1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
29 #include "gdb_string.h"
31 #include "gdb_obstack.h"
34 #include "expression.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
42 #include "complaints.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
55 #include "stabsread.h" /* Our own declarations */
58 extern void _initialize_stabsread (void);
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
70 struct nextfield *next;
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
80 struct next_fnfieldlist
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
94 static long read_huge_number (char **, int, int *, int);
96 static struct type *error_type (char **, struct objfile *);
99 patch_block_stabs (struct pending *, struct pending_stabs *,
102 static void fix_common_block (struct symbol *, int);
104 static int read_type_number (char **, int *);
106 static struct type *read_type (char **, struct objfile *);
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
112 static struct type *read_sun_floating_type (char **, int[2],
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
117 static struct type *rs6000_builtin_type (int);
120 read_member_functions (struct field_info *, char **, struct type *,
124 read_struct_fields (struct field_info *, char **, struct type *,
128 read_baseclasses (struct field_info *, char **, struct type *,
132 read_tilde_fields (struct field_info *, char **, struct type *,
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
137 static int attach_fields_to_type (struct field_info *, struct type *,
140 static struct type *read_struct_type (char **, struct type *,
144 static struct type *read_array_type (char **, struct type *,
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
149 static void add_undefined_type (struct type *, int[2]);
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
155 static char *find_name_end (char *name);
157 static int process_reference (char **string);
159 void stabsread_clear_cache (void);
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
165 invalid_cpp_abbrev_complaint (const char *arg1)
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
179 stabs_general_complaint (const char *arg1)
181 complaint (&symfile_complaints, "%s", arg1);
184 /* Make a list of forward references which haven't been defined. */
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
220 static struct type **
221 dbx_lookup_type (int typenums[2])
223 int filenum = typenums[0];
224 int index = typenums[1];
227 struct header_file *f;
230 if (filenum == -1) /* -1,-1 is for temporary types. */
233 if (filenum < 0 || filenum >= n_this_object_header_files)
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
252 temp_type = rs6000_builtin_type (index);
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
260 old_len = type_vector_length;
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
267 while (index >= type_vector_length)
269 type_vector_length *= 2;
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
277 return (&type_vector[index]);
281 real_filenum = this_object_header_files[filenum];
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
285 static struct type **temp_type_p;
287 warning (_("GDB internal error: bad real_filenum"));
290 temp_type_p = &builtin_type_error;
294 f = HEADER_FILES (current_objfile) + real_filenum;
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
299 while (index >= f->length)
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
308 return (&f->vector[index]);
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 struct type **type_addr;
323 if (typenums[0] == -1)
325 return (alloc_type (objfile));
328 type_addr = dbx_lookup_type (typenums);
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
335 *type_addr = alloc_type (objfile);
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
359 for (ii = 0; ii < stabs->count; ++ii)
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
367 pp = (char *) strchr (pp, ':');
369 sym = find_symbol_in_list (symbols, name, pp - name);
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 SYMBOL_SET_LINKAGE_NAME
391 (sym, obsavestring (name, pp - name,
392 &objfile->objfile_obstack));
394 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
396 /* I don't think the linker does this with functions,
397 so as far as I know this is never executed.
398 But it doesn't hurt to check. */
400 lookup_function_type (read_type (&pp, objfile));
404 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 add_symbol_to_list (sym, &global_symbols);
411 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
414 lookup_function_type (read_type (&pp, objfile));
418 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
426 /* Read a number by which a type is referred to in dbx data,
427 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428 Just a single number N is equivalent to (0,N).
429 Return the two numbers by storing them in the vector TYPENUMS.
430 TYPENUMS will then be used as an argument to dbx_lookup_type.
432 Returns 0 for success, -1 for error. */
435 read_type_number (char **pp, int *typenums)
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478 static struct ref_map *ref_map;
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
490 stabsread_clear_cache (void)
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511 ref_map = (struct ref_map *)
512 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514 ref_chunk += new_chunks;
516 ref_map[refnum].stabs = stabs;
517 ref_map[refnum].sym = sym;
518 ref_map[refnum].value = value;
521 /* Return defined sym for the reference REFNUM. */
523 ref_search (int refnum)
525 if (refnum < 0 || refnum > ref_count)
527 return ref_map[refnum].sym;
530 /* Parse a reference id in STRING and return the resulting
531 reference number. Move STRING beyond the reference id. */
534 process_reference (char **string)
542 /* Advance beyond the initial '#'. */
545 /* Read number as reference id. */
546 while (*p && isdigit (*p))
548 refnum = refnum * 10 + *p - '0';
555 /* If STRING defines a reference, store away a pointer to the reference
556 definition for later use. Return the reference number. */
559 symbol_reference_defined (char **string)
564 refnum = process_reference (&p);
566 /* Defining symbols end in '=' */
569 /* Symbol is being defined here. */
575 /* Must be a reference. Either the symbol has already been defined,
576 or this is a forward reference to it. */
583 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
584 struct objfile *objfile)
586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
588 char *p = (char *) find_name_end (string);
593 /* We would like to eliminate nameless symbols, but keep their types.
594 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
595 to type 2, but, should not create a symbol to address that type. Since
596 the symbol will be nameless, there is no way any user can refer to it. */
600 /* Ignore syms with empty names. */
604 /* Ignore old-style symbols from cc -go */
614 /* If a nameless stab entry, all we need is the type, not the symbol.
615 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
616 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
618 current_symbol = sym = (struct symbol *)
619 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
620 memset (sym, 0, sizeof (struct symbol));
622 switch (type & N_TYPE)
625 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
628 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
631 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
635 if (processing_gcc_compilation)
637 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
638 number of bytes occupied by a type or object, which we ignore. */
639 SYMBOL_LINE (sym) = desc;
643 SYMBOL_LINE (sym) = 0; /* unknown */
646 if (is_cplus_marker (string[0]))
648 /* Special GNU C++ names. */
652 SYMBOL_SET_LINKAGE_NAME
653 (sym, obsavestring ("this", strlen ("this"),
654 &objfile->objfile_obstack));
657 case 'v': /* $vtbl_ptr_type */
661 SYMBOL_SET_LINKAGE_NAME
662 (sym, obsavestring ("eh_throw", strlen ("eh_throw"),
663 &objfile->objfile_obstack));
667 /* This was an anonymous type that was never fixed up. */
671 /* SunPRO (3.0 at least) static variable encoding. */
672 if (gdbarch_static_transform_name_p (gdbarch))
674 /* ... fall through ... */
677 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
679 goto normal; /* Do *something* with it */
685 SYMBOL_LANGUAGE (sym) = current_subfile->language;
686 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
687 if (SYMBOL_LANGUAGE (sym) == language_cplus)
688 cp_scan_for_anonymous_namespaces (sym);
692 /* Determine the type of name being defined. */
694 /* Getting GDB to correctly skip the symbol on an undefined symbol
695 descriptor and not ever dump core is a very dodgy proposition if
696 we do things this way. I say the acorn RISC machine can just
697 fix their compiler. */
698 /* The Acorn RISC machine's compiler can put out locals that don't
699 start with "234=" or "(3,4)=", so assume anything other than the
700 deftypes we know how to handle is a local. */
701 if (!strchr ("cfFGpPrStTvVXCR", *p))
703 if (isdigit (*p) || *p == '(' || *p == '-')
712 /* c is a special case, not followed by a type-number.
713 SYMBOL:c=iVALUE for an integer constant symbol.
714 SYMBOL:c=rVALUE for a floating constant symbol.
715 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
716 e.g. "b:c=e6,0" for "const b = blob1"
717 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
720 SYMBOL_CLASS (sym) = LOC_CONST;
721 SYMBOL_TYPE (sym) = error_type (&p, objfile);
722 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
723 add_symbol_to_list (sym, &file_symbols);
733 struct type *dbl_type;
735 /* FIXME-if-picky-about-floating-accuracy: Should be using
736 target arithmetic to get the value. real.c in GCC
737 probably has the necessary code. */
739 dbl_type = builtin_type (gdbarch)->builtin_double;
741 obstack_alloc (&objfile->objfile_obstack,
742 TYPE_LENGTH (dbl_type));
743 store_typed_floating (dbl_valu, dbl_type, d);
745 SYMBOL_TYPE (sym) = dbl_type;
746 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
747 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
752 /* Defining integer constants this way is kind of silly,
753 since 'e' constants allows the compiler to give not
754 only the value, but the type as well. C has at least
755 int, long, unsigned int, and long long as constant
756 types; other languages probably should have at least
757 unsigned as well as signed constants. */
759 SYMBOL_TYPE (sym) = builtin_type (gdbarch)->builtin_long;
760 SYMBOL_VALUE (sym) = atoi (p);
761 SYMBOL_CLASS (sym) = LOC_CONST;
765 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
766 can be represented as integral.
767 e.g. "b:c=e6,0" for "const b = blob1"
768 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
770 SYMBOL_CLASS (sym) = LOC_CONST;
771 SYMBOL_TYPE (sym) = read_type (&p, objfile);
775 SYMBOL_TYPE (sym) = error_type (&p, objfile);
780 /* If the value is too big to fit in an int (perhaps because
781 it is unsigned), or something like that, we silently get
782 a bogus value. The type and everything else about it is
783 correct. Ideally, we should be using whatever we have
784 available for parsing unsigned and long long values,
786 SYMBOL_VALUE (sym) = atoi (p);
791 SYMBOL_CLASS (sym) = LOC_CONST;
792 SYMBOL_TYPE (sym) = error_type (&p, objfile);
795 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
796 add_symbol_to_list (sym, &file_symbols);
800 /* The name of a caught exception. */
801 SYMBOL_TYPE (sym) = read_type (&p, objfile);
802 SYMBOL_CLASS (sym) = LOC_LABEL;
803 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
804 SYMBOL_VALUE_ADDRESS (sym) = valu;
805 add_symbol_to_list (sym, &local_symbols);
809 /* A static function definition. */
810 SYMBOL_TYPE (sym) = read_type (&p, objfile);
811 SYMBOL_CLASS (sym) = LOC_BLOCK;
812 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
813 add_symbol_to_list (sym, &file_symbols);
814 /* fall into process_function_types. */
816 process_function_types:
817 /* Function result types are described as the result type in stabs.
818 We need to convert this to the function-returning-type-X type
819 in GDB. E.g. "int" is converted to "function returning int". */
820 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
821 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
823 /* All functions in C++ have prototypes. Stabs does not offer an
824 explicit way to identify prototyped or unprototyped functions,
825 but both GCC and Sun CC emit stabs for the "call-as" type rather
826 than the "declared-as" type for unprototyped functions, so
827 we treat all functions as if they were prototyped. This is used
828 primarily for promotion when calling the function from GDB. */
829 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
831 /* fall into process_prototype_types */
833 process_prototype_types:
834 /* Sun acc puts declared types of arguments here. */
837 struct type *ftype = SYMBOL_TYPE (sym);
842 /* Obtain a worst case guess for the number of arguments
843 by counting the semicolons. */
850 /* Allocate parameter information fields and fill them in. */
851 TYPE_FIELDS (ftype) = (struct field *)
852 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
857 /* A type number of zero indicates the start of varargs.
858 FIXME: GDB currently ignores vararg functions. */
859 if (p[0] == '0' && p[1] == '\0')
861 ptype = read_type (&p, objfile);
863 /* The Sun compilers mark integer arguments, which should
864 be promoted to the width of the calling conventions, with
865 a type which references itself. This type is turned into
866 a TYPE_CODE_VOID type by read_type, and we have to turn
867 it back into builtin_int here.
868 FIXME: Do we need a new builtin_promoted_int_arg ? */
869 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
870 ptype = builtin_type (gdbarch)->builtin_int;
871 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
872 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
874 TYPE_NFIELDS (ftype) = nparams;
875 TYPE_PROTOTYPED (ftype) = 1;
880 /* A global function definition. */
881 SYMBOL_TYPE (sym) = read_type (&p, objfile);
882 SYMBOL_CLASS (sym) = LOC_BLOCK;
883 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
884 add_symbol_to_list (sym, &global_symbols);
885 goto process_function_types;
888 /* For a class G (global) symbol, it appears that the
889 value is not correct. It is necessary to search for the
890 corresponding linker definition to find the value.
891 These definitions appear at the end of the namelist. */
892 SYMBOL_TYPE (sym) = read_type (&p, objfile);
893 SYMBOL_CLASS (sym) = LOC_STATIC;
894 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
895 /* Don't add symbol references to global_sym_chain.
896 Symbol references don't have valid names and wont't match up with
897 minimal symbols when the global_sym_chain is relocated.
898 We'll fixup symbol references when we fixup the defining symbol. */
899 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
901 i = hashname (SYMBOL_LINKAGE_NAME (sym));
902 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
903 global_sym_chain[i] = sym;
905 add_symbol_to_list (sym, &global_symbols);
908 /* This case is faked by a conditional above,
909 when there is no code letter in the dbx data.
910 Dbx data never actually contains 'l'. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_LOCAL;
915 SYMBOL_VALUE (sym) = valu;
916 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917 add_symbol_to_list (sym, &local_symbols);
922 /* pF is a two-letter code that means a function parameter in Fortran.
923 The type-number specifies the type of the return value.
924 Translate it into a pointer-to-function type. */
928 = lookup_pointer_type
929 (lookup_function_type (read_type (&p, objfile)));
932 SYMBOL_TYPE (sym) = read_type (&p, objfile);
934 SYMBOL_CLASS (sym) = LOC_ARG;
935 SYMBOL_VALUE (sym) = valu;
936 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
937 SYMBOL_IS_ARGUMENT (sym) = 1;
938 add_symbol_to_list (sym, &local_symbols);
940 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
942 /* On little-endian machines, this crud is never necessary,
943 and, if the extra bytes contain garbage, is harmful. */
947 /* If it's gcc-compiled, if it says `short', believe it. */
948 if (processing_gcc_compilation
949 || gdbarch_believe_pcc_promotion (gdbarch))
952 if (!gdbarch_believe_pcc_promotion (gdbarch))
954 /* If PCC says a parameter is a short or a char, it is
956 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
957 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
958 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
961 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
962 ? builtin_type (gdbarch)->builtin_unsigned_int
963 : builtin_type (gdbarch)->builtin_int;
969 /* acc seems to use P to declare the prototypes of functions that
970 are referenced by this file. gdb is not prepared to deal
971 with this extra information. FIXME, it ought to. */
974 SYMBOL_TYPE (sym) = read_type (&p, objfile);
975 goto process_prototype_types;
980 /* Parameter which is in a register. */
981 SYMBOL_TYPE (sym) = read_type (&p, objfile);
982 SYMBOL_CLASS (sym) = LOC_REGISTER;
983 SYMBOL_IS_ARGUMENT (sym) = 1;
984 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
985 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
986 + gdbarch_num_pseudo_regs (current_gdbarch))
988 reg_value_complaint (SYMBOL_VALUE (sym),
989 gdbarch_num_regs (current_gdbarch)
990 + gdbarch_num_pseudo_regs (current_gdbarch),
991 SYMBOL_PRINT_NAME (sym));
992 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
993 /* Known safe, though useless */
995 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
996 add_symbol_to_list (sym, &local_symbols);
1000 /* Register variable (either global or local). */
1001 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1002 SYMBOL_CLASS (sym) = LOC_REGISTER;
1003 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1004 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1005 + gdbarch_num_pseudo_regs (current_gdbarch))
1007 reg_value_complaint (SYMBOL_VALUE (sym),
1008 gdbarch_num_regs (current_gdbarch)
1009 + gdbarch_num_pseudo_regs (current_gdbarch),
1010 SYMBOL_PRINT_NAME (sym));
1011 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1012 /* Known safe, though useless */
1014 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1015 if (within_function)
1017 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1018 the same name to represent an argument passed in a
1019 register. GCC uses 'P' for the same case. So if we find
1020 such a symbol pair we combine it into one 'P' symbol.
1021 For Sun cc we need to do this regardless of
1022 stabs_argument_has_addr, because the compiler puts out
1023 the 'p' symbol even if it never saves the argument onto
1026 On most machines, we want to preserve both symbols, so
1027 that we can still get information about what is going on
1028 with the stack (VAX for computing args_printed, using
1029 stack slots instead of saved registers in backtraces,
1032 Note that this code illegally combines
1033 main(argc) struct foo argc; { register struct foo argc; }
1034 but this case is considered pathological and causes a warning
1035 from a decent compiler. */
1038 && local_symbols->nsyms > 0
1039 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1041 struct symbol *prev_sym;
1042 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1043 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1044 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1045 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1046 SYMBOL_LINKAGE_NAME (sym)) == 0)
1048 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1049 /* Use the type from the LOC_REGISTER; that is the type
1050 that is actually in that register. */
1051 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1052 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1057 add_symbol_to_list (sym, &local_symbols);
1060 add_symbol_to_list (sym, &file_symbols);
1064 /* Static symbol at top level of file */
1065 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1066 SYMBOL_CLASS (sym) = LOC_STATIC;
1067 SYMBOL_VALUE_ADDRESS (sym) = valu;
1068 if (gdbarch_static_transform_name_p (gdbarch)
1069 && gdbarch_static_transform_name (gdbarch,
1070 SYMBOL_LINKAGE_NAME (sym))
1071 != SYMBOL_LINKAGE_NAME (sym))
1073 struct minimal_symbol *msym;
1074 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1077 char *new_name = gdbarch_static_transform_name
1078 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1079 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1080 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1083 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1084 add_symbol_to_list (sym, &file_symbols);
1088 /* In Ada, there is no distinction between typedef and non-typedef;
1089 any type declaration implicitly has the equivalent of a typedef,
1090 and thus 't' is in fact equivalent to 'Tt'.
1092 Therefore, for Ada units, we check the character immediately
1093 before the 't', and if we do not find a 'T', then make sure to
1094 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1095 will be stored in the VAR_DOMAIN). If the symbol was indeed
1096 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1097 elsewhere, so we don't need to take care of that.
1099 This is important to do, because of forward references:
1100 The cleanup of undefined types stored in undef_types only uses
1101 STRUCT_DOMAIN symbols to perform the replacement. */
1102 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107 /* For a nameless type, we don't want a create a symbol, thus we
1108 did not use `sym'. Return without further processing. */
1112 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1113 SYMBOL_VALUE (sym) = valu;
1114 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1115 /* C++ vagaries: we may have a type which is derived from
1116 a base type which did not have its name defined when the
1117 derived class was output. We fill in the derived class's
1118 base part member's name here in that case. */
1119 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1120 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1121 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1122 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1125 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1126 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1127 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1128 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1131 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1133 /* gcc-2.6 or later (when using -fvtable-thunks)
1134 emits a unique named type for a vtable entry.
1135 Some gdb code depends on that specific name. */
1136 extern const char vtbl_ptr_name[];
1138 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1139 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1140 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1142 /* If we are giving a name to a type such as "pointer to
1143 foo" or "function returning foo", we better not set
1144 the TYPE_NAME. If the program contains "typedef char
1145 *caddr_t;", we don't want all variables of type char
1146 * to print as caddr_t. This is not just a
1147 consequence of GDB's type management; PCC and GCC (at
1148 least through version 2.4) both output variables of
1149 either type char * or caddr_t with the type number
1150 defined in the 't' symbol for caddr_t. If a future
1151 compiler cleans this up it GDB is not ready for it
1152 yet, but if it becomes ready we somehow need to
1153 disable this check (without breaking the PCC/GCC2.4
1158 Fortunately, this check seems not to be necessary
1159 for anything except pointers or functions. */
1160 /* ezannoni: 2000-10-26. This seems to apply for
1161 versions of gcc older than 2.8. This was the original
1162 problem: with the following code gdb would tell that
1163 the type for name1 is caddr_t, and func is char()
1164 typedef char *caddr_t;
1176 /* Pascal accepts names for pointer types. */
1177 if (current_subfile->language == language_pascal)
1179 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1183 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1186 add_symbol_to_list (sym, &file_symbols);
1190 /* Create the STRUCT_DOMAIN clone. */
1191 struct symbol *struct_sym = (struct symbol *)
1192 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1195 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1196 SYMBOL_VALUE (struct_sym) = valu;
1197 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1198 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1199 TYPE_NAME (SYMBOL_TYPE (sym))
1200 = obconcat (&objfile->objfile_obstack, "", "",
1201 SYMBOL_LINKAGE_NAME (sym));
1202 add_symbol_to_list (struct_sym, &file_symbols);
1208 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1209 by 't' which means we are typedef'ing it as well. */
1210 synonym = *p == 't';
1215 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1217 /* For a nameless type, we don't want a create a symbol, thus we
1218 did not use `sym'. Return without further processing. */
1222 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1223 SYMBOL_VALUE (sym) = valu;
1224 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1225 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1226 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1227 = obconcat (&objfile->objfile_obstack, "", "",
1228 SYMBOL_LINKAGE_NAME (sym));
1229 add_symbol_to_list (sym, &file_symbols);
1233 /* Clone the sym and then modify it. */
1234 struct symbol *typedef_sym = (struct symbol *)
1235 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1236 *typedef_sym = *sym;
1237 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1238 SYMBOL_VALUE (typedef_sym) = valu;
1239 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1240 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1241 TYPE_NAME (SYMBOL_TYPE (sym))
1242 = obconcat (&objfile->objfile_obstack, "", "",
1243 SYMBOL_LINKAGE_NAME (sym));
1244 add_symbol_to_list (typedef_sym, &file_symbols);
1249 /* Static symbol of local scope */
1250 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1251 SYMBOL_CLASS (sym) = LOC_STATIC;
1252 SYMBOL_VALUE_ADDRESS (sym) = valu;
1253 if (gdbarch_static_transform_name_p (gdbarch)
1254 && gdbarch_static_transform_name (gdbarch,
1255 SYMBOL_LINKAGE_NAME (sym))
1256 != SYMBOL_LINKAGE_NAME (sym))
1258 struct minimal_symbol *msym;
1259 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1262 char *new_name = gdbarch_static_transform_name
1263 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1264 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1265 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1268 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1269 add_symbol_to_list (sym, &local_symbols);
1273 /* Reference parameter */
1274 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1275 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1276 SYMBOL_IS_ARGUMENT (sym) = 1;
1277 SYMBOL_VALUE (sym) = valu;
1278 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1279 add_symbol_to_list (sym, &local_symbols);
1283 /* Reference parameter which is in a register. */
1284 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1285 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1286 SYMBOL_IS_ARGUMENT (sym) = 1;
1287 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1288 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1289 + gdbarch_num_pseudo_regs (current_gdbarch))
1291 reg_value_complaint (SYMBOL_VALUE (sym),
1292 gdbarch_num_regs (current_gdbarch)
1293 + gdbarch_num_pseudo_regs (current_gdbarch),
1294 SYMBOL_PRINT_NAME (sym));
1295 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1296 /* Known safe, though useless */
1298 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1299 add_symbol_to_list (sym, &local_symbols);
1303 /* This is used by Sun FORTRAN for "function result value".
1304 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1305 that Pascal uses it too, but when I tried it Pascal used
1306 "x:3" (local symbol) instead. */
1307 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1308 SYMBOL_CLASS (sym) = LOC_LOCAL;
1309 SYMBOL_VALUE (sym) = valu;
1310 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1311 add_symbol_to_list (sym, &local_symbols);
1315 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1316 SYMBOL_CLASS (sym) = LOC_CONST;
1317 SYMBOL_VALUE (sym) = 0;
1318 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1319 add_symbol_to_list (sym, &file_symbols);
1323 /* Some systems pass variables of certain types by reference instead
1324 of by value, i.e. they will pass the address of a structure (in a
1325 register or on the stack) instead of the structure itself. */
1327 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1328 && SYMBOL_IS_ARGUMENT (sym))
1330 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1331 variables passed in a register). */
1332 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1333 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1334 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1335 and subsequent arguments on SPARC, for example). */
1336 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1337 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1343 /* Skip rest of this symbol and return an error type.
1345 General notes on error recovery: error_type always skips to the
1346 end of the symbol (modulo cretinous dbx symbol name continuation).
1347 Thus code like this:
1349 if (*(*pp)++ != ';')
1350 return error_type (pp, objfile);
1352 is wrong because if *pp starts out pointing at '\0' (typically as the
1353 result of an earlier error), it will be incremented to point to the
1354 start of the next symbol, which might produce strange results, at least
1355 if you run off the end of the string table. Instead use
1358 return error_type (pp, objfile);
1364 foo = error_type (pp, objfile);
1368 And in case it isn't obvious, the point of all this hair is so the compiler
1369 can define new types and new syntaxes, and old versions of the
1370 debugger will be able to read the new symbol tables. */
1372 static struct type *
1373 error_type (char **pp, struct objfile *objfile)
1375 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1378 /* Skip to end of symbol. */
1379 while (**pp != '\0')
1384 /* Check for and handle cretinous dbx symbol name continuation! */
1385 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1387 *pp = next_symbol_text (objfile);
1394 return (builtin_type_error);
1398 /* Read type information or a type definition; return the type. Even
1399 though this routine accepts either type information or a type
1400 definition, the distinction is relevant--some parts of stabsread.c
1401 assume that type information starts with a digit, '-', or '(' in
1402 deciding whether to call read_type. */
1404 static struct type *
1405 read_type (char **pp, struct objfile *objfile)
1407 struct type *type = 0;
1410 char type_descriptor;
1412 /* Size in bits of type if specified by a type attribute, or -1 if
1413 there is no size attribute. */
1416 /* Used to distinguish string and bitstring from char-array and set. */
1419 /* Used to distinguish vector from array. */
1422 /* Read type number if present. The type number may be omitted.
1423 for instance in a two-dimensional array declared with type
1424 "ar1;1;10;ar1;1;10;4". */
1425 if ((**pp >= '0' && **pp <= '9')
1429 if (read_type_number (pp, typenums) != 0)
1430 return error_type (pp, objfile);
1434 /* Type is not being defined here. Either it already
1435 exists, or this is a forward reference to it.
1436 dbx_alloc_type handles both cases. */
1437 type = dbx_alloc_type (typenums, objfile);
1439 /* If this is a forward reference, arrange to complain if it
1440 doesn't get patched up by the time we're done
1442 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1443 add_undefined_type (type, typenums);
1448 /* Type is being defined here. */
1450 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1455 /* 'typenums=' not present, type is anonymous. Read and return
1456 the definition, but don't put it in the type vector. */
1457 typenums[0] = typenums[1] = -1;
1462 type_descriptor = (*pp)[-1];
1463 switch (type_descriptor)
1467 enum type_code code;
1469 /* Used to index through file_symbols. */
1470 struct pending *ppt;
1473 /* Name including "struct", etc. */
1477 char *from, *to, *p, *q1, *q2;
1479 /* Set the type code according to the following letter. */
1483 code = TYPE_CODE_STRUCT;
1486 code = TYPE_CODE_UNION;
1489 code = TYPE_CODE_ENUM;
1493 /* Complain and keep going, so compilers can invent new
1494 cross-reference types. */
1495 complaint (&symfile_complaints,
1496 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1497 code = TYPE_CODE_STRUCT;
1502 q1 = strchr (*pp, '<');
1503 p = strchr (*pp, ':');
1505 return error_type (pp, objfile);
1506 if (q1 && p > q1 && p[1] == ':')
1508 int nesting_level = 0;
1509 for (q2 = q1; *q2; q2++)
1513 else if (*q2 == '>')
1515 else if (*q2 == ':' && nesting_level == 0)
1520 return error_type (pp, objfile);
1523 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1525 /* Copy the name. */
1531 /* Set the pointer ahead of the name which we just read, and
1536 /* If this type has already been declared, then reuse the same
1537 type, rather than allocating a new one. This saves some
1540 for (ppt = file_symbols; ppt; ppt = ppt->next)
1541 for (i = 0; i < ppt->nsyms; i++)
1543 struct symbol *sym = ppt->symbol[i];
1545 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1546 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1547 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1548 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1550 obstack_free (&objfile->objfile_obstack, type_name);
1551 type = SYMBOL_TYPE (sym);
1552 if (typenums[0] != -1)
1553 *dbx_lookup_type (typenums) = type;
1558 /* Didn't find the type to which this refers, so we must
1559 be dealing with a forward reference. Allocate a type
1560 structure for it, and keep track of it so we can
1561 fill in the rest of the fields when we get the full
1563 type = dbx_alloc_type (typenums, objfile);
1564 TYPE_CODE (type) = code;
1565 TYPE_TAG_NAME (type) = type_name;
1566 INIT_CPLUS_SPECIFIC (type);
1567 TYPE_STUB (type) = 1;
1569 add_undefined_type (type, typenums);
1573 case '-': /* RS/6000 built-in type */
1587 /* We deal with something like t(1,2)=(3,4)=... which
1588 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1590 /* Allocate and enter the typedef type first.
1591 This handles recursive types. */
1592 type = dbx_alloc_type (typenums, objfile);
1593 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1595 struct type *xtype = read_type (pp, objfile);
1598 /* It's being defined as itself. That means it is "void". */
1599 TYPE_CODE (type) = TYPE_CODE_VOID;
1600 TYPE_LENGTH (type) = 1;
1602 else if (type_size >= 0 || is_string)
1604 /* This is the absolute wrong way to construct types. Every
1605 other debug format has found a way around this problem and
1606 the related problems with unnecessarily stubbed types;
1607 someone motivated should attempt to clean up the issue
1608 here as well. Once a type pointed to has been created it
1609 should not be modified.
1611 Well, it's not *absolutely* wrong. Constructing recursive
1612 types (trees, linked lists) necessarily entails modifying
1613 types after creating them. Constructing any loop structure
1614 entails side effects. The Dwarf 2 reader does handle this
1615 more gracefully (it never constructs more than once
1616 instance of a type object, so it doesn't have to copy type
1617 objects wholesale), but it still mutates type objects after
1618 other folks have references to them.
1620 Keep in mind that this circularity/mutation issue shows up
1621 at the source language level, too: C's "incomplete types",
1622 for example. So the proper cleanup, I think, would be to
1623 limit GDB's type smashing to match exactly those required
1624 by the source language. So GDB could have a
1625 "complete_this_type" function, but never create unnecessary
1626 copies of a type otherwise. */
1627 replace_type (type, xtype);
1628 TYPE_NAME (type) = NULL;
1629 TYPE_TAG_NAME (type) = NULL;
1633 TYPE_TARGET_STUB (type) = 1;
1634 TYPE_TARGET_TYPE (type) = xtype;
1639 /* In the following types, we must be sure to overwrite any existing
1640 type that the typenums refer to, rather than allocating a new one
1641 and making the typenums point to the new one. This is because there
1642 may already be pointers to the existing type (if it had been
1643 forward-referenced), and we must change it to a pointer, function,
1644 reference, or whatever, *in-place*. */
1646 case '*': /* Pointer to another type */
1647 type1 = read_type (pp, objfile);
1648 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1651 case '&': /* Reference to another type */
1652 type1 = read_type (pp, objfile);
1653 type = make_reference_type (type1, dbx_lookup_type (typenums));
1656 case 'f': /* Function returning another type */
1657 type1 = read_type (pp, objfile);
1658 type = make_function_type (type1, dbx_lookup_type (typenums));
1661 case 'g': /* Prototyped function. (Sun) */
1663 /* Unresolved questions:
1665 - According to Sun's ``STABS Interface Manual'', for 'f'
1666 and 'F' symbol descriptors, a `0' in the argument type list
1667 indicates a varargs function. But it doesn't say how 'g'
1668 type descriptors represent that info. Someone with access
1669 to Sun's toolchain should try it out.
1671 - According to the comment in define_symbol (search for
1672 `process_prototype_types:'), Sun emits integer arguments as
1673 types which ref themselves --- like `void' types. Do we
1674 have to deal with that here, too? Again, someone with
1675 access to Sun's toolchain should try it out and let us
1678 const char *type_start = (*pp) - 1;
1679 struct type *return_type = read_type (pp, objfile);
1680 struct type *func_type
1681 = make_function_type (return_type, dbx_lookup_type (typenums));
1684 struct type_list *next;
1688 while (**pp && **pp != '#')
1690 struct type *arg_type = read_type (pp, objfile);
1691 struct type_list *new = alloca (sizeof (*new));
1692 new->type = arg_type;
1693 new->next = arg_types;
1701 complaint (&symfile_complaints,
1702 _("Prototyped function type didn't end arguments with `#':\n%s"),
1706 /* If there is just one argument whose type is `void', then
1707 that's just an empty argument list. */
1709 && ! arg_types->next
1710 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1713 TYPE_FIELDS (func_type)
1714 = (struct field *) TYPE_ALLOC (func_type,
1715 num_args * sizeof (struct field));
1716 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1719 struct type_list *t;
1721 /* We stuck each argument type onto the front of the list
1722 when we read it, so the list is reversed. Build the
1723 fields array right-to-left. */
1724 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1725 TYPE_FIELD_TYPE (func_type, i) = t->type;
1727 TYPE_NFIELDS (func_type) = num_args;
1728 TYPE_PROTOTYPED (func_type) = 1;
1734 case 'k': /* Const qualifier on some type (Sun) */
1735 type = read_type (pp, objfile);
1736 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1737 dbx_lookup_type (typenums));
1740 case 'B': /* Volatile qual on some type (Sun) */
1741 type = read_type (pp, objfile);
1742 type = make_cv_type (TYPE_CONST (type), 1, type,
1743 dbx_lookup_type (typenums));
1747 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1748 { /* Member (class & variable) type */
1749 /* FIXME -- we should be doing smash_to_XXX types here. */
1751 struct type *domain = read_type (pp, objfile);
1752 struct type *memtype;
1755 /* Invalid member type data format. */
1756 return error_type (pp, objfile);
1759 memtype = read_type (pp, objfile);
1760 type = dbx_alloc_type (typenums, objfile);
1761 smash_to_memberptr_type (type, domain, memtype);
1764 /* type attribute */
1767 /* Skip to the semicolon. */
1768 while (**pp != ';' && **pp != '\0')
1771 return error_type (pp, objfile);
1773 ++ * pp; /* Skip the semicolon. */
1777 case 's': /* Size attribute */
1778 type_size = atoi (attr + 1);
1783 case 'S': /* String attribute */
1784 /* FIXME: check to see if following type is array? */
1788 case 'V': /* Vector attribute */
1789 /* FIXME: check to see if following type is array? */
1794 /* Ignore unrecognized type attributes, so future compilers
1795 can invent new ones. */
1803 case '#': /* Method (class & fn) type */
1804 if ((*pp)[0] == '#')
1806 /* We'll get the parameter types from the name. */
1807 struct type *return_type;
1810 return_type = read_type (pp, objfile);
1811 if (*(*pp)++ != ';')
1812 complaint (&symfile_complaints,
1813 _("invalid (minimal) member type data format at symtab pos %d."),
1815 type = allocate_stub_method (return_type);
1816 if (typenums[0] != -1)
1817 *dbx_lookup_type (typenums) = type;
1821 struct type *domain = read_type (pp, objfile);
1822 struct type *return_type;
1827 /* Invalid member type data format. */
1828 return error_type (pp, objfile);
1832 return_type = read_type (pp, objfile);
1833 args = read_args (pp, ';', objfile, &nargs, &varargs);
1835 return error_type (pp, objfile);
1836 type = dbx_alloc_type (typenums, objfile);
1837 smash_to_method_type (type, domain, return_type, args,
1842 case 'r': /* Range type */
1843 type = read_range_type (pp, typenums, type_size, objfile);
1844 if (typenums[0] != -1)
1845 *dbx_lookup_type (typenums) = type;
1850 /* Sun ACC builtin int type */
1851 type = read_sun_builtin_type (pp, typenums, objfile);
1852 if (typenums[0] != -1)
1853 *dbx_lookup_type (typenums) = type;
1857 case 'R': /* Sun ACC builtin float type */
1858 type = read_sun_floating_type (pp, typenums, objfile);
1859 if (typenums[0] != -1)
1860 *dbx_lookup_type (typenums) = type;
1863 case 'e': /* Enumeration type */
1864 type = dbx_alloc_type (typenums, objfile);
1865 type = read_enum_type (pp, type, objfile);
1866 if (typenums[0] != -1)
1867 *dbx_lookup_type (typenums) = type;
1870 case 's': /* Struct type */
1871 case 'u': /* Union type */
1873 enum type_code type_code = TYPE_CODE_UNDEF;
1874 type = dbx_alloc_type (typenums, objfile);
1875 switch (type_descriptor)
1878 type_code = TYPE_CODE_STRUCT;
1881 type_code = TYPE_CODE_UNION;
1884 type = read_struct_type (pp, type, type_code, objfile);
1888 case 'a': /* Array type */
1890 return error_type (pp, objfile);
1893 type = dbx_alloc_type (typenums, objfile);
1894 type = read_array_type (pp, type, objfile);
1896 TYPE_CODE (type) = TYPE_CODE_STRING;
1898 make_vector_type (type);
1901 case 'S': /* Set or bitstring type */
1902 type1 = read_type (pp, objfile);
1903 type = create_set_type ((struct type *) NULL, type1);
1905 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1906 if (typenums[0] != -1)
1907 *dbx_lookup_type (typenums) = type;
1911 --*pp; /* Go back to the symbol in error */
1912 /* Particularly important if it was \0! */
1913 return error_type (pp, objfile);
1918 warning (_("GDB internal error, type is NULL in stabsread.c."));
1919 return error_type (pp, objfile);
1922 /* Size specified in a type attribute overrides any other size. */
1923 if (type_size != -1)
1924 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1929 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1930 Return the proper type node for a given builtin type number. */
1932 static struct type *
1933 rs6000_builtin_type (int typenum)
1935 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1936 #define NUMBER_RECOGNIZED 34
1937 /* This includes an empty slot for type number -0. */
1938 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1939 struct type *rettype = NULL;
1941 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1943 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1944 return builtin_type_error;
1946 if (negative_types[-typenum] != NULL)
1947 return negative_types[-typenum];
1949 #if TARGET_CHAR_BIT != 8
1950 #error This code wrong for TARGET_CHAR_BIT not 8
1951 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1952 that if that ever becomes not true, the correct fix will be to
1953 make the size in the struct type to be in bits, not in units of
1960 /* The size of this and all the other types are fixed, defined
1961 by the debugging format. If there is a type called "int" which
1962 is other than 32 bits, then it should use a new negative type
1963 number (or avoid negative type numbers for that case).
1964 See stabs.texinfo. */
1965 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1968 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1971 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1974 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1977 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1978 "unsigned char", NULL);
1981 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1984 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1985 "unsigned short", NULL);
1988 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1989 "unsigned int", NULL);
1992 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1995 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1996 "unsigned long", NULL);
1999 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2002 /* IEEE single precision (32 bit). */
2003 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2006 /* IEEE double precision (64 bit). */
2007 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2010 /* This is an IEEE double on the RS/6000, and different machines with
2011 different sizes for "long double" should use different negative
2012 type numbers. See stabs.texinfo. */
2013 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2016 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2019 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2023 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2026 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2029 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2032 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2036 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2040 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2044 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2048 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2052 /* Complex type consisting of two IEEE single precision values. */
2053 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2054 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2058 /* Complex type consisting of two IEEE double precision values. */
2059 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2060 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2064 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2067 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2070 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2073 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2076 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2079 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2080 "unsigned long long", NULL);
2083 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2087 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2090 negative_types[-typenum] = rettype;
2094 /* This page contains subroutines of read_type. */
2096 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2099 update_method_name_from_physname (char **old_name, char *physname)
2103 method_name = method_name_from_physname (physname);
2105 if (method_name == NULL)
2107 complaint (&symfile_complaints,
2108 _("Method has bad physname %s\n"), physname);
2112 if (strcmp (*old_name, method_name) != 0)
2115 *old_name = method_name;
2118 xfree (method_name);
2121 /* Read member function stabs info for C++ classes. The form of each member
2124 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2126 An example with two member functions is:
2128 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2130 For the case of overloaded operators, the format is op$::*.funcs, where
2131 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2132 name (such as `+=') and `.' marks the end of the operator name.
2134 Returns 1 for success, 0 for failure. */
2137 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2138 struct objfile *objfile)
2142 /* Total number of member functions defined in this class. If the class
2143 defines two `f' functions, and one `g' function, then this will have
2145 int total_length = 0;
2149 struct next_fnfield *next;
2150 struct fn_field fn_field;
2153 struct type *look_ahead_type;
2154 struct next_fnfieldlist *new_fnlist;
2155 struct next_fnfield *new_sublist;
2159 /* Process each list until we find something that is not a member function
2160 or find the end of the functions. */
2164 /* We should be positioned at the start of the function name.
2165 Scan forward to find the first ':' and if it is not the
2166 first of a "::" delimiter, then this is not a member function. */
2178 look_ahead_type = NULL;
2181 new_fnlist = (struct next_fnfieldlist *)
2182 xmalloc (sizeof (struct next_fnfieldlist));
2183 make_cleanup (xfree, new_fnlist);
2184 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2186 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2188 /* This is a completely wierd case. In order to stuff in the
2189 names that might contain colons (the usual name delimiter),
2190 Mike Tiemann defined a different name format which is
2191 signalled if the identifier is "op$". In that case, the
2192 format is "op$::XXXX." where XXXX is the name. This is
2193 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2194 /* This lets the user type "break operator+".
2195 We could just put in "+" as the name, but that wouldn't
2197 static char opname[32] = "op$";
2198 char *o = opname + 3;
2200 /* Skip past '::'. */
2203 STABS_CONTINUE (pp, objfile);
2209 main_fn_name = savestring (opname, o - opname);
2215 main_fn_name = savestring (*pp, p - *pp);
2216 /* Skip past '::'. */
2219 new_fnlist->fn_fieldlist.name = main_fn_name;
2224 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2225 make_cleanup (xfree, new_sublist);
2226 memset (new_sublist, 0, sizeof (struct next_fnfield));
2228 /* Check for and handle cretinous dbx symbol name continuation! */
2229 if (look_ahead_type == NULL)
2232 STABS_CONTINUE (pp, objfile);
2234 new_sublist->fn_field.type = read_type (pp, objfile);
2237 /* Invalid symtab info for member function. */
2243 /* g++ version 1 kludge */
2244 new_sublist->fn_field.type = look_ahead_type;
2245 look_ahead_type = NULL;
2255 /* If this is just a stub, then we don't have the real name here. */
2257 if (TYPE_STUB (new_sublist->fn_field.type))
2259 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2260 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2261 new_sublist->fn_field.is_stub = 1;
2263 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2266 /* Set this member function's visibility fields. */
2269 case VISIBILITY_PRIVATE:
2270 new_sublist->fn_field.is_private = 1;
2272 case VISIBILITY_PROTECTED:
2273 new_sublist->fn_field.is_protected = 1;
2277 STABS_CONTINUE (pp, objfile);
2280 case 'A': /* Normal functions. */
2281 new_sublist->fn_field.is_const = 0;
2282 new_sublist->fn_field.is_volatile = 0;
2285 case 'B': /* `const' member functions. */
2286 new_sublist->fn_field.is_const = 1;
2287 new_sublist->fn_field.is_volatile = 0;
2290 case 'C': /* `volatile' member function. */
2291 new_sublist->fn_field.is_const = 0;
2292 new_sublist->fn_field.is_volatile = 1;
2295 case 'D': /* `const volatile' member function. */
2296 new_sublist->fn_field.is_const = 1;
2297 new_sublist->fn_field.is_volatile = 1;
2300 case '*': /* File compiled with g++ version 1 -- no info */
2305 complaint (&symfile_complaints,
2306 _("const/volatile indicator missing, got '%c'"), **pp);
2315 /* virtual member function, followed by index.
2316 The sign bit is set to distinguish pointers-to-methods
2317 from virtual function indicies. Since the array is
2318 in words, the quantity must be shifted left by 1
2319 on 16 bit machine, and by 2 on 32 bit machine, forcing
2320 the sign bit out, and usable as a valid index into
2321 the array. Remove the sign bit here. */
2322 new_sublist->fn_field.voffset =
2323 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2327 STABS_CONTINUE (pp, objfile);
2328 if (**pp == ';' || **pp == '\0')
2330 /* Must be g++ version 1. */
2331 new_sublist->fn_field.fcontext = 0;
2335 /* Figure out from whence this virtual function came.
2336 It may belong to virtual function table of
2337 one of its baseclasses. */
2338 look_ahead_type = read_type (pp, objfile);
2341 /* g++ version 1 overloaded methods. */
2345 new_sublist->fn_field.fcontext = look_ahead_type;
2354 look_ahead_type = NULL;
2360 /* static member function. */
2362 int slen = strlen (main_fn_name);
2364 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2366 /* For static member functions, we can't tell if they
2367 are stubbed, as they are put out as functions, and not as
2369 GCC v2 emits the fully mangled name if
2370 dbxout.c:flag_minimal_debug is not set, so we have to
2371 detect a fully mangled physname here and set is_stub
2372 accordingly. Fully mangled physnames in v2 start with
2373 the member function name, followed by two underscores.
2374 GCC v3 currently always emits stubbed member functions,
2375 but with fully mangled physnames, which start with _Z. */
2376 if (!(strncmp (new_sublist->fn_field.physname,
2377 main_fn_name, slen) == 0
2378 && new_sublist->fn_field.physname[slen] == '_'
2379 && new_sublist->fn_field.physname[slen + 1] == '_'))
2381 new_sublist->fn_field.is_stub = 1;
2388 complaint (&symfile_complaints,
2389 _("member function type missing, got '%c'"), (*pp)[-1]);
2390 /* Fall through into normal member function. */
2393 /* normal member function. */
2394 new_sublist->fn_field.voffset = 0;
2395 new_sublist->fn_field.fcontext = 0;
2399 new_sublist->next = sublist;
2400 sublist = new_sublist;
2402 STABS_CONTINUE (pp, objfile);
2404 while (**pp != ';' && **pp != '\0');
2407 STABS_CONTINUE (pp, objfile);
2409 /* Skip GCC 3.X member functions which are duplicates of the callable
2410 constructor/destructor. */
2411 if (strcmp (main_fn_name, "__base_ctor") == 0
2412 || strcmp (main_fn_name, "__base_dtor") == 0
2413 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2415 xfree (main_fn_name);
2420 int has_destructor = 0, has_other = 0;
2422 struct next_fnfield *tmp_sublist;
2424 /* Various versions of GCC emit various mostly-useless
2425 strings in the name field for special member functions.
2427 For stub methods, we need to defer correcting the name
2428 until we are ready to unstub the method, because the current
2429 name string is used by gdb_mangle_name. The only stub methods
2430 of concern here are GNU v2 operators; other methods have their
2431 names correct (see caveat below).
2433 For non-stub methods, in GNU v3, we have a complete physname.
2434 Therefore we can safely correct the name now. This primarily
2435 affects constructors and destructors, whose name will be
2436 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2437 operators will also have incorrect names; for instance,
2438 "operator int" will be named "operator i" (i.e. the type is
2441 For non-stub methods in GNU v2, we have no easy way to
2442 know if we have a complete physname or not. For most
2443 methods the result depends on the platform (if CPLUS_MARKER
2444 can be `$' or `.', it will use minimal debug information, or
2445 otherwise the full physname will be included).
2447 Rather than dealing with this, we take a different approach.
2448 For v3 mangled names, we can use the full physname; for v2,
2449 we use cplus_demangle_opname (which is actually v2 specific),
2450 because the only interesting names are all operators - once again
2451 barring the caveat below. Skip this process if any method in the
2452 group is a stub, to prevent our fouling up the workings of
2455 The caveat: GCC 2.95.x (and earlier?) put constructors and
2456 destructors in the same method group. We need to split this
2457 into two groups, because they should have different names.
2458 So for each method group we check whether it contains both
2459 routines whose physname appears to be a destructor (the physnames
2460 for and destructors are always provided, due to quirks in v2
2461 mangling) and routines whose physname does not appear to be a
2462 destructor. If so then we break up the list into two halves.
2463 Even if the constructors and destructors aren't in the same group
2464 the destructor will still lack the leading tilde, so that also
2467 So, to summarize what we expect and handle here:
2469 Given Given Real Real Action
2470 method name physname physname method name
2472 __opi [none] __opi__3Foo operator int opname
2474 Foo _._3Foo _._3Foo ~Foo separate and
2476 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2477 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2480 tmp_sublist = sublist;
2481 while (tmp_sublist != NULL)
2483 if (tmp_sublist->fn_field.is_stub)
2485 if (tmp_sublist->fn_field.physname[0] == '_'
2486 && tmp_sublist->fn_field.physname[1] == 'Z')
2489 if (is_destructor_name (tmp_sublist->fn_field.physname))
2494 tmp_sublist = tmp_sublist->next;
2497 if (has_destructor && has_other)
2499 struct next_fnfieldlist *destr_fnlist;
2500 struct next_fnfield *last_sublist;
2502 /* Create a new fn_fieldlist for the destructors. */
2504 destr_fnlist = (struct next_fnfieldlist *)
2505 xmalloc (sizeof (struct next_fnfieldlist));
2506 make_cleanup (xfree, destr_fnlist);
2507 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2508 destr_fnlist->fn_fieldlist.name
2509 = obconcat (&objfile->objfile_obstack, "", "~",
2510 new_fnlist->fn_fieldlist.name);
2512 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2513 obstack_alloc (&objfile->objfile_obstack,
2514 sizeof (struct fn_field) * has_destructor);
2515 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2516 sizeof (struct fn_field) * has_destructor);
2517 tmp_sublist = sublist;
2518 last_sublist = NULL;
2520 while (tmp_sublist != NULL)
2522 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2524 tmp_sublist = tmp_sublist->next;
2528 destr_fnlist->fn_fieldlist.fn_fields[i++]
2529 = tmp_sublist->fn_field;
2531 last_sublist->next = tmp_sublist->next;
2533 sublist = tmp_sublist->next;
2534 last_sublist = tmp_sublist;
2535 tmp_sublist = tmp_sublist->next;
2538 destr_fnlist->fn_fieldlist.length = has_destructor;
2539 destr_fnlist->next = fip->fnlist;
2540 fip->fnlist = destr_fnlist;
2542 total_length += has_destructor;
2543 length -= has_destructor;
2547 /* v3 mangling prevents the use of abbreviated physnames,
2548 so we can do this here. There are stubbed methods in v3
2550 - in -gstabs instead of -gstabs+
2551 - or for static methods, which are output as a function type
2552 instead of a method type. */
2554 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2555 sublist->fn_field.physname);
2557 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2559 new_fnlist->fn_fieldlist.name =
2560 concat ("~", main_fn_name, (char *)NULL);
2561 xfree (main_fn_name);
2565 char dem_opname[256];
2567 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2568 dem_opname, DMGL_ANSI);
2570 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2573 new_fnlist->fn_fieldlist.name
2574 = obsavestring (dem_opname, strlen (dem_opname),
2575 &objfile->objfile_obstack);
2578 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2579 obstack_alloc (&objfile->objfile_obstack,
2580 sizeof (struct fn_field) * length);
2581 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2582 sizeof (struct fn_field) * length);
2583 for (i = length; (i--, sublist); sublist = sublist->next)
2585 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2588 new_fnlist->fn_fieldlist.length = length;
2589 new_fnlist->next = fip->fnlist;
2590 fip->fnlist = new_fnlist;
2592 total_length += length;
2598 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2599 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2600 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2601 memset (TYPE_FN_FIELDLISTS (type), 0,
2602 sizeof (struct fn_fieldlist) * nfn_fields);
2603 TYPE_NFN_FIELDS (type) = nfn_fields;
2604 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2610 /* Special GNU C++ name.
2612 Returns 1 for success, 0 for failure. "failure" means that we can't
2613 keep parsing and it's time for error_type(). */
2616 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2617 struct objfile *objfile)
2622 struct type *context;
2632 /* At this point, *pp points to something like "22:23=*22...",
2633 where the type number before the ':' is the "context" and
2634 everything after is a regular type definition. Lookup the
2635 type, find it's name, and construct the field name. */
2637 context = read_type (pp, objfile);
2641 case 'f': /* $vf -- a virtual function table pointer */
2642 name = type_name_no_tag (context);
2647 fip->list->field.name =
2648 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2651 case 'b': /* $vb -- a virtual bsomethingorother */
2652 name = type_name_no_tag (context);
2655 complaint (&symfile_complaints,
2656 _("C++ abbreviated type name unknown at symtab pos %d"),
2660 fip->list->field.name =
2661 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2665 invalid_cpp_abbrev_complaint (*pp);
2666 fip->list->field.name =
2667 obconcat (&objfile->objfile_obstack,
2668 "INVALID_CPLUSPLUS_ABBREV", "", "");
2672 /* At this point, *pp points to the ':'. Skip it and read the
2678 invalid_cpp_abbrev_complaint (*pp);
2681 fip->list->field.type = read_type (pp, objfile);
2683 (*pp)++; /* Skip the comma. */
2689 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2694 /* This field is unpacked. */
2695 FIELD_BITSIZE (fip->list->field) = 0;
2696 fip->list->visibility = VISIBILITY_PRIVATE;
2700 invalid_cpp_abbrev_complaint (*pp);
2701 /* We have no idea what syntax an unrecognized abbrev would have, so
2702 better return 0. If we returned 1, we would need to at least advance
2703 *pp to avoid an infinite loop. */
2710 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2711 struct type *type, struct objfile *objfile)
2713 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2715 fip->list->field.name =
2716 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2719 /* This means we have a visibility for a field coming. */
2723 fip->list->visibility = *(*pp)++;
2727 /* normal dbx-style format, no explicit visibility */
2728 fip->list->visibility = VISIBILITY_PUBLIC;
2731 fip->list->field.type = read_type (pp, objfile);
2736 /* Possible future hook for nested types. */
2739 fip->list->field.bitpos = (long) -2; /* nested type */
2749 /* Static class member. */
2750 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2754 else if (**pp != ',')
2756 /* Bad structure-type format. */
2757 stabs_general_complaint ("bad structure-type format");
2761 (*pp)++; /* Skip the comma. */
2765 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2768 stabs_general_complaint ("bad structure-type format");
2771 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2774 stabs_general_complaint ("bad structure-type format");
2779 if (FIELD_BITPOS (fip->list->field) == 0
2780 && FIELD_BITSIZE (fip->list->field) == 0)
2782 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2783 it is a field which has been optimized out. The correct stab for
2784 this case is to use VISIBILITY_IGNORE, but that is a recent
2785 invention. (2) It is a 0-size array. For example
2786 union { int num; char str[0]; } foo. Printing _("<no value>" for
2787 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2788 will continue to work, and a 0-size array as a whole doesn't
2789 have any contents to print.
2791 I suspect this probably could also happen with gcc -gstabs (not
2792 -gstabs+) for static fields, and perhaps other C++ extensions.
2793 Hopefully few people use -gstabs with gdb, since it is intended
2794 for dbx compatibility. */
2796 /* Ignore this field. */
2797 fip->list->visibility = VISIBILITY_IGNORE;
2801 /* Detect an unpacked field and mark it as such.
2802 dbx gives a bit size for all fields.
2803 Note that forward refs cannot be packed,
2804 and treat enums as if they had the width of ints. */
2806 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2808 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2809 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2810 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2811 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2813 FIELD_BITSIZE (fip->list->field) = 0;
2815 if ((FIELD_BITSIZE (fip->list->field)
2816 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2817 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2818 && FIELD_BITSIZE (fip->list->field)
2819 == gdbarch_int_bit (gdbarch))
2822 FIELD_BITPOS (fip->list->field) % 8 == 0)
2824 FIELD_BITSIZE (fip->list->field) = 0;
2830 /* Read struct or class data fields. They have the form:
2832 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2834 At the end, we see a semicolon instead of a field.
2836 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2839 The optional VISIBILITY is one of:
2841 '/0' (VISIBILITY_PRIVATE)
2842 '/1' (VISIBILITY_PROTECTED)
2843 '/2' (VISIBILITY_PUBLIC)
2844 '/9' (VISIBILITY_IGNORE)
2846 or nothing, for C style fields with public visibility.
2848 Returns 1 for success, 0 for failure. */
2851 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2852 struct objfile *objfile)
2855 struct nextfield *new;
2857 /* We better set p right now, in case there are no fields at all... */
2861 /* Read each data member type until we find the terminating ';' at the end of
2862 the data member list, or break for some other reason such as finding the
2863 start of the member function list. */
2864 /* Stab string for structure/union does not end with two ';' in
2865 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2867 while (**pp != ';' && **pp != '\0')
2869 STABS_CONTINUE (pp, objfile);
2870 /* Get space to record the next field's data. */
2871 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2872 make_cleanup (xfree, new);
2873 memset (new, 0, sizeof (struct nextfield));
2874 new->next = fip->list;
2877 /* Get the field name. */
2880 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2881 unless the CPLUS_MARKER is followed by an underscore, in
2882 which case it is just the name of an anonymous type, which we
2883 should handle like any other type name. */
2885 if (is_cplus_marker (p[0]) && p[1] != '_')
2887 if (!read_cpp_abbrev (fip, pp, type, objfile))
2892 /* Look for the ':' that separates the field name from the field
2893 values. Data members are delimited by a single ':', while member
2894 functions are delimited by a pair of ':'s. When we hit the member
2895 functions (if any), terminate scan loop and return. */
2897 while (*p != ':' && *p != '\0')
2904 /* Check to see if we have hit the member functions yet. */
2909 read_one_struct_field (fip, pp, p, type, objfile);
2911 if (p[0] == ':' && p[1] == ':')
2913 /* (the deleted) chill the list of fields: the last entry (at
2914 the head) is a partially constructed entry which we now
2916 fip->list = fip->list->next;
2921 /* The stabs for C++ derived classes contain baseclass information which
2922 is marked by a '!' character after the total size. This function is
2923 called when we encounter the baseclass marker, and slurps up all the
2924 baseclass information.
2926 Immediately following the '!' marker is the number of base classes that
2927 the class is derived from, followed by information for each base class.
2928 For each base class, there are two visibility specifiers, a bit offset
2929 to the base class information within the derived class, a reference to
2930 the type for the base class, and a terminating semicolon.
2932 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2934 Baseclass information marker __________________|| | | | | | |
2935 Number of baseclasses __________________________| | | | | | |
2936 Visibility specifiers (2) ________________________| | | | | |
2937 Offset in bits from start of class _________________| | | | |
2938 Type number for base class ___________________________| | | |
2939 Visibility specifiers (2) _______________________________| | |
2940 Offset in bits from start of class ________________________| |
2941 Type number of base class ____________________________________|
2943 Return 1 for success, 0 for (error-type-inducing) failure. */
2949 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2950 struct objfile *objfile)
2953 struct nextfield *new;
2961 /* Skip the '!' baseclass information marker. */
2965 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2968 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2974 /* Some stupid compilers have trouble with the following, so break
2975 it up into simpler expressions. */
2976 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2977 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2980 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2983 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2984 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2988 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2990 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2992 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2993 make_cleanup (xfree, new);
2994 memset (new, 0, sizeof (struct nextfield));
2995 new->next = fip->list;
2997 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
2999 STABS_CONTINUE (pp, objfile);
3003 /* Nothing to do. */
3006 SET_TYPE_FIELD_VIRTUAL (type, i);
3009 /* Unknown character. Complain and treat it as non-virtual. */
3011 complaint (&symfile_complaints,
3012 _("Unknown virtual character `%c' for baseclass"), **pp);
3017 new->visibility = *(*pp)++;
3018 switch (new->visibility)
3020 case VISIBILITY_PRIVATE:
3021 case VISIBILITY_PROTECTED:
3022 case VISIBILITY_PUBLIC:
3025 /* Bad visibility format. Complain and treat it as
3028 complaint (&symfile_complaints,
3029 _("Unknown visibility `%c' for baseclass"),
3031 new->visibility = VISIBILITY_PUBLIC;
3038 /* The remaining value is the bit offset of the portion of the object
3039 corresponding to this baseclass. Always zero in the absence of
3040 multiple inheritance. */
3042 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3047 /* The last piece of baseclass information is the type of the
3048 base class. Read it, and remember it's type name as this
3051 new->field.type = read_type (pp, objfile);
3052 new->field.name = type_name_no_tag (new->field.type);
3054 /* skip trailing ';' and bump count of number of fields seen */
3063 /* The tail end of stabs for C++ classes that contain a virtual function
3064 pointer contains a tilde, a %, and a type number.
3065 The type number refers to the base class (possibly this class itself) which
3066 contains the vtable pointer for the current class.
3068 This function is called when we have parsed all the method declarations,
3069 so we can look for the vptr base class info. */
3072 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3073 struct objfile *objfile)
3077 STABS_CONTINUE (pp, objfile);
3079 /* If we are positioned at a ';', then skip it. */
3089 if (**pp == '=' || **pp == '+' || **pp == '-')
3091 /* Obsolete flags that used to indicate the presence
3092 of constructors and/or destructors. */
3096 /* Read either a '%' or the final ';'. */
3097 if (*(*pp)++ == '%')
3099 /* The next number is the type number of the base class
3100 (possibly our own class) which supplies the vtable for
3101 this class. Parse it out, and search that class to find
3102 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3103 and TYPE_VPTR_FIELDNO. */
3108 t = read_type (pp, objfile);
3110 while (*p != '\0' && *p != ';')
3116 /* Premature end of symbol. */
3120 TYPE_VPTR_BASETYPE (type) = t;
3121 if (type == t) /* Our own class provides vtbl ptr */
3123 for (i = TYPE_NFIELDS (t) - 1;
3124 i >= TYPE_N_BASECLASSES (t);
3127 char *name = TYPE_FIELD_NAME (t, i);
3128 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3129 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3131 TYPE_VPTR_FIELDNO (type) = i;
3135 /* Virtual function table field not found. */
3136 complaint (&symfile_complaints,
3137 _("virtual function table pointer not found when defining class `%s'"),
3143 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3154 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3158 for (n = TYPE_NFN_FIELDS (type);
3159 fip->fnlist != NULL;
3160 fip->fnlist = fip->fnlist->next)
3162 --n; /* Circumvent Sun3 compiler bug */
3163 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3168 /* Create the vector of fields, and record how big it is.
3169 We need this info to record proper virtual function table information
3170 for this class's virtual functions. */
3173 attach_fields_to_type (struct field_info *fip, struct type *type,
3174 struct objfile *objfile)
3177 int non_public_fields = 0;
3178 struct nextfield *scan;
3180 /* Count up the number of fields that we have, as well as taking note of
3181 whether or not there are any non-public fields, which requires us to
3182 allocate and build the private_field_bits and protected_field_bits
3185 for (scan = fip->list; scan != NULL; scan = scan->next)
3188 if (scan->visibility != VISIBILITY_PUBLIC)
3190 non_public_fields++;
3194 /* Now we know how many fields there are, and whether or not there are any
3195 non-public fields. Record the field count, allocate space for the
3196 array of fields, and create blank visibility bitfields if necessary. */
3198 TYPE_NFIELDS (type) = nfields;
3199 TYPE_FIELDS (type) = (struct field *)
3200 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3201 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3203 if (non_public_fields)
3205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3207 TYPE_FIELD_PRIVATE_BITS (type) =
3208 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3209 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3211 TYPE_FIELD_PROTECTED_BITS (type) =
3212 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3213 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3215 TYPE_FIELD_IGNORE_BITS (type) =
3216 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3217 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3220 /* Copy the saved-up fields into the field vector. Start from the head
3221 of the list, adding to the tail of the field array, so that they end
3222 up in the same order in the array in which they were added to the list. */
3224 while (nfields-- > 0)
3226 TYPE_FIELD (type, nfields) = fip->list->field;
3227 switch (fip->list->visibility)
3229 case VISIBILITY_PRIVATE:
3230 SET_TYPE_FIELD_PRIVATE (type, nfields);
3233 case VISIBILITY_PROTECTED:
3234 SET_TYPE_FIELD_PROTECTED (type, nfields);
3237 case VISIBILITY_IGNORE:
3238 SET_TYPE_FIELD_IGNORE (type, nfields);
3241 case VISIBILITY_PUBLIC:
3245 /* Unknown visibility. Complain and treat it as public. */
3247 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3248 fip->list->visibility);
3252 fip->list = fip->list->next;
3258 /* Complain that the compiler has emitted more than one definition for the
3259 structure type TYPE. */
3261 complain_about_struct_wipeout (struct type *type)
3266 if (TYPE_TAG_NAME (type))
3268 name = TYPE_TAG_NAME (type);
3269 switch (TYPE_CODE (type))
3271 case TYPE_CODE_STRUCT: kind = "struct "; break;
3272 case TYPE_CODE_UNION: kind = "union "; break;
3273 case TYPE_CODE_ENUM: kind = "enum "; break;
3277 else if (TYPE_NAME (type))
3279 name = TYPE_NAME (type);
3288 complaint (&symfile_complaints,
3289 _("struct/union type gets multiply defined: %s%s"), kind, name);
3293 /* Read the description of a structure (or union type) and return an object
3294 describing the type.
3296 PP points to a character pointer that points to the next unconsumed token
3297 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3298 *PP will point to "4a:1,0,32;;".
3300 TYPE points to an incomplete type that needs to be filled in.
3302 OBJFILE points to the current objfile from which the stabs information is
3303 being read. (Note that it is redundant in that TYPE also contains a pointer
3304 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3307 static struct type *
3308 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3309 struct objfile *objfile)
3311 struct cleanup *back_to;
3312 struct field_info fi;
3317 /* When describing struct/union/class types in stabs, G++ always drops
3318 all qualifications from the name. So if you've got:
3319 struct A { ... struct B { ... }; ... };
3320 then G++ will emit stabs for `struct A::B' that call it simply
3321 `struct B'. Obviously, if you've got a real top-level definition for
3322 `struct B', or other nested definitions, this is going to cause
3325 Obviously, GDB can't fix this by itself, but it can at least avoid
3326 scribbling on existing structure type objects when new definitions
3328 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3329 || TYPE_STUB (type)))
3331 complain_about_struct_wipeout (type);
3333 /* It's probably best to return the type unchanged. */
3337 back_to = make_cleanup (null_cleanup, 0);
3339 INIT_CPLUS_SPECIFIC (type);
3340 TYPE_CODE (type) = type_code;
3341 TYPE_STUB (type) = 0;
3343 /* First comes the total size in bytes. */
3347 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3349 return error_type (pp, objfile);
3352 /* Now read the baseclasses, if any, read the regular C struct or C++
3353 class member fields, attach the fields to the type, read the C++
3354 member functions, attach them to the type, and then read any tilde
3355 field (baseclass specifier for the class holding the main vtable). */
3357 if (!read_baseclasses (&fi, pp, type, objfile)
3358 || !read_struct_fields (&fi, pp, type, objfile)
3359 || !attach_fields_to_type (&fi, type, objfile)
3360 || !read_member_functions (&fi, pp, type, objfile)
3361 || !attach_fn_fields_to_type (&fi, type)
3362 || !read_tilde_fields (&fi, pp, type, objfile))
3364 type = error_type (pp, objfile);
3367 do_cleanups (back_to);
3371 /* Read a definition of an array type,
3372 and create and return a suitable type object.
3373 Also creates a range type which represents the bounds of that
3376 static struct type *
3377 read_array_type (char **pp, struct type *type,
3378 struct objfile *objfile)
3380 struct type *index_type, *element_type, *range_type;
3385 /* Format of an array type:
3386 "ar<index type>;lower;upper;<array_contents_type>".
3387 OS9000: "arlower,upper;<array_contents_type>".
3389 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3390 for these, produce a type like float[][]. */
3393 index_type = read_type (pp, objfile);
3395 /* Improper format of array type decl. */
3396 return error_type (pp, objfile);
3400 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3405 lower = read_huge_number (pp, ';', &nbits, 0);
3408 return error_type (pp, objfile);
3410 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3415 upper = read_huge_number (pp, ';', &nbits, 0);
3417 return error_type (pp, objfile);
3419 element_type = read_type (pp, objfile);
3428 create_range_type ((struct type *) NULL, index_type, lower, upper);
3429 type = create_array_type (type, element_type, range_type);
3435 /* Read a definition of an enumeration type,
3436 and create and return a suitable type object.
3437 Also defines the symbols that represent the values of the type. */
3439 static struct type *
3440 read_enum_type (char **pp, struct type *type,
3441 struct objfile *objfile)
3443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3449 struct pending **symlist;
3450 struct pending *osyms, *syms;
3453 int unsigned_enum = 1;
3456 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3457 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3458 to do? For now, force all enum values to file scope. */
3459 if (within_function)
3460 symlist = &local_symbols;
3463 symlist = &file_symbols;
3465 o_nsyms = osyms ? osyms->nsyms : 0;
3467 /* The aix4 compiler emits an extra field before the enum members;
3468 my guess is it's a type of some sort. Just ignore it. */
3471 /* Skip over the type. */
3475 /* Skip over the colon. */
3479 /* Read the value-names and their values.
3480 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3481 A semicolon or comma instead of a NAME means the end. */
3482 while (**pp && **pp != ';' && **pp != ',')
3484 STABS_CONTINUE (pp, objfile);
3488 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3490 n = read_huge_number (pp, ',', &nbits, 0);
3492 return error_type (pp, objfile);
3494 sym = (struct symbol *)
3495 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3496 memset (sym, 0, sizeof (struct symbol));
3497 SYMBOL_SET_LINKAGE_NAME (sym, name);
3498 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3499 SYMBOL_CLASS (sym) = LOC_CONST;
3500 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3501 SYMBOL_VALUE (sym) = n;
3504 add_symbol_to_list (sym, symlist);
3509 (*pp)++; /* Skip the semicolon. */
3511 /* Now fill in the fields of the type-structure. */
3513 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3514 TYPE_CODE (type) = TYPE_CODE_ENUM;
3515 TYPE_STUB (type) = 0;
3517 TYPE_UNSIGNED (type) = 1;
3518 TYPE_NFIELDS (type) = nsyms;
3519 TYPE_FIELDS (type) = (struct field *)
3520 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3521 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3523 /* Find the symbols for the values and put them into the type.
3524 The symbols can be found in the symlist that we put them on
3525 to cause them to be defined. osyms contains the old value
3526 of that symlist; everything up to there was defined by us. */
3527 /* Note that we preserve the order of the enum constants, so
3528 that in something like "enum {FOO, LAST_THING=FOO}" we print
3529 FOO, not LAST_THING. */
3531 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3533 int last = syms == osyms ? o_nsyms : 0;
3534 int j = syms->nsyms;
3535 for (; --j >= last; --n)
3537 struct symbol *xsym = syms->symbol[j];
3538 SYMBOL_TYPE (xsym) = type;
3539 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3540 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3541 TYPE_FIELD_BITSIZE (type, n) = 0;
3550 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3551 typedefs in every file (for int, long, etc):
3553 type = b <signed> <width> <format type>; <offset>; <nbits>
3555 optional format type = c or b for char or boolean.
3556 offset = offset from high order bit to start bit of type.
3557 width is # bytes in object of this type, nbits is # bits in type.
3559 The width/offset stuff appears to be for small objects stored in
3560 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3563 static struct type *
3564 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3569 enum type_code code = TYPE_CODE_INT;
3580 return error_type (pp, objfile);
3584 /* For some odd reason, all forms of char put a c here. This is strange
3585 because no other type has this honor. We can safely ignore this because
3586 we actually determine 'char'acterness by the number of bits specified in
3588 Boolean forms, e.g Fortran logical*X, put a b here. */
3592 else if (**pp == 'b')
3594 code = TYPE_CODE_BOOL;
3598 /* The first number appears to be the number of bytes occupied
3599 by this type, except that unsigned short is 4 instead of 2.
3600 Since this information is redundant with the third number,
3601 we will ignore it. */
3602 read_huge_number (pp, ';', &nbits, 0);
3604 return error_type (pp, objfile);
3606 /* The second number is always 0, so ignore it too. */
3607 read_huge_number (pp, ';', &nbits, 0);
3609 return error_type (pp, objfile);
3611 /* The third number is the number of bits for this type. */
3612 type_bits = read_huge_number (pp, 0, &nbits, 0);
3614 return error_type (pp, objfile);
3615 /* The type *should* end with a semicolon. If it are embedded
3616 in a larger type the semicolon may be the only way to know where
3617 the type ends. If this type is at the end of the stabstring we
3618 can deal with the omitted semicolon (but we don't have to like
3619 it). Don't bother to complain(), Sun's compiler omits the semicolon
3625 return init_type (TYPE_CODE_VOID, 1,
3626 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3629 return init_type (code,
3630 type_bits / TARGET_CHAR_BIT,
3631 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3635 static struct type *
3636 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3641 struct type *rettype;
3643 /* The first number has more details about the type, for example
3645 details = read_huge_number (pp, ';', &nbits, 0);
3647 return error_type (pp, objfile);
3649 /* The second number is the number of bytes occupied by this type */
3650 nbytes = read_huge_number (pp, ';', &nbits, 0);
3652 return error_type (pp, objfile);
3654 if (details == NF_COMPLEX || details == NF_COMPLEX16
3655 || details == NF_COMPLEX32)
3657 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3658 TYPE_TARGET_TYPE (rettype)
3659 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3663 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3666 /* Read a number from the string pointed to by *PP.
3667 The value of *PP is advanced over the number.
3668 If END is nonzero, the character that ends the
3669 number must match END, or an error happens;
3670 and that character is skipped if it does match.
3671 If END is zero, *PP is left pointing to that character.
3673 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3674 the number is represented in an octal representation, assume that
3675 it is represented in a 2's complement representation with a size of
3676 TWOS_COMPLEMENT_BITS.
3678 If the number fits in a long, set *BITS to 0 and return the value.
3679 If not, set *BITS to be the number of bits in the number and return 0.
3681 If encounter garbage, set *BITS to -1 and return 0. */
3684 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3695 int twos_complement_representation = 0;
3703 /* Leading zero means octal. GCC uses this to output values larger
3704 than an int (because that would be hard in decimal). */
3711 /* Skip extra zeros. */
3715 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3717 /* Octal, possibly signed. Check if we have enough chars for a
3722 while ((c = *p1) >= '0' && c < '8')
3726 if (len > twos_complement_bits / 3
3727 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3729 /* Ok, we have enough characters for a signed value, check
3730 for signness by testing if the sign bit is set. */
3731 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3733 if (c & (1 << sign_bit))
3735 /* Definitely signed. */
3736 twos_complement_representation = 1;
3742 upper_limit = LONG_MAX / radix;
3744 while ((c = *p++) >= '0' && c < ('0' + radix))
3746 if (n <= upper_limit)
3748 if (twos_complement_representation)
3750 /* Octal, signed, twos complement representation. In
3751 this case, n is the corresponding absolute value. */
3754 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3765 /* unsigned representation */
3767 n += c - '0'; /* FIXME this overflows anyway */
3773 /* This depends on large values being output in octal, which is
3780 /* Ignore leading zeroes. */
3784 else if (c == '2' || c == '3')
3805 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3807 /* We were supposed to parse a number with maximum
3808 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3819 /* Large decimal constants are an error (because it is hard to
3820 count how many bits are in them). */
3826 /* -0x7f is the same as 0x80. So deal with it by adding one to
3827 the number of bits. Two's complement represention octals
3828 can't have a '-' in front. */
3829 if (sign == -1 && !twos_complement_representation)
3840 /* It's *BITS which has the interesting information. */
3844 static struct type *
3845 read_range_type (char **pp, int typenums[2], int type_size,
3846 struct objfile *objfile)
3848 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3849 char *orig_pp = *pp;
3854 struct type *result_type;
3855 struct type *index_type = NULL;
3857 /* First comes a type we are a subrange of.
3858 In C it is usually 0, 1 or the type being defined. */
3859 if (read_type_number (pp, rangenums) != 0)
3860 return error_type (pp, objfile);
3861 self_subrange = (rangenums[0] == typenums[0] &&
3862 rangenums[1] == typenums[1]);
3867 index_type = read_type (pp, objfile);
3870 /* A semicolon should now follow; skip it. */
3874 /* The remaining two operands are usually lower and upper bounds
3875 of the range. But in some special cases they mean something else. */
3876 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3877 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3879 if (n2bits == -1 || n3bits == -1)
3880 return error_type (pp, objfile);
3883 goto handle_true_range;
3885 /* If limits are huge, must be large integral type. */
3886 if (n2bits != 0 || n3bits != 0)
3888 char got_signed = 0;
3889 char got_unsigned = 0;
3890 /* Number of bits in the type. */
3893 /* If a type size attribute has been specified, the bounds of
3894 the range should fit in this size. If the lower bounds needs
3895 more bits than the upper bound, then the type is signed. */
3896 if (n2bits <= type_size && n3bits <= type_size)
3898 if (n2bits == type_size && n2bits > n3bits)
3904 /* Range from 0 to <large number> is an unsigned large integral type. */
3905 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3910 /* Range from <large number> to <large number>-1 is a large signed
3911 integral type. Take care of the case where <large number> doesn't
3912 fit in a long but <large number>-1 does. */
3913 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3914 || (n2bits != 0 && n3bits == 0
3915 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3922 if (got_signed || got_unsigned)
3924 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3925 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3929 return error_type (pp, objfile);
3932 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3933 if (self_subrange && n2 == 0 && n3 == 0)
3934 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3936 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3937 is the width in bytes.
3939 Fortran programs appear to use this for complex types also. To
3940 distinguish between floats and complex, g77 (and others?) seem
3941 to use self-subranges for the complexes, and subranges of int for
3944 Also note that for complexes, g77 sets n2 to the size of one of
3945 the member floats, not the whole complex beast. My guess is that
3946 this was to work well with pre-COMPLEX versions of gdb. */
3948 if (n3 == 0 && n2 > 0)
3950 struct type *float_type
3951 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3955 struct type *complex_type =
3956 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3957 TYPE_TARGET_TYPE (complex_type) = float_type;
3958 return complex_type;
3964 /* If the upper bound is -1, it must really be an unsigned integral. */
3966 else if (n2 == 0 && n3 == -1)
3968 int bits = type_size;
3971 /* We don't know its size. It is unsigned int or unsigned
3972 long. GCC 2.3.3 uses this for long long too, but that is
3973 just a GDB 3.5 compatibility hack. */
3974 bits = gdbarch_int_bit (gdbarch);
3977 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
3978 TYPE_FLAG_UNSIGNED, NULL, objfile);
3981 /* Special case: char is defined (Who knows why) as a subrange of
3982 itself with range 0-127. */
3983 else if (self_subrange && n2 == 0 && n3 == 127)
3984 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3986 /* We used to do this only for subrange of self or subrange of int. */
3989 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3990 "unsigned long", and we already checked for that,
3991 so don't need to test for it here. */
3994 /* n3 actually gives the size. */
3995 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3998 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
3999 unsigned n-byte integer. But do require n to be a power of
4000 two; we don't want 3- and 5-byte integers flying around. */
4006 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4009 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4010 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4014 /* I think this is for Convex "long long". Since I don't know whether
4015 Convex sets self_subrange, I also accept that particular size regardless
4016 of self_subrange. */
4017 else if (n3 == 0 && n2 < 0
4019 || n2 == -gdbarch_long_long_bit
4020 (gdbarch) / TARGET_CHAR_BIT))
4021 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4022 else if (n2 == -n3 - 1)
4025 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4027 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4028 if (n3 == 0x7fffffff)
4029 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4032 /* We have a real range type on our hands. Allocate space and
4033 return a real pointer. */
4037 index_type = builtin_type (gdbarch)->builtin_int;
4039 index_type = *dbx_lookup_type (rangenums);
4040 if (index_type == NULL)
4042 /* Does this actually ever happen? Is that why we are worrying
4043 about dealing with it rather than just calling error_type? */
4045 complaint (&symfile_complaints,
4046 _("base type %d of range type is not defined"), rangenums[1]);
4048 index_type = builtin_type (gdbarch)->builtin_int;
4051 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4052 return (result_type);
4055 /* Read in an argument list. This is a list of types, separated by commas
4056 and terminated with END. Return the list of types read in, or NULL
4057 if there is an error. */
4059 static struct field *
4060 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4063 /* FIXME! Remove this arbitrary limit! */
4064 struct type *types[1024]; /* allow for fns of 1023 parameters */
4071 /* Invalid argument list: no ','. */
4074 STABS_CONTINUE (pp, objfile);
4075 types[n++] = read_type (pp, objfile);
4077 (*pp)++; /* get past `end' (the ':' character) */
4079 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4087 rval = (struct field *) xmalloc (n * sizeof (struct field));
4088 memset (rval, 0, n * sizeof (struct field));
4089 for (i = 0; i < n; i++)
4090 rval[i].type = types[i];
4095 /* Common block handling. */
4097 /* List of symbols declared since the last BCOMM. This list is a tail
4098 of local_symbols. When ECOMM is seen, the symbols on the list
4099 are noted so their proper addresses can be filled in later,
4100 using the common block base address gotten from the assembler
4103 static struct pending *common_block;
4104 static int common_block_i;
4106 /* Name of the current common block. We get it from the BCOMM instead of the
4107 ECOMM to match IBM documentation (even though IBM puts the name both places
4108 like everyone else). */
4109 static char *common_block_name;
4111 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4112 to remain after this function returns. */
4115 common_block_start (char *name, struct objfile *objfile)
4117 if (common_block_name != NULL)
4119 complaint (&symfile_complaints,
4120 _("Invalid symbol data: common block within common block"));
4122 common_block = local_symbols;
4123 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4124 common_block_name = obsavestring (name, strlen (name),
4125 &objfile->objfile_obstack);
4128 /* Process a N_ECOMM symbol. */
4131 common_block_end (struct objfile *objfile)
4133 /* Symbols declared since the BCOMM are to have the common block
4134 start address added in when we know it. common_block and
4135 common_block_i point to the first symbol after the BCOMM in
4136 the local_symbols list; copy the list and hang it off the
4137 symbol for the common block name for later fixup. */
4140 struct pending *new = 0;
4141 struct pending *next;
4144 if (common_block_name == NULL)
4146 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4150 sym = (struct symbol *)
4151 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4152 memset (sym, 0, sizeof (struct symbol));
4153 /* Note: common_block_name already saved on objfile_obstack */
4154 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4155 SYMBOL_CLASS (sym) = LOC_BLOCK;
4157 /* Now we copy all the symbols which have been defined since the BCOMM. */
4159 /* Copy all the struct pendings before common_block. */
4160 for (next = local_symbols;
4161 next != NULL && next != common_block;
4164 for (j = 0; j < next->nsyms; j++)
4165 add_symbol_to_list (next->symbol[j], &new);
4168 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4169 NULL, it means copy all the local symbols (which we already did
4172 if (common_block != NULL)
4173 for (j = common_block_i; j < common_block->nsyms; j++)
4174 add_symbol_to_list (common_block->symbol[j], &new);
4176 SYMBOL_TYPE (sym) = (struct type *) new;
4178 /* Should we be putting local_symbols back to what it was?
4181 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4182 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4183 global_sym_chain[i] = sym;
4184 common_block_name = NULL;
4187 /* Add a common block's start address to the offset of each symbol
4188 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4189 the common block name). */
4192 fix_common_block (struct symbol *sym, int valu)
4194 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4195 for (; next; next = next->next)
4198 for (j = next->nsyms - 1; j >= 0; j--)
4199 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4205 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4206 See add_undefined_type for more details. */
4209 add_undefined_type_noname (struct type *type, int typenums[2])
4213 nat.typenums[0] = typenums [0];
4214 nat.typenums[1] = typenums [1];
4217 if (noname_undefs_length == noname_undefs_allocated)
4219 noname_undefs_allocated *= 2;
4220 noname_undefs = (struct nat *)
4221 xrealloc ((char *) noname_undefs,
4222 noname_undefs_allocated * sizeof (struct nat));
4224 noname_undefs[noname_undefs_length++] = nat;
4227 /* Add TYPE to the UNDEF_TYPES vector.
4228 See add_undefined_type for more details. */
4231 add_undefined_type_1 (struct type *type)
4233 if (undef_types_length == undef_types_allocated)
4235 undef_types_allocated *= 2;
4236 undef_types = (struct type **)
4237 xrealloc ((char *) undef_types,
4238 undef_types_allocated * sizeof (struct type *));
4240 undef_types[undef_types_length++] = type;
4243 /* What about types defined as forward references inside of a small lexical
4245 /* Add a type to the list of undefined types to be checked through
4246 once this file has been read in.
4248 In practice, we actually maintain two such lists: The first list
4249 (UNDEF_TYPES) is used for types whose name has been provided, and
4250 concerns forward references (eg 'xs' or 'xu' forward references);
4251 the second list (NONAME_UNDEFS) is used for types whose name is
4252 unknown at creation time, because they were referenced through
4253 their type number before the actual type was declared.
4254 This function actually adds the given type to the proper list. */
4257 add_undefined_type (struct type *type, int typenums[2])
4259 if (TYPE_TAG_NAME (type) == NULL)
4260 add_undefined_type_noname (type, typenums);
4262 add_undefined_type_1 (type);
4265 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4268 cleanup_undefined_types_noname (void)
4272 for (i = 0; i < noname_undefs_length; i++)
4274 struct nat nat = noname_undefs[i];
4277 type = dbx_lookup_type (nat.typenums);
4278 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4280 /* The instance flags of the undefined type are still unset,
4281 and needs to be copied over from the reference type.
4282 Since replace_type expects them to be identical, we need
4283 to set these flags manually before hand. */
4284 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4285 replace_type (nat.type, *type);
4289 noname_undefs_length = 0;
4292 /* Go through each undefined type, see if it's still undefined, and fix it
4293 up if possible. We have two kinds of undefined types:
4295 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4296 Fix: update array length using the element bounds
4297 and the target type's length.
4298 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4299 yet defined at the time a pointer to it was made.
4300 Fix: Do a full lookup on the struct/union tag. */
4303 cleanup_undefined_types_1 (void)
4307 /* Iterate over every undefined type, and look for a symbol whose type
4308 matches our undefined type. The symbol matches if:
4309 1. It is a typedef in the STRUCT domain;
4310 2. It has the same name, and same type code;
4311 3. The instance flags are identical.
4313 It is important to check the instance flags, because we have seen
4314 examples where the debug info contained definitions such as:
4316 "foo_t:t30=B31=xefoo_t:"
4318 In this case, we have created an undefined type named "foo_t" whose
4319 instance flags is null (when processing "xefoo_t"), and then created
4320 another type with the same name, but with different instance flags
4321 ('B' means volatile). I think that the definition above is wrong,
4322 since the same type cannot be volatile and non-volatile at the same
4323 time, but we need to be able to cope with it when it happens. The
4324 approach taken here is to treat these two types as different. */
4326 for (type = undef_types; type < undef_types + undef_types_length; type++)
4328 switch (TYPE_CODE (*type))
4331 case TYPE_CODE_STRUCT:
4332 case TYPE_CODE_UNION:
4333 case TYPE_CODE_ENUM:
4335 /* Check if it has been defined since. Need to do this here
4336 as well as in check_typedef to deal with the (legitimate in
4337 C though not C++) case of several types with the same name
4338 in different source files. */
4339 if (TYPE_STUB (*type))
4341 struct pending *ppt;
4343 /* Name of the type, without "struct" or "union" */
4344 char *typename = TYPE_TAG_NAME (*type);
4346 if (typename == NULL)
4348 complaint (&symfile_complaints, _("need a type name"));
4351 for (ppt = file_symbols; ppt; ppt = ppt->next)
4353 for (i = 0; i < ppt->nsyms; i++)
4355 struct symbol *sym = ppt->symbol[i];
4357 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4358 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4359 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4361 && (TYPE_INSTANCE_FLAGS (*type) ==
4362 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4363 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4365 replace_type (*type, SYMBOL_TYPE (sym));
4374 complaint (&symfile_complaints,
4375 _("forward-referenced types left unresolved, "
4383 undef_types_length = 0;
4386 /* Try to fix all the undefined types we ecountered while processing
4390 cleanup_undefined_types (void)
4392 cleanup_undefined_types_1 ();
4393 cleanup_undefined_types_noname ();
4396 /* Scan through all of the global symbols defined in the object file,
4397 assigning values to the debugging symbols that need to be assigned
4398 to. Get these symbols from the minimal symbol table. */
4401 scan_file_globals (struct objfile *objfile)
4404 struct minimal_symbol *msymbol;
4405 struct symbol *sym, *prev;
4406 struct objfile *resolve_objfile;
4408 /* SVR4 based linkers copy referenced global symbols from shared
4409 libraries to the main executable.
4410 If we are scanning the symbols for a shared library, try to resolve
4411 them from the minimal symbols of the main executable first. */
4413 if (symfile_objfile && objfile != symfile_objfile)
4414 resolve_objfile = symfile_objfile;
4416 resolve_objfile = objfile;
4420 /* Avoid expensive loop through all minimal symbols if there are
4421 no unresolved symbols. */
4422 for (hash = 0; hash < HASHSIZE; hash++)
4424 if (global_sym_chain[hash])
4427 if (hash >= HASHSIZE)
4430 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4434 /* Skip static symbols. */
4435 switch (MSYMBOL_TYPE (msymbol))
4447 /* Get the hash index and check all the symbols
4448 under that hash index. */
4450 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4452 for (sym = global_sym_chain[hash]; sym;)
4454 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4455 SYMBOL_LINKAGE_NAME (sym)) == 0)
4457 /* Splice this symbol out of the hash chain and
4458 assign the value we have to it. */
4461 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4465 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4468 /* Check to see whether we need to fix up a common block. */
4469 /* Note: this code might be executed several times for
4470 the same symbol if there are multiple references. */
4473 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4475 fix_common_block (sym,
4476 SYMBOL_VALUE_ADDRESS (msymbol));
4480 SYMBOL_VALUE_ADDRESS (sym)
4481 = SYMBOL_VALUE_ADDRESS (msymbol);
4483 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4488 sym = SYMBOL_VALUE_CHAIN (prev);
4492 sym = global_sym_chain[hash];
4498 sym = SYMBOL_VALUE_CHAIN (sym);
4502 if (resolve_objfile == objfile)
4504 resolve_objfile = objfile;
4507 /* Change the storage class of any remaining unresolved globals to
4508 LOC_UNRESOLVED and remove them from the chain. */
4509 for (hash = 0; hash < HASHSIZE; hash++)
4511 sym = global_sym_chain[hash];
4515 sym = SYMBOL_VALUE_CHAIN (sym);
4517 /* Change the symbol address from the misleading chain value
4519 SYMBOL_VALUE_ADDRESS (prev) = 0;
4521 /* Complain about unresolved common block symbols. */
4522 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4523 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4525 complaint (&symfile_complaints,
4526 _("%s: common block `%s' from global_sym_chain unresolved"),
4527 objfile->name, SYMBOL_PRINT_NAME (prev));
4530 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4533 /* Initialize anything that needs initializing when starting to read
4534 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4538 stabsread_init (void)
4542 /* Initialize anything that needs initializing when a completely new
4543 symbol file is specified (not just adding some symbols from another
4544 file, e.g. a shared library). */
4547 stabsread_new_init (void)
4549 /* Empty the hash table of global syms looking for values. */
4550 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4553 /* Initialize anything that needs initializing at the same time as
4554 start_symtab() is called. */
4559 global_stabs = NULL; /* AIX COFF */
4560 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4561 n_this_object_header_files = 1;
4562 type_vector_length = 0;
4563 type_vector = (struct type **) 0;
4565 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4566 common_block_name = NULL;
4569 /* Call after end_symtab() */
4576 xfree (type_vector);
4579 type_vector_length = 0;
4580 previous_stab_code = 0;
4584 finish_global_stabs (struct objfile *objfile)
4588 patch_block_stabs (global_symbols, global_stabs, objfile);
4589 xfree (global_stabs);
4590 global_stabs = NULL;
4594 /* Find the end of the name, delimited by a ':', but don't match
4595 ObjC symbols which look like -[Foo bar::]:bla. */
4597 find_name_end (char *name)
4600 if (s[0] == '-' || *s == '+')
4602 /* Must be an ObjC method symbol. */
4605 error (_("invalid symbol name \"%s\""), name);
4607 s = strchr (s, ']');
4610 error (_("invalid symbol name \"%s\""), name);
4612 return strchr (s, ':');
4616 return strchr (s, ':');
4620 /* Initializer for this module */
4623 _initialize_stabsread (void)
4625 undef_types_allocated = 20;
4626 undef_types_length = 0;
4627 undef_types = (struct type **)
4628 xmalloc (undef_types_allocated * sizeof (struct type *));
4630 noname_undefs_allocated = 20;
4631 noname_undefs_length = 0;
4632 noname_undefs = (struct nat *)
4633 xmalloc (noname_undefs_allocated * sizeof (struct nat));