == bfd_data_link_order)
14347 input_section = p->u.indirect.section;
14348 input_bfd = input_section->owner;
14350 if (! bfd_get_section_contents (input_bfd, input_section,
14351 &ext, 0, sizeof ext))
14354 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14356 reginfo.ri_gprmask |= sub.ri_gprmask;
14357 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14358 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14359 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14360 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14362 /* ri_gp_value is set by the function
14363 mips_elf32_section_processing when the section is
14364 finally written out. */
14366 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14367 elf_link_input_bfd ignores this section. */
14368 input_section->flags &= ~SEC_HAS_CONTENTS;
14371 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14372 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14374 /* Skip this section later on (I don't think this currently
14375 matters, but someday it might). */
14376 o->map_head.link_order = NULL;
14381 if (strcmp (o->name, ".mdebug") == 0)
14383 struct extsym_info einfo;
14386 /* We have found the .mdebug section in the output file.
14387 Look through all the link_orders comprising it and merge
14388 the information together. */
14389 symhdr->magic = swap->sym_magic;
14390 /* FIXME: What should the version stamp be? */
14391 symhdr->vstamp = 0;
14392 symhdr->ilineMax = 0;
14393 symhdr->cbLine = 0;
14394 symhdr->idnMax = 0;
14395 symhdr->ipdMax = 0;
14396 symhdr->isymMax = 0;
14397 symhdr->ioptMax = 0;
14398 symhdr->iauxMax = 0;
14399 symhdr->issMax = 0;
14400 symhdr->issExtMax = 0;
14401 symhdr->ifdMax = 0;
14403 symhdr->iextMax = 0;
14405 /* We accumulate the debugging information itself in the
14406 debug_info structure. */
14408 debug.external_dnr = NULL;
14409 debug.external_pdr = NULL;
14410 debug.external_sym = NULL;
14411 debug.external_opt = NULL;
14412 debug.external_aux = NULL;
14414 debug.ssext = debug.ssext_end = NULL;
14415 debug.external_fdr = NULL;
14416 debug.external_rfd = NULL;
14417 debug.external_ext = debug.external_ext_end = NULL;
14419 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14420 if (mdebug_handle == NULL)
14424 esym.cobol_main = 0;
14428 esym.asym.iss = issNil;
14429 esym.asym.st = stLocal;
14430 esym.asym.reserved = 0;
14431 esym.asym.index = indexNil;
14433 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14435 esym.asym.sc = sc[i];
14436 s = bfd_get_section_by_name (abfd, secname[i]);
14439 esym.asym.value = s->vma;
14440 last = s->vma + s->size;
14443 esym.asym.value = last;
14444 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14445 secname[i], &esym))
14449 for (p = o->map_head.link_order; p != NULL; p = p->next)
14451 asection *input_section;
14453 const struct ecoff_debug_swap *input_swap;
14454 struct ecoff_debug_info input_debug;
14458 if (p->type != bfd_indirect_link_order)
14460 if (p->type == bfd_data_link_order)
14465 input_section = p->u.indirect.section;
14466 input_bfd = input_section->owner;
14468 if (!is_mips_elf (input_bfd))
14470 /* I don't know what a non MIPS ELF bfd would be
14471 doing with a .mdebug section, but I don't really
14472 want to deal with it. */
14476 input_swap = (get_elf_backend_data (input_bfd)
14477 ->elf_backend_ecoff_debug_swap);
14479 BFD_ASSERT (p->size == input_section->size);
14481 /* The ECOFF linking code expects that we have already
14482 read in the debugging information and set up an
14483 ecoff_debug_info structure, so we do that now. */
14484 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14488 if (! (bfd_ecoff_debug_accumulate
14489 (mdebug_handle, abfd, &debug, swap, input_bfd,
14490 &input_debug, input_swap, info)))
14493 /* Loop through the external symbols. For each one with
14494 interesting information, try to find the symbol in
14495 the linker global hash table and save the information
14496 for the output external symbols. */
14497 eraw_src = input_debug.external_ext;
14498 eraw_end = (eraw_src
14499 + (input_debug.symbolic_header.iextMax
14500 * input_swap->external_ext_size));
14502 eraw_src < eraw_end;
14503 eraw_src += input_swap->external_ext_size)
14507 struct mips_elf_link_hash_entry *h;
14509 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14510 if (ext.asym.sc == scNil
14511 || ext.asym.sc == scUndefined
14512 || ext.asym.sc == scSUndefined)
14515 name = input_debug.ssext + ext.asym.iss;
14516 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14517 name, FALSE, FALSE, TRUE);
14518 if (h == NULL || h->esym.ifd != -2)
14523 BFD_ASSERT (ext.ifd
14524 < input_debug.symbolic_header.ifdMax);
14525 ext.ifd = input_debug.ifdmap[ext.ifd];
14531 /* Free up the information we just read. */
14532 free (input_debug.line);
14533 free (input_debug.external_dnr);
14534 free (input_debug.external_pdr);
14535 free (input_debug.external_sym);
14536 free (input_debug.external_opt);
14537 free (input_debug.external_aux);
14538 free (input_debug.ss);
14539 free (input_debug.ssext);
14540 free (input_debug.external_fdr);
14541 free (input_debug.external_rfd);
14542 free (input_debug.external_ext);
14544 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14545 elf_link_input_bfd ignores this section. */
14546 input_section->flags &= ~SEC_HAS_CONTENTS;
14549 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14551 /* Create .rtproc section. */
14552 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14553 if (rtproc_sec == NULL)
14555 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14556 | SEC_LINKER_CREATED | SEC_READONLY);
14558 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14561 if (rtproc_sec == NULL
14562 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14566 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14572 /* Build the external symbol information. */
14575 einfo.debug = &debug;
14577 einfo.failed = FALSE;
14578 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14579 mips_elf_output_extsym, &einfo);
14583 /* Set the size of the .mdebug section. */
14584 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14586 /* Skip this section later on (I don't think this currently
14587 matters, but someday it might). */
14588 o->map_head.link_order = NULL;
14593 if (CONST_STRNEQ (o->name, ".gptab."))
14595 const char *subname;
14598 Elf32_External_gptab *ext_tab;
14601 /* The .gptab.sdata and .gptab.sbss sections hold
14602 information describing how the small data area would
14603 change depending upon the -G switch. These sections
14604 not used in executables files. */
14605 if (! bfd_link_relocatable (info))
14607 for (p = o->map_head.link_order; p != NULL; p = p->next)
14609 asection *input_section;
14611 if (p->type != bfd_indirect_link_order)
14613 if (p->type == bfd_data_link_order)
14618 input_section = p->u.indirect.section;
14620 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14621 elf_link_input_bfd ignores this section. */
14622 input_section->flags &= ~SEC_HAS_CONTENTS;
14625 /* Skip this section later on (I don't think this
14626 currently matters, but someday it might). */
14627 o->map_head.link_order = NULL;
14629 /* Really remove the section. */
14630 bfd_section_list_remove (abfd, o);
14631 --abfd->section_count;
14636 /* There is one gptab for initialized data, and one for
14637 uninitialized data. */
14638 if (strcmp (o->name, ".gptab.sdata") == 0)
14639 gptab_data_sec = o;
14640 else if (strcmp (o->name, ".gptab.sbss") == 0)
14644 (*_bfd_error_handler)
14645 (_("%s: illegal section name `%s'"),
14646 bfd_get_filename (abfd), o->name);
14647 bfd_set_error (bfd_error_nonrepresentable_section);
14651 /* The linker script always combines .gptab.data and
14652 .gptab.sdata into .gptab.sdata, and likewise for
14653 .gptab.bss and .gptab.sbss. It is possible that there is
14654 no .sdata or .sbss section in the output file, in which
14655 case we must change the name of the output section. */
14656 subname = o->name + sizeof ".gptab" - 1;
14657 if (bfd_get_section_by_name (abfd, subname) == NULL)
14659 if (o == gptab_data_sec)
14660 o->name = ".gptab.data";
14662 o->name = ".gptab.bss";
14663 subname = o->name + sizeof ".gptab" - 1;
14664 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14667 /* Set up the first entry. */
14669 amt = c * sizeof (Elf32_gptab);
14670 tab = bfd_malloc (amt);
14673 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14674 tab[0].gt_header.gt_unused = 0;
14676 /* Combine the input sections. */
14677 for (p = o->map_head.link_order; p != NULL; p = p->next)
14679 asection *input_section;
14681 bfd_size_type size;
14682 unsigned long last;
14683 bfd_size_type gpentry;
14685 if (p->type != bfd_indirect_link_order)
14687 if (p->type == bfd_data_link_order)
14692 input_section = p->u.indirect.section;
14693 input_bfd = input_section->owner;
14695 /* Combine the gptab entries for this input section one
14696 by one. We know that the input gptab entries are
14697 sorted by ascending -G value. */
14698 size = input_section->size;
14700 for (gpentry = sizeof (Elf32_External_gptab);
14702 gpentry += sizeof (Elf32_External_gptab))
14704 Elf32_External_gptab ext_gptab;
14705 Elf32_gptab int_gptab;
14711 if (! (bfd_get_section_contents
14712 (input_bfd, input_section, &ext_gptab, gpentry,
14713 sizeof (Elf32_External_gptab))))
14719 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14721 val = int_gptab.gt_entry.gt_g_value;
14722 add = int_gptab.gt_entry.gt_bytes - last;
14725 for (look = 1; look < c; look++)
14727 if (tab[look].gt_entry.gt_g_value >= val)
14728 tab[look].gt_entry.gt_bytes += add;
14730 if (tab[look].gt_entry.gt_g_value == val)
14736 Elf32_gptab *new_tab;
14739 /* We need a new table entry. */
14740 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14741 new_tab = bfd_realloc (tab, amt);
14742 if (new_tab == NULL)
14748 tab[c].gt_entry.gt_g_value = val;
14749 tab[c].gt_entry.gt_bytes = add;
14751 /* Merge in the size for the next smallest -G
14752 value, since that will be implied by this new
14755 for (look = 1; look < c; look++)
14757 if (tab[look].gt_entry.gt_g_value < val
14759 || (tab[look].gt_entry.gt_g_value
14760 > tab[max].gt_entry.gt_g_value)))
14764 tab[c].gt_entry.gt_bytes +=
14765 tab[max].gt_entry.gt_bytes;
14770 last = int_gptab.gt_entry.gt_bytes;
14773 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14774 elf_link_input_bfd ignores this section. */
14775 input_section->flags &= ~SEC_HAS_CONTENTS;
14778 /* The table must be sorted by -G value. */
14780 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14782 /* Swap out the table. */
14783 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14784 ext_tab = bfd_alloc (abfd, amt);
14785 if (ext_tab == NULL)
14791 for (j = 0; j < c; j++)
14792 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14795 o->size = c * sizeof (Elf32_External_gptab);
14796 o->contents = (bfd_byte *) ext_tab;
14798 /* Skip this section later on (I don't think this currently
14799 matters, but someday it might). */
14800 o->map_head.link_order = NULL;
14804 /* Invoke the regular ELF backend linker to do all the work. */
14805 if (!bfd_elf_final_link (abfd, info))
14808 /* Now write out the computed sections. */
14810 if (abiflags_sec != NULL)
14812 Elf_External_ABIFlags_v0 ext;
14813 Elf_Internal_ABIFlags_v0 *abiflags;
14815 abiflags = &mips_elf_tdata (abfd)->abiflags;
14817 /* Set up the abiflags if no valid input sections were found. */
14818 if (!mips_elf_tdata (abfd)->abiflags_valid)
14820 infer_mips_abiflags (abfd, abiflags);
14821 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14823 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14824 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14828 if (reginfo_sec != NULL)
14830 Elf32_External_RegInfo ext;
14832 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext);
14833 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14837 if (mdebug_sec != NULL)
14839 BFD_ASSERT (abfd->output_has_begun);
14840 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14842 mdebug_sec->filepos))
14845 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14848 if (gptab_data_sec != NULL)
14850 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14851 gptab_data_sec->contents,
14852 0, gptab_data_sec->size))
14856 if (gptab_bss_sec != NULL)
14858 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14859 gptab_bss_sec->contents,
14860 0, gptab_bss_sec->size))
14864 if (SGI_COMPAT (abfd))
14866 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14867 if (rtproc_sec != NULL)
14869 if (! bfd_set_section_contents (abfd, rtproc_sec,
14870 rtproc_sec->contents,
14871 0, rtproc_sec->size))
14879 /* Merge object attributes from IBFD into OBFD. Raise an error if
14880 there are conflicting attributes. */
14882 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14884 obj_attribute *in_attr;
14885 obj_attribute *out_attr;
14889 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14890 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14891 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14892 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14894 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14896 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14897 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14899 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14901 /* This is the first object. Copy the attributes. */
14902 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14904 /* Use the Tag_null value to indicate the attributes have been
14906 elf_known_obj_attributes_proc (obfd)[0].i = 1;
14911 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14912 non-conflicting ones. */
14913 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14914 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14918 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
14919 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14920 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14921 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
14922 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
14923 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
14924 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14925 || in_fp == Val_GNU_MIPS_ABI_FP_64
14926 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
14928 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14929 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14931 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
14932 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
14933 || out_fp == Val_GNU_MIPS_ABI_FP_64
14934 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
14935 /* Keep the current setting. */;
14936 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
14937 && in_fp == Val_GNU_MIPS_ABI_FP_64)
14939 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14940 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14942 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
14943 && out_fp == Val_GNU_MIPS_ABI_FP_64)
14944 /* Keep the current setting. */;
14945 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
14947 const char *out_string, *in_string;
14949 out_string = _bfd_mips_fp_abi_string (out_fp);
14950 in_string = _bfd_mips_fp_abi_string (in_fp);
14951 /* First warn about cases involving unrecognised ABIs. */
14952 if (!out_string && !in_string)
14954 (_("Warning: %B uses unknown floating point ABI %d "
14955 "(set by %B), %B uses unknown floating point ABI %d"),
14956 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
14957 else if (!out_string)
14959 (_("Warning: %B uses unknown floating point ABI %d "
14960 "(set by %B), %B uses %s"),
14961 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
14962 else if (!in_string)
14964 (_("Warning: %B uses %s (set by %B), "
14965 "%B uses unknown floating point ABI %d"),
14966 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
14969 /* If one of the bfds is soft-float, the other must be
14970 hard-float. The exact choice of hard-float ABI isn't
14971 really relevant to the error message. */
14972 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14973 out_string = "-mhard-float";
14974 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
14975 in_string = "-mhard-float";
14977 (_("Warning: %B uses %s (set by %B), %B uses %s"),
14978 obfd, abi_fp_bfd, ibfd, out_string, in_string);
14983 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14984 non-conflicting ones. */
14985 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14987 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14988 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14989 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14990 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14991 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14993 case Val_GNU_MIPS_ABI_MSA_128:
14995 (_("Warning: %B uses %s (set by %B), "
14996 "%B uses unknown MSA ABI %d"),
14997 obfd, abi_msa_bfd, ibfd,
14998 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15002 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15004 case Val_GNU_MIPS_ABI_MSA_128:
15006 (_("Warning: %B uses unknown MSA ABI %d "
15007 "(set by %B), %B uses %s"),
15008 obfd, abi_msa_bfd, ibfd,
15009 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15014 (_("Warning: %B uses unknown MSA ABI %d "
15015 "(set by %B), %B uses unknown MSA ABI %d"),
15016 obfd, abi_msa_bfd, ibfd,
15017 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15018 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15024 /* Merge Tag_compatibility attributes and any common GNU ones. */
15025 _bfd_elf_merge_object_attributes (ibfd, obfd);
15030 /* Merge backend specific data from an object file to the output
15031 object file when linking. */
15034 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15036 flagword old_flags;
15037 flagword new_flags;
15039 bfd_boolean null_input_bfd = TRUE;
15041 obj_attribute *out_attr;
15043 /* Check if we have the same endianness. */
15044 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15046 (*_bfd_error_handler)
15047 (_("%B: endianness incompatible with that of the selected emulation"),
15052 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15055 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15057 (*_bfd_error_handler)
15058 (_("%B: ABI is incompatible with that of the selected emulation"),
15063 /* Set up the FP ABI attribute from the abiflags if it is not already
15065 if (mips_elf_tdata (ibfd)->abiflags_valid)
15067 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15068 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15069 in_attr[Tag_GNU_MIPS_ABI_FP].i =
15070 mips_elf_tdata (ibfd)->abiflags.fp_abi;
15073 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
15076 /* Check to see if the input BFD actually contains any sections.
15077 If not, its flags may not have been initialised either, but it cannot
15078 actually cause any incompatibility. */
15079 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15081 /* Ignore synthetic sections and empty .text, .data and .bss sections
15082 which are automatically generated by gas. Also ignore fake
15083 (s)common sections, since merely defining a common symbol does
15084 not affect compatibility. */
15085 if ((sec->flags & SEC_IS_COMMON) == 0
15086 && strcmp (sec->name, ".reginfo")
15087 && strcmp (sec->name, ".mdebug")
15089 || (strcmp (sec->name, ".text")
15090 && strcmp (sec->name, ".data")
15091 && strcmp (sec->name, ".bss"))))
15093 null_input_bfd = FALSE;
15097 if (null_input_bfd)
15100 /* Populate abiflags using existing information. */
15101 if (!mips_elf_tdata (ibfd)->abiflags_valid)
15103 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags);
15104 mips_elf_tdata (ibfd)->abiflags_valid = TRUE;
15108 Elf_Internal_ABIFlags_v0 abiflags;
15109 Elf_Internal_ABIFlags_v0 in_abiflags;
15110 infer_mips_abiflags (ibfd, &abiflags);
15111 in_abiflags = mips_elf_tdata (ibfd)->abiflags;
15113 /* It is not possible to infer the correct ISA revision
15114 for R3 or R5 so drop down to R2 for the checks. */
15115 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15116 in_abiflags.isa_rev = 2;
15118 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15119 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15120 (*_bfd_error_handler)
15121 (_("%B: warning: Inconsistent ISA between e_flags and "
15122 ".MIPS.abiflags"), ibfd);
15123 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15124 && in_abiflags.fp_abi != abiflags.fp_abi)
15125 (*_bfd_error_handler)
15126 (_("%B: warning: Inconsistent FP ABI between e_flags and "
15127 ".MIPS.abiflags"), ibfd);
15128 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15129 (*_bfd_error_handler)
15130 (_("%B: warning: Inconsistent ASEs between e_flags and "
15131 ".MIPS.abiflags"), ibfd);
15132 /* The isa_ext is allowed to be an extension of what can be inferred
15134 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15135 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15136 (*_bfd_error_handler)
15137 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15138 ".MIPS.abiflags"), ibfd);
15139 if (in_abiflags.flags2 != 0)
15140 (*_bfd_error_handler)
15141 (_("%B: warning: Unexpected flag in the flags2 field of "
15142 ".MIPS.abiflags (0x%lx)"), ibfd,
15143 (unsigned long) in_abiflags.flags2);
15146 if (!mips_elf_tdata (obfd)->abiflags_valid)
15148 /* Copy input abiflags if output abiflags are not already valid. */
15149 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags;
15150 mips_elf_tdata (obfd)->abiflags_valid = TRUE;
15153 if (! elf_flags_init (obfd))
15155 elf_flags_init (obfd) = TRUE;
15156 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15157 elf_elfheader (obfd)->e_ident[EI_CLASS]
15158 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15160 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15161 && (bfd_get_arch_info (obfd)->the_default
15162 || mips_mach_extends_p (bfd_get_mach (obfd),
15163 bfd_get_mach (ibfd))))
15165 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15166 bfd_get_mach (ibfd)))
15169 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15170 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15176 /* Update the output abiflags fp_abi using the computed fp_abi. */
15177 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15178 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15180 #define max(a,b) ((a) > (b) ? (a) : (b))
15181 /* Merge abiflags. */
15182 mips_elf_tdata (obfd)->abiflags.isa_level
15183 = max (mips_elf_tdata (obfd)->abiflags.isa_level,
15184 mips_elf_tdata (ibfd)->abiflags.isa_level);
15185 mips_elf_tdata (obfd)->abiflags.isa_rev
15186 = max (mips_elf_tdata (obfd)->abiflags.isa_rev,
15187 mips_elf_tdata (ibfd)->abiflags.isa_rev);
15188 mips_elf_tdata (obfd)->abiflags.gpr_size
15189 = max (mips_elf_tdata (obfd)->abiflags.gpr_size,
15190 mips_elf_tdata (ibfd)->abiflags.gpr_size);
15191 mips_elf_tdata (obfd)->abiflags.cpr1_size
15192 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size,
15193 mips_elf_tdata (ibfd)->abiflags.cpr1_size);
15194 mips_elf_tdata (obfd)->abiflags.cpr2_size
15195 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size,
15196 mips_elf_tdata (ibfd)->abiflags.cpr2_size);
15198 mips_elf_tdata (obfd)->abiflags.ases
15199 |= mips_elf_tdata (ibfd)->abiflags.ases;
15200 mips_elf_tdata (obfd)->abiflags.flags1
15201 |= mips_elf_tdata (ibfd)->abiflags.flags1;
15203 new_flags = elf_elfheader (ibfd)->e_flags;
15204 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15205 old_flags = elf_elfheader (obfd)->e_flags;
15207 /* Check flag compatibility. */
15209 new_flags &= ~EF_MIPS_NOREORDER;
15210 old_flags &= ~EF_MIPS_NOREORDER;
15212 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15213 doesn't seem to matter. */
15214 new_flags &= ~EF_MIPS_XGOT;
15215 old_flags &= ~EF_MIPS_XGOT;
15217 /* MIPSpro generates ucode info in n64 objects. Again, we should
15218 just be able to ignore this. */
15219 new_flags &= ~EF_MIPS_UCODE;
15220 old_flags &= ~EF_MIPS_UCODE;
15222 /* DSOs should only be linked with CPIC code. */
15223 if ((ibfd->flags & DYNAMIC) != 0)
15224 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15226 if (new_flags == old_flags)
15231 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15232 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15234 (*_bfd_error_handler)
15235 (_("%B: warning: linking abicalls files with non-abicalls files"),
15240 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15241 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15242 if (! (new_flags & EF_MIPS_PIC))
15243 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15245 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15246 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15248 /* Compare the ISAs. */
15249 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15251 (*_bfd_error_handler)
15252 (_("%B: linking 32-bit code with 64-bit code"),
15256 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15258 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15259 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15261 /* Copy the architecture info from IBFD to OBFD. Also copy
15262 the 32-bit flag (if set) so that we continue to recognise
15263 OBFD as a 32-bit binary. */
15264 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15265 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15266 elf_elfheader (obfd)->e_flags
15267 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15269 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15270 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags);
15272 /* Copy across the ABI flags if OBFD doesn't use them
15273 and if that was what caused us to treat IBFD as 32-bit. */
15274 if ((old_flags & EF_MIPS_ABI) == 0
15275 && mips_32bit_flags_p (new_flags)
15276 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15277 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15281 /* The ISAs aren't compatible. */
15282 (*_bfd_error_handler)
15283 (_("%B: linking %s module with previous %s modules"),
15285 bfd_printable_name (ibfd),
15286 bfd_printable_name (obfd));
15291 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15292 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15294 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15295 does set EI_CLASS differently from any 32-bit ABI. */
15296 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15297 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15298 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15300 /* Only error if both are set (to different values). */
15301 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15302 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15303 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15305 (*_bfd_error_handler)
15306 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15308 elf_mips_abi_name (ibfd),
15309 elf_mips_abi_name (obfd));
15312 new_flags &= ~EF_MIPS_ABI;
15313 old_flags &= ~EF_MIPS_ABI;
15316 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15317 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15318 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15320 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15321 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15322 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15323 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15324 int micro_mis = old_m16 && new_micro;
15325 int m16_mis = old_micro && new_m16;
15327 if (m16_mis || micro_mis)
15329 (*_bfd_error_handler)
15330 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15332 m16_mis ? "MIPS16" : "microMIPS",
15333 m16_mis ? "microMIPS" : "MIPS16");
15337 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15339 new_flags &= ~ EF_MIPS_ARCH_ASE;
15340 old_flags &= ~ EF_MIPS_ARCH_ASE;
15343 /* Compare NaN encodings. */
15344 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15346 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15348 (new_flags & EF_MIPS_NAN2008
15349 ? "-mnan=2008" : "-mnan=legacy"),
15350 (old_flags & EF_MIPS_NAN2008
15351 ? "-mnan=2008" : "-mnan=legacy"));
15353 new_flags &= ~EF_MIPS_NAN2008;
15354 old_flags &= ~EF_MIPS_NAN2008;
15357 /* Compare FP64 state. */
15358 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15360 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15362 (new_flags & EF_MIPS_FP64
15363 ? "-mfp64" : "-mfp32"),
15364 (old_flags & EF_MIPS_FP64
15365 ? "-mfp64" : "-mfp32"));
15367 new_flags &= ~EF_MIPS_FP64;
15368 old_flags &= ~EF_MIPS_FP64;
15371 /* Warn about any other mismatches */
15372 if (new_flags != old_flags)
15374 (*_bfd_error_handler)
15375 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
15376 ibfd, (unsigned long) new_flags,
15377 (unsigned long) old_flags);
15383 bfd_set_error (bfd_error_bad_value);
15390 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15393 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15395 BFD_ASSERT (!elf_flags_init (abfd)
15396 || elf_elfheader (abfd)->e_flags == flags);
15398 elf_elfheader (abfd)->e_flags = flags;
15399 elf_flags_init (abfd) = TRUE;
15404 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15408 default: return "";
15409 case DT_MIPS_RLD_VERSION:
15410 return "MIPS_RLD_VERSION";
15411 case DT_MIPS_TIME_STAMP:
15412 return "MIPS_TIME_STAMP";
15413 case DT_MIPS_ICHECKSUM:
15414 return "MIPS_ICHECKSUM";
15415 case DT_MIPS_IVERSION:
15416 return "MIPS_IVERSION";
15417 case DT_MIPS_FLAGS:
15418 return "MIPS_FLAGS";
15419 case DT_MIPS_BASE_ADDRESS:
15420 return "MIPS_BASE_ADDRESS";
15422 return "MIPS_MSYM";
15423 case DT_MIPS_CONFLICT:
15424 return "MIPS_CONFLICT";
15425 case DT_MIPS_LIBLIST:
15426 return "MIPS_LIBLIST";
15427 case DT_MIPS_LOCAL_GOTNO:
15428 return "MIPS_LOCAL_GOTNO";
15429 case DT_MIPS_CONFLICTNO:
15430 return "MIPS_CONFLICTNO";
15431 case DT_MIPS_LIBLISTNO:
15432 return "MIPS_LIBLISTNO";
15433 case DT_MIPS_SYMTABNO:
15434 return "MIPS_SYMTABNO";
15435 case DT_MIPS_UNREFEXTNO:
15436 return "MIPS_UNREFEXTNO";
15437 case DT_MIPS_GOTSYM:
15438 return "MIPS_GOTSYM";
15439 case DT_MIPS_HIPAGENO:
15440 return "MIPS_HIPAGENO";
15441 case DT_MIPS_RLD_MAP:
15442 return "MIPS_RLD_MAP";
15443 case DT_MIPS_RLD_MAP_REL:
15444 return "MIPS_RLD_MAP_REL";
15445 case DT_MIPS_DELTA_CLASS:
15446 return "MIPS_DELTA_CLASS";
15447 case DT_MIPS_DELTA_CLASS_NO:
15448 return "MIPS_DELTA_CLASS_NO";
15449 case DT_MIPS_DELTA_INSTANCE:
15450 return "MIPS_DELTA_INSTANCE";
15451 case DT_MIPS_DELTA_INSTANCE_NO:
15452 return "MIPS_DELTA_INSTANCE_NO";
15453 case DT_MIPS_DELTA_RELOC:
15454 return "MIPS_DELTA_RELOC";
15455 case DT_MIPS_DELTA_RELOC_NO:
15456 return "MIPS_DELTA_RELOC_NO";
15457 case DT_MIPS_DELTA_SYM:
15458 return "MIPS_DELTA_SYM";
15459 case DT_MIPS_DELTA_SYM_NO:
15460 return "MIPS_DELTA_SYM_NO";
15461 case DT_MIPS_DELTA_CLASSSYM:
15462 return "MIPS_DELTA_CLASSSYM";
15463 case DT_MIPS_DELTA_CLASSSYM_NO:
15464 return "MIPS_DELTA_CLASSSYM_NO";
15465 case DT_MIPS_CXX_FLAGS:
15466 return "MIPS_CXX_FLAGS";
15467 case DT_MIPS_PIXIE_INIT:
15468 return "MIPS_PIXIE_INIT";
15469 case DT_MIPS_SYMBOL_LIB:
15470 return "MIPS_SYMBOL_LIB";
15471 case DT_MIPS_LOCALPAGE_GOTIDX:
15472 return "MIPS_LOCALPAGE_GOTIDX";
15473 case DT_MIPS_LOCAL_GOTIDX:
15474 return "MIPS_LOCAL_GOTIDX";
15475 case DT_MIPS_HIDDEN_GOTIDX:
15476 return "MIPS_HIDDEN_GOTIDX";
15477 case DT_MIPS_PROTECTED_GOTIDX:
15478 return "MIPS_PROTECTED_GOT_IDX";
15479 case DT_MIPS_OPTIONS:
15480 return "MIPS_OPTIONS";
15481 case DT_MIPS_INTERFACE:
15482 return "MIPS_INTERFACE";
15483 case DT_MIPS_DYNSTR_ALIGN:
15484 return "DT_MIPS_DYNSTR_ALIGN";
15485 case DT_MIPS_INTERFACE_SIZE:
15486 return "DT_MIPS_INTERFACE_SIZE";
15487 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15488 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15489 case DT_MIPS_PERF_SUFFIX:
15490 return "DT_MIPS_PERF_SUFFIX";
15491 case DT_MIPS_COMPACT_SIZE:
15492 return "DT_MIPS_COMPACT_SIZE";
15493 case DT_MIPS_GP_VALUE:
15494 return "DT_MIPS_GP_VALUE";
15495 case DT_MIPS_AUX_DYNAMIC:
15496 return "DT_MIPS_AUX_DYNAMIC";
15497 case DT_MIPS_PLTGOT:
15498 return "DT_MIPS_PLTGOT";
15499 case DT_MIPS_RWPLT:
15500 return "DT_MIPS_RWPLT";
15504 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15508 _bfd_mips_fp_abi_string (int fp)
15512 /* These strings aren't translated because they're simply
15514 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15515 return "-mdouble-float";
15517 case Val_GNU_MIPS_ABI_FP_SINGLE:
15518 return "-msingle-float";
15520 case Val_GNU_MIPS_ABI_FP_SOFT:
15521 return "-msoft-float";
15523 case Val_GNU_MIPS_ABI_FP_OLD_64:
15524 return _("-mips32r2 -mfp64 (12 callee-saved)");
15526 case Val_GNU_MIPS_ABI_FP_XX:
15529 case Val_GNU_MIPS_ABI_FP_64:
15530 return "-mgp32 -mfp64";
15532 case Val_GNU_MIPS_ABI_FP_64A:
15533 return "-mgp32 -mfp64 -mno-odd-spreg";
15541 print_mips_ases (FILE *file, unsigned int mask)
15543 if (mask & AFL_ASE_DSP)
15544 fputs ("\n\tDSP ASE", file);
15545 if (mask & AFL_ASE_DSPR2)
15546 fputs ("\n\tDSP R2 ASE", file);
15547 if (mask & AFL_ASE_EVA)
15548 fputs ("\n\tEnhanced VA Scheme", file);
15549 if (mask & AFL_ASE_MCU)
15550 fputs ("\n\tMCU (MicroController) ASE", file);
15551 if (mask & AFL_ASE_MDMX)
15552 fputs ("\n\tMDMX ASE", file);
15553 if (mask & AFL_ASE_MIPS3D)
15554 fputs ("\n\tMIPS-3D ASE", file);
15555 if (mask & AFL_ASE_MT)
15556 fputs ("\n\tMT ASE", file);
15557 if (mask & AFL_ASE_SMARTMIPS)
15558 fputs ("\n\tSmartMIPS ASE", file);
15559 if (mask & AFL_ASE_VIRT)
15560 fputs ("\n\tVZ ASE", file);
15561 if (mask & AFL_ASE_MSA)
15562 fputs ("\n\tMSA ASE", file);
15563 if (mask & AFL_ASE_MIPS16)
15564 fputs ("\n\tMIPS16 ASE", file);
15565 if (mask & AFL_ASE_MICROMIPS)
15566 fputs ("\n\tMICROMIPS ASE", file);
15567 if (mask & AFL_ASE_XPA)
15568 fputs ("\n\tXPA ASE", file);
15570 fprintf (file, "\n\t%s", _("None"));
15571 else if ((mask & ~AFL_ASE_MASK) != 0)
15572 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15576 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15581 fputs (_("None"), file);
15584 fputs ("RMI XLR", file);
15586 case AFL_EXT_OCTEON3:
15587 fputs ("Cavium Networks Octeon3", file);
15589 case AFL_EXT_OCTEON2:
15590 fputs ("Cavium Networks Octeon2", file);
15592 case AFL_EXT_OCTEONP:
15593 fputs ("Cavium Networks OcteonP", file);
15595 case AFL_EXT_LOONGSON_3A:
15596 fputs ("Loongson 3A", file);
15598 case AFL_EXT_OCTEON:
15599 fputs ("Cavium Networks Octeon", file);
15602 fputs ("Toshiba R5900", file);
15605 fputs ("MIPS R4650", file);
15608 fputs ("LSI R4010", file);
15611 fputs ("NEC VR4100", file);
15614 fputs ("Toshiba R3900", file);
15616 case AFL_EXT_10000:
15617 fputs ("MIPS R10000", file);
15620 fputs ("Broadcom SB-1", file);
15623 fputs ("NEC VR4111/VR4181", file);
15626 fputs ("NEC VR4120", file);
15629 fputs ("NEC VR5400", file);
15632 fputs ("NEC VR5500", file);
15634 case AFL_EXT_LOONGSON_2E:
15635 fputs ("ST Microelectronics Loongson 2E", file);
15637 case AFL_EXT_LOONGSON_2F:
15638 fputs ("ST Microelectronics Loongson 2F", file);
15641 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15647 print_mips_fp_abi_value (FILE *file, int val)
15651 case Val_GNU_MIPS_ABI_FP_ANY:
15652 fprintf (file, _("Hard or soft float\n"));
15654 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15655 fprintf (file, _("Hard float (double precision)\n"));
15657 case Val_GNU_MIPS_ABI_FP_SINGLE:
15658 fprintf (file, _("Hard float (single precision)\n"));
15660 case Val_GNU_MIPS_ABI_FP_SOFT:
15661 fprintf (file, _("Soft float\n"));
15663 case Val_GNU_MIPS_ABI_FP_OLD_64:
15664 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15666 case Val_GNU_MIPS_ABI_FP_XX:
15667 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15669 case Val_GNU_MIPS_ABI_FP_64:
15670 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15672 case Val_GNU_MIPS_ABI_FP_64A:
15673 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15676 fprintf (file, "??? (%d)\n", val);
15682 get_mips_reg_size (int reg_size)
15684 return (reg_size == AFL_REG_NONE) ? 0
15685 : (reg_size == AFL_REG_32) ? 32
15686 : (reg_size == AFL_REG_64) ? 64
15687 : (reg_size == AFL_REG_128) ? 128
15692 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15696 BFD_ASSERT (abfd != NULL && ptr != NULL);
15698 /* Print normal ELF private data. */
15699 _bfd_elf_print_private_bfd_data (abfd, ptr);
15701 /* xgettext:c-format */
15702 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15704 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15705 fprintf (file, _(" [abi=O32]"));
15706 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15707 fprintf (file, _(" [abi=O64]"));
15708 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15709 fprintf (file, _(" [abi=EABI32]"));
15710 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15711 fprintf (file, _(" [abi=EABI64]"));
15712 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15713 fprintf (file, _(" [abi unknown]"));
15714 else if (ABI_N32_P (abfd))
15715 fprintf (file, _(" [abi=N32]"));
15716 else if (ABI_64_P (abfd))
15717 fprintf (file, _(" [abi=64]"));
15719 fprintf (file, _(" [no abi set]"));
15721 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15722 fprintf (file, " [mips1]");
15723 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15724 fprintf (file, " [mips2]");
15725 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15726 fprintf (file, " [mips3]");
15727 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15728 fprintf (file, " [mips4]");
15729 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15730 fprintf (file, " [mips5]");
15731 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15732 fprintf (file, " [mips32]");
15733 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15734 fprintf (file, " [mips64]");
15735 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15736 fprintf (file, " [mips32r2]");
15737 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15738 fprintf (file, " [mips64r2]");
15739 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15740 fprintf (file, " [mips32r6]");
15741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15742 fprintf (file, " [mips64r6]");
15744 fprintf (file, _(" [unknown ISA]"));
15746 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15747 fprintf (file, " [mdmx]");
15749 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15750 fprintf (file, " [mips16]");
15752 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15753 fprintf (file, " [micromips]");
15755 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15756 fprintf (file, " [nan2008]");
15758 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15759 fprintf (file, " [old fp64]");
15761 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15762 fprintf (file, " [32bitmode]");
15764 fprintf (file, _(" [not 32bitmode]"));
15766 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15767 fprintf (file, " [noreorder]");
15769 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15770 fprintf (file, " [PIC]");
15772 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15773 fprintf (file, " [CPIC]");
15775 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15776 fprintf (file, " [XGOT]");
15778 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15779 fprintf (file, " [UCODE]");
15781 fputc ('\n', file);
15783 if (mips_elf_tdata (abfd)->abiflags_valid)
15785 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15786 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15787 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15788 if (abiflags->isa_rev > 1)
15789 fprintf (file, "r%d", abiflags->isa_rev);
15790 fprintf (file, "\nGPR size: %d",
15791 get_mips_reg_size (abiflags->gpr_size));
15792 fprintf (file, "\nCPR1 size: %d",
15793 get_mips_reg_size (abiflags->cpr1_size));
15794 fprintf (file, "\nCPR2 size: %d",
15795 get_mips_reg_size (abiflags->cpr2_size));
15796 fputs ("\nFP ABI: ", file);
15797 print_mips_fp_abi_value (file, abiflags->fp_abi);
15798 fputs ("ISA Extension: ", file);
15799 print_mips_isa_ext (file, abiflags->isa_ext);
15800 fputs ("\nASEs:", file);
15801 print_mips_ases (file, abiflags->ases);
15802 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15803 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15804 fputc ('\n', file);
15810 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15812 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15813 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15814 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15815 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15816 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15817 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15818 { NULL, 0, 0, 0, 0 }
15821 /* Merge non visibility st_other attributes. Ensure that the
15822 STO_OPTIONAL flag is copied into h->other, even if this is not a
15823 definiton of the symbol. */
15825 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15826 const Elf_Internal_Sym *isym,
15827 bfd_boolean definition,
15828 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15830 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15832 unsigned char other;
15834 other = (definition ? isym->st_other : h->other);
15835 other &= ~ELF_ST_VISIBILITY (-1);
15836 h->other = other | ELF_ST_VISIBILITY (h->other);
15840 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15841 h->other |= STO_OPTIONAL;
15844 /* Decide whether an undefined symbol is special and can be ignored.
15845 This is the case for OPTIONAL symbols on IRIX. */
15847 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15849 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15853 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15855 return (sym->st_shndx == SHN_COMMON
15856 || sym->st_shndx == SHN_MIPS_ACOMMON
15857 || sym->st_shndx == SHN_MIPS_SCOMMON);
15860 /* Return address for Ith PLT stub in section PLT, for relocation REL
15861 or (bfd_vma) -1 if it should not be included. */
15864 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15865 const arelent *rel ATTRIBUTE_UNUSED)
15868 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15869 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15872 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15873 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15874 and .got.plt and also the slots may be of a different size each we walk
15875 the PLT manually fetching instructions and matching them against known
15876 patterns. To make things easier standard MIPS slots, if any, always come
15877 first. As we don't create proper ELF symbols we use the UDATA.I member
15878 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15879 with the ST_OTHER member of the ELF symbol. */
15882 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15883 long symcount ATTRIBUTE_UNUSED,
15884 asymbol **syms ATTRIBUTE_UNUSED,
15885 long dynsymcount, asymbol **dynsyms,
15888 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15889 static const char microsuffix[] = "@micromipsplt";
15890 static const char m16suffix[] = "@mips16plt";
15891 static const char mipssuffix[] = "@plt";
15893 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15894 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15895 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15896 Elf_Internal_Shdr *hdr;
15897 bfd_byte *plt_data;
15898 bfd_vma plt_offset;
15899 unsigned int other;
15900 bfd_vma entry_size;
15919 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15922 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15923 if (relplt == NULL)
15926 hdr = &elf_section_data (relplt)->this_hdr;
15927 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15930 plt = bfd_get_section_by_name (abfd, ".plt");
15934 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15935 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15937 p = relplt->relocation;
15939 /* Calculating the exact amount of space required for symbols would
15940 require two passes over the PLT, so just pessimise assuming two
15941 PLT slots per relocation. */
15942 count = relplt->size / hdr->sh_entsize;
15943 counti = count * bed->s->int_rels_per_ext_rel;
15944 size = 2 * count * sizeof (asymbol);
15945 size += count * (sizeof (mipssuffix) +
15946 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15947 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15948 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15950 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15951 size += sizeof (asymbol) + sizeof (pltname);
15953 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15956 if (plt->size < 16)
15959 s = *ret = bfd_malloc (size);
15962 send = s + 2 * count + 1;
15964 names = (char *) send;
15965 nend = (char *) s + size;
15968 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15969 if (opcode == 0x3302fffe)
15973 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15974 other = STO_MICROMIPS;
15976 else if (opcode == 0x0398c1d0)
15980 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15981 other = STO_MICROMIPS;
15985 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15990 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15994 s->udata.i = other;
15995 memcpy (names, pltname, sizeof (pltname));
15996 names += sizeof (pltname);
16000 for (plt_offset = plt0_size;
16001 plt_offset + 8 <= plt->size && s < send;
16002 plt_offset += entry_size)
16004 bfd_vma gotplt_addr;
16005 const char *suffix;
16010 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16012 /* Check if the second word matches the expected MIPS16 instruction. */
16013 if (opcode == 0x651aeb00)
16017 /* Truncated table??? */
16018 if (plt_offset + 16 > plt->size)
16020 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16021 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16022 suffixlen = sizeof (m16suffix);
16023 suffix = m16suffix;
16024 other = STO_MIPS16;
16026 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16027 else if (opcode == 0xff220000)
16031 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16032 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16033 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16035 gotplt_addr = gotplt_hi + gotplt_lo;
16036 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16037 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16038 suffixlen = sizeof (microsuffix);
16039 suffix = microsuffix;
16040 other = STO_MICROMIPS;
16042 /* Likewise the expected microMIPS instruction (insn32 mode). */
16043 else if ((opcode & 0xffff0000) == 0xff2f0000)
16045 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16046 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16047 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16048 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16049 gotplt_addr = gotplt_hi + gotplt_lo;
16050 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16051 suffixlen = sizeof (microsuffix);
16052 suffix = microsuffix;
16053 other = STO_MICROMIPS;
16055 /* Otherwise assume standard MIPS code. */
16058 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16059 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16060 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16061 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16062 gotplt_addr = gotplt_hi + gotplt_lo;
16063 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16064 suffixlen = sizeof (mipssuffix);
16065 suffix = mipssuffix;
16068 /* Truncated table??? */
16069 if (plt_offset + entry_size > plt->size)
16073 i < count && p[pi].address != gotplt_addr;
16074 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16081 *s = **p[pi].sym_ptr_ptr;
16082 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16083 we are defining a symbol, ensure one of them is set. */
16084 if ((s->flags & BSF_LOCAL) == 0)
16085 s->flags |= BSF_GLOBAL;
16086 s->flags |= BSF_SYNTHETIC;
16088 s->value = plt_offset;
16090 s->udata.i = other;
16092 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16093 namelen = len + suffixlen;
16094 if (names + namelen > nend)
16097 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16099 memcpy (names, suffix, suffixlen);
16100 names += suffixlen;
16103 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16113 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16115 struct mips_elf_link_hash_table *htab;
16116 Elf_Internal_Ehdr *i_ehdrp;
16118 i_ehdrp = elf_elfheader (abfd);
16121 htab = mips_elf_hash_table (link_info);
16122 BFD_ASSERT (htab != NULL);
16124 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16125 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16128 _bfd_elf_post_process_headers (abfd, link_info);
16130 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16131 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16132 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16136 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16138 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16141 /* Return the opcode for can't unwind. */
16144 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16146 return COMPACT_EH_CANT_UNWIND_OPCODE;