1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
27 #include "xcoffsolib.h"
29 #include <sys/param.h>
33 #include <sys/ioctl.h>
43 extern struct obstack frame_cache_obstack;
47 /* Nonzero if we just simulated a single step break. */
50 /* Breakpoint shadows for the single step instructions will be kept here. */
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
55 /* Shadow contents. */
59 /* Static function prototypes */
62 find_toc_address PARAMS ((CORE_ADDR pc));
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
75 branch_dest (opcode, instr, pc, safety)
87 absolute = (int) ((instr >> 1) & 1);
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
99 dest = pc + immediate;
103 ext_op = (instr>>1) & 0x3ff;
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
108 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
112 /* If we are about to execute a system call, dest is something
113 like 0x22fc or 0x3b00. Upon completion the system call
114 will return to the address in the link register. */
115 if (dest < TEXT_SEGMENT_BASE)
116 dest = read_register (LR_REGNUM) & ~3;
123 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
128 /* AIX does not support PT_STEP. Simulate it. */
134 #define INSNLEN(OPCODE) 4
136 static char breakp[] = BREAKPOINT;
145 read_memory (loc, (char *) &insn, 4);
147 breaks[0] = loc + INSNLEN(insn);
149 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
151 /* Don't put two breakpoints on the same address. */
152 if (breaks[1] == breaks[0])
155 stepBreaks[1].address = 0;
157 for (ii=0; ii < 2; ++ii) {
159 /* ignore invalid breakpoint. */
160 if ( breaks[ii] == -1)
163 read_memory (breaks[ii], stepBreaks[ii].data, 4);
165 write_memory (breaks[ii], breakp, 4);
166 stepBreaks[ii].address = breaks[ii];
172 /* remove step breakpoints. */
173 for (ii=0; ii < 2; ++ii)
174 if (stepBreaks[ii].address != 0)
176 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
180 errno = 0; /* FIXME, don't ignore errors! */
181 /* What errors? {read,write}_memory call error(). */
185 /* return pc value after skipping a function prologue. */
191 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
193 if (target_read_memory (pc, (char *)&op, sizeof (op)))
194 return pc; /* Can't access it -- assume no prologue. */
195 SWAP_TARGET_AND_HOST (&op, sizeof (op));
197 /* Assume that subsequent fetches can fail with low probability. */
199 if (op == 0x7c0802a6) { /* mflr r0 */
201 op = read_memory_integer (pc, 4);
204 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
206 op = read_memory_integer (pc, 4);
209 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
211 op = read_memory_integer (pc, 4);
213 /* At this point, make sure this is not a trampoline function
214 (a function that simply calls another functions, and nothing else).
215 If the next is not a nop, this branch was part of the function
218 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
220 return pc - 4; /* don't skip over this branch */
223 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
224 pc += 4; /* store floating register double */
225 op = read_memory_integer (pc, 4);
228 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
230 op = read_memory_integer (pc, 4);
233 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
234 (tmp == 0x9421) || /* stu r1, NUM(r1) */
235 (tmp == 0x93e1)) /* st r31,NUM(r1) */
238 op = read_memory_integer (pc, 4);
241 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
242 pc += 4; /* l r30, ... */
243 op = read_memory_integer (pc, 4);
246 /* store parameters into stack */
248 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
249 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
250 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
251 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
253 pc += 4; /* store fpr double */
254 op = read_memory_integer (pc, 4);
257 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
258 pc += 4; /* this happens if r31 is used as */
259 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
262 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
263 pc += 4; /* st r4, NUM(r31), ... */
264 op = read_memory_integer (pc, 4);
269 /* I have problems with skipping over __main() that I need to address
270 * sometime. Previously, I used to use misc_function_vector which
271 * didn't work as well as I wanted to be. -MGO */
273 /* If the first thing after skipping a prolog is a branch to a function,
274 this might be a call to an initializer in main(), introduced by gcc2.
275 We'd like to skip over it as well. Fortunately, xlc does some extra
276 work before calling a function right after a prologue, thus we can
277 single out such gcc2 behaviour. */
280 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
281 op = read_memory_integer (pc+4, 4);
283 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
285 /* check and see if we are in main. If so, skip over this initializer
288 tmp = find_pc_misc_function (pc);
289 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
299 /*************************************************************************
300 Support for creating pushind a dummy frame into the stack, and popping
302 *************************************************************************/
304 /* The total size of dummy frame is 436, which is;
309 and 24 extra bytes for the callee's link area. The last 24 bytes
310 for the link area might not be necessary, since it will be taken
311 care of by push_arguments(). */
313 #define DUMMY_FRAME_SIZE 436
315 #define DUMMY_FRAME_ADDR_SIZE 10
317 /* Make sure you initialize these in somewhere, in case gdb gives up what it
318 was debugging and starts debugging something else. FIXMEibm */
320 static int dummy_frame_count = 0;
321 static int dummy_frame_size = 0;
322 static CORE_ADDR *dummy_frame_addr = 0;
324 extern int stop_stack_dummy;
326 /* push a dummy frame into stack, save all register. Currently we are saving
327 only gpr's and fpr's, which is not good enough! FIXMEmgo */
337 /* Same thing, target byte order. */
342 target_fetch_registers (-1);
344 if (dummy_frame_count >= dummy_frame_size) {
345 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
346 if (dummy_frame_addr)
347 dummy_frame_addr = (CORE_ADDR*) xrealloc
348 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
350 dummy_frame_addr = (CORE_ADDR*)
351 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
354 sp = read_register(SP_REGNUM);
355 pc = read_register(PC_REGNUM);
356 memcpy (pc_targ, (char *) &pc, 4);
358 dummy_frame_addr [dummy_frame_count++] = sp;
360 /* Be careful! If the stack pointer is not decremented first, then kernel
361 thinks he is free to use the space underneath it. And kernel actually
362 uses that area for IPC purposes when executing ptrace(2) calls. So
363 before writing register values into the new frame, decrement and update
364 %sp first in order to secure your frame. */
366 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
368 /* gdb relies on the state of current_frame. We'd better update it,
369 otherwise things like do_registers_info() wouldn't work properly! */
371 flush_cached_frames ();
372 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
374 /* save program counter in link register's space. */
375 write_memory (sp+8, pc_targ, 4);
377 /* save all floating point and general purpose registers here. */
380 for (ii = 0; ii < 32; ++ii)
381 write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
384 for (ii=1; ii <=32; ++ii)
385 write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
387 /* so far, 32*2 + 32 words = 384 bytes have been written.
388 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
390 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
391 write_memory (sp-384-(ii*4),
392 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
395 /* Save sp or so called back chain right here. */
396 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
397 sp -= DUMMY_FRAME_SIZE;
399 /* And finally, this is the back chain. */
400 write_memory (sp+8, pc_targ, 4);
404 /* Pop a dummy frame.
406 In rs6000 when we push a dummy frame, we save all of the registers. This
407 is usually done before user calls a function explicitly.
409 After a dummy frame is pushed, some instructions are copied into stack,
410 and stack pointer is decremented even more. Since we don't have a frame
411 pointer to get back to the parent frame of the dummy, we start having
412 trouble poping it. Therefore, we keep a dummy frame stack, keeping
413 addresses of dummy frames as such. When poping happens and when we
414 detect that was a dummy frame, we pop it back to its parent by using
415 dummy frame stack (`dummy_frame_addr' array).
417 FIXME: This whole concept is broken. You should be able to detect
418 a dummy stack frame *on the user's stack itself*. When you do,
419 then you know the format of that stack frame -- including its
420 saved SP register! There should *not* be a separate stack in the
428 sp = dummy_frame_addr [--dummy_frame_count];
430 /* restore all fpr's. */
431 for (ii = 1; ii <= 32; ++ii)
432 read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
434 /* restore all gpr's */
435 for (ii=1; ii <= 32; ++ii) {
436 read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4);
439 /* restore the rest of the registers. */
440 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
441 read_memory (sp-384-(ii*4),
442 ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
444 read_memory (sp-(DUMMY_FRAME_SIZE-8),
445 ®isters [REGISTER_BYTE(PC_REGNUM)], 4);
447 /* when a dummy frame was being pushed, we had to decrement %sp first, in
448 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
449 one we should restore. Change it with the one we need. */
451 *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp;
453 /* Now we can restore all registers. */
455 target_store_registers (-1);
457 flush_cached_frames ();
458 set_current_frame (create_new_frame (sp, pc));
462 /* pop the innermost frame, go back to the caller. */
467 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
468 struct aix_framedata fdata;
469 FRAME fr = get_current_frame ();
475 if (stop_stack_dummy && dummy_frame_count) {
480 /* figure out previous %pc value. If the function is frameless, it is
481 still in the link register, otherwise walk the frames and retrieve the
482 saved %pc value in the previous frame. */
484 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
485 function_frame_info (addr, &fdata);
487 prev_sp = read_memory_integer (sp, 4);
489 lr = read_register (LR_REGNUM);
491 lr = read_memory_integer (prev_sp+8, 4);
493 /* reset %pc value. */
494 write_register (PC_REGNUM, lr);
496 /* reset register values if any was saved earlier. */
497 addr = prev_sp - fdata.offset;
499 if (fdata.saved_gpr != -1)
500 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
501 read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4);
505 if (fdata.saved_fpr != -1)
506 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
507 read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
511 write_register (SP_REGNUM, prev_sp);
512 target_store_registers (-1);
513 flush_cached_frames ();
514 set_current_frame (create_new_frame (prev_sp, lr));
518 /* fixup the call sequence of a dummy function, with the real function address.
519 its argumets will be passed by gdb. */
522 fix_call_dummy(dummyname, pc, fun, nargs, type)
526 int nargs; /* not used */
527 int type; /* not used */
529 #define TOC_ADDR_OFFSET 20
530 #define TARGET_ADDR_OFFSET 28
533 CORE_ADDR target_addr;
537 tocvalue = find_toc_address (target_addr);
539 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
540 ii = (ii & 0xffff0000) | (tocvalue >> 16);
541 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
543 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
544 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
545 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
547 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
548 ii = (ii & 0xffff0000) | (target_addr >> 16);
549 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
551 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
552 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
553 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
557 /* return information about a function frame.
558 in struct aix_frameinfo fdata:
559 - frameless is TRUE, if function does not have a frame.
560 - nosavedpc is TRUE, if function does not save %pc value in its frame.
561 - offset is the number of bytes used in the frame to save registers.
562 - saved_gpr is the number of the first saved gpr.
563 - saved_fpr is the number of the first saved fpr.
564 - alloca_reg is the number of the register used for alloca() handling.
568 function_frame_info (pc, fdata)
570 struct aix_framedata *fdata;
573 register unsigned int op;
576 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
577 fdata->frameless = 1;
579 op = read_memory_integer (pc, 4);
580 if (op == 0x7c0802a6) { /* mflr r0 */
582 op = read_memory_integer (pc, 4);
583 fdata->nosavedpc = 0;
584 fdata->frameless = 0;
586 else /* else, pc is not saved */
587 fdata->nosavedpc = 1;
589 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
591 op = read_memory_integer (pc, 4);
592 fdata->frameless = 0;
595 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
597 op = read_memory_integer (pc, 4);
598 /* At this point, make sure this is not a trampoline function
599 (a function that simply calls another functions, and nothing else).
600 If the next is not a nop, this branch was part of the function
603 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
605 return; /* prologue is over */
606 fdata->frameless = 0;
609 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
610 pc += 4; /* store floating register double */
611 op = read_memory_integer (pc, 4);
612 fdata->frameless = 0;
615 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
617 fdata->saved_gpr = (op >> 21) & 0x1f;
620 tmp2 = (~0 &~ 0xffff) | tmp2;
624 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
625 if ( fdata->saved_fpr > 0)
626 fdata->saved_fpr = 32 - fdata->saved_fpr;
628 fdata->saved_fpr = -1;
630 fdata->offset = tmp2;
632 op = read_memory_integer (pc, 4);
633 fdata->frameless = 0;
636 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
637 (tmp == 0x9421) || /* stu r1, NUM(r1) */
638 (tmp == 0x93e1)) /* st r31, NUM(r1) */
642 /* gcc takes a short cut and uses this instruction to save r31 only. */
646 /* fatal ("Unrecognized prolog."); */
647 printf ("Unrecognized prolog!\n");
649 fdata->saved_gpr = 31;
652 tmp2 = - ((~0 &~ 0xffff) | tmp2);
653 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
654 if ( fdata->saved_fpr > 0)
655 fdata->saved_fpr = 32 - fdata->saved_fpr;
657 fdata->saved_fpr = -1;
659 fdata->offset = tmp2;
662 op = read_memory_integer (pc, 4);
663 fdata->frameless = 0;
666 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
667 pc += 4; /* l r30, ... */
668 op = read_memory_integer (pc, 4);
669 fdata->frameless = 0;
672 /* store parameters into stack */
674 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
675 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
676 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
677 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
679 pc += 4; /* store fpr double */
680 op = read_memory_integer (pc, 4);
681 fdata->frameless = 0;
684 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
685 fdata->alloca_reg = 31;
686 fdata->frameless = 0;
691 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
692 eight words of the argument list (that might be less than eight parameters if
693 some parameters occupy more than one word) are passed in r3..r11 registers.
694 float and double parameters are passed in fpr's, in addition to that. Rest of
695 the parameters if any are passed in user stack. There might be cases in which
696 half of the parameter is copied into registers, the other half is pushed into
699 If the function is returning a structure, then the return address is passed
700 in r3, then the first 7 words of the parametes can be passed in registers,
704 push_arguments (nargs, args, sp, struct_return, struct_addr)
709 CORE_ADDR struct_addr;
712 int argno; /* current argument number */
713 int argbytes; /* current argument byte */
714 char tmp_buffer [50];
716 int f_argno = 0; /* current floating point argno */
718 CORE_ADDR saved_sp, pc;
720 if ( dummy_frame_count <= 0)
721 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
723 /* The first eight words of ther arguments are passed in registers. Copy
726 If the function is returning a `struct', then the first word (which
727 will be passed in r3) is used for struct return address. In that
728 case we should advance one word and start from r4 register to copy
731 ii = struct_return ? 1 : 0;
733 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
735 arg = value_arg_coerce (args[argno]);
736 len = TYPE_LENGTH (VALUE_TYPE (arg));
738 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
740 /* floating point arguments are passed in fpr's, as well as gpr's.
741 There are 13 fpr's reserved for passing parameters. At this point
742 there is no way we would run out of them. */
746 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
748 bcopy (VALUE_CONTENTS (arg),
749 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
755 /* Argument takes more than one register. */
756 while (argbytes < len) {
758 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
759 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
760 ®isters[REGISTER_BYTE(ii+3)],
761 (len - argbytes) > 4 ? 4 : len - argbytes);
765 goto ran_out_of_registers_for_arguments;
770 else { /* Argument can fit in one register. No problem. */
771 *(int*)®isters[REGISTER_BYTE(ii+3)] = 0;
772 bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len);
777 ran_out_of_registers_for_arguments:
779 /* location for 8 parameters are always reserved. */
782 /* another six words for back chain, TOC register, link register, etc. */
785 /* if there are more arguments, allocate space for them in
786 the stack, then push them starting from the ninth one. */
788 if ((argno < nargs) || argbytes) {
793 space += ((len - argbytes + 3) & -4);
799 for (; jj < nargs; ++jj) {
800 val = value_arg_coerce (args[jj]);
801 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
804 /* add location required for the rest of the parameters */
805 space = (space + 7) & -8;
808 /* This is another instance we need to be concerned about securing our
809 stack space. If we write anything underneath %sp (r1), we might conflict
810 with the kernel who thinks he is free to use this area. So, update %sp
811 first before doing anything else. */
813 write_register (SP_REGNUM, sp);
815 /* if the last argument copied into the registers didn't fit there
816 completely, push the rest of it into stack. */
820 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
822 ii += ((len - argbytes + 3) & -4) / 4;
825 /* push the rest of the arguments into stack. */
826 for (; argno < nargs; ++argno) {
828 arg = value_arg_coerce (args[argno]);
829 len = TYPE_LENGTH (VALUE_TYPE (arg));
832 /* float types should be passed in fpr's, as well as in the stack. */
833 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
837 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
839 bcopy (VALUE_CONTENTS (arg),
840 ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
844 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
845 ii += ((len + 3) & -4) / 4;
849 /* Secure stack areas first, before doing anything else. */
850 write_register (SP_REGNUM, sp);
852 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
853 read_memory (saved_sp, tmp_buffer, 24);
854 write_memory (sp, tmp_buffer, 24);
856 write_memory (sp, &saved_sp, 4); /* set back chain properly */
858 target_store_registers (-1);
862 /* a given return value in `regbuf' with a type `valtype', extract and copy its
863 value into `valbuf' */
866 extract_return_value (valtype, regbuf, valbuf)
867 struct type *valtype;
868 char regbuf[REGISTER_BYTES];
872 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
875 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
876 We need to truncate the return value into float size (4 byte) if
879 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
880 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
881 TYPE_LENGTH (valtype));
883 bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
885 bcopy (&ff, valbuf, sizeof(float));
889 /* return value is copied starting from r3. */
890 bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
894 /* keep structure return address in this variable.
895 FIXME: This is a horrid kludge which should not be allowed to continue
896 living. This only allows a single nested call to a structure-returning
899 CORE_ADDR rs6000_struct_return_address;
902 /* Indirect function calls use a piece of trampoline code to do context
903 switching, i.e. to set the new TOC table. Skip such code if we are on
904 its first instruction (as when we have single-stepped to here).
905 Result is desired PC to step until, or NULL if we are not in
909 skip_trampoline_code (pc)
912 register unsigned int ii, op;
914 static unsigned trampoline_code[] = {
915 0x800b0000, /* l r0,0x0(r11) */
916 0x90410014, /* st r2,0x14(r1) */
917 0x7c0903a6, /* mtctr r0 */
918 0x804b0004, /* l r2,0x4(r11) */
919 0x816b0008, /* l r11,0x8(r11) */
920 0x4e800420, /* bctr */
925 for (ii=0; trampoline_code[ii]; ++ii) {
926 op = read_memory_integer (pc + (ii*4), 4);
927 if (op != trampoline_code [ii])
930 ii = read_register (11); /* r11 holds destination addr */
931 pc = read_memory_integer (ii, 4); /* (r11) value */
936 /* Determines whether the function FI has a frame on the stack or not.
937 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
938 second argument of 0, and from the FRAME_SAVED_PC macro with a
939 second argument of 1. */
942 frameless_function_invocation (fi, pcsaved)
943 struct frame_info *fi;
946 CORE_ADDR func_start;
947 struct aix_framedata fdata;
949 if (fi->next != NULL)
950 /* Don't even think about framelessness except on the innermost frame. */
953 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
955 /* If we failed to find the start of the function, it is a mistake
956 to inspect the instructions. */
961 function_frame_info (func_start, &fdata);
962 return pcsaved ? fdata.nosavedpc : fdata.frameless;
966 /* If saved registers of frame FI are not known yet, read and cache them.
967 &FDATAP contains aix_framedata; TDATAP can be NULL,
968 in which case the framedata are read. */
971 frame_get_cache_fsr (fi, fdatap)
972 struct frame_info *fi;
973 struct aix_framedata *fdatap;
976 CORE_ADDR frame_addr;
977 struct aix_framedata work_fdata;
982 if (fdatap == NULL) {
983 fdatap = &work_fdata;
984 function_frame_info (get_pc_function_start (fi->pc), fdatap);
987 fi->cache_fsr = (struct frame_saved_regs *)
988 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
989 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
991 if (fi->prev && fi->prev->frame)
992 frame_addr = fi->prev->frame;
994 frame_addr = read_memory_integer (fi->frame, 4);
996 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
997 All fpr's from saved_fpr to fp31 are saved right underneath caller
998 stack pointer, starting from fp31 first. */
1000 if (fdatap->saved_fpr >= 0) {
1001 for (ii=31; ii >= fdatap->saved_fpr; --ii)
1002 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
1003 frame_addr -= (32 - fdatap->saved_fpr) * 8;
1006 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1007 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1008 starting from r31 first. */
1010 if (fdatap->saved_gpr >= 0)
1011 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1012 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1015 /* Return the address of a frame. This is the inital %sp value when the frame
1016 was first allocated. For functions calling alloca(), it might be saved in
1017 an alloca register. */
1020 frame_initial_stack_address (fi)
1021 struct frame_info *fi;
1024 struct aix_framedata fdata;
1025 struct frame_info *callee_fi;
1027 /* if the initial stack pointer (frame address) of this frame is known,
1031 return fi->initial_sp;
1033 /* find out if this function is using an alloca register.. */
1035 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1037 /* if saved registers of this frame are not known yet, read and cache them. */
1040 frame_get_cache_fsr (fi, &fdata);
1042 /* If no alloca register used, then fi->frame is the value of the %sp for
1043 this frame, and it is good enough. */
1045 if (fdata.alloca_reg < 0) {
1046 fi->initial_sp = fi->frame;
1047 return fi->initial_sp;
1050 /* This function has an alloca register. If this is the top-most frame
1051 (with the lowest address), the value in alloca register is good. */
1054 return fi->initial_sp = read_register (fdata.alloca_reg);
1056 /* Otherwise, this is a caller frame. Callee has usually already saved
1057 registers, but there are exceptions (such as when the callee
1058 has no parameters). Find the address in which caller's alloca
1059 register is saved. */
1061 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1063 if (!callee_fi->cache_fsr)
1064 frame_get_cache_fsr (callee_fi, NULL);
1066 /* this is the address in which alloca register is saved. */
1068 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1070 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1071 return fi->initial_sp;
1074 /* Go look into deeper levels of the frame chain to see if any one of
1075 the callees has saved alloca register. */
1078 /* If alloca register was not saved, by the callee (or any of its callees)
1079 then the value in the register is still good. */
1081 return fi->initial_sp = read_register (fdata.alloca_reg);
1085 rs6000_frame_chain (thisframe)
1086 struct frame_info *thisframe;
1089 if (inside_entry_file ((thisframe)->pc))
1091 if (thisframe->signal_handler_caller)
1093 /* This was determined by experimentation on AIX 3.2. Perhaps
1094 it corresponds to some offset in /usr/include/sys/user.h or
1095 something like that. Using some system include file would
1096 have the advantage of probably being more robust in the face
1097 of OS upgrades, but the disadvantage of being wrong for
1100 #define SIG_FRAME_FP_OFFSET 284
1101 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1104 fp = read_memory_integer ((thisframe)->frame, 4);
1110 /* xcoff_relocate_symtab - hook for symbol table relocation.
1111 also reads shared libraries.. */
1113 xcoff_relocate_symtab (pid)
1116 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1118 struct ld_info *ldi;
1121 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1123 /* According to my humble theory, AIX has some timing problems and
1124 when the user stack grows, kernel doesn't update stack info in time
1125 and ptrace calls step on user stack. That is why we sleep here a little,
1126 and give kernel to update its internals. */
1131 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1132 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1134 perror_with_name ("ptrace ldinfo");
1141 /* We are allowed to assume CORE_ADDR == pointer. This code is
1143 add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg,
1144 (CORE_ADDR) ldi->ldinfo_dataorg);
1145 } while (ldi->ldinfo_next
1146 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1149 /* Now that we've jumbled things around, re-sort them. */
1150 sort_minimal_symbols ();
1153 /* relocate the exec and core sections as well. */
1157 /* Keep an array of load segment information and their TOC table addresses.
1158 This info will be useful when calling a shared library function by hand. */
1161 CORE_ADDR textorg, dataorg;
1162 unsigned long toc_offset;
1165 #define LOADINFOLEN 10
1167 static struct loadinfo *loadinfo = NULL;
1168 static int loadinfolen = 0;
1169 static int loadinfotocindex = 0;
1170 static int loadinfotextindex = 0;
1174 xcoff_init_loadinfo ()
1176 loadinfotocindex = 0;
1177 loadinfotextindex = 0;
1179 if (loadinfolen == 0) {
1180 loadinfo = (struct loadinfo *)
1181 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1182 loadinfolen = LOADINFOLEN;
1187 /* FIXME -- this is never called! */
1195 loadinfotocindex = 0;
1196 loadinfotextindex = 0;
1199 /* this is called from xcoffread.c */
1202 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1204 while (loadinfotocindex >= loadinfolen) {
1205 loadinfolen += LOADINFOLEN;
1206 loadinfo = (struct loadinfo *)
1207 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1209 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1214 add_text_to_loadinfo (textaddr, dataaddr)
1218 while (loadinfotextindex >= loadinfolen) {
1219 loadinfolen += LOADINFOLEN;
1220 loadinfo = (struct loadinfo *)
1221 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1223 loadinfo [loadinfotextindex].textorg = textaddr;
1224 loadinfo [loadinfotextindex].dataorg = dataaddr;
1225 ++loadinfotextindex;
1229 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1230 of a member of this array are correlated with the "toc_offset"
1231 element of the same member. But they are sequentially assigned in wildly
1232 different places, and probably there is no correlation. FIXME! */
1235 find_toc_address (pc)
1238 int ii, toc_entry, tocbase = 0;
1240 for (ii=0; ii < loadinfotextindex; ++ii)
1241 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1243 tocbase = loadinfo[ii].textorg;
1246 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;