1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "elf/x86-64.h"
31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
32 #define MINUS_ONE (~ (bfd_vma) 0)
34 /* The relocation "howto" table. Order of fields:
35 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
36 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
37 static reloc_howto_type x86_64_elf_howto_table[] =
39 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
40 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
42 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
43 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
45 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
46 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
48 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
49 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
51 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
52 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
54 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
55 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
57 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
58 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
60 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
63 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
66 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
67 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
69 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
70 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
72 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
73 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
75 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
77 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
78 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
79 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
80 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
81 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
82 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
83 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
84 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
86 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
87 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
89 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
90 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
92 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
93 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
95 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
96 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
98 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
99 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
101 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
102 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
104 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
105 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
107 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
108 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
110 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
111 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
112 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
113 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
114 bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
115 FALSE, 0xffffffff, 0xffffffff, TRUE),
116 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
117 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
119 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
120 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
122 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
123 bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
124 FALSE, MINUS_ONE, MINUS_ONE, TRUE),
125 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
126 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
128 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
129 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
133 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
134 complain_overflow_bitfield, bfd_elf_generic_reloc,
135 "R_X86_64_GOTPC32_TLSDESC",
136 FALSE, 0xffffffff, 0xffffffff, TRUE),
137 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
138 complain_overflow_dont, bfd_elf_generic_reloc,
139 "R_X86_64_TLSDESC_CALL",
141 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
142 complain_overflow_bitfield, bfd_elf_generic_reloc,
144 FALSE, MINUS_ONE, MINUS_ONE, FALSE),
146 /* We have a gap in the reloc numbers here.
147 R_X86_64_standard counts the number up to this point, and
148 R_X86_64_vt_offset is the value to subtract from a reloc type of
149 R_X86_64_GNU_VT* to form an index into this table. */
150 #define R_X86_64_standard (R_X86_64_TLSDESC + 1)
151 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
153 /* GNU extension to record C++ vtable hierarchy. */
154 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
155 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
157 /* GNU extension to record C++ vtable member usage. */
158 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
159 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
163 /* Map BFD relocs to the x86_64 elf relocs. */
166 bfd_reloc_code_real_type bfd_reloc_val;
167 unsigned char elf_reloc_val;
170 static const struct elf_reloc_map x86_64_reloc_map[] =
172 { BFD_RELOC_NONE, R_X86_64_NONE, },
173 { BFD_RELOC_64, R_X86_64_64, },
174 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
175 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
176 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
177 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
178 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
179 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
180 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
181 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
182 { BFD_RELOC_32, R_X86_64_32, },
183 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
184 { BFD_RELOC_16, R_X86_64_16, },
185 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
186 { BFD_RELOC_8, R_X86_64_8, },
187 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
188 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
189 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
190 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
191 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
192 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
193 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
194 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
195 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
196 { BFD_RELOC_64_PCREL, R_X86_64_PC64, },
197 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
198 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
199 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
200 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
201 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
202 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
203 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
204 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
205 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
206 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
207 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
208 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
211 static reloc_howto_type *
212 elf64_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
216 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
217 || r_type >= (unsigned int) R_X86_64_max)
219 if (r_type >= (unsigned int) R_X86_64_standard)
221 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
223 r_type = R_X86_64_NONE;
228 i = r_type - (unsigned int) R_X86_64_vt_offset;
229 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
230 return &x86_64_elf_howto_table[i];
233 /* Given a BFD reloc type, return a HOWTO structure. */
234 static reloc_howto_type *
235 elf64_x86_64_reloc_type_lookup (bfd *abfd,
236 bfd_reloc_code_real_type code)
240 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
243 if (x86_64_reloc_map[i].bfd_reloc_val == code)
244 return elf64_x86_64_rtype_to_howto (abfd,
245 x86_64_reloc_map[i].elf_reloc_val);
250 static reloc_howto_type *
251 elf64_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
257 i < (sizeof (x86_64_elf_howto_table)
258 / sizeof (x86_64_elf_howto_table[0]));
260 if (x86_64_elf_howto_table[i].name != NULL
261 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
262 return &x86_64_elf_howto_table[i];
267 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
270 elf64_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
271 Elf_Internal_Rela *dst)
275 r_type = ELF64_R_TYPE (dst->r_info);
276 cache_ptr->howto = elf64_x86_64_rtype_to_howto (abfd, r_type);
277 BFD_ASSERT (r_type == cache_ptr->howto->type);
280 /* Support for core dump NOTE sections. */
282 elf64_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
287 switch (note->descsz)
292 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
294 elf_tdata (abfd)->core_signal
295 = bfd_get_16 (abfd, note->descdata + 12);
298 elf_tdata (abfd)->core_pid
299 = bfd_get_32 (abfd, note->descdata + 32);
308 /* Make a ".reg/999" section. */
309 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
310 size, note->descpos + offset);
314 elf64_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
316 switch (note->descsz)
321 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
322 elf_tdata (abfd)->core_program
323 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
324 elf_tdata (abfd)->core_command
325 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
328 /* Note that for some reason, a spurious space is tacked
329 onto the end of the args in some (at least one anyway)
330 implementations, so strip it off if it exists. */
333 char *command = elf_tdata (abfd)->core_command;
334 int n = strlen (command);
336 if (0 < n && command[n - 1] == ' ')
337 command[n - 1] = '\0';
343 /* Functions for the x86-64 ELF linker. */
345 /* The name of the dynamic interpreter. This is put in the .interp
348 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
350 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
351 copying dynamic variables from a shared lib into an app's dynbss
352 section, and instead use a dynamic relocation to point into the
354 #define ELIMINATE_COPY_RELOCS 1
356 /* The size in bytes of an entry in the global offset table. */
358 #define GOT_ENTRY_SIZE 8
360 /* The size in bytes of an entry in the procedure linkage table. */
362 #define PLT_ENTRY_SIZE 16
364 /* The first entry in a procedure linkage table looks like this. See the
365 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
367 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
369 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
370 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
371 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
374 /* Subsequent entries in a procedure linkage table look like this. */
376 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
378 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
379 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
380 0x68, /* pushq immediate */
381 0, 0, 0, 0, /* replaced with index into relocation table. */
382 0xe9, /* jmp relative */
383 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
386 /* The x86-64 linker needs to keep track of the number of relocs that
387 it decides to copy as dynamic relocs in check_relocs for each symbol.
388 This is so that it can later discard them if they are found to be
389 unnecessary. We store the information in a field extending the
390 regular ELF linker hash table. */
392 struct elf64_x86_64_dyn_relocs
395 struct elf64_x86_64_dyn_relocs *next;
397 /* The input section of the reloc. */
400 /* Total number of relocs copied for the input section. */
403 /* Number of pc-relative relocs copied for the input section. */
404 bfd_size_type pc_count;
407 /* x86-64 ELF linker hash entry. */
409 struct elf64_x86_64_link_hash_entry
411 struct elf_link_hash_entry elf;
413 /* Track dynamic relocs copied for this symbol. */
414 struct elf64_x86_64_dyn_relocs *dyn_relocs;
416 #define GOT_UNKNOWN 0
420 #define GOT_TLS_GDESC 4
421 #define GOT_TLS_GD_BOTH_P(type) \
422 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
423 #define GOT_TLS_GD_P(type) \
424 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
425 #define GOT_TLS_GDESC_P(type) \
426 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
427 #define GOT_TLS_GD_ANY_P(type) \
428 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
429 unsigned char tls_type;
431 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
432 starting at the end of the jump table. */
436 #define elf64_x86_64_hash_entry(ent) \
437 ((struct elf64_x86_64_link_hash_entry *)(ent))
439 struct elf64_x86_64_obj_tdata
441 struct elf_obj_tdata root;
443 /* tls_type for each local got entry. */
444 char *local_got_tls_type;
446 /* GOTPLT entries for TLS descriptors. */
447 bfd_vma *local_tlsdesc_gotent;
450 #define elf64_x86_64_tdata(abfd) \
451 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
453 #define elf64_x86_64_local_got_tls_type(abfd) \
454 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
456 #define elf64_x86_64_local_tlsdesc_gotent(abfd) \
457 (elf64_x86_64_tdata (abfd)->local_tlsdesc_gotent)
459 /* x86-64 ELF linker hash table. */
461 struct elf64_x86_64_link_hash_table
463 struct elf_link_hash_table elf;
465 /* Short-cuts to get to dynamic linker sections. */
474 /* The offset into splt of the PLT entry for the TLS descriptor
475 resolver. Special values are 0, if not necessary (or not found
476 to be necessary yet), and -1 if needed but not determined
479 /* The offset into sgot of the GOT entry used by the PLT entry
484 bfd_signed_vma refcount;
488 /* The amount of space used by the jump slots in the GOT. */
489 bfd_vma sgotplt_jump_table_size;
491 /* Small local sym to section mapping cache. */
492 struct sym_sec_cache sym_sec;
495 /* Get the x86-64 ELF linker hash table from a link_info structure. */
497 #define elf64_x86_64_hash_table(p) \
498 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
500 #define elf64_x86_64_compute_jump_table_size(htab) \
501 ((htab)->srelplt->reloc_count * GOT_ENTRY_SIZE)
503 /* Create an entry in an x86-64 ELF linker hash table. */
505 static struct bfd_hash_entry *
506 link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
509 /* Allocate the structure if it has not already been allocated by a
513 entry = bfd_hash_allocate (table,
514 sizeof (struct elf64_x86_64_link_hash_entry));
519 /* Call the allocation method of the superclass. */
520 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
523 struct elf64_x86_64_link_hash_entry *eh;
525 eh = (struct elf64_x86_64_link_hash_entry *) entry;
526 eh->dyn_relocs = NULL;
527 eh->tls_type = GOT_UNKNOWN;
528 eh->tlsdesc_got = (bfd_vma) -1;
534 /* Create an X86-64 ELF linker hash table. */
536 static struct bfd_link_hash_table *
537 elf64_x86_64_link_hash_table_create (bfd *abfd)
539 struct elf64_x86_64_link_hash_table *ret;
540 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
542 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
546 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc,
547 sizeof (struct elf64_x86_64_link_hash_entry)))
560 ret->sym_sec.abfd = NULL;
561 ret->tlsdesc_plt = 0;
562 ret->tlsdesc_got = 0;
563 ret->tls_ld_got.refcount = 0;
564 ret->sgotplt_jump_table_size = 0;
566 return &ret->elf.root;
569 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
570 shortcuts to them in our hash table. */
573 create_got_section (bfd *dynobj, struct bfd_link_info *info)
575 struct elf64_x86_64_link_hash_table *htab;
577 if (! _bfd_elf_create_got_section (dynobj, info))
580 htab = elf64_x86_64_hash_table (info);
581 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
582 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
583 if (!htab->sgot || !htab->sgotplt)
586 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
587 (SEC_ALLOC | SEC_LOAD
592 if (htab->srelgot == NULL
593 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
598 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
599 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
603 elf64_x86_64_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
605 struct elf64_x86_64_link_hash_table *htab;
607 htab = elf64_x86_64_hash_table (info);
608 if (!htab->sgot && !create_got_section (dynobj, info))
611 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
614 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
615 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
616 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
618 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
620 if (!htab->splt || !htab->srelplt || !htab->sdynbss
621 || (!info->shared && !htab->srelbss))
627 /* Copy the extra info we tack onto an elf_link_hash_entry. */
630 elf64_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
631 struct elf_link_hash_entry *dir,
632 struct elf_link_hash_entry *ind)
634 struct elf64_x86_64_link_hash_entry *edir, *eind;
636 edir = (struct elf64_x86_64_link_hash_entry *) dir;
637 eind = (struct elf64_x86_64_link_hash_entry *) ind;
639 if (eind->dyn_relocs != NULL)
641 if (edir->dyn_relocs != NULL)
643 struct elf64_x86_64_dyn_relocs **pp;
644 struct elf64_x86_64_dyn_relocs *p;
646 /* Add reloc counts against the indirect sym to the direct sym
647 list. Merge any entries against the same section. */
648 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
650 struct elf64_x86_64_dyn_relocs *q;
652 for (q = edir->dyn_relocs; q != NULL; q = q->next)
653 if (q->sec == p->sec)
655 q->pc_count += p->pc_count;
656 q->count += p->count;
663 *pp = edir->dyn_relocs;
666 edir->dyn_relocs = eind->dyn_relocs;
667 eind->dyn_relocs = NULL;
670 if (ind->root.type == bfd_link_hash_indirect
671 && dir->got.refcount <= 0)
673 edir->tls_type = eind->tls_type;
674 eind->tls_type = GOT_UNKNOWN;
677 if (ELIMINATE_COPY_RELOCS
678 && ind->root.type != bfd_link_hash_indirect
679 && dir->dynamic_adjusted)
681 /* If called to transfer flags for a weakdef during processing
682 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
683 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
684 dir->ref_dynamic |= ind->ref_dynamic;
685 dir->ref_regular |= ind->ref_regular;
686 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
687 dir->needs_plt |= ind->needs_plt;
688 dir->pointer_equality_needed |= ind->pointer_equality_needed;
691 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
695 elf64_x86_64_mkobject (bfd *abfd)
697 if (abfd->tdata.any == NULL)
699 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
700 abfd->tdata.any = bfd_zalloc (abfd, amt);
701 if (abfd->tdata.any == NULL)
704 return bfd_elf_mkobject (abfd);
708 elf64_x86_64_elf_object_p (bfd *abfd)
710 /* Set the right machine number for an x86-64 elf64 file. */
711 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
716 elf64_x86_64_tls_transition (struct bfd_link_info *info, int r_type,
717 struct elf_link_hash_entry *h)
725 case R_X86_64_GOTPC32_TLSDESC:
726 case R_X86_64_TLSDESC_CALL:
727 case R_X86_64_GOTTPOFF:
729 return R_X86_64_TPOFF32;
730 return R_X86_64_GOTTPOFF;
732 return R_X86_64_TPOFF32;
738 /* Look through the relocs for a section during the first phase, and
739 calculate needed space in the global offset table, procedure
740 linkage table, and dynamic reloc sections. */
743 elf64_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
744 const Elf_Internal_Rela *relocs)
746 struct elf64_x86_64_link_hash_table *htab;
747 Elf_Internal_Shdr *symtab_hdr;
748 struct elf_link_hash_entry **sym_hashes;
749 const Elf_Internal_Rela *rel;
750 const Elf_Internal_Rela *rel_end;
753 if (info->relocatable)
756 htab = elf64_x86_64_hash_table (info);
757 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
758 sym_hashes = elf_sym_hashes (abfd);
762 rel_end = relocs + sec->reloc_count;
763 for (rel = relocs; rel < rel_end; rel++)
766 unsigned long r_symndx;
767 struct elf_link_hash_entry *h;
769 r_symndx = ELF64_R_SYM (rel->r_info);
770 r_type = ELF64_R_TYPE (rel->r_info);
772 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
774 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
779 if (r_symndx < symtab_hdr->sh_info)
783 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
784 while (h->root.type == bfd_link_hash_indirect
785 || h->root.type == bfd_link_hash_warning)
786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
789 r_type = elf64_x86_64_tls_transition (info, r_type, h);
793 htab->tls_ld_got.refcount += 1;
796 case R_X86_64_TPOFF32:
799 (*_bfd_error_handler)
800 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
802 x86_64_elf_howto_table[r_type].name,
803 (h) ? h->root.root.string : "a local symbol");
804 bfd_set_error (bfd_error_bad_value);
809 case R_X86_64_GOTTPOFF:
811 info->flags |= DF_STATIC_TLS;
815 case R_X86_64_GOTPCREL:
818 case R_X86_64_GOTPCREL64:
819 case R_X86_64_GOTPLT64:
820 case R_X86_64_GOTPC32_TLSDESC:
821 case R_X86_64_TLSDESC_CALL:
822 /* This symbol requires a global offset table entry. */
824 int tls_type, old_tls_type;
828 default: tls_type = GOT_NORMAL; break;
829 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
830 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
831 case R_X86_64_GOTPC32_TLSDESC:
832 case R_X86_64_TLSDESC_CALL:
833 tls_type = GOT_TLS_GDESC; break;
838 if (r_type == R_X86_64_GOTPLT64)
840 /* This relocation indicates that we also need
841 a PLT entry, as this is a function. We don't need
842 a PLT entry for local symbols. */
844 h->plt.refcount += 1;
846 h->got.refcount += 1;
847 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
851 bfd_signed_vma *local_got_refcounts;
853 /* This is a global offset table entry for a local symbol. */
854 local_got_refcounts = elf_local_got_refcounts (abfd);
855 if (local_got_refcounts == NULL)
859 size = symtab_hdr->sh_info;
860 size *= sizeof (bfd_signed_vma)
861 + sizeof (bfd_vma) + sizeof (char);
862 local_got_refcounts = ((bfd_signed_vma *)
863 bfd_zalloc (abfd, size));
864 if (local_got_refcounts == NULL)
866 elf_local_got_refcounts (abfd) = local_got_refcounts;
867 elf64_x86_64_local_tlsdesc_gotent (abfd)
868 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
869 elf64_x86_64_local_got_tls_type (abfd)
870 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
872 local_got_refcounts[r_symndx] += 1;
874 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
877 /* If a TLS symbol is accessed using IE at least once,
878 there is no point to use dynamic model for it. */
879 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
880 && (! GOT_TLS_GD_ANY_P (old_tls_type)
881 || tls_type != GOT_TLS_IE))
883 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
884 tls_type = old_tls_type;
885 else if (GOT_TLS_GD_ANY_P (old_tls_type)
886 && GOT_TLS_GD_ANY_P (tls_type))
887 tls_type |= old_tls_type;
890 (*_bfd_error_handler)
891 (_("%B: %s' accessed both as normal and thread local symbol"),
892 abfd, h ? h->root.root.string : "<local>");
897 if (old_tls_type != tls_type)
900 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
902 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
907 case R_X86_64_GOTOFF64:
908 case R_X86_64_GOTPC32:
909 case R_X86_64_GOTPC64:
911 if (htab->sgot == NULL)
913 if (htab->elf.dynobj == NULL)
914 htab->elf.dynobj = abfd;
915 if (!create_got_section (htab->elf.dynobj, info))
921 /* This symbol requires a procedure linkage table entry. We
922 actually build the entry in adjust_dynamic_symbol,
923 because this might be a case of linking PIC code which is
924 never referenced by a dynamic object, in which case we
925 don't need to generate a procedure linkage table entry
928 /* If this is a local symbol, we resolve it directly without
929 creating a procedure linkage table entry. */
934 h->plt.refcount += 1;
937 case R_X86_64_PLTOFF64:
938 /* This tries to form the 'address' of a function relative
939 to GOT. For global symbols we need a PLT entry. */
943 h->plt.refcount += 1;
951 /* Let's help debug shared library creation. These relocs
952 cannot be used in shared libs. Don't error out for
953 sections we don't care about, such as debug sections or
954 non-constant sections. */
956 && (sec->flags & SEC_ALLOC) != 0
957 && (sec->flags & SEC_READONLY) != 0)
959 (*_bfd_error_handler)
960 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
962 x86_64_elf_howto_table[r_type].name,
963 (h) ? h->root.root.string : "a local symbol");
964 bfd_set_error (bfd_error_bad_value);
974 if (h != NULL && !info->shared)
976 /* If this reloc is in a read-only section, we might
977 need a copy reloc. We can't check reliably at this
978 stage whether the section is read-only, as input
979 sections have not yet been mapped to output sections.
980 Tentatively set the flag for now, and correct in
981 adjust_dynamic_symbol. */
984 /* We may need a .plt entry if the function this reloc
985 refers to is in a shared lib. */
986 h->plt.refcount += 1;
987 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
988 h->pointer_equality_needed = 1;
991 /* If we are creating a shared library, and this is a reloc
992 against a global symbol, or a non PC relative reloc
993 against a local symbol, then we need to copy the reloc
994 into the shared library. However, if we are linking with
995 -Bsymbolic, we do not need to copy a reloc against a
996 global symbol which is defined in an object we are
997 including in the link (i.e., DEF_REGULAR is set). At
998 this point we have not seen all the input files, so it is
999 possible that DEF_REGULAR is not set now but will be set
1000 later (it is never cleared). In case of a weak definition,
1001 DEF_REGULAR may be cleared later by a strong definition in
1002 a shared library. We account for that possibility below by
1003 storing information in the relocs_copied field of the hash
1004 table entry. A similar situation occurs when creating
1005 shared libraries and symbol visibility changes render the
1008 If on the other hand, we are creating an executable, we
1009 may need to keep relocations for symbols satisfied by a
1010 dynamic library if we manage to avoid copy relocs for the
1013 && (sec->flags & SEC_ALLOC) != 0
1014 && (((r_type != R_X86_64_PC8)
1015 && (r_type != R_X86_64_PC16)
1016 && (r_type != R_X86_64_PC32)
1017 && (r_type != R_X86_64_PC64))
1019 && (! SYMBOLIC_BIND (info, h)
1020 || h->root.type == bfd_link_hash_defweak
1021 || !h->def_regular))))
1022 || (ELIMINATE_COPY_RELOCS
1024 && (sec->flags & SEC_ALLOC) != 0
1026 && (h->root.type == bfd_link_hash_defweak
1027 || !h->def_regular)))
1029 struct elf64_x86_64_dyn_relocs *p;
1030 struct elf64_x86_64_dyn_relocs **head;
1032 /* We must copy these reloc types into the output file.
1033 Create a reloc section in dynobj and make room for
1040 name = (bfd_elf_string_from_elf_section
1042 elf_elfheader (abfd)->e_shstrndx,
1043 elf_section_data (sec)->rel_hdr.sh_name));
1047 if (! CONST_STRNEQ (name, ".rela")
1048 || strcmp (bfd_get_section_name (abfd, sec),
1051 (*_bfd_error_handler)
1052 (_("%B: bad relocation section name `%s\'"),
1056 if (htab->elf.dynobj == NULL)
1057 htab->elf.dynobj = abfd;
1059 dynobj = htab->elf.dynobj;
1061 sreloc = bfd_get_section_by_name (dynobj, name);
1066 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1067 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1068 if ((sec->flags & SEC_ALLOC) != 0)
1069 flags |= SEC_ALLOC | SEC_LOAD;
1070 sreloc = bfd_make_section_with_flags (dynobj,
1074 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1077 elf_section_data (sec)->sreloc = sreloc;
1080 /* If this is a global symbol, we count the number of
1081 relocations we need for this symbol. */
1084 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
1089 /* Track dynamic relocs needed for local syms too.
1090 We really need local syms available to do this
1094 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1099 /* Beware of type punned pointers vs strict aliasing
1101 vpp = &(elf_section_data (s)->local_dynrel);
1102 head = (struct elf64_x86_64_dyn_relocs **)vpp;
1106 if (p == NULL || p->sec != sec)
1108 bfd_size_type amt = sizeof *p;
1109 p = ((struct elf64_x86_64_dyn_relocs *)
1110 bfd_alloc (htab->elf.dynobj, amt));
1121 if (r_type == R_X86_64_PC8
1122 || r_type == R_X86_64_PC16
1123 || r_type == R_X86_64_PC32
1124 || r_type == R_X86_64_PC64)
1129 /* This relocation describes the C++ object vtable hierarchy.
1130 Reconstruct it for later use during GC. */
1131 case R_X86_64_GNU_VTINHERIT:
1132 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1136 /* This relocation describes which C++ vtable entries are actually
1137 used. Record for later use during GC. */
1138 case R_X86_64_GNU_VTENTRY:
1139 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1151 /* Return the section that should be marked against GC for a given
1155 elf64_x86_64_gc_mark_hook (asection *sec,
1156 struct bfd_link_info *info,
1157 Elf_Internal_Rela *rel,
1158 struct elf_link_hash_entry *h,
1159 Elf_Internal_Sym *sym)
1162 switch (ELF64_R_TYPE (rel->r_info))
1164 case R_X86_64_GNU_VTINHERIT:
1165 case R_X86_64_GNU_VTENTRY:
1169 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1172 /* Update the got entry reference counts for the section being removed. */
1175 elf64_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
1176 asection *sec, const Elf_Internal_Rela *relocs)
1178 Elf_Internal_Shdr *symtab_hdr;
1179 struct elf_link_hash_entry **sym_hashes;
1180 bfd_signed_vma *local_got_refcounts;
1181 const Elf_Internal_Rela *rel, *relend;
1183 elf_section_data (sec)->local_dynrel = NULL;
1185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1186 sym_hashes = elf_sym_hashes (abfd);
1187 local_got_refcounts = elf_local_got_refcounts (abfd);
1189 relend = relocs + sec->reloc_count;
1190 for (rel = relocs; rel < relend; rel++)
1192 unsigned long r_symndx;
1193 unsigned int r_type;
1194 struct elf_link_hash_entry *h = NULL;
1196 r_symndx = ELF64_R_SYM (rel->r_info);
1197 if (r_symndx >= symtab_hdr->sh_info)
1199 struct elf64_x86_64_link_hash_entry *eh;
1200 struct elf64_x86_64_dyn_relocs **pp;
1201 struct elf64_x86_64_dyn_relocs *p;
1203 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1207 eh = (struct elf64_x86_64_link_hash_entry *) h;
1209 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1212 /* Everything must go for SEC. */
1218 r_type = ELF64_R_TYPE (rel->r_info);
1219 r_type = elf64_x86_64_tls_transition (info, r_type, h);
1222 case R_X86_64_TLSLD:
1223 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1224 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1227 case R_X86_64_TLSGD:
1228 case R_X86_64_GOTPC32_TLSDESC:
1229 case R_X86_64_TLSDESC_CALL:
1230 case R_X86_64_GOTTPOFF:
1231 case R_X86_64_GOT32:
1232 case R_X86_64_GOTPCREL:
1233 case R_X86_64_GOT64:
1234 case R_X86_64_GOTPCREL64:
1235 case R_X86_64_GOTPLT64:
1238 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
1239 h->plt.refcount -= 1;
1240 if (h->got.refcount > 0)
1241 h->got.refcount -= 1;
1243 else if (local_got_refcounts != NULL)
1245 if (local_got_refcounts[r_symndx] > 0)
1246 local_got_refcounts[r_symndx] -= 1;
1263 case R_X86_64_PLT32:
1264 case R_X86_64_PLTOFF64:
1267 if (h->plt.refcount > 0)
1268 h->plt.refcount -= 1;
1280 /* Adjust a symbol defined by a dynamic object and referenced by a
1281 regular object. The current definition is in some section of the
1282 dynamic object, but we're not including those sections. We have to
1283 change the definition to something the rest of the link can
1287 elf64_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
1288 struct elf_link_hash_entry *h)
1290 struct elf64_x86_64_link_hash_table *htab;
1293 /* If this is a function, put it in the procedure linkage table. We
1294 will fill in the contents of the procedure linkage table later,
1295 when we know the address of the .got section. */
1296 if (h->type == STT_FUNC
1299 if (h->plt.refcount <= 0
1300 || SYMBOL_CALLS_LOCAL (info, h)
1301 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1302 && h->root.type == bfd_link_hash_undefweak))
1304 /* This case can occur if we saw a PLT32 reloc in an input
1305 file, but the symbol was never referred to by a dynamic
1306 object, or if all references were garbage collected. In
1307 such a case, we don't actually need to build a procedure
1308 linkage table, and we can just do a PC32 reloc instead. */
1309 h->plt.offset = (bfd_vma) -1;
1316 /* It's possible that we incorrectly decided a .plt reloc was
1317 needed for an R_X86_64_PC32 reloc to a non-function sym in
1318 check_relocs. We can't decide accurately between function and
1319 non-function syms in check-relocs; Objects loaded later in
1320 the link may change h->type. So fix it now. */
1321 h->plt.offset = (bfd_vma) -1;
1323 /* If this is a weak symbol, and there is a real definition, the
1324 processor independent code will have arranged for us to see the
1325 real definition first, and we can just use the same value. */
1326 if (h->u.weakdef != NULL)
1328 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1329 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1330 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1331 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1332 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1333 h->non_got_ref = h->u.weakdef->non_got_ref;
1337 /* This is a reference to a symbol defined by a dynamic object which
1338 is not a function. */
1340 /* If we are creating a shared library, we must presume that the
1341 only references to the symbol are via the global offset table.
1342 For such cases we need not do anything here; the relocations will
1343 be handled correctly by relocate_section. */
1347 /* If there are no references to this symbol that do not use the
1348 GOT, we don't need to generate a copy reloc. */
1349 if (!h->non_got_ref)
1352 /* If -z nocopyreloc was given, we won't generate them either. */
1353 if (info->nocopyreloc)
1359 if (ELIMINATE_COPY_RELOCS)
1361 struct elf64_x86_64_link_hash_entry * eh;
1362 struct elf64_x86_64_dyn_relocs *p;
1364 eh = (struct elf64_x86_64_link_hash_entry *) h;
1365 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1367 s = p->sec->output_section;
1368 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1372 /* If we didn't find any dynamic relocs in read-only sections, then
1373 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1383 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
1384 h->root.root.string);
1388 /* We must allocate the symbol in our .dynbss section, which will
1389 become part of the .bss section of the executable. There will be
1390 an entry for this symbol in the .dynsym section. The dynamic
1391 object will contain position independent code, so all references
1392 from the dynamic object to this symbol will go through the global
1393 offset table. The dynamic linker will use the .dynsym entry to
1394 determine the address it must put in the global offset table, so
1395 both the dynamic object and the regular object will refer to the
1396 same memory location for the variable. */
1398 htab = elf64_x86_64_hash_table (info);
1400 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1401 to copy the initial value out of the dynamic object and into the
1402 runtime process image. */
1403 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1405 htab->srelbss->size += sizeof (Elf64_External_Rela);
1411 return _bfd_elf_adjust_dynamic_copy (h, s);
1414 /* Allocate space in .plt, .got and associated reloc sections for
1418 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1420 struct bfd_link_info *info;
1421 struct elf64_x86_64_link_hash_table *htab;
1422 struct elf64_x86_64_link_hash_entry *eh;
1423 struct elf64_x86_64_dyn_relocs *p;
1425 if (h->root.type == bfd_link_hash_indirect)
1428 if (h->root.type == bfd_link_hash_warning)
1429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1431 info = (struct bfd_link_info *) inf;
1432 htab = elf64_x86_64_hash_table (info);
1434 if (htab->elf.dynamic_sections_created
1435 && h->plt.refcount > 0)
1437 /* Make sure this symbol is output as a dynamic symbol.
1438 Undefined weak syms won't yet be marked as dynamic. */
1439 if (h->dynindx == -1
1440 && !h->forced_local)
1442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1447 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
1449 asection *s = htab->splt;
1451 /* If this is the first .plt entry, make room for the special
1454 s->size += PLT_ENTRY_SIZE;
1456 h->plt.offset = s->size;
1458 /* If this symbol is not defined in a regular file, and we are
1459 not generating a shared library, then set the symbol to this
1460 location in the .plt. This is required to make function
1461 pointers compare as equal between the normal executable and
1462 the shared library. */
1466 h->root.u.def.section = s;
1467 h->root.u.def.value = h->plt.offset;
1470 /* Make room for this entry. */
1471 s->size += PLT_ENTRY_SIZE;
1473 /* We also need to make an entry in the .got.plt section, which
1474 will be placed in the .got section by the linker script. */
1475 htab->sgotplt->size += GOT_ENTRY_SIZE;
1477 /* We also need to make an entry in the .rela.plt section. */
1478 htab->srelplt->size += sizeof (Elf64_External_Rela);
1479 htab->srelplt->reloc_count++;
1483 h->plt.offset = (bfd_vma) -1;
1489 h->plt.offset = (bfd_vma) -1;
1493 eh = (struct elf64_x86_64_link_hash_entry *) h;
1494 eh->tlsdesc_got = (bfd_vma) -1;
1496 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1497 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1498 if (h->got.refcount > 0
1501 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1502 h->got.offset = (bfd_vma) -1;
1503 else if (h->got.refcount > 0)
1507 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1509 /* Make sure this symbol is output as a dynamic symbol.
1510 Undefined weak syms won't yet be marked as dynamic. */
1511 if (h->dynindx == -1
1512 && !h->forced_local)
1514 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1518 if (GOT_TLS_GDESC_P (tls_type))
1520 eh->tlsdesc_got = htab->sgotplt->size
1521 - elf64_x86_64_compute_jump_table_size (htab);
1522 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1523 h->got.offset = (bfd_vma) -2;
1525 if (! GOT_TLS_GDESC_P (tls_type)
1526 || GOT_TLS_GD_P (tls_type))
1529 h->got.offset = s->size;
1530 s->size += GOT_ENTRY_SIZE;
1531 if (GOT_TLS_GD_P (tls_type))
1532 s->size += GOT_ENTRY_SIZE;
1534 dyn = htab->elf.dynamic_sections_created;
1535 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1537 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1538 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
1539 || tls_type == GOT_TLS_IE)
1540 htab->srelgot->size += sizeof (Elf64_External_Rela);
1541 else if (GOT_TLS_GD_P (tls_type))
1542 htab->srelgot->size += 2 * sizeof (Elf64_External_Rela);
1543 else if (! GOT_TLS_GDESC_P (tls_type)
1544 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1545 || h->root.type != bfd_link_hash_undefweak)
1547 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
1548 htab->srelgot->size += sizeof (Elf64_External_Rela);
1549 if (GOT_TLS_GDESC_P (tls_type))
1551 htab->srelplt->size += sizeof (Elf64_External_Rela);
1552 htab->tlsdesc_plt = (bfd_vma) -1;
1556 h->got.offset = (bfd_vma) -1;
1558 if (eh->dyn_relocs == NULL)
1561 /* In the shared -Bsymbolic case, discard space allocated for
1562 dynamic pc-relative relocs against symbols which turn out to be
1563 defined in regular objects. For the normal shared case, discard
1564 space for pc-relative relocs that have become local due to symbol
1565 visibility changes. */
1569 /* Relocs that use pc_count are those that appear on a call
1570 insn, or certain REL relocs that can generated via assembly.
1571 We want calls to protected symbols to resolve directly to the
1572 function rather than going via the plt. If people want
1573 function pointer comparisons to work as expected then they
1574 should avoid writing weird assembly. */
1575 if (SYMBOL_CALLS_LOCAL (info, h))
1577 struct elf64_x86_64_dyn_relocs **pp;
1579 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1581 p->count -= p->pc_count;
1590 /* Also discard relocs on undefined weak syms with non-default
1592 if (eh->dyn_relocs != NULL
1593 && h->root.type == bfd_link_hash_undefweak)
1595 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
1596 eh->dyn_relocs = NULL;
1598 /* Make sure undefined weak symbols are output as a dynamic
1600 else if (h->dynindx == -1
1601 && !h->forced_local)
1603 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1608 else if (ELIMINATE_COPY_RELOCS)
1610 /* For the non-shared case, discard space for relocs against
1611 symbols which turn out to need copy relocs or are not
1617 || (htab->elf.dynamic_sections_created
1618 && (h->root.type == bfd_link_hash_undefweak
1619 || h->root.type == bfd_link_hash_undefined))))
1621 /* Make sure this symbol is output as a dynamic symbol.
1622 Undefined weak syms won't yet be marked as dynamic. */
1623 if (h->dynindx == -1
1624 && !h->forced_local)
1626 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1630 /* If that succeeded, we know we'll be keeping all the
1632 if (h->dynindx != -1)
1636 eh->dyn_relocs = NULL;
1641 /* Finally, allocate space. */
1642 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1644 asection *sreloc = elf_section_data (p->sec)->sreloc;
1645 sreloc->size += p->count * sizeof (Elf64_External_Rela);
1651 /* Find any dynamic relocs that apply to read-only sections. */
1654 readonly_dynrelocs (struct elf_link_hash_entry *h, void * inf)
1656 struct elf64_x86_64_link_hash_entry *eh;
1657 struct elf64_x86_64_dyn_relocs *p;
1659 if (h->root.type == bfd_link_hash_warning)
1660 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1662 eh = (struct elf64_x86_64_link_hash_entry *) h;
1663 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1665 asection *s = p->sec->output_section;
1667 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1669 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1671 info->flags |= DF_TEXTREL;
1673 /* Not an error, just cut short the traversal. */
1680 /* Set the sizes of the dynamic sections. */
1683 elf64_x86_64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1684 struct bfd_link_info *info)
1686 struct elf64_x86_64_link_hash_table *htab;
1692 htab = elf64_x86_64_hash_table (info);
1693 dynobj = htab->elf.dynobj;
1697 if (htab->elf.dynamic_sections_created)
1699 /* Set the contents of the .interp section to the interpreter. */
1700 if (info->executable)
1702 s = bfd_get_section_by_name (dynobj, ".interp");
1705 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1706 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1710 /* Set up .got offsets for local syms, and space for local dynamic
1712 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1714 bfd_signed_vma *local_got;
1715 bfd_signed_vma *end_local_got;
1716 char *local_tls_type;
1717 bfd_vma *local_tlsdesc_gotent;
1718 bfd_size_type locsymcount;
1719 Elf_Internal_Shdr *symtab_hdr;
1722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1725 for (s = ibfd->sections; s != NULL; s = s->next)
1727 struct elf64_x86_64_dyn_relocs *p;
1729 for (p = (struct elf64_x86_64_dyn_relocs *)
1730 (elf_section_data (s)->local_dynrel);
1734 if (!bfd_is_abs_section (p->sec)
1735 && bfd_is_abs_section (p->sec->output_section))
1737 /* Input section has been discarded, either because
1738 it is a copy of a linkonce section or due to
1739 linker script /DISCARD/, so we'll be discarding
1742 else if (p->count != 0)
1744 srel = elf_section_data (p->sec)->sreloc;
1745 srel->size += p->count * sizeof (Elf64_External_Rela);
1746 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1747 info->flags |= DF_TEXTREL;
1753 local_got = elf_local_got_refcounts (ibfd);
1757 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1758 locsymcount = symtab_hdr->sh_info;
1759 end_local_got = local_got + locsymcount;
1760 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1761 local_tlsdesc_gotent = elf64_x86_64_local_tlsdesc_gotent (ibfd);
1763 srel = htab->srelgot;
1764 for (; local_got < end_local_got;
1765 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
1767 *local_tlsdesc_gotent = (bfd_vma) -1;
1770 if (GOT_TLS_GDESC_P (*local_tls_type))
1772 *local_tlsdesc_gotent = htab->sgotplt->size
1773 - elf64_x86_64_compute_jump_table_size (htab);
1774 htab->sgotplt->size += 2 * GOT_ENTRY_SIZE;
1775 *local_got = (bfd_vma) -2;
1777 if (! GOT_TLS_GDESC_P (*local_tls_type)
1778 || GOT_TLS_GD_P (*local_tls_type))
1780 *local_got = s->size;
1781 s->size += GOT_ENTRY_SIZE;
1782 if (GOT_TLS_GD_P (*local_tls_type))
1783 s->size += GOT_ENTRY_SIZE;
1786 || GOT_TLS_GD_ANY_P (*local_tls_type)
1787 || *local_tls_type == GOT_TLS_IE)
1789 if (GOT_TLS_GDESC_P (*local_tls_type))
1791 htab->srelplt->size += sizeof (Elf64_External_Rela);
1792 htab->tlsdesc_plt = (bfd_vma) -1;
1794 if (! GOT_TLS_GDESC_P (*local_tls_type)
1795 || GOT_TLS_GD_P (*local_tls_type))
1796 srel->size += sizeof (Elf64_External_Rela);
1800 *local_got = (bfd_vma) -1;
1804 if (htab->tls_ld_got.refcount > 0)
1806 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1808 htab->tls_ld_got.offset = htab->sgot->size;
1809 htab->sgot->size += 2 * GOT_ENTRY_SIZE;
1810 htab->srelgot->size += sizeof (Elf64_External_Rela);
1813 htab->tls_ld_got.offset = -1;
1815 /* Allocate global sym .plt and .got entries, and space for global
1816 sym dynamic relocs. */
1817 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1819 /* For every jump slot reserved in the sgotplt, reloc_count is
1820 incremented. However, when we reserve space for TLS descriptors,
1821 it's not incremented, so in order to compute the space reserved
1822 for them, it suffices to multiply the reloc count by the jump
1825 htab->sgotplt_jump_table_size
1826 = elf64_x86_64_compute_jump_table_size (htab);
1828 if (htab->tlsdesc_plt)
1830 /* If we're not using lazy TLS relocations, don't generate the
1831 PLT and GOT entries they require. */
1832 if ((info->flags & DF_BIND_NOW))
1833 htab->tlsdesc_plt = 0;
1836 htab->tlsdesc_got = htab->sgot->size;
1837 htab->sgot->size += GOT_ENTRY_SIZE;
1838 /* Reserve room for the initial entry.
1839 FIXME: we could probably do away with it in this case. */
1840 if (htab->splt->size == 0)
1841 htab->splt->size += PLT_ENTRY_SIZE;
1842 htab->tlsdesc_plt = htab->splt->size;
1843 htab->splt->size += PLT_ENTRY_SIZE;
1847 /* We now have determined the sizes of the various dynamic sections.
1848 Allocate memory for them. */
1850 for (s = dynobj->sections; s != NULL; s = s->next)
1852 if ((s->flags & SEC_LINKER_CREATED) == 0)
1857 || s == htab->sgotplt
1858 || s == htab->sdynbss)
1860 /* Strip this section if we don't need it; see the
1863 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
1865 if (s->size != 0 && s != htab->srelplt)
1868 /* We use the reloc_count field as a counter if we need
1869 to copy relocs into the output file. */
1870 if (s != htab->srelplt)
1875 /* It's not one of our sections, so don't allocate space. */
1881 /* If we don't need this section, strip it from the
1882 output file. This is mostly to handle .rela.bss and
1883 .rela.plt. We must create both sections in
1884 create_dynamic_sections, because they must be created
1885 before the linker maps input sections to output
1886 sections. The linker does that before
1887 adjust_dynamic_symbol is called, and it is that
1888 function which decides whether anything needs to go
1889 into these sections. */
1891 s->flags |= SEC_EXCLUDE;
1895 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1898 /* Allocate memory for the section contents. We use bfd_zalloc
1899 here in case unused entries are not reclaimed before the
1900 section's contents are written out. This should not happen,
1901 but this way if it does, we get a R_X86_64_NONE reloc instead
1903 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1904 if (s->contents == NULL)
1908 if (htab->elf.dynamic_sections_created)
1910 /* Add some entries to the .dynamic section. We fill in the
1911 values later, in elf64_x86_64_finish_dynamic_sections, but we
1912 must add the entries now so that we get the correct size for
1913 the .dynamic section. The DT_DEBUG entry is filled in by the
1914 dynamic linker and used by the debugger. */
1915 #define add_dynamic_entry(TAG, VAL) \
1916 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1918 if (info->executable)
1920 if (!add_dynamic_entry (DT_DEBUG, 0))
1924 if (htab->splt->size != 0)
1926 if (!add_dynamic_entry (DT_PLTGOT, 0)
1927 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1928 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1929 || !add_dynamic_entry (DT_JMPREL, 0))
1932 if (htab->tlsdesc_plt
1933 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
1934 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
1940 if (!add_dynamic_entry (DT_RELA, 0)
1941 || !add_dynamic_entry (DT_RELASZ, 0)
1942 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1945 /* If any dynamic relocs apply to a read-only section,
1946 then we need a DT_TEXTREL entry. */
1947 if ((info->flags & DF_TEXTREL) == 0)
1948 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1951 if ((info->flags & DF_TEXTREL) != 0)
1953 if (!add_dynamic_entry (DT_TEXTREL, 0))
1958 #undef add_dynamic_entry
1964 elf64_x86_64_always_size_sections (bfd *output_bfd,
1965 struct bfd_link_info *info)
1967 asection *tls_sec = elf_hash_table (info)->tls_sec;
1971 struct elf_link_hash_entry *tlsbase;
1973 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
1974 "_TLS_MODULE_BASE_",
1975 FALSE, FALSE, FALSE);
1977 if (tlsbase && tlsbase->type == STT_TLS)
1979 struct bfd_link_hash_entry *bh = NULL;
1980 const struct elf_backend_data *bed
1981 = get_elf_backend_data (output_bfd);
1983 if (!(_bfd_generic_link_add_one_symbol
1984 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1985 tls_sec, 0, NULL, FALSE,
1986 bed->collect, &bh)))
1988 tlsbase = (struct elf_link_hash_entry *)bh;
1989 tlsbase->def_regular = 1;
1990 tlsbase->other = STV_HIDDEN;
1991 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1998 /* Return the base VMA address which should be subtracted from real addresses
1999 when resolving @dtpoff relocation.
2000 This is PT_TLS segment p_vaddr. */
2003 dtpoff_base (struct bfd_link_info *info)
2005 /* If tls_sec is NULL, we should have signalled an error already. */
2006 if (elf_hash_table (info)->tls_sec == NULL)
2008 return elf_hash_table (info)->tls_sec->vma;
2011 /* Return the relocation value for @tpoff relocation
2012 if STT_TLS virtual address is ADDRESS. */
2015 tpoff (struct bfd_link_info *info, bfd_vma address)
2017 struct elf_link_hash_table *htab = elf_hash_table (info);
2019 /* If tls_segment is NULL, we should have signalled an error already. */
2020 if (htab->tls_sec == NULL)
2022 return address - htab->tls_size - htab->tls_sec->vma;
2025 /* Is the instruction before OFFSET in CONTENTS a 32bit relative
2029 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
2031 /* Opcode Instruction
2034 0x0f 0x8x conditional jump */
2036 && (contents [offset - 1] == 0xe8
2037 || contents [offset - 1] == 0xe9))
2039 && contents [offset - 2] == 0x0f
2040 && (contents [offset - 1] & 0xf0) == 0x80));
2043 /* Relocate an x86_64 ELF section. */
2046 elf64_x86_64_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
2047 bfd *input_bfd, asection *input_section,
2048 bfd_byte *contents, Elf_Internal_Rela *relocs,
2049 Elf_Internal_Sym *local_syms,
2050 asection **local_sections)
2052 struct elf64_x86_64_link_hash_table *htab;
2053 Elf_Internal_Shdr *symtab_hdr;
2054 struct elf_link_hash_entry **sym_hashes;
2055 bfd_vma *local_got_offsets;
2056 bfd_vma *local_tlsdesc_gotents;
2057 Elf_Internal_Rela *rel;
2058 Elf_Internal_Rela *relend;
2060 htab = elf64_x86_64_hash_table (info);
2061 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2062 sym_hashes = elf_sym_hashes (input_bfd);
2063 local_got_offsets = elf_local_got_offsets (input_bfd);
2064 local_tlsdesc_gotents = elf64_x86_64_local_tlsdesc_gotent (input_bfd);
2067 relend = relocs + input_section->reloc_count;
2068 for (; rel < relend; rel++)
2070 unsigned int r_type;
2071 reloc_howto_type *howto;
2072 unsigned long r_symndx;
2073 struct elf_link_hash_entry *h;
2074 Elf_Internal_Sym *sym;
2076 bfd_vma off, offplt;
2078 bfd_boolean unresolved_reloc;
2079 bfd_reloc_status_type r;
2082 r_type = ELF64_R_TYPE (rel->r_info);
2083 if (r_type == (int) R_X86_64_GNU_VTINHERIT
2084 || r_type == (int) R_X86_64_GNU_VTENTRY)
2087 if (r_type >= R_X86_64_max)
2089 bfd_set_error (bfd_error_bad_value);
2093 howto = x86_64_elf_howto_table + r_type;
2094 r_symndx = ELF64_R_SYM (rel->r_info);
2098 unresolved_reloc = FALSE;
2099 if (r_symndx < symtab_hdr->sh_info)
2101 sym = local_syms + r_symndx;
2102 sec = local_sections[r_symndx];
2104 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2110 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2111 r_symndx, symtab_hdr, sym_hashes,
2113 unresolved_reloc, warned);
2116 if (sec != NULL && elf_discarded_section (sec))
2118 /* For relocs against symbols from removed linkonce sections,
2119 or sections discarded by a linker script, we just want the
2120 section contents zeroed. Avoid any special processing. */
2121 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2127 if (info->relocatable)
2130 /* When generating a shared object, the relocations handled here are
2131 copied into the output file to be resolved at run time. */
2135 case R_X86_64_GOT32:
2136 case R_X86_64_GOT64:
2137 /* Relocation is to the entry for this symbol in the global
2139 case R_X86_64_GOTPCREL:
2140 case R_X86_64_GOTPCREL64:
2141 /* Use global offset table entry as symbol value. */
2142 case R_X86_64_GOTPLT64:
2143 /* This is the same as GOT64 for relocation purposes, but
2144 indicates the existence of a PLT entry. The difficulty is,
2145 that we must calculate the GOT slot offset from the PLT
2146 offset, if this symbol got a PLT entry (it was global).
2147 Additionally if it's computed from the PLT entry, then that
2148 GOT offset is relative to .got.plt, not to .got. */
2149 base_got = htab->sgot;
2151 if (htab->sgot == NULL)
2158 off = h->got.offset;
2160 && h->plt.offset != (bfd_vma)-1
2161 && off == (bfd_vma)-1)
2163 /* We can't use h->got.offset here to save
2164 state, or even just remember the offset, as
2165 finish_dynamic_symbol would use that as offset into
2167 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2168 off = (plt_index + 3) * GOT_ENTRY_SIZE;
2169 base_got = htab->sgotplt;
2172 dyn = htab->elf.dynamic_sections_created;
2174 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2176 && SYMBOL_REFERENCES_LOCAL (info, h))
2177 || (ELF_ST_VISIBILITY (h->other)
2178 && h->root.type == bfd_link_hash_undefweak))
2180 /* This is actually a static link, or it is a -Bsymbolic
2181 link and the symbol is defined locally, or the symbol
2182 was forced to be local because of a version file. We
2183 must initialize this entry in the global offset table.
2184 Since the offset must always be a multiple of 8, we
2185 use the least significant bit to record whether we
2186 have initialized it already.
2188 When doing a dynamic link, we create a .rela.got
2189 relocation entry to initialize the value. This is
2190 done in the finish_dynamic_symbol routine. */
2195 bfd_put_64 (output_bfd, relocation,
2196 base_got->contents + off);
2197 /* Note that this is harmless for the GOTPLT64 case,
2198 as -1 | 1 still is -1. */
2203 unresolved_reloc = FALSE;
2207 if (local_got_offsets == NULL)
2210 off = local_got_offsets[r_symndx];
2212 /* The offset must always be a multiple of 8. We use
2213 the least significant bit to record whether we have
2214 already generated the necessary reloc. */
2219 bfd_put_64 (output_bfd, relocation,
2220 base_got->contents + off);
2225 Elf_Internal_Rela outrel;
2228 /* We need to generate a R_X86_64_RELATIVE reloc
2229 for the dynamic linker. */
2234 outrel.r_offset = (base_got->output_section->vma
2235 + base_got->output_offset
2237 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2238 outrel.r_addend = relocation;
2240 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2241 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2244 local_got_offsets[r_symndx] |= 1;
2248 if (off >= (bfd_vma) -2)
2251 relocation = base_got->output_section->vma
2252 + base_got->output_offset + off;
2253 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
2254 relocation -= htab->sgotplt->output_section->vma
2255 - htab->sgotplt->output_offset;
2259 case R_X86_64_GOTOFF64:
2260 /* Relocation is relative to the start of the global offset
2263 /* Check to make sure it isn't a protected function symbol
2264 for shared library since it may not be local when used
2265 as function address. */
2269 && h->type == STT_FUNC
2270 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2272 (*_bfd_error_handler)
2273 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
2274 input_bfd, h->root.root.string);
2275 bfd_set_error (bfd_error_bad_value);
2279 /* Note that sgot is not involved in this
2280 calculation. We always want the start of .got.plt. If we
2281 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
2282 permitted by the ABI, we might have to change this
2284 relocation -= htab->sgotplt->output_section->vma
2285 + htab->sgotplt->output_offset;
2288 case R_X86_64_GOTPC32:
2289 case R_X86_64_GOTPC64:
2290 /* Use global offset table as symbol value. */
2291 relocation = htab->sgotplt->output_section->vma
2292 + htab->sgotplt->output_offset;
2293 unresolved_reloc = FALSE;
2296 case R_X86_64_PLTOFF64:
2297 /* Relocation is PLT entry relative to GOT. For local
2298 symbols it's the symbol itself relative to GOT. */
2300 /* See PLT32 handling. */
2301 && h->plt.offset != (bfd_vma) -1
2302 && htab->splt != NULL)
2304 relocation = (htab->splt->output_section->vma
2305 + htab->splt->output_offset
2307 unresolved_reloc = FALSE;
2310 relocation -= htab->sgotplt->output_section->vma
2311 + htab->sgotplt->output_offset;
2314 case R_X86_64_PLT32:
2315 /* Relocation is to the entry for this symbol in the
2316 procedure linkage table. */
2318 /* Resolve a PLT32 reloc against a local symbol directly,
2319 without using the procedure linkage table. */
2323 if (h->plt.offset == (bfd_vma) -1
2324 || htab->splt == NULL)
2326 /* We didn't make a PLT entry for this symbol. This
2327 happens when statically linking PIC code, or when
2328 using -Bsymbolic. */
2332 relocation = (htab->splt->output_section->vma
2333 + htab->splt->output_offset
2335 unresolved_reloc = FALSE;
2342 && !SYMBOL_REFERENCES_LOCAL (info, h)
2343 && (input_section->flags & SEC_ALLOC) != 0
2344 && (input_section->flags & SEC_READONLY) != 0
2346 || r_type != R_X86_64_PC32
2347 || h->type != STT_FUNC
2348 || ELF_ST_VISIBILITY (h->other) != STV_PROTECTED
2349 || !is_32bit_relative_branch (contents,
2353 && r_type == R_X86_64_PC32
2354 && h->type == STT_FUNC
2355 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
2356 (*_bfd_error_handler)
2357 (_("%B: relocation R_X86_64_PC32 against protected function `%s' can not be used when making a shared object"),
2358 input_bfd, h->root.root.string);
2360 (*_bfd_error_handler)
2361 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
2362 input_bfd, x86_64_elf_howto_table[r_type].name,
2363 h->root.root.string);
2364 bfd_set_error (bfd_error_bad_value);
2374 /* FIXME: The ABI says the linker should make sure the value is
2375 the same when it's zeroextended to 64 bit. */
2377 if ((input_section->flags & SEC_ALLOC) == 0)
2382 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2383 || h->root.type != bfd_link_hash_undefweak)
2384 && ((r_type != R_X86_64_PC8
2385 && r_type != R_X86_64_PC16
2386 && r_type != R_X86_64_PC32
2387 && r_type != R_X86_64_PC64)
2388 || !SYMBOL_CALLS_LOCAL (info, h)))
2389 || (ELIMINATE_COPY_RELOCS
2396 || h->root.type == bfd_link_hash_undefweak
2397 || h->root.type == bfd_link_hash_undefined)))
2399 Elf_Internal_Rela outrel;
2401 bfd_boolean skip, relocate;
2404 /* When generating a shared object, these relocations
2405 are copied into the output file to be resolved at run
2411 _bfd_elf_section_offset (output_bfd, info, input_section,
2413 if (outrel.r_offset == (bfd_vma) -1)
2415 else if (outrel.r_offset == (bfd_vma) -2)
2416 skip = TRUE, relocate = TRUE;
2418 outrel.r_offset += (input_section->output_section->vma
2419 + input_section->output_offset);
2422 memset (&outrel, 0, sizeof outrel);
2424 /* h->dynindx may be -1 if this symbol was marked to
2428 && (r_type == R_X86_64_PC8
2429 || r_type == R_X86_64_PC16
2430 || r_type == R_X86_64_PC32
2431 || r_type == R_X86_64_PC64
2433 || !SYMBOLIC_BIND (info, h)
2434 || !h->def_regular))
2436 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2437 outrel.r_addend = rel->r_addend;
2441 /* This symbol is local, or marked to become local. */
2442 if (r_type == R_X86_64_64)
2445 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2446 outrel.r_addend = relocation + rel->r_addend;
2452 if (bfd_is_abs_section (sec))
2454 else if (sec == NULL || sec->owner == NULL)
2456 bfd_set_error (bfd_error_bad_value);
2463 /* We are turning this relocation into one
2464 against a section symbol. It would be
2465 proper to subtract the symbol's value,
2466 osec->vma, from the emitted reloc addend,
2467 but ld.so expects buggy relocs. */
2468 osec = sec->output_section;
2469 sindx = elf_section_data (osec)->dynindx;
2472 asection *oi = htab->elf.text_index_section;
2473 sindx = elf_section_data (oi)->dynindx;
2475 BFD_ASSERT (sindx != 0);
2478 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2479 outrel.r_addend = relocation + rel->r_addend;
2483 sreloc = elf_section_data (input_section)->sreloc;
2487 loc = sreloc->contents;
2488 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2489 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2491 /* If this reloc is against an external symbol, we do
2492 not want to fiddle with the addend. Otherwise, we
2493 need to include the symbol value so that it becomes
2494 an addend for the dynamic reloc. */
2501 case R_X86_64_TLSGD:
2502 case R_X86_64_GOTPC32_TLSDESC:
2503 case R_X86_64_TLSDESC_CALL:
2504 case R_X86_64_GOTTPOFF:
2505 r_type = elf64_x86_64_tls_transition (info, r_type, h);
2506 tls_type = GOT_UNKNOWN;
2507 if (h == NULL && local_got_offsets)
2508 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2511 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2512 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2513 r_type = R_X86_64_TPOFF32;
2515 if (r_type == R_X86_64_TLSGD
2516 || r_type == R_X86_64_GOTPC32_TLSDESC
2517 || r_type == R_X86_64_TLSDESC_CALL)
2519 if (tls_type == GOT_TLS_IE)
2520 r_type = R_X86_64_GOTTPOFF;
2523 if (r_type == R_X86_64_TPOFF32)
2525 BFD_ASSERT (! unresolved_reloc);
2526 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2529 static unsigned char tlsgd[8]
2530 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2531 unsigned long tls_r_symndx;
2532 struct elf_link_hash_entry *tls_h;
2534 /* GD->LE transition.
2535 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2536 .word 0x6666; rex64; call __tls_get_addr
2539 leaq foo@tpoff(%rax), %rax */
2540 BFD_ASSERT (rel->r_offset >= 4);
2541 for (i = 0; i < 4; i++)
2542 BFD_ASSERT (bfd_get_8 (input_bfd,
2543 contents + rel->r_offset - 4 + i)
2545 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2546 for (i = 0; i < 4; i++)
2547 BFD_ASSERT (bfd_get_8 (input_bfd,
2548 contents + rel->r_offset + 4 + i)
2550 BFD_ASSERT (rel + 1 < relend);
2551 tls_r_symndx = ELF64_R_SYM (rel[1].r_info);
2552 BFD_ASSERT (tls_r_symndx >= symtab_hdr->sh_info);
2553 tls_h = sym_hashes[tls_r_symndx - symtab_hdr->sh_info];
2554 BFD_ASSERT (tls_h != NULL
2555 && tls_h->root.root.string != NULL
2556 && strcmp (tls_h->root.root.string,
2557 "__tls_get_addr") == 0);
2558 BFD_ASSERT ((! info->shared
2559 && ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32)
2560 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2561 memcpy (contents + rel->r_offset - 4,
2562 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2564 bfd_put_32 (output_bfd, tpoff (info, relocation),
2565 contents + rel->r_offset + 8);
2566 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2570 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2572 /* GDesc -> LE transition.
2573 It's originally something like:
2574 leaq x@tlsdesc(%rip), %rax
2579 Registers other than %rax may be set up here. */
2581 unsigned int val, type, type2;
2584 /* First, make sure it's a leaq adding rip to a
2585 32-bit offset into any register, although it's
2586 probably almost always going to be rax. */
2587 roff = rel->r_offset;
2588 BFD_ASSERT (roff >= 3);
2589 type = bfd_get_8 (input_bfd, contents + roff - 3);
2590 BFD_ASSERT ((type & 0xfb) == 0x48);
2591 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2592 BFD_ASSERT (type2 == 0x8d);
2593 val = bfd_get_8 (input_bfd, contents + roff - 1);
2594 BFD_ASSERT ((val & 0xc7) == 0x05);
2595 BFD_ASSERT (roff + 4 <= input_section->size);
2597 /* Now modify the instruction as appropriate. */
2598 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
2599 contents + roff - 3);
2600 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
2601 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
2602 contents + roff - 1);
2603 bfd_put_32 (output_bfd, tpoff (info, relocation),
2607 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2609 /* GDesc -> LE transition.
2615 unsigned int val, type;
2618 /* First, make sure it's a call *(%rax). */
2619 roff = rel->r_offset;
2620 BFD_ASSERT (roff + 2 <= input_section->size);
2621 type = bfd_get_8 (input_bfd, contents + roff);
2622 BFD_ASSERT (type == 0xff);
2623 val = bfd_get_8 (input_bfd, contents + roff + 1);
2624 BFD_ASSERT (val == 0x10);
2626 /* Now modify the instruction as appropriate. Use
2627 xchg %ax,%ax instead of 2 nops. */
2628 bfd_put_8 (output_bfd, 0x66, contents + roff);
2629 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2634 unsigned int val, type, reg;
2636 /* IE->LE transition:
2637 Originally it can be one of:
2638 movq foo@gottpoff(%rip), %reg
2639 addq foo@gottpoff(%rip), %reg
2642 leaq foo(%reg), %reg
2644 BFD_ASSERT (rel->r_offset >= 3);
2645 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2646 BFD_ASSERT (val == 0x48 || val == 0x4c);
2647 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2648 BFD_ASSERT (type == 0x8b || type == 0x03);
2649 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2650 BFD_ASSERT ((reg & 0xc7) == 5);
2652 BFD_ASSERT (rel->r_offset + 4 <= input_section->size);
2657 bfd_put_8 (output_bfd, 0x49,
2658 contents + rel->r_offset - 3);
2659 bfd_put_8 (output_bfd, 0xc7,
2660 contents + rel->r_offset - 2);
2661 bfd_put_8 (output_bfd, 0xc0 | reg,
2662 contents + rel->r_offset - 1);
2666 /* addq -> addq - addressing with %rsp/%r12 is
2669 bfd_put_8 (output_bfd, 0x49,
2670 contents + rel->r_offset - 3);
2671 bfd_put_8 (output_bfd, 0x81,
2672 contents + rel->r_offset - 2);
2673 bfd_put_8 (output_bfd, 0xc0 | reg,
2674 contents + rel->r_offset - 1);
2680 bfd_put_8 (output_bfd, 0x4d,
2681 contents + rel->r_offset - 3);
2682 bfd_put_8 (output_bfd, 0x8d,
2683 contents + rel->r_offset - 2);
2684 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2685 contents + rel->r_offset - 1);
2687 bfd_put_32 (output_bfd, tpoff (info, relocation),
2688 contents + rel->r_offset);
2693 if (htab->sgot == NULL)
2698 off = h->got.offset;
2699 offplt = elf64_x86_64_hash_entry (h)->tlsdesc_got;
2703 if (local_got_offsets == NULL)
2706 off = local_got_offsets[r_symndx];
2707 offplt = local_tlsdesc_gotents[r_symndx];
2714 Elf_Internal_Rela outrel;
2719 if (htab->srelgot == NULL)
2722 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2724 if (GOT_TLS_GDESC_P (tls_type))
2726 outrel.r_info = ELF64_R_INFO (indx, R_X86_64_TLSDESC);
2727 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
2728 + 2 * GOT_ENTRY_SIZE <= htab->sgotplt->size);
2729 outrel.r_offset = (htab->sgotplt->output_section->vma
2730 + htab->sgotplt->output_offset
2732 + htab->sgotplt_jump_table_size);
2733 sreloc = htab->srelplt;
2734 loc = sreloc->contents;
2735 loc += sreloc->reloc_count++
2736 * sizeof (Elf64_External_Rela);
2737 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2738 <= sreloc->contents + sreloc->size);
2740 outrel.r_addend = relocation - dtpoff_base (info);
2742 outrel.r_addend = 0;
2743 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2746 sreloc = htab->srelgot;
2748 outrel.r_offset = (htab->sgot->output_section->vma
2749 + htab->sgot->output_offset + off);
2751 if (GOT_TLS_GD_P (tls_type))
2752 dr_type = R_X86_64_DTPMOD64;
2753 else if (GOT_TLS_GDESC_P (tls_type))
2756 dr_type = R_X86_64_TPOFF64;
2758 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2759 outrel.r_addend = 0;
2760 if ((dr_type == R_X86_64_TPOFF64
2761 || dr_type == R_X86_64_TLSDESC) && indx == 0)
2762 outrel.r_addend = relocation - dtpoff_base (info);
2763 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2765 loc = sreloc->contents;
2766 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2767 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2768 <= sreloc->contents + sreloc->size);
2769 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2771 if (GOT_TLS_GD_P (tls_type))
2775 BFD_ASSERT (! unresolved_reloc);
2776 bfd_put_64 (output_bfd,
2777 relocation - dtpoff_base (info),
2778 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2782 bfd_put_64 (output_bfd, 0,
2783 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2784 outrel.r_info = ELF64_R_INFO (indx,
2786 outrel.r_offset += GOT_ENTRY_SIZE;
2787 sreloc->reloc_count++;
2788 loc += sizeof (Elf64_External_Rela);
2789 BFD_ASSERT (loc + sizeof (Elf64_External_Rela)
2790 <= sreloc->contents + sreloc->size);
2791 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2799 local_got_offsets[r_symndx] |= 1;
2802 if (off >= (bfd_vma) -2
2803 && ! GOT_TLS_GDESC_P (tls_type))
2805 if (r_type == ELF64_R_TYPE (rel->r_info))
2807 if (r_type == R_X86_64_GOTPC32_TLSDESC
2808 || r_type == R_X86_64_TLSDESC_CALL)
2809 relocation = htab->sgotplt->output_section->vma
2810 + htab->sgotplt->output_offset
2811 + offplt + htab->sgotplt_jump_table_size;
2813 relocation = htab->sgot->output_section->vma
2814 + htab->sgot->output_offset + off;
2815 unresolved_reloc = FALSE;
2817 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2820 static unsigned char tlsgd[8]
2821 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2823 /* GD->IE transition.
2824 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2825 .word 0x6666; rex64; call __tls_get_addr@plt
2828 addq foo@gottpoff(%rip), %rax */
2829 BFD_ASSERT (rel->r_offset >= 4);
2830 for (i = 0; i < 4; i++)
2831 BFD_ASSERT (bfd_get_8 (input_bfd,
2832 contents + rel->r_offset - 4 + i)
2834 BFD_ASSERT (rel->r_offset + 12 <= input_section->size);
2835 for (i = 0; i < 4; i++)
2836 BFD_ASSERT (bfd_get_8 (input_bfd,
2837 contents + rel->r_offset + 4 + i)
2839 BFD_ASSERT (rel + 1 < relend);
2840 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2841 memcpy (contents + rel->r_offset - 4,
2842 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2845 relocation = (htab->sgot->output_section->vma
2846 + htab->sgot->output_offset + off
2848 - input_section->output_section->vma
2849 - input_section->output_offset
2851 bfd_put_32 (output_bfd, relocation,
2852 contents + rel->r_offset + 8);
2853 /* Skip R_X86_64_PLT32. */
2857 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
2859 /* GDesc -> IE transition.
2860 It's originally something like:
2861 leaq x@tlsdesc(%rip), %rax
2864 movq x@gottpoff(%rip), %rax # before nop; nop
2866 Registers other than %rax may be set up here. */
2868 unsigned int val, type, type2;
2871 /* First, make sure it's a leaq adding rip to a 32-bit
2872 offset into any register, although it's probably
2873 almost always going to be rax. */
2874 roff = rel->r_offset;
2875 BFD_ASSERT (roff >= 3);
2876 type = bfd_get_8 (input_bfd, contents + roff - 3);
2877 BFD_ASSERT ((type & 0xfb) == 0x48);
2878 type2 = bfd_get_8 (input_bfd, contents + roff - 2);
2879 BFD_ASSERT (type2 == 0x8d);
2880 val = bfd_get_8 (input_bfd, contents + roff - 1);
2881 BFD_ASSERT ((val & 0xc7) == 0x05);
2882 BFD_ASSERT (roff + 4 <= input_section->size);
2884 /* Now modify the instruction as appropriate. */
2885 /* To turn a leaq into a movq in the form we use it, it
2886 suffices to change the second byte from 0x8d to
2888 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
2890 bfd_put_32 (output_bfd,
2891 htab->sgot->output_section->vma
2892 + htab->sgot->output_offset + off
2894 - input_section->output_section->vma
2895 - input_section->output_offset
2900 else if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
2902 /* GDesc -> IE transition.
2909 unsigned int val, type;
2912 /* First, make sure it's a call *(%eax). */
2913 roff = rel->r_offset;
2914 BFD_ASSERT (roff + 2 <= input_section->size);
2915 type = bfd_get_8 (input_bfd, contents + roff);
2916 BFD_ASSERT (type == 0xff);
2917 val = bfd_get_8 (input_bfd, contents + roff + 1);
2918 BFD_ASSERT (val == 0x10);
2920 /* Now modify the instruction as appropriate. Use
2921 xchg %ax,%ax instead of 2 nops. */
2922 bfd_put_8 (output_bfd, 0x66, contents + roff);
2923 bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
2931 case R_X86_64_TLSLD:
2934 unsigned long tls_r_symndx;
2935 struct elf_link_hash_entry *tls_h;
2937 /* LD->LE transition:
2939 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
2941 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2942 BFD_ASSERT (rel->r_offset >= 3);
2943 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2945 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2947 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2949 BFD_ASSERT (rel->r_offset + 9 <= input_section->size);
2950 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2952 BFD_ASSERT (rel + 1 < relend);
2953 tls_r_symndx = ELF64_R_SYM (rel[1].r_info);
2954 BFD_ASSERT (tls_r_symndx >= symtab_hdr->sh_info);
2955 tls_h = sym_hashes[tls_r_symndx - symtab_hdr->sh_info];
2956 BFD_ASSERT (tls_h != NULL
2957 && tls_h->root.root.string != NULL
2958 && strcmp (tls_h->root.root.string,
2959 "__tls_get_addr") == 0);
2960 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PC32
2961 || ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2962 memcpy (contents + rel->r_offset - 3,
2963 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2964 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */
2969 if (htab->sgot == NULL)
2972 off = htab->tls_ld_got.offset;
2977 Elf_Internal_Rela outrel;
2980 if (htab->srelgot == NULL)
2983 outrel.r_offset = (htab->sgot->output_section->vma
2984 + htab->sgot->output_offset + off);
2986 bfd_put_64 (output_bfd, 0,
2987 htab->sgot->contents + off);
2988 bfd_put_64 (output_bfd, 0,
2989 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2990 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2991 outrel.r_addend = 0;
2992 loc = htab->srelgot->contents;
2993 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2994 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2995 htab->tls_ld_got.offset |= 1;
2997 relocation = htab->sgot->output_section->vma
2998 + htab->sgot->output_offset + off;
2999 unresolved_reloc = FALSE;
3002 case R_X86_64_DTPOFF32:
3003 if (info->shared || (input_section->flags & SEC_CODE) == 0)
3004 relocation -= dtpoff_base (info);
3006 relocation = tpoff (info, relocation);
3009 case R_X86_64_TPOFF32:
3010 BFD_ASSERT (! info->shared);
3011 relocation = tpoff (info, relocation);
3018 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3019 because such sections are not SEC_ALLOC and thus ld.so will
3020 not process them. */
3021 if (unresolved_reloc
3022 && !((input_section->flags & SEC_DEBUGGING) != 0
3024 (*_bfd_error_handler)
3025 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3028 (long) rel->r_offset,
3030 h->root.root.string);
3032 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3033 contents, rel->r_offset,
3034 relocation, rel->r_addend);
3036 if (r != bfd_reloc_ok)
3041 name = h->root.root.string;
3044 name = bfd_elf_string_from_elf_section (input_bfd,
3045 symtab_hdr->sh_link,
3050 name = bfd_section_name (input_bfd, sec);
3053 if (r == bfd_reloc_overflow)
3055 if (! ((*info->callbacks->reloc_overflow)
3056 (info, (h ? &h->root : NULL), name, howto->name,
3057 (bfd_vma) 0, input_bfd, input_section,
3063 (*_bfd_error_handler)
3064 (_("%B(%A+0x%lx): reloc against `%s': error %d"),
3065 input_bfd, input_section,
3066 (long) rel->r_offset, name, (int) r);
3075 /* Finish up dynamic symbol handling. We set the contents of various
3076 dynamic sections here. */
3079 elf64_x86_64_finish_dynamic_symbol (bfd *output_bfd,
3080 struct bfd_link_info *info,
3081 struct elf_link_hash_entry *h,
3082 Elf_Internal_Sym *sym)
3084 struct elf64_x86_64_link_hash_table *htab;
3086 htab = elf64_x86_64_hash_table (info);
3088 if (h->plt.offset != (bfd_vma) -1)
3092 Elf_Internal_Rela rela;
3095 /* This symbol has an entry in the procedure linkage table. Set
3097 if (h->dynindx == -1
3098 || htab->splt == NULL
3099 || htab->sgotplt == NULL
3100 || htab->srelplt == NULL)
3103 /* Get the index in the procedure linkage table which
3104 corresponds to this symbol. This is the index of this symbol
3105 in all the symbols for which we are making plt entries. The
3106 first entry in the procedure linkage table is reserved. */
3107 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
3109 /* Get the offset into the .got table of the entry that
3110 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
3111 bytes. The first three are reserved for the dynamic linker. */
3112 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
3114 /* Fill in the entry in the procedure linkage table. */
3115 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
3118 /* Insert the relocation positions of the plt section. The magic
3119 numbers at the end of the statements are the positions of the
3120 relocations in the plt section. */
3121 /* Put offset for jmp *name@GOTPCREL(%rip), since the
3122 instruction uses 6 bytes, subtract this value. */
3123 bfd_put_32 (output_bfd,
3124 (htab->sgotplt->output_section->vma
3125 + htab->sgotplt->output_offset
3127 - htab->splt->output_section->vma
3128 - htab->splt->output_offset
3131 htab->splt->contents + h->plt.offset + 2);
3132 /* Put relocation index. */
3133 bfd_put_32 (output_bfd, plt_index,
3134 htab->splt->contents + h->plt.offset + 7);
3135 /* Put offset for jmp .PLT0. */
3136 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
3137 htab->splt->contents + h->plt.offset + 12);
3139 /* Fill in the entry in the global offset table, initially this
3140 points to the pushq instruction in the PLT which is at offset 6. */
3141 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
3142 + htab->splt->output_offset
3143 + h->plt.offset + 6),
3144 htab->sgotplt->contents + got_offset);
3146 /* Fill in the entry in the .rela.plt section. */
3147 rela.r_offset = (htab->sgotplt->output_section->vma
3148 + htab->sgotplt->output_offset
3150 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
3152 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
3153 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3155 if (!h->def_regular)
3157 /* Mark the symbol as undefined, rather than as defined in
3158 the .plt section. Leave the value if there were any
3159 relocations where pointer equality matters (this is a clue
3160 for the dynamic linker, to make function pointer
3161 comparisons work between an application and shared
3162 library), otherwise set it to zero. If a function is only
3163 called from a binary, there is no need to slow down
3164 shared libraries because of that. */
3165 sym->st_shndx = SHN_UNDEF;
3166 if (!h->pointer_equality_needed)
3171 if (h->got.offset != (bfd_vma) -1
3172 && ! GOT_TLS_GD_ANY_P (elf64_x86_64_hash_entry (h)->tls_type)
3173 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
3175 Elf_Internal_Rela rela;
3178 /* This symbol has an entry in the global offset table. Set it
3180 if (htab->sgot == NULL || htab->srelgot == NULL)
3183 rela.r_offset = (htab->sgot->output_section->vma
3184 + htab->sgot->output_offset
3185 + (h->got.offset &~ (bfd_vma) 1));
3187 /* If this is a static link, or it is a -Bsymbolic link and the
3188 symbol is defined locally or was forced to be local because
3189 of a version file, we just want to emit a RELATIVE reloc.
3190 The entry in the global offset table will already have been
3191 initialized in the relocate_section function. */
3193 && SYMBOL_REFERENCES_LOCAL (info, h))
3195 BFD_ASSERT((h->got.offset & 1) != 0);
3196 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
3197 rela.r_addend = (h->root.u.def.value
3198 + h->root.u.def.section->output_section->vma
3199 + h->root.u.def.section->output_offset);
3203 BFD_ASSERT((h->got.offset & 1) == 0);
3204 bfd_put_64 (output_bfd, (bfd_vma) 0,
3205 htab->sgot->contents + h->got.offset);
3206 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
3210 loc = htab->srelgot->contents;
3211 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
3212 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3217 Elf_Internal_Rela rela;
3220 /* This symbol needs a copy reloc. Set it up. */
3222 if (h->dynindx == -1
3223 || (h->root.type != bfd_link_hash_defined
3224 && h->root.type != bfd_link_hash_defweak)
3225 || htab->srelbss == NULL)
3228 rela.r_offset = (h->root.u.def.value
3229 + h->root.u.def.section->output_section->vma
3230 + h->root.u.def.section->output_offset);
3231 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
3233 loc = htab->srelbss->contents;
3234 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
3235 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
3238 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3239 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
3240 || h == htab->elf.hgot)
3241 sym->st_shndx = SHN_ABS;
3246 /* Used to decide how to sort relocs in an optimal manner for the
3247 dynamic linker, before writing them out. */
3249 static enum elf_reloc_type_class
3250 elf64_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
3252 switch ((int) ELF64_R_TYPE (rela->r_info))
3254 case R_X86_64_RELATIVE:
3255 return reloc_class_relative;
3256 case R_X86_64_JUMP_SLOT:
3257 return reloc_class_plt;
3259 return reloc_class_copy;
3261 return reloc_class_normal;
3265 /* Finish up the dynamic sections. */
3268 elf64_x86_64_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
3270 struct elf64_x86_64_link_hash_table *htab;
3274 htab = elf64_x86_64_hash_table (info);
3275 dynobj = htab->elf.dynobj;
3276 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3278 if (htab->elf.dynamic_sections_created)
3280 Elf64_External_Dyn *dyncon, *dynconend;
3282 if (sdyn == NULL || htab->sgot == NULL)
3285 dyncon = (Elf64_External_Dyn *) sdyn->contents;
3286 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
3287 for (; dyncon < dynconend; dyncon++)
3289 Elf_Internal_Dyn dyn;
3292 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
3301 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
3305 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3309 s = htab->srelplt->output_section;
3310 dyn.d_un.d_val = s->size;
3314 /* The procedure linkage table relocs (DT_JMPREL) should
3315 not be included in the overall relocs (DT_RELA).
3316 Therefore, we override the DT_RELASZ entry here to
3317 make it not include the JMPREL relocs. Since the
3318 linker script arranges for .rela.plt to follow all
3319 other relocation sections, we don't have to worry
3320 about changing the DT_RELA entry. */
3321 if (htab->srelplt != NULL)
3323 s = htab->srelplt->output_section;
3324 dyn.d_un.d_val -= s->size;
3328 case DT_TLSDESC_PLT:
3330 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3331 + htab->tlsdesc_plt;
3334 case DT_TLSDESC_GOT:
3336 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
3337 + htab->tlsdesc_got;
3341 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
3344 /* Fill in the special first entry in the procedure linkage table. */
3345 if (htab->splt && htab->splt->size > 0)
3347 /* Fill in the first entry in the procedure linkage table. */
3348 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
3350 /* Add offset for pushq GOT+8(%rip), since the instruction
3351 uses 6 bytes subtract this value. */
3352 bfd_put_32 (output_bfd,
3353 (htab->sgotplt->output_section->vma
3354 + htab->sgotplt->output_offset
3356 - htab->splt->output_section->vma
3357 - htab->splt->output_offset
3359 htab->splt->contents + 2);
3360 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
3361 the end of the instruction. */
3362 bfd_put_32 (output_bfd,
3363 (htab->sgotplt->output_section->vma
3364 + htab->sgotplt->output_offset
3366 - htab->splt->output_section->vma
3367 - htab->splt->output_offset
3369 htab->splt->contents + 8);
3371 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
3374 if (htab->tlsdesc_plt)
3376 bfd_put_64 (output_bfd, (bfd_vma) 0,
3377 htab->sgot->contents + htab->tlsdesc_got);
3379 memcpy (htab->splt->contents + htab->tlsdesc_plt,
3380 elf64_x86_64_plt0_entry,
3383 /* Add offset for pushq GOT+8(%rip), since the
3384 instruction uses 6 bytes subtract this value. */
3385 bfd_put_32 (output_bfd,
3386 (htab->sgotplt->output_section->vma
3387 + htab->sgotplt->output_offset
3389 - htab->splt->output_section->vma
3390 - htab->splt->output_offset
3393 htab->splt->contents + htab->tlsdesc_plt + 2);
3394 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for
3395 htab->tlsdesc_got. The 12 is the offset to the end of
3397 bfd_put_32 (output_bfd,
3398 (htab->sgot->output_section->vma
3399 + htab->sgot->output_offset
3401 - htab->splt->output_section->vma
3402 - htab->splt->output_offset
3405 htab->splt->contents + htab->tlsdesc_plt + 8);
3412 /* Fill in the first three entries in the global offset table. */
3413 if (htab->sgotplt->size > 0)
3415 /* Set the first entry in the global offset table to the address of
3416 the dynamic section. */
3418 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
3420 bfd_put_64 (output_bfd,
3421 sdyn->output_section->vma + sdyn->output_offset,
3422 htab->sgotplt->contents);
3423 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
3424 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
3425 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
3428 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
3432 if (htab->sgot && htab->sgot->size > 0)
3433 elf_section_data (htab->sgot->output_section)->this_hdr.sh_entsize
3439 /* Return address for Ith PLT stub in section PLT, for relocation REL
3440 or (bfd_vma) -1 if it should not be included. */
3443 elf64_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
3444 const arelent *rel ATTRIBUTE_UNUSED)
3446 return plt->vma + (i + 1) * PLT_ENTRY_SIZE;
3449 /* Handle an x86-64 specific section when reading an object file. This
3450 is called when elfcode.h finds a section with an unknown type. */
3453 elf64_x86_64_section_from_shdr (bfd *abfd,
3454 Elf_Internal_Shdr *hdr,
3458 if (hdr->sh_type != SHT_X86_64_UNWIND)
3461 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
3467 /* Hook called by the linker routine which adds symbols from an object
3468 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
3472 elf64_x86_64_add_symbol_hook (bfd *abfd,
3473 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3474 Elf_Internal_Sym *sym,
3475 const char **namep ATTRIBUTE_UNUSED,
3476 flagword *flagsp ATTRIBUTE_UNUSED,
3477 asection **secp, bfd_vma *valp)
3481 switch (sym->st_shndx)
3483 case SHN_X86_64_LCOMMON:
3484 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
3487 lcomm = bfd_make_section_with_flags (abfd,
3491 | SEC_LINKER_CREATED));
3494 elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
3497 *valp = sym->st_size;
3504 /* Given a BFD section, try to locate the corresponding ELF section
3508 elf64_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
3509 asection *sec, int *index)
3511 if (sec == &_bfd_elf_large_com_section)
3513 *index = SHN_X86_64_LCOMMON;
3519 /* Process a symbol. */
3522 elf64_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
3525 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
3527 switch (elfsym->internal_elf_sym.st_shndx)
3529 case SHN_X86_64_LCOMMON:
3530 asym->section = &_bfd_elf_large_com_section;
3531 asym->value = elfsym->internal_elf_sym.st_size;
3532 /* Common symbol doesn't set BSF_GLOBAL. */
3533 asym->flags &= ~BSF_GLOBAL;
3539 elf64_x86_64_common_definition (Elf_Internal_Sym *sym)
3541 return (sym->st_shndx == SHN_COMMON
3542 || sym->st_shndx == SHN_X86_64_LCOMMON);
3546 elf64_x86_64_common_section_index (asection *sec)
3548 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3551 return SHN_X86_64_LCOMMON;
3555 elf64_x86_64_common_section (asection *sec)
3557 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
3558 return bfd_com_section_ptr;
3560 return &_bfd_elf_large_com_section;
3564 elf64_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3565 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
3566 struct elf_link_hash_entry *h,
3567 Elf_Internal_Sym *sym,
3569 bfd_vma *pvalue ATTRIBUTE_UNUSED,
3570 unsigned int *pold_alignment ATTRIBUTE_UNUSED,
3571 bfd_boolean *skip ATTRIBUTE_UNUSED,
3572 bfd_boolean *override ATTRIBUTE_UNUSED,
3573 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
3574 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
3575 bfd_boolean *newdef ATTRIBUTE_UNUSED,
3576 bfd_boolean *newdyn,
3577 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
3578 bfd_boolean *newweak ATTRIBUTE_UNUSED,
3579 bfd *abfd ATTRIBUTE_UNUSED,
3581 bfd_boolean *olddef ATTRIBUTE_UNUSED,
3582 bfd_boolean *olddyn,
3583 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
3584 bfd_boolean *oldweak ATTRIBUTE_UNUSED,
3588 /* A normal common symbol and a large common symbol result in a
3589 normal common symbol. We turn the large common symbol into a
3592 && h->root.type == bfd_link_hash_common
3594 && bfd_is_com_section (*sec)
3597 if (sym->st_shndx == SHN_COMMON
3598 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
3600 h->root.u.c.p->section
3601 = bfd_make_section_old_way (oldbfd, "COMMON");
3602 h->root.u.c.p->section->flags = SEC_ALLOC;
3604 else if (sym->st_shndx == SHN_X86_64_LCOMMON
3605 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
3606 *psec = *sec = bfd_com_section_ptr;
3613 elf64_x86_64_additional_program_headers (bfd *abfd,
3614 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3619 /* Check to see if we need a large readonly segment. */
3620 s = bfd_get_section_by_name (abfd, ".lrodata");
3621 if (s && (s->flags & SEC_LOAD))
3624 /* Check to see if we need a large data segment. Since .lbss sections
3625 is placed right after the .bss section, there should be no need for
3626 a large data segment just because of .lbss. */
3627 s = bfd_get_section_by_name (abfd, ".ldata");
3628 if (s && (s->flags & SEC_LOAD))
3634 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
3637 elf64_x86_64_hash_symbol (struct elf_link_hash_entry *h)
3639 if (h->plt.offset != (bfd_vma) -1
3641 && !h->pointer_equality_needed)
3644 return _bfd_elf_hash_symbol (h);
3647 static const struct bfd_elf_special_section
3648 elf64_x86_64_special_sections[]=
3650 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3651 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3652 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
3653 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3654 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
3655 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
3656 { NULL, 0, 0, 0, 0 }
3659 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
3660 #define TARGET_LITTLE_NAME "elf64-x86-64"
3661 #define ELF_ARCH bfd_arch_i386
3662 #define ELF_MACHINE_CODE EM_X86_64
3663 #define ELF_MAXPAGESIZE 0x200000
3664 #define ELF_MINPAGESIZE 0x1000
3665 #define ELF_COMMONPAGESIZE 0x1000
3667 #define elf_backend_can_gc_sections 1
3668 #define elf_backend_can_refcount 1
3669 #define elf_backend_want_got_plt 1
3670 #define elf_backend_plt_readonly 1
3671 #define elf_backend_want_plt_sym 0
3672 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
3673 #define elf_backend_rela_normal 1
3675 #define elf_info_to_howto elf64_x86_64_info_to_howto
3677 #define bfd_elf64_bfd_link_hash_table_create \
3678 elf64_x86_64_link_hash_table_create
3679 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
3680 #define bfd_elf64_bfd_reloc_name_lookup \
3681 elf64_x86_64_reloc_name_lookup
3683 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
3684 #define elf_backend_check_relocs elf64_x86_64_check_relocs
3685 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
3686 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
3687 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
3688 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
3689 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
3690 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
3691 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
3692 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
3693 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
3694 #define elf_backend_relocate_section elf64_x86_64_relocate_section
3695 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
3696 #define elf_backend_always_size_sections elf64_x86_64_always_size_sections
3697 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
3698 #define elf_backend_plt_sym_val elf64_x86_64_plt_sym_val
3699 #define elf_backend_object_p elf64_x86_64_elf_object_p
3700 #define bfd_elf64_mkobject elf64_x86_64_mkobject
3702 #define elf_backend_section_from_shdr \
3703 elf64_x86_64_section_from_shdr
3705 #define elf_backend_section_from_bfd_section \
3706 elf64_x86_64_elf_section_from_bfd_section
3707 #define elf_backend_add_symbol_hook \
3708 elf64_x86_64_add_symbol_hook
3709 #define elf_backend_symbol_processing \
3710 elf64_x86_64_symbol_processing
3711 #define elf_backend_common_section_index \
3712 elf64_x86_64_common_section_index
3713 #define elf_backend_common_section \
3714 elf64_x86_64_common_section
3715 #define elf_backend_common_definition \
3716 elf64_x86_64_common_definition
3717 #define elf_backend_merge_symbol \
3718 elf64_x86_64_merge_symbol
3719 #define elf_backend_special_sections \
3720 elf64_x86_64_special_sections
3721 #define elf_backend_additional_program_headers \
3722 elf64_x86_64_additional_program_headers
3723 #define elf_backend_hash_symbol \
3724 elf64_x86_64_hash_symbol
3726 #include "elf64-target.h"
3728 /* FreeBSD support. */
3730 #undef TARGET_LITTLE_SYM
3731 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
3732 #undef TARGET_LITTLE_NAME
3733 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
3736 #define ELF_OSABI ELFOSABI_FREEBSD
3738 #undef elf_backend_post_process_headers
3739 #define elf_backend_post_process_headers _bfd_elf_set_osabi
3742 #define elf64_bed elf64_x86_64_fbsd_bed
3744 #include "elf64-target.h"